xref: /linux/drivers/pinctrl/core.c (revision a110f942672c8995dc1cacb5a44c6730856743aa)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Core driver for the pin control subsystem
4  *
5  * Copyright (C) 2011-2012 ST-Ericsson SA
6  * Written on behalf of Linaro for ST-Ericsson
7  * Based on bits of regulator core, gpio core and clk core
8  *
9  * Author: Linus Walleij <linus.walleij@linaro.org>
10  *
11  * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
12  */
13 #define pr_fmt(fmt) "pinctrl core: " fmt
14 
15 #include <linux/array_size.h>
16 #include <linux/cleanup.h>
17 #include <linux/debugfs.h>
18 #include <linux/device.h>
19 #include <linux/err.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kref.h>
23 #include <linux/list.h>
24 #include <linux/seq_file.h>
25 #include <linux/slab.h>
26 
27 #include <linux/gpio.h>
28 #include <linux/gpio/driver.h>
29 
30 #include <linux/pinctrl/consumer.h>
31 #include <linux/pinctrl/devinfo.h>
32 #include <linux/pinctrl/machine.h>
33 #include <linux/pinctrl/pinctrl.h>
34 
35 #include "core.h"
36 #include "devicetree.h"
37 #include "pinconf.h"
38 #include "pinmux.h"
39 
40 static bool pinctrl_dummy_state;
41 
42 /* Mutex taken to protect pinctrl_list */
43 static DEFINE_MUTEX(pinctrl_list_mutex);
44 
45 /* Mutex taken to protect pinctrl_maps */
46 DEFINE_MUTEX(pinctrl_maps_mutex);
47 
48 /* Mutex taken to protect pinctrldev_list */
49 static DEFINE_MUTEX(pinctrldev_list_mutex);
50 
51 /* Global list of pin control devices (struct pinctrl_dev) */
52 static LIST_HEAD(pinctrldev_list);
53 
54 /* List of pin controller handles (struct pinctrl) */
55 static LIST_HEAD(pinctrl_list);
56 
57 /* List of pinctrl maps (struct pinctrl_maps) */
58 LIST_HEAD(pinctrl_maps);
59 
60 
61 /**
62  * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
63  *
64  * Usually this function is called by platforms without pinctrl driver support
65  * but run with some shared drivers using pinctrl APIs.
66  * After calling this function, the pinctrl core will return successfully
67  * with creating a dummy state for the driver to keep going smoothly.
68  */
pinctrl_provide_dummies(void)69 void pinctrl_provide_dummies(void)
70 {
71 	pinctrl_dummy_state = true;
72 }
73 EXPORT_SYMBOL_GPL(pinctrl_provide_dummies);
74 
pinctrl_dev_get_name(struct pinctrl_dev * pctldev)75 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
76 {
77 	/* We're not allowed to register devices without name */
78 	return pctldev->desc->name;
79 }
80 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
81 
pinctrl_dev_get_devname(struct pinctrl_dev * pctldev)82 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
83 {
84 	return dev_name(pctldev->dev);
85 }
86 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
87 
pinctrl_dev_get_drvdata(struct pinctrl_dev * pctldev)88 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
89 {
90 	return pctldev->driver_data;
91 }
92 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
93 
94 /**
95  * get_pinctrl_dev_from_devname() - look up pin controller device
96  * @devname: the name of a device instance, as returned by dev_name()
97  *
98  * Looks up a pin control device matching a certain device name or pure device
99  * pointer, the pure device pointer will take precedence.
100  */
get_pinctrl_dev_from_devname(const char * devname)101 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
102 {
103 	struct pinctrl_dev *pctldev;
104 
105 	if (!devname)
106 		return NULL;
107 
108 	mutex_lock(&pinctrldev_list_mutex);
109 
110 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
111 		if (!strcmp(dev_name(pctldev->dev), devname)) {
112 			/* Matched on device name */
113 			mutex_unlock(&pinctrldev_list_mutex);
114 			return pctldev;
115 		}
116 	}
117 
118 	mutex_unlock(&pinctrldev_list_mutex);
119 
120 	return NULL;
121 }
122 
get_pinctrl_dev_from_of_node(struct device_node * np)123 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
124 {
125 	struct pinctrl_dev *pctldev;
126 
127 	mutex_lock(&pinctrldev_list_mutex);
128 
129 	list_for_each_entry(pctldev, &pinctrldev_list, node)
130 		if (device_match_of_node(pctldev->dev, np)) {
131 			mutex_unlock(&pinctrldev_list_mutex);
132 			return pctldev;
133 		}
134 
135 	mutex_unlock(&pinctrldev_list_mutex);
136 
137 	return NULL;
138 }
139 
140 /**
141  * pin_get_from_name() - look up a pin number from a name
142  * @pctldev: the pin control device to lookup the pin on
143  * @name: the name of the pin to look up
144  */
pin_get_from_name(struct pinctrl_dev * pctldev,const char * name)145 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
146 {
147 	unsigned int i, pin;
148 
149 	/* The pin number can be retrived from the pin controller descriptor */
150 	for (i = 0; i < pctldev->desc->npins; i++) {
151 		struct pin_desc *desc;
152 
153 		pin = pctldev->desc->pins[i].number;
154 		desc = pin_desc_get(pctldev, pin);
155 		/* Pin space may be sparse */
156 		if (desc && !strcmp(name, desc->name))
157 			return pin;
158 	}
159 
160 	return -EINVAL;
161 }
162 
163 /**
164  * pin_get_name() - look up a pin name from a pin id
165  * @pctldev: the pin control device to lookup the pin on
166  * @pin: pin number/id to look up
167  */
pin_get_name(struct pinctrl_dev * pctldev,const unsigned int pin)168 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned int pin)
169 {
170 	const struct pin_desc *desc;
171 
172 	desc = pin_desc_get(pctldev, pin);
173 	if (!desc) {
174 		dev_err(pctldev->dev, "failed to get pin(%d) name\n",
175 			pin);
176 		return NULL;
177 	}
178 
179 	return desc->name;
180 }
181 EXPORT_SYMBOL_GPL(pin_get_name);
182 
183 /* Deletes a range of pin descriptors */
pinctrl_free_pindescs(struct pinctrl_dev * pctldev,const struct pinctrl_pin_desc * pins,unsigned int num_pins)184 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
185 				  const struct pinctrl_pin_desc *pins,
186 				  unsigned int num_pins)
187 {
188 	int i;
189 
190 	for (i = 0; i < num_pins; i++) {
191 		struct pin_desc *pindesc;
192 
193 		pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
194 					    pins[i].number);
195 		if (pindesc) {
196 			radix_tree_delete(&pctldev->pin_desc_tree,
197 					  pins[i].number);
198 			if (pindesc->dynamic_name)
199 				kfree(pindesc->name);
200 		}
201 		kfree(pindesc);
202 	}
203 }
204 
pinctrl_register_one_pin(struct pinctrl_dev * pctldev,const struct pinctrl_pin_desc * pin)205 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
206 				    const struct pinctrl_pin_desc *pin)
207 {
208 	struct pin_desc *pindesc;
209 	int error;
210 
211 	pindesc = pin_desc_get(pctldev, pin->number);
212 	if (pindesc) {
213 		dev_err(pctldev->dev, "pin %d already registered\n",
214 			pin->number);
215 		return -EINVAL;
216 	}
217 
218 	pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
219 	if (!pindesc)
220 		return -ENOMEM;
221 
222 	/* Set owner */
223 	pindesc->pctldev = pctldev;
224 #ifdef CONFIG_PINMUX
225 	mutex_init(&pindesc->mux_lock);
226 #endif
227 
228 	/* Copy basic pin info */
229 	if (pin->name) {
230 		pindesc->name = pin->name;
231 	} else {
232 		pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number);
233 		if (!pindesc->name) {
234 			error = -ENOMEM;
235 			goto failed;
236 		}
237 		pindesc->dynamic_name = true;
238 	}
239 
240 	pindesc->drv_data = pin->drv_data;
241 
242 	error = radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc);
243 	if (error)
244 		goto failed;
245 
246 	pr_debug("registered pin %d (%s) on %s\n",
247 		 pin->number, pindesc->name, pctldev->desc->name);
248 	return 0;
249 
250 failed:
251 	kfree(pindesc);
252 	return error;
253 }
254 
pinctrl_register_pins(struct pinctrl_dev * pctldev,const struct pinctrl_pin_desc * pins,unsigned int num_descs)255 static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
256 				 const struct pinctrl_pin_desc *pins,
257 				 unsigned int num_descs)
258 {
259 	unsigned int i;
260 	int ret = 0;
261 
262 	for (i = 0; i < num_descs; i++) {
263 		ret = pinctrl_register_one_pin(pctldev, &pins[i]);
264 		if (ret)
265 			return ret;
266 	}
267 
268 	return 0;
269 }
270 
271 /**
272  * gpio_to_pin() - GPIO range GPIO number to pin number translation
273  * @range: GPIO range used for the translation
274  * @gc: GPIO chip structure from the GPIO subsystem
275  * @offset: hardware offset of the GPIO relative to the controller
276  *
277  * Finds the pin number for a given GPIO using the specified GPIO range
278  * as a base for translation. The distinction between linear GPIO ranges
279  * and pin list based GPIO ranges is managed correctly by this function.
280  *
281  * This function assumes the gpio is part of the specified GPIO range, use
282  * only after making sure this is the case (e.g. by calling it on the
283  * result of successful pinctrl_get_device_gpio_range calls)!
284  */
gpio_to_pin(struct pinctrl_gpio_range * range,struct gpio_chip * gc,unsigned int offset)285 static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
286 			      struct gpio_chip *gc, unsigned int offset)
287 {
288 	unsigned int pin = gc->base + offset - range->base;
289 	if (range->pins)
290 		return range->pins[pin];
291 	else
292 		return range->pin_base + pin;
293 }
294 
295 /**
296  * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
297  * @pctldev: pin controller device to check
298  * @gc: GPIO chip structure from the GPIO subsystem
299  * @offset: hardware offset of the GPIO relative to the controller
300  *
301  * Tries to match a GPIO pin number to the ranges handled by a certain pin
302  * controller, return the range or NULL
303  */
304 static struct pinctrl_gpio_range *
pinctrl_match_gpio_range(struct pinctrl_dev * pctldev,struct gpio_chip * gc,unsigned int offset)305 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, struct gpio_chip *gc,
306 			 unsigned int offset)
307 {
308 	struct pinctrl_gpio_range *range;
309 
310 	mutex_lock(&pctldev->mutex);
311 	/* Loop over the ranges */
312 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
313 		/* Check if we're in the valid range */
314 		if ((gc->base + offset) >= range->base &&
315 		    (gc->base + offset) < range->base + range->npins) {
316 			mutex_unlock(&pctldev->mutex);
317 			return range;
318 		}
319 	}
320 	mutex_unlock(&pctldev->mutex);
321 	return NULL;
322 }
323 
324 /**
325  * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
326  * the same GPIO chip are in range
327  * @gc: GPIO chip structure from the GPIO subsystem
328  * @offset: hardware offset of the GPIO relative to the controller
329  *
330  * This function is complement of pinctrl_match_gpio_range(). If the return
331  * value of pinctrl_match_gpio_range() is NULL, this function could be used
332  * to check whether pinctrl device is ready or not. Maybe some GPIO pins
333  * of the same GPIO chip don't have back-end pinctrl interface.
