xref: /linux/tools/testing/selftests/mm/guard-regions.c (revision beace86e61e465dba204a268ab3f3377153a4973)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 
3 #define _GNU_SOURCE
4 #include "../kselftest_harness.h"
5 #include <asm-generic/mman.h> /* Force the import of the tools version. */
6 #include <assert.h>
7 #include <errno.h>
8 #include <fcntl.h>
9 #include <linux/limits.h>
10 #include <linux/userfaultfd.h>
11 #include <linux/fs.h>
12 #include <setjmp.h>
13 #include <signal.h>
14 #include <stdbool.h>
15 #include <stdio.h>
16 #include <stdlib.h>
17 #include <string.h>
18 #include <sys/ioctl.h>
19 #include <sys/mman.h>
20 #include <sys/syscall.h>
21 #include <sys/uio.h>
22 #include <unistd.h>
23 #include "vm_util.h"
24 
25 #include "../pidfd/pidfd.h"
26 
27 /*
28  * Ignore the checkpatch warning, as per the C99 standard, section 7.14.1.1:
29  *
30  * "If the signal occurs other than as the result of calling the abort or raise
31  *  function, the behavior is undefined if the signal handler refers to any
32  *  object with static storage duration other than by assigning a value to an
33  *  object declared as volatile sig_atomic_t"
34  */
35 static volatile sig_atomic_t signal_jump_set;
36 static sigjmp_buf signal_jmp_buf;
37 
38 /*
39  * How is the test backing the mapping being tested?
40  */
41 enum backing_type {
42 	ANON_BACKED,
43 	SHMEM_BACKED,
44 	LOCAL_FILE_BACKED,
45 };
46 
47 FIXTURE(guard_regions)
48 {
49 	unsigned long page_size;
50 	char path[PATH_MAX];
51 	int fd;
52 };
53 
54 FIXTURE_VARIANT(guard_regions)
55 {
56 	enum backing_type backing;
57 };
58 
59 FIXTURE_VARIANT_ADD(guard_regions, anon)
60 {
61 	.backing = ANON_BACKED,
62 };
63 
64 FIXTURE_VARIANT_ADD(guard_regions, shmem)
65 {
66 	.backing = SHMEM_BACKED,
67 };
68 
69 FIXTURE_VARIANT_ADD(guard_regions, file)
70 {
71 	.backing = LOCAL_FILE_BACKED,
72 };
73 
74 static bool is_anon_backed(const FIXTURE_VARIANT(guard_regions) * variant)
75 {
76 	switch (variant->backing) {
77 	case  ANON_BACKED:
78 	case  SHMEM_BACKED:
79 		return true;
80 	default:
81 		return false;
82 	}
83 }
84 
85 static void *mmap_(FIXTURE_DATA(guard_regions) * self,
86 		   const FIXTURE_VARIANT(guard_regions) * variant,
87 		   void *addr, size_t length, int prot, int extra_flags,
88 		   off_t offset)
89 {
90 	int fd;
91 	int flags = extra_flags;
92 
93 	switch (variant->backing) {
94 	case ANON_BACKED:
95 		flags |= MAP_PRIVATE | MAP_ANON;
96 		fd = -1;
97 		break;
98 	case SHMEM_BACKED:
99 	case LOCAL_FILE_BACKED:
100 		flags |= MAP_SHARED;
101 		fd = self->fd;
102 		break;
103 	default:
104 		ksft_exit_fail();
105 		break;
106 	}
107 
108 	return mmap(addr, length, prot, flags, fd, offset);
109 }
110 
111 static int userfaultfd(int flags)
112 {
113 	return syscall(SYS_userfaultfd, flags);
114 }
115 
116 static void handle_fatal(int c)
117 {
118 	if (!signal_jump_set)
119 		return;
120 
121 	siglongjmp(signal_jmp_buf, c);
122 }
123 
124 static ssize_t sys_process_madvise(int pidfd, const struct iovec *iovec,
125 				   size_t n, int advice, unsigned int flags)
126 {
127 	return syscall(__NR_process_madvise, pidfd, iovec, n, advice, flags);
128 }
129 
130 /*
131  * Enable our signal catcher and try to read/write the specified buffer. The
132  * return value indicates whether the read/write succeeds without a fatal
133  * signal.
134  */
135 static bool try_access_buf(char *ptr, bool write)
136 {
137 	bool failed;
138 
139 	/* Tell signal handler to jump back here on fatal signal. */
140 	signal_jump_set = true;
141 	/* If a fatal signal arose, we will jump back here and failed is set. */
142 	failed = sigsetjmp(signal_jmp_buf, 0) != 0;
143 
144 	if (!failed) {
145 		if (write)
146 			*ptr = 'x';
147 		else
148 			FORCE_READ(ptr);
149 	}
150 
151 	signal_jump_set = false;
152 	return !failed;
153 }
154 
155 /* Try and read from a buffer, return true if no fatal signal. */
156 static bool try_read_buf(char *ptr)
157 {
158 	return try_access_buf(ptr, false);
159 }
160 
161 /* Try and write to a buffer, return true if no fatal signal. */
162 static bool try_write_buf(char *ptr)
163 {
164 	return try_access_buf(ptr, true);
165 }
166 
167 /*
168  * Try and BOTH read from AND write to a buffer, return true if BOTH operations
169  * succeed.
170  */
171 static bool try_read_write_buf(char *ptr)
172 {
173 	return try_read_buf(ptr) && try_write_buf(ptr);
174 }
175 
176 static void setup_sighandler(void)
177 {
178 	struct sigaction act = {
179 		.sa_handler = &handle_fatal,
180 		.sa_flags = SA_NODEFER,
181 	};
182 
183 	sigemptyset(&act.sa_mask);
184 	if (sigaction(SIGSEGV, &act, NULL))
185 		ksft_exit_fail_perror("sigaction");
186 }
187 
188 static void teardown_sighandler(void)
189 {
190 	struct sigaction act = {
191 		.sa_handler = SIG_DFL,
192 		.sa_flags = SA_NODEFER,
193 	};
194 
195 	sigemptyset(&act.sa_mask);
196 	sigaction(SIGSEGV, &act, NULL);
197 }
198 
199 static int open_file(const char *prefix, char *path)
200 {
201 	int fd;
202 
203 	snprintf(path, PATH_MAX, "%sguard_regions_test_file_XXXXXX", prefix);
204 	fd = mkstemp(path);
205 	if (fd < 0)
206 		ksft_exit_fail_perror("mkstemp");
207 
208 	return fd;
209 }
210 
211 /* Establish a varying pattern in a buffer. */
212 static void set_pattern(char *ptr, size_t num_pages, size_t page_size)
213 {
214 	size_t i;
215 
216 	for (i = 0; i < num_pages; i++) {
217 		char *ptr2 = &ptr[i * page_size];
218 
219 		memset(ptr2, 'a' + (i % 26), page_size);
220 	}
221 }
222 
223 /*
224  * Check that a buffer contains the pattern set by set_pattern(), starting at a
225  * page offset of pgoff within the buffer.
226  */
227 static bool check_pattern_offset(char *ptr, size_t num_pages, size_t page_size,
228 				 size_t pgoff)
229 {
230 	size_t i;
231 
232 	for (i = 0; i < num_pages * page_size; i++) {
233 		size_t offset = pgoff * page_size + i;
234 		char actual = ptr[offset];
235 		char expected = 'a' + ((offset / page_size) % 26);
236 
237 		if (actual != expected)
238 			return false;
239 	}
240 
241 	return true;
242 }
243 
244 /* Check that a buffer contains the pattern set by set_pattern(). */
245 static bool check_pattern(char *ptr, size_t num_pages, size_t page_size)
246 {
247 	return check_pattern_offset(ptr, num_pages, page_size, 0);
248 }
249 
250 /* Determine if a buffer contains only repetitions of a specified char. */
251 static bool is_buf_eq(char *buf, size_t size, char chr)
252 {
253 	size_t i;
254 
255 	for (i = 0; i < size; i++) {
256 		if (buf[i] != chr)
257 			return false;
258 	}
259 
260 	return true;
261 }
262 
263 FIXTURE_SETUP(guard_regions)
264 {
265 	self->page_size = (unsigned long)sysconf(_SC_PAGESIZE);
266 	setup_sighandler();
267 
268 	switch (variant->backing) {
269 	case ANON_BACKED:
270 		return;
271 	case LOCAL_FILE_BACKED:
272 		self->fd = open_file("", self->path);
273 		break;
274 	case SHMEM_BACKED:
275 		self->fd = memfd_create(self->path, 0);
276 		break;
277 	}
278 
279 	/* We truncate file to at least 100 pages, tests can modify as needed. */
280 	ASSERT_EQ(ftruncate(self->fd, 100 * self->page_size), 0);
281 };
282 
283 FIXTURE_TEARDOWN_PARENT(guard_regions)
284 {
285 	teardown_sighandler();
286 
287 	if (variant->backing == ANON_BACKED)
288 		return;
289 
290 	if (self->fd >= 0)
291 		close(self->fd);
292 
293 	if (self->path[0] != '\0')
294 		unlink(self->path);
295 }
296 
297 TEST_F(guard_regions, basic)
298 {
299 	const unsigned long NUM_PAGES = 10;
300 	const unsigned long page_size = self->page_size;
301 	char *ptr;
302 	int i;
303 
304 	ptr = mmap_(self, variant, NULL, NUM_PAGES * page_size,
305 		    PROT_READ | PROT_WRITE, 0, 0);
306 	ASSERT_NE(ptr, MAP_FAILED);
307 
308 	/* Trivially assert we can touch the first page. */
309 	ASSERT_TRUE(try_read_write_buf(ptr));
310 
311 	ASSERT_EQ(madvise(ptr, page_size, MADV_GUARD_INSTALL), 0);
312 
313 	/* Establish that 1st page SIGSEGV's. */
314 	ASSERT_FALSE(try_read_write_buf(ptr));
315 
316 	/* Ensure we can touch everything else.*/
317 	for (i = 1; i < NUM_PAGES; i++) {
318 		char *curr = &ptr[i * page_size];
319 
320 		ASSERT_TRUE(try_read_write_buf(curr));
321 	}
322 
323 	/* Establish a guard page at the end of the mapping. */
324 	ASSERT_EQ(madvise(&ptr[(NUM_PAGES - 1) * page_size], page_size,
325 			  MADV_GUARD_INSTALL), 0);
326 
327 	/* Check that both guard pages result in SIGSEGV. */
328 	ASSERT_FALSE(try_read_write_buf(ptr));
329 	ASSERT_FALSE(try_read_write_buf(&ptr[(NUM_PAGES - 1) * page_size]));
330 
331 	/* Remove the first guard page. */
332 	ASSERT_FALSE(madvise(ptr, page_size, MADV_GUARD_REMOVE));
333 
334 	/* Make sure we can touch it. */
335 	ASSERT_TRUE(try_read_write_buf(ptr));
336 
337 	/* Remove the last guard page. */
338 	ASSERT_FALSE(madvise(&ptr[(NUM_PAGES - 1) * page_size], page_size,
339 			     MADV_GUARD_REMOVE));
340 
341 	/* Make sure we can touch it. */
342 	ASSERT_TRUE(try_read_write_buf(&ptr[(NUM_PAGES - 1) * page_size]));
343 
344 	/*
345 	 *  Test setting a _range_ of pages, namely the first 3. The first of
346 	 *  these be faulted in, so this also tests that we can install guard
347 	 *  pages over backed pages.
