1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/pipe.c
4 *
5 * Copyright (C) 1991, 1992, 1999 Linus Torvalds
6 */
7
8 #include <linux/mm.h>
9 #include <linux/file.h>
10 #include <linux/poll.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/fs.h>
15 #include <linux/log2.h>
16 #include <linux/mount.h>
17 #include <linux/pseudo_fs.h>
18 #include <linux/magic.h>
19 #include <linux/pipe_fs_i.h>
20 #include <linux/uio.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/audit.h>
24 #include <linux/syscalls.h>
25 #include <linux/fcntl.h>
26 #include <linux/memcontrol.h>
27 #include <linux/watch_queue.h>
28 #include <linux/sysctl.h>
29 #include <linux/sort.h>
30
31 #include <linux/uaccess.h>
32 #include <asm/ioctls.h>
33
34 #include "internal.h"
35
36 /*
37 * New pipe buffers will be restricted to this size while the user is exceeding
38 * their pipe buffer quota. The general pipe use case needs at least two
39 * buffers: one for data yet to be read, and one for new data. If this is less
40 * than two, then a write to a non-empty pipe may block even if the pipe is not
41 * full. This can occur with GNU make jobserver or similar uses of pipes as
42 * semaphores: multiple processes may be waiting to write tokens back to the
43 * pipe before reading tokens: https://lore.kernel.org/lkml/1628086770.5rn8p04n6j.none@localhost/.
44 *
45 * Users can reduce their pipe buffers with F_SETPIPE_SZ below this at their
46 * own risk, namely: pipe writes to non-full pipes may block until the pipe is
47 * emptied.
48 */
49 #define PIPE_MIN_DEF_BUFFERS 2
50
51 /*
52 * The max size that a non-root user is allowed to grow the pipe. Can
53 * be set by root in /proc/sys/fs/pipe-max-size
54 */
55 static unsigned int pipe_max_size = 1048576;
56
57 /* Maximum allocatable pages per user. Hard limit is unset by default, soft
58 * matches default values.
59 */
60 static unsigned long pipe_user_pages_hard;
61 static unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
62
63 /*
64 * We use head and tail indices that aren't masked off, except at the point of
65 * dereference, but rather they're allowed to wrap naturally. This means there
66 * isn't a dead spot in the buffer, but the ring has to be a power of two and
67 * <= 2^31.
68 * -- David Howells 2019-09-23.
69 *
70 * Reads with count = 0 should always return 0.
71 * -- Julian Bradfield 1999-06-07.
72 *
73 * FIFOs and Pipes now generate SIGIO for both readers and writers.
74 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
75 *
76 * pipe_read & write cleanup
77 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
78 */
79
80 #ifdef CONFIG_PROVE_LOCKING
pipe_lock_cmp_fn(const struct lockdep_map * a,const struct lockdep_map * b)81 static int pipe_lock_cmp_fn(const struct lockdep_map *a,
82 const struct lockdep_map *b)
83 {
84 return cmp_int((unsigned long) a, (unsigned long) b);
85 }
86 #endif
87
pipe_lock(struct pipe_inode_info * pipe)88 void pipe_lock(struct pipe_inode_info *pipe)
89 {
90 if (pipe->files)
91 mutex_lock(&pipe->mutex);
92 }
93 EXPORT_SYMBOL(pipe_lock);
94
pipe_unlock(struct pipe_inode_info * pipe)95 void pipe_unlock(struct pipe_inode_info *pipe)
96 {
97 if (pipe->files)
98 mutex_unlock(&pipe->mutex);
99 }
100 EXPORT_SYMBOL(pipe_unlock);
101
pipe_double_lock(struct pipe_inode_info * pipe1,struct pipe_inode_info * pipe2)102 void pipe_double_lock(struct pipe_inode_info *pipe1,
103 struct pipe_inode_info *pipe2)
104 {
105 BUG_ON(pipe1 == pipe2);
106
107 if (pipe1 > pipe2)
108 swap(pipe1, pipe2);
109
110 pipe_lock(pipe1);
111 pipe_lock(pipe2);
112 }
113
anon_pipe_get_page(struct pipe_inode_info * pipe)114 static struct page *anon_pipe_get_page(struct pipe_inode_info *pipe)
115 {
116 for (int i = 0; i < ARRAY_SIZE(pipe->tmp_page); i++) {
117 if (pipe->tmp_page[i]) {
118 struct page *page = pipe->tmp_page[i];
119 pipe->tmp_page[i] = NULL;
120 return page;
121 }
122 }
123
124 return alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
125 }
126
anon_pipe_put_page(struct pipe_inode_info * pipe,struct page * page)127 static void anon_pipe_put_page(struct pipe_inode_info *pipe,
128 struct page *page)
129 {
130 if (page_count(page) == 1) {
131 for (int i = 0; i < ARRAY_SIZE(pipe->tmp_page); i++) {
132 if (!pipe->tmp_page[i]) {
133 pipe->tmp_page[i] = page;
134 return;
135 }
136 }
137 }
138
139 put_page(page);
140 }
141
anon_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)142 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
143 struct pipe_buffer *buf)
144 {
145 struct page *page = buf->page;
146
147 anon_pipe_put_page(pipe, page);
148 }
149
anon_pipe_buf_try_steal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)150 static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe,
151 struct pipe_buffer *buf)
152 {
153 struct page *page = buf->page;
154
155 if (page_count(page) != 1)
156 return false;
157 memcg_kmem_uncharge_page(page, 0);
158 __SetPageLocked(page);
159 return true;
160 }
161
162 /**
163 * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer
164 * @pipe: the pipe that the buffer belongs to
165 * @buf: the buffer to attempt to steal
166 *
167 * Description:
168 * This function attempts to steal the &struct page attached to
169 * @buf. If successful, this function returns 0 and returns with
170 * the page locked. The caller may then reuse the page for whatever
171 * he wishes; the typical use is insertion into a different file
172 * page cache.
173 */
generic_pipe_buf_try_steal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)174 bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe,
175 struct pipe_buffer *buf)
176 {
177 struct page *page = buf->page;
178
179 /*
180 * A reference of one is golden, that means that the owner of this
181 * page is the only one holding a reference to it. lock the page
182 * and return OK.
183 */
184 if (page_count(page) == 1) {
185 lock_page(page);
186 return true;
187 }
188 return false;
189 }
190 EXPORT_SYMBOL(generic_pipe_buf_try_steal);
191
192 /**
193 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
194 * @pipe: the pipe that the buffer belongs to
195 * @buf: the buffer to get a reference to
196 *
197 * Description:
198 * This function grabs an extra reference to @buf. It's used in
199 * the tee() system call, when we duplicate the buffers in one
200 * pipe into another.