334  * If the return value is true, it means that pinctrl device is ready & the
335  * certain GPIO pin doesn't have back-end pinctrl device. If the return value
336  * is false, it means that pinctrl device may not be ready.
337  */
338 #ifdef CONFIG_GPIOLIB
pinctrl_ready_for_gpio_range(struct gpio_chip * gc,unsigned int offset)339 static bool pinctrl_ready_for_gpio_range(struct gpio_chip *gc,
340 					 unsigned int offset)
341 {
342 	struct pinctrl_dev *pctldev;
343 	struct pinctrl_gpio_range *range = NULL;
344 
345 	mutex_lock(&pinctrldev_list_mutex);
346 
347 	/* Loop over the pin controllers */
348 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
349 		/* Loop over the ranges */
350 		mutex_lock(&pctldev->mutex);
351 		list_for_each_entry(range, &pctldev->gpio_ranges, node) {
352 			/* Check if any gpio range overlapped with gpio chip */
353 			if (range->base + range->npins - 1 < gc->base ||
354 			    range->base > gc->base + gc->ngpio - 1)
355 				continue;
356 			mutex_unlock(&pctldev->mutex);
357 			mutex_unlock(&pinctrldev_list_mutex);
358 			return true;
359 		}
360 		mutex_unlock(&pctldev->mutex);
361 	}
362 
363 	mutex_unlock(&pinctrldev_list_mutex);
364 
365 	return false;
366 }
367 #else
368 static inline bool
pinctrl_ready_for_gpio_range(struct gpio_chip * gc,unsigned int offset)369 pinctrl_ready_for_gpio_range(struct gpio_chip *gc, unsigned int offset)
370 {
371 	return true;
372 }
373 #endif
374 
375 /**
376  * pinctrl_get_device_gpio_range() - find device for GPIO range
377  * @gc: GPIO chip structure from the GPIO subsystem
378  * @offset: hardware offset of the GPIO relative to the controller
379  * @outdev: the pin control device if found
380  * @outrange: the GPIO range if found
381  *
382  * Find the pin controller handling a certain GPIO pin from the pinspace of
383  * the GPIO subsystem, return the device and the matching GPIO range. Returns
384  * -EPROBE_DEFER if the GPIO range could not be found in any device since it
385  * may still have not been registered.
386  */
pinctrl_get_device_gpio_range(struct gpio_chip * gc,unsigned int offset,struct pinctrl_dev ** outdev,struct pinctrl_gpio_range ** outrange)387 static int pinctrl_get_device_gpio_range(struct gpio_chip *gc,
388 					 unsigned int offset,
389 					 struct pinctrl_dev **outdev,
390 					 struct pinctrl_gpio_range **outrange)
391 {
392 	struct pinctrl_dev *pctldev;
393 
394 	mutex_lock(&pinctrldev_list_mutex);
395 
396 	/* Loop over the pin controllers */
397 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
398 		struct pinctrl_gpio_range *range;
399 
400 		range = pinctrl_match_gpio_range(pctldev, gc, offset);
401 		if (range) {
402 			*outdev = pctldev;
403 			*outrange = range;
404 			mutex_unlock(&pinctrldev_list_mutex);
405 			return 0;
406 		}
407 	}
408 
409 	mutex_unlock(&pinctrldev_list_mutex);
410 
411 	return -EPROBE_DEFER;
412 }
413 
414 /**
415  * pinctrl_add_gpio_range() - register a GPIO range for a controller
416  * @pctldev: pin controller device to add the range to
417  * @range: the GPIO range to add
418  *
419  * DEPRECATED: Don't use this function in new code.  See section 2 of
420  * Documentation/devicetree/bindings/gpio/gpio.txt on how to bind pinctrl and
421  * gpio drivers.
422  *
423  * This adds a range of GPIOs to be handled by a certain pin controller. Call
424  * this to register handled ranges after registering your pin controller.
425  */
pinctrl_add_gpio_range(struct pinctrl_dev * pctldev,struct pinctrl_gpio_range * range)426 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
427 			    struct pinctrl_gpio_range *range)
428 {
429 	mutex_lock(&pctldev->mutex);
430 	list_add_tail(&range->node, &pctldev->gpio_ranges);
431 	mutex_unlock(&pctldev->mutex);
432 }
433 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
434 
pinctrl_add_gpio_ranges(struct pinctrl_dev * pctldev,struct pinctrl_gpio_range * ranges,unsigned int nranges)435 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
436 			     struct pinctrl_gpio_range *ranges,
437 			     unsigned int nranges)
438 {
439 	int i;
440 
441 	for (i = 0; i < nranges; i++)
442 		pinctrl_add_gpio_range(pctldev, &ranges[i]);
443 }
444 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
445 
pinctrl_find_and_add_gpio_range(const char * devname,struct pinctrl_gpio_range * range)446 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
447 		struct pinctrl_gpio_range *range)
448 {
449 	struct pinctrl_dev *pctldev;
450 
451 	pctldev = get_pinctrl_dev_from_devname(devname);
452 
453 	/*
454 	 * If we can't find this device, let's assume that is because
455 	 * it has not probed yet, so the driver trying to register this
456 	 * range need to defer probing.
457 	 */
458 	if (!pctldev)
459 		return ERR_PTR(-EPROBE_DEFER);
460 
461 	pinctrl_add_gpio_range(pctldev, range);
462 
463 	return pctldev;
464 }
465 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
466 
pinctrl_get_group_pins(struct pinctrl_dev * pctldev,const char * pin_group,const unsigned int ** pins,unsigned int * num_pins)467 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
468 			   const unsigned int **pins, unsigned int *num_pins)
469 {
470 	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
471 	int gs;
472 
473 	if (!pctlops->get_group_pins)
474 		return -EINVAL;
475 
476 	gs = pinctrl_get_group_selector(pctldev, pin_group);
477 	if (gs < 0)
478 		return gs;
479 
480 	return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
481 }
482 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
483 
484 struct pinctrl_gpio_range *
pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev * pctldev,unsigned int pin)485 pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
486 					unsigned int pin)
487 {
488 	struct pinctrl_gpio_range *range;
489 
490 	/* Loop over the ranges */
491 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
492 		/* Check if we're in the valid range */
493 		if (range->pins) {
494 			int a;
495 			for (a = 0; a < range->npins; a++) {
496 				if (range->pins[a] == pin)
497 					return range;
498 			}
499 		} else if (pin >= range->pin_base &&
500 			   pin < range->pin_base + range->npins)
501 			return range;
502 	}
503 
504 	return NULL;
505 }
506 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);
507 
508 /**
509  * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
510  * @pctldev: the pin controller device to look in
511  * @pin: a controller-local number to find the range for
512  */
513 struct pinctrl_gpio_range *
pinctrl_find_gpio_range_from_pin(struct pinctrl_dev * pctldev,unsigned int pin)514 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
515 				 unsigned int pin)
516 {
517 	struct pinctrl_gpio_range *range;
518 
519 	mutex_lock(&pctldev->mutex);
520 	range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
521 	mutex_unlock(&pctldev->mutex);
522 
523 	return range;
524 }
525 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
526 
527 /**
528  * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller
529  * @pctldev: pin controller device to remove the range from
530  * @range: the GPIO range to remove
531  */
pinctrl_remove_gpio_range(struct pinctrl_dev * pctldev,struct pinctrl_gpio_range * range)532 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
533 			       struct pinctrl_gpio_range *range)
534 {
535 	mutex_lock(&pctldev->mutex);
536 	list_del(&range->node);
537 	mutex_unlock(&pctldev->mutex);
538 }
539 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
540 
541 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS
542 
543 /**
544  * pinctrl_generic_get_group_count() - returns the number of pin groups
545  * @pctldev: pin controller device
546  */
pinctrl_generic_get_group_count(struct pinctrl_dev * pctldev)547 int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev)
548 {
549 	return pctldev->num_groups;
550 }
551 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count);
552 
553 /**
554  * pinctrl_generic_get_group_name() - returns the name of a pin group
555  * @pctldev: pin controller device
556  * @selector: group number
557  */
pinctrl_generic_get_group_name(struct pinctrl_dev * pctldev,unsigned int selector)558 const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev,
559 					   unsigned int selector)
560 {
561 	struct group_desc *group;
562 
563 	group = radix_tree_lookup(&pctldev->pin_group_tree,
564 				  selector);
565 	if (!group)
566 		return NULL;
567 
568 	return group->grp.name;
569 }
570 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name);
571 
572 /**
573  * pinctrl_generic_get_group_pins() - gets the pin group pins
574  * @pctldev: pin controller device
575  * @selector: group number
576  * @pins: pins in the group
577  * @num_pins: number of pins in the group
578  */
pinctrl_generic_get_group_pins(struct pinctrl_dev * pctldev,unsigned int selector,const unsigned int ** pins,unsigned int * num_pins)579 int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev,
580 				   unsigned int selector,
581 				   const unsigned int **pins,
582 				   unsigned int *num_pins)
583 {
584 	struct group_desc *group;
585 
586 	group = radix_tree_lookup(&pctldev->pin_group_tree,
587 				  selector);
588 	if (!group) {
589 		dev_err(pctldev->dev, "%s could not find pingroup%i\n",
590 			__func__, selector);
591 		return -EINVAL;
592 	}
593 
594 	*pins = group->grp.pins;
595 	*num_pins = group->grp.npins;
596 
597 	return 0;
598 }
599 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins);
600 
601 /**
602  * pinctrl_generic_get_group() - returns a pin group based on the number
603  * @pctldev: pin controller device
604  * @selector: group number
605  */
pinctrl_generic_get_group(struct pinctrl_dev * pctldev,unsigned int selector)606 struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev,
607 					     unsigned int selector)
608 {
609 	struct group_desc *group;
610 
611 	group = radix_tree_lookup(&pctldev->pin_group_tree,
612 				  selector);
613 	if (!group)
614 		return NULL;
615 
616 	return group;
617 }
618 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group);
619 
pinctrl_generic_group_name_to_selector(struct pinctrl_dev * pctldev,const char * function)620 static int pinctrl_generic_group_name_to_selector(struct pinctrl_dev *pctldev,
621 						  const char *function)
622 {
623 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
624 	int ngroups = ops->get_groups_count(pctldev);
625 	int selector = 0;
626 
627 	/* See if this pctldev has this group */
628 	while (selector < ngroups) {
629 		const char *gname = ops->get_group_name(pctldev, selector);
630 
631 		if (gname && !strcmp(function, gname))
632 			return selector;
633 
634 		selector++;
635 	}
636 
637 	return -EINVAL;
638 }
639 
640 /**
641  * pinctrl_generic_add_group() - adds a new pin group
642  * @pctldev: pin controller device
643  * @name: name of the pin group
644  * @pins: pins in the pin group
645  * @num_pins: number of pins in the pin group
646  * @data: pin controller driver specific data
647  *
648  * Note that the caller must take care of locking.