348 	 */
349 	ASSERT_EQ(madvise(ptr, 3 * page_size, MADV_GUARD_INSTALL), 0);
350 
351 	/* Make sure they are all guard pages. */
352 	for (i = 0; i < 3; i++) {
353 		char *curr = &ptr[i * page_size];
354 
355 		ASSERT_FALSE(try_read_write_buf(curr));
356 	}
357 
358 	/* Make sure the rest are not. */
359 	for (i = 3; i < NUM_PAGES; i++) {
360 		char *curr = &ptr[i * page_size];
361 
362 		ASSERT_TRUE(try_read_write_buf(curr));
363 	}
364 
365 	/* Remove guard pages. */
366 	ASSERT_EQ(madvise(ptr, NUM_PAGES * page_size, MADV_GUARD_REMOVE), 0);
367 
368 	/* Now make sure we can touch everything. */
369 	for (i = 0; i < NUM_PAGES; i++) {
370 		char *curr = &ptr[i * page_size];
371 
372 		ASSERT_TRUE(try_read_write_buf(curr));
373 	}
374 
375 	/*
376 	 * Now remove all guard pages, make sure we don't remove existing
377 	 * entries.
378 	 */
379 	ASSERT_EQ(madvise(ptr, NUM_PAGES * page_size, MADV_GUARD_REMOVE), 0);
380 
381 	for (i = 0; i < NUM_PAGES * page_size; i += page_size) {
382 		char chr = ptr[i];
383 
384 		ASSERT_EQ(chr, 'x');
385 	}
386 
387 	ASSERT_EQ(munmap(ptr, NUM_PAGES * page_size), 0);
388 }
389 
390 /* Assert that operations applied across multiple VMAs work as expected. */
391 TEST_F(guard_regions, multi_vma)
392 {
393 	const unsigned long page_size = self->page_size;
394 	char *ptr_region, *ptr, *ptr1, *ptr2, *ptr3;
395 	int i;
396 
397 	/* Reserve a 100 page region over which we can install VMAs. */
398 	ptr_region = mmap_(self, variant, NULL, 100 * page_size,
399 			   PROT_NONE, 0, 0);
400 	ASSERT_NE(ptr_region, MAP_FAILED);
401 
402 	/* Place a VMA of 10 pages size at the start of the region. */
403 	ptr1 = mmap_(self, variant, ptr_region, 10 * page_size,
404 		     PROT_READ | PROT_WRITE, MAP_FIXED, 0);
405 	ASSERT_NE(ptr1, MAP_FAILED);
406 
407 	/* Place a VMA of 5 pages size 50 pages into the region. */
408 	ptr2 = mmap_(self, variant, &ptr_region[50 * page_size], 5 * page_size,
409 		     PROT_READ | PROT_WRITE, MAP_FIXED, 0);
410 	ASSERT_NE(ptr2, MAP_FAILED);
411 
412 	/* Place a VMA of 20 pages size at the end of the region. */
413 	ptr3 = mmap_(self, variant, &ptr_region[80 * page_size], 20 * page_size,
414 		     PROT_READ | PROT_WRITE, MAP_FIXED, 0);
415 	ASSERT_NE(ptr3, MAP_FAILED);
416 
417 	/* Unmap gaps. */
418 	ASSERT_EQ(munmap(&ptr_region[10 * page_size], 40 * page_size), 0);
419 	ASSERT_EQ(munmap(&ptr_region[55 * page_size], 25 * page_size), 0);
420 
421 	/*
422 	 * We end up with VMAs like this:
423 	 *
424 	 * 0    10 .. 50   55 .. 80   100
425 	 * [---]      [---]      [---]
426 	 */
427 
428 	/*
429 	 * Now mark the whole range as guard pages and make sure all VMAs are as
430 	 * such.
431 	 */
432 
433 	/*
434 	 * madvise() is certifiable and lets you perform operations over gaps,
435 	 * everything works, but it indicates an error and errno is set to
436 	 * -ENOMEM. Also if anything runs out of memory it is set to
437 	 * -ENOMEM. You are meant to guess which is which.
438 	 */
439 	ASSERT_EQ(madvise(ptr_region, 100 * page_size, MADV_GUARD_INSTALL), -1);
440 	ASSERT_EQ(errno, ENOMEM);
441 
442 	for (i = 0; i < 10; i++) {
443 		char *curr = &ptr1[i * page_size];
444 
445 		ASSERT_FALSE(try_read_write_buf(curr));
446 	}
447 
448 	for (i = 0; i < 5; i++) {
449 		char *curr = &ptr2[i * page_size];
450 
451 		ASSERT_FALSE(try_read_write_buf(curr));
452 	}
453 
454 	for (i = 0; i < 20; i++) {
455 		char *curr = &ptr3[i * page_size];
456 
457 		ASSERT_FALSE(try_read_write_buf(curr));
458 	}
459 
460 	/* Now remove guar pages over range and assert the opposite. */
461 
462 	ASSERT_EQ(madvise(ptr_region, 100 * page_size, MADV_GUARD_REMOVE), -1);
463 	ASSERT_EQ(errno, ENOMEM);
464 
465 	for (i = 0; i < 10; i++) {
466 		char *curr = &ptr1[i * page_size];
467 
468 		ASSERT_TRUE(try_read_write_buf(curr));
469 	}
470 
471 	for (i = 0; i < 5; i++) {
472 		char *curr = &ptr2[i * page_size];
473 
474 		ASSERT_TRUE(try_read_write_buf(curr));
475 	}
476 
477 	for (i = 0; i < 20; i++) {
478 		char *curr = &ptr3[i * page_size];
479 
480 		ASSERT_TRUE(try_read_write_buf(curr));
481 	}
482 
483 	/* Now map incompatible VMAs in the gaps. */
484 	ptr = mmap_(self, variant, &ptr_region[10 * page_size], 40 * page_size,
485 		    PROT_READ | PROT_WRITE | PROT_EXEC, MAP_FIXED, 0);
486 	ASSERT_NE(ptr, MAP_FAILED);
487 	ptr = mmap_(self, variant, &ptr_region[55 * page_size], 25 * page_size,
488 		    PROT_READ | PROT_WRITE | PROT_EXEC, MAP_FIXED, 0);
489 	ASSERT_NE(ptr, MAP_FAILED);
490 
491 	/*
492 	 * We end up with VMAs like this:
493 	 *
494 	 * 0    10 .. 50   55 .. 80   100
495 	 * [---][xxxx][---][xxxx][---]
496 	 *
497 	 * Where 'x' signifies VMAs that cannot be merged with those adjacent to
498 	 * them.
499 	 */
500 
501 	/* Multiple VMAs adjacent to one another should result in no error. */
502 	ASSERT_EQ(madvise(ptr_region, 100 * page_size, MADV_GUARD_INSTALL), 0);
503 	for (i = 0; i < 100; i++) {
504 		char *curr = &ptr_region[i * page_size];
505 
506 		ASSERT_FALSE(try_read_write_buf(curr));
507 	}
508 	ASSERT_EQ(madvise(ptr_region, 100 * page_size, MADV_GUARD_REMOVE), 0);
509 	for (i = 0; i < 100; i++) {
510 		char *curr = &ptr_region[i * page_size];
511 
512 		ASSERT_TRUE(try_read_write_buf(curr));
513 	}
514 
515 	/* Cleanup. */
516 	ASSERT_EQ(munmap(ptr_region, 100 * page_size), 0);
517 }
518 
519 /*
520  * Assert that batched operations performed using process_madvise() work as
521  * expected.
522  */
523 TEST_F(guard_regions, process_madvise)
524 {
525 	const unsigned long page_size = self->page_size;
526 	char *ptr_region, *ptr1, *ptr2, *ptr3;
527 	ssize_t count;
528 	struct iovec vec[6];
529 
530 	/* Reserve region to map over. */
531 	ptr_region = mmap_(self, variant, NULL, 100 * page_size,
532 			   PROT_NONE, 0, 0);
533 	ASSERT_NE(ptr_region, MAP_FAILED);
534 
535 	/*
536 	 * 10 pages offset 1 page into reserve region. We MAP_POPULATE so we
537 	 * overwrite existing entries and test this code path against
538 	 * overwriting existing entries.