201 */
generic_pipe_buf_get(struct pipe_inode_info * pipe,struct pipe_buffer * buf)202 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
203 {
204 return try_get_page(buf->page);
205 }
206 EXPORT_SYMBOL(generic_pipe_buf_get);
207
208 /**
209 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
210 * @pipe: the pipe that the buffer belongs to
211 * @buf: the buffer to put a reference to
212 *
213 * Description:
214 * This function releases a reference to @buf.
215 */
generic_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)216 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
217 struct pipe_buffer *buf)
218 {
219 put_page(buf->page);
220 }
221 EXPORT_SYMBOL(generic_pipe_buf_release);
222
223 static const struct pipe_buf_operations anon_pipe_buf_ops = {
224 .release = anon_pipe_buf_release,
225 .try_steal = anon_pipe_buf_try_steal,
226 .get = generic_pipe_buf_get,
227 };
228
229 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
pipe_readable(const struct pipe_inode_info * pipe)230 static inline bool pipe_readable(const struct pipe_inode_info *pipe)
231 {
232 union pipe_index idx = { .head_tail = READ_ONCE(pipe->head_tail) };
233 unsigned int writers = READ_ONCE(pipe->writers);
234
235 return !pipe_empty(idx.head, idx.tail) || !writers;
236 }
237
pipe_update_tail(struct pipe_inode_info * pipe,struct pipe_buffer * buf,unsigned int tail)238 static inline unsigned int pipe_update_tail(struct pipe_inode_info *pipe,
239 struct pipe_buffer *buf,
240 unsigned int tail)
241 {
242 pipe_buf_release(pipe, buf);
243
244 /*
245 * If the pipe has a watch_queue, we need additional protection
246 * by the spinlock because notifications get posted with only
247 * this spinlock, no mutex
248 */
249 if (pipe_has_watch_queue(pipe)) {
250 spin_lock_irq(&pipe->rd_wait.lock);
251 #ifdef CONFIG_WATCH_QUEUE
252 if (buf->flags & PIPE_BUF_FLAG_LOSS)
253 pipe->note_loss = true;
254 #endif
255 pipe->tail = ++tail;
256 spin_unlock_irq(&pipe->rd_wait.lock);
257 return tail;
258 }
259
260 /*
261 * Without a watch_queue, we can simply increment the tail
262 * without the spinlock - the mutex is enough.
263 */
264 pipe->tail = ++tail;
265 return tail;
266 }
267
268 static ssize_t
anon_pipe_read(struct kiocb * iocb,struct iov_iter * to)269 anon_pipe_read(struct kiocb *iocb, struct iov_iter *to)
270 {
271 size_t total_len = iov_iter_count(to);
272 struct file *filp = iocb->ki_filp;
273 struct pipe_inode_info *pipe = filp->private_data;
274 bool wake_writer = false, wake_next_reader = false;
275 ssize_t ret;
276
277 /* Null read succeeds. */
278 if (unlikely(total_len == 0))
279 return 0;
280
281 ret = 0;
282 mutex_lock(&pipe->mutex);
283
284 /*
285 * We only wake up writers if the pipe was full when we started reading
286 * and it is no longer full after reading to avoid unnecessary wakeups.
287 *
288 * But when we do wake up writers, we do so using a sync wakeup
289 * (WF_SYNC), because we want them to get going and generate more
290 * data for us.
291 */
292 for (;;) {
293 /* Read ->head with a barrier vs post_one_notification() */
294 unsigned int head = smp_load_acquire(&pipe->head);
295 unsigned int tail = pipe->tail;
296
297 #ifdef CONFIG_WATCH_QUEUE
298 if (pipe->note_loss) {
299 struct watch_notification n;
300
301 if (total_len < 8) {
302 if (ret == 0)
303 ret = -ENOBUFS;
304 break;
305 }
306
307 n.type = WATCH_TYPE_META;
308 n.subtype = WATCH_META_LOSS_NOTIFICATION;
309 n.info = watch_sizeof(n);
310 if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) {
311 if (ret == 0)
312 ret = -EFAULT;
313 break;
314 }
315 ret += sizeof(n);
316 total_len -= sizeof(n);
317 pipe->note_loss = false;
318 }
319 #endif
320
321 if (!pipe_empty(head, tail)) {
322 struct pipe_buffer *buf = pipe_buf(pipe, tail);
323 size_t chars = buf->len;
324 size_t written;
325 int error;
326
327 if (chars > total_len) {
328 if (buf->flags & PIPE_BUF_FLAG_WHOLE) {
329 if (ret == 0)
330 ret = -ENOBUFS;
331 break;
332 }
333 chars = total_len;
334 }
335
336 error = pipe_buf_confirm(pipe, buf);
337 if (error) {
338 if (!ret)
339 ret = error;
340 break;
341 }
342
343 written = copy_page_to_iter(buf->page, buf->offset, chars, to);
344 if (unlikely(written < chars)) {
345 if (!ret)
346 ret = -EFAULT;
347 break;
348 }
349 ret += chars;
350 buf->offset += chars;
351 buf->len -= chars;
352
353 /* Was it a packet buffer? Clean up and exit */
354 if (buf->flags & PIPE_BUF_FLAG_PACKET) {
355 total_len = chars;
356 buf->len = 0;
357 }
358
359 if (!buf->len) {
360 wake_writer |= pipe_full(head, tail, pipe->max_usage);
361 tail = pipe_update_tail(pipe, buf, tail);
362 }
363 total_len -= chars;
364 if (!total_len)
365 break; /* common path: read succeeded */
366 if (!pipe_empty(head, tail)) /* More to do? */
367 continue;
368 }
369
370 if (!pipe->writers)
371 break;
372 if (ret)
373 break;
374 if ((filp->f_flags & O_NONBLOCK) ||
375 (iocb->ki_flags & IOCB_NOWAIT)) {
376 ret = -EAGAIN;
377 break;
378 }
379 mutex_unlock(&pipe->mutex);
380 /*
381 * We only get here if we didn't actually read anything.
382 *
383 * But because we didn't read anything, at this point we can
384 * just return directly with -ERESTARTSYS if we're interrupted,
385 * since we've done any required wakeups and there's no need
386 * to mark anything accessed. And we've dropped the lock.
