xref: /linux/rust/kernel/sync/arc.rs (revision ec7714e4947909190ffb3041a03311a975350fe0)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! A reference-counted pointer.
4 //!
5 //! This module implements a way for users to create reference-counted objects and pointers to
6 //! them. Such a pointer automatically increments and decrements the count, and drops the
7 //! underlying object when it reaches zero. It is also safe to use concurrently from multiple
8 //! threads.
9 //!
10 //! It is different from the standard library's [`Arc`] in a few ways:
11 //! 1. It is backed by the kernel's `refcount_t` type.
12 //! 2. It does not support weak references, which allows it to be half the size.
13 //! 3. It saturates the reference count instead of aborting when it goes over a threshold.
14 //! 4. It does not provide a `get_mut` method, so the ref counted object is pinned.
15 //! 5. The object in [`Arc`] is pinned implicitly.
16 //!
17 //! [`Arc`]: https://doc.rust-lang.org/std/sync/struct.Arc.html
18 
19 use crate::{
20     alloc::{AllocError, Flags, KBox},
21     bindings,
22     init::InPlaceInit,
23     try_init,
24     types::{ForeignOwnable, Opaque},
25 };
26 use core::{
27     alloc::Layout,
28     fmt,
29     marker::PhantomData,
30     mem::{ManuallyDrop, MaybeUninit},
31     ops::{Deref, DerefMut},
32     pin::Pin,
33     ptr::NonNull,
34 };
35 use pin_init::{self, pin_data, InPlaceWrite, Init, PinInit};
36 
37 mod std_vendor;
38 
39 /// A reference-counted pointer to an instance of `T`.
40 ///
41 /// The reference count is incremented when new instances of [`Arc`] are created, and decremented
42 /// when they are dropped. When the count reaches zero, the underlying `T` is also dropped.
43 ///
44 /// # Invariants
45 ///
46 /// The reference count on an instance of [`Arc`] is always non-zero.
47 /// The object pointed to by [`Arc`] is always pinned.
48 ///
49 /// # Examples
50 ///
51 /// ```
52 /// use kernel::sync::Arc;
53 ///
54 /// struct Example {
55 ///     a: u32,
56 ///     b: u32,
57 /// }
58 ///
59 /// // Create a refcounted instance of `Example`.
60 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
61 ///
62 /// // Get a new pointer to `obj` and increment the refcount.
63 /// let cloned = obj.clone();
64 ///
65 /// // Assert that both `obj` and `cloned` point to the same underlying object.
66 /// assert!(core::ptr::eq(&*obj, &*cloned));
67 ///
68 /// // Destroy `obj` and decrement its refcount.
69 /// drop(obj);
70 ///
71 /// // Check that the values are still accessible through `cloned`.
72 /// assert_eq!(cloned.a, 10);
73 /// assert_eq!(cloned.b, 20);
74 ///
75 /// // The refcount drops to zero when `cloned` goes out of scope, and the memory is freed.
76 /// # Ok::<(), Error>(())
77 /// ```
78 ///
79 /// Using `Arc<T>` as the type of `self`:
80 ///
81 /// ```
82 /// use kernel::sync::Arc;
83 ///
84 /// struct Example {
85 ///     a: u32,
86 ///     b: u32,
87 /// }
88 ///
89 /// impl Example {
90 ///     fn take_over(self: Arc<Self>) {
91 ///         // ...
92 ///     }
93 ///
94 ///     fn use_reference(self: &Arc<Self>) {
95 ///         // ...
96 ///     }
97 /// }
98 ///
99 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
100 /// obj.use_reference();
101 /// obj.take_over();
102 /// # Ok::<(), Error>(())
103 /// ```
104 ///
105 /// Coercion from `Arc<Example>` to `Arc<dyn MyTrait>`:
106 ///
107 /// ```
108 /// use kernel::sync::{Arc, ArcBorrow};
109 ///
110 /// trait MyTrait {
111 ///     // Trait has a function whose `self` type is `Arc<Self>`.
112 ///     fn example1(self: Arc<Self>) {}
113 ///
114 ///     // Trait has a function whose `self` type is `ArcBorrow<'_, Self>`.
115 ///     fn example2(self: ArcBorrow<'_, Self>) {}
116 /// }
117 ///
118 /// struct Example;
119 /// impl MyTrait for Example {}
120 ///
121 /// // `obj` has type `Arc<Example>`.
122 /// let obj: Arc<Example> = Arc::new(Example, GFP_KERNEL)?;
123 ///
124 /// // `coerced` has type `Arc<dyn MyTrait>`.
