xref: /linux/drivers/block/zram/zram_drv.c (revision 81f804c3df8661c12ae5eaa1ae605694017c7349)
1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *               2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the licence that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  *
13  */
14 
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/device.h>
25 #include <linux/highmem.h>
26 #include <linux/slab.h>
27 #include <linux/backing-dev.h>
28 #include <linux/string.h>
29 #include <linux/vmalloc.h>
30 #include <linux/err.h>
31 #include <linux/idr.h>
32 #include <linux/sysfs.h>
33 #include <linux/debugfs.h>
34 #include <linux/cpuhotplug.h>
35 #include <linux/part_stat.h>
36 #include <linux/kernel_read_file.h>
37 
38 #include "zram_drv.h"
39 
40 static DEFINE_IDR(zram_index_idr);
41 /* idr index must be protected */
42 static DEFINE_MUTEX(zram_index_mutex);
43 
44 static int zram_major;
45 static const char *default_compressor = CONFIG_ZRAM_DEF_COMP;
46 
47 /* Module params (documentation at end) */
48 static unsigned int num_devices = 1;
49 /*
50  * Pages that compress to sizes equals or greater than this are stored
51  * uncompressed in memory.
52  */
53 static size_t huge_class_size;
54 
55 static const struct block_device_operations zram_devops;
56 
57 static void zram_free_page(struct zram *zram, size_t index);
58 static int zram_read_from_zspool(struct zram *zram, struct page *page,
59 				 u32 index);
60 
61 static int zram_slot_trylock(struct zram *zram, u32 index)
62 {
63 	return spin_trylock(&zram->table[index].lock);
64 }
65 
66 static void zram_slot_lock(struct zram *zram, u32 index)
67 {
68 	spin_lock(&zram->table[index].lock);
69 }
70 
71 static void zram_slot_unlock(struct zram *zram, u32 index)
72 {
73 	spin_unlock(&zram->table[index].lock);
74 }
75 
76 static inline bool init_done(struct zram *zram)
77 {
78 	return zram->disksize;
79 }
80 
81 static inline struct zram *dev_to_zram(struct device *dev)
82 {
83 	return (struct zram *)dev_to_disk(dev)->private_data;
84 }
85 
86 static unsigned long zram_get_handle(struct zram *zram, u32 index)
87 {
88 	return zram->table[index].handle;
89 }
90 
91 static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle)
92 {
93 	zram->table[index].handle = handle;
94 }
95 
96 /* flag operations require table entry bit_spin_lock() being held */
97 static bool zram_test_flag(struct zram *zram, u32 index,
98 			enum zram_pageflags flag)
99 {
100 	return zram->table[index].flags & BIT(flag);
101 }
102 
103 static void zram_set_flag(struct zram *zram, u32 index,
104 			enum zram_pageflags flag)
105 {
106 	zram->table[index].flags |= BIT(flag);
107 }
108 
109 static void zram_clear_flag(struct zram *zram, u32 index,
110 			enum zram_pageflags flag)
111 {
112 	zram->table[index].flags &= ~BIT(flag);
113 }
114 
115 static size_t zram_get_obj_size(struct zram *zram, u32 index)
116 {
117 	return zram->table[index].flags & (BIT(ZRAM_FLAG_SHIFT) - 1);
118 }
119 
120 static void zram_set_obj_size(struct zram *zram,
121 					u32 index, size_t size)
122 {
123 	unsigned long flags = zram->table[index].flags >> ZRAM_FLAG_SHIFT;
124 
125 	zram->table[index].flags = (flags << ZRAM_FLAG_SHIFT) | size;
126 }
127 
128 static inline bool zram_allocated(struct zram *zram, u32 index)
129 {
130 	return zram_get_obj_size(zram, index) ||
131 			zram_test_flag(zram, index, ZRAM_SAME) ||
132 			zram_test_flag(zram, index, ZRAM_WB);
133 }
134 
135 static inline void update_used_max(struct zram *zram, const unsigned long pages)
136 {
137 	unsigned long cur_max = atomic_long_read(&zram->stats.max_used_pages);
138 
139 	do {
140 		if (cur_max >= pages)
141 			return;
142 	} while (!atomic_long_try_cmpxchg(&zram->stats.max_used_pages,
143 					  &cur_max, pages));
144 }
145 
146 static bool zram_can_store_page(struct zram *zram)
147 {
148 	unsigned long alloced_pages;
149 
150 	alloced_pages = zs_get_total_pages(zram->mem_pool);
151 	update_used_max(zram, alloced_pages);
152 
153 	return !zram->limit_pages || alloced_pages <= zram->limit_pages;
154 }
155 
156 #if PAGE_SIZE != 4096
157 static inline bool is_partial_io(struct bio_vec *bvec)
158 {
159 	return bvec->bv_len != PAGE_SIZE;
160 }
161 #define ZRAM_PARTIAL_IO		1
162 #else
163 static inline bool is_partial_io(struct bio_vec *bvec)
164 {
165 	return false;
166 }
167 #endif
168 
169 static inline void zram_set_priority(struct zram *zram, u32 index, u32 prio)
170 {
171 	prio &= ZRAM_COMP_PRIORITY_MASK;
172 	/*
173 	 * Clear previous priority value first, in case if we recompress
174 	 * further an already recompressed page
175 	 */
176 	zram->table[index].flags &= ~(ZRAM_COMP_PRIORITY_MASK <<
177 				      ZRAM_COMP_PRIORITY_BIT1);
178 	zram->table[index].flags |= (prio << ZRAM_COMP_PRIORITY_BIT1);
179 }
180 
181 static inline u32 zram_get_priority(struct zram *zram, u32 index)
182 {
183 	u32 prio = zram->table[index].flags >> ZRAM_COMP_PRIORITY_BIT1;
184 
185 	return prio & ZRAM_COMP_PRIORITY_MASK;
186 }
187 
188 static void zram_accessed(struct zram *zram, u32 index)
189 {
190 	zram_clear_flag(zram, index, ZRAM_IDLE);
191 	zram_clear_flag(zram, index, ZRAM_PP_SLOT);
192 #ifdef CONFIG_ZRAM_TRACK_ENTRY_ACTIME
193 	zram->table[index].ac_time = ktime_get_boottime();
194 #endif
195 }
196 
197 #if defined CONFIG_ZRAM_WRITEBACK || defined CONFIG_ZRAM_MULTI_COMP
198 struct zram_pp_slot {
199 	unsigned long		index;
200 	struct list_head	entry;
201 };
202 
203 /*
204  * A post-processing bucket is, essentially, a size class, this defines
205  * the range (in bytes) of pp-slots sizes in particular bucket.
206  */
207 #define PP_BUCKET_SIZE_RANGE	64
208 #define NUM_PP_BUCKETS		((PAGE_SIZE / PP_BUCKET_SIZE_RANGE) + 1)
209 
210 struct zram_pp_ctl {
211 	struct list_head	pp_buckets[NUM_PP_BUCKETS];
212 };
213 
214 static struct zram_pp_ctl *init_pp_ctl(void)
215 {
216 	struct zram_pp_ctl *ctl;
217 	u32 idx;
218 
219 	ctl = kmalloc(sizeof(*ctl), GFP_KERNEL);
220 	if (!ctl)
221 		return NULL;
222 
223 	for (idx = 0; idx < NUM_PP_BUCKETS; idx++)
224 		INIT_LIST_HEAD(&ctl->pp_buckets[idx]);
225 	return ctl;
226 }
227 
228 static void release_pp_slot(struct zram *zram, struct zram_pp_slot *pps)
229 {
230 	list_del_init(&pps->entry);
231 
232 	zram_slot_lock(zram, pps->index);
233 	zram_clear_flag(zram, pps->index, ZRAM_PP_SLOT);
234 	zram_slot_unlock(zram, pps->index);
235 
236 	kfree(pps);
237 }
238 
239 static void release_pp_ctl(struct zram *zram, struct zram_pp_ctl *ctl)
240 {
241 	u32 idx;
242 
243 	if (!ctl)
244 		return;
245 
246 	for (idx = 0; idx < NUM_PP_BUCKETS; idx++) {
247 		while (!list_empty(&ctl->pp_buckets[idx])) {
248 			struct zram_pp_slot *pps;
249 
250 			pps = list_first_entry(&ctl->pp_buckets[idx],
251 					       struct zram_pp_slot,
252 					       entry);
253 			release_pp_slot(zram, pps);
254 		}
255 	}
256 
257 	kfree(ctl);
258 }
259 
260 static void place_pp_slot(struct zram *zram, struct zram_pp_ctl *ctl,
261 			  struct zram_pp_slot *pps)
262 {
263 	u32 idx;
264 
265 	idx = zram_get_obj_size(zram, pps->index) / PP_BUCKET_SIZE_RANGE;
266 	list_add(&pps->entry, &ctl->pp_buckets[idx]);
267 
268 	zram_set_flag(zram, pps->index, ZRAM_PP_SLOT);
269 }
270 
271 static struct zram_pp_slot *select_pp_slot(struct zram_pp_ctl *ctl)
272 {
273 	struct zram_pp_slot *pps = NULL;
274 	s32 idx = NUM_PP_BUCKETS - 1;
275 
276 	/* The higher the bucket id the more optimal slot post-processing is */
277 	while (idx >= 0) {
278 		pps = list_first_entry_or_null(&ctl->pp_buckets[idx],
279 					       struct zram_pp_slot,
280 					       entry);
281 		if (pps)
282 			break;
283 
284 		idx--;
285 	}
286 	return pps;
287 }
288 #endif
289 
290 static inline void zram_fill_page(void *ptr, unsigned long len,
291 					unsigned long value)
292 {
293 	WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long)));
294 	memset_l(ptr, value, len / sizeof(unsigned long));
295 }
296 
297 static bool page_same_filled(void *ptr, unsigned long *element)
298 {
299 	unsigned long *page;
300 	unsigned long val;
301 	unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1;
302 
303 	page = (unsigned long *)ptr;
304 	val = page[0];
305 
306 	if (val != page[last_pos])
307 		return false;
308 
309 	for (pos = 1; pos < last_pos; pos++) {
310 		if (val != page[pos])
311 			return false;
312 	}
313 
314 	*element = val;
315 
316 	return true;
317 }
318 
319 static ssize_t initstate_show(struct device *dev,
320 		struct device_attribute *attr, char *buf)
321 {
322 	u32 val;
323 	struct zram *zram = dev_to_zram(dev);
324 
325 	down_read(&zram->init_lock);
326 	val = init_done(zram);
327 	up_read(&zram->init_lock);
328 
329 	return scnprintf(buf, PAGE_SIZE, "%u\n", val);
330 }
331 
332 static ssize_t disksize_show(struct device *dev,
333 		struct device_attribute *attr, char *buf)
334 {
335 	struct zram *zram = dev_to_zram(dev);
336 
337 	return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
338 }
339 
340 static ssize_t mem_limit_store(struct device *dev,
341 		struct device_attribute *attr, const char *buf, size_t len)
342 {
343 	u64 limit;
344 	char *tmp;
345 	struct zram *zram = dev_to_zram(dev);
346 
347 	limit = memparse(buf, &tmp);
348 	if (buf == tmp) /* no chars parsed, invalid input */
349 		return -EINVAL;
350 
351 	down_write(&zram->init_lock);
352 	zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
353 	up_write(&zram->init_lock);
354 
355 	return len;
356 }
357 
358 static ssize_t mem_used_max_store(struct device *dev,
359 		struct device_attribute *attr, const char *buf, size_t len)
360 {
361 	int err;
362 	unsigned long val;
363 	struct zram *zram = dev_to_zram(dev);
364 
365 	err = kstrtoul(buf, 10, &val);
366 	if (err || val != 0)
367 		return -EINVAL;
368 
369 	down_read(&zram->init_lock);
370 	if (init_done(zram)) {
371 		atomic_long_set(&zram->stats.max_used_pages,
372 				zs_get_total_pages(zram->mem_pool));
373 	}
374 	up_read(&zram->init_lock);
375 
376 	return len;
377 }
378 
379 /*
380  * Mark all pages which are older than or equal to cutoff as IDLE.
381  * Callers should hold the zram init lock in read mode
382  */
383 static void mark_idle(struct zram *zram, ktime_t cutoff)
384 {
385 	int is_idle = 1;
386 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
387 	int index;
388 
389 	for (index = 0; index < nr_pages; index++) {
390 		/*
391 		 * Do not mark ZRAM_SAME slots as ZRAM_IDLE, because no
392 		 * post-processing (recompress, writeback) happens to the
393 		 * ZRAM_SAME slot.
394 		 *
395 		 * And ZRAM_WB slots simply cannot be ZRAM_IDLE.