387 */
388 if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0)
389 return -ERESTARTSYS;
390
391 wake_next_reader = true;
392 mutex_lock(&pipe->mutex);
393 }
394 if (pipe_is_empty(pipe))
395 wake_next_reader = false;
396 mutex_unlock(&pipe->mutex);
397
398 if (wake_writer)
399 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
400 if (wake_next_reader)
401 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
402 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
403 return ret;
404 }
405
406 static ssize_t
fifo_pipe_read(struct kiocb * iocb,struct iov_iter * to)407 fifo_pipe_read(struct kiocb *iocb, struct iov_iter *to)
408 {
409 int ret = anon_pipe_read(iocb, to);
410 if (ret > 0)
411 file_accessed(iocb->ki_filp);
412 return ret;
413 }
414
is_packetized(struct file * file)415 static inline int is_packetized(struct file *file)
416 {
417 return (file->f_flags & O_DIRECT) != 0;
418 }
419
420 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
pipe_writable(const struct pipe_inode_info * pipe)421 static inline bool pipe_writable(const struct pipe_inode_info *pipe)
422 {
423 union pipe_index idx = { .head_tail = READ_ONCE(pipe->head_tail) };
424 unsigned int max_usage = READ_ONCE(pipe->max_usage);
425
426 return !pipe_full(idx.head, idx.tail, max_usage) ||
427 !READ_ONCE(pipe->readers);
428 }
429
430 static ssize_t
anon_pipe_write(struct kiocb * iocb,struct iov_iter * from)431 anon_pipe_write(struct kiocb *iocb, struct iov_iter *from)
432 {
433 struct file *filp = iocb->ki_filp;
434 struct pipe_inode_info *pipe = filp->private_data;
435 unsigned int head;
436 ssize_t ret = 0;
437 size_t total_len = iov_iter_count(from);
438 ssize_t chars;
439 bool was_empty = false;
440 bool wake_next_writer = false;
441
442 /*
443 * Reject writing to watch queue pipes before the point where we lock
444 * the pipe.
445 * Otherwise, lockdep would be unhappy if the caller already has another
446 * pipe locked.
447 * If we had to support locking a normal pipe and a notification pipe at
448 * the same time, we could set up lockdep annotations for that, but
449 * since we don't actually need that, it's simpler to just bail here.
450 */
451 if (pipe_has_watch_queue(pipe))
452 return -EXDEV;
453
454 /* Null write succeeds. */
455 if (unlikely(total_len == 0))
456 return 0;
457
458 mutex_lock(&pipe->mutex);
459
460 if (!pipe->readers) {
461 if ((iocb->ki_flags & IOCB_NOSIGNAL) == 0)
462 send_sig(SIGPIPE, current, 0);
463 ret = -EPIPE;
464 goto out;
465 }
466
467 /*
468 * If it wasn't empty we try to merge new data into
469 * the last buffer.
470 *
471 * That naturally merges small writes, but it also
472 * page-aligns the rest of the writes for large writes
473 * spanning multiple pages.
474 */
475 head = pipe->head;
476 was_empty = pipe_empty(head, pipe->tail);
477 chars = total_len & (PAGE_SIZE-1);
478 if (chars && !was_empty) {
479 struct pipe_buffer *buf = pipe_buf(pipe, head - 1);
480 int offset = buf->offset + buf->len;
481
482 if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) &&
483 offset + chars <= PAGE_SIZE) {
484 ret = pipe_buf_confirm(pipe, buf);
485 if (ret)
486 goto out;
487
488 ret = copy_page_from_iter(buf->page, offset, chars, from);
489 if (unlikely(ret < chars)) {
490 ret = -EFAULT;
491 goto out;
492 }
493
494 buf->len += ret;
495 if (!iov_iter_count(from))
496 goto out;
497 }
498 }
499
500 for (;;) {
501 if (!pipe->readers) {
502 if ((iocb->ki_flags & IOCB_NOSIGNAL) == 0)
503 send_sig(SIGPIPE, current, 0);
504 if (!ret)
505 ret = -EPIPE;
506 break;
507 }
508
509 head = pipe->head;
510 if (!pipe_full(head, pipe->tail, pipe->max_usage)) {
511 struct pipe_buffer *buf;
512 struct page *page;
513 int copied;
514
515 page = anon_pipe_get_page(pipe);
516 if (unlikely(!page)) {
517 if (!ret)
518 ret = -ENOMEM;
519 break;
520 }
521
522 copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
523 if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
524 anon_pipe_put_page(pipe, page);
525 if (!ret)
526 ret = -EFAULT;
527 break;
528 }
529
530 pipe->head = head + 1;
531 /* Insert it into the buffer array */
532 buf = pipe_buf(pipe, head);
533 buf->page = page;
534 buf->ops = &anon_pipe_buf_ops;
535 buf->offset = 0;
536 if (is_packetized(filp))
537 buf->flags = PIPE_BUF_FLAG_PACKET;
538 else
539 buf->flags = PIPE_BUF_FLAG_CAN_MERGE;
540
541 buf->len = copied;
542 ret += copied;
543
544 if (!iov_iter_count(from))
545 break;
546
547 continue;
548 }
549
550 /* Wait for buffer space to become available. */
551 if ((filp->f_flags & O_NONBLOCK) ||
552 (iocb->ki_flags & IOCB_NOWAIT)) {
553 if (!ret)
554 ret = -EAGAIN;
555 break;
556 }
557 if (signal_pending(current)) {
558 if (!ret)
559 ret = -ERESTARTSYS;
560 break;
561 }
562
563 /*
564 * We're going to release the pipe lock and wait for more
565 * space. We wake up any readers if necessary, and then
566 * after waiting we need to re-check whether the pipe
567 * become empty while we dropped the lock.
568 */
569 mutex_unlock(&pipe->mutex);
570 if (was_empty)
571 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
572 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
573 wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe));
574 mutex_lock(&pipe->mutex);
575 was_empty = pipe_is_empty(pipe);
576 wake_next_writer = true;
577 }
578 out:
579 if (pipe_is_full(pipe))
580 wake_next_writer = false;
581 mutex_unlock(&pipe->mutex);
582
583 /*
584 * If we do do a wakeup event, we do a 'sync' wakeup, because we
585 * want the reader to start processing things asap, rather than
586 * leave the data pending.
587 *
588 * This is particularly important for small writes, because of
589 * how (for example) the GNU make jobserver uses small writes to
590 * wake up pending jobs
591 *
592 * Epoll nonsensically wants a wakeup whether the pipe
593 * was already empty or not.