539 	 */
540 	ptr1 = mmap_(self, variant, &ptr_region[page_size], 10 * page_size,
541 		     PROT_READ | PROT_WRITE, MAP_FIXED | MAP_POPULATE, 0);
542 	ASSERT_NE(ptr1, MAP_FAILED);
543 	/* We want guard markers at start/end of each VMA. */
544 	vec[0].iov_base = ptr1;
545 	vec[0].iov_len = page_size;
546 	vec[1].iov_base = &ptr1[9 * page_size];
547 	vec[1].iov_len = page_size;
548 
549 	/* 5 pages offset 50 pages into reserve region. */
550 	ptr2 = mmap_(self, variant, &ptr_region[50 * page_size], 5 * page_size,
551 		     PROT_READ | PROT_WRITE, MAP_FIXED, 0);
552 	ASSERT_NE(ptr2, MAP_FAILED);
553 	vec[2].iov_base = ptr2;
554 	vec[2].iov_len = page_size;
555 	vec[3].iov_base = &ptr2[4 * page_size];
556 	vec[3].iov_len = page_size;
557 
558 	/* 20 pages offset 79 pages into reserve region. */
559 	ptr3 = mmap_(self, variant, &ptr_region[79 * page_size], 20 * page_size,
560 		    PROT_READ | PROT_WRITE, MAP_FIXED, 0);
561 	ASSERT_NE(ptr3, MAP_FAILED);
562 	vec[4].iov_base = ptr3;
563 	vec[4].iov_len = page_size;
564 	vec[5].iov_base = &ptr3[19 * page_size];
565 	vec[5].iov_len = page_size;
566 
567 	/* Free surrounding VMAs. */
568 	ASSERT_EQ(munmap(ptr_region, page_size), 0);
569 	ASSERT_EQ(munmap(&ptr_region[11 * page_size], 39 * page_size), 0);
570 	ASSERT_EQ(munmap(&ptr_region[55 * page_size], 24 * page_size), 0);
571 	ASSERT_EQ(munmap(&ptr_region[99 * page_size], page_size), 0);
572 
573 	/* Now guard in one step. */
574 	count = sys_process_madvise(PIDFD_SELF, vec, 6, MADV_GUARD_INSTALL, 0);
575 
576 	/* OK we don't have permission to do this, skip. */
577 	if (count == -1 && errno == EPERM)
578 		SKIP(return, "No process_madvise() permissions, try running as root.\n");
579 
580 	/* Returns the number of bytes advised. */
581 	ASSERT_EQ(count, 6 * page_size);
582 
583 	/* Now make sure the guarding was applied. */
584 
585 	ASSERT_FALSE(try_read_write_buf(ptr1));
586 	ASSERT_FALSE(try_read_write_buf(&ptr1[9 * page_size]));
587 
588 	ASSERT_FALSE(try_read_write_buf(ptr2));
589 	ASSERT_FALSE(try_read_write_buf(&ptr2[4 * page_size]));
590 
591 	ASSERT_FALSE(try_read_write_buf(ptr3));
592 	ASSERT_FALSE(try_read_write_buf(&ptr3[19 * page_size]));
593 
594 	/* Now do the same with unguard... */
595 	count = sys_process_madvise(PIDFD_SELF, vec, 6, MADV_GUARD_REMOVE, 0);
596 
597 	/* ...and everything should now succeed. */
598 
599 	ASSERT_TRUE(try_read_write_buf(ptr1));
600 	ASSERT_TRUE(try_read_write_buf(&ptr1[9 * page_size]));
601 
602 	ASSERT_TRUE(try_read_write_buf(ptr2));
603 	ASSERT_TRUE(try_read_write_buf(&ptr2[4 * page_size]));
604 
605 	ASSERT_TRUE(try_read_write_buf(ptr3));
606 	ASSERT_TRUE(try_read_write_buf(&ptr3[19 * page_size]));
607 
608 	/* Cleanup. */
609 	ASSERT_EQ(munmap(ptr1, 10 * page_size), 0);
610 	ASSERT_EQ(munmap(ptr2, 5 * page_size), 0);
611 	ASSERT_EQ(munmap(ptr3, 20 * page_size), 0);
612 }
613 
614 /* Assert that unmapping ranges does not leave guard markers behind. */
615 TEST_F(guard_regions, munmap)
616 {
617 	const unsigned long page_size = self->page_size;
618 	char *ptr, *ptr_new1, *ptr_new2;
619 
620 	ptr = mmap_(self, variant, NULL, 10 * page_size,
621 		    PROT_READ | PROT_WRITE, 0, 0);
622 	ASSERT_NE(ptr, MAP_FAILED);
623 
624 	/* Guard first and last pages. */
625 	ASSERT_EQ(madvise(ptr, page_size, MADV_GUARD_INSTALL), 0);
626 	ASSERT_EQ(madvise(&ptr[9 * page_size], page_size, MADV_GUARD_INSTALL), 0);
627 
628 	/* Assert that they are guarded. */
629 	ASSERT_FALSE(try_read_write_buf(ptr));
630 	ASSERT_FALSE(try_read_write_buf(&ptr[9 * page_size]));
631 
632 	/* Unmap them. */
633 	ASSERT_EQ(munmap(ptr, page_size), 0);
634 	ASSERT_EQ(munmap(&ptr[9 * page_size], page_size), 0);
635 
636 	/* Map over them.*/
637 	ptr_new1 = mmap_(self, variant, ptr, page_size, PROT_READ | PROT_WRITE,
638 			 MAP_FIXED, 0);
639 	ASSERT_NE(ptr_new1, MAP_FAILED);
640 	ptr_new2 = mmap_(self, variant, &ptr[9 * page_size], page_size,
641 			 PROT_READ | PROT_WRITE, MAP_FIXED, 0);
642 	ASSERT_NE(ptr_new2, MAP_FAILED);
643 
644 	/* Assert that they are now not guarded. */
645 	ASSERT_TRUE(try_read_write_buf(ptr_new1));
646 	ASSERT_TRUE(try_read_write_buf(ptr_new2));
647 
648 	/* Cleanup. */
649 	ASSERT_EQ(munmap(ptr, 10 * page_size), 0);
650 }
651 
652 /* Assert that mprotect() operations have no bearing on guard markers. */
653 TEST_F(guard_regions, mprotect)
654 {
655 	const unsigned long page_size = self->page_size;
656 	char *ptr;
657 	int i;
658 
659 	ptr = mmap_(self, variant, NULL, 10 * page_size,
660 		    PROT_READ | PROT_WRITE, 0, 0);
661 	ASSERT_NE(ptr, MAP_FAILED);
662 
663 	/* Guard the middle of the range. */
664 	ASSERT_EQ(madvise(&ptr[5 * page_size], 2 * page_size,
665 			  MADV_GUARD_INSTALL), 0);
666 
667 	/* Assert that it is indeed guarded. */
668 	ASSERT_FALSE(try_read_write_buf(&ptr[5 * page_size]));
669 	ASSERT_FALSE(try_read_write_buf(&ptr[6 * page_size]));
670 
671 	/* Now make these pages read-only. */
672 	ASSERT_EQ(mprotect(&ptr[5 * page_size], 2 * page_size, PROT_READ), 0);
673 
674 	/* Make sure the range is still guarded. */
675 	ASSERT_FALSE(try_read_buf(&ptr[5 * page_size]));
676 	ASSERT_FALSE(try_read_buf(&ptr[6 * page_size]));
677 
678 	/* Make sure we can guard again without issue.*/
679 	ASSERT_EQ(madvise(&ptr[5 * page_size], 2 * page_size,
680 			  MADV_GUARD_INSTALL), 0);
681 
682 	/* Make sure the range is, yet again, still guarded. */
683 	ASSERT_FALSE(try_read_buf(&ptr[5 * page_size]));
684 	ASSERT_FALSE(try_read_buf(&ptr[6 * page_size]));
685 
686 	/* Now unguard the whole range. */
687 	ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_REMOVE), 0);
688 
689 	/* Make sure the whole range is readable. */
690 	for (i = 0; i < 10; i++) {
691 		char *curr = &ptr[i * page_size];
692 
693 		ASSERT_TRUE(try_read_buf(curr));
694 	}
695 
696 	/* Cleanup. */
697 	ASSERT_EQ(munmap(ptr, 10 * page_size), 0);
698 }
699 
700 /* Split and merge VMAs and make sure guard pages still behave. */
701 TEST_F(guard_regions, split_merge)
702 {
703 	const unsigned long page_size = self->page_size;
704 	char *ptr, *ptr_new;
705 	int i;
706 
707 	ptr = mmap_(self, variant, NULL, 10 * page_size,
708 		    PROT_READ | PROT_WRITE, 0, 0);
709 	ASSERT_NE(ptr, MAP_FAILED);
710 
711 	/* Guard the whole range. */
712 	ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_INSTALL), 0);
713 
714 	/* Make sure the whole range is guarded. */
715 	for (i = 0; i < 10; i++) {
716 		char *curr = &ptr[i * page_size];
717 
718 		ASSERT_FALSE(try_read_write_buf(curr));
719 	}
720 
721 	/* Now unmap some pages in the range so we split. */
722 	ASSERT_EQ(munmap(&ptr[2 * page_size], page_size), 0);
723 	ASSERT_EQ(munmap(&ptr[5 * page_size], page_size), 0);
724 	ASSERT_EQ(munmap(&ptr[8 * page_size], page_size), 0);
725 
726 	/* Make sure the remaining ranges are guarded post-split. */
727 	for (i = 0; i < 2; i++) {
728 		char *curr = &ptr[i * page_size];
729 
730 		ASSERT_FALSE(try_read_write_buf(curr));
731 	}
732 	for (i = 2; i < 5; i++) {
733 		char *curr = &ptr[i * page_size];
734 
735 		ASSERT_FALSE(try_read_write_buf(curr));
736 	}
737 	for (i = 6; i < 8; i++) {
738 		char *curr = &ptr[i * page_size];
739 
740 		ASSERT_FALSE(try_read_write_buf(curr));
741 	}
742 	for (i = 9; i < 10; i++) {
743 		char *curr = &ptr[i * page_size];
744 
745 		ASSERT_FALSE(try_read_write_buf(curr));
746 	}
747 
748 	/* Now map them again - the unmap will have cleared the guards. */
749 	ptr_new = mmap_(self, variant, &ptr[2 * page_size], page_size,
750 			PROT_READ | PROT_WRITE, MAP_FIXED, 0);
751 	ASSERT_NE(ptr_new, MAP_FAILED);
752 	ptr_new = mmap_(self, variant, &ptr[5 * page_size], page_size,
753 			PROT_READ | PROT_WRITE, MAP_FIXED, 0);
754 	ASSERT_NE(ptr_new, MAP_FAILED);
755 	ptr_new = mmap_(self, variant, &ptr[8 * page_size], page_size,
756 			PROT_READ | PROT_WRITE, MAP_FIXED, 0);
757 	ASSERT_NE(ptr_new, MAP_FAILED);
758 
759 	/* Now make sure guard pages are established. */
760 	for (i = 0; i < 10; i++) {
761 		char *curr = &ptr[i * page_size];
762 		bool result = try_read_write_buf(curr);
763 		bool expect_true = i == 2 || i == 5 || i == 8;
764 
765 		ASSERT_TRUE(expect_true ? result : !result);
766 	}
767 
768 	/* Now guard everything again. */
769 	ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_INSTALL), 0);
770 
771 	/* Make sure the whole range is guarded. */
772 	for (i = 0; i < 10; i++) {
773 		char *curr = &ptr[i * page_size];
774 
775 		ASSERT_FALSE(try_read_write_buf(curr));
776 	}
777 
778 	/* Now split the range into three. */
779 	ASSERT_EQ(mprotect(ptr, 3 * page_size, PROT_READ), 0);
780 	ASSERT_EQ(mprotect(&ptr[7 * page_size], 3 * page_size, PROT_READ), 0);
781 
782 	/* Make sure the whole range is guarded for read. */
783 	for (i = 0; i < 10; i++) {
784 		char *curr = &ptr[i * page_size];
785 
786 		ASSERT_FALSE(try_read_buf(curr));
787 	}
788 
789 	/* Now reset protection bits so we merge the whole thing. */
790 	ASSERT_EQ(mprotect(ptr, 3 * page_size, PROT_READ | PROT_WRITE), 0);
791 	ASSERT_EQ(mprotect(&ptr[7 * page_size], 3 * page_size,
792 			   PROT_READ | PROT_WRITE), 0);
793 