396 		 */
397 		zram_slot_lock(zram, index);
398 		if (!zram_allocated(zram, index) ||
399 		    zram_test_flag(zram, index, ZRAM_WB) ||
400 		    zram_test_flag(zram, index, ZRAM_SAME)) {
401 			zram_slot_unlock(zram, index);
402 			continue;
403 		}
404 
405 #ifdef CONFIG_ZRAM_TRACK_ENTRY_ACTIME
406 		is_idle = !cutoff ||
407 			ktime_after(cutoff, zram->table[index].ac_time);
408 #endif
409 		if (is_idle)
410 			zram_set_flag(zram, index, ZRAM_IDLE);
411 		else
412 			zram_clear_flag(zram, index, ZRAM_IDLE);
413 		zram_slot_unlock(zram, index);
414 	}
415 }
416 
417 static ssize_t idle_store(struct device *dev,
418 		struct device_attribute *attr, const char *buf, size_t len)
419 {
420 	struct zram *zram = dev_to_zram(dev);
421 	ktime_t cutoff_time = 0;
422 	ssize_t rv = -EINVAL;
423 
424 	if (!sysfs_streq(buf, "all")) {
425 		/*
426 		 * If it did not parse as 'all' try to treat it as an integer
427 		 * when we have memory tracking enabled.
428 		 */
429 		u64 age_sec;
430 
431 		if (IS_ENABLED(CONFIG_ZRAM_TRACK_ENTRY_ACTIME) && !kstrtoull(buf, 0, &age_sec))
432 			cutoff_time = ktime_sub(ktime_get_boottime(),
433 					ns_to_ktime(age_sec * NSEC_PER_SEC));
434 		else
435 			goto out;
436 	}
437 
438 	down_read(&zram->init_lock);
439 	if (!init_done(zram))
440 		goto out_unlock;
441 
442 	/*
443 	 * A cutoff_time of 0 marks everything as idle, this is the
444 	 * "all" behavior.
445 	 */
446 	mark_idle(zram, cutoff_time);
447 	rv = len;
448 
449 out_unlock:
450 	up_read(&zram->init_lock);
451 out:
452 	return rv;
453 }
454 
455 #ifdef CONFIG_ZRAM_WRITEBACK
456 static ssize_t writeback_limit_enable_store(struct device *dev,
457 		struct device_attribute *attr, const char *buf, size_t len)
458 {
459 	struct zram *zram = dev_to_zram(dev);
460 	u64 val;
461 	ssize_t ret = -EINVAL;
462 
463 	if (kstrtoull(buf, 10, &val))
464 		return ret;
465 
466 	down_read(&zram->init_lock);
467 	spin_lock(&zram->wb_limit_lock);
468 	zram->wb_limit_enable = val;
469 	spin_unlock(&zram->wb_limit_lock);
470 	up_read(&zram->init_lock);
471 	ret = len;
472 
473 	return ret;
474 }
475 
476 static ssize_t writeback_limit_enable_show(struct device *dev,
477 		struct device_attribute *attr, char *buf)
478 {
479 	bool val;
480 	struct zram *zram = dev_to_zram(dev);
481 
482 	down_read(&zram->init_lock);
483 	spin_lock(&zram->wb_limit_lock);
484 	val = zram->wb_limit_enable;
485 	spin_unlock(&zram->wb_limit_lock);
486 	up_read(&zram->init_lock);
487 
488 	return scnprintf(buf, PAGE_SIZE, "%d\n", val);
489 }
490 
491 static ssize_t writeback_limit_store(struct device *dev,
492 		struct device_attribute *attr, const char *buf, size_t len)
493 {
494 	struct zram *zram = dev_to_zram(dev);
495 	u64 val;
496 	ssize_t ret = -EINVAL;
497 
498 	if (kstrtoull(buf, 10, &val))
499 		return ret;
500 
501 	down_read(&zram->init_lock);
502 	spin_lock(&zram->wb_limit_lock);
503 	zram->bd_wb_limit = val;
504 	spin_unlock(&zram->wb_limit_lock);
505 	up_read(&zram->init_lock);
506 	ret = len;
507 
508 	return ret;
509 }
510 
511 static ssize_t writeback_limit_show(struct device *dev,
512 		struct device_attribute *attr, char *buf)
513 {
514 	u64 val;
515 	struct zram *zram = dev_to_zram(dev);
516 
517 	down_read(&zram->init_lock);
518 	spin_lock(&zram->wb_limit_lock);
519 	val = zram->bd_wb_limit;
520 	spin_unlock(&zram->wb_limit_lock);
521 	up_read(&zram->init_lock);
522 
523 	return scnprintf(buf, PAGE_SIZE, "%llu\n", val);
524 }
525 
526 static void reset_bdev(struct zram *zram)
527 {
528 	if (!zram->backing_dev)
529 		return;
530 
531 	/* hope filp_close flush all of IO */
532 	filp_close(zram->backing_dev, NULL);
533 	zram->backing_dev = NULL;
534 	zram->bdev = NULL;
535 	zram->disk->fops = &zram_devops;
536 	kvfree(zram->bitmap);
537 	zram->bitmap = NULL;
538 }
539 
540 static ssize_t backing_dev_show(struct device *dev,
541 		struct device_attribute *attr, char *buf)
542 {
543 	struct file *file;
544 	struct zram *zram = dev_to_zram(dev);
545 	char *p;
546 	ssize_t ret;
547 
548 	down_read(&zram->init_lock);
549 	file = zram->backing_dev;
550 	if (!file) {
551 		memcpy(buf, "none\n", 5);
552 		up_read(&zram->init_lock);
553 		return 5;
554 	}
555 
556 	p = file_path(file, buf, PAGE_SIZE - 1);
557 	if (IS_ERR(p)) {
558 		ret = PTR_ERR(p);
559 		goto out;
560 	}
561 
562 	ret = strlen(p);
563 	memmove(buf, p, ret);
564 	buf[ret++] = '\n';
565 out:
566 	up_read(&zram->init_lock);
567 	return ret;
568 }
569 
570 static ssize_t backing_dev_store(struct device *dev,
571 		struct device_attribute *attr, const char *buf, size_t len)
572 {
573 	char *file_name;
574 	size_t sz;
575 	struct file *backing_dev = NULL;
576 	struct inode *inode;
577 	unsigned int bitmap_sz;
578 	unsigned long nr_pages, *bitmap = NULL;
579 	int err;
580 	struct zram *zram = dev_to_zram(dev);
581 
582 	file_name = kmalloc(PATH_MAX, GFP_KERNEL);
583 	if (!file_name)
584 		return -ENOMEM;
585 
586 	down_write(&zram->init_lock);
587 	if (init_done(zram)) {
588 		pr_info("Can't setup backing device for initialized device\n");
589 		err = -EBUSY;
590 		goto out;
591 	}
592 
593 	strscpy(file_name, buf, PATH_MAX);
594 	/* ignore trailing newline */
595 	sz = strlen(file_name);
596 	if (sz > 0 && file_name[sz - 1] == '\n')
597 		file_name[sz - 1] = 0x00;
598 
599 	backing_dev = filp_open(file_name, O_RDWR | O_LARGEFILE | O_EXCL, 0);
600 	if (IS_ERR(backing_dev)) {
601 		err = PTR_ERR(backing_dev);
602 		backing_dev = NULL;
603 		goto out;
604 	}
605 
606 	inode = backing_dev->f_mapping->host;
607 
608 	/* Support only block device in this moment */
609 	if (!S_ISBLK(inode->i_mode)) {
610 		err = -ENOTBLK;
611 		goto out;
612 	}
613 
614 	nr_pages = i_size_read(inode) >> PAGE_SHIFT;
615 	/* Refuse to use zero sized device (also prevents self reference) */
616 	if (!nr_pages) {
617 		err = -EINVAL;
618 		goto out;
619 	}
620 
621 	bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long);
622 	bitmap = kvzalloc(bitmap_sz, GFP_KERNEL);
623 	if (!bitmap) {
624 		err = -ENOMEM;
625 		goto out;
626 	}
627 
628 	reset_bdev(zram);
629 
630 	zram->bdev = I_BDEV(inode);
631 	zram->backing_dev = backing_dev;
632 	zram->bitmap = bitmap;
633 	zram->nr_pages = nr_pages;
634 	up_write(&zram->init_lock);
635 
636 	pr_info("setup backing device %s\n", file_name);
637 	kfree(file_name);
638 
639 	return len;
640 out:
641 	kvfree(bitmap);
642 
643 	if (backing_dev)
644 		filp_close(backing_dev, NULL);
645 
646 	up_write(&zram->init_lock);
647 
648 	kfree(file_name);
649 
650 	return err;
651 }
652 
653 static unsigned long alloc_block_bdev(struct zram *zram)
654 {
655 	unsigned long blk_idx = 1;
656 retry:
657 	/* skip 0 bit to confuse zram.handle = 0 */
658 	blk_idx = find_next_zero_bit(zram->bitmap, zram->nr_pages, blk_idx);
659 	if (blk_idx == zram->nr_pages)
660 		return 0;
661 
662 	if (test_and_set_bit(blk_idx, zram->bitmap))
663 		goto retry;
664 
665 	atomic64_inc(&zram->stats.bd_count);
666 	return blk_idx;
667 }
668 
669 static void free_block_bdev(struct zram *zram, unsigned long blk_idx)
670 {
671 	int was_set;
672 
673 	was_set = test_and_clear_bit(blk_idx, zram->bitmap);
674 	WARN_ON_ONCE(!was_set);
675 	atomic64_dec(&zram->stats.bd_count);
676 }
677 
678 static void read_from_bdev_async(struct zram *zram, struct page *page,
679 			unsigned long entry, struct bio *parent)
680 {
681 	struct bio *bio;
682 
683 	bio = bio_alloc(zram->bdev, 1, parent->bi_opf, GFP_NOIO);
684 	bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9);
685 	__bio_add_page(bio, page, PAGE_SIZE, 0);
686 	bio_chain(bio, parent);
687 	submit_bio(bio);
688 }
689 
690 #define PAGE_WB_SIG "page_index="
691 
692 #define PAGE_WRITEBACK			0
693 #define HUGE_WRITEBACK			(1<<0)
694 #define IDLE_WRITEBACK			(1<<1)
695 #define INCOMPRESSIBLE_WRITEBACK	(1<<2)
696 
697 static int scan_slots_for_writeback(struct zram *zram, u32 mode,
698 				    unsigned long nr_pages,
699 				    unsigned long index,
700 				    struct zram_pp_ctl *ctl)
701 {
702 	struct zram_pp_slot *pps = NULL;
703 
704 	for (; nr_pages != 0; index++, nr_pages--) {
705 		if (!pps)
706 			pps = kmalloc(sizeof(*pps), GFP_KERNEL);
707 		if (!pps)
708 			return -ENOMEM;
709 
710 		INIT_LIST_HEAD(&pps->entry);
711 
712 		zram_slot_lock(zram, index);
713 		if (!zram_allocated(zram, index))
714 			goto next;
715 
716 		if (zram_test_flag(zram, index, ZRAM_WB) ||
717 		    zram_test_flag(zram, index, ZRAM_SAME))
718 			goto next;
719 
720 		if (mode & IDLE_WRITEBACK &&
721 		    !zram_test_flag(zram, index, ZRAM_IDLE))
722 			goto next;
723 		if (mode & HUGE_WRITEBACK &&
724 		    !zram_test_flag(zram, index, ZRAM_HUGE))
725 			goto next;
726 		if (mode & INCOMPRESSIBLE_WRITEBACK &&
727 		    !zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE))
728 			goto next;
729 
730 		pps->index = index;
731 		place_pp_slot(zram, ctl, pps);
732 		pps = NULL;
733 next:
734 		zram_slot_unlock(zram, index);
735 	}
736 
737 	kfree(pps);
738 	return 0;
739 }
740 
741 static ssize_t writeback_store(struct device *dev,
742 		struct device_attribute *attr, const char *buf, size_t len)
743 {
744 	struct zram *zram = dev_to_zram(dev);
745 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
746 	struct zram_pp_ctl *ctl = NULL;
747 	struct zram_pp_slot *pps;
748 	unsigned long index = 0;
749 	struct bio bio;
750 	struct bio_vec bio_vec;
751 	struct page *page;
752 	ssize_t ret = len;
753 	int mode, err;
754 	unsigned long blk_idx = 0;
755 
756 	if (sysfs_streq(buf, "idle"))
757 		mode = IDLE_WRITEBACK;
758 	else if (sysfs_streq(buf, "huge"))
759 		mode = HUGE_WRITEBACK;
760 	else if (sysfs_streq(buf, "huge_idle"))
761 		mode = IDLE_WRITEBACK | HUGE_WRITEBACK;
762 	else if (sysfs_streq(buf, "incompressible"))
763 		mode = INCOMPRESSIBLE_WRITEBACK;
764 	else {
765 		if (strncmp(buf, PAGE_WB_SIG, sizeof(PAGE_WB_SIG) - 1))
766 			return -EINVAL;
767 
768 		if (kstrtol(buf + sizeof(PAGE_WB_SIG) - 1, 10, &index) ||
769 				index >= nr_pages)
770 			return -EINVAL;
771 
772 		nr_pages = 1;
773 		mode = PAGE_WRITEBACK;
774 	}
775 
776 	down_read(&zram->init_lock);
777 	if (!init_done(zram)) {
778 		ret = -EINVAL;
779 		goto release_init_lock;
780 	}
781 
782 	/* Do not permit concurrent post-processing actions. */
783 	if (atomic_xchg(&zram->pp_in_progress, 1)) {
784 		up_read(&zram->init_lock);
785 		return -EAGAIN;
786 	}
787 
788 	if (!zram->backing_dev) {
789 		ret = -ENODEV;
790 		goto release_init_lock;
791 	}
792 
793 	page = alloc_page(GFP_KERNEL);
794 	if (!page) {
795 		ret = -ENOMEM;
796 		goto release_init_lock;
797 	}
798 
799 	ctl = init_pp_ctl();
800 	if (!ctl) {
801 		ret = -ENOMEM;
802 		goto release_init_lock;
803 	}
804 
805 	scan_slots_for_writeback(zram, mode, nr_pages, index, ctl);
806 
807 	while ((pps = select_pp_slot(ctl))) {
808 		spin_lock(&zram->wb_limit_lock);
809 		if (zram->wb_limit_enable && !zram->bd_wb_limit) {
810 			spin_unlock(&zram->wb_limit_lock);
811 			ret = -EIO;
812 			break;
813 		}
814 		spin_unlock(&zram->wb_limit_lock);
815 
816 		if (!blk_idx) {
817 			blk_idx = alloc_block_bdev(zram);
818 			if (!blk_idx) {
819 				ret = -ENOSPC;
820 				break;
821 			}
822 		}
823 
824 		index = pps->index;
825 		zram_slot_lock(zram, index);
826 		/*
827 		 * scan_slots() sets ZRAM_PP_SLOT and relases slot lock, so
828 		 * slots can change in the meantime. If slots are accessed or
829 		 * freed they lose ZRAM_PP_SLOT flag and hence we don't
830 		 * post-process them.
