1 // SPDX-License-Identifier: GPL-2.0 2 3 //! A reference-counted pointer. 4 //! 5 //! This module implements a way for users to create reference-counted objects and pointers to 6 //! them. Such a pointer automatically increments and decrements the count, and drops the 7 //! underlying object when it reaches zero. It is also safe to use concurrently from multiple 8 //! threads. 9 //! 10 //! It is different from the standard library's [`Arc`] in a few ways: 11 //! 1. It is backed by the kernel's `refcount_t` type. 12 //! 2. It does not support weak references, which allows it to be half the size. 13 //! 3. It saturates the reference count instead of aborting when it goes over a threshold. 14 //! 4. It does not provide a `get_mut` method, so the ref counted object is pinned. 15 //! 5. The object in [`Arc`] is pinned implicitly. 16 //! 17 //! [`Arc`]: https://doc.rust-lang.org/std/sync/struct.Arc.html 18 19 use crate::{ 20 alloc::{AllocError, Flags, KBox}, 21 bindings, 22 init::InPlaceInit, 23 try_init, 24 types::{ForeignOwnable, Opaque}, 25 }; 26 use core::{ 27 alloc::Layout, 28 fmt, 29 marker::PhantomData, 30 mem::{ManuallyDrop, MaybeUninit}, 31 ops::{Deref, DerefMut}, 32 pin::Pin, 33 ptr::NonNull, 34 }; 35 use pin_init::{self, pin_data, InPlaceWrite, Init, PinInit}; 36 37 mod std_vendor; 38 39 /// A reference-counted pointer to an instance of `T`. 40 /// 41 /// The reference count is incremented when new instances of [`Arc`] are created, and decremented 42 /// when they are dropped. When the count reaches zero, the underlying `T` is also dropped. 43 /// 44 /// # Invariants 45 /// 46 /// The reference count on an instance of [`Arc`] is always non-zero. 47 /// The object pointed to by [`Arc`] is always pinned. 48 /// 49 /// # Examples 50 /// 51 /// ``` 52 /// use kernel::sync::Arc; 53 /// 54 /// struct Example { 55 /// a: u32, 56 /// b: u32, 57 /// } 58 /// 59 /// // Create a refcounted instance of `Example`. 60 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?; 61 /// 62 /// // Get a new pointer to `obj` and increment the refcount. 63 /// let cloned = obj.clone(); 64 /// 65 /// // Assert that both `obj` and `cloned` point to the same underlying object. 66 /// assert!(core::ptr::eq(&*obj, &*cloned)); 67 /// 68 /// // Destroy `obj` and decrement its refcount. 69 /// drop(obj); 70 /// 71 /// // Check that the values are still accessible through `cloned`. 72 /// assert_eq!(cloned.a, 10); 73 /// assert_eq!(cloned.b, 20); 74 /// 75 /// // The refcount drops to zero when `cloned` goes out of scope, and the memory is freed. 76 /// # Ok::<(), Error>(()) 77 /// ``` 78 /// 79 /// Using `Arc<T>` as the type of `self`: 80 /// 81 /// ``` 82 /// use kernel::sync::Arc; 83 /// 84 /// struct Example { 85 /// a: u32, 86 /// b: u32, 87 /// } 88 /// 89 /// impl Example { 90 /// fn take_over(self: Arc<Self>) { 91 /// // ... 92 /// } 93 /// 94 /// fn use_reference(self: &Arc<Self>) { 95 /// // ... 96 /// } 97 /// } 98 /// 99 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?; 100 /// obj.use_reference(); 101 /// obj.take_over(); 102 /// # Ok::<(), Error>(()) 103 /// ``` 104 /// 105 /// Coercion from `Arc<Example>` to `Arc<dyn MyTrait>`: 106 /// 107 /// ``` 108 /// use kernel::sync::{Arc, ArcBorrow}; 109 /// 110 /// trait MyTrait { 111 /// // Trait has a function whose `self` type is `Arc<Self>`. 112 /// fn example1(self: Arc<Self>) {} 113 /// 114 /// // Trait has a function whose `self` type is `ArcBorrow<'_, Self>`. 115 /// fn example2(self: ArcBorrow<'_, Self>) {} 116 /// } 117 /// 118 /// struct Example; 119 /// impl MyTrait for Example {} 120 /// 121 /// // `obj` has type `Arc<Example>`. 122 /// let obj: Arc<Example> = Arc::new(Example, GFP_KERNEL)?; 123 /// 124 /// // `coerced` has type `Arc<dyn MyTrait>`. 125 /// let coerced: Arc<dyn MyTrait> = obj; 126 /// # Ok::<(), Error>(()) 127 /// ``` 128 #[repr(transparent)] 129 #[cfg_attr(CONFIG_RUSTC_HAS_COERCE_POINTEE, derive(core::marker::CoercePointee))] 130 pub struct Arc<T: ?Sized> { 131 ptr: NonNull<ArcInner<T>>, 132 // NB: this informs dropck that objects of type `ArcInner<T>` may be used in `<Arc<T> as 133 // Drop>::drop`. Note that dropck already assumes that objects of type `T` may be used in 134 // `<Arc<T> as Drop>::drop` and the distinction between `T` and `ArcInner<T>` is not presently 135 // meaningful with respect to dropck - but this may change in the future so this is left here 136 // out of an abundance of caution. 