794 	/* Make sure the whole range is still guarded. */
795 	for (i = 0; i < 10; i++) {
796 		char *curr = &ptr[i * page_size];
797 
798 		ASSERT_FALSE(try_read_write_buf(curr));
799 	}
800 
801 	/* Split range into 3 again... */
802 	ASSERT_EQ(mprotect(ptr, 3 * page_size, PROT_READ), 0);
803 	ASSERT_EQ(mprotect(&ptr[7 * page_size], 3 * page_size, PROT_READ), 0);
804 
805 	/* ...and unguard the whole range. */
806 	ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_REMOVE), 0);
807 
808 	/* Make sure the whole range is remedied for read. */
809 	for (i = 0; i < 10; i++) {
810 		char *curr = &ptr[i * page_size];
811 
812 		ASSERT_TRUE(try_read_buf(curr));
813 	}
814 
815 	/* Merge them again. */
816 	ASSERT_EQ(mprotect(ptr, 3 * page_size, PROT_READ | PROT_WRITE), 0);
817 	ASSERT_EQ(mprotect(&ptr[7 * page_size], 3 * page_size,
818 			   PROT_READ | PROT_WRITE), 0);
819 
820 	/* Now ensure the merged range is remedied for read/write. */
821 	for (i = 0; i < 10; i++) {
822 		char *curr = &ptr[i * page_size];
823 
824 		ASSERT_TRUE(try_read_write_buf(curr));
825 	}
826 
827 	/* Cleanup. */
828 	ASSERT_EQ(munmap(ptr, 10 * page_size), 0);
829 }
830 
831 /* Assert that MADV_DONTNEED does not remove guard markers. */
832 TEST_F(guard_regions, dontneed)
833 {
834 	const unsigned long page_size = self->page_size;
835 	char *ptr;
836 	int i;
837 
838 	ptr = mmap_(self, variant, NULL, 10 * page_size,
839 		    PROT_READ | PROT_WRITE, 0, 0);
840 	ASSERT_NE(ptr, MAP_FAILED);
841 
842 	/* Back the whole range. */
843 	for (i = 0; i < 10; i++) {
844 		char *curr = &ptr[i * page_size];
845 
846 		*curr = 'y';
847 	}
848 
849 	/* Guard every other page. */
850 	for (i = 0; i < 10; i += 2) {
851 		char *curr = &ptr[i * page_size];
852 		int res = madvise(curr, page_size, MADV_GUARD_INSTALL);
853 
854 		ASSERT_EQ(res, 0);
855 	}
856 
857 	/* Indicate that we don't need any of the range. */
858 	ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_DONTNEED), 0);
859 
860 	/* Check to ensure guard markers are still in place. */
861 	for (i = 0; i < 10; i++) {
862 		char *curr = &ptr[i * page_size];
863 		bool result = try_read_buf(curr);
864 
865 		if (i % 2 == 0) {
866 			ASSERT_FALSE(result);
867 		} else {
868 			ASSERT_TRUE(result);
869 			switch (variant->backing) {
870 			case ANON_BACKED:
871 				/* If anon, then we get a zero page. */
872 				ASSERT_EQ(*curr, '\0');
873 				break;
874 			default:
875 				/* Otherwise, we get the file data. */
876 				ASSERT_EQ(*curr, 'y');
877 				break;
878 			}
879 		}
880 
881 		/* Now write... */
882 		result = try_write_buf(&ptr[i * page_size]);
883 
884 		/* ...and make sure same result. */
885 		ASSERT_TRUE(i % 2 != 0 ? result : !result);
886 	}
887 
888 	/* Cleanup. */
889 	ASSERT_EQ(munmap(ptr, 10 * page_size), 0);
890 }
891 
892 /* Assert that mlock()'ed pages work correctly with guard markers. */
893 TEST_F(guard_regions, mlock)
894 {
895 	const unsigned long page_size = self->page_size;
896 	char *ptr;
897 	int i;
898 
899 	ptr = mmap_(self, variant, NULL, 10 * page_size,
900 		    PROT_READ | PROT_WRITE, 0, 0);
901 	ASSERT_NE(ptr, MAP_FAILED);
902 
903 	/* Populate. */
904 	for (i = 0; i < 10; i++) {
905 		char *curr = &ptr[i * page_size];
906 
907 		*curr = 'y';
908 	}
909 
910 	/* Lock. */
911 	ASSERT_EQ(mlock(ptr, 10 * page_size), 0);
912 
913 	/* Now try to guard, should fail with EINVAL. */
914 	ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_INSTALL), -1);
915 	ASSERT_EQ(errno, EINVAL);
916 
917 	/* OK unlock. */
918 	ASSERT_EQ(munlock(ptr, 10 * page_size), 0);
919 
920 	/* Guard first half of range, should now succeed. */
921 	ASSERT_EQ(madvise(ptr, 5 * page_size, MADV_GUARD_INSTALL), 0);
922 
923 	/* Make sure guard works. */
924 	for (i = 0; i < 10; i++) {
925 		char *curr = &ptr[i * page_size];
926 		bool result = try_read_write_buf(curr);
927 
928 		if (i < 5) {
929 			ASSERT_FALSE(result);
930 		} else {
931 			ASSERT_TRUE(result);
932 			ASSERT_EQ(*curr, 'x');
933 		}
934 	}
935 
936 	/*
937 	 * Now lock the latter part of the range. We can't lock the guard pages,
938 	 * as this would result in the pages being populated and the guarding
939 	 * would cause this to error out.
940 	 */
941 	ASSERT_EQ(mlock(&ptr[5 * page_size], 5 * page_size), 0);
942 
943 	/*
944 	 * Now remove guard pages, we permit mlock()'d ranges to have guard
945 	 * pages removed as it is a non-destructive operation.
946 	 */
947 	ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_REMOVE), 0);
948 
949 	/* Now check that no guard pages remain. */
950 	for (i = 0; i < 10; i++) {
951 		char *curr = &ptr[i * page_size];
952 
953 		ASSERT_TRUE(try_read_write_buf(curr));
954 	}
955 
956 	/* Cleanup. */
957 	ASSERT_EQ(munmap(ptr, 10 * page_size), 0);
958 }
959 
960 /*
961  * Assert that moving, extending and shrinking memory via mremap() retains
962  * guard markers where possible.
963  *
964  * - Moving a mapping alone should retain markers as they are.
965  */
966 TEST_F(guard_regions, mremap_move)
967 {
968 	const unsigned long page_size = self->page_size;
969 	char *ptr, *ptr_new;
970 
971 	/* Map 5 pages. */
972 	ptr = mmap_(self, variant, NULL, 5 * page_size,
973 		    PROT_READ | PROT_WRITE, 0, 0);
974 	ASSERT_NE(ptr, MAP_FAILED);
975 
976 	/* Place guard markers at both ends of the 5 page span. */
977 	ASSERT_EQ(madvise(ptr, page_size, MADV_GUARD_INSTALL), 0);
978 	ASSERT_EQ(madvise(&ptr[4 * page_size], page_size, MADV_GUARD_INSTALL), 0);
979 
980 	/* Make sure the guard pages are in effect. */
981 	ASSERT_FALSE(try_read_write_buf(ptr));
982 	ASSERT_FALSE(try_read_write_buf(&ptr[4 * page_size]));
983 
984 	/* Map a new region we will move this range into. Doing this ensures
985 	 * that we have reserved a range to map into.
986 	 */
987 	ptr_new = mmap_(self, variant, NULL, 5 * page_size, PROT_NONE, 0, 0);
988 	ASSERT_NE(ptr_new, MAP_FAILED);
989 
990 	ASSERT_EQ(mremap(ptr, 5 * page_size, 5 * page_size,
991 			 MREMAP_MAYMOVE | MREMAP_FIXED, ptr_new), ptr_new);
992 
993 	/* Make sure the guard markers are retained. */
994 	ASSERT_FALSE(try_read_write_buf(ptr_new));
995 	ASSERT_FALSE(try_read_write_buf(&ptr_new[4 * page_size]));
996 
997 	/*
998 	 * Clean up - we only need reference the new pointer as we overwrote the
999 	 * PROT_NONE range and moved the existing one.
1000 	 */
1001 	munmap(ptr_new, 5 * page_size);
1002 }
1003 
1004 /*
1005  * Assert that moving, extending and shrinking memory via mremap() retains
1006  * guard markers where possible.
1007  *
1008  * Expanding should retain guard pages, only now in different position. The user
1009  * will have to remove guard pages manually to fix up (they'd have to do the
1010  * same if it were a PROT_NONE mapping).
1011  */
1012 TEST_F(guard_regions, mremap_expand)
1013 {
1014 	const unsigned long page_size = self->page_size;
1015 	char *ptr, *ptr_new;
1016 
1017 	/* Map 10 pages... */
1018 	ptr = mmap_(self, variant, NULL, 10 * page_size,
1019 		    PROT_READ | PROT_WRITE, 0, 0);
1020 	ASSERT_NE(ptr, MAP_FAILED);
1021 	/* ...But unmap the last 5 so we can ensure we can expand into them. */
1022 	ASSERT_EQ(munmap(&ptr[5 * page_size], 5 * page_size), 0);
1023 
1024 	/* Place guard markers at both ends of the 5 page span. */
1025 	ASSERT_EQ(madvise(ptr, page_size, MADV_GUARD_INSTALL), 0);
1026 	ASSERT_EQ(madvise(&ptr[4 * page_size], page_size, MADV_GUARD_INSTALL), 0);
1027 
1028 	/* Make sure the guarding is in effect. */
1029 	ASSERT_FALSE(try_read_write_buf(ptr));
1030 	ASSERT_FALSE(try_read_write_buf(&ptr[4 * page_size]));
1031 
1032 	/* Now expand to 10 pages. */
1033 	ptr = mremap(ptr, 5 * page_size, 10 * page_size, 0);
1034 	ASSERT_NE(ptr, MAP_FAILED);
1035 
1036 	/*
1037 	 * Make sure the guard markers are retained in their original positions.
1038 	 */
1039 	ASSERT_FALSE(try_read_write_buf(ptr));
1040 	ASSERT_FALSE(try_read_write_buf(&ptr[4 * page_size]));
1041 
1042 	/* Reserve a region which we can move to and expand into. */
1043 	ptr_new = mmap_(self, variant, NULL, 20 * page_size, PROT_NONE, 0, 0);
1044 	ASSERT_NE(ptr_new, MAP_FAILED);
1045 
1046 	/* Now move and expand into it. */
1047 	ptr = mremap(ptr, 10 * page_size, 20 * page_size,
1048 		     MREMAP_MAYMOVE | MREMAP_FIXED, ptr_new);
1049 	ASSERT_EQ(ptr, ptr_new);
1050 
1051 	/*
1052 	 * Again, make sure the guard markers are retained in their original positions.
1053 	 */
1054 	ASSERT_FALSE(try_read_write_buf(ptr));
1055 	ASSERT_FALSE(try_read_write_buf(&ptr[4 * page_size]));
1056 
1057 	/*
1058 	 * A real user would have to remove guard markers, but would reasonably
1059 	 * expect all characteristics of the mapping to be retained, including
1060 	 * guard markers.
1061 	 */
1062 
1063 	/* Cleanup. */
1064 	munmap(ptr, 20 * page_size);
1065 }
1066 /*
1067  * Assert that moving, extending and shrinking memory via mremap() retains
1068  * guard markers where possible.
1069  *
1070  * Shrinking will result in markers that are shrunk over being removed. Again,
1071  * if the user were using a PROT_NONE mapping they'd have to manually fix this
1072  * up also so this is OK.