831 		 */
832 		if (!zram_test_flag(zram, index, ZRAM_PP_SLOT))
833 			goto next;
834 		if (zram_read_from_zspool(zram, page, index))
835 			goto next;
836 		zram_slot_unlock(zram, index);
837 
838 		bio_init(&bio, zram->bdev, &bio_vec, 1,
839 			 REQ_OP_WRITE | REQ_SYNC);
840 		bio.bi_iter.bi_sector = blk_idx * (PAGE_SIZE >> 9);
841 		__bio_add_page(&bio, page, PAGE_SIZE, 0);
842 
843 		/*
844 		 * XXX: A single page IO would be inefficient for write
845 		 * but it would be not bad as starter.
846 		 */
847 		err = submit_bio_wait(&bio);
848 		if (err) {
849 			release_pp_slot(zram, pps);
850 			/*
851 			 * BIO errors are not fatal, we continue and simply
852 			 * attempt to writeback the remaining objects (pages).
853 			 * At the same time we need to signal user-space that
854 			 * some writes (at least one, but also could be all of
855 			 * them) were not successful and we do so by returning
856 			 * the most recent BIO error.
857 			 */
858 			ret = err;
859 			continue;
860 		}
861 
862 		atomic64_inc(&zram->stats.bd_writes);
863 		zram_slot_lock(zram, index);
864 		/*
865 		 * Same as above, we release slot lock during writeback so
866 		 * slot can change under us: slot_free() or slot_free() and
867 		 * reallocation (zram_write_page()). In both cases slot loses
868 		 * ZRAM_PP_SLOT flag. No concurrent post-processing can set
869 		 * ZRAM_PP_SLOT on such slots until current post-processing
870 		 * finishes.
871 		 */
872 		if (!zram_test_flag(zram, index, ZRAM_PP_SLOT))
873 			goto next;
874 
875 		zram_free_page(zram, index);
876 		zram_set_flag(zram, index, ZRAM_WB);
877 		zram_set_handle(zram, index, blk_idx);
878 		blk_idx = 0;
879 		atomic64_inc(&zram->stats.pages_stored);
880 		spin_lock(&zram->wb_limit_lock);
881 		if (zram->wb_limit_enable && zram->bd_wb_limit > 0)
882 			zram->bd_wb_limit -=  1UL << (PAGE_SHIFT - 12);
883 		spin_unlock(&zram->wb_limit_lock);
884 next:
885 		zram_slot_unlock(zram, index);
886 		release_pp_slot(zram, pps);
887 
888 		cond_resched();
889 	}
890 
891 	if (blk_idx)
892 		free_block_bdev(zram, blk_idx);
893 	__free_page(page);
894 release_init_lock:
895 	release_pp_ctl(zram, ctl);
896 	atomic_set(&zram->pp_in_progress, 0);
897 	up_read(&zram->init_lock);
898 
899 	return ret;
900 }
901 
902 struct zram_work {
903 	struct work_struct work;
904 	struct zram *zram;
905 	unsigned long entry;
906 	struct page *page;
907 	int error;
908 };
909 
910 static void zram_sync_read(struct work_struct *work)
911 {
912 	struct zram_work *zw = container_of(work, struct zram_work, work);
913 	struct bio_vec bv;
914 	struct bio bio;
915 
916 	bio_init(&bio, zw->zram->bdev, &bv, 1, REQ_OP_READ);
917 	bio.bi_iter.bi_sector = zw->entry * (PAGE_SIZE >> 9);
918 	__bio_add_page(&bio, zw->page, PAGE_SIZE, 0);
919 	zw->error = submit_bio_wait(&bio);
920 }
921 
922 /*
923  * Block layer want one ->submit_bio to be active at a time, so if we use
924  * chained IO with parent IO in same context, it's a deadlock. To avoid that,
925  * use a worker thread context.
926  */
927 static int read_from_bdev_sync(struct zram *zram, struct page *page,
928 				unsigned long entry)
929 {
930 	struct zram_work work;
931 
932 	work.page = page;
933 	work.zram = zram;
934 	work.entry = entry;
935 
936 	INIT_WORK_ONSTACK(&work.work, zram_sync_read);
937 	queue_work(system_unbound_wq, &work.work);
938 	flush_work(&work.work);
939 	destroy_work_on_stack(&work.work);
940 
941 	return work.error;
942 }
943 
944 static int read_from_bdev(struct zram *zram, struct page *page,
945 			unsigned long entry, struct bio *parent)
946 {
947 	atomic64_inc(&zram->stats.bd_reads);
948 	if (!parent) {
949 		if (WARN_ON_ONCE(!IS_ENABLED(ZRAM_PARTIAL_IO)))
950 			return -EIO;
951 		return read_from_bdev_sync(zram, page, entry);
952 	}
953 	read_from_bdev_async(zram, page, entry, parent);
954 	return 0;
955 }
956 #else
957 static inline void reset_bdev(struct zram *zram) {};
958 static int read_from_bdev(struct zram *zram, struct page *page,
959 			unsigned long entry, struct bio *parent)
960 {
961 	return -EIO;
962 }
963 
964 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) {};
965 #endif
966 
967 #ifdef CONFIG_ZRAM_MEMORY_TRACKING
968 
969 static struct dentry *zram_debugfs_root;
970 
971 static void zram_debugfs_create(void)
972 {
973 	zram_debugfs_root = debugfs_create_dir("zram", NULL);
974 }
975 
976 static void zram_debugfs_destroy(void)
977 {
978 	debugfs_remove_recursive(zram_debugfs_root);
979 }
980 
981 static ssize_t read_block_state(struct file *file, char __user *buf,
982 				size_t count, loff_t *ppos)
983 {
984 	char *kbuf;
985 	ssize_t index, written = 0;
986 	struct zram *zram = file->private_data;
987 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
988 	struct timespec64 ts;
989 
990 	kbuf = kvmalloc(count, GFP_KERNEL);
991 	if (!kbuf)
992 		return -ENOMEM;
993 
994 	down_read(&zram->init_lock);
995 	if (!init_done(zram)) {
996 		up_read(&zram->init_lock);
997 		kvfree(kbuf);
998 		return -EINVAL;
999 	}
1000 
1001 	for (index = *ppos; index < nr_pages; index++) {
1002 		int copied;
1003 
1004 		zram_slot_lock(zram, index);
1005 		if (!zram_allocated(zram, index))
1006 			goto next;
1007 
1008 		ts = ktime_to_timespec64(zram->table[index].ac_time);
1009 		copied = snprintf(kbuf + written, count,
1010 			"%12zd %12lld.%06lu %c%c%c%c%c%c\n",
1011 			index, (s64)ts.tv_sec,
1012 			ts.tv_nsec / NSEC_PER_USEC,
1013 			zram_test_flag(zram, index, ZRAM_SAME) ? 's' : '.',
1014 			zram_test_flag(zram, index, ZRAM_WB) ? 'w' : '.',
1015 			zram_test_flag(zram, index, ZRAM_HUGE) ? 'h' : '.',
1016 			zram_test_flag(zram, index, ZRAM_IDLE) ? 'i' : '.',
1017 			zram_get_priority(zram, index) ? 'r' : '.',
1018 			zram_test_flag(zram, index,
1019 				       ZRAM_INCOMPRESSIBLE) ? 'n' : '.');
1020 
1021 		if (count <= copied) {
1022 			zram_slot_unlock(zram, index);
1023 			break;
1024 		}
1025 		written += copied;
1026 		count -= copied;
1027 next:
1028 		zram_slot_unlock(zram, index);
1029 		*ppos += 1;
1030 	}
1031 
1032 	up_read(&zram->init_lock);
1033 	if (copy_to_user(buf, kbuf, written))
1034 		written = -EFAULT;
1035 	kvfree(kbuf);
1036 
1037 	return written;
1038 }
1039 
1040 static const struct file_operations proc_zram_block_state_op = {
1041 	.open = simple_open,
1042 	.read = read_block_state,
1043 	.llseek = default_llseek,
1044 };
1045 
1046 static void zram_debugfs_register(struct zram *zram)
1047 {
1048 	if (!zram_debugfs_root)
1049 		return;
1050 
1051 	zram->debugfs_dir = debugfs_create_dir(zram->disk->disk_name,
1052 						zram_debugfs_root);
1053 	debugfs_create_file("block_state", 0400, zram->debugfs_dir,
1054 				zram, &proc_zram_block_state_op);
1055 }
1056 
1057 static void zram_debugfs_unregister(struct zram *zram)
1058 {
1059 	debugfs_remove_recursive(zram->debugfs_dir);
1060 }
1061 #else
1062 static void zram_debugfs_create(void) {};
1063 static void zram_debugfs_destroy(void) {};
1064 static void zram_debugfs_register(struct zram *zram) {};
1065 static void zram_debugfs_unregister(struct zram *zram) {};
1066 #endif
1067 
1068 /*
1069  * We switched to per-cpu streams and this attr is not needed anymore.
1070  * However, we will keep it around for some time, because:
1071  * a) we may revert per-cpu streams in the future
1072  * b) it's visible to user space and we need to follow our 2 years
1073  *    retirement rule; but we already have a number of 'soon to be
1074  *    altered' attrs, so max_comp_streams need to wait for the next
1075  *    layoff cycle.