137 // 138 // See <https://doc.rust-lang.org/nomicon/phantom-data.html#generic-parameters-and-drop-checking> 139 // for more detail on the semantics of dropck in the presence of `PhantomData`. 140 _p: PhantomData<ArcInner<T>>, 141 } 142 143 #[doc(hidden)] 144 #[pin_data] 145 #[repr(C)] 146 pub struct ArcInner<T: ?Sized> { 147 refcount: Opaque<bindings::refcount_t>, 148 data: T, 149 } 150 151 impl<T: ?Sized> ArcInner<T> { 152 /// Converts a pointer to the contents of an [`Arc`] into a pointer to the [`ArcInner`]. 153 /// 154 /// # Safety 155 /// 156 /// `ptr` must have been returned by a previous call to [`Arc::into_raw`], and the `Arc` must 157 /// not yet have been destroyed. container_of(ptr: *const T) -> NonNull<ArcInner<T>>158 unsafe fn container_of(ptr: *const T) -> NonNull<ArcInner<T>> { 159 let refcount_layout = Layout::new::<bindings::refcount_t>(); 160 // SAFETY: The caller guarantees that the pointer is valid. 161 let val_layout = Layout::for_value(unsafe { &*ptr }); 162 // SAFETY: We're computing the layout of a real struct that existed when compiling this 163 // binary, so its layout is not so large that it can trigger arithmetic overflow. 164 let val_offset = unsafe { refcount_layout.extend(val_layout).unwrap_unchecked().1 }; 165 166 // Pointer casts leave the metadata unchanged. This is okay because the metadata of `T` and 167 // `ArcInner<T>` is the same since `ArcInner` is a struct with `T` as its last field. 168 // 169 // This is documented at: 170 // <https://doc.rust-lang.org/std/ptr/trait.Pointee.html>. 171 let ptr = ptr as *const ArcInner<T>; 172 173 // SAFETY: The pointer is in-bounds of an allocation both before and after offsetting the 174 // pointer, since it originates from a previous call to `Arc::into_raw` on an `Arc` that is 175 // still valid. 176 let ptr = unsafe { ptr.byte_sub(val_offset) }; 177 178 // SAFETY: The pointer can't be null since you can't have an `ArcInner<T>` value at the null 179 // address. 180 unsafe { NonNull::new_unchecked(ptr.cast_mut()) } 181 } 182 } 183 184 // This is to allow coercion from `Arc<T>` to `Arc<U>` if `T` can be converted to the 185 // dynamically-sized type (DST) `U`. 186 #[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))] 187 impl<T: ?Sized + core::marker::Unsize<U>, U: ?Sized> core::ops::CoerceUnsized<Arc<U>> for Arc<T> {} 188 189 // This is to allow `Arc<U>` to be dispatched on when `Arc<T>` can be coerced into `Arc<U>`. 190 #[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))] 191 impl<T: ?Sized + core::marker::Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<Arc<U>> for Arc<T> {} 192 193 // SAFETY: It is safe to send `Arc<T>` to another thread when the underlying `T` is `Sync` because 194 // it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, it needs 195 // `T` to be `Send` because any thread that has an `Arc<T>` may ultimately access `T` using a 196 // mutable reference when the reference count reaches zero and `T` is dropped. 197 unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {} 198 199 // SAFETY: It is safe to send `&Arc<T>` to another thread when the underlying `T` is `Sync` 200 // because it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, 201 // it needs `T` to be `Send` because any thread that has a `&Arc<T>` may clone it and get an 202 // `Arc<T>` on that thread, so the thread may ultimately access `T` using a mutable reference when 203 // the reference count reaches zero and `T` is dropped. 