xref: /linux/fs/pidfs.c (revision a5f24c795513ff098dc8e350e5733aec8796fbf8)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/anon_inodes.h>
3 #include <linux/file.h>
4 #include <linux/fs.h>
5 #include <linux/magic.h>
6 #include <linux/mount.h>
7 #include <linux/pid.h>
8 #include <linux/pidfs.h>
9 #include <linux/pid_namespace.h>
10 #include <linux/poll.h>
11 #include <linux/proc_fs.h>
12 #include <linux/proc_ns.h>
13 #include <linux/pseudo_fs.h>
14 #include <linux/ptrace.h>
15 #include <linux/seq_file.h>
16 #include <uapi/linux/pidfd.h>
17 #include <linux/ipc_namespace.h>
18 #include <linux/time_namespace.h>
19 #include <linux/utsname.h>
20 #include <net/net_namespace.h>
21 
22 #include "internal.h"
23 #include "mount.h"
24 
25 #ifdef CONFIG_PROC_FS
26 /**
27  * pidfd_show_fdinfo - print information about a pidfd
28  * @m: proc fdinfo file
29  * @f: file referencing a pidfd
30  *
31  * Pid:
32  * This function will print the pid that a given pidfd refers to in the
33  * pid namespace of the procfs instance.
34  * If the pid namespace of the process is not a descendant of the pid
35  * namespace of the procfs instance 0 will be shown as its pid. This is
36  * similar to calling getppid() on a process whose parent is outside of
37  * its pid namespace.
38  *
39  * NSpid:
40  * If pid namespaces are supported then this function will also print
41  * the pid of a given pidfd refers to for all descendant pid namespaces
42  * starting from the current pid namespace of the instance, i.e. the
43  * Pid field and the first entry in the NSpid field will be identical.
44  * If the pid namespace of the process is not a descendant of the pid
45  * namespace of the procfs instance 0 will be shown as its first NSpid
46  * entry and no others will be shown.
47  * Note that this differs from the Pid and NSpid fields in
48  * /proc/<pid>/status where Pid and NSpid are always shown relative to
49  * the  pid namespace of the procfs instance. The difference becomes
50  * obvious when sending around a pidfd between pid namespaces from a
51  * different branch of the tree, i.e. where no ancestral relation is
52  * present between the pid namespaces:
53  * - create two new pid namespaces ns1 and ns2 in the initial pid
54  *   namespace (also take care to create new mount namespaces in the
55  *   new pid namespace and mount procfs)
56  * - create a process with a pidfd in ns1
57  * - send pidfd from ns1 to ns2
58  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
59  *   have exactly one entry, which is 0
60  */
pidfd_show_fdinfo(struct seq_file * m,struct file * f)61 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
62 {
63 	struct pid *pid = pidfd_pid(f);
64 	struct pid_namespace *ns;
65 	pid_t nr = -1;
66 
67 	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
68 		ns = proc_pid_ns(file_inode(m->file)->i_sb);
69 		nr = pid_nr_ns(pid, ns);
70 	}
71 
72 	seq_put_decimal_ll(m, "Pid:\t", nr);
73 
74 #ifdef CONFIG_PID_NS
75 	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
76 	if (nr > 0) {
77 		int i;
78 
79 		/* If nr is non-zero it means that 'pid' is valid and that
80 		 * ns, i.e. the pid namespace associated with the procfs
81 		 * instance, is in the pid namespace hierarchy of pid.
82 		 * Start at one below the already printed level.
83 		 */
84 		for (i = ns->level + 1; i <= pid->level; i++)
85 			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
86 	}
87 #endif
88 	seq_putc(m, '\n');
89 }
90 #endif
91 
92 /*
93  * Poll support for process exit notification.
94  */
pidfd_poll(struct file * file,struct poll_table_struct * pts)95 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
96 {
97 	struct pid *pid = pidfd_pid(file);
98 	bool thread = file->f_flags & PIDFD_THREAD;
99 	struct task_struct *task;
100 	__poll_t poll_flags = 0;
101 
102 	poll_wait(file, &pid->wait_pidfd, pts);
103 	/*
104 	 * Depending on PIDFD_THREAD, inform pollers when the thread
105 	 * or the whole thread-group exits.