1076  */
1077 static ssize_t max_comp_streams_show(struct device *dev,
1078 		struct device_attribute *attr, char *buf)
1079 {
1080 	return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
1081 }
1082 
1083 static ssize_t max_comp_streams_store(struct device *dev,
1084 		struct device_attribute *attr, const char *buf, size_t len)
1085 {
1086 	return len;
1087 }
1088 
1089 static void comp_algorithm_set(struct zram *zram, u32 prio, const char *alg)
1090 {
1091 	/* Do not free statically defined compression algorithms */
1092 	if (zram->comp_algs[prio] != default_compressor)
1093 		kfree(zram->comp_algs[prio]);
1094 
1095 	zram->comp_algs[prio] = alg;
1096 }
1097 
1098 static ssize_t __comp_algorithm_show(struct zram *zram, u32 prio, char *buf)
1099 {
1100 	ssize_t sz;
1101 
1102 	down_read(&zram->init_lock);
1103 	sz = zcomp_available_show(zram->comp_algs[prio], buf);
1104 	up_read(&zram->init_lock);
1105 
1106 	return sz;
1107 }
1108 
1109 static int __comp_algorithm_store(struct zram *zram, u32 prio, const char *buf)
1110 {
1111 	char *compressor;
1112 	size_t sz;
1113 
1114 	sz = strlen(buf);
1115 	if (sz >= CRYPTO_MAX_ALG_NAME)
1116 		return -E2BIG;
1117 
1118 	compressor = kstrdup(buf, GFP_KERNEL);
1119 	if (!compressor)
1120 		return -ENOMEM;
1121 
1122 	/* ignore trailing newline */
1123 	if (sz > 0 && compressor[sz - 1] == '\n')
1124 		compressor[sz - 1] = 0x00;
1125 
1126 	if (!zcomp_available_algorithm(compressor)) {
1127 		kfree(compressor);
1128 		return -EINVAL;
1129 	}
1130 
1131 	down_write(&zram->init_lock);
1132 	if (init_done(zram)) {
1133 		up_write(&zram->init_lock);
1134 		kfree(compressor);
1135 		pr_info("Can't change algorithm for initialized device\n");
1136 		return -EBUSY;
1137 	}
1138 
1139 	comp_algorithm_set(zram, prio, compressor);
1140 	up_write(&zram->init_lock);
1141 	return 0;
1142 }
1143 
1144 static void comp_params_reset(struct zram *zram, u32 prio)
1145 {
1146 	struct zcomp_params *params = &zram->params[prio];
1147 
1148 	vfree(params->dict);
1149 	params->level = ZCOMP_PARAM_NO_LEVEL;
1150 	params->dict_sz = 0;
1151 	params->dict = NULL;
1152 }
1153 
1154 static int comp_params_store(struct zram *zram, u32 prio, s32 level,
1155 			     const char *dict_path)
1156 {
1157 	ssize_t sz = 0;
1158 
1159 	comp_params_reset(zram, prio);
1160 
1161 	if (dict_path) {
1162 		sz = kernel_read_file_from_path(dict_path, 0,
1163 						&zram->params[prio].dict,
1164 						INT_MAX,
1165 						NULL,
1166 						READING_POLICY);
1167 		if (sz < 0)
1168 			return -EINVAL;
1169 	}
1170 
1171 	zram->params[prio].dict_sz = sz;
1172 	zram->params[prio].level = level;
1173 	return 0;
1174 }
1175 
1176 static ssize_t algorithm_params_store(struct device *dev,
1177 				      struct device_attribute *attr,
1178 				      const char *buf,
1179 				      size_t len)
1180 {
1181 	s32 prio = ZRAM_PRIMARY_COMP, level = ZCOMP_PARAM_NO_LEVEL;
1182 	char *args, *param, *val, *algo = NULL, *dict_path = NULL;
1183 	struct zram *zram = dev_to_zram(dev);
1184 	int ret;
1185 
1186 	args = skip_spaces(buf);
1187 	while (*args) {
1188 		args = next_arg(args, &param, &val);
1189 
1190 		if (!val || !*val)
1191 			return -EINVAL;
1192 
1193 		if (!strcmp(param, "priority")) {
1194 			ret = kstrtoint(val, 10, &prio);
1195 			if (ret)
1196 				return ret;
1197 			continue;
1198 		}
1199 
1200 		if (!strcmp(param, "level")) {
1201 			ret = kstrtoint(val, 10, &level);
1202 			if (ret)
1203 				return ret;
1204 			continue;
1205 		}
1206 
1207 		if (!strcmp(param, "algo")) {
1208 			algo = val;
1209 			continue;
1210 		}
1211 
1212 		if (!strcmp(param, "dict")) {
1213 			dict_path = val;
1214 			continue;
1215 		}
1216 	}
1217 
1218 	/* Lookup priority by algorithm name */
1219 	if (algo) {
1220 		s32 p;
1221 
1222 		prio = -EINVAL;
1223 		for (p = ZRAM_PRIMARY_COMP; p < ZRAM_MAX_COMPS; p++) {
1224 			if (!zram->comp_algs[p])
1225 				continue;
1226 
1227 			if (!strcmp(zram->comp_algs[p], algo)) {
1228 				prio = p;
1229 				break;
1230 			}
1231 		}
1232 	}
1233 
1234 	if (prio < ZRAM_PRIMARY_COMP || prio >= ZRAM_MAX_COMPS)
1235 		return -EINVAL;
1236 
1237 	ret = comp_params_store(zram, prio, level, dict_path);
1238 	return ret ? ret : len;
1239 }
1240 
1241 static ssize_t comp_algorithm_show(struct device *dev,
1242 				   struct device_attribute *attr,
1243 				   char *buf)
1244 {
1245 	struct zram *zram = dev_to_zram(dev);
1246 
1247 	return __comp_algorithm_show(zram, ZRAM_PRIMARY_COMP, buf);
1248 }
1249 
1250 static ssize_t comp_algorithm_store(struct device *dev,
1251 				    struct device_attribute *attr,
1252 				    const char *buf,
1253 				    size_t len)
1254 {
1255 	struct zram *zram = dev_to_zram(dev);
1256 	int ret;
1257 
1258 	ret = __comp_algorithm_store(zram, ZRAM_PRIMARY_COMP, buf);
1259 	return ret ? ret : len;
1260 }
1261 
1262 #ifdef CONFIG_ZRAM_MULTI_COMP
1263 static ssize_t recomp_algorithm_show(struct device *dev,
1264 				     struct device_attribute *attr,
1265 				     char *buf)
1266 {
1267 	struct zram *zram = dev_to_zram(dev);
1268 	ssize_t sz = 0;
1269 	u32 prio;
1270 
1271 	for (prio = ZRAM_SECONDARY_COMP; prio < ZRAM_MAX_COMPS; prio++) {
1272 		if (!zram->comp_algs[prio])
1273 			continue;
1274 
1275 		sz += scnprintf(buf + sz, PAGE_SIZE - sz - 2, "#%d: ", prio);
1276 		sz += __comp_algorithm_show(zram, prio, buf + sz);
1277 	}
1278 
1279 	return sz;
1280 }
1281 
1282 static ssize_t recomp_algorithm_store(struct device *dev,
1283 				      struct device_attribute *attr,
1284 				      const char *buf,
1285 				      size_t len)
1286 {
1287 	struct zram *zram = dev_to_zram(dev);
1288 	int prio = ZRAM_SECONDARY_COMP;
1289 	char *args, *param, *val;
1290 	char *alg = NULL;
1291 	int ret;
1292 
1293 	args = skip_spaces(buf);
1294 	while (*args) {
1295 		args = next_arg(args, &param, &val);
1296 
1297 		if (!val || !*val)
1298 			return -EINVAL;
1299 
1300 		if (!strcmp(param, "algo")) {
1301 			alg = val;
1302 			continue;
1303 		}
1304 
1305 		if (!strcmp(param, "priority")) {
1306 			ret = kstrtoint(val, 10, &prio);
1307 			if (ret)
1308 				return ret;
1309 			continue;
1310 		}
1311 	}
1312 
1313 	if (!alg)
1314 		return -EINVAL;
1315 
1316 	if (prio < ZRAM_SECONDARY_COMP || prio >= ZRAM_MAX_COMPS)
1317 		return -EINVAL;
1318 
1319 	ret = __comp_algorithm_store(zram, prio, alg);
1320 	return ret ? ret : len;
1321 }
1322 #endif
1323 
1324 static ssize_t compact_store(struct device *dev,
1325 		struct device_attribute *attr, const char *buf, size_t len)
1326 {
1327 	struct zram *zram = dev_to_zram(dev);
1328 
1329 	down_read(&zram->init_lock);
1330 	if (!init_done(zram)) {
1331 		up_read(&zram->init_lock);
1332 		return -EINVAL;
1333 	}
1334 
1335 	zs_compact(zram->mem_pool);
1336 	up_read(&zram->init_lock);
1337 
1338 	return len;
1339 }
1340 
1341 static ssize_t io_stat_show(struct device *dev,
1342 		struct device_attribute *attr, char *buf)
1343 {
1344 	struct zram *zram = dev_to_zram(dev);
1345 	ssize_t ret;
1346 
1347 	down_read(&zram->init_lock);
1348 	ret = scnprintf(buf, PAGE_SIZE,
1349 			"%8llu %8llu 0 %8llu\n",
1350 			(u64)atomic64_read(&zram->stats.failed_reads),
1351 			(u64)atomic64_read(&zram->stats.failed_writes),
1352 			(u64)atomic64_read(&zram->stats.notify_free));
1353 	up_read(&zram->init_lock);
1354 
1355 	return ret;
1356 }
1357 
1358 static ssize_t mm_stat_show(struct device *dev,
1359 		struct device_attribute *attr, char *buf)
1360 {
1361 	struct zram *zram = dev_to_zram(dev);
1362 	struct zs_pool_stats pool_stats;
1363 	u64 orig_size, mem_used = 0;
1364 	long max_used;
1365 	ssize_t ret;
1366 
1367 	memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
1368 
1369 	down_read(&zram->init_lock);
1370 	if (init_done(zram)) {
1371 		mem_used = zs_get_total_pages(zram->mem_pool);
1372 		zs_pool_stats(zram->mem_pool, &pool_stats);
1373 	}
1374 
1375 	orig_size = atomic64_read(&zram->stats.pages_stored);
1376 	max_used = atomic_long_read(&zram->stats.max_used_pages);
1377 
1378 	ret = scnprintf(buf, PAGE_SIZE,
1379 			"%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu %8llu\n",
1380 			orig_size << PAGE_SHIFT,
1381 			(u64)atomic64_read(&zram->stats.compr_data_size),
1382 			mem_used << PAGE_SHIFT,
1383 			zram->limit_pages << PAGE_SHIFT,
1384 			max_used << PAGE_SHIFT,
1385 			(u64)atomic64_read(&zram->stats.same_pages),
1386 			atomic_long_read(&pool_stats.pages_compacted),
1387 			(u64)atomic64_read(&zram->stats.huge_pages),
1388 			(u64)atomic64_read(&zram->stats.huge_pages_since));
1389 	up_read(&zram->init_lock);
1390 
1391 	return ret;
1392 }
1393 
1394 #ifdef CONFIG_ZRAM_WRITEBACK
1395 #define FOUR_K(x) ((x) * (1 << (PAGE_SHIFT - 12)))
1396 static ssize_t bd_stat_show(struct device *dev,
1397 		struct device_attribute *attr, char *buf)
1398 {
1399 	struct zram *zram = dev_to_zram(dev);
1400 	ssize_t ret;
1401 
1402 	down_read(&zram->init_lock);
1403 	ret = scnprintf(buf, PAGE_SIZE,
1404 		"%8llu %8llu %8llu\n",
1405 			FOUR_K((u64)atomic64_read(&zram->stats.bd_count)),
1406 			FOUR_K((u64)atomic64_read(&zram->stats.bd_reads)),
1407 			FOUR_K((u64)atomic64_read(&zram->stats.bd_writes)));
1408 	up_read(&zram->init_lock);
1409 
1410 	return ret;
1411 }
1412 #endif
1413 
1414 static ssize_t debug_stat_show(struct device *dev,
1415 		struct device_attribute *attr, char *buf)
1416 {
1417 	int version = 1;
1418 	struct zram *zram = dev_to_zram(dev);
1419 	ssize_t ret;
1420 
1421 	down_read(&zram->init_lock);
1422 	ret = scnprintf(buf, PAGE_SIZE,
1423 			"version: %d\n%8llu %8llu\n",
1424 			version,
1425 			(u64)atomic64_read(&zram->stats.writestall),
1426 			(u64)atomic64_read(&zram->stats.miss_free));
1427 	up_read(&zram->init_lock);
1428 
1429 	return ret;
1430 }
1431 
1432 static DEVICE_ATTR_RO(io_stat);
1433 static DEVICE_ATTR_RO(mm_stat);
1434 #ifdef CONFIG_ZRAM_WRITEBACK
1435 static DEVICE_ATTR_RO(bd_stat);
1436 #endif
1437 static DEVICE_ATTR_RO(debug_stat);
1438 
1439 static void zram_meta_free(struct zram *zram, u64 disksize)
1440 {
1441 	size_t num_pages = disksize >> PAGE_SHIFT;
1442 	size_t index;
1443 
1444 	if (!zram->table)
1445 		return;
1446 
1447 	/* Free all pages that are still in this zram device */
1448 	for (index = 0; index < num_pages; index++)
1449 		zram_free_page(zram, index);
1450 
1451 	zs_destroy_pool(zram->mem_pool);
1452 	vfree(zram->table);
1453 	zram->table = NULL;
1454 }
1455 
1456 static bool zram_meta_alloc(struct zram *zram, u64 disksize)
1457 {
1458 	size_t num_pages, index;
1459 
1460 	num_pages = disksize >> PAGE_SHIFT;
1461 	zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table)));
1462 	if (!zram->table)
1463 		return false;
1464 
1465 	zram->mem_pool = zs_create_pool(zram->disk->disk_name);
1466 	if (!zram->mem_pool) {
1467 		vfree(zram->table);
1468 		zram->table = NULL;
1469 		return false;
1470 	}
1471 
1472 	if (!huge_class_size)
1473 		huge_class_size = zs_huge_class_size(zram->mem_pool);
1474 
1475 	for (index = 0; index < num_pages; index++)
1476 		spin_lock_init(&zram->table[index].lock);
1477 	return true;
1478 }
1479 
1480 /*
1481  * To protect concurrent access to the same index entry,
1482  * caller should hold this table index entry's bit_spinlock to
1483  * indicate this index entry is accessing.