594 */
595 if (was_empty || pipe->poll_usage)
596 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
597 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
598 if (wake_next_writer)
599 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
600 return ret;
601 }
602
603 static ssize_t
fifo_pipe_write(struct kiocb * iocb,struct iov_iter * from)604 fifo_pipe_write(struct kiocb *iocb, struct iov_iter *from)
605 {
606 int ret = anon_pipe_write(iocb, from);
607 if (ret > 0) {
608 struct file *filp = iocb->ki_filp;
609 if (sb_start_write_trylock(file_inode(filp)->i_sb)) {
610 int err = file_update_time(filp);
611 if (err)
612 ret = err;
613 sb_end_write(file_inode(filp)->i_sb);
614 }
615 }
616 return ret;
617 }
618
pipe_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)619 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
620 {
621 struct pipe_inode_info *pipe = filp->private_data;
622 unsigned int count, head, tail;
623
624 switch (cmd) {
625 case FIONREAD:
626 mutex_lock(&pipe->mutex);
627 count = 0;
628 head = pipe->head;
629 tail = pipe->tail;
630
631 while (!pipe_empty(head, tail)) {
632 count += pipe_buf(pipe, tail)->len;
633 tail++;
634 }
635 mutex_unlock(&pipe->mutex);
636
637 return put_user(count, (int __user *)arg);
638
639 #ifdef CONFIG_WATCH_QUEUE
640 case IOC_WATCH_QUEUE_SET_SIZE: {
641 int ret;
642 mutex_lock(&pipe->mutex);
643 ret = watch_queue_set_size(pipe, arg);
644 mutex_unlock(&pipe->mutex);
645 return ret;
646 }
647
648 case IOC_WATCH_QUEUE_SET_FILTER:
649 return watch_queue_set_filter(
650 pipe, (struct watch_notification_filter __user *)arg);
651 #endif
652
653 default:
654 return -ENOIOCTLCMD;
655 }
656 }
657
658 /* No kernel lock held - fine */
659 static __poll_t
pipe_poll(struct file * filp,poll_table * wait)660 pipe_poll(struct file *filp, poll_table *wait)
661 {
662 __poll_t mask;
663 struct pipe_inode_info *pipe = filp->private_data;
664 union pipe_index idx;
665
666 /* Epoll has some historical nasty semantics, this enables them */
667 WRITE_ONCE(pipe->poll_usage, true);
668
669 /*
670 * Reading pipe state only -- no need for acquiring the semaphore.
671 *
672 * But because this is racy, the code has to add the
673 * entry to the poll table _first_ ..
674 */
675 if (filp->f_mode & FMODE_READ)
676 poll_wait(filp, &pipe->rd_wait, wait);
677 if (filp->f_mode & FMODE_WRITE)
678 poll_wait(filp, &pipe->wr_wait, wait);
679
680 /*
681 * .. and only then can you do the racy tests. That way,
682 * if something changes and you got it wrong, the poll
683 * table entry will wake you up and fix it.
684 */
685 idx.head_tail = READ_ONCE(pipe->head_tail);
686
687 mask = 0;
688 if (filp->f_mode & FMODE_READ) {
689 if (!pipe_empty(idx.head, idx.tail))
690 mask |= EPOLLIN | EPOLLRDNORM;
691 if (!pipe->writers && filp->f_pipe != pipe->w_counter)
692 mask |= EPOLLHUP;
693 }
694
695 if (filp->f_mode & FMODE_WRITE) {
696 if (!pipe_full(idx.head, idx.tail, pipe->max_usage))
697 mask |= EPOLLOUT | EPOLLWRNORM;
698 /*
699 * Most Unices do not set EPOLLERR for FIFOs but on Linux they
700 * behave exactly like pipes for poll().
701 */
702 if (!pipe->readers)
703 mask |= EPOLLERR;
704 }
705
706 return mask;
707 }
708
put_pipe_info(struct inode * inode,struct pipe_inode_info * pipe)709 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
710 {
711 int kill = 0;
712
713 spin_lock(&inode->i_lock);
714 if (!--pipe->files) {
715 inode->i_pipe = NULL;
716 kill = 1;
717 }
718 spin_unlock(&inode->i_lock);
719
720 if (kill)
721 free_pipe_info(pipe);
722 }
723
724 static int
pipe_release(struct inode * inode,struct file * file)725 pipe_release(struct inode *inode, struct file *file)
726 {
727 struct pipe_inode_info *pipe = file->private_data;
728
729 mutex_lock(&pipe->mutex);
730 if (file->f_mode & FMODE_READ)
731 pipe->readers--;
732 if (file->f_mode & FMODE_WRITE)
733 pipe->writers--;
734
735 /* Was that the last reader or writer, but not the other side? */
736 if (!pipe->readers != !pipe->writers) {
737 wake_up_interruptible_all(&pipe->rd_wait);
738 wake_up_interruptible_all(&pipe->wr_wait);
739 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
740 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
741 }
742 mutex_unlock(&pipe->mutex);
743
744 put_pipe_info(inode, pipe);
745 return 0;
746 }
747
748 static int
pipe_fasync(int fd,struct file * filp,int on)749 pipe_fasync(int fd, struct file *filp, int on)
750 {
751 struct pipe_inode_info *pipe = filp->private_data;
752 int retval = 0;
753
754 mutex_lock(&pipe->mutex);
755 if (filp->f_mode & FMODE_READ)
756 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
757 if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
758 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
759 if (retval < 0 && (filp->f_mode & FMODE_READ))
760 /* this can happen only if on == T */
761 fasync_helper(-1, filp, 0, &pipe->fasync_readers);
762 }
763 mutex_unlock(&pipe->mutex);
764 return retval;
765 }
766
account_pipe_buffers(struct user_struct * user,unsigned long old,unsigned long new)767 unsigned long account_pipe_buffers(struct user_struct *user,
768 unsigned long old, unsigned long new)
769 {
770 return atomic_long_add_return(new - old, &user->pipe_bufs);
771 }
772
too_many_pipe_buffers_soft(unsigned long user_bufs)773 bool too_many_pipe_buffers_soft(unsigned long user_bufs)
774 {
775 unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
776
777 return soft_limit && user_bufs > soft_limit;