649  */
pinctrl_generic_add_group(struct pinctrl_dev * pctldev,const char * name,const unsigned int * pins,int num_pins,void * data)650 int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name,
651 			      const unsigned int *pins, int num_pins, void *data)
652 {
653 	struct group_desc *group;
654 	int selector, error;
655 
656 	if (!name)
657 		return -EINVAL;
658 
659 	selector = pinctrl_generic_group_name_to_selector(pctldev, name);
660 	if (selector >= 0)
661 		return selector;
662 
663 	selector = pctldev->num_groups;
664 
665 	group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL);
666 	if (!group)
667 		return -ENOMEM;
668 
669 	*group = PINCTRL_GROUP_DESC(name, pins, num_pins, data);
670 
671 	error = radix_tree_insert(&pctldev->pin_group_tree, selector, group);
672 	if (error)
673 		return error;
674 
675 	pctldev->num_groups++;
676 
677 	return selector;
678 }
679 EXPORT_SYMBOL_GPL(pinctrl_generic_add_group);
680 
681 /**
682  * pinctrl_generic_remove_group() - removes a numbered pin group
683  * @pctldev: pin controller device
684  * @selector: group number
685  *
686  * Note that the caller must take care of locking.
687  */
pinctrl_generic_remove_group(struct pinctrl_dev * pctldev,unsigned int selector)688 int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev,
689 				 unsigned int selector)
690 {
691 	struct group_desc *group;
692 
693 	group = radix_tree_lookup(&pctldev->pin_group_tree,
694 				  selector);
695 	if (!group)
696 		return -ENOENT;
697 
698 	radix_tree_delete(&pctldev->pin_group_tree, selector);
699 	devm_kfree(pctldev->dev, group);
700 
701 	pctldev->num_groups--;
702 
703 	return 0;
704 }
705 EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group);
706 
707 /**
708  * pinctrl_generic_free_groups() - removes all pin groups
709  * @pctldev: pin controller device
710  *
711  * Note that the caller must take care of locking. The pinctrl groups
712  * are allocated with devm_kzalloc() so no need to free them here.
713  */
pinctrl_generic_free_groups(struct pinctrl_dev * pctldev)714 static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
715 {
716 	struct radix_tree_iter iter;
717 	void __rcu **slot;
718 
719 	radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0)
720 		radix_tree_delete(&pctldev->pin_group_tree, iter.index);
721 
722 	pctldev->num_groups = 0;
723 }
724 
725 #else
pinctrl_generic_free_groups(struct pinctrl_dev * pctldev)726 static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
727 {
728 }
729 #endif /* CONFIG_GENERIC_PINCTRL_GROUPS */
730 
731 /**
732  * pinctrl_get_group_selector() - returns the group selector for a group
733  * @pctldev: the pin controller handling the group
734  * @pin_group: the pin group to look up
735  */
pinctrl_get_group_selector(struct pinctrl_dev * pctldev,const char * pin_group)736 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
737 			       const char *pin_group)
738 {
739 	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
740 	unsigned int ngroups = pctlops->get_groups_count(pctldev);
741 	unsigned int group_selector = 0;
742 
743 	while (group_selector < ngroups) {
744 		const char *gname = pctlops->get_group_name(pctldev,
745 							    group_selector);
746 		if (gname && !strcmp(gname, pin_group)) {
747 			dev_dbg(pctldev->dev,
748 				"found group selector %u for %s\n",
749 				group_selector,
750 				pin_group);
751 			return group_selector;
752 		}
753 
754 		group_selector++;
755 	}
756 
757 	dev_err(pctldev->dev, "does not have pin group %s\n",
758 		pin_group);
759 
760 	return -EINVAL;
761 }
762 
pinctrl_gpio_can_use_line(struct gpio_chip * gc,unsigned int offset)763 bool pinctrl_gpio_can_use_line(struct gpio_chip *gc, unsigned int offset)
764 {
765 	struct pinctrl_dev *pctldev;
766 	struct pinctrl_gpio_range *range;
767 	bool result;
768 	int pin;
769 
770 	/*
771 	 * Try to obtain GPIO range, if it fails
772 	 * we're probably dealing with GPIO driver
773 	 * without a backing pin controller - bail out.
774 	 */
775 	if (pinctrl_get_device_gpio_range(gc, offset, &pctldev, &range))
776 		return true;
777 
778 	mutex_lock(&pctldev->mutex);
779 
780 	/* Convert to the pin controllers number space */
781 	pin = gpio_to_pin(range, gc, offset);
782 
783 	result = pinmux_can_be_used_for_gpio(pctldev, pin);
784 
785 	mutex_unlock(&pctldev->mutex);
786 
787 	return result;
788 }
789 EXPORT_SYMBOL_GPL(pinctrl_gpio_can_use_line);
790 
791 /**
792  * pinctrl_gpio_request() - request a single pin to be used as GPIO
793  * @gc: GPIO chip structure from the GPIO subsystem
794  * @offset: hardware offset of the GPIO relative to the controller
795  *
796  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
797  * as part of their gpio_request() semantics, platforms and individual drivers
798  * shall *NOT* request GPIO pins to be muxed in.
799  */
pinctrl_gpio_request(struct gpio_chip * gc,unsigned int offset)800 int pinctrl_gpio_request(struct gpio_chip *gc, unsigned int offset)
801 {
802 	struct pinctrl_gpio_range *range;
803 	struct pinctrl_dev *pctldev;
804 	int ret, pin;
805 
806 	ret = pinctrl_get_device_gpio_range(gc, offset, &pctldev, &range);
807 	if (ret) {
808 		if (pinctrl_ready_for_gpio_range(gc, offset))
809 			ret = 0;
810 		return ret;
811 	}
812 
813 	mutex_lock(&pctldev->mutex);
814 
815 	/* Convert to the pin controllers number space */
816 	pin = gpio_to_pin(range, gc, offset);
817 
818 	ret = pinmux_request_gpio(pctldev, range, pin, gc->base + offset);
819 
820 	mutex_unlock(&pctldev->mutex);
821 
822 	return ret;
823 }
824 EXPORT_SYMBOL_GPL(pinctrl_gpio_request);
825 
826 /**
827  * pinctrl_gpio_free() - free control on a single pin, currently used as GPIO
828  * @gc: GPIO chip structure from the GPIO subsystem
829  * @offset: hardware offset of the GPIO relative to the controller
830  *
831  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
832  * as part of their gpio_request() semantics, platforms and individual drivers
833  * shall *NOT* request GPIO pins to be muxed in.
834  */
pinctrl_gpio_free(struct gpio_chip * gc,unsigned int offset)835 void pinctrl_gpio_free(struct gpio_chip *gc, unsigned int offset)
836 {
837 	struct pinctrl_gpio_range *range;
838 	struct pinctrl_dev *pctldev;
839 	int ret, pin;
840 
841 	ret = pinctrl_get_device_gpio_range(gc, offset, &pctldev, &range);
842 	if (ret)
843 		return;
844 
845 	mutex_lock(&pctldev->mutex);
846 
847 	/* Convert to the pin controllers number space */
848 	pin = gpio_to_pin(range, gc, offset);
849 
850 	pinmux_free_gpio(pctldev, pin, range);
851 
852 	mutex_unlock(&pctldev->mutex);
853 }
854 EXPORT_SYMBOL_GPL(pinctrl_gpio_free);
855 
pinctrl_gpio_direction(struct gpio_chip * gc,unsigned int offset,bool input)856 static int pinctrl_gpio_direction(struct gpio_chip *gc, unsigned int offset,
857 				  bool input)
858 {
859 	struct pinctrl_dev *pctldev;
860 	struct pinctrl_gpio_range *range;
861 	int ret;
862 	int pin;
863 
864 	ret = pinctrl_get_device_gpio_range(gc, offset, &pctldev, &range);
865 	if (ret) {
866 		return ret;
867 	}
868 
869 	mutex_lock(&pctldev->mutex);
870 
871 	/* Convert to the pin controllers number space */
872 	pin = gpio_to_pin(range, gc, offset);
873 	ret = pinmux_gpio_direction(pctldev, range, pin, input);
874 
875 	mutex_unlock(&pctldev->mutex);
876 
877 	return ret;
878 }
879 
880 /**
881  * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
882  * @gc: GPIO chip structure from the GPIO subsystem
883  * @offset: hardware offset of the GPIO relative to the controller
884  *
885  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
886  * as part of their gpio_direction_input() semantics, platforms and individual
887  * drivers shall *NOT* touch pin control GPIO calls.
888  */
pinctrl_gpio_direction_input(struct gpio_chip * gc,unsigned int offset)889 int pinctrl_gpio_direction_input(struct gpio_chip *gc, unsigned int offset)
890 {
891 	return pinctrl_gpio_direction(gc, offset, true);
892 }
893 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
894 
895 /**
896  * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
897  * @gc: GPIO chip structure from the GPIO subsystem
898  * @offset: hardware offset of the GPIO relative to the controller
899  *
900  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
901  * as part of their gpio_direction_output() semantics, platforms and individual
902  * drivers shall *NOT* touch pin control GPIO calls.
903  */
pinctrl_gpio_direction_output(struct gpio_chip * gc,unsigned int offset)904 int pinctrl_gpio_direction_output(struct gpio_chip *gc, unsigned int offset)
905 {
906 	return pinctrl_gpio_direction(gc, offset, false);
907 }
908 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
909 
910 /**
911  * pinctrl_gpio_set_config() - Apply config to given GPIO pin
912  * @gc: GPIO chip structure from the GPIO subsystem
913  * @offset: hardware offset of the GPIO relative to the controller
914  * @config: the configuration to apply to the GPIO
915  *
916  * This function should *ONLY* be used from gpiolib-based GPIO drivers, if
917  * they need to call the underlying pin controller to change GPIO config
918  * (for example set debounce time).