125 /// let coerced: Arc<dyn MyTrait> = obj;
126 /// # Ok::<(), Error>(())
127 /// ```
128 #[repr(transparent)]
129 #[cfg_attr(CONFIG_RUSTC_HAS_COERCE_POINTEE, derive(core::marker::CoercePointee))]
130 pub struct Arc<T: ?Sized> {
131     ptr: NonNull<ArcInner<T>>,
132     // NB: this informs dropck that objects of type `ArcInner<T>` may be used in `<Arc<T> as
133     // Drop>::drop`. Note that dropck already assumes that objects of type `T` may be used in
134     // `<Arc<T> as Drop>::drop` and the distinction between `T` and `ArcInner<T>` is not presently
135     // meaningful with respect to dropck - but this may change in the future so this is left here
136     // out of an abundance of caution.
137     //
138     // See <https://doc.rust-lang.org/nomicon/phantom-data.html#generic-parameters-and-drop-checking>
139     // for more detail on the semantics of dropck in the presence of `PhantomData`.
140     _p: PhantomData<ArcInner<T>>,
141 }
142 
143 #[doc(hidden)]
144 #[pin_data]
145 #[repr(C)]
146 pub struct ArcInner<T: ?Sized> {
147     refcount: Opaque<bindings::refcount_t>,
148     data: T,
149 }
150 
151 impl<T: ?Sized> ArcInner<T> {
152     /// Converts a pointer to the contents of an [`Arc`] into a pointer to the [`ArcInner`].
153     ///
154     /// # Safety
155     ///
156     /// `ptr` must have been returned by a previous call to [`Arc::into_raw`], and the `Arc` must
157     /// not yet have been destroyed.
container_of(ptr: *const T) -> NonNull<ArcInner<T>>158     unsafe fn container_of(ptr: *const T) -> NonNull<ArcInner<T>> {
159         let refcount_layout = Layout::new::<bindings::refcount_t>();
160         // SAFETY: The caller guarantees that the pointer is valid.
161         let val_layout = Layout::for_value(unsafe { &*ptr });
162         // SAFETY: We're computing the layout of a real struct that existed when compiling this
163         // binary, so its layout is not so large that it can trigger arithmetic overflow.
164         let val_offset = unsafe { refcount_layout.extend(val_layout).unwrap_unchecked().1 };
165 
166         // Pointer casts leave the metadata unchanged. This is okay because the metadata of `T` and
167         // `ArcInner<T>` is the same since `ArcInner` is a struct with `T` as its last field.
168         //
169         // This is documented at:
170         // <https://doc.rust-lang.org/std/ptr/trait.Pointee.html>.
171         let ptr = ptr as *const ArcInner<T>;
172 
173         // SAFETY: The pointer is in-bounds of an allocation both before and after offsetting the
174         // pointer, since it originates from a previous call to `Arc::into_raw` on an `Arc` that is
175         // still valid.
176         let ptr = unsafe { ptr.byte_sub(val_offset) };
177 
178         // SAFETY: The pointer can't be null since you can't have an `ArcInner<T>` value at the null
179         // address.
180         unsafe { NonNull::new_unchecked(ptr.cast_mut()) }
181     }
182 }
183 
184 // This is to allow coercion from `Arc<T>` to `Arc<U>` if `T` can be converted to the
185 // dynamically-sized type (DST) `U`.
186 #[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))]
187 impl<T: ?Sized + core::marker::Unsize<U>, U: ?Sized> core::ops::CoerceUnsized<Arc<U>> for Arc<T> {}
188 
189 // This is to allow `Arc<U>` to be dispatched on when `Arc<T>` can be coerced into `Arc<U>`.
190 #[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))]
191 impl<T: ?Sized + core::marker::Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<Arc<U>> for Arc<T> {}
192 
193 // SAFETY: It is safe to send `Arc<T>` to another thread when the underlying `T` is `Sync` because
194 // it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, it needs
195 // `T` to be `Send` because any thread that has an `Arc<T>` may ultimately access `T` using a
196 // mutable reference when the reference count reaches zero and `T` is dropped.
197 unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {}
198 
199 // SAFETY: It is safe to send `&Arc<T>` to another thread when the underlying `T` is `Sync`
200 // because it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally,
201 // it needs `T` to be `Send` because any thread that has a `&Arc<T>` may clone it and get an
202 // `Arc<T>` on that thread, so the thread may ultimately access `T` using a mutable reference when
203 // the reference count reaches zero and `T` is dropped.
