1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/anon_inodes.h>
3 #include <linux/exportfs.h>
4 #include <linux/file.h>
5 #include <linux/fs.h>
6 #include <linux/cgroup.h>
7 #include <linux/magic.h>
8 #include <linux/mount.h>
9 #include <linux/pid.h>
10 #include <linux/pidfs.h>
11 #include <linux/pid_namespace.h>
12 #include <linux/poll.h>
13 #include <linux/proc_fs.h>
14 #include <linux/proc_ns.h>
15 #include <linux/pseudo_fs.h>
16 #include <linux/ptrace.h>
17 #include <linux/seq_file.h>
18 #include <uapi/linux/pidfd.h>
19 #include <linux/ipc_namespace.h>
20 #include <linux/time_namespace.h>
21 #include <linux/utsname.h>
22 #include <net/net_namespace.h>
23 #include <linux/coredump.h>
24 #include <linux/xattr.h>
25
26 #include "internal.h"
27 #include "mount.h"
28
29 #define PIDFS_PID_DEAD ERR_PTR(-ESRCH)
30
31 static struct kmem_cache *pidfs_attr_cachep __ro_after_init;
32 static struct kmem_cache *pidfs_xattr_cachep __ro_after_init;
33
34 static struct path pidfs_root_path = {};
35
pidfs_get_root(struct path * path)36 void pidfs_get_root(struct path *path)
37 {
38 *path = pidfs_root_path;
39 path_get(path);
40 }
41
42 /*
43 * Stashes information that userspace needs to access even after the
44 * process has been reaped.
45 */
46 struct pidfs_exit_info {
47 __u64 cgroupid;
48 __s32 exit_code;
49 __u32 coredump_mask;
50 };
51
52 struct pidfs_attr {
53 struct simple_xattrs *xattrs;
54 struct pidfs_exit_info __pei;
55 struct pidfs_exit_info *exit_info;
56 };
57
58 static struct rb_root pidfs_ino_tree = RB_ROOT;
59
60 #if BITS_PER_LONG == 32
pidfs_ino(u64 ino)61 static inline unsigned long pidfs_ino(u64 ino)
62 {
63 return lower_32_bits(ino);
64 }
65
66 /* On 32 bit the generation number are the upper 32 bits. */
pidfs_gen(u64 ino)67 static inline u32 pidfs_gen(u64 ino)
68 {
69 return upper_32_bits(ino);
70 }
71
72 #else
73
74 /* On 64 bit simply return ino. */
pidfs_ino(u64 ino)75 static inline unsigned long pidfs_ino(u64 ino)
76 {
77 return ino;
78 }
79
80 /* On 64 bit the generation number is 0. */
pidfs_gen(u64 ino)81 static inline u32 pidfs_gen(u64 ino)
82 {
83 return 0;
84 }
85 #endif
86
pidfs_ino_cmp(struct rb_node * a,const struct rb_node * b)87 static int pidfs_ino_cmp(struct rb_node *a, const struct rb_node *b)
88 {
89 struct pid *pid_a = rb_entry(a, struct pid, pidfs_node);
90 struct pid *pid_b = rb_entry(b, struct pid, pidfs_node);
91 u64 pid_ino_a = pid_a->ino;
92 u64 pid_ino_b = pid_b->ino;
93
94 if (pid_ino_a < pid_ino_b)
95 return -1;
96 if (pid_ino_a > pid_ino_b)
97 return 1;
98 return 0;
99 }
100
pidfs_add_pid(struct pid * pid)101 void pidfs_add_pid(struct pid *pid)
102 {
103 static u64 pidfs_ino_nr = 2;
104
105 /*
106 * On 64 bit nothing special happens. The 64bit number assigned
107 * to struct pid is the inode number.
108 *
109 * On 32 bit the 64 bit number assigned to struct pid is split
110 * into two 32 bit numbers. The lower 32 bits are used as the
111 * inode number and the upper 32 bits are used as the inode
112 * generation number.
113 *
114 * On 32 bit pidfs_ino() will return the lower 32 bit. When
115 * pidfs_ino() returns zero a wrap around happened. When a
116 * wraparound happens the 64 bit number will be incremented by 2
117 * so inode numbering starts at 2 again.
118 *
119 * On 64 bit comparing two pidfds is as simple as comparing
120 * inode numbers.
121 *
122 * When a wraparound happens on 32 bit multiple pidfds with the
123 * same inode number are likely to exist (This isn't a problem
124 * since before pidfs pidfds used the anonymous inode meaning
125 * all pidfds had the same inode number.). Userspace can
126 * reconstruct the 64 bit identifier by retrieving both the
127 * inode number and the inode generation number to compare or
128 * use file handles.
129 */
130 if (pidfs_ino(pidfs_ino_nr) == 0)
131 pidfs_ino_nr += 2;
132
133 pid->ino = pidfs_ino_nr;
134 pid->stashed = NULL;
135 pid->attr = NULL;
136 pidfs_ino_nr++;
137
138 write_seqcount_begin(&pidmap_lock_seq);
139 rb_find_add_rcu(&pid->pidfs_node, &pidfs_ino_tree, pidfs_ino_cmp);
140 write_seqcount_end(&pidmap_lock_seq);
141 }
142
pidfs_remove_pid(struct pid * pid)143 void pidfs_remove_pid(struct pid *pid)
144 {
145 write_seqcount_begin(&pidmap_lock_seq);
146 rb_erase(&pid->pidfs_node, &pidfs_ino_tree);
147 write_seqcount_end(&pidmap_lock_seq);
148 }
149
pidfs_free_pid(struct pid * pid)150 void pidfs_free_pid(struct pid *pid)
151 {
152 struct pidfs_attr *attr __free(kfree) = no_free_ptr(pid->attr);
153 struct simple_xattrs *xattrs __free(kfree) = NULL;
154
155 /*
156 * Any dentry must've been wiped from the pid by now.