204 unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {} 205 206 impl<T> InPlaceInit<T> for Arc<T> { 207 type PinnedSelf = Self; 208 209 #[inline] try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E> where E: From<AllocError>,210 fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E> 211 where 212 E: From<AllocError>, 213 { 214 UniqueArc::try_pin_init(init, flags).map(|u| u.into()) 215 } 216 217 #[inline] try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E> where E: From<AllocError>,218 fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E> 219 where 220 E: From<AllocError>, 221 { 222 UniqueArc::try_init(init, flags).map(|u| u.into()) 223 } 224 } 225 226 impl<T> Arc<T> { 227 /// Constructs a new reference counted instance of `T`. new(contents: T, flags: Flags) -> Result<Self, AllocError>228 pub fn new(contents: T, flags: Flags) -> Result<Self, AllocError> { 229 // INVARIANT: The refcount is initialised to a non-zero value. 230 let value = ArcInner { 231 // SAFETY: There are no safety requirements for this FFI call. 232 refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }), 233 data: contents, 234 }; 235 236 let inner = KBox::new(value, flags)?; 237 let inner = KBox::leak(inner).into(); 238 239 // SAFETY: We just created `inner` with a reference count of 1, which is owned by the new 240 // `Arc` object. 241 Ok(unsafe { Self::from_inner(inner) }) 242 } 243 } 244 245 impl<T: ?Sized> Arc<T> { 246 /// Constructs a new [`Arc`] from an existing [`ArcInner`]. 247 /// 248 /// # Safety 249 /// 250 /// The caller must ensure that `inner` points to a valid location and has a non-zero reference 251 /// count, one of which will be owned by the new [`Arc`] instance. from_inner(inner: NonNull<ArcInner<T>>) -> Self252 unsafe fn from_inner(inner: NonNull<ArcInner<T>>) -> Self { 253 // INVARIANT: By the safety requirements, the invariants hold. 254 Arc { 255 ptr: inner, 256 _p: PhantomData, 257 } 258 } 259 260 /// Convert the [`Arc`] into a raw pointer. 261 /// 262 /// The raw pointer has ownership of the refcount that this Arc object owned. into_raw(self) -> *const T263 pub fn into_raw(self) -> *const T { 264 let ptr = self.ptr.as_ptr(); 265 core::mem::forget(self); 266 // SAFETY: The pointer is valid. 267 unsafe { core::ptr::addr_of!((*ptr).data) } 268 } 269 270 /// Return a raw pointer to the data in this arc. as_ptr(this: &Self) -> *const T271 pub fn as_ptr(this: &Self) -> *const T { 272 let ptr = this.ptr.as_ptr(); 273 274 // SAFETY: As `ptr` points to a valid allocation of type `ArcInner`, 275 // field projection to `data`is within bounds of the allocation. 276 unsafe { core::ptr::addr_of!((*ptr).data) } 277 } 278 279 /// Recreates an [`Arc`] instance previously deconstructed via [`Arc::into_raw`]. 280 /// 281 /// # Safety 282 /// 283 /// `ptr` must have been returned by a previous call to [`Arc::into_raw`]. Additionally, it 284 /// must not be called more than once for each previous call to [`Arc::into_raw`]. from_raw(ptr: *const T) -> Self285 pub unsafe fn from_raw(ptr: *const T) -> Self { 286 // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an 287 // `Arc` that is still valid. 288 let ptr = unsafe { ArcInner::container_of(ptr) }; 289 290 // SAFETY: By the safety requirements we know that `ptr` came from `Arc::into_raw`, so the 291 // reference count held then will be owned by the new `Arc` object. 292 unsafe { Self::from_inner(ptr) } 293 } 294 295 /// Returns an [`ArcBorrow`] from the given [`Arc`]. 296 /// 297 /// This is useful when the argument of a function call is an [`ArcBorrow`] (e.g., in a method 298 /// receiver), but we have an [`Arc`] instead. Getting an [`ArcBorrow`] is free when optimised. 299 #[inline] as_arc_borrow(&self) -> ArcBorrow<'_, T>300 pub fn as_arc_borrow(&self) -> ArcBorrow<'_, T> { 301 // SAFETY: The constraint that the lifetime of the shared reference must outlive that of 302 // the returned `ArcBorrow` ensures that the object remains alive and that no mutable 303 // reference can be created. 304 unsafe { ArcBorrow::new(self.ptr) } 305 } 306 307 /// Compare whether two [`Arc`] pointers reference the same underlying object. ptr_eq(this: &Self, other: &Self) -> bool308 pub fn ptr_eq(this: &Self, other: &Self) -> bool { 309 core::ptr::eq(this.ptr.as_ptr(), other.ptr.as_ptr()) 310 } 311 312 /// Converts this [`Arc`] into a [`UniqueArc`], or destroys it if it is not unique. 313 /// 314 /// When this destroys the `Arc`, it does so while properly avoiding races. This means that 315 /// this method will never call the destructor of the value. 