919  */
pinctrl_gpio_set_config(struct gpio_chip * gc,unsigned int offset,unsigned long config)920 int pinctrl_gpio_set_config(struct gpio_chip *gc, unsigned int offset,
921 				unsigned long config)
922 {
923 	unsigned long configs[] = { config };
924 	struct pinctrl_gpio_range *range;
925 	struct pinctrl_dev *pctldev;
926 	int ret, pin;
927 
928 	ret = pinctrl_get_device_gpio_range(gc, offset, &pctldev, &range);
929 	if (ret)
930 		return ret;
931 
932 	mutex_lock(&pctldev->mutex);
933 	pin = gpio_to_pin(range, gc, offset);
934 	ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs));
935 	mutex_unlock(&pctldev->mutex);
936 
937 	return ret;
938 }
939 EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config);
940 
find_state(struct pinctrl * p,const char * name)941 static struct pinctrl_state *find_state(struct pinctrl *p,
942 					const char *name)
943 {
944 	struct pinctrl_state *state;
945 
946 	list_for_each_entry(state, &p->states, node)
947 		if (!strcmp(state->name, name))
948 			return state;
949 
950 	return NULL;
951 }
952 
create_state(struct pinctrl * p,const char * name)953 static struct pinctrl_state *create_state(struct pinctrl *p,
954 					  const char *name)
955 {
956 	struct pinctrl_state *state;
957 
958 	state = kzalloc(sizeof(*state), GFP_KERNEL);
959 	if (!state)
960 		return ERR_PTR(-ENOMEM);
961 
962 	state->name = name;
963 	INIT_LIST_HEAD(&state->settings);
964 
965 	list_add_tail(&state->node, &p->states);
966 
967 	return state;
968 }
969 
add_setting(struct pinctrl * p,struct pinctrl_dev * pctldev,const struct pinctrl_map * map)970 static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev,
971 		       const struct pinctrl_map *map)
972 {
973 	struct pinctrl_state *state;
974 	struct pinctrl_setting *setting;
975 	int ret;
976 
977 	state = find_state(p, map->name);
978 	if (!state)
979 		state = create_state(p, map->name);
980 	if (IS_ERR(state))
981 		return PTR_ERR(state);
982 
983 	if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
984 		return 0;
985 
986 	setting = kzalloc(sizeof(*setting), GFP_KERNEL);
987 	if (!setting)
988 		return -ENOMEM;
989 
990 	setting->type = map->type;
991 
992 	if (pctldev)
993 		setting->pctldev = pctldev;
994 	else
995 		setting->pctldev =
996 			get_pinctrl_dev_from_devname(map->ctrl_dev_name);
997 	if (!setting->pctldev) {
998 		kfree(setting);
999 		/* Do not defer probing of hogs (circular loop) */
1000 		if (!strcmp(map->ctrl_dev_name, map->dev_name))
1001 			return -ENODEV;
1002 		/*
1003 		 * OK let us guess that the driver is not there yet, and
1004 		 * let's defer obtaining this pinctrl handle to later...
1005 		 */
1006 		dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
1007 			map->ctrl_dev_name);
1008 		return -EPROBE_DEFER;
1009 	}
1010 
1011 	setting->dev_name = map->dev_name;
1012 
1013 	switch (map->type) {
1014 	case PIN_MAP_TYPE_MUX_GROUP:
1015 		ret = pinmux_map_to_setting(map, setting);
1016 		break;
1017 	case PIN_MAP_TYPE_CONFIGS_PIN:
1018 	case PIN_MAP_TYPE_CONFIGS_GROUP:
1019 		ret = pinconf_map_to_setting(map, setting);
1020 		break;
1021 	default:
1022 		ret = -EINVAL;
1023 		break;
1024 	}
1025 	if (ret < 0) {
1026 		kfree(setting);
1027 		return ret;
1028 	}
1029 
1030 	list_add_tail(&setting->node, &state->settings);
1031 
1032 	return 0;
1033 }
1034 
find_pinctrl(struct device * dev)1035 static struct pinctrl *find_pinctrl(struct device *dev)
1036 {
1037 	struct pinctrl *p;
1038 
1039 	mutex_lock(&pinctrl_list_mutex);
1040 	list_for_each_entry(p, &pinctrl_list, node)
1041 		if (p->dev == dev) {
1042 			mutex_unlock(&pinctrl_list_mutex);
1043 			return p;
1044 		}
1045 
1046 	mutex_unlock(&pinctrl_list_mutex);
1047 	return NULL;
1048 }
1049 
1050 static void pinctrl_free(struct pinctrl *p, bool inlist);
1051 
create_pinctrl(struct device * dev,struct pinctrl_dev * pctldev)1052 static struct pinctrl *create_pinctrl(struct device *dev,
1053 				      struct pinctrl_dev *pctldev)
1054 {
1055 	struct pinctrl *p;
1056 	const char *devname;
1057 	struct pinctrl_maps *maps_node;
1058 	const struct pinctrl_map *map;
1059 	int ret;
1060 
1061 	/*
1062 	 * create the state cookie holder struct pinctrl for each
1063 	 * mapping, this is what consumers will get when requesting
1064 	 * a pin control handle with pinctrl_get()
1065 	 */
1066 	p = kzalloc(sizeof(*p), GFP_KERNEL);
1067 	if (!p)
1068 		return ERR_PTR(-ENOMEM);
1069 	p->dev = dev;
1070 	INIT_LIST_HEAD(&p->states);
1071 	INIT_LIST_HEAD(&p->dt_maps);
1072 
1073 	ret = pinctrl_dt_to_map(p, pctldev);
1074 	if (ret < 0) {
1075 		kfree(p);
1076 		return ERR_PTR(ret);
1077 	}
1078 
1079 	devname = dev_name(dev);
1080 
1081 	mutex_lock(&pinctrl_maps_mutex);
1082 	/* Iterate over the pin control maps to locate the right ones */
1083 	for_each_pin_map(maps_node, map) {
1084 		/* Map must be for this device */
1085 		if (strcmp(map->dev_name, devname))
1086 			continue;
1087 		/*
1088 		 * If pctldev is not null, we are claiming hog for it,
1089 		 * that means, setting that is served by pctldev by itself.
1090 		 *
1091 		 * Thus we must skip map that is for this device but is served
1092 		 * by other device.
1093 		 */
1094 		if (pctldev &&
1095 		    strcmp(dev_name(pctldev->dev), map->ctrl_dev_name))
1096 			continue;
1097 
1098 		ret = add_setting(p, pctldev, map);
1099 		/*
1100 		 * At this point the adding of a setting may:
1101 		 *
1102 		 * - Defer, if the pinctrl device is not yet available
1103 		 * - Fail, if the pinctrl device is not yet available,
1104 		 *   AND the setting is a hog. We cannot defer that, since
1105 		 *   the hog will kick in immediately after the device
1106 		 *   is registered.
1107 		 *
1108 		 * If the error returned was not -EPROBE_DEFER then we
1109 		 * accumulate the errors to see if we end up with
1110 		 * an -EPROBE_DEFER later, as that is the worst case.
1111 		 */
1112 		if (ret == -EPROBE_DEFER) {
1113 			mutex_unlock(&pinctrl_maps_mutex);
1114 			pinctrl_free(p, false);
1115 			return ERR_PTR(ret);
1116 		}
1117 	}
1118 	mutex_unlock(&pinctrl_maps_mutex);
1119 
1120 	if (ret < 0) {
1121 		/* If some other error than deferral occurred, return here */
1122 		pinctrl_free(p, false);
1123 		return ERR_PTR(ret);
1124 	}
1125 
1126 	kref_init(&p->users);
1127 
1128 	/* Add the pinctrl handle to the global list */
1129 	mutex_lock(&pinctrl_list_mutex);
1130 	list_add_tail(&p->node, &pinctrl_list);
1131 	mutex_unlock(&pinctrl_list_mutex);
1132 
1133 	return p;
1134 }
1135 
1136 /**
1137  * pinctrl_get() - retrieves the pinctrl handle for a device
1138  * @dev: the device to obtain the handle for
1139  */
pinctrl_get(struct device * dev)1140 struct pinctrl *pinctrl_get(struct device *dev)
1141 {
1142 	struct pinctrl *p;
1143 
1144 	if (WARN_ON(!dev))
1145 		return ERR_PTR(-EINVAL);
1146 
1147 	/*
1148 	 * See if somebody else (such as the device core) has already
1149 	 * obtained a handle to the pinctrl for this device. In that case,
1150 	 * return another pointer to it.
1151 	 */
1152 	p = find_pinctrl(dev);
1153 	if (p) {
1154 		dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
1155 		kref_get(&p->users);
1156 		return p;
1157 	}
1158 
1159 	return create_pinctrl(dev, NULL);
1160 }
1161 EXPORT_SYMBOL_GPL(pinctrl_get);
1162 
pinctrl_free_setting(bool disable_setting,struct pinctrl_setting * setting)1163 static void pinctrl_free_setting(bool disable_setting,
1164 				 struct pinctrl_setting *setting)
1165 {
1166 	switch (setting->type) {
1167 	case PIN_MAP_TYPE_MUX_GROUP:
1168 		if (disable_setting)
1169 			pinmux_disable_setting(setting);
1170 		pinmux_free_setting(setting);
1171 		break;
1172 	case PIN_MAP_TYPE_CONFIGS_PIN:
1173 	case PIN_MAP_TYPE_CONFIGS_GROUP:
1174 		pinconf_free_setting(setting);
1175 		break;
1176 	default:
1177 		break;
1178 	}
1179 }
1180 
pinctrl_free(struct pinctrl * p,bool inlist)1181 static void pinctrl_free(struct pinctrl *p, bool inlist)
1182 {
1183 	struct pinctrl_state *state, *n1;
1184 	struct pinctrl_setting *setting, *n2;
1185 
1186 	mutex_lock(&pinctrl_list_mutex);
1187 	list_for_each_entry_safe(state, n1, &p->states, node) {
1188 		list_for_each_entry_safe(setting, n2, &state->settings, node) {
1189 			pinctrl_free_setting(state == p->state, setting);
1190 			list_del(&setting->node);
1191 			kfree(setting);
1192 		}
1193 		list_del(&state->node);
1194 		kfree(state);
1195 	}
1196 
1197 	pinctrl_dt_free_maps(p);
1198 
1199 	if (inlist)
1200 		list_del(&p->node);
1201 	kfree(p);
1202 	mutex_unlock(&pinctrl_list_mutex);
1203 }
1204 
1205 /**
1206  * pinctrl_release() - release the pinctrl handle
1207  * @kref: the kref in the pinctrl being released
1208  */
pinctrl_release(struct kref * kref)1209 static void pinctrl_release(struct kref *kref)
1210 {
1211 	struct pinctrl *p = container_of(kref, struct pinctrl, users);
1212 
1213 	pinctrl_free(p, true);
1214 }
1215 
1216 /**
1217  * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
1218  * @p: the pinctrl handle to release
1219  */
pinctrl_put(struct pinctrl * p)1220 void pinctrl_put(struct pinctrl *p)
1221 {
1222 	kref_put(&p->users, pinctrl_release);
1223 }
1224 EXPORT_SYMBOL_GPL(pinctrl_put);
1225 
1226 /**
1227  * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
1228  * @p: the pinctrl handle to retrieve the state from
1229  * @name: the state name to retrieve
1230  */
pinctrl_lookup_state(struct pinctrl * p,const char * name)1231 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
1232 						 const char *name)
1233 {
1234 	struct pinctrl_state *state;
1235 
1236 	state = find_state(p, name);
1237 	if (!state) {
1238 		if (pinctrl_dummy_state) {
1239 			/* create dummy state */
1240 			dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
1241 				name);
1242 			state = create_state(p, name);
1243 		} else
1244 			state = ERR_PTR(-ENODEV);
1245 	}
1246 
1247 	return state;
1248 }
1249 EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
1250 
pinctrl_link_add(struct pinctrl_dev * pctldev,struct device * consumer)1251 static void pinctrl_link_add(struct pinctrl_dev *pctldev,
1252 			     struct device *consumer)
1253 {
1254 	if (pctldev->desc->link_consumers)
1255 		device_link_add(consumer, pctldev->dev,
1256 				DL_FLAG_PM_RUNTIME |
1257 				DL_FLAG_AUTOREMOVE_CONSUMER);
1258 }
1259 
pinctrl_cond_disable_mux_setting(struct pinctrl_state * state,struct pinctrl_setting * target_setting)1260 static void pinctrl_cond_disable_mux_setting(struct pinctrl_state *state,
1261 					     struct pinctrl_setting *target_setting)
1262 {
1263 	struct pinctrl_setting *setting;
1264 
1265 	list_for_each_entry(setting, &state->settings, node) {
1266 		if (target_setting && (&setting->node == &target_setting->node))
1267 			break;
1268 
1269 		if (setting->type == PIN_MAP_TYPE_MUX_GROUP)
1270 			pinmux_disable_setting(setting);
1271 	}
1272 }
1273 
1274 /**
1275  * pinctrl_commit_state() - select/activate/program a pinctrl state to HW
1276  * @p: the pinctrl handle for the device that requests configuration
1277  * @state: the state handle to select/activate/program
1278  */
pinctrl_commit_state(struct pinctrl * p,struct pinctrl_state * state)1279 static int pinctrl_commit_state(struct pinctrl *p, struct pinctrl_state *state)
1280 {
1281 	struct pinctrl_setting *setting;
1282 	struct pinctrl_state *old_state = READ_ONCE(p->state);
1283 	int ret;
1284 
1285 	if (old_state) {
1286 		/*
1287 		 * For each pinmux setting in the old state, forget SW's record
1288 		 * of mux owner for that pingroup. Any pingroups which are
1289 		 * still owned by the new state will be re-acquired by the call
1290 		 * to pinmux_enable_setting() in the loop below.