106 	 */
107 	guard(rcu)();
108 	task = pid_task(pid, PIDTYPE_PID);
109 	if (!task)
110 		poll_flags = EPOLLIN | EPOLLRDNORM | EPOLLHUP;
111 	else if (task->exit_state && (thread || thread_group_empty(task)))
112 		poll_flags = EPOLLIN | EPOLLRDNORM;
113 
114 	return poll_flags;
115 }
116 
pidfd_ioctl(struct file * file,unsigned int cmd,unsigned long arg)117 static long pidfd_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
118 {
119 	struct task_struct *task __free(put_task) = NULL;
120 	struct nsproxy *nsp __free(put_nsproxy) = NULL;
121 	struct pid *pid = pidfd_pid(file);
122 	struct ns_common *ns_common = NULL;
123 	struct pid_namespace *pid_ns;
124 
125 	if (arg)
126 		return -EINVAL;
127 
128 	task = get_pid_task(pid, PIDTYPE_PID);
129 	if (!task)
130 		return -ESRCH;
131 
132 	scoped_guard(task_lock, task) {
133 		nsp = task->nsproxy;
134 		if (nsp)
135 			get_nsproxy(nsp);
136 	}
137 	if (!nsp)
138 		return -ESRCH; /* just pretend it didn't exist */
139 
140 	/*
141 	 * We're trying to open a file descriptor to the namespace so perform a
142 	 * filesystem cred ptrace check. Also, we mirror nsfs behavior.
143 	 */
144 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
145 		return -EACCES;
146 
147 	switch (cmd) {
148 	/* Namespaces that hang of nsproxy. */
149 	case PIDFD_GET_CGROUP_NAMESPACE:
150 		if (IS_ENABLED(CONFIG_CGROUPS)) {
151 			get_cgroup_ns(nsp->cgroup_ns);
152 			ns_common = to_ns_common(nsp->cgroup_ns);
153 		}
154 		break;
155 	case PIDFD_GET_IPC_NAMESPACE:
156 		if (IS_ENABLED(CONFIG_IPC_NS)) {
157 			get_ipc_ns(nsp->ipc_ns);
158 			ns_common = to_ns_common(nsp->ipc_ns);
159 		}
160 		break;
161 	case PIDFD_GET_MNT_NAMESPACE:
162 		get_mnt_ns(nsp->mnt_ns);
163 		ns_common = to_ns_common(nsp->mnt_ns);
164 		break;
165 	case PIDFD_GET_NET_NAMESPACE:
166 		if (IS_ENABLED(CONFIG_NET_NS)) {
167 			ns_common = to_ns_common(nsp->net_ns);
168 			get_net_ns(ns_common);
169 		}
170 		break;
171 	case PIDFD_GET_PID_FOR_CHILDREN_NAMESPACE:
172 		if (IS_ENABLED(CONFIG_PID_NS)) {
173 			get_pid_ns(nsp->pid_ns_for_children);
174 			ns_common = to_ns_common(nsp->pid_ns_for_children);
175 		}
176 		break;
177 	case PIDFD_GET_TIME_NAMESPACE:
178 		if (IS_ENABLED(CONFIG_TIME_NS)) {
179 			get_time_ns(nsp->time_ns);
180 			ns_common = to_ns_common(nsp->time_ns);
181 		}
182 		break;
183 	case PIDFD_GET_TIME_FOR_CHILDREN_NAMESPACE:
184 		if (IS_ENABLED(CONFIG_TIME_NS)) {
185 			get_time_ns(nsp->time_ns_for_children);
186 			ns_common = to_ns_common(nsp->time_ns_for_children);
187 		}
188 		break;
189 	case PIDFD_GET_UTS_NAMESPACE:
190 		if (IS_ENABLED(CONFIG_UTS_NS)) {
191 			get_uts_ns(nsp->uts_ns);
192 			ns_common = to_ns_common(nsp->uts_ns);
193 		}
194 		break;
195 	/* Namespaces that don't hang of nsproxy. */
196 	case PIDFD_GET_USER_NAMESPACE:
197 		if (IS_ENABLED(CONFIG_USER_NS)) {
198 			rcu_read_lock();
199 			ns_common = to_ns_common(get_user_ns(task_cred_xxx(task, user_ns)));
