xref: /linux/kernel/pid_namespace.c (revision 7f0e9ee5e44887272627d0fcde0b19a675daf597)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Pid namespaces
4  *
5  * Authors:
6  *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
7  *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
8  *     Many thanks to Oleg Nesterov for comments and help
9  *
10  */
11 
12 #include <linux/pid.h>
13 #include <linux/pid_namespace.h>
14 #include <linux/user_namespace.h>
15 #include <linux/syscalls.h>
16 #include <linux/cred.h>
17 #include <linux/err.h>
18 #include <linux/acct.h>
19 #include <linux/slab.h>
20 #include <linux/proc_ns.h>
21 #include <linux/reboot.h>
22 #include <linux/export.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/signal.h>
25 #include <linux/idr.h>
26 #include <uapi/linux/wait.h>
27 #include "pid_sysctl.h"
28 
29 static DEFINE_MUTEX(pid_caches_mutex);
30 static struct kmem_cache *pid_ns_cachep;
31 /* Write once array, filled from the beginning. */
32 static struct kmem_cache *pid_cache[MAX_PID_NS_LEVEL];
33 
34 /*
35  * creates the kmem cache to allocate pids from.
36  * @level: pid namespace level
37  */
38 
create_pid_cachep(unsigned int level)39 static struct kmem_cache *create_pid_cachep(unsigned int level)
40 {
41 	/* Level 0 is init_pid_ns.pid_cachep */
42 	struct kmem_cache **pkc = &pid_cache[level - 1];
43 	struct kmem_cache *kc;
44 	char name[4 + 10 + 1];
45 	unsigned int len;
46 
47 	kc = READ_ONCE(*pkc);
48 	if (kc)
49 		return kc;
50 
51 	snprintf(name, sizeof(name), "pid_%u", level + 1);
52 	len = struct_size_t(struct pid, numbers, level + 1);
53 	mutex_lock(&pid_caches_mutex);
54 	/* Name collision forces to do allocation under mutex. */
55 	if (!*pkc)
56 		*pkc = kmem_cache_create(name, len, 0,
57 					 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT, NULL);
58 	mutex_unlock(&pid_caches_mutex);
59 	/* current can fail, but someone else can succeed. */
60 	return READ_ONCE(*pkc);
61 }
62 
inc_pid_namespaces(struct user_namespace * ns)63 static struct ucounts *inc_pid_namespaces(struct user_namespace *ns)
64 {
65 	return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES);
66 }
67 
dec_pid_namespaces(struct ucounts * ucounts)68 static void dec_pid_namespaces(struct ucounts *ucounts)
69 {
70 	dec_ucount(ucounts, UCOUNT_PID_NAMESPACES);
71 }
72 
73 static void destroy_pid_namespace_work(struct work_struct *work);
74 
create_pid_namespace(struct user_namespace * user_ns,struct pid_namespace * parent_pid_ns)75 static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
76 	struct pid_namespace *parent_pid_ns)
77 {
78 	struct pid_namespace *ns;
79 	unsigned int level = parent_pid_ns->level + 1;
80 	struct ucounts *ucounts;
81 	int err;
82 
83 	err = -EINVAL;
84 	if (!in_userns(parent_pid_ns->user_ns, user_ns))
85 		goto out;
86 
87 	err = -ENOSPC;
88 	if (level > MAX_PID_NS_LEVEL)
89 		goto out;
90 	ucounts = inc_pid_namespaces(user_ns);
91 	if (!ucounts)
92 		goto out;
93 
94 	err = -ENOMEM;
95 	ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
96 	if (ns == NULL)
97 		goto out_dec;
98 
99 	idr_init(&ns->idr);
100 
101 	ns->pid_cachep = create_pid_cachep(level);
102 	if (ns->pid_cachep == NULL)
103 		goto out_free_idr;
104 
105 	err = ns_alloc_inum(&ns->ns);
106 	if (err)
107 		goto out_free_idr;
108 	ns->ns.ops = &pidns_operations;
109 
110 	ns->pid_max = PID_MAX_LIMIT;
111 	err = register_pidns_sysctls(ns);
112 	if (err)
113 		goto out_free_inum;
114 
115 	refcount_set(&ns->ns.count, 1);
116 	ns->level = level;
117 	ns->parent = get_pid_ns(parent_pid_ns);
118 	ns->user_ns = get_user_ns(user_ns);
119 	ns->ucounts = ucounts;
120 	ns->pid_allocated = PIDNS_ADDING;
121 	INIT_WORK(&ns->work, destroy_pid_namespace_work);
122 
123 #if defined(CONFIG_SYSCTL) && defined(CONFIG_MEMFD_CREATE)