1073  */
1074 TEST_F(guard_regions, mremap_shrink)
1075 {
1076 	const unsigned long page_size = self->page_size;
1077 	char *ptr;
1078 	int i;
1079 
1080 	/* Map 5 pages. */
1081 	ptr = mmap_(self, variant, NULL, 5 * page_size,
1082 		    PROT_READ | PROT_WRITE, 0, 0);
1083 	ASSERT_NE(ptr, MAP_FAILED);
1084 
1085 	/* Place guard markers at both ends of the 5 page span. */
1086 	ASSERT_EQ(madvise(ptr, page_size, MADV_GUARD_INSTALL), 0);
1087 	ASSERT_EQ(madvise(&ptr[4 * page_size], page_size, MADV_GUARD_INSTALL), 0);
1088 
1089 	/* Make sure the guarding is in effect. */
1090 	ASSERT_FALSE(try_read_write_buf(ptr));
1091 	ASSERT_FALSE(try_read_write_buf(&ptr[4 * page_size]));
1092 
1093 	/* Now shrink to 3 pages. */
1094 	ptr = mremap(ptr, 5 * page_size, 3 * page_size, MREMAP_MAYMOVE);
1095 	ASSERT_NE(ptr, MAP_FAILED);
1096 
1097 	/* We expect the guard marker at the start to be retained... */
1098 	ASSERT_FALSE(try_read_write_buf(ptr));
1099 
1100 	/* ...But remaining pages will not have guard markers. */
1101 	for (i = 1; i < 3; i++) {
1102 		char *curr = &ptr[i * page_size];
1103 
1104 		ASSERT_TRUE(try_read_write_buf(curr));
1105 	}
1106 
1107 	/*
1108 	 * As with expansion, a real user would have to remove guard pages and
1109 	 * fixup. But you'd have to do similar manual things with PROT_NONE
1110 	 * mappings too.
1111 	 */
1112 
1113 	/*
1114 	 * If we expand back to the original size, the end marker will, of
1115 	 * course, no longer be present.
1116 	 */
1117 	ptr = mremap(ptr, 3 * page_size, 5 * page_size, 0);
1118 	ASSERT_NE(ptr, MAP_FAILED);
1119 
1120 	/* Again, we expect the guard marker at the start to be retained... */
1121 	ASSERT_FALSE(try_read_write_buf(ptr));
1122 
1123 	/* ...But remaining pages will not have guard markers. */
1124 	for (i = 1; i < 5; i++) {
1125 		char *curr = &ptr[i * page_size];
1126 
1127 		ASSERT_TRUE(try_read_write_buf(curr));
1128 	}
1129 
1130 	/* Cleanup. */
1131 	munmap(ptr, 5 * page_size);
1132 }
1133 
1134 /*
1135  * Assert that forking a process with VMAs that do not have VM_WIPEONFORK set
1136  * retain guard pages.
1137  */
1138 TEST_F(guard_regions, fork)
1139 {
1140 	const unsigned long page_size = self->page_size;
1141 	char *ptr;
1142 	pid_t pid;
1143 	int i;
1144 
1145 	/* Map 10 pages. */
1146 	ptr = mmap_(self, variant, NULL, 10 * page_size,
1147 		    PROT_READ | PROT_WRITE, 0, 0);
1148 	ASSERT_NE(ptr, MAP_FAILED);
1149 
1150 	/* Establish guard pages in the first 5 pages. */
1151 	ASSERT_EQ(madvise(ptr, 5 * page_size, MADV_GUARD_INSTALL), 0);
1152 
1153 	pid = fork();
1154 	ASSERT_NE(pid, -1);
1155 	if (!pid) {
1156 		/* This is the child process now. */
1157 
1158 		/* Assert that the guarding is in effect. */
1159 		for (i = 0; i < 10; i++) {
1160 			char *curr = &ptr[i * page_size];
1161 			bool result = try_read_write_buf(curr);
1162 
1163 			ASSERT_TRUE(i >= 5 ? result : !result);
1164 		}
1165 
1166 		/* Now unguard the range.*/
1167 		ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_REMOVE), 0);
1168 
1169 		exit(0);
1170 	}
1171 
1172 	/* Parent process. */
1173 
1174 	/* Parent simply waits on child. */
1175 	waitpid(pid, NULL, 0);
1176 
1177 	/* Child unguard does not impact parent page table state. */
1178 	for (i = 0; i < 10; i++) {
1179 		char *curr = &ptr[i * page_size];
1180 		bool result = try_read_write_buf(curr);
1181 
1182 		ASSERT_TRUE(i >= 5 ? result : !result);
1183 	}
1184 
1185 	/* Cleanup. */
1186 	ASSERT_EQ(munmap(ptr, 10 * page_size), 0);
1187 }
1188 
1189 /*
1190  * Assert expected behaviour after we fork populated ranges of anonymous memory
1191  * and then guard and unguard the range.
1192  */
1193 TEST_F(guard_regions, fork_cow)
1194 {
1195 	const unsigned long page_size = self->page_size;
1196 	char *ptr;
1197 	pid_t pid;
1198 	int i;
1199 
1200 	if (variant->backing != ANON_BACKED)
1201 		SKIP(return, "CoW only supported on anon mappings");
1202 
1203 	/* Map 10 pages. */
1204 	ptr = mmap_(self, variant, NULL, 10 * page_size,
1205 		    PROT_READ | PROT_WRITE, 0, 0);
1206 	ASSERT_NE(ptr, MAP_FAILED);
1207 
1208 	/* Populate range. */
1209 	for (i = 0; i < 10 * page_size; i++) {
1210 		char chr = 'a' + (i % 26);
1211 
1212 		ptr[i] = chr;
1213 	}
1214 
1215 	pid = fork();
1216 	ASSERT_NE(pid, -1);
1217 	if (!pid) {
1218 		/* This is the child process now. */
1219 
1220 		/* Ensure the range is as expected. */
1221 		for (i = 0; i < 10 * page_size; i++) {
1222 			char expected = 'a' + (i % 26);
1223 			char actual = ptr[i];
1224 
1225 			ASSERT_EQ(actual, expected);
1226 		}
1227 
1228 		/* Establish guard pages across the whole range. */
1229 		ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_INSTALL), 0);
1230 		/* Remove it. */
1231 		ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_REMOVE), 0);
1232 
1233 		/*
1234 		 * By removing the guard pages, the page tables will be
1235 		 * cleared. Assert that we are looking at the zero page now.
1236 		 */
1237 		for (i = 0; i < 10 * page_size; i++) {
1238 			char actual = ptr[i];
1239 
1240 			ASSERT_EQ(actual, '\0');
1241 		}
1242 
1243 		exit(0);
1244 	}
1245 
1246 	/* Parent process. */
1247 
1248 	/* Parent simply waits on child. */
1249 	waitpid(pid, NULL, 0);
1250 
1251 	/* Ensure the range is unchanged in parent anon range. */
1252 	for (i = 0; i < 10 * page_size; i++) {
1253 		char expected = 'a' + (i % 26);
1254 		char actual = ptr[i];
1255 
1256 		ASSERT_EQ(actual, expected);
1257 	}
1258 
1259 	/* Cleanup. */
1260 	ASSERT_EQ(munmap(ptr, 10 * page_size), 0);
1261 }
1262 
1263 /*
1264  * Assert that forking a process with VMAs that do have VM_WIPEONFORK set
1265  * behave as expected.
1266  */
1267 TEST_F(guard_regions, fork_wipeonfork)
1268 {
1269 	const unsigned long page_size = self->page_size;
1270 	char *ptr;
1271 	pid_t pid;
1272 	int i;
1273 
1274 	if (variant->backing != ANON_BACKED)
1275 		SKIP(return, "Wipe on fork only supported on anon mappings");
1276 
1277 	/* Map 10 pages. */
1278 	ptr = mmap_(self, variant, NULL, 10 * page_size,
1279 		    PROT_READ | PROT_WRITE, 0, 0);
1280 	ASSERT_NE(ptr, MAP_FAILED);
1281 
1282 	/* Mark wipe on fork. */
1283 	ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_WIPEONFORK), 0);
1284 
1285 	/* Guard the first 5 pages. */
1286 	ASSERT_EQ(madvise(ptr, 5 * page_size, MADV_GUARD_INSTALL), 0);
1287 
1288 	pid = fork();
1289 	ASSERT_NE(pid, -1);
1290 	if (!pid) {
1291 		/* This is the child process now. */
1292 
1293 		/* Guard will have been wiped. */
1294 		for (i = 0; i < 10; i++) {
1295 			char *curr = &ptr[i * page_size];
1296 
1297 			ASSERT_TRUE(try_read_write_buf(curr));
1298 		}
1299 
1300 		exit(0);
1301 	}
1302 
1303 	/* Parent process. */
1304 
1305 	waitpid(pid, NULL, 0);
1306 
1307 	/* Guard markers should be in effect.*/
1308 	for (i = 0; i < 10; i++) {
1309 		char *curr = &ptr[i * page_size];
1310 		bool result = try_read_write_buf(curr);
1311 
1312 		ASSERT_TRUE(i >= 5 ? result : !result);
1313 	}
1314 
1315 	/* Cleanup. */
1316 	ASSERT_EQ(munmap(ptr, 10 * page_size), 0);
1317 }
1318 
1319 /* Ensure that MADV_FREE retains guard entries as expected. */
1320 TEST_F(guard_regions, lazyfree)
1321 {
1322 	const unsigned long page_size = self->page_size;
1323 	char *ptr;
1324 	int i;
1325 
1326 	if (variant->backing != ANON_BACKED)
1327 		SKIP(return, "MADV_FREE only supported on anon mappings");
1328 
1329 	/* Map 10 pages. */
1330 	ptr = mmap_(self, variant, NULL, 10 * page_size,
1331 		    PROT_READ | PROT_WRITE, 0, 0);
1332 	ASSERT_NE(ptr, MAP_FAILED);
1333 
1334 	/* Guard range. */
1335 	ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_INSTALL), 0);
1336 
1337 	/* Ensure guarded. */
1338 	for (i = 0; i < 10; i++) {
1339 		char *curr = &ptr[i * page_size];
1340 
1341 		ASSERT_FALSE(try_read_write_buf(curr));
1342 	}
1343 
1344 	/* Lazyfree range. */
1345 	ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_FREE), 0);
1346 
1347 	/* This should leave the guard markers in place. */
1348 	for (i = 0; i < 10; i++) {
1349 		char *curr = &ptr[i * page_size];
1350 
1351 		ASSERT_FALSE(try_read_write_buf(curr));
1352 	}
1353 
1354 	/* Cleanup. */
1355 	ASSERT_EQ(munmap(ptr, 10 * page_size), 0);
1356 }
1357 
1358 /* Ensure that MADV_POPULATE_READ, MADV_POPULATE_WRITE behave as expected. */
1359 TEST_F(guard_regions, populate)
1360 {
1361 	const unsigned long page_size = self->page_size;
1362 	char *ptr;
1363 
1364 	/* Map 10 pages. */
1365 	ptr = mmap_(self, variant, NULL, 10 * page_size,
1366 		    PROT_READ | PROT_WRITE, 0, 0);
1367 	ASSERT_NE(ptr, MAP_FAILED);
1368 
1369 	/* Guard range. */
1370 	ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_INSTALL), 0);
1371 
1372 	/* Populate read should error out... */
1373 	ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_POPULATE_READ), -1);
1374 	ASSERT_EQ(errno, EFAULT);
1375 
1376 	/* ...as should populate write. */