200 			rcu_read_unlock();
201 		}
202 		break;
203 	case PIDFD_GET_PID_NAMESPACE:
204 		if (IS_ENABLED(CONFIG_PID_NS)) {
205 			rcu_read_lock();
206 			pid_ns = task_active_pid_ns(task);
207 			if (pid_ns)
208 				ns_common = to_ns_common(get_pid_ns(pid_ns));
209 			rcu_read_unlock();
210 		}
211 		break;
212 	default:
213 		return -ENOIOCTLCMD;
214 	}
215 
216 	if (!ns_common)
217 		return -EOPNOTSUPP;
218 
219 	/* open_namespace() unconditionally consumes the reference */
220 	return open_namespace(ns_common);
221 }
222 
223 static const struct file_operations pidfs_file_operations = {
224 	.poll		= pidfd_poll,
225 #ifdef CONFIG_PROC_FS
226 	.show_fdinfo	= pidfd_show_fdinfo,
227 #endif
228 	.unlocked_ioctl	= pidfd_ioctl,
229 	.compat_ioctl   = compat_ptr_ioctl,
230 };
231 
pidfd_pid(const struct file * file)232 struct pid *pidfd_pid(const struct file *file)
233 {
234 	if (file->f_op != &pidfs_file_operations)
235 		return ERR_PTR(-EBADF);
236 	return file_inode(file)->i_private;
237 }
238 
239 static struct vfsmount *pidfs_mnt __ro_after_init;
240 
241 #if BITS_PER_LONG == 32
242 /*
243  * Provide a fallback mechanism for 32-bit systems so processes remain
244  * reliably comparable by inode number even on those systems.
245  */
246 static DEFINE_IDA(pidfd_inum_ida);
247 
pidfs_inum(struct pid * pid,unsigned long * ino)248 static int pidfs_inum(struct pid *pid, unsigned long *ino)
249 {
250 	int ret;
251 
252 	ret = ida_alloc_range(&pidfd_inum_ida, RESERVED_PIDS + 1,
253 			      UINT_MAX, GFP_ATOMIC);
254 	if (ret < 0)
255 		return -ENOSPC;
256 
257 	*ino = ret;
258 	return 0;
259 }
260 
pidfs_free_inum(unsigned long ino)261 static inline void pidfs_free_inum(unsigned long ino)
262 {
263 	if (ino > 0)
264 		ida_free(&pidfd_inum_ida, ino);
265 }
266 #else
pidfs_inum(struct pid * pid,unsigned long * ino)267 static inline int pidfs_inum(struct pid *pid, unsigned long *ino)
268 {
269 	*ino = pid->ino;
270 	return 0;
271 }
272 #define pidfs_free_inum(ino) ((void)(ino))
273 #endif
274 
275 /*
276  * The vfs falls back to simple_setattr() if i_op->setattr() isn't
277  * implemented. Let's reject it completely until we have a clean
278  * permission concept for pidfds.
279  */
pidfs_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)280 static int pidfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
281 			 struct iattr *attr)
282 {
283 	return -EOPNOTSUPP;
284 }
285 
286 
287 /*
288  * User space expects pidfs inodes to have no file type in st_mode.
289  *
290  * In particular, 'lsof' has this legacy logic:
291  *
292  *	type = s->st_mode & S_IFMT;
293  *	switch (type) {
294  *	  ...
295  *	case 0:
296  *		if (!strcmp(p, "anon_inode"))
297  *			Lf->ntype = Ntype = N_ANON_INODE;
298  *
299  * to detect our old anon_inode logic.
300  *
301  * Rather than mess with our internal sane inode data, just fix it
302  * up here in getattr() by masking off the format bits.