124 	ns->memfd_noexec_scope = pidns_memfd_noexec_scope(parent_pid_ns);
125 #endif
126 
127 	return ns;
128 
129 out_free_inum:
130 	ns_free_inum(&ns->ns);
131 out_free_idr:
132 	idr_destroy(&ns->idr);
133 	kmem_cache_free(pid_ns_cachep, ns);
134 out_dec:
135 	dec_pid_namespaces(ucounts);
136 out:
137 	return ERR_PTR(err);
138 }
139 
delayed_free_pidns(struct rcu_head * p)140 static void delayed_free_pidns(struct rcu_head *p)
141 {
142 	struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu);
143 
144 	dec_pid_namespaces(ns->ucounts);
145 	put_user_ns(ns->user_ns);
146 
147 	kmem_cache_free(pid_ns_cachep, ns);
148 }
149 
destroy_pid_namespace(struct pid_namespace * ns)150 static void destroy_pid_namespace(struct pid_namespace *ns)
151 {
152 	unregister_pidns_sysctls(ns);
153 
154 	ns_free_inum(&ns->ns);
155 
156 	idr_destroy(&ns->idr);
157 	call_rcu(&ns->rcu, delayed_free_pidns);
158 }
159 
destroy_pid_namespace_work(struct work_struct * work)160 static void destroy_pid_namespace_work(struct work_struct *work)
161 {
162 	struct pid_namespace *ns =
163 		container_of(work, struct pid_namespace, work);
164 
165 	do {
166 		struct pid_namespace *parent;
167 
168 		parent = ns->parent;
169 		destroy_pid_namespace(ns);
170 		ns = parent;
171 	} while (ns != &init_pid_ns && refcount_dec_and_test(&ns->ns.count));
172 }
173 
copy_pid_ns(unsigned long flags,struct user_namespace * user_ns,struct pid_namespace * old_ns)174 struct pid_namespace *copy_pid_ns(unsigned long flags,
175 	struct user_namespace *user_ns, struct pid_namespace *old_ns)
176 {
177 	if (!(flags & CLONE_NEWPID))
178 		return get_pid_ns(old_ns);
179 	if (task_active_pid_ns(current) != old_ns)
180 		return ERR_PTR(-EINVAL);
181 	return create_pid_namespace(user_ns, old_ns);
182 }
183 
put_pid_ns(struct pid_namespace * ns)184 void put_pid_ns(struct pid_namespace *ns)
185 {
186 	if (ns && ns != &init_pid_ns && refcount_dec_and_test(&ns->ns.count))
187 		schedule_work(&ns->work);
188 }
189 EXPORT_SYMBOL_GPL(put_pid_ns);
190 
zap_pid_ns_processes(struct pid_namespace * pid_ns)191 void zap_pid_ns_processes(struct pid_namespace *pid_ns)
192 {
193 	int nr;
194 	int rc;
195 	struct task_struct *task, *me = current;
196 	int init_pids = thread_group_leader(me) ? 1 : 2;
197 	struct pid *pid;
198 
199 	/* Don't allow any more processes into the pid namespace */
200 	disable_pid_allocation(pid_ns);
201 
202 	/*
203 	 * Ignore SIGCHLD causing any terminated children to autoreap.
204 	 * This speeds up the namespace shutdown, plus see the comment
205 	 * below.
206 	 */
207 	spin_lock_irq(&me->sighand->siglock);
208 	me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
209 	spin_unlock_irq(&me->sighand->siglock);
210 
211 	/*
212 	 * The last thread in the cgroup-init thread group is terminating.
213 	 * Find remaining pid_ts in the namespace, signal and wait for them
214 	 * to exit.
215 	 *
216 	 * Note:  This signals each threads in the namespace - even those that
217 	 * 	  belong to the same thread group, To avoid this, we would have
218 	 * 	  to walk the entire tasklist looking a processes in this
219 	 * 	  namespace, but that could be unnecessarily expensive if the
220 	 * 	  pid namespace has just a few processes. Or we need to
221 	 * 	  maintain a tasklist for each pid namespace.
222 	 *
223 	 */
224 	rcu_read_lock();
225 	read_lock(&tasklist_lock);
226 	nr = 2;
227 	idr_for_each_entry_continue(&pid_ns->idr, pid, nr) {
228 		task = pid_task(pid, PIDTYPE_PID);
229 		if (task && !__fatal_signal_pending(task))
230 			group_send_sig_info(SIGKILL, SEND_SIG_PRIV, task, PIDTYPE_MAX);
231 	}
232 	read_unlock(&tasklist_lock);
233 	rcu_read_unlock();
234 
235 	/*
236 	 * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD.