204 unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {}
205 
206 impl<T> InPlaceInit<T> for Arc<T> {
207     type PinnedSelf = Self;
208 
209     #[inline]
try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E> where E: From<AllocError>,210     fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E>
211     where
212         E: From<AllocError>,
213     {
214         UniqueArc::try_pin_init(init, flags).map(|u| u.into())
215     }
216 
217     #[inline]
try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E> where E: From<AllocError>,218     fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E>
219     where
220         E: From<AllocError>,
221     {
222         UniqueArc::try_init(init, flags).map(|u| u.into())
223     }
224 }
225 
226 impl<T> Arc<T> {
227     /// Constructs a new reference counted instance of `T`.
new(contents: T, flags: Flags) -> Result<Self, AllocError>228     pub fn new(contents: T, flags: Flags) -> Result<Self, AllocError> {
229         // INVARIANT: The refcount is initialised to a non-zero value.
230         let value = ArcInner {
231             // SAFETY: There are no safety requirements for this FFI call.
232             refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }),
233             data: contents,
234         };
235 
236         let inner = KBox::new(value, flags)?;
237         let inner = KBox::leak(inner).into();
238 
239         // SAFETY: We just created `inner` with a reference count of 1, which is owned by the new
240         // `Arc` object.
241         Ok(unsafe { Self::from_inner(inner) })
242     }
243 }
244 
245 impl<T: ?Sized> Arc<T> {
246     /// Constructs a new [`Arc`] from an existing [`ArcInner`].
247     ///
248     /// # Safety
249     ///
250     /// The caller must ensure that `inner` points to a valid location and has a non-zero reference
251     /// count, one of which will be owned by the new [`Arc`] instance.
from_inner(inner: NonNull<ArcInner<T>>) -> Self252     unsafe fn from_inner(inner: NonNull<ArcInner<T>>) -> Self {
253         // INVARIANT: By the safety requirements, the invariants hold.
254         Arc {
255             ptr: inner,
256             _p: PhantomData,
257         }
258     }
259 
260     /// Convert the [`Arc`] into a raw pointer.
261     ///
262     /// The raw pointer has ownership of the refcount that this Arc object owned.
into_raw(self) -> *const T263     pub fn into_raw(self) -> *const T {
264         let ptr = self.ptr.as_ptr();
265         core::mem::forget(self);
266         // SAFETY: The pointer is valid.
267         unsafe { core::ptr::addr_of!((*ptr).data) }
268     }
269 
270     /// Return a raw pointer to the data in this arc.
as_ptr(this: &Self) -> *const T271     pub fn as_ptr(this: &Self) -> *const T {
272         let ptr = this.ptr.as_ptr();
273 
274         // SAFETY: As `ptr` points to a valid allocation of type `ArcInner`,
275         // field projection to `data`is within bounds of the allocation.
276         unsafe { core::ptr::addr_of!((*ptr).data) }
277     }
278 
279     /// Recreates an [`Arc`] instance previously deconstructed via [`Arc::into_raw`].
280     ///
281     /// # Safety
282     ///
283     /// `ptr` must have been returned by a previous call to [`Arc::into_raw`]. Additionally, it
284     /// must not be called more than once for each previous call to [`Arc::into_raw`].
from_raw(ptr: *const T) -> Self285     pub unsafe fn from_raw(ptr: *const T) -> Self {
286         // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an
287         // `Arc` that is still valid.
288         let ptr = unsafe { ArcInner::container_of(ptr) };
289 
290         // SAFETY: By the safety requirements we know that `ptr` came from `Arc::into_raw`, so the
291         // reference count held then will be owned by the new `Arc` object.
292         unsafe { Self::from_inner(ptr) }
293     }
294 
295     /// Returns an [`ArcBorrow`] from the given [`Arc`].
296     ///
297     /// This is useful when the argument of a function call is an [`ArcBorrow`] (e.g., in a method
298     /// receiver), but we have an [`Arc`] instead. Getting an [`ArcBorrow`] is free when optimised.
299     #[inline]
as_arc_borrow(&self) -> ArcBorrow<'_, T>300     pub fn as_arc_borrow(&self) -> ArcBorrow<'_, T> {
301         // SAFETY: The constraint that the lifetime of the shared reference must outlive that of
302         // the returned `ArcBorrow` ensures that the object remains alive and that no mutable
303         // reference can be created.
304         unsafe { ArcBorrow::new(self.ptr) }
305     }
306 
307     /// Compare whether two [`Arc`] pointers reference the same underlying object.
ptr_eq(this: &Self, other: &Self) -> bool308     pub fn ptr_eq(this: &Self, other: &Self) -> bool {
309         core::ptr::eq(this.ptr.as_ptr(), other.ptr.as_ptr())
310     }
311 
312     /// Converts this [`Arc`] into a [`UniqueArc`], or destroys it if it is not unique.
313     ///
314     /// When this destroys the `Arc`, it does so while properly avoiding races. This means that
315     /// this method will never call the destructor of the value.