1291 		 */
1292 		pinctrl_cond_disable_mux_setting(old_state, NULL);
1293 	}
1294 
1295 	p->state = NULL;
1296 
1297 	/* Apply all the settings for the new state - pinmux first */
1298 	list_for_each_entry(setting, &state->settings, node) {
1299 		switch (setting->type) {
1300 		case PIN_MAP_TYPE_MUX_GROUP:
1301 			ret = pinmux_enable_setting(setting);
1302 			break;
1303 		case PIN_MAP_TYPE_CONFIGS_PIN:
1304 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1305 			ret = 0;
1306 			break;
1307 		default:
1308 			ret = -EINVAL;
1309 			break;
1310 		}
1311 
1312 		if (ret < 0)
1313 			goto unapply_new_state;
1314 
1315 		/* Do not link hogs (circular dependency) */
1316 		if (p != setting->pctldev->p)
1317 			pinctrl_link_add(setting->pctldev, p->dev);
1318 	}
1319 
1320 	/* Apply all the settings for the new state - pinconf after */
1321 	list_for_each_entry(setting, &state->settings, node) {
1322 		switch (setting->type) {
1323 		case PIN_MAP_TYPE_MUX_GROUP:
1324 			ret = 0;
1325 			break;
1326 		case PIN_MAP_TYPE_CONFIGS_PIN:
1327 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1328 			ret = pinconf_apply_setting(setting);
1329 			break;
1330 		default:
1331 			ret = -EINVAL;
1332 			break;
1333 		}
1334 
1335 		if (ret < 0) {
1336 			goto unapply_mux_setting;
1337 		}
1338 
1339 		/* Do not link hogs (circular dependency) */
1340 		if (p != setting->pctldev->p)
1341 			pinctrl_link_add(setting->pctldev, p->dev);
1342 	}
1343 
1344 	p->state = state;
1345 
1346 	return 0;
1347 
1348 unapply_mux_setting:
1349 	pinctrl_cond_disable_mux_setting(state, NULL);
1350 	goto restore_old_state;
1351 
1352 unapply_new_state:
1353 	dev_err(p->dev, "Error applying setting, reverse things back\n");
1354 
1355 	/*
1356 	 * All we can do here is pinmux_disable_setting.
1357 	 * That means that some pins are muxed differently now
1358 	 * than they were before applying the setting (We can't
1359 	 * "unmux a pin"!), but it's not a big deal since the pins
1360 	 * are free to be muxed by another apply_setting.
1361 	 */
1362 	pinctrl_cond_disable_mux_setting(state, setting);
1363 
1364 restore_old_state:
1365 	/* There's no infinite recursive loop here because p->state is NULL */
1366 	if (old_state)
1367 		pinctrl_select_state(p, old_state);
1368 
1369 	return ret;
1370 }
1371 
1372 /**
1373  * pinctrl_select_state() - select/activate/program a pinctrl state to HW
1374  * @p: the pinctrl handle for the device that requests configuration
1375  * @state: the state handle to select/activate/program
1376  */
pinctrl_select_state(struct pinctrl * p,struct pinctrl_state * state)1377 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
1378 {
1379 	if (p->state == state)
1380 		return 0;
1381 
1382 	return pinctrl_commit_state(p, state);
1383 }
1384 EXPORT_SYMBOL_GPL(pinctrl_select_state);
1385 
devm_pinctrl_release(struct device * dev,void * res)1386 static void devm_pinctrl_release(struct device *dev, void *res)
1387 {
1388 	pinctrl_put(*(struct pinctrl **)res);
1389 }
1390 
1391 /**
1392  * devm_pinctrl_get() - Resource managed pinctrl_get()
1393  * @dev: the device to obtain the handle for
1394  *
1395  * If there is a need to explicitly destroy the returned struct pinctrl,
1396  * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1397  */
devm_pinctrl_get(struct device * dev)1398 struct pinctrl *devm_pinctrl_get(struct device *dev)
1399 {
1400 	struct pinctrl **ptr, *p;
1401 
1402 	ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1403 	if (!ptr)
1404 		return ERR_PTR(-ENOMEM);
1405 
1406 	p = pinctrl_get(dev);
1407 	if (!IS_ERR(p)) {
1408 		*ptr = p;
1409 		devres_add(dev, ptr);
1410 	} else {
1411 		devres_free(ptr);
1412 	}
1413 
1414 	return p;
1415 }
1416 EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1417 
devm_pinctrl_match(struct device * dev,void * res,void * data)1418 static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1419 {
1420 	struct pinctrl **p = res;
1421 
1422 	return *p == data;
1423 }
1424 
1425 /**
1426  * devm_pinctrl_put() - Resource managed pinctrl_put()
1427  * @p: the pinctrl handle to release
1428  *
1429  * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1430  * this function will not need to be called and the resource management
1431  * code will ensure that the resource is freed.
1432  */
devm_pinctrl_put(struct pinctrl * p)1433 void devm_pinctrl_put(struct pinctrl *p)
1434 {
1435 	WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1436 			       devm_pinctrl_match, p));
1437 }
1438 EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1439 
1440 /**
1441  * pinctrl_register_mappings() - register a set of pin controller mappings
1442  * @maps: the pincontrol mappings table to register. Note the pinctrl-core
1443  *	keeps a reference to the passed in maps, so they should _not_ be
1444  *	marked with __initdata.
1445  * @num_maps: the number of maps in the mapping table
1446  */
pinctrl_register_mappings(const struct pinctrl_map * maps,unsigned int num_maps)1447 int pinctrl_register_mappings(const struct pinctrl_map *maps,
1448 			      unsigned int num_maps)
1449 {
1450 	int i, ret;
1451 	struct pinctrl_maps *maps_node;
1452 
1453 	pr_debug("add %u pinctrl maps\n", num_maps);
1454 
1455 	/* First sanity check the new mapping */
1456 	for (i = 0; i < num_maps; i++) {
1457 		if (!maps[i].dev_name) {
1458 			pr_err("failed to register map %s (%d): no device given\n",
1459 			       maps[i].name, i);
1460 			return -EINVAL;
1461 		}
1462 
1463 		if (!maps[i].name) {
1464 			pr_err("failed to register map %d: no map name given\n",
1465 			       i);
1466 			return -EINVAL;
1467 		}
1468 
1469 		if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1470 				!maps[i].ctrl_dev_name) {
1471 			pr_err("failed to register map %s (%d): no pin control device given\n",
1472 			       maps[i].name, i);
1473 			return -EINVAL;
1474 		}
1475 
1476 		switch (maps[i].type) {
1477 		case PIN_MAP_TYPE_DUMMY_STATE:
1478 			break;
1479 		case PIN_MAP_TYPE_MUX_GROUP:
1480 			ret = pinmux_validate_map(&maps[i], i);
1481 			if (ret < 0)
1482 				return ret;
1483 			break;
1484 		case PIN_MAP_TYPE_CONFIGS_PIN:
1485 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1486 			ret = pinconf_validate_map(&maps[i], i);
1487 			if (ret < 0)
1488 				return ret;
1489 			break;
1490 		default:
1491 			pr_err("failed to register map %s (%d): invalid type given\n",
1492 			       maps[i].name, i);
1493 			return -EINVAL;
1494 		}
1495 	}
1496 
1497 	maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1498 	if (!maps_node)
1499 		return -ENOMEM;
1500 
1501 	maps_node->maps = maps;
1502 	maps_node->num_maps = num_maps;
1503 
1504 	mutex_lock(&pinctrl_maps_mutex);
1505 	list_add_tail(&maps_node->node, &pinctrl_maps);
1506 	mutex_unlock(&pinctrl_maps_mutex);
1507 
1508 	return 0;
1509 }
1510 EXPORT_SYMBOL_GPL(pinctrl_register_mappings);
1511 
1512 /**
1513  * pinctrl_unregister_mappings() - unregister a set of pin controller mappings
1514  * @map: the pincontrol mappings table passed to pinctrl_register_mappings()
1515  *	when registering the mappings.
1516  */
pinctrl_unregister_mappings(const struct pinctrl_map * map)1517 void pinctrl_unregister_mappings(const struct pinctrl_map *map)
1518 {
1519 	struct pinctrl_maps *maps_node;
1520 
1521 	mutex_lock(&pinctrl_maps_mutex);
1522 	list_for_each_entry(maps_node, &pinctrl_maps, node) {
1523 		if (maps_node->maps == map) {
1524 			list_del(&maps_node->node);
1525 			kfree(maps_node);
1526 			mutex_unlock(&pinctrl_maps_mutex);
1527 			return;
1528 		}
1529 	}
1530 	mutex_unlock(&pinctrl_maps_mutex);
1531 }
1532 EXPORT_SYMBOL_GPL(pinctrl_unregister_mappings);
1533 
devm_pinctrl_unregister_mappings(void * maps)1534 static void devm_pinctrl_unregister_mappings(void *maps)
1535 {
1536 	pinctrl_unregister_mappings(maps);
1537 }
1538 
1539 /**
1540  * devm_pinctrl_register_mappings() - Resource managed pinctrl_register_mappings()
1541  * @dev: device for which mappings are registered
1542  * @maps: the pincontrol mappings table to register. Note the pinctrl-core
1543  *	keeps a reference to the passed in maps, so they should _not_ be
1544  *	marked with __initdata.
1545  * @num_maps: the number of maps in the mapping table
1546  *
1547  * Returns: 0 on success, or negative errno on failure.