1377 	ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_POPULATE_WRITE), -1);
1378 	ASSERT_EQ(errno, EFAULT);
1379 
1380 	/* Cleanup. */
1381 	ASSERT_EQ(munmap(ptr, 10 * page_size), 0);
1382 }
1383 
1384 /* Ensure that MADV_COLD, MADV_PAGEOUT do not remove guard markers. */
1385 TEST_F(guard_regions, cold_pageout)
1386 {
1387 	const unsigned long page_size = self->page_size;
1388 	char *ptr;
1389 	int i;
1390 
1391 	/* Map 10 pages. */
1392 	ptr = mmap_(self, variant, NULL, 10 * page_size,
1393 		    PROT_READ | PROT_WRITE, 0, 0);
1394 	ASSERT_NE(ptr, MAP_FAILED);
1395 
1396 	/* Guard range. */
1397 	ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_INSTALL), 0);
1398 
1399 	/* Ensured guarded. */
1400 	for (i = 0; i < 10; i++) {
1401 		char *curr = &ptr[i * page_size];
1402 
1403 		ASSERT_FALSE(try_read_write_buf(curr));
1404 	}
1405 
1406 	/* Now mark cold. This should have no impact on guard markers. */
1407 	ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_COLD), 0);
1408 
1409 	/* Should remain guarded. */
1410 	for (i = 0; i < 10; i++) {
1411 		char *curr = &ptr[i * page_size];
1412 
1413 		ASSERT_FALSE(try_read_write_buf(curr));
1414 	}
1415 
1416 	/* OK, now page out. This should equally, have no effect on markers. */
1417 	ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_PAGEOUT), 0);
1418 
1419 	/* Should remain guarded. */
1420 	for (i = 0; i < 10; i++) {
1421 		char *curr = &ptr[i * page_size];
1422 
1423 		ASSERT_FALSE(try_read_write_buf(curr));
1424 	}
1425 
1426 	/* Cleanup. */
1427 	ASSERT_EQ(munmap(ptr, 10 * page_size), 0);
1428 }
1429 
1430 /* Ensure that guard pages do not break userfaultd. */
1431 TEST_F(guard_regions, uffd)
1432 {
1433 	const unsigned long page_size = self->page_size;
1434 	int uffd;
1435 	char *ptr;
1436 	int i;
1437 	struct uffdio_api api = {
1438 		.api = UFFD_API,
1439 		.features = 0,
1440 	};
1441 	struct uffdio_register reg;
1442 	struct uffdio_range range;
1443 
1444 	if (!is_anon_backed(variant))
1445 		SKIP(return, "uffd only works on anon backing");
1446 
1447 	/* Set up uffd. */
1448 	uffd = userfaultfd(0);
1449 	if (uffd == -1) {
1450 		switch (errno) {
1451 		case EPERM:
1452 			SKIP(return, "No userfaultfd permissions, try running as root.");
1453 			break;
1454 		case ENOSYS:
1455 			SKIP(return, "userfaultfd is not supported/not enabled.");
1456 			break;
1457 		default:
1458 			ksft_exit_fail_msg("userfaultfd failed with %s\n",
1459 					   strerror(errno));
1460 			break;
1461 		}
1462 	}
1463 
1464 	ASSERT_NE(uffd, -1);
1465 
1466 	ASSERT_EQ(ioctl(uffd, UFFDIO_API, &api), 0);
1467 
1468 	/* Map 10 pages. */
1469 	ptr = mmap_(self, variant, NULL, 10 * page_size,
1470 		    PROT_READ | PROT_WRITE, 0, 0);
1471 	ASSERT_NE(ptr, MAP_FAILED);
1472 
1473 	/* Register the range with uffd. */
1474 	range.start = (unsigned long)ptr;
1475 	range.len = 10 * page_size;
1476 	reg.range = range;
1477 	reg.mode = UFFDIO_REGISTER_MODE_MISSING;
1478 	ASSERT_EQ(ioctl(uffd, UFFDIO_REGISTER, &reg), 0);
1479 
1480 	/* Guard the range. This should not trigger the uffd. */
1481 	ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_INSTALL), 0);
1482 
1483 	/* The guarding should behave as usual with no uffd intervention. */
1484 	for (i = 0; i < 10; i++) {
1485 		char *curr = &ptr[i * page_size];
1486 
1487 		ASSERT_FALSE(try_read_write_buf(curr));
1488 	}
1489 
1490 	/* Cleanup. */
1491 	ASSERT_EQ(ioctl(uffd, UFFDIO_UNREGISTER, &range), 0);
1492 	close(uffd);
1493 	ASSERT_EQ(munmap(ptr, 10 * page_size), 0);
1494 }
1495 
1496 /*
1497  * Mark a region within a file-backed mapping using MADV_SEQUENTIAL so we
1498  * aggressively read-ahead, then install guard regions and assert that it
1499  * behaves correctly.
1500  *
1501  * We page out using MADV_PAGEOUT before checking guard regions so we drop page
1502  * cache folios, meaning we maximise the possibility of some broken readahead.
1503  */
1504 TEST_F(guard_regions, madvise_sequential)
1505 {
1506 	char *ptr;
1507 	int i;
1508 	const unsigned long page_size = self->page_size;
1509 
1510 	if (variant->backing == ANON_BACKED)
1511 		SKIP(return, "MADV_SEQUENTIAL meaningful only for file-backed");
1512 
1513 	ptr = mmap_(self, variant, NULL, 10 * page_size,
1514 		    PROT_READ | PROT_WRITE, 0, 0);
1515 	ASSERT_NE(ptr, MAP_FAILED);
1516 
1517 	/* Establish a pattern of data in the file. */
1518 	set_pattern(ptr, 10, page_size);
1519 	ASSERT_TRUE(check_pattern(ptr, 10, page_size));
1520 
1521 	/* Mark it as being accessed sequentially. */
1522 	ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_SEQUENTIAL), 0);
1523 
1524 	/* Mark every other page a guard page. */
1525 	for (i = 0; i < 10; i += 2) {
1526 		char *ptr2 = &ptr[i * page_size];
1527 
1528 		ASSERT_EQ(madvise(ptr2, page_size, MADV_GUARD_INSTALL), 0);
1529 	}
1530 
1531 	/* Now page it out. */
1532 	ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_PAGEOUT), 0);
1533 
1534 	/* Now make sure pages are as expected. */
1535 	for (i = 0; i < 10; i++) {
1536 		char *chrp = &ptr[i * page_size];
1537 
1538 		if (i % 2 == 0) {
1539 			bool result = try_read_write_buf(chrp);
1540 
1541 			ASSERT_FALSE(result);
1542 		} else {
1543 			ASSERT_EQ(*chrp, 'a' + i);
1544 		}
1545 	}
1546 
1547 	/* Now remove guard pages. */
1548 	ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_REMOVE), 0);
1549 
1550 	/* Now make sure all data is as expected. */
1551 	if (!check_pattern(ptr, 10, page_size))
1552 		ASSERT_TRUE(false);
1553 
1554 	ASSERT_EQ(munmap(ptr, 10 * page_size), 0);
1555 }
1556 
1557 /*
1558  * Check that file-backed mappings implement guard regions with MAP_PRIVATE
1559  * correctly.
1560  */
1561 TEST_F(guard_regions, map_private)
1562 {
1563 	const unsigned long page_size = self->page_size;
1564 	char *ptr_shared, *ptr_private;
1565 	int i;
1566 
1567 	if (variant->backing == ANON_BACKED)
1568 		SKIP(return, "MAP_PRIVATE test specific to file-backed");
1569 
1570 	ptr_shared = mmap_(self, variant, NULL, 10 * page_size, PROT_READ | PROT_WRITE, 0, 0);
1571 	ASSERT_NE(ptr_shared, MAP_FAILED);
1572 
1573 	/* Manually mmap(), do not use mmap_() wrapper so we can force MAP_PRIVATE. */
1574 	ptr_private = mmap(NULL, 10 * page_size, PROT_READ | PROT_WRITE, MAP_PRIVATE, self->fd, 0);
1575 	ASSERT_NE(ptr_private, MAP_FAILED);
1576 
1577 	/* Set pattern in shared mapping. */
1578 	set_pattern(ptr_shared, 10, page_size);
1579 
1580 	/* Install guard regions in every other page in the shared mapping. */
1581 	for (i = 0; i < 10; i += 2) {
1582 		char *ptr = &ptr_shared[i * page_size];
1583 
1584 		ASSERT_EQ(madvise(ptr, page_size, MADV_GUARD_INSTALL), 0);
1585 	}
1586 
1587 	for (i = 0; i < 10; i++) {
1588 		/* Every even shared page should be guarded. */
1589 		ASSERT_EQ(try_read_buf(&ptr_shared[i * page_size]), i % 2 != 0);
1590 		/* Private mappings should always be readable. */
1591 		ASSERT_TRUE(try_read_buf(&ptr_private[i * page_size]));
1592 	}
1593 
1594 	/* Install guard regions in every other page in the private mapping. */
1595 	for (i = 0; i < 10; i += 2) {
1596 		char *ptr = &ptr_private[i * page_size];
1597 
1598 		ASSERT_EQ(madvise(ptr, page_size, MADV_GUARD_INSTALL), 0);
1599 	}
1600 
1601 	for (i = 0; i < 10; i++) {
1602 		/* Every even shared page should be guarded. */
1603 		ASSERT_EQ(try_read_buf(&ptr_shared[i * page_size]), i % 2 != 0);
1604 		/* Every odd private page should be guarded. */
1605 		ASSERT_EQ(try_read_buf(&ptr_private[i * page_size]), i % 2 != 0);
1606 	}
1607 
1608 	/* Remove guard regions from shared mapping. */
1609 	ASSERT_EQ(madvise(ptr_shared, 10 * page_size, MADV_GUARD_REMOVE), 0);
1610 
1611 	for (i = 0; i < 10; i++) {
1612 		/* Shared mappings should always be readable. */
1613 		ASSERT_TRUE(try_read_buf(&ptr_shared[i * page_size]));
1614 		/* Every even private page should be guarded. */
1615 		ASSERT_EQ(try_read_buf(&ptr_private[i * page_size]), i % 2 != 0);
1616 	}
1617 
1618 	/* Remove guard regions from private mapping. */
1619 	ASSERT_EQ(madvise(ptr_private, 10 * page_size, MADV_GUARD_REMOVE), 0);
1620 
1621 	for (i = 0; i < 10; i++) {
1622 		/* Shared mappings should always be readable. */
1623 		ASSERT_TRUE(try_read_buf(&ptr_shared[i * page_size]));
1624 		/* Private mappings should always be readable. */
1625 		ASSERT_TRUE(try_read_buf(&ptr_private[i * page_size]));
1626 	}
1627 
1628 	/* Ensure patterns are intact. */
1629 	ASSERT_TRUE(check_pattern(ptr_shared, 10, page_size));
1630 	ASSERT_TRUE(check_pattern(ptr_private, 10, page_size));
1631 
1632 	/* Now write out every other page to MAP_PRIVATE. */
1633 	for (i = 0; i < 10; i += 2) {
1634 		char *ptr = &ptr_private[i * page_size];
1635 
1636 		memset(ptr, 'a' + i, page_size);
1637 	}
1638 
1639 	/*
1640 	 * At this point the mapping is:
1641 	 *
1642 	 * 0123456789
1643 	 * SPSPSPSPSP
1644 	 *
1645 	 * Where S = shared, P = private mappings.