316     ///
317     /// # Examples
318     ///
319     /// ```
320     /// use kernel::sync::{Arc, UniqueArc};
321     ///
322     /// let arc = Arc::new(42, GFP_KERNEL)?;
323     /// let unique_arc = arc.into_unique_or_drop();
324     ///
325     /// // The above conversion should succeed since refcount of `arc` is 1.
326     /// assert!(unique_arc.is_some());
327     ///
328     /// assert_eq!(*(unique_arc.unwrap()), 42);
329     ///
330     /// # Ok::<(), Error>(())
331     /// ```
332     ///
333     /// ```
334     /// use kernel::sync::{Arc, UniqueArc};
335     ///
336     /// let arc = Arc::new(42, GFP_KERNEL)?;
337     /// let another = arc.clone();
338     ///
339     /// let unique_arc = arc.into_unique_or_drop();
340     ///
341     /// // The above conversion should fail since refcount of `arc` is >1.
342     /// assert!(unique_arc.is_none());
343     ///
344     /// # Ok::<(), Error>(())
345     /// ```
into_unique_or_drop(self) -> Option<Pin<UniqueArc<T>>>346     pub fn into_unique_or_drop(self) -> Option<Pin<UniqueArc<T>>> {
347         // We will manually manage the refcount in this method, so we disable the destructor.
348         let me = ManuallyDrop::new(self);
349         // SAFETY: We own a refcount, so the pointer is still valid.
350         let refcount = unsafe { me.ptr.as_ref() }.refcount.get();
351 
352         // If the refcount reaches a non-zero value, then we have destroyed this `Arc` and will
353         // return without further touching the `Arc`. If the refcount reaches zero, then there are
354         // no other arcs, and we can create a `UniqueArc`.
355         //
356         // SAFETY: We own a refcount, so the pointer is not dangling.
357         let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) };
358         if is_zero {
359             // SAFETY: We have exclusive access to the arc, so we can perform unsynchronized
360             // accesses to the refcount.
361             unsafe { core::ptr::write(refcount, bindings::REFCOUNT_INIT(1)) };
362 
363             // INVARIANT: We own the only refcount to this arc, so we may create a `UniqueArc`. We
364             // must pin the `UniqueArc` because the values was previously in an `Arc`, and they pin
365             // their values.
366             Some(Pin::from(UniqueArc {
367                 inner: ManuallyDrop::into_inner(me),
368             }))
369         } else {
370             None
371         }
372     }
373 }
374 
375 // SAFETY: The `into_foreign` function returns a pointer that is well-aligned.
376 unsafe impl<T: 'static> ForeignOwnable for Arc<T> {
377     type PointedTo = ArcInner<T>;
378     type Borrowed<'a> = ArcBorrow<'a, T>;
379     type BorrowedMut<'a> = Self::Borrowed<'a>;
380 
into_foreign(self) -> *mut Self::PointedTo381     fn into_foreign(self) -> *mut Self::PointedTo {
382         ManuallyDrop::new(self).ptr.as_ptr()
383     }
384 
from_foreign(ptr: *mut Self::PointedTo) -> Self385     unsafe fn from_foreign(ptr: *mut Self::PointedTo) -> Self {
386         // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous
387         // call to `Self::into_foreign`.
388         let inner = unsafe { NonNull::new_unchecked(ptr) };
389 
390         // SAFETY: By the safety requirement of this function, we know that `ptr` came from
391         // a previous call to `Arc::into_foreign`, which guarantees that `ptr` is valid and
392         // holds a reference count increment that is transferrable to us.
393         unsafe { Self::from_inner(inner) }
394     }
395 
borrow<'a>(ptr: *mut Self::PointedTo) -> ArcBorrow<'a, T>396     unsafe fn borrow<'a>(ptr: *mut Self::PointedTo) -> ArcBorrow<'a, T> {
397         // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous
398         // call to `Self::into_foreign`.
399         let inner = unsafe { NonNull::new_unchecked(ptr) };
400 
401         // SAFETY: The safety requirements of `from_foreign` ensure that the object remains alive
402         // for the lifetime of the returned value.
403         unsafe { ArcBorrow::new(inner) }
404     }
405 
borrow_mut<'a>(ptr: *mut Self::PointedTo) -> ArcBorrow<'a, T>406     unsafe fn borrow_mut<'a>(ptr: *mut Self::PointedTo) -> ArcBorrow<'a, T> {
407         // SAFETY: The safety requirements for `borrow_mut` are a superset of the safety
408         // requirements for `borrow`.
409         unsafe { Self::borrow(ptr) }
410     }
411 }
412 
413 impl<T: ?Sized> Deref for Arc<T> {
414     type Target = T;
415 
deref(&self) -> &Self::Target416     fn deref(&self) -> &Self::Target {
417         // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
418         // safe to dereference it.