778 }
779
too_many_pipe_buffers_hard(unsigned long user_bufs)780 bool too_many_pipe_buffers_hard(unsigned long user_bufs)
781 {
782 unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
783
784 return hard_limit && user_bufs > hard_limit;
785 }
786
pipe_is_unprivileged_user(void)787 bool pipe_is_unprivileged_user(void)
788 {
789 return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
790 }
791
alloc_pipe_info(void)792 struct pipe_inode_info *alloc_pipe_info(void)
793 {
794 struct pipe_inode_info *pipe;
795 unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
796 struct user_struct *user = get_current_user();
797 unsigned long user_bufs;
798 unsigned int max_size = READ_ONCE(pipe_max_size);
799
800 pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
801 if (pipe == NULL)
802 goto out_free_uid;
803
804 if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
805 pipe_bufs = max_size >> PAGE_SHIFT;
806
807 user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
808
809 if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) {
810 user_bufs = account_pipe_buffers(user, pipe_bufs, PIPE_MIN_DEF_BUFFERS);
811 pipe_bufs = PIPE_MIN_DEF_BUFFERS;
812 }
813
814 if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user())
815 goto out_revert_acct;
816
817 pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
818 GFP_KERNEL_ACCOUNT);
819
820 if (pipe->bufs) {
821 init_waitqueue_head(&pipe->rd_wait);
822 init_waitqueue_head(&pipe->wr_wait);
823 pipe->r_counter = pipe->w_counter = 1;
824 pipe->max_usage = pipe_bufs;
825 pipe->ring_size = pipe_bufs;
826 pipe->nr_accounted = pipe_bufs;
827 pipe->user = user;
828 mutex_init(&pipe->mutex);
829 lock_set_cmp_fn(&pipe->mutex, pipe_lock_cmp_fn, NULL);
830 return pipe;
831 }
832
833 out_revert_acct:
834 (void) account_pipe_buffers(user, pipe_bufs, 0);
835 kfree(pipe);
836 out_free_uid:
837 free_uid(user);
838 return NULL;
839 }
840
free_pipe_info(struct pipe_inode_info * pipe)841 void free_pipe_info(struct pipe_inode_info *pipe)
842 {
843 unsigned int i;
844
845 #ifdef CONFIG_WATCH_QUEUE
846 if (pipe->watch_queue)
847 watch_queue_clear(pipe->watch_queue);
848 #endif
849
850 (void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0);
851 free_uid(pipe->user);
852 for (i = 0; i < pipe->ring_size; i++) {
853 struct pipe_buffer *buf = pipe->bufs + i;
854 if (buf->ops)
855 pipe_buf_release(pipe, buf);
856 }
857 #ifdef CONFIG_WATCH_QUEUE
858 if (pipe->watch_queue)
859 put_watch_queue(pipe->watch_queue);
860 #endif
861 for (i = 0; i < ARRAY_SIZE(pipe->tmp_page); i++) {
862 if (pipe->tmp_page[i])
863 __free_page(pipe->tmp_page[i]);
864 }
865 kfree(pipe->bufs);
866 kfree(pipe);
867 }
868
869 static struct vfsmount *pipe_mnt __ro_after_init;
870
871 /*
872 * pipefs_dname() is called from d_path().
873 */
pipefs_dname(struct dentry * dentry,char * buffer,int buflen)874 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
875 {
876 return dynamic_dname(buffer, buflen, "pipe:[%lu]",
877 d_inode(dentry)->i_ino);
878 }
879
880 static const struct dentry_operations pipefs_dentry_operations = {
881 .d_dname = pipefs_dname,
882 };
883
884 static const struct file_operations pipeanon_fops;
885
get_pipe_inode(void)886 static struct inode * get_pipe_inode(void)
887 {
888 struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
889 struct pipe_inode_info *pipe;
890
891 if (!inode)
892 goto fail_inode;
893
894 inode->i_ino = get_next_ino();
895
896 pipe = alloc_pipe_info();
897 if (!pipe)
898 goto fail_iput;
899
900 inode->i_pipe = pipe;
901 pipe->files = 2;
902 pipe->readers = pipe->writers = 1;
903 inode->i_fop = &pipeanon_fops;
904
905 /*
906 * Mark the inode dirty from the very beginning,
907 * that way it will never be moved to the dirty
908 * list because "mark_inode_dirty()" will think
909 * that it already _is_ on the dirty list.
910 */
911 inode->i_state = I_DIRTY;
912 inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
913 inode->i_uid = current_fsuid();
914 inode->i_gid = current_fsgid();
915 simple_inode_init_ts(inode);
916
917 return inode;
918
919 fail_iput:
920 iput(inode);
921
922 fail_inode:
923 return NULL;
924 }
925
create_pipe_files(struct file ** res,int flags)926 int create_pipe_files(struct file **res, int flags)
927 {
928 struct inode *inode = get_pipe_inode();
929 struct file *f;
930 int error;
931
932 if (!inode)
933 return -ENFILE;
934
935 if (flags & O_NOTIFICATION_PIPE) {
936 error = watch_queue_init(inode->i_pipe);
937 if (error) {
938 free_pipe_info(inode->i_pipe);
939 iput(inode);
940 return error;
941 }
942 }
943
944 f = alloc_file_pseudo(inode, pipe_mnt, "",
945 O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
946 &pipeanon_fops);
947 if (IS_ERR(f)) {
948 free_pipe_info(inode->i_pipe);
949 iput(inode);
950 return PTR_ERR(f);
951 }
952
953 f->private_data = inode->i_pipe;
954 f->f_pipe = 0;
955
956 res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
957 &pipeanon_fops);
958 if (IS_ERR(res[0])) {
959 put_pipe_info(inode, inode->i_pipe);
960 fput(f);
961 return PTR_ERR(res[0]);
962 }
963 res[0]->private_data = inode->i_pipe;
964 res[0]->f_pipe = 0;
965 res[1] = f;
966 stream_open(inode, res[0]);
967 stream_open(inode, res[1]);
968
969 /* pipe groks IOCB_NOWAIT */
970 res[0]->f_mode |= FMODE_NOWAIT;
971 res[1]->f_mode |= FMODE_NOWAIT;
972
973 /*
974 * Disable permission and pre-content events, but enable legacy
975 * inotify events for legacy users.