316 /// 317 /// # Examples 318 /// 319 /// ``` 320 /// use kernel::sync::{Arc, UniqueArc}; 321 /// 322 /// let arc = Arc::new(42, GFP_KERNEL)?; 323 /// let unique_arc = arc.into_unique_or_drop(); 324 /// 325 /// // The above conversion should succeed since refcount of `arc` is 1. 326 /// assert!(unique_arc.is_some()); 327 /// 328 /// assert_eq!(*(unique_arc.unwrap()), 42); 329 /// 330 /// # Ok::<(), Error>(()) 331 /// ``` 332 /// 333 /// ``` 334 /// use kernel::sync::{Arc, UniqueArc}; 335 /// 336 /// let arc = Arc::new(42, GFP_KERNEL)?; 337 /// let another = arc.clone(); 338 /// 339 /// let unique_arc = arc.into_unique_or_drop(); 340 /// 341 /// // The above conversion should fail since refcount of `arc` is >1. 342 /// assert!(unique_arc.is_none()); 343 /// 344 /// # Ok::<(), Error>(()) 345 /// ``` into_unique_or_drop(self) -> Option<Pin<UniqueArc<T>>>346 pub fn into_unique_or_drop(self) -> Option<Pin<UniqueArc<T>>> { 347 // We will manually manage the refcount in this method, so we disable the destructor. 348 let me = ManuallyDrop::new(self); 349 // SAFETY: We own a refcount, so the pointer is still valid. 350 let refcount = unsafe { me.ptr.as_ref() }.refcount.get(); 351 352 // If the refcount reaches a non-zero value, then we have destroyed this `Arc` and will 353 // return without further touching the `Arc`. If the refcount reaches zero, then there are 354 // no other arcs, and we can create a `UniqueArc`. 355 // 356 // SAFETY: We own a refcount, so the pointer is not dangling. 357 let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) }; 358 if is_zero { 359 // SAFETY: We have exclusive access to the arc, so we can perform unsynchronized 360 // accesses to the refcount. 361 unsafe { core::ptr::write(refcount, bindings::REFCOUNT_INIT(1)) }; 362 363 // INVARIANT: We own the only refcount to this arc, so we may create a `UniqueArc`. We 364 // must pin the `UniqueArc` because the values was previously in an `Arc`, and they pin 365 // their values. 366 Some(Pin::from(UniqueArc { 367 inner: ManuallyDrop::into_inner(me), 368 })) 369 } else { 370 None 371 } 372 } 373 } 374 375 // SAFETY: The `into_foreign` function returns a pointer that is well-aligned. 376 unsafe impl<T: 'static> ForeignOwnable for Arc<T> { 377 type PointedTo = ArcInner<T>; 378 type Borrowed<'a> = ArcBorrow<'a, T>; 379 type BorrowedMut<'a> = Self::Borrowed<'a>; 380 into_foreign(self) -> *mut Self::PointedTo381 fn into_foreign(self) -> *mut Self::PointedTo { 382 ManuallyDrop::new(self).ptr.as_ptr() 383 } 384 from_foreign(ptr: *mut Self::PointedTo) -> Self385 unsafe fn from_foreign(ptr: *mut Self::PointedTo) -> Self { 386 // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous 387 // call to `Self::into_foreign`. 388 let inner = unsafe { NonNull::new_unchecked(ptr) }; 389 390 // SAFETY: By the safety requirement of this function, we know that `ptr` came from 391 // a previous call to `Arc::into_foreign`, which guarantees that `ptr` is valid and 392 // holds a reference count increment that is transferrable to us. 393 unsafe { Self::from_inner(inner) } 394 } 395 borrow<'a>(ptr: *mut Self::PointedTo) -> ArcBorrow<'a, T>396 unsafe fn borrow<'a>(ptr: *mut Self::PointedTo) -> ArcBorrow<'a, T> { 397 // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous 398 // call to `Self::into_foreign`. 399 let inner = unsafe { NonNull::new_unchecked(ptr) }; 400 401 // SAFETY: The safety requirements of `from_foreign` ensure that the object remains alive 402 // for the lifetime of the returned value. 403 unsafe { ArcBorrow::new(inner) } 404 } 405 borrow_mut<'a>(ptr: *mut Self::PointedTo) -> ArcBorrow<'a, T>406 unsafe fn borrow_mut<'a>(ptr: *mut Self::PointedTo) -> ArcBorrow<'a, T> { 407 // SAFETY: The safety requirements for `borrow_mut` are a superset of the safety 408 // requirements for `borrow`. 