1548  */
devm_pinctrl_register_mappings(struct device * dev,const struct pinctrl_map * maps,unsigned int num_maps)1549 int devm_pinctrl_register_mappings(struct device *dev,
1550 				   const struct pinctrl_map *maps,
1551 				   unsigned int num_maps)
1552 {
1553 	int ret;
1554 
1555 	ret = pinctrl_register_mappings(maps, num_maps);
1556 	if (ret)
1557 		return ret;
1558 
1559 	return devm_add_action_or_reset(dev, devm_pinctrl_unregister_mappings, (void *)maps);
1560 }
1561 EXPORT_SYMBOL_GPL(devm_pinctrl_register_mappings);
1562 
1563 /**
1564  * pinctrl_force_sleep() - turn a given controller device into sleep state
1565  * @pctldev: pin controller device
1566  */
pinctrl_force_sleep(struct pinctrl_dev * pctldev)1567 int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1568 {
1569 	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1570 		return pinctrl_commit_state(pctldev->p, pctldev->hog_sleep);
1571 	return 0;
1572 }
1573 EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1574 
1575 /**
1576  * pinctrl_force_default() - turn a given controller device into default state
1577  * @pctldev: pin controller device
1578  */
pinctrl_force_default(struct pinctrl_dev * pctldev)1579 int pinctrl_force_default(struct pinctrl_dev *pctldev)
1580 {
1581 	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1582 		return pinctrl_commit_state(pctldev->p, pctldev->hog_default);
1583 	return 0;
1584 }
1585 EXPORT_SYMBOL_GPL(pinctrl_force_default);
1586 
1587 /**
1588  * pinctrl_init_done() - tell pinctrl probe is done
1589  *
1590  * We'll use this time to switch the pins from "init" to "default" unless the
1591  * driver selected some other state.
1592  *
1593  * @dev: device to that's done probing
1594  */
pinctrl_init_done(struct device * dev)1595 int pinctrl_init_done(struct device *dev)
1596 {
1597 	struct dev_pin_info *pins = dev->pins;
1598 	int ret;
1599 
1600 	if (!pins)
1601 		return 0;
1602 
1603 	if (IS_ERR(pins->init_state))
1604 		return 0; /* No such state */
1605 
1606 	if (pins->p->state != pins->init_state)
1607 		return 0; /* Not at init anyway */
1608 
1609 	if (IS_ERR(pins->default_state))
1610 		return 0; /* No default state */
1611 
1612 	ret = pinctrl_select_state(pins->p, pins->default_state);
1613 	if (ret)
1614 		dev_err(dev, "failed to activate default pinctrl state\n");
1615 
1616 	return ret;
1617 }
1618 
pinctrl_select_bound_state(struct device * dev,struct pinctrl_state * state)1619 static int pinctrl_select_bound_state(struct device *dev,
1620 				      struct pinctrl_state *state)
1621 {
1622 	struct dev_pin_info *pins = dev->pins;
1623 	int ret;
1624 
1625 	if (IS_ERR(state))
1626 		return 0; /* No such state */
1627 	ret = pinctrl_select_state(pins->p, state);
1628 	if (ret)
1629 		dev_err(dev, "failed to activate pinctrl state %s\n",
1630 			state->name);
1631 	return ret;
1632 }
1633 
1634 /**
1635  * pinctrl_select_default_state() - select default pinctrl state
1636  * @dev: device to select default state for
1637  */
pinctrl_select_default_state(struct device * dev)1638 int pinctrl_select_default_state(struct device *dev)
1639 {
1640 	if (!dev->pins)
1641 		return 0;
1642 
1643 	return pinctrl_select_bound_state(dev, dev->pins->default_state);
1644 }
1645 EXPORT_SYMBOL_GPL(pinctrl_select_default_state);
1646 
1647 #ifdef CONFIG_PM
1648 
1649 /**
1650  * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1651  * @dev: device to select default state for
1652  */
pinctrl_pm_select_default_state(struct device * dev)1653 int pinctrl_pm_select_default_state(struct device *dev)
1654 {
1655 	return pinctrl_select_default_state(dev);
1656 }
1657 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1658 
1659 /**
1660  * pinctrl_pm_select_init_state() - select init pinctrl state for PM
1661  * @dev: device to select init state for
1662  */
pinctrl_pm_select_init_state(struct device * dev)1663 int pinctrl_pm_select_init_state(struct device *dev)
1664 {
1665 	if (!dev->pins)
1666 		return 0;
1667 
1668 	return pinctrl_select_bound_state(dev, dev->pins->init_state);
1669 }
1670 EXPORT_SYMBOL_GPL(pinctrl_pm_select_init_state);
1671 
1672 /**
1673  * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1674  * @dev: device to select sleep state for
1675  */
pinctrl_pm_select_sleep_state(struct device * dev)1676 int pinctrl_pm_select_sleep_state(struct device *dev)
1677 {
1678 	if (!dev->pins)
1679 		return 0;
1680 
1681 	return pinctrl_select_bound_state(dev, dev->pins->sleep_state);
1682 }
1683 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1684 
1685 /**
1686  * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1687  * @dev: device to select idle state for
1688  */
pinctrl_pm_select_idle_state(struct device * dev)1689 int pinctrl_pm_select_idle_state(struct device *dev)
1690 {
1691 	if (!dev->pins)
1692 		return 0;
1693 
1694 	return pinctrl_select_bound_state(dev, dev->pins->idle_state);
1695 }
1696 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1697 #endif
1698 
1699 #ifdef CONFIG_DEBUG_FS
1700 
pinctrl_pins_show(struct seq_file * s,void * what)1701 static int pinctrl_pins_show(struct seq_file *s, void *what)
1702 {
1703 	struct pinctrl_dev *pctldev = s->private;
1704 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1705 	unsigned int i, pin;
1706 #ifdef CONFIG_GPIOLIB
1707 	struct gpio_device *gdev = NULL;
1708 	struct pinctrl_gpio_range *range;
1709 	int gpio_num;
1710 #endif
1711 
1712 	seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1713 
1714 	mutex_lock(&pctldev->mutex);
1715 
1716 	/* The pin number can be retrived from the pin controller descriptor */
1717 	for (i = 0; i < pctldev->desc->npins; i++) {
1718 		struct pin_desc *desc;
1719 
1720 		pin = pctldev->desc->pins[i].number;
1721 		desc = pin_desc_get(pctldev, pin);
1722 		/* Pin space may be sparse */
1723 		if (!desc)
1724 			continue;
1725 
1726 		seq_printf(s, "pin %d (%s) ", pin, desc->name);
1727 
1728 #ifdef CONFIG_GPIOLIB
1729 		gdev = NULL;
1730 		gpio_num = -1;
1731 		list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1732 			if (range->pins != NULL) {
1733 				for (int i = 0; i < range->npins; ++i) {
1734 					if (range->pins[i] == pin) {
1735 						gpio_num = range->base + i;
1736 						break;
1737 					}
1738 				}
1739 			} else if ((pin >= range->pin_base) &&
1740 				   (pin < (range->pin_base + range->npins))) {
1741 				gpio_num =
1742 					range->base + (pin - range->pin_base);
1743 			}
1744 			if (gpio_num != -1)
1745 				break;
1746 		}
1747 		if (gpio_num >= 0)
1748 			/*
1749 			 * FIXME: gpio_num comes from the global GPIO numberspace.
1750 			 * we need to get rid of the range->base eventually and
1751 			 * get the descriptor directly from the gpio_chip.
1752 			 */
1753 			gdev = gpiod_to_gpio_device(gpio_to_desc(gpio_num));
1754 		if (gdev)
1755 			seq_printf(s, "%u:%s ",
1756 				   gpio_num - gpio_device_get_base(gdev),
1757 				   gpio_device_get_label(gdev));
1758 		else
1759 			seq_puts(s, "0:? ");
1760 #endif
1761 
1762 		/* Driver-specific info per pin */
1763 		if (ops->pin_dbg_show)
1764 			ops->pin_dbg_show(pctldev, s, pin);
1765 
1766 		seq_puts(s, "\n");
1767 	}
1768 
1769 	mutex_unlock(&pctldev->mutex);
1770 
1771 	return 0;
1772 }
1773 DEFINE_SHOW_ATTRIBUTE(pinctrl_pins);
1774 
pinctrl_groups_show(struct seq_file * s,void * what)1775 static int pinctrl_groups_show(struct seq_file *s, void *what)
1776 {
1777 	struct pinctrl_dev *pctldev = s->private;
1778 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1779 	unsigned int ngroups, selector = 0;
1780 
1781 	mutex_lock(&pctldev->mutex);
1782 
1783 	ngroups = ops->get_groups_count(pctldev);
1784 
1785 	seq_puts(s, "registered pin groups:\n");
1786 	while (selector < ngroups) {
1787 		const unsigned int *pins = NULL;
1788 		unsigned int num_pins = 0;
1789 		const char *gname = ops->get_group_name(pctldev, selector);
1790 		const char *pname;
1791 		int ret = 0;
1792 		int i;
1793 
1794 		if (ops->get_group_pins)
1795 			ret = ops->get_group_pins(pctldev, selector,
1796 						  &pins, &num_pins);
1797 		if (ret)
1798 			seq_printf(s, "%s [ERROR GETTING PINS]\n",
1799 				   gname);
1800 		else {
1801 			seq_printf(s, "group: %s\n", gname);
1802 			for (i = 0; i < num_pins; i++) {
1803 				pname = pin_get_name(pctldev, pins[i]);
1804 				if (WARN_ON(!pname)) {
1805 					mutex_unlock(&pctldev->mutex);
1806 					return -EINVAL;
1807 				}
1808 				seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1809 			}
1810 			seq_puts(s, "\n");
1811 		}
1812 		selector++;
1813 	}
1814 
1815 	mutex_unlock(&pctldev->mutex);
1816 
1817 	return 0;
1818 }
1819 DEFINE_SHOW_ATTRIBUTE(pinctrl_groups);
1820 
pinctrl_gpioranges_show(struct seq_file * s,void * what)1821 static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1822 {
1823 	struct pinctrl_dev *pctldev = s->private;
1824 	struct pinctrl_gpio_range *range;
1825 
1826 	seq_puts(s, "GPIO ranges handled:\n");
1827 
1828 	mutex_lock(&pctldev->mutex);
1829 
1830 	/* Loop over the ranges */
1831 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1832 		if (range->pins) {
1833 			int a;
1834 			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1835 				range->id, range->name,
1836 				range->base, (range->base + range->npins - 1));
1837 			for (a = 0; a < range->npins - 1; a++)
1838 				seq_printf(s, "%u, ", range->pins[a]);
1839 			seq_printf(s, "%u}\n", range->pins[a]);
1840 		}
1841 		else
1842 			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1843 				range->id, range->name,
1844 				range->base, (range->base + range->npins - 1),
1845 				range->pin_base,
1846 				(range->pin_base + range->npins - 1));
1847 	}
1848 
1849 	mutex_unlock(&pctldev->mutex);
1850 
1851 	return 0;
1852 }
1853 DEFINE_SHOW_ATTRIBUTE(pinctrl_gpioranges);
1854 
pinctrl_devices_show(struct seq_file * s,void * what)1855 static int pinctrl_devices_show(struct seq_file *s, void *what)
1856 {
1857 	struct pinctrl_dev *pctldev;
1858 
1859 	seq_puts(s, "name [pinmux] [pinconf]\n");
1860 
1861 	mutex_lock(&pinctrldev_list_mutex);
1862 
1863 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
1864 		seq_printf(s, "%s ", pctldev->desc->name);
1865 		if (pctldev->desc->pmxops)
1866 			seq_puts(s, "yes ");
1867 		else
1868 			seq_puts(s, "no ");
1869 		if (pctldev->desc->confops)
1870 			seq_puts(s, "yes");
1871 		else
1872 			seq_puts(s, "no");
1873 		seq_puts(s, "\n");
1874 	}
1875 
1876 	mutex_unlock(&pinctrldev_list_mutex);
1877 
1878 	return 0;
1879 }
1880 DEFINE_SHOW_ATTRIBUTE(pinctrl_devices);
1881 
map_type(enum pinctrl_map_type type)1882 static inline const char *map_type(enum pinctrl_map_type type)
1883 {
1884 	static const char * const names[] = {
1885 		"INVALID",
1886 		"DUMMY_STATE",
1887 		"MUX_GROUP",
1888 		"CONFIGS_PIN",