303  */
pidfs_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)304 static int pidfs_getattr(struct mnt_idmap *idmap, const struct path *path,
305 			 struct kstat *stat, u32 request_mask,
306 			 unsigned int query_flags)
307 {
308 	struct inode *inode = d_inode(path->dentry);
309 
310 	generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
311 	stat->mode &= ~S_IFMT;
312 	return 0;
313 }
314 
315 static const struct inode_operations pidfs_inode_operations = {
316 	.getattr = pidfs_getattr,
317 	.setattr = pidfs_setattr,
318 };
319 
pidfs_evict_inode(struct inode * inode)320 static void pidfs_evict_inode(struct inode *inode)
321 {
322 	struct pid *pid = inode->i_private;
323 
324 	clear_inode(inode);
325 	put_pid(pid);
326 	pidfs_free_inum(inode->i_ino);
327 }
328 
329 static const struct super_operations pidfs_sops = {
330 	.drop_inode	= generic_delete_inode,
331 	.evict_inode	= pidfs_evict_inode,
332 	.statfs		= simple_statfs,
333 };
334 
335 /*
336  * 'lsof' has knowledge of out historical anon_inode use, and expects
337  * the pidfs dentry name to start with 'anon_inode'.
338  */
pidfs_dname(struct dentry * dentry,char * buffer,int buflen)339 static char *pidfs_dname(struct dentry *dentry, char *buffer, int buflen)
340 {
341 	return dynamic_dname(buffer, buflen, "anon_inode:[pidfd]");
342 }
343 
344 static const struct dentry_operations pidfs_dentry_operations = {
345 	.d_delete	= always_delete_dentry,
346 	.d_dname	= pidfs_dname,
347 	.d_prune	= stashed_dentry_prune,
348 };
349 
pidfs_init_inode(struct inode * inode,void * data)350 static int pidfs_init_inode(struct inode *inode, void *data)
351 {
352 	inode->i_private = data;
353 	inode->i_flags |= S_PRIVATE;
354 	inode->i_mode |= S_IRWXU;
355 	inode->i_op = &pidfs_inode_operations;
356 	inode->i_fop = &pidfs_file_operations;
357 	/*
358 	 * Inode numbering for pidfs start at RESERVED_PIDS + 1. This
359 	 * avoids collisions with the root inode which is 1 for pseudo
360 	 * filesystems.
361 	 */
362 	return pidfs_inum(data, &inode->i_ino);
363 }
364 
pidfs_put_data(void * data)365 static void pidfs_put_data(void *data)
366 {
367 	struct pid *pid = data;
368 	put_pid(pid);
369 }
370 
371 static const struct stashed_operations pidfs_stashed_ops = {
372 	.init_inode = pidfs_init_inode,
373 	.put_data = pidfs_put_data,
374 };
375 
pidfs_init_fs_context(struct fs_context * fc)376 static int pidfs_init_fs_context(struct fs_context *fc)
377 {
378 	struct pseudo_fs_context *ctx;
379 
380 	ctx = init_pseudo(fc, PID_FS_MAGIC);
381 	if (!ctx)
382 		return -ENOMEM;
383 
384 	ctx->ops = &pidfs_sops;
385 	ctx->dops = &pidfs_dentry_operations;
386 	fc->s_fs_info = (void *)&pidfs_stashed_ops;
387 	return 0;
388 }
389 
390 static struct file_system_type pidfs_type = {
391 	.name			= "pidfs",
392 	.init_fs_context	= pidfs_init_fs_context,
393 	.kill_sb		= kill_anon_super,
394 };
395 
pidfs_alloc_file(struct pid * pid,unsigned int flags)396 struct file *pidfs_alloc_file(struct pid *pid, unsigned int flags)
397 {
398 
399 	struct file *pidfd_file;
400 	struct path path;
401 	int ret;
402 
403 	ret = path_from_stashed(&pid->stashed, pidfs_mnt, get_pid(pid), &path);
404 	if (ret < 0)
405 		return ERR_PTR(ret);
406 
407 	pidfd_file = dentry_open(&path, flags, current_cred());
408 	path_put(&path);
409 	return pidfd_file;
410 }
411 
pidfs_init(void)412 void __init pidfs_init(void)
413 {
414 	pidfs_mnt = kern_mount(&pidfs_type);
415 	if (IS_ERR(pidfs_mnt))
416 		panic("Failed to mount pidfs pseudo filesystem");
417 }
418