409 unsafe { Self::borrow(ptr) } 410 } 411 } 412 413 impl<T: ?Sized> Deref for Arc<T> { 414 type Target = T; 415 deref(&self) -> &Self::Target416 fn deref(&self) -> &Self::Target { 417 // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is 418 // safe to dereference it. 419 unsafe { &self.ptr.as_ref().data } 420 } 421 } 422 423 impl<T: ?Sized> AsRef<T> for Arc<T> { as_ref(&self) -> &T424 fn as_ref(&self) -> &T { 425 self.deref() 426 } 427 } 428 429 impl<T: ?Sized> Clone for Arc<T> { clone(&self) -> Self430 fn clone(&self) -> Self { 431 // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is 432 // safe to dereference it. 433 let refcount = unsafe { self.ptr.as_ref() }.refcount.get(); 434 435 // INVARIANT: C `refcount_inc` saturates the refcount, so it cannot overflow to zero. 436 // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is 437 // safe to increment the refcount. 438 unsafe { bindings::refcount_inc(refcount) }; 439 440 // SAFETY: We just incremented the refcount. This increment is now owned by the new `Arc`. 441 unsafe { Self::from_inner(self.ptr) } 442 } 443 } 444 445 impl<T: ?Sized> Drop for Arc<T> { drop(&mut self)446 fn drop(&mut self) { 447 // SAFETY: By the type invariant, there is necessarily a reference to the object. We cannot 448 // touch `refcount` after it's decremented to a non-zero value because another thread/CPU 449 // may concurrently decrement it to zero and free it. It is ok to have a raw pointer to 450 // freed/invalid memory as long as it is never dereferenced. 451 let refcount = unsafe { self.ptr.as_ref() }.refcount.get(); 452 453 // INVARIANT: If the refcount reaches zero, there are no other instances of `Arc`, and 454 // this instance is being dropped, so the broken invariant is not observable. 455 // SAFETY: Also by the type invariant, we are allowed to decrement the refcount. 456 let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) }; 457 if is_zero { 458 // The count reached zero, we must free the memory. 459 // 460 // SAFETY: The pointer was initialised from the result of `KBox::leak`. 461 unsafe { drop(KBox::from_raw(self.ptr.as_ptr())) }; 462 } 463 } 464 } 465 466 impl<T: ?Sized> From<UniqueArc<T>> for Arc<T> { from(item: UniqueArc<T>) -> Self467 fn from(item: UniqueArc<T>) -> Self { 468 item.inner 469 } 470 } 471 472 impl<T: ?Sized> From<Pin<UniqueArc<T>>> for Arc<T> { from(item: Pin<UniqueArc<T>>) -> Self473 fn from(item: Pin<UniqueArc<T>>) -> Self { 474 // SAFETY: The type invariants of `Arc` guarantee that the data is pinned. 475 unsafe { Pin::into_inner_unchecked(item).inner } 476 } 477 } 478 479 /// A borrowed reference to an [`Arc`] instance. 480 /// 481 /// For cases when one doesn't ever need to increment the refcount on the allocation, it is simpler 482 /// to use just `&T`, which we can trivially get from an [`Arc<T>`] instance. 483 /// 484 /// However, when one may need to increment the refcount, it is preferable to use an `ArcBorrow<T>` 485 /// over `&Arc<T>` because the latter results in a double-indirection: a pointer (shared reference) 486 /// to a pointer ([`Arc<T>`]) to the object (`T`). An [`ArcBorrow`] eliminates this double 487 /// indirection while still allowing one to increment the refcount and getting an [`Arc<T>`] when/if 488 /// needed. 489 /// 490 /// # Invariants 491 /// 492 /// There are no mutable references to the underlying [`Arc`], and it remains valid for the 493 /// lifetime of the [`ArcBorrow`] instance. 494 /// 495 /// # Examples 496 /// 497 /// ``` 498 /// use kernel::sync::{Arc, ArcBorrow}; 499 /// 500 /// struct Example; 501 /// 502 /// fn do_something(e: ArcBorrow<'_, Example>) -> Arc<Example> { 503 /// e.into() 504 /// } 505 /// 506 /// let obj = Arc::new(Example, GFP_KERNEL)?; 507 /// let cloned = do_something(obj.as_arc_borrow()); 508 /// 509 /// // Assert that both `obj` and `cloned` point to the same underlying object. 510 /// assert!(core::ptr::eq(&*obj, &*cloned)); 511 /// # Ok::<(), Error>(()) 512 /// ``` 513 /// 514 /// Using `ArcBorrow<T>` as the type of `self`: 515 /// 516 /// ``` 517 /// use kernel::sync::{Arc, ArcBorrow}; 518 /// 519 /// struct Example { 520 /// a: u32, 521 /// b: u32, 522 /// } 523 /// 524 /// impl Example { 525 /// fn use_reference(self: ArcBorrow<'_, Self>) { 526 /// // ... 