1484  */
1485 static void zram_free_page(struct zram *zram, size_t index)
1486 {
1487 	unsigned long handle;
1488 
1489 #ifdef CONFIG_ZRAM_TRACK_ENTRY_ACTIME
1490 	zram->table[index].ac_time = 0;
1491 #endif
1492 
1493 	zram_clear_flag(zram, index, ZRAM_IDLE);
1494 	zram_clear_flag(zram, index, ZRAM_INCOMPRESSIBLE);
1495 	zram_clear_flag(zram, index, ZRAM_PP_SLOT);
1496 	zram_set_priority(zram, index, 0);
1497 
1498 	if (zram_test_flag(zram, index, ZRAM_HUGE)) {
1499 		zram_clear_flag(zram, index, ZRAM_HUGE);
1500 		atomic64_dec(&zram->stats.huge_pages);
1501 	}
1502 
1503 	if (zram_test_flag(zram, index, ZRAM_WB)) {
1504 		zram_clear_flag(zram, index, ZRAM_WB);
1505 		free_block_bdev(zram, zram_get_handle(zram, index));
1506 		goto out;
1507 	}
1508 
1509 	/*
1510 	 * No memory is allocated for same element filled pages.
1511 	 * Simply clear same page flag.
1512 	 */
1513 	if (zram_test_flag(zram, index, ZRAM_SAME)) {
1514 		zram_clear_flag(zram, index, ZRAM_SAME);
1515 		atomic64_dec(&zram->stats.same_pages);
1516 		goto out;
1517 	}
1518 
1519 	handle = zram_get_handle(zram, index);
1520 	if (!handle)
1521 		return;
1522 
1523 	zs_free(zram->mem_pool, handle);
1524 
1525 	atomic64_sub(zram_get_obj_size(zram, index),
1526 		     &zram->stats.compr_data_size);
1527 out:
1528 	atomic64_dec(&zram->stats.pages_stored);
1529 	zram_set_handle(zram, index, 0);
1530 	zram_set_obj_size(zram, index, 0);
1531 }
1532 
1533 static int read_same_filled_page(struct zram *zram, struct page *page,
1534 				 u32 index)
1535 {
1536 	void *mem;
1537 
1538 	mem = kmap_local_page(page);
1539 	zram_fill_page(mem, PAGE_SIZE, zram_get_handle(zram, index));
1540 	kunmap_local(mem);
1541 	return 0;
1542 }
1543 
1544 static int read_incompressible_page(struct zram *zram, struct page *page,
1545 				    u32 index)
1546 {
1547 	unsigned long handle;
1548 	void *src, *dst;
1549 
1550 	handle = zram_get_handle(zram, index);
1551 	src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO);
1552 	dst = kmap_local_page(page);
1553 	copy_page(dst, src);
1554 	kunmap_local(dst);
1555 	zs_unmap_object(zram->mem_pool, handle);
1556 
1557 	return 0;
1558 }
1559 
1560 static int read_compressed_page(struct zram *zram, struct page *page, u32 index)
1561 {
1562 	struct zcomp_strm *zstrm;
1563 	unsigned long handle;
1564 	unsigned int size;
1565 	void *src, *dst;
1566 	int ret, prio;
1567 
1568 	handle = zram_get_handle(zram, index);
1569 	size = zram_get_obj_size(zram, index);
1570 	prio = zram_get_priority(zram, index);
1571 
1572 	zstrm = zcomp_stream_get(zram->comps[prio]);
1573 	src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO);
1574 	dst = kmap_local_page(page);
1575 	ret = zcomp_decompress(zram->comps[prio], zstrm, src, size, dst);
1576 	kunmap_local(dst);
1577 	zs_unmap_object(zram->mem_pool, handle);
1578 	zcomp_stream_put(zram->comps[prio]);
1579 
1580 	return ret;
1581 }
1582 
1583 /*
1584  * Reads (decompresses if needed) a page from zspool (zsmalloc).
1585  * Corresponding ZRAM slot should be locked.
1586  */
1587 static int zram_read_from_zspool(struct zram *zram, struct page *page,
1588 				 u32 index)
1589 {
1590 	if (zram_test_flag(zram, index, ZRAM_SAME) ||
1591 	    !zram_get_handle(zram, index))
1592 		return read_same_filled_page(zram, page, index);
1593 
1594 	if (!zram_test_flag(zram, index, ZRAM_HUGE))
1595 		return read_compressed_page(zram, page, index);
1596 	else
1597 		return read_incompressible_page(zram, page, index);
1598 }
1599 
1600 static int zram_read_page(struct zram *zram, struct page *page, u32 index,
1601 			  struct bio *parent)
1602 {
1603 	int ret;
1604 
1605 	zram_slot_lock(zram, index);
1606 	if (!zram_test_flag(zram, index, ZRAM_WB)) {
1607 		/* Slot should be locked through out the function call */
1608 		ret = zram_read_from_zspool(zram, page, index);
1609 		zram_slot_unlock(zram, index);
1610 	} else {
1611 		/*
1612 		 * The slot should be unlocked before reading from the backing
1613 		 * device.
1614 		 */
1615 		zram_slot_unlock(zram, index);
1616 
1617 		ret = read_from_bdev(zram, page, zram_get_handle(zram, index),
1618 				     parent);
1619 	}
1620 
1621 	/* Should NEVER happen. Return bio error if it does. */
1622 	if (WARN_ON(ret < 0))
1623 		pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
1624 
1625 	return ret;
1626 }
1627 
1628 /*
1629  * Use a temporary buffer to decompress the page, as the decompressor
1630  * always expects a full page for the output.
1631  */
1632 static int zram_bvec_read_partial(struct zram *zram, struct bio_vec *bvec,
1633 				  u32 index, int offset)
1634 {
1635 	struct page *page = alloc_page(GFP_NOIO);
1636 	int ret;
1637 
1638 	if (!page)
1639 		return -ENOMEM;
1640 	ret = zram_read_page(zram, page, index, NULL);
1641 	if (likely(!ret))
1642 		memcpy_to_bvec(bvec, page_address(page) + offset);
1643 	__free_page(page);
1644 	return ret;
1645 }
1646 
1647 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
1648 			  u32 index, int offset, struct bio *bio)
1649 {
1650 	if (is_partial_io(bvec))
1651 		return zram_bvec_read_partial(zram, bvec, index, offset);
1652 	return zram_read_page(zram, bvec->bv_page, index, bio);
1653 }
1654 
1655 static int write_same_filled_page(struct zram *zram, unsigned long fill,
1656 				  u32 index)
1657 {
1658 	zram_slot_lock(zram, index);
1659 	zram_set_flag(zram, index, ZRAM_SAME);
1660 	zram_set_handle(zram, index, fill);
1661 	zram_slot_unlock(zram, index);
1662 
1663 	atomic64_inc(&zram->stats.same_pages);
1664 	atomic64_inc(&zram->stats.pages_stored);
1665 
1666 	return 0;
1667 }
1668 
1669 static int write_incompressible_page(struct zram *zram, struct page *page,
1670 				     u32 index)
1671 {
1672 	unsigned long handle;
1673 	void *src, *dst;
1674 
1675 	/*
1676 	 * This function is called from preemptible context so we don't need
1677 	 * to do optimistic and fallback to pessimistic handle allocation,
1678 	 * like we do for compressible pages.
1679 	 */
1680 	handle = zs_malloc(zram->mem_pool, PAGE_SIZE,
1681 			   GFP_NOIO | __GFP_HIGHMEM | __GFP_MOVABLE);
1682 	if (IS_ERR_VALUE(handle))
1683 		return PTR_ERR((void *)handle);
1684 
1685 	if (!zram_can_store_page(zram)) {
1686 		zs_free(zram->mem_pool, handle);
1687 		return -ENOMEM;
1688 	}
1689 
1690 	dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO);
1691 	src = kmap_local_page(page);
1692 	memcpy(dst, src, PAGE_SIZE);
1693 	kunmap_local(src);
1694 	zs_unmap_object(zram->mem_pool, handle);
1695 
1696 	zram_slot_lock(zram, index);
1697 	zram_set_flag(zram, index, ZRAM_HUGE);
1698 	zram_set_handle(zram, index, handle);
1699 	zram_set_obj_size(zram, index, PAGE_SIZE);
1700 	zram_slot_unlock(zram, index);
1701 
1702 	atomic64_add(PAGE_SIZE, &zram->stats.compr_data_size);
1703 	atomic64_inc(&zram->stats.huge_pages);
1704 	atomic64_inc(&zram->stats.huge_pages_since);
1705 	atomic64_inc(&zram->stats.pages_stored);
1706 
1707 	return 0;
1708 }
1709 
1710 static int zram_write_page(struct zram *zram, struct page *page, u32 index)
1711 {
1712 	int ret = 0;
1713 	unsigned long handle = -ENOMEM;
1714 	unsigned int comp_len = 0;
1715 	void *dst, *mem;
1716 	struct zcomp_strm *zstrm;
1717 	unsigned long element = 0;
1718 	bool same_filled;
1719 
1720 	/* First, free memory allocated to this slot (if any) */
1721 	zram_slot_lock(zram, index);
1722 	zram_free_page(zram, index);
1723 	zram_slot_unlock(zram, index);
1724 
1725 	mem = kmap_local_page(page);
1726 	same_filled = page_same_filled(mem, &element);
1727 	kunmap_local(mem);
1728 	if (same_filled)
1729 		return write_same_filled_page(zram, element, index);
1730 
1731 compress_again:
1732 	zstrm = zcomp_stream_get(zram->comps[ZRAM_PRIMARY_COMP]);
1733 	mem = kmap_local_page(page);
1734 	ret = zcomp_compress(zram->comps[ZRAM_PRIMARY_COMP], zstrm,
1735 			     mem, &comp_len);
1736 	kunmap_local(mem);
1737 
1738 	if (unlikely(ret)) {
1739 		zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]);
1740 		pr_err("Compression failed! err=%d\n", ret);
1741 		zs_free(zram->mem_pool, handle);
1742 		return ret;
1743 	}
1744 
1745 	if (comp_len >= huge_class_size) {
1746 		zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]);
1747 		return write_incompressible_page(zram, page, index);
1748 	}
1749 
1750 	/*
1751 	 * handle allocation has 2 paths:
1752 	 * a) fast path is executed with preemption disabled (for
1753 	 *  per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
1754 	 *  since we can't sleep;
1755 	 * b) slow path enables preemption and attempts to allocate
1756 	 *  the page with __GFP_DIRECT_RECLAIM bit set. we have to
1757 	 *  put per-cpu compression stream and, thus, to re-do
1758 	 *  the compression once handle is allocated.
1759 	 *
1760 	 * if we have a 'non-null' handle here then we are coming
1761 	 * from the slow path and handle has already been allocated.
1762 	 */
1763 	if (IS_ERR_VALUE(handle))
1764 		handle = zs_malloc(zram->mem_pool, comp_len,
1765 				   __GFP_KSWAPD_RECLAIM |
1766 				   __GFP_NOWARN |
1767 				   __GFP_HIGHMEM |
1768 				   __GFP_MOVABLE);
1769 	if (IS_ERR_VALUE(handle)) {
1770 		zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]);
1771 		atomic64_inc(&zram->stats.writestall);
1772 		handle = zs_malloc(zram->mem_pool, comp_len,
1773 				   GFP_NOIO | __GFP_HIGHMEM |
1774 				   __GFP_MOVABLE);
1775 		if (IS_ERR_VALUE(handle))
1776 			return PTR_ERR((void *)handle);
1777 
1778 		goto compress_again;
1779 	}
1780 
1781 	if (!zram_can_store_page(zram)) {
1782 		zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]);
1783 		zs_free(zram->mem_pool, handle);
1784 		return -ENOMEM;
1785 	}
1786 
1787 	dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO);
1788 
1789 	memcpy(dst, zstrm->buffer, comp_len);
1790 	zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]);
1791 	zs_unmap_object(zram->mem_pool, handle);
1792 
1793 	zram_slot_lock(zram, index);
1794 	zram_set_handle(zram, index, handle);
1795 	zram_set_obj_size(zram, index, comp_len);
1796 	zram_slot_unlock(zram, index);
1797 
1798 	/* Update stats */
1799 	atomic64_inc(&zram->stats.pages_stored);
1800 	atomic64_add(comp_len, &zram->stats.compr_data_size);
1801 
1802 	return ret;
1803 }
1804 
1805 /*
1806  * This is a partial IO. Read the full page before writing the changes.