976 */
977 file_set_fsnotify_mode(res[0], FMODE_NONOTIFY_PERM);
978 file_set_fsnotify_mode(res[1], FMODE_NONOTIFY_PERM);
979 return 0;
980 }
981
__do_pipe_flags(int * fd,struct file ** files,int flags)982 static int __do_pipe_flags(int *fd, struct file **files, int flags)
983 {
984 int error;
985 int fdw, fdr;
986
987 if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE))
988 return -EINVAL;
989
990 error = create_pipe_files(files, flags);
991 if (error)
992 return error;
993
994 error = get_unused_fd_flags(flags);
995 if (error < 0)
996 goto err_read_pipe;
997 fdr = error;
998
999 error = get_unused_fd_flags(flags);
1000 if (error < 0)
1001 goto err_fdr;
1002 fdw = error;
1003
1004 audit_fd_pair(fdr, fdw);
1005 fd[0] = fdr;
1006 fd[1] = fdw;
1007 return 0;
1008
1009 err_fdr:
1010 put_unused_fd(fdr);
1011 err_read_pipe:
1012 fput(files[0]);
1013 fput(files[1]);
1014 return error;
1015 }
1016
do_pipe_flags(int * fd,int flags)1017 int do_pipe_flags(int *fd, int flags)
1018 {
1019 struct file *files[2];
1020 int error = __do_pipe_flags(fd, files, flags);
1021 if (!error) {
1022 fd_install(fd[0], files[0]);
1023 fd_install(fd[1], files[1]);
1024 }
1025 return error;
1026 }
1027
1028 /*
1029 * sys_pipe() is the normal C calling standard for creating
1030 * a pipe. It's not the way Unix traditionally does this, though.
1031 */
do_pipe2(int __user * fildes,int flags)1032 static int do_pipe2(int __user *fildes, int flags)
1033 {
1034 struct file *files[2];
1035 int fd[2];
1036 int error;
1037
1038 error = __do_pipe_flags(fd, files, flags);
1039 if (!error) {
1040 if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
1041 fput(files[0]);
1042 fput(files[1]);
1043 put_unused_fd(fd[0]);
1044 put_unused_fd(fd[1]);
1045 error = -EFAULT;
1046 } else {
1047 fd_install(fd[0], files[0]);
1048 fd_install(fd[1], files[1]);
1049 }
1050 }
1051 return error;
1052 }
1053
SYSCALL_DEFINE2(pipe2,int __user *,fildes,int,flags)1054 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1055 {
1056 return do_pipe2(fildes, flags);
1057 }
1058
SYSCALL_DEFINE1(pipe,int __user *,fildes)1059 SYSCALL_DEFINE1(pipe, int __user *, fildes)
1060 {
1061 return do_pipe2(fildes, 0);
1062 }
1063
1064 /*
1065 * This is the stupid "wait for pipe to be readable or writable"
1066 * model.
1067 *
1068 * See pipe_read/write() for the proper kind of exclusive wait,
1069 * but that requires that we wake up any other readers/writers
1070 * if we then do not end up reading everything (ie the whole
1071 * "wake_next_reader/writer" logic in pipe_read/write()).
1072 */
pipe_wait_readable(struct pipe_inode_info * pipe)1073 void pipe_wait_readable(struct pipe_inode_info *pipe)
1074 {
1075 pipe_unlock(pipe);
1076 wait_event_interruptible(pipe->rd_wait, pipe_readable(pipe));
1077 pipe_lock(pipe);
1078 }
1079
pipe_wait_writable(struct pipe_inode_info * pipe)1080 void pipe_wait_writable(struct pipe_inode_info *pipe)
1081 {
1082 pipe_unlock(pipe);
1083 wait_event_interruptible(pipe->wr_wait, pipe_writable(pipe));
1084 pipe_lock(pipe);
1085 }
1086
1087 /*
1088 * This depends on both the wait (here) and the wakeup (wake_up_partner)
1089 * holding the pipe lock, so "*cnt" is stable and we know a wakeup cannot
1090 * race with the count check and waitqueue prep.
1091 *
1092 * Normally in order to avoid races, you'd do the prepare_to_wait() first,
1093 * then check the condition you're waiting for, and only then sleep. But
1094 * because of the pipe lock, we can check the condition before being on
1095 * the wait queue.
1096 *
1097 * We use the 'rd_wait' waitqueue for pipe partner waiting.
1098 */
wait_for_partner(struct pipe_inode_info * pipe,unsigned int * cnt)1099 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
1100 {
1101 DEFINE_WAIT(rdwait);
1102 int cur = *cnt;
1103
1104 while (cur == *cnt) {
1105 prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE);
1106 pipe_unlock(pipe);
1107 schedule();
1108 finish_wait(&pipe->rd_wait, &rdwait);
1109 pipe_lock(pipe);
1110 if (signal_pending(current))
1111 break;
1112 }
1113 return cur == *cnt ? -ERESTARTSYS : 0;
1114 }
1115
wake_up_partner(struct pipe_inode_info * pipe)1116 static void wake_up_partner(struct pipe_inode_info *pipe)
1117 {
1118 wake_up_interruptible_all(&pipe->rd_wait);
1119 }
1120
fifo_open(struct inode * inode,struct file * filp)1121 static int fifo_open(struct inode *inode, struct file *filp)
1122 {
1123 bool is_pipe = inode->i_fop == &pipeanon_fops;
1124 struct pipe_inode_info *pipe;
1125 int ret;
1126
1127 filp->f_pipe = 0;
1128
1129 spin_lock(&inode->i_lock);
1130 if (inode->i_pipe) {
1131 pipe = inode->i_pipe;
1132 pipe->files++;
1133 spin_unlock(&inode->i_lock);
1134 } else {
1135 spin_unlock(&inode->i_lock);
1136 pipe = alloc_pipe_info();
1137 if (!pipe)
1138 return -ENOMEM;
1139 pipe->files = 1;
1140 spin_lock(&inode->i_lock);
1141 if (unlikely(inode->i_pipe)) {
1142 inode->i_pipe->files++;
1143 spin_unlock(&inode->i_lock);
1144 free_pipe_info(pipe);
1145 pipe = inode->i_pipe;
1146 } else {
1147 inode->i_pipe = pipe;
1148 spin_unlock(&inode->i_lock);
1149 }
1150 }
1151 filp->private_data = pipe;
1152 /* OK, we have a pipe and it's pinned down */
1153
1154 mutex_lock(&pipe->mutex);
1155
1156 /* We can only do regular read/write on fifos */
1157 stream_open(inode, filp);
1158
1159 switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) {
1160 case FMODE_READ:
1161 /*
1162 * O_RDONLY
1163 * POSIX.1 says that O_NONBLOCK means return with the FIFO
1164 * opened, even when there is no process writing the FIFO.