1646 	 */
1647 
1648 	/* Now mark the beginning of the mapping guarded. */
1649 	ASSERT_EQ(madvise(ptr_private, 5 * page_size, MADV_GUARD_INSTALL), 0);
1650 
1651 	/*
1652 	 * This renders the mapping:
1653 	 *
1654 	 * 0123456789
1655 	 * xxxxxPSPSP
1656 	 */
1657 
1658 	for (i = 0; i < 10; i++) {
1659 		char *ptr = &ptr_private[i * page_size];
1660 
1661 		/* Ensure guard regions as expected. */
1662 		ASSERT_EQ(try_read_buf(ptr), i >= 5);
1663 		/* The shared mapping should always succeed. */
1664 		ASSERT_TRUE(try_read_buf(&ptr_shared[i * page_size]));
1665 	}
1666 
1667 	/* Remove the guard regions altogether. */
1668 	ASSERT_EQ(madvise(ptr_private, 10 * page_size, MADV_GUARD_REMOVE), 0);
1669 
1670 	/*
1671 	 *
1672 	 * We now expect the mapping to be:
1673 	 *
1674 	 * 0123456789
1675 	 * SSSSSPSPSP
1676 	 *
1677 	 * As we removed guard regions, the private pages from the first 5 will
1678 	 * have been zapped, so on fault will reestablish the shared mapping.
1679 	 */
1680 
1681 	for (i = 0; i < 10; i++) {
1682 		char *ptr = &ptr_private[i * page_size];
1683 
1684 		/*
1685 		 * Assert that shared mappings in the MAP_PRIVATE mapping match
1686 		 * the shared mapping.
1687 		 */
1688 		if (i < 5 || i % 2 == 0) {
1689 			char *ptr_s = &ptr_shared[i * page_size];
1690 
1691 			ASSERT_EQ(memcmp(ptr, ptr_s, page_size), 0);
1692 			continue;
1693 		}
1694 
1695 		/* Everything else is a private mapping. */
1696 		ASSERT_TRUE(is_buf_eq(ptr, page_size, 'a' + i));
1697 	}
1698 
1699 	ASSERT_EQ(munmap(ptr_shared, 10 * page_size), 0);
1700 	ASSERT_EQ(munmap(ptr_private, 10 * page_size), 0);
1701 }
1702 
1703 /* Test that guard regions established over a read-only mapping function correctly. */
1704 TEST_F(guard_regions, readonly_file)
1705 {
1706 	const unsigned long page_size = self->page_size;
1707 	char *ptr;
1708 	int i;
1709 
1710 	if (variant->backing != LOCAL_FILE_BACKED)
1711 		SKIP(return, "Read-only test specific to file-backed");
1712 
1713 	/* Map shared so we can populate with pattern, populate it, unmap. */
1714 	ptr = mmap_(self, variant, NULL, 10 * page_size,
1715 		    PROT_READ | PROT_WRITE, 0, 0);
1716 	ASSERT_NE(ptr, MAP_FAILED);
1717 	set_pattern(ptr, 10, page_size);
1718 	ASSERT_EQ(munmap(ptr, 10 * page_size), 0);
1719 	/* Close the fd so we can re-open read-only. */
1720 	ASSERT_EQ(close(self->fd), 0);
1721 
1722 	/* Re-open read-only. */
1723 	self->fd = open(self->path, O_RDONLY);
1724 	ASSERT_NE(self->fd, -1);
1725 	/* Re-map read-only. */
1726 	ptr = mmap_(self, variant, NULL, 10 * page_size, PROT_READ, 0, 0);
1727 	ASSERT_NE(ptr, MAP_FAILED);
1728 
1729 	/* Mark every other page guarded. */
1730 	for (i = 0; i < 10; i += 2) {
1731 		char *ptr_pg = &ptr[i * page_size];
1732 
1733 		ASSERT_EQ(madvise(ptr_pg, page_size, MADV_GUARD_INSTALL), 0);
1734 	}
1735 
1736 	/* Assert that the guard regions are in place.*/
1737 	for (i = 0; i < 10; i++) {
1738 		char *ptr_pg = &ptr[i * page_size];
1739 
1740 		ASSERT_EQ(try_read_buf(ptr_pg), i % 2 != 0);
1741 	}
1742 
1743 	/* Remove guard regions. */
1744 	ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_REMOVE), 0);
1745 
1746 	/* Ensure the data is as expected. */
1747 	ASSERT_TRUE(check_pattern(ptr, 10, page_size));
1748 
1749 	ASSERT_EQ(munmap(ptr, 10 * page_size), 0);
1750 }
1751 
1752 TEST_F(guard_regions, fault_around)
1753 {
1754 	const unsigned long page_size = self->page_size;
1755 	char *ptr;
1756 	int i;
1757 
1758 	if (variant->backing == ANON_BACKED)
1759 		SKIP(return, "Fault-around test specific to file-backed");
1760 
1761 	ptr = mmap_(self, variant, NULL, 10 * page_size,
1762 		    PROT_READ | PROT_WRITE, 0, 0);
1763 	ASSERT_NE(ptr, MAP_FAILED);
1764 
1765 	/* Establish a pattern in the backing file. */
1766 	set_pattern(ptr, 10, page_size);
1767 
1768 	/*
1769 	 * Now drop it from the page cache so we get major faults when next we
1770 	 * map it.
1771 	 */
1772 	ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_PAGEOUT), 0);
1773 
1774 	/* Unmap and remap 'to be sure'. */
1775 	ASSERT_EQ(munmap(ptr, 10 * page_size), 0);
1776 	ptr = mmap_(self, variant, NULL, 10 * page_size,
1777 		    PROT_READ | PROT_WRITE, 0, 0);
1778 	ASSERT_NE(ptr, MAP_FAILED);
1779 
1780 	/* Now make every even page guarded. */
1781 	for (i = 0; i < 10; i += 2) {
1782 		char *ptr_p = &ptr[i * page_size];
1783 
1784 		ASSERT_EQ(madvise(ptr_p, page_size, MADV_GUARD_INSTALL), 0);
1785 	}
1786 
1787 	/* Now fault in every odd page. This should trigger fault-around. */
1788 	for (i = 1; i < 10; i += 2) {
1789 		char *ptr_p = &ptr[i * page_size];
1790 
1791 		ASSERT_TRUE(try_read_buf(ptr_p));
1792 	}
1793 
1794 	/* Finally, ensure that guard regions are intact as expected. */
1795 	for (i = 0; i < 10; i++) {
1796 		char *ptr_p = &ptr[i * page_size];
1797 
1798 		ASSERT_EQ(try_read_buf(ptr_p), i % 2 != 0);
1799 	}
1800 
1801 	ASSERT_EQ(munmap(ptr, 10 * page_size), 0);
1802 }
1803 
1804 TEST_F(guard_regions, truncation)
1805 {
1806 	const unsigned long page_size = self->page_size;
1807 	char *ptr;
1808 	int i;
1809 
1810 	if (variant->backing == ANON_BACKED)
1811 		SKIP(return, "Truncation test specific to file-backed");
1812 
1813 	ptr = mmap_(self, variant, NULL, 10 * page_size,
1814 		    PROT_READ | PROT_WRITE, 0, 0);
1815 	ASSERT_NE(ptr, MAP_FAILED);
1816 
1817 	/*
1818 	 * Establish a pattern in the backing file, just so there is data
1819 	 * there.
1820 	 */
1821 	set_pattern(ptr, 10, page_size);
1822 
1823 	/* Now make every even page guarded. */
1824 	for (i = 0; i < 10; i += 2) {
1825 		char *ptr_p = &ptr[i * page_size];
1826 
1827 		ASSERT_EQ(madvise(ptr_p, page_size, MADV_GUARD_INSTALL), 0);
1828 	}
1829 
1830 	/* Now assert things are as expected. */
1831 	for (i = 0; i < 10; i++) {
1832 		char *ptr_p = &ptr[i * page_size];
1833 
1834 		ASSERT_EQ(try_read_write_buf(ptr_p), i % 2 != 0);
1835 	}
1836 
1837 	/* Now truncate to actually used size (initialised to 100). */
1838 	ASSERT_EQ(ftruncate(self->fd, 10 * page_size), 0);
1839 
1840 	/* Here the guard regions will remain intact. */
1841 	for (i = 0; i < 10; i++) {
1842 		char *ptr_p = &ptr[i * page_size];
1843 
1844 		ASSERT_EQ(try_read_write_buf(ptr_p), i % 2 != 0);
1845 	}
1846 
1847 	/* Now truncate to half the size, then truncate again to the full size. */
1848 	ASSERT_EQ(ftruncate(self->fd, 5 * page_size), 0);
1849 	ASSERT_EQ(ftruncate(self->fd, 10 * page_size), 0);
1850 
1851 	/* Again, guard pages will remain intact. */
1852 	for (i = 0; i < 10; i++) {
1853 		char *ptr_p = &ptr[i * page_size];
1854 
1855 		ASSERT_EQ(try_read_write_buf(ptr_p), i % 2 != 0);
1856 	}
1857 
1858 	ASSERT_EQ(munmap(ptr, 10 * page_size), 0);
1859 }
1860 
1861 TEST_F(guard_regions, hole_punch)
1862 {
1863 	const unsigned long page_size = self->page_size;
1864 	char *ptr;
1865 	int i;
1866 
1867 	if (variant->backing == ANON_BACKED)
1868 		SKIP(return, "Truncation test specific to file-backed");
1869 
1870 	/* Establish pattern in mapping. */
1871 	ptr = mmap_(self, variant, NULL, 10 * page_size,
1872 		    PROT_READ | PROT_WRITE, 0, 0);
1873 	ASSERT_NE(ptr, MAP_FAILED);
1874 	set_pattern(ptr, 10, page_size);
1875 
1876 	/* Install a guard region in the middle of the mapping. */
1877 	ASSERT_EQ(madvise(&ptr[3 * page_size], 4 * page_size,
1878 			  MADV_GUARD_INSTALL), 0);
1879 
1880 	/*
1881 	 * The buffer will now be:
1882 	 *
1883 	 * 0123456789
1884 	 * ***xxxx***
1885 	 *
1886 	 * Where * is data and x is the guard region.