1807  */
1808 static int zram_bvec_write_partial(struct zram *zram, struct bio_vec *bvec,
1809 				   u32 index, int offset, struct bio *bio)
1810 {
1811 	struct page *page = alloc_page(GFP_NOIO);
1812 	int ret;
1813 
1814 	if (!page)
1815 		return -ENOMEM;
1816 
1817 	ret = zram_read_page(zram, page, index, bio);
1818 	if (!ret) {
1819 		memcpy_from_bvec(page_address(page) + offset, bvec);
1820 		ret = zram_write_page(zram, page, index);
1821 	}
1822 	__free_page(page);
1823 	return ret;
1824 }
1825 
1826 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1827 			   u32 index, int offset, struct bio *bio)
1828 {
1829 	if (is_partial_io(bvec))
1830 		return zram_bvec_write_partial(zram, bvec, index, offset, bio);
1831 	return zram_write_page(zram, bvec->bv_page, index);
1832 }
1833 
1834 #ifdef CONFIG_ZRAM_MULTI_COMP
1835 #define RECOMPRESS_IDLE		(1 << 0)
1836 #define RECOMPRESS_HUGE		(1 << 1)
1837 
1838 static int scan_slots_for_recompress(struct zram *zram, u32 mode,
1839 				     struct zram_pp_ctl *ctl)
1840 {
1841 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
1842 	struct zram_pp_slot *pps = NULL;
1843 	unsigned long index;
1844 
1845 	for (index = 0; index < nr_pages; index++) {
1846 		if (!pps)
1847 			pps = kmalloc(sizeof(*pps), GFP_KERNEL);
1848 		if (!pps)
1849 			return -ENOMEM;
1850 
1851 		INIT_LIST_HEAD(&pps->entry);
1852 
1853 		zram_slot_lock(zram, index);
1854 		if (!zram_allocated(zram, index))
1855 			goto next;
1856 
1857 		if (mode & RECOMPRESS_IDLE &&
1858 		    !zram_test_flag(zram, index, ZRAM_IDLE))
1859 			goto next;
1860 
1861 		if (mode & RECOMPRESS_HUGE &&
1862 		    !zram_test_flag(zram, index, ZRAM_HUGE))
1863 			goto next;
1864 
1865 		if (zram_test_flag(zram, index, ZRAM_WB) ||
1866 		    zram_test_flag(zram, index, ZRAM_SAME) ||
1867 		    zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE))
1868 			goto next;
1869 
1870 		pps->index = index;
1871 		place_pp_slot(zram, ctl, pps);
1872 		pps = NULL;
1873 next:
1874 		zram_slot_unlock(zram, index);
1875 	}
1876 
1877 	kfree(pps);
1878 	return 0;
1879 }
1880 
1881 /*
1882  * This function will decompress (unless it's ZRAM_HUGE) the page and then
1883  * attempt to compress it using provided compression algorithm priority
1884  * (which is potentially more effective).
1885  *
1886  * Corresponding ZRAM slot should be locked.
1887  */
1888 static int recompress_slot(struct zram *zram, u32 index, struct page *page,
1889 			   u64 *num_recomp_pages, u32 threshold, u32 prio,
1890 			   u32 prio_max)
1891 {
1892 	struct zcomp_strm *zstrm = NULL;
1893 	unsigned long handle_old;
1894 	unsigned long handle_new;
1895 	unsigned int comp_len_old;
1896 	unsigned int comp_len_new;
1897 	unsigned int class_index_old;
1898 	unsigned int class_index_new;
1899 	u32 num_recomps = 0;
1900 	void *src, *dst;
1901 	int ret;
1902 
1903 	handle_old = zram_get_handle(zram, index);
1904 	if (!handle_old)
1905 		return -EINVAL;
1906 
1907 	comp_len_old = zram_get_obj_size(zram, index);
1908 	/*
1909 	 * Do not recompress objects that are already "small enough".
1910 	 */
1911 	if (comp_len_old < threshold)
1912 		return 0;
1913 
1914 	ret = zram_read_from_zspool(zram, page, index);
1915 	if (ret)
1916 		return ret;
1917 
1918 	/*
1919 	 * We touched this entry so mark it as non-IDLE. This makes sure that
1920 	 * we don't preserve IDLE flag and don't incorrectly pick this entry
1921 	 * for different post-processing type (e.g. writeback).
1922 	 */
1923 	zram_clear_flag(zram, index, ZRAM_IDLE);
1924 
1925 	class_index_old = zs_lookup_class_index(zram->mem_pool, comp_len_old);
1926 	/*
1927 	 * Iterate the secondary comp algorithms list (in order of priority)
1928 	 * and try to recompress the page.
1929 	 */
1930 	for (; prio < prio_max; prio++) {
1931 		if (!zram->comps[prio])
1932 			continue;
1933 
1934 		/*
1935 		 * Skip if the object is already re-compressed with a higher
1936 		 * priority algorithm (or same algorithm).
1937 		 */
1938 		if (prio <= zram_get_priority(zram, index))
1939 			continue;
1940 
1941 		num_recomps++;
1942 		zstrm = zcomp_stream_get(zram->comps[prio]);
1943 		src = kmap_local_page(page);
1944 		ret = zcomp_compress(zram->comps[prio], zstrm,
1945 				     src, &comp_len_new);
1946 		kunmap_local(src);
1947 
1948 		if (ret) {
1949 			zcomp_stream_put(zram->comps[prio]);
1950 			return ret;
1951 		}
1952 
1953 		class_index_new = zs_lookup_class_index(zram->mem_pool,
1954 							comp_len_new);
1955 
1956 		/* Continue until we make progress */
1957 		if (class_index_new >= class_index_old ||
1958 		    (threshold && comp_len_new >= threshold)) {
1959 			zcomp_stream_put(zram->comps[prio]);
1960 			continue;
1961 		}
1962 
1963 		/* Recompression was successful so break out */
1964 		break;
1965 	}
1966 
1967 	/*
1968 	 * We did not try to recompress, e.g. when we have only one
1969 	 * secondary algorithm and the page is already recompressed
1970 	 * using that algorithm
1971 	 */
1972 	if (!zstrm)
1973 		return 0;
1974 
1975 	/*
1976 	 * Decrement the limit (if set) on pages we can recompress, even
1977 	 * when current recompression was unsuccessful or did not compress
1978 	 * the page below the threshold, because we still spent resources
1979 	 * on it.
1980 	 */
1981 	if (*num_recomp_pages)
1982 		*num_recomp_pages -= 1;
1983 
1984 	if (class_index_new >= class_index_old) {
1985 		/*
1986 		 * Secondary algorithms failed to re-compress the page
1987 		 * in a way that would save memory, mark the object as
1988 		 * incompressible so that we will not try to compress
1989 		 * it again.
1990 		 *
1991 		 * We need to make sure that all secondary algorithms have
1992 		 * failed, so we test if the number of recompressions matches
1993 		 * the number of active secondary algorithms.
1994 		 */
1995 		if (num_recomps == zram->num_active_comps - 1)
1996 			zram_set_flag(zram, index, ZRAM_INCOMPRESSIBLE);
1997 		return 0;
1998 	}
1999 
2000 	/* Successful recompression but above threshold */
2001 	if (threshold && comp_len_new >= threshold)
2002 		return 0;
2003 
2004 	/*
2005 	 * No direct reclaim (slow path) for handle allocation and no
2006 	 * re-compression attempt (unlike in zram_write_bvec()) since
2007 	 * we already have stored that object in zsmalloc. If we cannot
2008 	 * alloc memory for recompressed object then we bail out and
2009 	 * simply keep the old (existing) object in zsmalloc.
2010 	 */
2011 	handle_new = zs_malloc(zram->mem_pool, comp_len_new,
2012 			       __GFP_KSWAPD_RECLAIM |
2013 			       __GFP_NOWARN |
2014 			       __GFP_HIGHMEM |
2015 			       __GFP_MOVABLE);
2016 	if (IS_ERR_VALUE(handle_new)) {
2017 		zcomp_stream_put(zram->comps[prio]);
2018 		return PTR_ERR((void *)handle_new);
2019 	}
2020 
2021 	dst = zs_map_object(zram->mem_pool, handle_new, ZS_MM_WO);
2022 	memcpy(dst, zstrm->buffer, comp_len_new);
2023 	zcomp_stream_put(zram->comps[prio]);
2024 
2025 	zs_unmap_object(zram->mem_pool, handle_new);
2026 
2027 	zram_free_page(zram, index);
2028 	zram_set_handle(zram, index, handle_new);
2029 	zram_set_obj_size(zram, index, comp_len_new);
2030 	zram_set_priority(zram, index, prio);
2031 
2032 	atomic64_add(comp_len_new, &zram->stats.compr_data_size);
2033 	atomic64_inc(&zram->stats.pages_stored);
2034 
2035 	return 0;
2036 }
2037 
2038 static ssize_t recompress_store(struct device *dev,
2039 				struct device_attribute *attr,
2040 				const char *buf, size_t len)
2041 {
2042 	u32 prio = ZRAM_SECONDARY_COMP, prio_max = ZRAM_MAX_COMPS;
2043 	struct zram *zram = dev_to_zram(dev);
2044 	char *args, *param, *val, *algo = NULL;
2045 	u64 num_recomp_pages = ULLONG_MAX;
2046 	struct zram_pp_ctl *ctl = NULL;
2047 	struct zram_pp_slot *pps;
2048 	u32 mode = 0, threshold = 0;
2049 	struct page *page;
2050 	ssize_t ret;
2051 
2052 	args = skip_spaces(buf);
2053 	while (*args) {
2054 		args = next_arg(args, &param, &val);
2055 
2056 		if (!val || !*val)
2057 			return -EINVAL;
2058 
2059 		if (!strcmp(param, "type")) {
2060 			if (!strcmp(val, "idle"))
2061 				mode = RECOMPRESS_IDLE;
2062 			if (!strcmp(val, "huge"))
2063 				mode = RECOMPRESS_HUGE;
2064 			if (!strcmp(val, "huge_idle"))
2065 				mode = RECOMPRESS_IDLE | RECOMPRESS_HUGE;
2066 			continue;
2067 		}
2068 
2069 		if (!strcmp(param, "max_pages")) {
2070 			/*
2071 			 * Limit the number of entries (pages) we attempt to
2072 			 * recompress.
2073 			 */
2074 			ret = kstrtoull(val, 10, &num_recomp_pages);
2075 			if (ret)
2076 				return ret;
2077 			continue;
2078 		}
2079 
2080 		if (!strcmp(param, "threshold")) {
2081 			/*
2082 			 * We will re-compress only idle objects equal or
2083 			 * greater in size than watermark.