237 	 * kernel_wait4() will also block until our children traced from the
238 	 * parent namespace are detached and become EXIT_DEAD.
239 	 */
240 	do {
241 		clear_thread_flag(TIF_SIGPENDING);
242 		clear_thread_flag(TIF_NOTIFY_SIGNAL);
243 		rc = kernel_wait4(-1, NULL, __WALL, NULL);
244 	} while (rc != -ECHILD);
245 
246 	/*
247 	 * kernel_wait4() misses EXIT_DEAD children, and EXIT_ZOMBIE
248 	 * process whose parents processes are outside of the pid
249 	 * namespace.  Such processes are created with setns()+fork().
250 	 *
251 	 * If those EXIT_ZOMBIE processes are not reaped by their
252 	 * parents before their parents exit, they will be reparented
253 	 * to pid_ns->child_reaper.  Thus pidns->child_reaper needs to
254 	 * stay valid until they all go away.
255 	 *
256 	 * The code relies on the pid_ns->child_reaper ignoring
257 	 * SIGCHILD to cause those EXIT_ZOMBIE processes to be
258 	 * autoreaped if reparented.
259 	 *
260 	 * Semantically it is also desirable to wait for EXIT_ZOMBIE
261 	 * processes before allowing the child_reaper to be reaped, as
262 	 * that gives the invariant that when the init process of a
263 	 * pid namespace is reaped all of the processes in the pid
264 	 * namespace are gone.
265 	 *
266 	 * Once all of the other tasks are gone from the pid_namespace
267 	 * free_pid() will awaken this task.
268 	 */
269 	for (;;) {
270 		set_current_state(TASK_INTERRUPTIBLE);
271 		if (pid_ns->pid_allocated == init_pids)
272 			break;
273 		schedule();
274 	}
275 	__set_current_state(TASK_RUNNING);
276 
277 	if (pid_ns->reboot)
278 		current->signal->group_exit_code = pid_ns->reboot;
279 
280 	acct_exit_ns(pid_ns);
281 	return;
282 }
283 
284 #ifdef CONFIG_CHECKPOINT_RESTORE
pid_ns_ctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)285 static int pid_ns_ctl_handler(const struct ctl_table *table, int write,
286 		void *buffer, size_t *lenp, loff_t *ppos)
287 {
288 	struct pid_namespace *pid_ns = task_active_pid_ns(current);
289 	struct ctl_table tmp = *table;
290 	int ret, next;
291 
292 	if (write && !checkpoint_restore_ns_capable(pid_ns->user_ns))
293 		return -EPERM;
294 
295 	next = idr_get_cursor(&pid_ns->idr) - 1;
296 
297 	tmp.data = &next;
298 	tmp.extra2 = &pid_ns->pid_max;
299 	ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
300 	if (!ret && write)
301 		idr_set_cursor(&pid_ns->idr, next + 1);
302 
303 	return ret;
304 }
305 
306 static const struct ctl_table pid_ns_ctl_table[] = {
307 	{
308 		.procname = "ns_last_pid",
309 		.maxlen = sizeof(int),
310 		.mode = 0666, /* permissions are checked in the handler */
311 		.proc_handler = pid_ns_ctl_handler,
312 		.extra1 = SYSCTL_ZERO,
313 		.extra2 = &init_pid_ns.pid_max,
314 	},
315 };
316 #endif	/* CONFIG_CHECKPOINT_RESTORE */
317 
reboot_pid_ns(struct pid_namespace * pid_ns,int cmd)318 int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
319 {
320 	if (pid_ns == &init_pid_ns)
321 		return 0;
322 
323 	switch (cmd) {
324 	case LINUX_REBOOT_CMD_RESTART2:
325 	case LINUX_REBOOT_CMD_RESTART:
326 		pid_ns->reboot = SIGHUP;
327 		break;
328 
329 	case LINUX_REBOOT_CMD_POWER_OFF:
330 	case LINUX_REBOOT_CMD_HALT:
331 		pid_ns->reboot = SIGINT;
332 		break;
333 	default:
334 		return -EINVAL;
335 	}
336 
337 	read_lock(&tasklist_lock);
338 	send_sig(SIGKILL, pid_ns->child_reaper, 1);
339 	read_unlock(&tasklist_lock);
340 
341 	do_exit(0);
342 
343 	/* Not reached */
344 	return 0;
345 }
346 
to_pid_ns(struct ns_common * ns)347 static inline struct pid_namespace *to_pid_ns(struct ns_common *ns)
348 {
349 	return container_of(ns, struct pid_namespace, ns);
350 }
351 
pidns_get(struct task_struct * task)352 static struct ns_common *pidns_get(struct task_struct *task)