419         unsafe { &self.ptr.as_ref().data }
420     }
421 }
422 
423 impl<T: ?Sized> AsRef<T> for Arc<T> {
as_ref(&self) -> &T424     fn as_ref(&self) -> &T {
425         self.deref()
426     }
427 }
428 
429 impl<T: ?Sized> Clone for Arc<T> {
clone(&self) -> Self430     fn clone(&self) -> Self {
431         // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
432         // safe to dereference it.
433         let refcount = unsafe { self.ptr.as_ref() }.refcount.get();
434 
435         // INVARIANT: C `refcount_inc` saturates the refcount, so it cannot overflow to zero.
436         // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
437         // safe to increment the refcount.
438         unsafe { bindings::refcount_inc(refcount) };
439 
440         // SAFETY: We just incremented the refcount. This increment is now owned by the new `Arc`.
441         unsafe { Self::from_inner(self.ptr) }
442     }
443 }
444 
445 impl<T: ?Sized> Drop for Arc<T> {
drop(&mut self)446     fn drop(&mut self) {
447         // SAFETY: By the type invariant, there is necessarily a reference to the object. We cannot
448         // touch `refcount` after it's decremented to a non-zero value because another thread/CPU
449         // may concurrently decrement it to zero and free it. It is ok to have a raw pointer to
450         // freed/invalid memory as long as it is never dereferenced.
451         let refcount = unsafe { self.ptr.as_ref() }.refcount.get();
452 
453         // INVARIANT: If the refcount reaches zero, there are no other instances of `Arc`, and
454         // this instance is being dropped, so the broken invariant is not observable.
455         // SAFETY: Also by the type invariant, we are allowed to decrement the refcount.
456         let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) };
457         if is_zero {
458             // The count reached zero, we must free the memory.
459             //
460             // SAFETY: The pointer was initialised from the result of `KBox::leak`.
461             unsafe { drop(KBox::from_raw(self.ptr.as_ptr())) };
462         }
463     }
464 }
465 
466 impl<T: ?Sized> From<UniqueArc<T>> for Arc<T> {
from(item: UniqueArc<T>) -> Self467     fn from(item: UniqueArc<T>) -> Self {
468         item.inner
469     }
470 }
471 
472 impl<T: ?Sized> From<Pin<UniqueArc<T>>> for Arc<T> {
from(item: Pin<UniqueArc<T>>) -> Self473     fn from(item: Pin<UniqueArc<T>>) -> Self {
474         // SAFETY: The type invariants of `Arc` guarantee that the data is pinned.
475         unsafe { Pin::into_inner_unchecked(item).inner }
476     }
477 }
478 
479 /// A borrowed reference to an [`Arc`] instance.
480 ///
481 /// For cases when one doesn't ever need to increment the refcount on the allocation, it is simpler
482 /// to use just `&T`, which we can trivially get from an [`Arc<T>`] instance.
483 ///
484 /// However, when one may need to increment the refcount, it is preferable to use an `ArcBorrow<T>`
485 /// over `&Arc<T>` because the latter results in a double-indirection: a pointer (shared reference)
486 /// to a pointer ([`Arc<T>`]) to the object (`T`). An [`ArcBorrow`] eliminates this double
487 /// indirection while still allowing one to increment the refcount and getting an [`Arc<T>`] when/if
488 /// needed.
489 ///
490 /// # Invariants
491 ///
492 /// There are no mutable references to the underlying [`Arc`], and it remains valid for the
493 /// lifetime of the [`ArcBorrow`] instance.
494 ///
495 /// # Examples
496 ///
497 /// ```
498 /// use kernel::sync::{Arc, ArcBorrow};
499 ///
500 /// struct Example;
501 ///
502 /// fn do_something(e: ArcBorrow<'_, Example>) -> Arc<Example> {
503 ///     e.into()
504 /// }
505 ///
506 /// let obj = Arc::new(Example, GFP_KERNEL)?;
507 /// let cloned = do_something(obj.as_arc_borrow());
508 ///
509 /// // Assert that both `obj` and `cloned` point to the same underlying object.
510 /// assert!(core::ptr::eq(&*obj, &*cloned));
511 /// # Ok::<(), Error>(())
512 /// ```
513 ///
514 /// Using `ArcBorrow<T>` as the type of `self`:
515 ///
516 /// ```
517 /// use kernel::sync::{Arc, ArcBorrow};
518 ///
519 /// struct Example {
520 ///     a: u32,
521 ///     b: u32,
522 /// }
523 ///
524 /// impl Example {
525 ///     fn use_reference(self: ArcBorrow<'_, Self>) {
526 ///         // ...