1889 		"CONFIGS_GROUP",
1890 	};
1891 
1892 	if (type >= ARRAY_SIZE(names))
1893 		return "UNKNOWN";
1894 
1895 	return names[type];
1896 }
1897 
pinctrl_maps_show(struct seq_file * s,void * what)1898 static int pinctrl_maps_show(struct seq_file *s, void *what)
1899 {
1900 	struct pinctrl_maps *maps_node;
1901 	const struct pinctrl_map *map;
1902 
1903 	seq_puts(s, "Pinctrl maps:\n");
1904 
1905 	mutex_lock(&pinctrl_maps_mutex);
1906 	for_each_pin_map(maps_node, map) {
1907 		seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1908 			   map->dev_name, map->name, map_type(map->type),
1909 			   map->type);
1910 
1911 		if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1912 			seq_printf(s, "controlling device %s\n",
1913 				   map->ctrl_dev_name);
1914 
1915 		switch (map->type) {
1916 		case PIN_MAP_TYPE_MUX_GROUP:
1917 			pinmux_show_map(s, map);
1918 			break;
1919 		case PIN_MAP_TYPE_CONFIGS_PIN:
1920 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1921 			pinconf_show_map(s, map);
1922 			break;
1923 		default:
1924 			break;
1925 		}
1926 
1927 		seq_putc(s, '\n');
1928 	}
1929 	mutex_unlock(&pinctrl_maps_mutex);
1930 
1931 	return 0;
1932 }
1933 DEFINE_SHOW_ATTRIBUTE(pinctrl_maps);
1934 
pinctrl_show(struct seq_file * s,void * what)1935 static int pinctrl_show(struct seq_file *s, void *what)
1936 {
1937 	struct pinctrl *p;
1938 	struct pinctrl_state *state;
1939 	struct pinctrl_setting *setting;
1940 
1941 	seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1942 
1943 	mutex_lock(&pinctrl_list_mutex);
1944 
1945 	list_for_each_entry(p, &pinctrl_list, node) {
1946 		seq_printf(s, "device: %s current state: %s\n",
1947 			   dev_name(p->dev),
1948 			   p->state ? p->state->name : "none");
1949 
1950 		list_for_each_entry(state, &p->states, node) {
1951 			seq_printf(s, "  state: %s\n", state->name);
1952 
1953 			list_for_each_entry(setting, &state->settings, node) {
1954 				struct pinctrl_dev *pctldev = setting->pctldev;
1955 
1956 				seq_printf(s, "    type: %s controller %s ",
1957 					   map_type(setting->type),
1958 					   pinctrl_dev_get_name(pctldev));
1959 
1960 				switch (setting->type) {
1961 				case PIN_MAP_TYPE_MUX_GROUP:
1962 					pinmux_show_setting(s, setting);
1963 					break;
1964 				case PIN_MAP_TYPE_CONFIGS_PIN:
1965 				case PIN_MAP_TYPE_CONFIGS_GROUP:
1966 					pinconf_show_setting(s, setting);
1967 					break;
1968 				default:
1969 					break;
1970 				}
1971 			}
1972 		}
1973 	}
1974 
1975 	mutex_unlock(&pinctrl_list_mutex);
1976 
1977 	return 0;
1978 }
1979 DEFINE_SHOW_ATTRIBUTE(pinctrl);
1980 
1981 static struct dentry *debugfs_root;
1982 
pinctrl_init_device_debugfs(struct pinctrl_dev * pctldev)1983 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1984 {
1985 	struct dentry *device_root;
1986 	const char *debugfs_name;
1987 
1988 	if (pctldev->desc->name &&
1989 			strcmp(dev_name(pctldev->dev), pctldev->desc->name)) {
1990 		debugfs_name = devm_kasprintf(pctldev->dev, GFP_KERNEL,
1991 				"%s-%s", dev_name(pctldev->dev),
1992 				pctldev->desc->name);
1993 		if (!debugfs_name) {
1994 			pr_warn("failed to determine debugfs dir name for %s\n",
1995 				dev_name(pctldev->dev));
1996 			return;
1997 		}
1998 	} else {
1999 		debugfs_name = dev_name(pctldev->dev);
2000 	}
2001 
2002 	device_root = debugfs_create_dir(debugfs_name, debugfs_root);
2003 	pctldev->device_root = device_root;
2004 
2005 	if (IS_ERR(device_root) || !device_root) {
2006 		pr_warn("failed to create debugfs directory for %s\n",
2007 			dev_name(pctldev->dev));
2008 		return;
2009 	}
2010 	debugfs_create_file("pins", 0444,
2011 			    device_root, pctldev, &pinctrl_pins_fops);
2012 	debugfs_create_file("pingroups", 0444,
2013 			    device_root, pctldev, &pinctrl_groups_fops);
2014 	debugfs_create_file("gpio-ranges", 0444,
2015 			    device_root, pctldev, &pinctrl_gpioranges_fops);
2016 	if (pctldev->desc->pmxops)
2017 		pinmux_init_device_debugfs(device_root, pctldev);
2018 	if (pctldev->desc->confops)
2019 		pinconf_init_device_debugfs(device_root, pctldev);
2020 }
2021 
pinctrl_remove_device_debugfs(struct pinctrl_dev * pctldev)2022 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
2023 {
2024 	debugfs_remove_recursive(pctldev->device_root);
2025 }
2026 
pinctrl_init_debugfs(void)2027 static void pinctrl_init_debugfs(void)
2028 {
2029 	debugfs_root = debugfs_create_dir("pinctrl", NULL);
2030 	if (IS_ERR(debugfs_root)) {
2031 		pr_warn("failed to create debugfs directory\n");
2032 		debugfs_root = NULL;
2033 		return;
2034 	}
2035 
2036 	debugfs_create_file("pinctrl-devices", 0444,
2037 			    debugfs_root, NULL, &pinctrl_devices_fops);
2038 	debugfs_create_file("pinctrl-maps", 0444,
2039 			    debugfs_root, NULL, &pinctrl_maps_fops);
2040 	debugfs_create_file("pinctrl-handles", 0444,
2041 			    debugfs_root, NULL, &pinctrl_fops);
2042 }
2043 
2044 #else /* CONFIG_DEBUG_FS */
2045 
pinctrl_init_device_debugfs(struct pinctrl_dev * pctldev)2046 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
2047 {
2048 }
2049 
pinctrl_init_debugfs(void)2050 static void pinctrl_init_debugfs(void)
2051 {
2052 }
2053 
pinctrl_remove_device_debugfs(struct pinctrl_dev * pctldev)2054 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
2055 {
2056 }
2057 
2058 #endif
2059 
pinctrl_check_ops(struct pinctrl_dev * pctldev)2060 static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
2061 {
2062 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
2063 
2064 	if (!ops ||
2065 	    !ops->get_groups_count ||
2066 	    !ops->get_group_name)
2067 		return -EINVAL;
2068 
2069 	return 0;
2070 }
2071 
2072 /**
2073  * pinctrl_init_controller() - init a pin controller device
2074  * @pctldesc: descriptor for this pin controller
2075  * @dev: parent device for this pin controller
2076  * @driver_data: private pin controller data for this pin controller
2077  */
2078 static struct pinctrl_dev *
pinctrl_init_controller(const struct pinctrl_desc * pctldesc,struct device * dev,void * driver_data)2079 pinctrl_init_controller(const struct pinctrl_desc *pctldesc, struct device *dev,
2080 			void *driver_data)
2081 {
2082 	struct pinctrl_dev *pctldev;
2083 	int ret;
2084 
2085 	if (!pctldesc)
2086 		return ERR_PTR(-EINVAL);
2087 	if (!pctldesc->name)
2088 		return ERR_PTR(-EINVAL);
2089 
2090 	pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
2091 	if (!pctldev)
2092 		return ERR_PTR(-ENOMEM);
2093 
2094 	/* Initialize pin control device struct */
2095 	pctldev->owner = pctldesc->owner;
2096 	pctldev->desc = pctldesc;
2097 	pctldev->driver_data = driver_data;
2098 	INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
2099 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS
2100 	INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL);
2101 #endif
2102 #ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS
2103 	INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL);
2104 #endif
2105 	INIT_LIST_HEAD(&pctldev->gpio_ranges);
2106 	INIT_LIST_HEAD(&pctldev->node);
2107 	pctldev->dev = dev;
2108 	mutex_init(&pctldev->mutex);
2109 
2110 	/* check core ops for sanity */
2111 	ret = pinctrl_check_ops(pctldev);
2112 	if (ret) {
2113 		dev_err(dev, "pinctrl ops lacks necessary functions\n");
2114 		goto out_err;
2115 	}
2116 
2117 	/* If we're implementing pinmuxing, check the ops for sanity */
2118 	if (pctldesc->pmxops) {
2119 		ret = pinmux_check_ops(pctldev);
2120 		if (ret)
2121 			goto out_err;
2122 	}
2123 
2124 	/* If we're implementing pinconfig, check the ops for sanity */
2125 	if (pctldesc->confops) {
2126 		ret = pinconf_check_ops(pctldev);
2127 		if (ret)
2128 			goto out_err;
2129 	}
2130 
2131 	/* Register all the pins */
2132 	dev_dbg(dev, "try to register %d pins ...\n",  pctldesc->npins);
2133 	ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
2134 	if (ret) {
2135 		dev_err(dev, "error during pin registration\n");
2136 		pinctrl_free_pindescs(pctldev, pctldesc->pins,
2137 				      pctldesc->npins);
2138 		goto out_err;
2139 	}
2140 
2141 	return pctldev;
2142 
2143 out_err:
2144 	mutex_destroy(&pctldev->mutex);
2145 	kfree(pctldev);
2146 	return ERR_PTR(ret);
2147 }
2148 
pinctrl_uninit_controller(struct pinctrl_dev * pctldev,const struct pinctrl_desc * pctldesc)2149 static void pinctrl_uninit_controller(struct pinctrl_dev *pctldev,
2150 				      const struct pinctrl_desc *pctldesc)
2151 {
2152 	pinctrl_free_pindescs(pctldev, pctldesc->pins,
2153 			      pctldesc->npins);
2154 	mutex_destroy(&pctldev->mutex);
2155 	kfree(pctldev);
2156 }
2157 
pinctrl_claim_hogs(struct pinctrl_dev * pctldev)2158 static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev)
2159 {
2160 	pctldev->p = create_pinctrl(pctldev->dev, pctldev);
2161 	if (PTR_ERR(pctldev->p) == -ENODEV) {
2162 		dev_dbg(pctldev->dev, "no hogs found\n");
2163 
2164 		return 0;
2165 	}
2166 
2167 	if (IS_ERR(pctldev->p)) {
2168 		dev_err(pctldev->dev, "error claiming hogs: %li\n",
2169 			PTR_ERR(pctldev->p));
2170 
2171 		return PTR_ERR(pctldev->p);
2172 	}
2173 
2174 	pctldev->hog_default =
2175 		pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
2176 	if (IS_ERR(pctldev->hog_default)) {
2177 		dev_dbg(pctldev->dev,
2178 			"failed to lookup the default state\n");
2179 	} else {
2180 		if (pinctrl_select_state(pctldev->p,
2181 					 pctldev->hog_default))
2182 			dev_err(pctldev->dev,
2183 				"failed to select default state\n");
2184 	}
2185 
2186 	pctldev->hog_sleep =
2187 		pinctrl_lookup_state(pctldev->p,
2188 				     PINCTRL_STATE_SLEEP);
2189 	if (IS_ERR(pctldev->hog_sleep))
2190 		dev_dbg(pctldev->dev,
2191 			"failed to lookup the sleep state\n");
2192 
2193 	return 0;
2194 }
2195 
pinctrl_enable(struct pinctrl_dev * pctldev)2196 int pinctrl_enable(struct pinctrl_dev *pctldev)
2197 {
2198 	int error;
2199 
2200 	error = pinctrl_claim_hogs(pctldev);
2201 	if (error) {
2202 		dev_err(pctldev->dev, "could not claim hogs: %i\n", error);
2203 		return error;
2204 	}
2205 
2206 	mutex_lock(&pinctrldev_list_mutex);
2207 	list_add_tail(&pctldev->node, &pinctrldev_list);
2208 	mutex_unlock(&pinctrldev_list_mutex);
2209 
2210 	pinctrl_init_device_debugfs(pctldev);
2211 
2212 	return 0;
2213 }
2214 EXPORT_SYMBOL_GPL(pinctrl_enable);
2215 
2216 /**
2217  * pinctrl_register() - register a pin controller device
2218  * @pctldesc: descriptor for this pin controller
2219  * @dev: parent device for this pin controller
2220  * @driver_data: private pin controller data for this pin controller
2221  *
2222  * Note that pinctrl_register() is known to have problems as the pin
2223  * controller driver functions are called before the driver has a
2224  * struct pinctrl_dev handle. To avoid issues later on, please use the
2225  * new pinctrl_register_and_init() below instead.