353 {
354 	struct pid_namespace *ns;
355 
356 	rcu_read_lock();
357 	ns = task_active_pid_ns(task);
358 	if (ns)
359 		get_pid_ns(ns);
360 	rcu_read_unlock();
361 
362 	return ns ? &ns->ns : NULL;
363 }
364 
pidns_for_children_get(struct task_struct * task)365 static struct ns_common *pidns_for_children_get(struct task_struct *task)
366 {
367 	struct pid_namespace *ns = NULL;
368 
369 	task_lock(task);
370 	if (task->nsproxy) {
371 		ns = task->nsproxy->pid_ns_for_children;
372 		get_pid_ns(ns);
373 	}
374 	task_unlock(task);
375 
376 	if (ns) {
377 		read_lock(&tasklist_lock);
378 		if (!ns->child_reaper) {
379 			put_pid_ns(ns);
380 			ns = NULL;
381 		}
382 		read_unlock(&tasklist_lock);
383 	}
384 
385 	return ns ? &ns->ns : NULL;
386 }
387 
pidns_put(struct ns_common * ns)388 static void pidns_put(struct ns_common *ns)
389 {
390 	put_pid_ns(to_pid_ns(ns));
391 }
392 
pidns_install(struct nsset * nsset,struct ns_common * ns)393 static int pidns_install(struct nsset *nsset, struct ns_common *ns)
394 {
395 	struct nsproxy *nsproxy = nsset->nsproxy;
396 	struct pid_namespace *active = task_active_pid_ns(current);
397 	struct pid_namespace *ancestor, *new = to_pid_ns(ns);
398 
399 	if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
400 	    !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN))
401 		return -EPERM;
402 
403 	/*
404 	 * Only allow entering the current active pid namespace
405 	 * or a child of the current active pid namespace.
406 	 *
407 	 * This is required for fork to return a usable pid value and
408 	 * this maintains the property that processes and their
409 	 * children can not escape their current pid namespace.
410 	 */
411 	if (new->level < active->level)
412 		return -EINVAL;
413 
414 	ancestor = new;
415 	while (ancestor->level > active->level)
416 		ancestor = ancestor->parent;
417 	if (ancestor != active)
418 		return -EINVAL;
419 
420 	put_pid_ns(nsproxy->pid_ns_for_children);
421 	nsproxy->pid_ns_for_children = get_pid_ns(new);
422 	return 0;
423 }
424 
pidns_get_parent(struct ns_common * ns)425 static struct ns_common *pidns_get_parent(struct ns_common *ns)
426 {
427 	struct pid_namespace *active = task_active_pid_ns(current);
428 	struct pid_namespace *pid_ns, *p;
429 
430 	/* See if the parent is in the current namespace */
431 	pid_ns = p = to_pid_ns(ns)->parent;
432 	for (;;) {
433 		if (!p)
434 			return ERR_PTR(-EPERM);
435 		if (p == active)
436 			break;
437 		p = p->parent;
438 	}
439 
440 	return &get_pid_ns(pid_ns)->ns;
441 }
442 
pidns_owner(struct ns_common * ns)443 static struct user_namespace *pidns_owner(struct ns_common *ns)
444 {
445 	return to_pid_ns(ns)->user_ns;
446 }
447 
448 const struct proc_ns_operations pidns_operations = {
449 	.name		= "pid",
450 	.type		= CLONE_NEWPID,
451 	.get		= pidns_get,
452 	.put		= pidns_put,
453 	.install	= pidns_install,
454 	.owner		= pidns_owner,
455 	.get_parent	= pidns_get_parent,
456 };
457 
458 const struct proc_ns_operations pidns_for_children_operations = {
459 	.name		= "pid_for_children",
460 	.real_ns_name	= "pid",
461 	.type		= CLONE_NEWPID,
462 	.get		= pidns_for_children_get,
463 	.put		= pidns_put,
464 	.install	= pidns_install,
465 	.owner		= pidns_owner,
466 	.get_parent	= pidns_get_parent,
467 };
468 
pid_namespaces_init(void)469 static __init int pid_namespaces_init(void)
470 {
471 	pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC | SLAB_ACCOUNT);
472 
473 #ifdef CONFIG_CHECKPOINT_RESTORE
474 	register_sysctl_init("kernel", pid_ns_ctl_table);
475 #endif
476 
477 	register_pid_ns_sysctl_table_vm();
478 	return 0;
479 }
480 
481 __initcall(pid_namespaces_init);
482