527 ///     }
528 /// }
529 ///
530 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
531 /// obj.as_arc_borrow().use_reference();
532 /// # Ok::<(), Error>(())
533 /// ```
534 #[repr(transparent)]
535 #[cfg_attr(CONFIG_RUSTC_HAS_COERCE_POINTEE, derive(core::marker::CoercePointee))]
536 pub struct ArcBorrow<'a, T: ?Sized + 'a> {
537     inner: NonNull<ArcInner<T>>,
538     _p: PhantomData<&'a ()>,
539 }
540 
541 // This is to allow `ArcBorrow<U>` to be dispatched on when `ArcBorrow<T>` can be coerced into
542 // `ArcBorrow<U>`.
543 #[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))]
544 impl<T: ?Sized + core::marker::Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<ArcBorrow<'_, U>>
545     for ArcBorrow<'_, T>
546 {
547 }
548 
549 impl<T: ?Sized> Clone for ArcBorrow<'_, T> {
clone(&self) -> Self550     fn clone(&self) -> Self {
551         *self
552     }
553 }
554 
555 impl<T: ?Sized> Copy for ArcBorrow<'_, T> {}
556 
557 impl<T: ?Sized> ArcBorrow<'_, T> {
558     /// Creates a new [`ArcBorrow`] instance.
559     ///
560     /// # Safety
561     ///
562     /// Callers must ensure the following for the lifetime of the returned [`ArcBorrow`] instance:
563     /// 1. That `inner` remains valid;
564     /// 2. That no mutable references to `inner` are created.
new(inner: NonNull<ArcInner<T>>) -> Self565     unsafe fn new(inner: NonNull<ArcInner<T>>) -> Self {
566         // INVARIANT: The safety requirements guarantee the invariants.
567         Self {
568             inner,
569             _p: PhantomData,
570         }
571     }
572 
573     /// Creates an [`ArcBorrow`] to an [`Arc`] that has previously been deconstructed with
574     /// [`Arc::into_raw`] or [`Arc::as_ptr`].
575     ///
576     /// # Safety
577     ///
578     /// * The provided pointer must originate from a call to [`Arc::into_raw`] or [`Arc::as_ptr`].
579     /// * For the duration of the lifetime annotated on this `ArcBorrow`, the reference count must
580     ///   not hit zero.
581     /// * For the duration of the lifetime annotated on this `ArcBorrow`, there must not be a
582     ///   [`UniqueArc`] reference to this value.
from_raw(ptr: *const T) -> Self583     pub unsafe fn from_raw(ptr: *const T) -> Self {
584         // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an
585         // `Arc` that is still valid.
586         let ptr = unsafe { ArcInner::container_of(ptr) };
587 
588         // SAFETY: The caller promises that the value remains valid since the reference count must
589         // not hit zero, and no mutable reference will be created since that would involve a
590         // `UniqueArc`.
591         unsafe { Self::new(ptr) }
592     }
593 }
594 
595 impl<T: ?Sized> From<ArcBorrow<'_, T>> for Arc<T> {
from(b: ArcBorrow<'_, T>) -> Self596     fn from(b: ArcBorrow<'_, T>) -> Self {
597         // SAFETY: The existence of `b` guarantees that the refcount is non-zero. `ManuallyDrop`
598         // guarantees that `drop` isn't called, so it's ok that the temporary `Arc` doesn't own the
599         // increment.
600         ManuallyDrop::new(unsafe { Arc::from_inner(b.inner) })
601             .deref()
602             .clone()
603     }
604 }
605 
606 impl<T: ?Sized> Deref for ArcBorrow<'_, T> {
607     type Target = T;
608 
deref(&self) -> &Self::Target609     fn deref(&self) -> &Self::Target {
610         // SAFETY: By the type invariant, the underlying object is still alive with no mutable
611         // references to it, so it is safe to create a shared reference.
612         unsafe { &self.inner.as_ref().data }
613     }
614 }
615 
616 /// A refcounted object that is known to have a refcount of 1.
617 ///
618 /// It is mutable and can be converted to an [`Arc`] so that it can be shared.
619 ///
620 /// # Invariants
621 ///
622 /// `inner` always has a reference count of 1.
623 ///
624 /// # Examples
625 ///
626 /// In the following example, we make changes to the inner object before turning it into an
627 /// `Arc<Test>` object (after which point, it cannot be mutated directly). Note that `x.into()`
628 /// cannot fail.