2226  */
pinctrl_register(const struct pinctrl_desc * pctldesc,struct device * dev,void * driver_data)2227 struct pinctrl_dev *pinctrl_register(const struct pinctrl_desc *pctldesc,
2228 				    struct device *dev, void *driver_data)
2229 {
2230 	struct pinctrl_dev *pctldev;
2231 	int error;
2232 
2233 	pctldev = pinctrl_init_controller(pctldesc, dev, driver_data);
2234 	if (IS_ERR(pctldev))
2235 		return pctldev;
2236 
2237 	error = pinctrl_enable(pctldev);
2238 	if (error) {
2239 		pinctrl_uninit_controller(pctldev, pctldesc);
2240 		return ERR_PTR(error);
2241 	}
2242 
2243 	return pctldev;
2244 }
2245 EXPORT_SYMBOL_GPL(pinctrl_register);
2246 
2247 /**
2248  * pinctrl_register_and_init() - register and init pin controller device
2249  * @pctldesc: descriptor for this pin controller
2250  * @dev: parent device for this pin controller
2251  * @driver_data: private pin controller data for this pin controller
2252  * @pctldev: pin controller device
2253  *
2254  * Note that pinctrl_enable() still needs to be manually called after
2255  * this once the driver is ready.
2256  */
pinctrl_register_and_init(const struct pinctrl_desc * pctldesc,struct device * dev,void * driver_data,struct pinctrl_dev ** pctldev)2257 int pinctrl_register_and_init(const struct pinctrl_desc *pctldesc,
2258 			      struct device *dev, void *driver_data,
2259 			      struct pinctrl_dev **pctldev)
2260 {
2261 	struct pinctrl_dev *p;
2262 
2263 	p = pinctrl_init_controller(pctldesc, dev, driver_data);
2264 	if (IS_ERR(p))
2265 		return PTR_ERR(p);
2266 
2267 	/*
2268 	 * We have pinctrl_start() call functions in the pin controller
2269 	 * driver with create_pinctrl() for at least dt_node_to_map(). So
2270 	 * let's make sure pctldev is properly initialized for the
2271 	 * pin controller driver before we do anything.
2272 	 */
2273 	*pctldev = p;
2274 
2275 	return 0;
2276 }
2277 EXPORT_SYMBOL_GPL(pinctrl_register_and_init);
2278 
2279 /**
2280  * pinctrl_unregister() - unregister pinmux
2281  * @pctldev: pin controller to unregister
2282  *
2283  * Called by pinmux drivers to unregister a pinmux.
2284  */
pinctrl_unregister(struct pinctrl_dev * pctldev)2285 void pinctrl_unregister(struct pinctrl_dev *pctldev)
2286 {
2287 	struct pinctrl_gpio_range *range, *n;
2288 
2289 	if (!pctldev)
2290 		return;
2291 
2292 	mutex_lock(&pctldev->mutex);
2293 	pinctrl_remove_device_debugfs(pctldev);
2294 	mutex_unlock(&pctldev->mutex);
2295 
2296 	if (!IS_ERR_OR_NULL(pctldev->p))
2297 		pinctrl_put(pctldev->p);
2298 
2299 	mutex_lock(&pinctrldev_list_mutex);
2300 	mutex_lock(&pctldev->mutex);
2301 	/* TODO: check that no pinmuxes are still active? */
2302 	list_del(&pctldev->node);
2303 	pinmux_generic_free_functions(pctldev);
2304 	pinctrl_generic_free_groups(pctldev);
2305 	/* Destroy descriptor tree */
2306 	pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
2307 			      pctldev->desc->npins);
2308 	/* remove gpio ranges map */
2309 	list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
2310 		list_del(&range->node);
2311 
2312 	mutex_unlock(&pctldev->mutex);
2313 	mutex_destroy(&pctldev->mutex);
2314 	kfree(pctldev);
2315 	mutex_unlock(&pinctrldev_list_mutex);
2316 }
2317 EXPORT_SYMBOL_GPL(pinctrl_unregister);
2318 
devm_pinctrl_dev_release(struct device * dev,void * res)2319 static void devm_pinctrl_dev_release(struct device *dev, void *res)
2320 {
2321 	struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res;
2322 
2323 	pinctrl_unregister(pctldev);
2324 }
2325 
devm_pinctrl_dev_match(struct device * dev,void * res,void * data)2326 static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data)
2327 {
2328 	struct pctldev **r = res;
2329 
2330 	if (WARN_ON(!r || !*r))
2331 		return 0;
2332 
2333 	return *r == data;
2334 }
2335 
2336 /**
2337  * devm_pinctrl_register() - Resource managed version of pinctrl_register().
2338  * @dev: parent device for this pin controller
2339  * @pctldesc: descriptor for this pin controller
2340  * @driver_data: private pin controller data for this pin controller
2341  *
2342  * Returns an error pointer if pincontrol register failed. Otherwise
2343  * it returns valid pinctrl handle.
2344  *
2345  * The pinctrl device will be automatically released when the device is unbound.
2346  */
devm_pinctrl_register(struct device * dev,const struct pinctrl_desc * pctldesc,void * driver_data)2347 struct pinctrl_dev *devm_pinctrl_register(struct device *dev,
2348 					  const struct pinctrl_desc *pctldesc,
2349 					  void *driver_data)
2350 {
2351 	struct pinctrl_dev **ptr, *pctldev;
2352 
2353 	ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2354 	if (!ptr)
2355 		return ERR_PTR(-ENOMEM);
2356 
2357 	pctldev = pinctrl_register(pctldesc, dev, driver_data);
2358 	if (IS_ERR(pctldev)) {
2359 		devres_free(ptr);
2360 		return pctldev;
2361 	}
2362 
2363 	*ptr = pctldev;
2364 	devres_add(dev, ptr);
2365 
2366 	return pctldev;
2367 }
2368 EXPORT_SYMBOL_GPL(devm_pinctrl_register);
2369 
2370 /**
2371  * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init
2372  * @dev: parent device for this pin controller
2373  * @pctldesc: descriptor for this pin controller
2374  * @driver_data: private pin controller data for this pin controller
2375  * @pctldev: pin controller device
2376  *
2377  * Returns zero on success or an error number on failure.
2378  *
2379  * The pinctrl device will be automatically released when the device is unbound.
2380  */
devm_pinctrl_register_and_init(struct device * dev,const struct pinctrl_desc * pctldesc,void * driver_data,struct pinctrl_dev ** pctldev)2381 int devm_pinctrl_register_and_init(struct device *dev,
2382 				   const struct pinctrl_desc *pctldesc,
2383 				   void *driver_data,
2384 				   struct pinctrl_dev **pctldev)
2385 {
2386 	struct pinctrl_dev **ptr;
2387 	int error;
2388 
2389 	ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2390 	if (!ptr)
2391 		return -ENOMEM;
2392 
2393 	error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev);
2394 	if (error) {
2395 		devres_free(ptr);
2396 		return error;
2397 	}
2398 
2399 	*ptr = *pctldev;
2400 	devres_add(dev, ptr);
2401 
2402 	return 0;
2403 }
2404 EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init);
2405 
2406 /**
2407  * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister().
2408  * @dev: device for which resource was allocated
2409  * @pctldev: the pinctrl device to unregister.
2410  */
devm_pinctrl_unregister(struct device * dev,struct pinctrl_dev * pctldev)2411 void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev)
2412 {
2413 	WARN_ON(devres_release(dev, devm_pinctrl_dev_release,
2414 			       devm_pinctrl_dev_match, pctldev));
2415 }
2416 EXPORT_SYMBOL_GPL(devm_pinctrl_unregister);
2417 
pinctrl_init(void)2418 static int __init pinctrl_init(void)
2419 {
2420 	pr_debug("initialized pinctrl subsystem\n");
2421 	pinctrl_init_debugfs();
2422 	return 0;
2423 }
2424 
2425 /* init early since many drivers really need to initialized pinmux early */
2426 core_initcall(pinctrl_init);
2427