2084 			 */
2085 			ret = kstrtouint(val, 10, &threshold);
2086 			if (ret)
2087 				return ret;
2088 			continue;
2089 		}
2090 
2091 		if (!strcmp(param, "algo")) {
2092 			algo = val;
2093 			continue;
2094 		}
2095 
2096 		if (!strcmp(param, "priority")) {
2097 			ret = kstrtouint(val, 10, &prio);
2098 			if (ret)
2099 				return ret;
2100 
2101 			if (prio == ZRAM_PRIMARY_COMP)
2102 				prio = ZRAM_SECONDARY_COMP;
2103 
2104 			prio_max = min(prio + 1, ZRAM_MAX_COMPS);
2105 			continue;
2106 		}
2107 	}
2108 
2109 	if (threshold >= huge_class_size)
2110 		return -EINVAL;
2111 
2112 	down_read(&zram->init_lock);
2113 	if (!init_done(zram)) {
2114 		ret = -EINVAL;
2115 		goto release_init_lock;
2116 	}
2117 
2118 	/* Do not permit concurrent post-processing actions. */
2119 	if (atomic_xchg(&zram->pp_in_progress, 1)) {
2120 		up_read(&zram->init_lock);
2121 		return -EAGAIN;
2122 	}
2123 
2124 	if (algo) {
2125 		bool found = false;
2126 
2127 		for (; prio < ZRAM_MAX_COMPS; prio++) {
2128 			if (!zram->comp_algs[prio])
2129 				continue;
2130 
2131 			if (!strcmp(zram->comp_algs[prio], algo)) {
2132 				prio_max = min(prio + 1, ZRAM_MAX_COMPS);
2133 				found = true;
2134 				break;
2135 			}
2136 		}
2137 
2138 		if (!found) {
2139 			ret = -EINVAL;
2140 			goto release_init_lock;
2141 		}
2142 	}
2143 
2144 	page = alloc_page(GFP_KERNEL);
2145 	if (!page) {
2146 		ret = -ENOMEM;
2147 		goto release_init_lock;
2148 	}
2149 
2150 	ctl = init_pp_ctl();
2151 	if (!ctl) {
2152 		ret = -ENOMEM;
2153 		goto release_init_lock;
2154 	}
2155 
2156 	scan_slots_for_recompress(zram, mode, ctl);
2157 
2158 	ret = len;
2159 	while ((pps = select_pp_slot(ctl))) {
2160 		int err = 0;
2161 
2162 		if (!num_recomp_pages)
2163 			break;
2164 
2165 		zram_slot_lock(zram, pps->index);
2166 		if (!zram_test_flag(zram, pps->index, ZRAM_PP_SLOT))
2167 			goto next;
2168 
2169 		err = recompress_slot(zram, pps->index, page,
2170 				      &num_recomp_pages, threshold,
2171 				      prio, prio_max);
2172 next:
2173 		zram_slot_unlock(zram, pps->index);
2174 		release_pp_slot(zram, pps);
2175 
2176 		if (err) {
2177 			ret = err;
2178 			break;
2179 		}
2180 
2181 		cond_resched();
2182 	}
2183 
2184 	__free_page(page);
2185 
2186 release_init_lock:
2187 	release_pp_ctl(zram, ctl);
2188 	atomic_set(&zram->pp_in_progress, 0);
2189 	up_read(&zram->init_lock);
2190 	return ret;
2191 }
2192 #endif
2193 
2194 static void zram_bio_discard(struct zram *zram, struct bio *bio)
2195 {
2196 	size_t n = bio->bi_iter.bi_size;
2197 	u32 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
2198 	u32 offset = (bio->bi_iter.bi_sector & (SECTORS_PER_PAGE - 1)) <<
2199 			SECTOR_SHIFT;
2200 
2201 	/*
2202 	 * zram manages data in physical block size units. Because logical block
2203 	 * size isn't identical with physical block size on some arch, we
2204 	 * could get a discard request pointing to a specific offset within a
2205 	 * certain physical block.  Although we can handle this request by
2206 	 * reading that physiclal block and decompressing and partially zeroing
2207 	 * and re-compressing and then re-storing it, this isn't reasonable
2208 	 * because our intent with a discard request is to save memory.  So
2209 	 * skipping this logical block is appropriate here.
2210 	 */
2211 	if (offset) {
2212 		if (n <= (PAGE_SIZE - offset))
2213 			return;
2214 
2215 		n -= (PAGE_SIZE - offset);
2216 		index++;
2217 	}
2218 
2219 	while (n >= PAGE_SIZE) {
2220 		zram_slot_lock(zram, index);
2221 		zram_free_page(zram, index);
2222 		zram_slot_unlock(zram, index);
2223 		atomic64_inc(&zram->stats.notify_free);
2224 		index++;
2225 		n -= PAGE_SIZE;
2226 	}
2227 
2228 	bio_endio(bio);
2229 }
2230 
2231 static void zram_bio_read(struct zram *zram, struct bio *bio)
2232 {
2233 	unsigned long start_time = bio_start_io_acct(bio);
2234 	struct bvec_iter iter = bio->bi_iter;
2235 
2236 	do {
2237 		u32 index = iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
2238 		u32 offset = (iter.bi_sector & (SECTORS_PER_PAGE - 1)) <<
2239 				SECTOR_SHIFT;
2240 		struct bio_vec bv = bio_iter_iovec(bio, iter);
2241 
2242 		bv.bv_len = min_t(u32, bv.bv_len, PAGE_SIZE - offset);
2243 
2244 		if (zram_bvec_read(zram, &bv, index, offset, bio) < 0) {
2245 			atomic64_inc(&zram->stats.failed_reads);
2246 			bio->bi_status = BLK_STS_IOERR;
2247 			break;
2248 		}
2249 		flush_dcache_page(bv.bv_page);
2250 
2251 		zram_slot_lock(zram, index);
2252 		zram_accessed(zram, index);
2253 		zram_slot_unlock(zram, index);
2254 
2255 		bio_advance_iter_single(bio, &iter, bv.bv_len);
2256 	} while (iter.bi_size);
2257 
2258 	bio_end_io_acct(bio, start_time);
2259 	bio_endio(bio);
2260 }
2261 
2262 static void zram_bio_write(struct zram *zram, struct bio *bio)
2263 {
2264 	unsigned long start_time = bio_start_io_acct(bio);
2265 	struct bvec_iter iter = bio->bi_iter;
2266 
2267 	do {
2268 		u32 index = iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
2269 		u32 offset = (iter.bi_sector & (SECTORS_PER_PAGE - 1)) <<
2270 				SECTOR_SHIFT;
2271 		struct bio_vec bv = bio_iter_iovec(bio, iter);
2272 
2273 		bv.bv_len = min_t(u32, bv.bv_len, PAGE_SIZE - offset);
2274 
2275 		if (zram_bvec_write(zram, &bv, index, offset, bio) < 0) {
2276 			atomic64_inc(&zram->stats.failed_writes);
2277 			bio->bi_status = BLK_STS_IOERR;
2278 			break;
2279 		}
2280 
2281 		zram_slot_lock(zram, index);
2282 		zram_accessed(zram, index);
2283 		zram_slot_unlock(zram, index);
2284 
2285 		bio_advance_iter_single(bio, &iter, bv.bv_len);
2286 	} while (iter.bi_size);
2287 
2288 	bio_end_io_acct(bio, start_time);
2289 	bio_endio(bio);
2290 }
2291 
2292 /*
2293  * Handler function for all zram I/O requests.
2294  */
2295 static void zram_submit_bio(struct bio *bio)
2296 {
2297 	struct zram *zram = bio->bi_bdev->bd_disk->private_data;
2298 
2299 	switch (bio_op(bio)) {
2300 	case REQ_OP_READ:
2301 		zram_bio_read(zram, bio);
2302 		break;
2303 	case REQ_OP_WRITE:
2304 		zram_bio_write(zram, bio);
2305 		break;
2306 	case REQ_OP_DISCARD:
2307 	case REQ_OP_WRITE_ZEROES:
2308 		zram_bio_discard(zram, bio);
2309 		break;
2310 	default:
2311 		WARN_ON_ONCE(1);
2312 		bio_endio(bio);
2313 	}
2314 }
2315 
2316 static void zram_slot_free_notify(struct block_device *bdev,
2317 				unsigned long index)
2318 {
2319 	struct zram *zram;
2320 
2321 	zram = bdev->bd_disk->private_data;
2322 
2323 	atomic64_inc(&zram->stats.notify_free);
2324 	if (!zram_slot_trylock(zram, index)) {
2325 		atomic64_inc(&zram->stats.miss_free);
2326 		return;
2327 	}
2328 
2329 	zram_free_page(zram, index);
2330 	zram_slot_unlock(zram, index);
2331 }
2332 
2333 static void zram_comp_params_reset(struct zram *zram)
2334 {
2335 	u32 prio;
2336 
2337 	for (prio = ZRAM_PRIMARY_COMP; prio < ZRAM_MAX_COMPS; prio++) {
2338 		comp_params_reset(zram, prio);
2339 	}
2340 }
2341 
2342 static void zram_destroy_comps(struct zram *zram)
2343 {
2344 	u32 prio;
2345 
2346 	for (prio = ZRAM_PRIMARY_COMP; prio < ZRAM_MAX_COMPS; prio++) {
2347 		struct zcomp *comp = zram->comps[prio];
2348 
2349 		zram->comps[prio] = NULL;
2350 		if (!comp)
2351 			continue;
2352 		zcomp_destroy(comp);
2353 		zram->num_active_comps--;
2354 	}
2355 
2356 	for (prio = ZRAM_PRIMARY_COMP; prio < ZRAM_MAX_COMPS; prio++) {
2357 		/* Do not free statically defined compression algorithms */
2358 		if (zram->comp_algs[prio] != default_compressor)
2359 			kfree(zram->comp_algs[prio]);
2360 		zram->comp_algs[prio] = NULL;
2361 	}
2362 
2363 	zram_comp_params_reset(zram);
2364 }
2365 
2366 static void zram_reset_device(struct zram *zram)
2367 {
2368 	down_write(&zram->init_lock);
2369 
2370 	zram->limit_pages = 0;
2371 
2372 	set_capacity_and_notify(zram->disk, 0);
2373 	part_stat_set_all(zram->disk->part0, 0);
2374 
2375 	/* I/O operation under all of CPU are done so let's free */
2376 	zram_meta_free(zram, zram->disksize);
2377 	zram->disksize = 0;
2378 	zram_destroy_comps(zram);
2379 	memset(&zram->stats, 0, sizeof(zram->stats));
2380 	atomic_set(&zram->pp_in_progress, 0);
2381 	reset_bdev(zram);
2382 
2383 	comp_algorithm_set(zram, ZRAM_PRIMARY_COMP, default_compressor);
2384 	up_write(&zram->init_lock);
2385 }
2386 
2387 static ssize_t disksize_store(struct device *dev,
2388 		struct device_attribute *attr, const char *buf, size_t len)
2389 {
2390 	u64 disksize;
2391 	struct zcomp *comp;
2392 	struct zram *zram = dev_to_zram(dev);
2393 	int err;
2394 	u32 prio;
2395 
2396 	disksize = memparse(buf, NULL);
2397 	if (!disksize)
2398 		return -EINVAL;
2399 
2400 	down_write(&zram->init_lock);
2401 	if (init_done(zram)) {
2402 		pr_info("Cannot change disksize for initialized device\n");
2403 		err = -EBUSY;
2404 		goto out_unlock;
2405 	}
2406 
2407 	disksize = PAGE_ALIGN(disksize);
2408 	if (!zram_meta_alloc(zram, disksize)) {
2409 		err = -ENOMEM;
2410 		goto out_unlock;
2411 	}
2412 
2413 	for (prio = ZRAM_PRIMARY_COMP; prio < ZRAM_MAX_COMPS; prio++) {
2414 		if (!zram->comp_algs[prio])
2415 			continue;
2416 
2417 		comp = zcomp_create(zram->comp_algs[prio],
2418 				    &zram->params[prio]);
2419 		if (IS_ERR(comp)) {
2420 			pr_err("Cannot initialise %s compressing backend\n",
2421 			       zram->comp_algs[prio]);
2422 			err = PTR_ERR(comp);
2423 			goto out_free_comps;
2424 		}
2425 
2426 		zram->comps[prio] = comp;
2427 		zram->num_active_comps++;
2428 	}
2429 	zram->disksize = disksize;
2430 	set_capacity_and_notify(zram->disk, zram->disksize >> SECTOR_SHIFT);
2431 	up_write(&zram->init_lock);
2432 
2433 	return len;
2434 
2435 out_free_comps:
2436 	zram_destroy_comps(zram);
2437 	zram_meta_free(zram, disksize);
2438 out_unlock:
2439 	up_write(&zram->init_lock);
2440 	return err;
2441 }
2442 
2443 static ssize_t reset_store(struct device *dev,
2444 		struct device_attribute *attr, const char *buf, size_t len)
2445 {
2446 	int ret;
2447 	unsigned short do_reset;
2448 	struct zram *zram;
2449 	struct gendisk *disk;
2450 
2451 	ret = kstrtou16(buf, 10, &do_reset);
2452 	if (ret)
2453 		return ret;
2454 
2455 	if (!do_reset)
2456 		return -EINVAL;
2457 
2458 	zram = dev_to_zram(dev);
2459 	disk = zram->disk;
2460 
2461 	mutex_lock(&disk->open_mutex);
2462 	/* Do not reset an active device or claimed device */
2463 	if (disk_openers(disk) || zram->claim) {
2464 		mutex_unlock(&disk->open_mutex);
2465 		return -EBUSY;
2466 	}
2467 
2468 	/* From now on, anyone can't open /dev/zram[0-9] */
2469 	zram->claim = true;
2470 	mutex_unlock(&disk->open_mutex);
2471 
2472 	/* Make sure all the pending I/O are finished */
2473 	sync_blockdev(disk->part0);
2474 	zram_reset_device(zram);
2475 
2476 	mutex_lock(&disk->open_mutex);
2477 	zram->claim = false;
2478 	mutex_unlock(&disk->open_mutex);
2479 
2480 	return len;
2481 }
2482 
2483 static int zram_open(struct gendisk *disk, blk_mode_t mode)
2484 {
2485 	struct zram *zram = disk->private_data;
2486 
2487 	WARN_ON(!mutex_is_locked(&disk->open_mutex));
2488 
2489 	/* zram was claimed to reset so open request fails */
2490 	if (zram->claim)
2491 		return -EBUSY;
2492 	return 0;
2493 }
2494 
2495 static const struct block_device_operations zram_devops = {
2496 	.open = zram_open,
2497 	.submit_bio = zram_submit_bio,
2498 	.swap_slot_free_notify = zram_slot_free_notify,
2499 	.owner = THIS_MODULE
2500 };
2501 
2502 static DEVICE_ATTR_WO(compact);
2503 static DEVICE_ATTR_RW(disksize);
2504 static DEVICE_ATTR_RO(initstate);
2505 static DEVICE_ATTR_WO(reset);
2506 static DEVICE_ATTR_WO(mem_limit);
2507 static DEVICE_ATTR_WO(mem_used_max);
2508 static DEVICE_ATTR_WO(idle);
2509 static DEVICE_ATTR_RW(max_comp_streams);
2510 static DEVICE_ATTR_RW(comp_algorithm);
2511 #ifdef CONFIG_ZRAM_WRITEBACK
2512 static DEVICE_ATTR_RW(backing_dev);
2513 static DEVICE_ATTR_WO(writeback);
2514 static DEVICE_ATTR_RW(writeback_limit);
2515 static DEVICE_ATTR_RW(writeback_limit_enable);
2516 #endif
2517 #ifdef CONFIG_ZRAM_MULTI_COMP
2518 static DEVICE_ATTR_RW(recomp_algorithm);
2519 static DEVICE_ATTR_WO(recompress);
2520 #endif
2521 static DEVICE_ATTR_WO(algorithm_params);
2522 
2523 static struct attribute *zram_disk_attrs[] = {
2524 	&dev_attr_disksize.attr,
2525 	&dev_attr_initstate.attr,
2526 	&dev_attr_reset.attr,
2527 	&dev_attr_compact.attr,
2528 	&dev_attr_mem_limit.attr,
2529 	&dev_attr_mem_used_max.attr,
2530 	&dev_attr_idle.attr,
2531 	&dev_attr_max_comp_streams.attr,
2532 	&dev_attr_comp_algorithm.attr,
2533 #ifdef CONFIG_ZRAM_WRITEBACK
2534 	&dev_attr_backing_dev.attr,
2535 	&dev_attr_writeback.attr,
2536 	&dev_attr_writeback_limit.attr,
2537 	&dev_attr_writeback_limit_enable.attr,
2538 #endif
2539 	&dev_attr_io_stat.attr,
2540 	&dev_attr_mm_stat.attr,
2541 #ifdef CONFIG_ZRAM_WRITEBACK
2542 	&dev_attr_bd_stat.attr,
2543 #endif
2544 	&dev_attr_debug_stat.attr,
2545 #ifdef CONFIG_ZRAM_MULTI_COMP
2546 	&dev_attr_recomp_algorithm.attr,
2547 	&dev_attr_recompress.attr,
2548 #endif
2549 	&dev_attr_algorithm_params.attr,
2550 	NULL,
2551 };
2552 
2553 ATTRIBUTE_GROUPS(zram_disk);
2554 
2555 /*
2556  * Allocate and initialize new zram device. the function returns
2557  * '>= 0' device_id upon success, and negative value otherwise.