629 ///
630 /// ```
631 /// use kernel::sync::{Arc, UniqueArc};
632 ///
633 /// struct Example {
634 ///     a: u32,
635 ///     b: u32,
636 /// }
637 ///
638 /// fn test() -> Result<Arc<Example>> {
639 ///     let mut x = UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
640 ///     x.a += 1;
641 ///     x.b += 1;
642 ///     Ok(x.into())
643 /// }
644 ///
645 /// # test().unwrap();
646 /// ```
647 ///
648 /// In the following example we first allocate memory for a refcounted `Example` but we don't
649 /// initialise it on allocation. We do initialise it later with a call to [`UniqueArc::write`],
650 /// followed by a conversion to `Arc<Example>`. This is particularly useful when allocation happens
651 /// in one context (e.g., sleepable) and initialisation in another (e.g., atomic):
652 ///
653 /// ```
654 /// use kernel::sync::{Arc, UniqueArc};
655 ///
656 /// struct Example {
657 ///     a: u32,
658 ///     b: u32,
659 /// }
660 ///
661 /// fn test() -> Result<Arc<Example>> {
662 ///     let x = UniqueArc::new_uninit(GFP_KERNEL)?;
663 ///     Ok(x.write(Example { a: 10, b: 20 }).into())
664 /// }
665 ///
666 /// # test().unwrap();
667 /// ```
668 ///
669 /// In the last example below, the caller gets a pinned instance of `Example` while converting to
670 /// `Arc<Example>`; this is useful in scenarios where one needs a pinned reference during
671 /// initialisation, for example, when initialising fields that are wrapped in locks.
672 ///
673 /// ```
674 /// use kernel::sync::{Arc, UniqueArc};
675 ///
676 /// struct Example {
677 ///     a: u32,
678 ///     b: u32,
679 /// }
680 ///
681 /// fn test() -> Result<Arc<Example>> {
682 ///     let mut pinned = Pin::from(UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?);
683 ///     // We can modify `pinned` because it is `Unpin`.
684 ///     pinned.as_mut().a += 1;
685 ///     Ok(pinned.into())
686 /// }
687 ///
688 /// # test().unwrap();
689 /// ```
690 pub struct UniqueArc<T: ?Sized> {
691     inner: Arc<T>,
692 }
693 
694 impl<T> InPlaceInit<T> for UniqueArc<T> {
695     type PinnedSelf = Pin<Self>;
696 
697     #[inline]
try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E> where E: From<AllocError>,698     fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E>
699     where
700         E: From<AllocError>,
701     {
702         UniqueArc::new_uninit(flags)?.write_pin_init(init)
703     }
704 
705     #[inline]
try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E> where E: From<AllocError>,706     fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E>
707     where
708         E: From<AllocError>,
709     {
710         UniqueArc::new_uninit(flags)?.write_init(init)
711     }
712 }
713 
714 impl<T> InPlaceWrite<T> for UniqueArc<MaybeUninit<T>> {
715     type Initialized = UniqueArc<T>;
716 
write_init<E>(mut self, init: impl Init<T, E>) -> Result<Self::Initialized, E>717     fn write_init<E>(mut self, init: impl Init<T, E>) -> Result<Self::Initialized, E> {
718         let slot = self.as_mut_ptr();
719         // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
720         // slot is valid.
721         unsafe { init.__init(slot)? };
722         // SAFETY: All fields have been initialized.
723         Ok(unsafe { self.assume_init() })
724     }
725 
write_pin_init<E>(mut self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E>726     fn write_pin_init<E>(mut self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E> {
727         let slot = self.as_mut_ptr();
728         // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
729         // slot is valid and will not be moved, because we pin it later.
730         unsafe { init.__pinned_init(slot)? };
731         // SAFETY: All fields have been initialized.
732         Ok(unsafe { self.assume_init() }.into())
733     }
734 }
735 
736 impl<T> UniqueArc<T> {
737     /// Tries to allocate a new [`UniqueArc`] instance.
new(value: T, flags: Flags) -> Result<Self, AllocError>738     pub fn new(value: T, flags: Flags) -> Result<Self, AllocError> {
739         Ok(Self {
740             // INVARIANT: The newly-created object has a refcount of 1.
741             inner: Arc::new(value, flags)?,
742         })
743     }
744 
745     /// Tries to allocate a new [`UniqueArc`] instance whose contents are not initialised yet.
new_uninit(flags: Flags) -> Result<UniqueArc<MaybeUninit<T>>, AllocError>746     pub fn new_uninit(flags: Flags) -> Result<UniqueArc<MaybeUninit<T>>, AllocError> {
747         // INVARIANT: The refcount is initialised to a non-zero value.
748         let inner = KBox::try_init::<AllocError>(
749             try_init!(ArcInner {
750                 // SAFETY: There are no safety requirements for this FFI call.
751                 refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }),
752                 data <- pin_init::uninit::<T, AllocError>(),
753             }? AllocError),
754             flags,
755         )?;
756         Ok(UniqueArc {
757             // INVARIANT: The newly-created object has a refcount of 1.
758             // SAFETY: The pointer from the `KBox` is valid.