1165 */
1166 pipe->r_counter++;
1167 if (pipe->readers++ == 0)
1168 wake_up_partner(pipe);
1169
1170 if (!is_pipe && !pipe->writers) {
1171 if ((filp->f_flags & O_NONBLOCK)) {
1172 /* suppress EPOLLHUP until we have
1173 * seen a writer */
1174 filp->f_pipe = pipe->w_counter;
1175 } else {
1176 if (wait_for_partner(pipe, &pipe->w_counter))
1177 goto err_rd;
1178 }
1179 }
1180 break;
1181
1182 case FMODE_WRITE:
1183 /*
1184 * O_WRONLY
1185 * POSIX.1 says that O_NONBLOCK means return -1 with
1186 * errno=ENXIO when there is no process reading the FIFO.
1187 */
1188 ret = -ENXIO;
1189 if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1190 goto err;
1191
1192 pipe->w_counter++;
1193 if (!pipe->writers++)
1194 wake_up_partner(pipe);
1195
1196 if (!is_pipe && !pipe->readers) {
1197 if (wait_for_partner(pipe, &pipe->r_counter))
1198 goto err_wr;
1199 }
1200 break;
1201
1202 case FMODE_READ | FMODE_WRITE:
1203 /*
1204 * O_RDWR
1205 * POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1206 * This implementation will NEVER block on a O_RDWR open, since
1207 * the process can at least talk to itself.
1208 */
1209
1210 pipe->readers++;
1211 pipe->writers++;
1212 pipe->r_counter++;
1213 pipe->w_counter++;
1214 if (pipe->readers == 1 || pipe->writers == 1)
1215 wake_up_partner(pipe);
1216 break;
1217
1218 default:
1219 ret = -EINVAL;
1220 goto err;
1221 }
1222
1223 /* Ok! */
1224 mutex_unlock(&pipe->mutex);
1225 return 0;
1226
1227 err_rd:
1228 if (!--pipe->readers)
1229 wake_up_interruptible(&pipe->wr_wait);
1230 ret = -ERESTARTSYS;
1231 goto err;
1232
1233 err_wr:
1234 if (!--pipe->writers)
1235 wake_up_interruptible_all(&pipe->rd_wait);
1236 ret = -ERESTARTSYS;
1237 goto err;
1238
1239 err:
1240 mutex_unlock(&pipe->mutex);
1241
1242 put_pipe_info(inode, pipe);
1243 return ret;
1244 }
1245
1246 const struct file_operations pipefifo_fops = {
1247 .open = fifo_open,
1248 .read_iter = fifo_pipe_read,
1249 .write_iter = fifo_pipe_write,
1250 .poll = pipe_poll,
1251 .unlocked_ioctl = pipe_ioctl,
1252 .release = pipe_release,
1253 .fasync = pipe_fasync,
1254 .splice_write = iter_file_splice_write,
1255 };
1256
1257 static const struct file_operations pipeanon_fops = {
1258 .open = fifo_open,
1259 .read_iter = anon_pipe_read,
1260 .write_iter = anon_pipe_write,
1261 .poll = pipe_poll,
1262 .unlocked_ioctl = pipe_ioctl,
1263 .release = pipe_release,
1264 .fasync = pipe_fasync,
1265 .splice_write = iter_file_splice_write,
1266 };
1267
1268 /*
1269 * Currently we rely on the pipe array holding a power-of-2 number
1270 * of pages. Returns 0 on error.
1271 */
round_pipe_size(unsigned int size)1272 unsigned int round_pipe_size(unsigned int size)
1273 {
1274 if (size > (1U << 31))
1275 return 0;
1276
1277 /* Minimum pipe size, as required by POSIX */
1278 if (size < PAGE_SIZE)
1279 return PAGE_SIZE;
1280
1281 return roundup_pow_of_two(size);
1282 }
1283
1284 /*
1285 * Resize the pipe ring to a number of slots.
1286 *
1287 * Note the pipe can be reduced in capacity, but only if the current
1288 * occupancy doesn't exceed nr_slots; if it does, EBUSY will be
1289 * returned instead.
1290 */
pipe_resize_ring(struct pipe_inode_info * pipe,unsigned int nr_slots)1291 int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots)
1292 {
1293 struct pipe_buffer *bufs;
1294 unsigned int head, tail, mask, n;
1295
1296 /* nr_slots larger than limits of pipe->{head,tail} */
1297 if (unlikely(nr_slots > (pipe_index_t)-1u))
1298 return -EINVAL;
1299
1300 bufs = kcalloc(nr_slots, sizeof(*bufs),
1301 GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1302 if (unlikely(!bufs))
1303 return -ENOMEM;
1304
1305 spin_lock_irq(&pipe->rd_wait.lock);
1306 mask = pipe->ring_size - 1;
1307 head = pipe->head;
1308 tail = pipe->tail;
1309
1310 n = pipe_occupancy(head, tail);
1311 if (nr_slots < n) {
1312 spin_unlock_irq(&pipe->rd_wait.lock);
1313 kfree(bufs);
1314 return -EBUSY;
1315 }
1316
1317 /*
1318 * The pipe array wraps around, so just start the new one at zero
1319 * and adjust the indices.
1320 */
1321 if (n > 0) {
1322 unsigned int h = head & mask;
1323 unsigned int t = tail & mask;
1324 if (h > t) {
1325 memcpy(bufs, pipe->bufs + t,
1326 n * sizeof(struct pipe_buffer));
1327 } else {
1328 unsigned int tsize = pipe->ring_size - t;
1329 if (h > 0)
1330 memcpy(bufs + tsize, pipe->bufs,
1331 h * sizeof(struct pipe_buffer));
1332 memcpy(bufs, pipe->bufs + t,
1333 tsize * sizeof(struct pipe_buffer));
1334 }
1335 }
1336
1337 head = n;
1338 tail = 0;
1339
1340 kfree(pipe->bufs);
1341 pipe->bufs = bufs;
1342 pipe->ring_size = nr_slots;
1343 if (pipe->max_usage > nr_slots)
1344 pipe->max_usage = nr_slots;
1345 pipe->tail = tail;
1346 pipe->head = head;
1347
1348 if (!pipe_has_watch_queue(pipe)) {
1349 pipe->max_usage = nr_slots;
1350 pipe->nr_accounted = nr_slots;
1351 }
1352
1353 spin_unlock_irq(&pipe->rd_wait.lock);
1354
1355 /* This might have made more room for writers */
1356 wake_up_interruptible(&pipe->wr_wait);
1357 return 0;
1358 }
1359
1360 /*
1361 * Allocate a new array of pipe buffers and copy the info over. Returns the
1362 * pipe size if successful, or return -ERROR on error.