1887 	 */
1888 
1889 	/* Ensure established. */
1890 	for (i = 0; i < 10; i++) {
1891 		char *ptr_p = &ptr[i * page_size];
1892 
1893 		ASSERT_EQ(try_read_buf(ptr_p), i < 3 || i >= 7);
1894 	}
1895 
1896 	/* Now hole punch the guarded region. */
1897 	ASSERT_EQ(madvise(&ptr[3 * page_size], 4 * page_size,
1898 			  MADV_REMOVE), 0);
1899 
1900 	/* Ensure guard regions remain. */
1901 	for (i = 0; i < 10; i++) {
1902 		char *ptr_p = &ptr[i * page_size];
1903 
1904 		ASSERT_EQ(try_read_buf(ptr_p), i < 3 || i >= 7);
1905 	}
1906 
1907 	/* Now remove guard region throughout. */
1908 	ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_REMOVE), 0);
1909 
1910 	/* Check that the pattern exists in non-hole punched region. */
1911 	ASSERT_TRUE(check_pattern(ptr, 3, page_size));
1912 	/* Check that hole punched region is zeroed. */
1913 	ASSERT_TRUE(is_buf_eq(&ptr[3 * page_size], 4 * page_size, '\0'));
1914 	/* Check that the pattern exists in the remainder of the file. */
1915 	ASSERT_TRUE(check_pattern_offset(ptr, 3, page_size, 7));
1916 
1917 	ASSERT_EQ(munmap(ptr, 10 * page_size), 0);
1918 }
1919 
1920 /*
1921  * Ensure that a memfd works correctly with guard regions, that we can write
1922  * seal it then open the mapping read-only and still establish guard regions
1923  * within, remove those guard regions and have everything work correctly.
1924  */
1925 TEST_F(guard_regions, memfd_write_seal)
1926 {
1927 	const unsigned long page_size = self->page_size;
1928 	char *ptr;
1929 	int i;
1930 
1931 	if (variant->backing != SHMEM_BACKED)
1932 		SKIP(return, "memfd write seal test specific to shmem");
1933 
1934 	/* OK, we need a memfd, so close existing one. */
1935 	ASSERT_EQ(close(self->fd), 0);
1936 
1937 	/* Create and truncate memfd. */
1938 	self->fd = memfd_create("guard_regions_memfd_seals_test",
1939 				MFD_ALLOW_SEALING);
1940 	ASSERT_NE(self->fd, -1);
1941 	ASSERT_EQ(ftruncate(self->fd, 10 * page_size), 0);
1942 
1943 	/* Map, set pattern, unmap. */
1944 	ptr = mmap_(self, variant, NULL, 10 * page_size, PROT_READ | PROT_WRITE, 0, 0);
1945 	ASSERT_NE(ptr, MAP_FAILED);
1946 	set_pattern(ptr, 10, page_size);
1947 	ASSERT_EQ(munmap(ptr, 10 * page_size), 0);
1948 
1949 	/* Write-seal the memfd. */
1950 	ASSERT_EQ(fcntl(self->fd, F_ADD_SEALS, F_SEAL_WRITE), 0);
1951 
1952 	/* Now map the memfd readonly. */
1953 	ptr = mmap_(self, variant, NULL, 10 * page_size, PROT_READ, 0, 0);
1954 	ASSERT_NE(ptr, MAP_FAILED);
1955 
1956 	/* Ensure pattern is as expected. */
1957 	ASSERT_TRUE(check_pattern(ptr, 10, page_size));
1958 
1959 	/* Now make every even page guarded. */
1960 	for (i = 0; i < 10; i += 2) {
1961 		char *ptr_p = &ptr[i * page_size];
1962 
1963 		ASSERT_EQ(madvise(ptr_p, page_size, MADV_GUARD_INSTALL), 0);
1964 	}
1965 
1966 	/* Now assert things are as expected. */
1967 	for (i = 0; i < 10; i++) {
1968 		char *ptr_p = &ptr[i * page_size];
1969 
1970 		ASSERT_EQ(try_read_buf(ptr_p), i % 2 != 0);
1971 	}
1972 
1973 	/* Now remove guard regions. */
1974 	ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_REMOVE), 0);
1975 
1976 	/* Ensure pattern is as expected. */
1977 	ASSERT_TRUE(check_pattern(ptr, 10, page_size));
1978 
1979 	/* Ensure write seal intact. */
1980 	for (i = 0; i < 10; i++) {
1981 		char *ptr_p = &ptr[i * page_size];
1982 
1983 		ASSERT_FALSE(try_write_buf(ptr_p));
1984 	}
1985 
1986 	ASSERT_EQ(munmap(ptr, 10 * page_size), 0);
1987 }
1988 
1989 
1990 /*
1991  * Since we are now permitted to establish guard regions in read-only anonymous
1992  * mappings, for the sake of thoroughness, though it probably has no practical
1993  * use, test that guard regions function with a mapping to the anonymous zero
1994  * page.
1995  */
1996 TEST_F(guard_regions, anon_zeropage)
1997 {
1998 	const unsigned long page_size = self->page_size;
1999 	char *ptr;
2000 	int i;
2001 
2002 	if (!is_anon_backed(variant))
2003 		SKIP(return, "anon zero page test specific to anon/shmem");
2004 
2005 	/* Obtain a read-only i.e. anon zero page mapping. */
2006 	ptr = mmap_(self, variant, NULL, 10 * page_size, PROT_READ, 0, 0);
2007 	ASSERT_NE(ptr, MAP_FAILED);
2008 
2009 	/* Now make every even page guarded. */
2010 	for (i = 0; i < 10; i += 2) {
2011 		char *ptr_p = &ptr[i * page_size];
2012 
2013 		ASSERT_EQ(madvise(ptr_p, page_size, MADV_GUARD_INSTALL), 0);
2014 	}
2015 
2016 	/* Now assert things are as expected. */
2017 	for (i = 0; i < 10; i++) {
2018 		char *ptr_p = &ptr[i * page_size];
2019 
2020 		ASSERT_EQ(try_read_buf(ptr_p), i % 2 != 0);
2021 	}
2022 
2023 	/* Now remove all guard regions. */
2024 	ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_REMOVE), 0);
2025 
2026 	/* Now assert things are as expected. */
2027 	for (i = 0; i < 10; i++) {
2028 		char *ptr_p = &ptr[i * page_size];
2029 
2030 		ASSERT_TRUE(try_read_buf(ptr_p));
2031 	}
2032 
2033 	/* Ensure zero page...*/
2034 	ASSERT_TRUE(is_buf_eq(ptr, 10 * page_size, '\0'));
2035 
2036 	ASSERT_EQ(munmap(ptr, 10 * page_size), 0);
2037 }
2038 
2039 /*
2040  * Assert that /proc/$pid/pagemap correctly identifies guard region ranges.
2041  */
2042 TEST_F(guard_regions, pagemap)
2043 {
2044 	const unsigned long page_size = self->page_size;
2045 	int proc_fd;
2046 	char *ptr;
2047 	int i;
2048 
2049 	proc_fd = open("/proc/self/pagemap", O_RDONLY);
2050 	ASSERT_NE(proc_fd, -1);
2051 
2052 	ptr = mmap_(self, variant, NULL, 10 * page_size,
2053 		    PROT_READ | PROT_WRITE, 0, 0);
2054 	ASSERT_NE(ptr, MAP_FAILED);
2055 
2056 	/* Read from pagemap, and assert no guard regions are detected. */
2057 	for (i = 0; i < 10; i++) {
2058 		char *ptr_p = &ptr[i * page_size];
2059 		unsigned long entry = pagemap_get_entry(proc_fd, ptr_p);
2060 		unsigned long masked = entry & PM_GUARD_REGION;
2061 
2062 		ASSERT_EQ(masked, 0);
2063 	}
2064 
2065 	/* Install a guard region in every other page. */
2066 	for (i = 0; i < 10; i += 2) {
2067 		char *ptr_p = &ptr[i * page_size];
2068 
2069 		ASSERT_EQ(madvise(ptr_p, page_size, MADV_GUARD_INSTALL), 0);
2070 	}
2071 
2072 	/* Re-read from pagemap, and assert guard regions are detected. */
2073 	for (i = 0; i < 10; i++) {
2074 		char *ptr_p = &ptr[i * page_size];
2075 		unsigned long entry = pagemap_get_entry(proc_fd, ptr_p);
2076 		unsigned long masked = entry & PM_GUARD_REGION;
2077 
2078 		ASSERT_EQ(masked, i % 2 == 0 ? PM_GUARD_REGION : 0);
2079 	}
2080 
2081 	ASSERT_EQ(close(proc_fd), 0);
2082 	ASSERT_EQ(munmap(ptr, 10 * page_size), 0);
2083 }
2084 
2085 /*
2086  * Assert that PAGEMAP_SCAN correctly reports guard region ranges.
2087  */
2088 TEST_F(guard_regions, pagemap_scan)
2089 {
2090 	const unsigned long page_size = self->page_size;
2091 	struct page_region pm_regs[10];
2092 	struct pm_scan_arg pm_scan_args = {
2093 		.size = sizeof(struct pm_scan_arg),
2094 		.category_anyof_mask = PAGE_IS_GUARD,
2095 		.return_mask = PAGE_IS_GUARD,
2096 		.vec = (long)&pm_regs,
2097 		.vec_len = ARRAY_SIZE(pm_regs),
2098 	};
2099 	int proc_fd, i;
2100 	char *ptr;
2101 
2102 	proc_fd = open("/proc/self/pagemap", O_RDONLY);
2103 	ASSERT_NE(proc_fd, -1);
2104 
2105 	ptr = mmap_(self, variant, NULL, 10 * page_size,
2106 		    PROT_READ | PROT_WRITE, 0, 0);
2107 	ASSERT_NE(ptr, MAP_FAILED);
2108 
2109 	pm_scan_args.start = (long)ptr;
2110 	pm_scan_args.end = (long)ptr + 10 * page_size;
2111 	ASSERT_EQ(ioctl(proc_fd, PAGEMAP_SCAN, &pm_scan_args), 0);
2112 	ASSERT_EQ(pm_scan_args.walk_end, (long)ptr + 10 * page_size);
2113 
2114 	/* Install a guard region in every other page. */
2115 	for (i = 0; i < 10; i += 2) {
2116 		char *ptr_p = &ptr[i * page_size];
2117 
2118 		ASSERT_EQ(syscall(__NR_madvise, ptr_p, page_size, MADV_GUARD_INSTALL), 0);
2119 	}
2120 
2121 	/*
2122 	 * Assert ioctl() returns the count of located regions, where each
2123 	 * region spans every other page within the range of 10 pages.
2124 	 */
2125 	ASSERT_EQ(ioctl(proc_fd, PAGEMAP_SCAN, &pm_scan_args), 5);
2126 	ASSERT_EQ(pm_scan_args.walk_end, (long)ptr + 10 * page_size);
2127 
2128 	/* Re-read from pagemap, and assert guard regions are detected. */
2129 	for (i = 0; i < 5; i++) {
2130 		long ptr_p = (long)&ptr[2 * i * page_size];
2131 
2132 		ASSERT_EQ(pm_regs[i].start, ptr_p);
2133 		ASSERT_EQ(pm_regs[i].end, ptr_p + page_size);
2134 		ASSERT_EQ(pm_regs[i].categories, PAGE_IS_GUARD);
2135 	}
2136 
2137 	ASSERT_EQ(close(proc_fd), 0);
2138 	ASSERT_EQ(munmap(ptr, 10 * page_size), 0);
2139 }
2140 
2141 TEST_HARNESS_MAIN
2142