527 /// } 528 /// } 529 /// 530 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?; 531 /// obj.as_arc_borrow().use_reference(); 532 /// # Ok::<(), Error>(()) 533 /// ``` 534 #[repr(transparent)] 535 #[cfg_attr(CONFIG_RUSTC_HAS_COERCE_POINTEE, derive(core::marker::CoercePointee))] 536 pub struct ArcBorrow<'a, T: ?Sized + 'a> { 537 inner: NonNull<ArcInner<T>>, 538 _p: PhantomData<&'a ()>, 539 } 540 541 // This is to allow `ArcBorrow<U>` to be dispatched on when `ArcBorrow<T>` can be coerced into 542 // `ArcBorrow<U>`. 543 #[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))] 544 impl<T: ?Sized + core::marker::Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<ArcBorrow<'_, U>> 545 for ArcBorrow<'_, T> 546 { 547 } 548 549 impl<T: ?Sized> Clone for ArcBorrow<'_, T> { clone(&self) -> Self550 fn clone(&self) -> Self { 551 *self 552 } 553 } 554 555 impl<T: ?Sized> Copy for ArcBorrow<'_, T> {} 556 557 impl<T: ?Sized> ArcBorrow<'_, T> { 558 /// Creates a new [`ArcBorrow`] instance. 559 /// 560 /// # Safety 561 /// 562 /// Callers must ensure the following for the lifetime of the returned [`ArcBorrow`] instance: 563 /// 1. That `inner` remains valid; 564 /// 2. That no mutable references to `inner` are created. new(inner: NonNull<ArcInner<T>>) -> Self565 unsafe fn new(inner: NonNull<ArcInner<T>>) -> Self { 566 // INVARIANT: The safety requirements guarantee the invariants. 567 Self { 568 inner, 569 _p: PhantomData, 570 } 571 } 572 573 /// Creates an [`ArcBorrow`] to an [`Arc`] that has previously been deconstructed with 574 /// [`Arc::into_raw`] or [`Arc::as_ptr`]. 575 /// 576 /// # Safety 577 /// 578 /// * The provided pointer must originate from a call to [`Arc::into_raw`] or [`Arc::as_ptr`]. 579 /// * For the duration of the lifetime annotated on this `ArcBorrow`, the reference count must 580 /// not hit zero. 581 /// * For the duration of the lifetime annotated on this `ArcBorrow`, there must not be a 582 /// [`UniqueArc`] reference to this value. from_raw(ptr: *const T) -> Self583 pub unsafe fn from_raw(ptr: *const T) -> Self { 584 // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an 585 // `Arc` that is still valid. 586 let ptr = unsafe { ArcInner::container_of(ptr) }; 587 588 // SAFETY: The caller promises that the value remains valid since the reference count must 589 // not hit zero, and no mutable reference will be created since that would involve a 590 // `UniqueArc`. 591 unsafe { Self::new(ptr) } 592 } 593 } 594 595 impl<T: ?Sized> From<ArcBorrow<'_, T>> for Arc<T> { from(b: ArcBorrow<'_, T>) -> Self596 fn from(b: ArcBorrow<'_, T>) -> Self { 597 // SAFETY: The existence of `b` guarantees that the refcount is non-zero. `ManuallyDrop` 598 // guarantees that `drop` isn't called, so it's ok that the temporary `Arc` doesn't own the 599 // increment. 600 ManuallyDrop::new(unsafe { Arc::from_inner(b.inner) }) 601 .deref() 602 .clone() 603 } 604 } 605 606 impl<T: ?Sized> Deref for ArcBorrow<'_, T> { 607 type Target = T; 608 deref(&self) -> &Self::Target609 fn deref(&self) -> &Self::Target { 610 // SAFETY: By the type invariant, the underlying object is still alive with no mutable 611 // references to it, so it is safe to create a shared reference. 612 unsafe { &self.inner.as_ref().data } 613 } 614 } 615 616 /// A refcounted object that is known to have a refcount of 1. 617 /// 618 /// It is mutable and can be converted to an [`Arc`] so that it can be shared. 619 /// 620 /// # Invariants 621 /// 622 /// `inner` always has a reference count of 1. 623 /// 624 /// # Examples 625 /// 626 /// In the following example, we make changes to the inner object before turning it into an 627 /// `Arc<Test>` object (after which point, it cannot be mutated directly). Note that `x.into()` 628 /// cannot fail. 629 /// 630 /// ``` 631 /// use kernel::sync::{Arc, UniqueArc}; 632 /// 633 /// struct Example { 634 /// a: u32, 635 /// b: u32, 636 /// } 637 /// 638 /// fn test() -> Result<Arc<Example>> { 639 /// let mut x = UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?; 640 /// x.a += 1; 641 /// x.b += 1; 642 /// Ok(x.into()) 643 /// } 644 /// 645 /// # test().unwrap(); 646 /// ``` 647 /// 648 /// In the following example we first allocate memory for a refcounted `Example` but we don't 649 /// initialise it on allocation. We do initialise it later with a call to [`UniqueArc::write`], 650 /// followed by a conversion to `Arc<Example>`. This is particularly useful when allocation happens 651 /// in one context (e.g., sleepable) and initialisation in another (e.g., atomic): 652 /// 653 /// ``` 654 /// use kernel::sync::{Arc, UniqueArc}; 655 /// 656 /// struct Example { 657 /// a: u32, 658 /// b: u32, 659 /// } 660 /// 661 /// fn test() -> Result<Arc<Example>> { 662 /// let x = UniqueArc::new_uninit(GFP_KERNEL)?; 663 /// Ok(x.write(Example { a: 10, b: 20 }).into()) 664 /// } 665 /// 666 /// # test().unwrap(); 667 /// ``` 668 /// 669 /// In the last example below, the caller gets a pinned instance of `Example` while converting to 670 /// `Arc<Example>`; this is useful in scenarios where one needs a pinned reference during 671 /// initialisation, for example, when initialising fields that are wrapped in locks. 672 /// 673 /// ``` 674 /// use kernel::sync::{Arc, UniqueArc}; 675 /// 676 /// struct Example { 677 /// a: u32, 678 /// b: u32, 679 /// } 680 /// 681 /// fn test() -> Result<Arc<Example>> { 682 /// let mut pinned = Pin::from(UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?); 683 /// // We can modify `pinned` because it is `Unpin`. 684 /// pinned.as_mut().a += 1; 685 /// Ok(pinned.into()) 686 /// } 687 /// 688 /// # test().unwrap(); 689 /// ``` 690 pub struct UniqueArc<T: ?Sized> { 691 inner: Arc<T>, 692 } 693 694 impl<T> InPlaceInit<T> for UniqueArc<T> { 695 type PinnedSelf = Pin<Self>; 696 697 #[inline] try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E> where E: From<AllocError>,698 fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E> 699 where 700 E: From<AllocError>, 701 { 702 UniqueArc::new_uninit(flags)?.write_pin_init(init) 703 } 704 705 #[inline] try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E> where E: From<AllocError>,706 fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E> 707 where 708 E: From<AllocError>, 709 { 710 UniqueArc::new_uninit(flags)?.write_init(init) 711 } 712 } 713 714 impl<T> InPlaceWrite<T> for UniqueArc<MaybeUninit<T>> { 715 type Initialized = UniqueArc<T>; 716 write_init<E>(mut self, init: impl Init<T, E>) -> Result<Self::Initialized, E>717 fn write_init<E>(mut self, init: impl Init<T, E>) -> Result<Self::Initialized, E> { 718 let slot = self.as_mut_ptr(); 719 // SAFETY: When init errors/panics, slot will get deallocated but not dropped, 720 // slot is valid. 721 unsafe { init.__init(slot)? }; 722 // SAFETY: All fields have been initialized. 723 Ok(unsafe { self.assume_init() }) 724 } 725 write_pin_init<E>(mut self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E>726 fn write_pin_init<E>(mut self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E> { 727 let slot = self.as_mut_ptr(); 728 // SAFETY: When init errors/panics, slot will get deallocated but not dropped, 729 // slot is valid and will not be moved, because we pin it later. 730 unsafe { init.__pinned_init(slot)? }; 731 // SAFETY: All fields have been initialized. 732 Ok(unsafe { self.assume_init() }.into()) 733 } 734 } 735 736 impl<T> UniqueArc<T> { 737 /// Tries to allocate a new [`UniqueArc`] instance. new(value: T, flags: Flags) -> Result<Self, AllocError>738 pub fn new(value: T, flags: Flags) -> Result<Self, AllocError> { 739 Ok(Self { 740 // INVARIANT: The newly-created object has a refcount of 1. 741 inner: Arc::new(value, flags)?, 742 }) 743 } 744 745 /// Tries to allocate a new [`UniqueArc`] instance whose contents are not initialised yet. new_uninit(flags: Flags) -> Result<UniqueArc<MaybeUninit<T>>, AllocError>746 pub fn new_uninit(flags: Flags) -> Result<UniqueArc<MaybeUninit<T>>, AllocError> { 747 // INVARIANT: The refcount is initialised to a non-zero value. 748 let inner = KBox::try_init::<AllocError>( 749 try_init!(ArcInner { 750 // SAFETY: There are no safety requirements for this FFI call. 751 refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }), 752 data <- pin_init::uninit::<T, AllocError>(), 753 }? AllocError), 754 flags, 755 )?; 756 Ok(UniqueArc { 757 // INVARIANT: The newly-created object has a refcount of 1. 758 // SAFETY: The pointer from the `KBox` is valid. 