1363 */
pipe_set_size(struct pipe_inode_info * pipe,unsigned int arg)1364 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned int arg)
1365 {
1366 unsigned long user_bufs;
1367 unsigned int nr_slots, size;
1368 long ret = 0;
1369
1370 if (pipe_has_watch_queue(pipe))
1371 return -EBUSY;
1372
1373 size = round_pipe_size(arg);
1374 nr_slots = size >> PAGE_SHIFT;
1375
1376 if (!nr_slots)
1377 return -EINVAL;
1378
1379 /*
1380 * If trying to increase the pipe capacity, check that an
1381 * unprivileged user is not trying to exceed various limits
1382 * (soft limit check here, hard limit check just below).
1383 * Decreasing the pipe capacity is always permitted, even
1384 * if the user is currently over a limit.
1385 */
1386 if (nr_slots > pipe->max_usage &&
1387 size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1388 return -EPERM;
1389
1390 user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots);
1391
1392 if (nr_slots > pipe->max_usage &&
1393 (too_many_pipe_buffers_hard(user_bufs) ||
1394 too_many_pipe_buffers_soft(user_bufs)) &&
1395 pipe_is_unprivileged_user()) {
1396 ret = -EPERM;
1397 goto out_revert_acct;
1398 }
1399
1400 ret = pipe_resize_ring(pipe, nr_slots);
1401 if (ret < 0)
1402 goto out_revert_acct;
1403
1404 return pipe->max_usage * PAGE_SIZE;
1405
1406 out_revert_acct:
1407 (void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted);
1408 return ret;
1409 }
1410
1411 /*
1412 * Note that i_pipe and i_cdev share the same location, so checking ->i_pipe is
1413 * not enough to verify that this is a pipe.
1414 */
get_pipe_info(struct file * file,bool for_splice)1415 struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice)
1416 {
1417 struct pipe_inode_info *pipe = file->private_data;
1418
1419 if (!pipe)
1420 return NULL;
1421 if (file->f_op != &pipefifo_fops && file->f_op != &pipeanon_fops)
1422 return NULL;
1423 if (for_splice && pipe_has_watch_queue(pipe))
1424 return NULL;
1425 return pipe;
1426 }
1427
pipe_fcntl(struct file * file,unsigned int cmd,unsigned int arg)1428 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned int arg)
1429 {
1430 struct pipe_inode_info *pipe;
1431 long ret;
1432
1433 pipe = get_pipe_info(file, false);
1434 if (!pipe)
1435 return -EBADF;
1436
1437 mutex_lock(&pipe->mutex);
1438
1439 switch (cmd) {
1440 case F_SETPIPE_SZ:
1441 ret = pipe_set_size(pipe, arg);
1442 break;
1443 case F_GETPIPE_SZ:
1444 ret = pipe->max_usage * PAGE_SIZE;
1445 break;
1446 default:
1447 ret = -EINVAL;
1448 break;
1449 }
1450
1451 mutex_unlock(&pipe->mutex);
1452 return ret;
1453 }
1454
1455 static const struct super_operations pipefs_ops = {
1456 .destroy_inode = free_inode_nonrcu,
1457 .statfs = simple_statfs,
1458 };
1459
1460 /*
1461 * pipefs should _never_ be mounted by userland - too much of security hassle,
1462 * no real gain from having the whole file system mounted. So we don't need
1463 * any operations on the root directory. However, we need a non-trivial
1464 * d_name - pipe: will go nicely and kill the special-casing in procfs.
1465 */
1466
pipefs_init_fs_context(struct fs_context * fc)1467 static int pipefs_init_fs_context(struct fs_context *fc)
1468 {
1469 struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
1470 if (!ctx)
1471 return -ENOMEM;
1472 ctx->ops = &pipefs_ops;
1473 ctx->dops = &pipefs_dentry_operations;
1474 return 0;
1475 }
1476
1477 static struct file_system_type pipe_fs_type = {
1478 .name = "pipefs",
1479 .init_fs_context = pipefs_init_fs_context,
1480 .kill_sb = kill_anon_super,
1481 };
1482
1483 #ifdef CONFIG_SYSCTL
do_proc_dopipe_max_size_conv(unsigned long * lvalp,unsigned int * valp,int write,void * data)1484 static int do_proc_dopipe_max_size_conv(unsigned long *lvalp,
1485 unsigned int *valp,
1486 int write, void *data)
1487 {
1488 if (write) {
1489 unsigned int val;
1490
1491 val = round_pipe_size(*lvalp);
1492 if (val == 0)
1493 return -EINVAL;
1494
1495 *valp = val;
1496 } else {
1497 unsigned int val = *valp;
1498 *lvalp = (unsigned long) val;
1499 }
1500
1501 return 0;
1502 }
1503
proc_dopipe_max_size(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1504 static int proc_dopipe_max_size(const struct ctl_table *table, int write,
1505 void *buffer, size_t *lenp, loff_t *ppos)
1506 {
1507 return do_proc_douintvec(table, write, buffer, lenp, ppos,
1508 do_proc_dopipe_max_size_conv, NULL);
1509 }
1510
1511 static const struct ctl_table fs_pipe_sysctls[] = {
1512 {
1513 .procname = "pipe-max-size",
1514 .data = &pipe_max_size,
1515 .maxlen = sizeof(pipe_max_size),
1516 .mode = 0644,
1517 .proc_handler = proc_dopipe_max_size,
1518 },
1519 {
1520 .procname = "pipe-user-pages-hard",
1521 .data = &pipe_user_pages_hard,
1522 .maxlen = sizeof(pipe_user_pages_hard),
1523 .mode = 0644,
1524 .proc_handler = proc_doulongvec_minmax,
1525 },
1526 {
1527 .procname = "pipe-user-pages-soft",
1528 .data = &pipe_user_pages_soft,
1529 .maxlen = sizeof(pipe_user_pages_soft),
1530 .mode = 0644,
1531 .proc_handler = proc_doulongvec_minmax,
1532 },
1533 };
1534 #endif
1535
init_pipe_fs(void)1536 static int __init init_pipe_fs(void)
1537 {
1538 int err = register_filesystem(&pipe_fs_type);
1539
1540 if (!err) {
1541 pipe_mnt = kern_mount(&pipe_fs_type);
1542 if (IS_ERR(pipe_mnt)) {
1543 err = PTR_ERR(pipe_mnt);
1544 unregister_filesystem(&pipe_fs_type);
1545 }
1546 }
1547 #ifdef CONFIG_SYSCTL
1548 register_sysctl_init("fs", fs_pipe_sysctls);
1549 #endif
1550 return err;
1551 }
1552
1553 fs_initcall(init_pipe_fs);
1554