2558  */
2559 static int zram_add(void)
2560 {
2561 	struct queue_limits lim = {
2562 		.logical_block_size		= ZRAM_LOGICAL_BLOCK_SIZE,
2563 		/*
2564 		 * To ensure that we always get PAGE_SIZE aligned and
2565 		 * n*PAGE_SIZED sized I/O requests.
2566 		 */
2567 		.physical_block_size		= PAGE_SIZE,
2568 		.io_min				= PAGE_SIZE,
2569 		.io_opt				= PAGE_SIZE,
2570 		.max_hw_discard_sectors		= UINT_MAX,
2571 		/*
2572 		 * zram_bio_discard() will clear all logical blocks if logical
2573 		 * block size is identical with physical block size(PAGE_SIZE).
2574 		 * But if it is different, we will skip discarding some parts of
2575 		 * logical blocks in the part of the request range which isn't
2576 		 * aligned to physical block size.  So we can't ensure that all
2577 		 * discarded logical blocks are zeroed.
2578 		 */
2579 #if ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE
2580 		.max_write_zeroes_sectors	= UINT_MAX,
2581 #endif
2582 		.features			= BLK_FEAT_STABLE_WRITES |
2583 						  BLK_FEAT_SYNCHRONOUS,
2584 	};
2585 	struct zram *zram;
2586 	int ret, device_id;
2587 
2588 	zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
2589 	if (!zram)
2590 		return -ENOMEM;
2591 
2592 	ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
2593 	if (ret < 0)
2594 		goto out_free_dev;
2595 	device_id = ret;
2596 
2597 	init_rwsem(&zram->init_lock);
2598 #ifdef CONFIG_ZRAM_WRITEBACK
2599 	spin_lock_init(&zram->wb_limit_lock);
2600 #endif
2601 
2602 	/* gendisk structure */
2603 	zram->disk = blk_alloc_disk(&lim, NUMA_NO_NODE);
2604 	if (IS_ERR(zram->disk)) {
2605 		pr_err("Error allocating disk structure for device %d\n",
2606 			device_id);
2607 		ret = PTR_ERR(zram->disk);
2608 		goto out_free_idr;
2609 	}
2610 
2611 	zram->disk->major = zram_major;
2612 	zram->disk->first_minor = device_id;
2613 	zram->disk->minors = 1;
2614 	zram->disk->flags |= GENHD_FL_NO_PART;
2615 	zram->disk->fops = &zram_devops;
2616 	zram->disk->private_data = zram;
2617 	snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
2618 	atomic_set(&zram->pp_in_progress, 0);
2619 	zram_comp_params_reset(zram);
2620 	comp_algorithm_set(zram, ZRAM_PRIMARY_COMP, default_compressor);
2621 
2622 	/* Actual capacity set using sysfs (/sys/block/zram<id>/disksize */
2623 	set_capacity(zram->disk, 0);
2624 	ret = device_add_disk(NULL, zram->disk, zram_disk_groups);
2625 	if (ret)
2626 		goto out_cleanup_disk;
2627 
2628 	zram_debugfs_register(zram);
2629 	pr_info("Added device: %s\n", zram->disk->disk_name);
2630 	return device_id;
2631 
2632 out_cleanup_disk:
2633 	put_disk(zram->disk);
2634 out_free_idr:
2635 	idr_remove(&zram_index_idr, device_id);
2636 out_free_dev:
2637 	kfree(zram);
2638 	return ret;
2639 }
2640 
2641 static int zram_remove(struct zram *zram)
2642 {
2643 	bool claimed;
2644 
2645 	mutex_lock(&zram->disk->open_mutex);
2646 	if (disk_openers(zram->disk)) {
2647 		mutex_unlock(&zram->disk->open_mutex);
2648 		return -EBUSY;
2649 	}
2650 
2651 	claimed = zram->claim;
2652 	if (!claimed)
2653 		zram->claim = true;
2654 	mutex_unlock(&zram->disk->open_mutex);
2655 
2656 	zram_debugfs_unregister(zram);
2657 
2658 	if (claimed) {
2659 		/*
2660 		 * If we were claimed by reset_store(), del_gendisk() will
2661 		 * wait until reset_store() is done, so nothing need to do.
2662 		 */
2663 		;
2664 	} else {
2665 		/* Make sure all the pending I/O are finished */
2666 		sync_blockdev(zram->disk->part0);
2667 		zram_reset_device(zram);
2668 	}
2669 
2670 	pr_info("Removed device: %s\n", zram->disk->disk_name);
2671 
2672 	del_gendisk(zram->disk);
2673 
2674 	/* del_gendisk drains pending reset_store */
2675 	WARN_ON_ONCE(claimed && zram->claim);
2676 
2677 	/*
2678 	 * disksize_store() may be called in between zram_reset_device()
2679 	 * and del_gendisk(), so run the last reset to avoid leaking
2680 	 * anything allocated with disksize_store()
2681 	 */
2682 	zram_reset_device(zram);
2683 
2684 	put_disk(zram->disk);
2685 	kfree(zram);
2686 	return 0;
2687 }
2688 
2689 /* zram-control sysfs attributes */
2690 
2691 /*
2692  * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a
2693  * sense that reading from this file does alter the state of your system -- it
2694  * creates a new un-initialized zram device and returns back this device's
2695  * device_id (or an error code if it fails to create a new device).
2696  */
2697 static ssize_t hot_add_show(const struct class *class,
2698 			const struct class_attribute *attr,
2699 			char *buf)
2700 {
2701 	int ret;
2702 
2703 	mutex_lock(&zram_index_mutex);
2704 	ret = zram_add();
2705 	mutex_unlock(&zram_index_mutex);
2706 
2707 	if (ret < 0)
2708 		return ret;
2709 	return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
2710 }
2711 /* This attribute must be set to 0400, so CLASS_ATTR_RO() can not be used */
2712 static struct class_attribute class_attr_hot_add =
2713 	__ATTR(hot_add, 0400, hot_add_show, NULL);
2714 
2715 static ssize_t hot_remove_store(const struct class *class,
2716 			const struct class_attribute *attr,
2717 			const char *buf,
2718 			size_t count)
2719 {
2720 	struct zram *zram;
2721 	int ret, dev_id;
2722 
2723 	/* dev_id is gendisk->first_minor, which is `int' */
2724 	ret = kstrtoint(buf, 10, &dev_id);
2725 	if (ret)
2726 		return ret;
2727 	if (dev_id < 0)
2728 		return -EINVAL;
2729 
2730 	mutex_lock(&zram_index_mutex);
2731 
2732 	zram = idr_find(&zram_index_idr, dev_id);
2733 	if (zram) {
2734 		ret = zram_remove(zram);
2735 		if (!ret)
2736 			idr_remove(&zram_index_idr, dev_id);
2737 	} else {
2738 		ret = -ENODEV;
2739 	}
2740 
2741 	mutex_unlock(&zram_index_mutex);
2742 	return ret ? ret : count;
2743 }
2744 static CLASS_ATTR_WO(hot_remove);
2745 
2746 static struct attribute *zram_control_class_attrs[] = {
2747 	&class_attr_hot_add.attr,
2748 	&class_attr_hot_remove.attr,
2749 	NULL,
2750 };
2751 ATTRIBUTE_GROUPS(zram_control_class);
2752 
2753 static struct class zram_control_class = {
2754 	.name		= "zram-control",
2755 	.class_groups	= zram_control_class_groups,
2756 };
2757 
2758 static int zram_remove_cb(int id, void *ptr, void *data)
2759 {
2760 	WARN_ON_ONCE(zram_remove(ptr));
2761 	return 0;
2762 }
2763 
2764 static void destroy_devices(void)
2765 {
2766 	class_unregister(&zram_control_class);
2767 	idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
2768 	zram_debugfs_destroy();
2769 	idr_destroy(&zram_index_idr);
2770 	unregister_blkdev(zram_major, "zram");
2771 	cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2772 }
2773 
2774 static int __init zram_init(void)
2775 {
2776 	struct zram_table_entry zram_te;
2777 	int ret;
2778 
2779 	BUILD_BUG_ON(__NR_ZRAM_PAGEFLAGS > sizeof(zram_te.flags) * 8);
2780 
2781 	ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare",
2782 				      zcomp_cpu_up_prepare, zcomp_cpu_dead);
2783 	if (ret < 0)
2784 		return ret;
2785 
2786 	ret = class_register(&zram_control_class);
2787 	if (ret) {
2788 		pr_err("Unable to register zram-control class\n");
2789 		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2790 		return ret;
2791 	}
2792 
2793 	zram_debugfs_create();
2794 	zram_major = register_blkdev(0, "zram");
2795 	if (zram_major <= 0) {
2796 		pr_err("Unable to get major number\n");
2797 		class_unregister(&zram_control_class);
2798 		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2799 		return -EBUSY;
2800 	}
2801 
2802 	while (num_devices != 0) {
2803 		mutex_lock(&zram_index_mutex);
2804 		ret = zram_add();
2805 		mutex_unlock(&zram_index_mutex);
2806 		if (ret < 0)
2807 			goto out_error;
2808 		num_devices--;
2809 	}
2810 
2811 	return 0;
2812 
2813 out_error:
2814 	destroy_devices();
2815 	return ret;
2816 }
2817 
2818 static void __exit zram_exit(void)
2819 {
2820 	destroy_devices();
2821 }
2822 
2823 module_init(zram_init);
2824 module_exit(zram_exit);
2825 
2826 module_param(num_devices, uint, 0);
2827 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
2828 
2829 MODULE_LICENSE("Dual BSD/GPL");
2830 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2831 MODULE_DESCRIPTION("Compressed RAM Block Device");
2832