759 inner: unsafe { Arc::from_inner(KBox::leak(inner).into()) }, 760 }) 761 } 762 } 763 764 impl<T> UniqueArc<MaybeUninit<T>> { 765 /// Converts a `UniqueArc<MaybeUninit<T>>` into a `UniqueArc<T>` by writing a value into it. write(mut self, value: T) -> UniqueArc<T>766 pub fn write(mut self, value: T) -> UniqueArc<T> { 767 self.deref_mut().write(value); 768 // SAFETY: We just wrote the value to be initialized. 769 unsafe { self.assume_init() } 770 } 771 772 /// Unsafely assume that `self` is initialized. 773 /// 774 /// # Safety 775 /// 776 /// The caller guarantees that the value behind this pointer has been initialized. It is 777 /// *immediate* UB to call this when the value is not initialized. assume_init(self) -> UniqueArc<T>778 pub unsafe fn assume_init(self) -> UniqueArc<T> { 779 let inner = ManuallyDrop::new(self).inner.ptr; 780 UniqueArc { 781 // SAFETY: The new `Arc` is taking over `ptr` from `self.inner` (which won't be 782 // dropped). The types are compatible because `MaybeUninit<T>` is compatible with `T`. 783 inner: unsafe { Arc::from_inner(inner.cast()) }, 784 } 785 } 786 787 /// Initialize `self` using the given initializer. init_with<E>(mut self, init: impl Init<T, E>) -> core::result::Result<UniqueArc<T>, E>788 pub fn init_with<E>(mut self, init: impl Init<T, E>) -> core::result::Result<UniqueArc<T>, E> { 789 // SAFETY: The supplied pointer is valid for initialization. 790 match unsafe { init.__init(self.as_mut_ptr()) } { 791 // SAFETY: Initialization completed successfully. 792 Ok(()) => Ok(unsafe { self.assume_init() }), 793 Err(err) => Err(err), 794 } 795 } 796 797 /// Pin-initialize `self` using the given pin-initializer. pin_init_with<E>( mut self, init: impl PinInit<T, E>, ) -> core::result::Result<Pin<UniqueArc<T>>, E>798 pub fn pin_init_with<E>( 799 mut self, 800 init: impl PinInit<T, E>, 801 ) -> core::result::Result<Pin<UniqueArc<T>>, E> { 802 // SAFETY: The supplied pointer is valid for initialization and we will later pin the value 803 // to ensure it does not move. 804 match unsafe { init.__pinned_init(self.as_mut_ptr()) } { 805 // SAFETY: Initialization completed successfully. 806 Ok(()) => Ok(unsafe { self.assume_init() }.into()), 807 Err(err) => Err(err), 808 } 809 } 810 } 811 812 impl<T: ?Sized> From<UniqueArc<T>> for Pin<UniqueArc<T>> { from(obj: UniqueArc<T>) -> Self813 fn from(obj: UniqueArc<T>) -> Self { 814 // SAFETY: It is not possible to move/replace `T` inside a `Pin<UniqueArc<T>>` (unless `T` 815 // is `Unpin`), so it is ok to convert it to `Pin<UniqueArc<T>>`. 816 unsafe { Pin::new_unchecked(obj) } 817 } 818 } 819 820 impl<T: ?Sized> Deref for UniqueArc<T> { 821 type Target = T; 822 deref(&self) -> &Self::Target823 fn deref(&self) -> &Self::Target { 824 self.inner.deref() 825 } 826 } 827 828 impl<T: ?Sized> DerefMut for UniqueArc<T> { deref_mut(&mut self) -> &mut Self::Target829 fn deref_mut(&mut self) -> &mut Self::Target { 830 // SAFETY: By the `Arc` type invariant, there is necessarily a reference to the object, so 831 // it is safe to dereference it. Additionally, we know there is only one reference when 832 // it's inside a `UniqueArc`, so it is safe to get a mutable reference. 833 unsafe { &mut self.inner.ptr.as_mut().data } 834 } 835 } 836 837 impl<T: fmt::Display + ?Sized> fmt::Display for UniqueArc<T> { fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result838 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 839 fmt::Display::fmt(self.deref(), f) 840 } 841 } 842 843 impl<T: fmt::Display + ?Sized> fmt::Display for Arc<T> { fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result844 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 845 fmt::Display::fmt(self.deref(), f) 846 } 847 } 848 849 impl<T: fmt::Debug + ?Sized> fmt::Debug for UniqueArc<T> { fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result850 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 851 fmt::Debug::fmt(self.deref(), f) 852 } 853 } 854 855 impl<T: fmt::Debug + ?Sized> fmt::Debug for Arc<T> { fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result856 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 857 fmt::Debug::fmt(self.deref(), f) 858 } 859 } 860