759             inner: unsafe { Arc::from_inner(KBox::leak(inner).into()) },
760         })
761     }
762 }
763 
764 impl<T> UniqueArc<MaybeUninit<T>> {
765     /// Converts a `UniqueArc<MaybeUninit<T>>` into a `UniqueArc<T>` by writing a value into it.
write(mut self, value: T) -> UniqueArc<T>766     pub fn write(mut self, value: T) -> UniqueArc<T> {
767         self.deref_mut().write(value);
768         // SAFETY: We just wrote the value to be initialized.
769         unsafe { self.assume_init() }
770     }
771 
772     /// Unsafely assume that `self` is initialized.
773     ///
774     /// # Safety
775     ///
776     /// The caller guarantees that the value behind this pointer has been initialized. It is
777     /// *immediate* UB to call this when the value is not initialized.
assume_init(self) -> UniqueArc<T>778     pub unsafe fn assume_init(self) -> UniqueArc<T> {
779         let inner = ManuallyDrop::new(self).inner.ptr;
780         UniqueArc {
781             // SAFETY: The new `Arc` is taking over `ptr` from `self.inner` (which won't be
782             // dropped). The types are compatible because `MaybeUninit<T>` is compatible with `T`.
783             inner: unsafe { Arc::from_inner(inner.cast()) },
784         }
785     }
786 
787     /// Initialize `self` using the given initializer.
init_with<E>(mut self, init: impl Init<T, E>) -> core::result::Result<UniqueArc<T>, E>788     pub fn init_with<E>(mut self, init: impl Init<T, E>) -> core::result::Result<UniqueArc<T>, E> {
789         // SAFETY: The supplied pointer is valid for initialization.
790         match unsafe { init.__init(self.as_mut_ptr()) } {
791             // SAFETY: Initialization completed successfully.
792             Ok(()) => Ok(unsafe { self.assume_init() }),
793             Err(err) => Err(err),
794         }
795     }
796 
797     /// Pin-initialize `self` using the given pin-initializer.
pin_init_with<E>( mut self, init: impl PinInit<T, E>, ) -> core::result::Result<Pin<UniqueArc<T>>, E>798     pub fn pin_init_with<E>(
799         mut self,
800         init: impl PinInit<T, E>,
801     ) -> core::result::Result<Pin<UniqueArc<T>>, E> {
802         // SAFETY: The supplied pointer is valid for initialization and we will later pin the value
803         // to ensure it does not move.
804         match unsafe { init.__pinned_init(self.as_mut_ptr()) } {
805             // SAFETY: Initialization completed successfully.
806             Ok(()) => Ok(unsafe { self.assume_init() }.into()),
807             Err(err) => Err(err),
808         }
809     }
810 }
811 
812 impl<T: ?Sized> From<UniqueArc<T>> for Pin<UniqueArc<T>> {
from(obj: UniqueArc<T>) -> Self813     fn from(obj: UniqueArc<T>) -> Self {
814         // SAFETY: It is not possible to move/replace `T` inside a `Pin<UniqueArc<T>>` (unless `T`
815         // is `Unpin`), so it is ok to convert it to `Pin<UniqueArc<T>>`.
816         unsafe { Pin::new_unchecked(obj) }
817     }
818 }
819 
820 impl<T: ?Sized> Deref for UniqueArc<T> {
821     type Target = T;
822 
deref(&self) -> &Self::Target823     fn deref(&self) -> &Self::Target {
824         self.inner.deref()
825     }
826 }
827 
828 impl<T: ?Sized> DerefMut for UniqueArc<T> {
deref_mut(&mut self) -> &mut Self::Target829     fn deref_mut(&mut self) -> &mut Self::Target {
830         // SAFETY: By the `Arc` type invariant, there is necessarily a reference to the object, so
831         // it is safe to dereference it. Additionally, we know there is only one reference when
832         // it's inside a `UniqueArc`, so it is safe to get a mutable reference.
833         unsafe { &mut self.inner.ptr.as_mut().data }
834     }
835 }
836 
837 impl<T: fmt::Display + ?Sized> fmt::Display for UniqueArc<T> {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result838     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
839         fmt::Display::fmt(self.deref(), f)
840     }
841 }
842 
843 impl<T: fmt::Display + ?Sized> fmt::Display for Arc<T> {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result844     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
845         fmt::Display::fmt(self.deref(), f)
846     }
847 }
848 
849 impl<T: fmt::Debug + ?Sized> fmt::Debug for UniqueArc<T> {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result850     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
851         fmt::Debug::fmt(self.deref(), f)
852     }
853 }
854 
855 impl<T: fmt::Debug + ?Sized> fmt::Debug for Arc<T> {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result856     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
857         fmt::Debug::fmt(self.deref(), f)
858     }
859 }
860