157 * Otherwise there's a reference count bug.
158 */
159 VFS_WARN_ON_ONCE(pid->stashed);
160
161 /*
162 * This if an error occurred during e.g., task creation that
163 * causes us to never go through the exit path.
164 */
165 if (unlikely(!attr))
166 return;
167
168 /* This never had a pidfd created. */
169 if (IS_ERR(attr))
170 return;
171
172 xattrs = no_free_ptr(attr->xattrs);
173 if (xattrs)
174 simple_xattrs_free(xattrs, NULL);
175 }
176
177 #ifdef CONFIG_PROC_FS
178 /**
179 * pidfd_show_fdinfo - print information about a pidfd
180 * @m: proc fdinfo file
181 * @f: file referencing a pidfd
182 *
183 * Pid:
184 * This function will print the pid that a given pidfd refers to in the
185 * pid namespace of the procfs instance.
186 * If the pid namespace of the process is not a descendant of the pid
187 * namespace of the procfs instance 0 will be shown as its pid. This is
188 * similar to calling getppid() on a process whose parent is outside of
189 * its pid namespace.
190 *
191 * NSpid:
192 * If pid namespaces are supported then this function will also print
193 * the pid of a given pidfd refers to for all descendant pid namespaces
194 * starting from the current pid namespace of the instance, i.e. the
195 * Pid field and the first entry in the NSpid field will be identical.
196 * If the pid namespace of the process is not a descendant of the pid
197 * namespace of the procfs instance 0 will be shown as its first NSpid
198 * entry and no others will be shown.
199 * Note that this differs from the Pid and NSpid fields in
200 * /proc/<pid>/status where Pid and NSpid are always shown relative to
201 * the pid namespace of the procfs instance. The difference becomes
202 * obvious when sending around a pidfd between pid namespaces from a
203 * different branch of the tree, i.e. where no ancestral relation is
204 * present between the pid namespaces:
205 * - create two new pid namespaces ns1 and ns2 in the initial pid
206 * namespace (also take care to create new mount namespaces in the
207 * new pid namespace and mount procfs)
208 * - create a process with a pidfd in ns1
209 * - send pidfd from ns1 to ns2
210 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
211 * have exactly one entry, which is 0
212 */
pidfd_show_fdinfo(struct seq_file * m,struct file * f)213 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
214 {
215 struct pid *pid = pidfd_pid(f);
216 struct pid_namespace *ns;
217 pid_t nr = -1;
218
219 if (likely(pid_has_task(pid, PIDTYPE_PID))) {
220 ns = proc_pid_ns(file_inode(m->file)->i_sb);
221 nr = pid_nr_ns(pid, ns);
222 }
223
224 seq_put_decimal_ll(m, "Pid:\t", nr);
225
226 #ifdef CONFIG_PID_NS
227 seq_put_decimal_ll(m, "\nNSpid:\t", nr);
228 if (nr > 0) {
229 int i;
230
231 /* If nr is non-zero it means that 'pid' is valid and that
232 * ns, i.e. the pid namespace associated with the procfs
233 * instance, is in the pid namespace hierarchy of pid.
234 * Start at one below the already printed level.
235 */
236 for (i = ns->level + 1; i <= pid->level; i++)
237 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
238 }
239 #endif
240 seq_putc(m, '\n');
241 }
242 #endif
243
244 /*
245 * Poll support for process exit notification.
246 */
pidfd_poll(struct file * file,struct poll_table_struct * pts)247 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
248 {
249 struct pid *pid = pidfd_pid(file);
250 struct task_struct *task;
251 __poll_t poll_flags = 0;
252
253 poll_wait(file, &pid->wait_pidfd, pts);
254 /*
255 * Don't wake waiters if the thread-group leader exited
256 * prematurely. They either get notified when the last subthread
257 * exits or not at all if one of the remaining subthreads execs
258 * and assumes the struct pid of the old thread-group leader.
259 */
260 guard(rcu)();
261 task = pid_task(pid, PIDTYPE_PID);
262 if (!task)
263 poll_flags = EPOLLIN | EPOLLRDNORM | EPOLLHUP;
264 else if (task->exit_state && !delay_group_leader(task))
265 poll_flags = EPOLLIN | EPOLLRDNORM;
266
267 return poll_flags;
268 }
269
pid_in_current_pidns(const struct pid * pid)270 static inline bool pid_in_current_pidns(const struct pid *pid)
271 {
272 const struct pid_namespace *ns = task_active_pid_ns(current);
273
274 if (ns->level <= pid->level)
275 return pid->numbers[ns->level].ns == ns;
276
277 return false;
278 }
279
pidfs_coredump_mask(unsigned long mm_flags)280 static __u32 pidfs_coredump_mask(unsigned long mm_flags)
281 {
282 switch (__get_dumpable(mm_flags)) {
283 case SUID_DUMP_USER:
284 return PIDFD_COREDUMP_USER;
285 case SUID_DUMP_ROOT:
286 return PIDFD_COREDUMP_ROOT;
287 case SUID_DUMP_DISABLE:
288 return PIDFD_COREDUMP_SKIP;
289 default:
290 WARN_ON_ONCE(true);
291 }
292
293 return 0;
294 }
295
pidfd_info(struct file * file,unsigned int cmd,unsigned long arg)296 static long pidfd_info(struct file *file, unsigned int cmd, unsigned long arg)
297 {
298 struct pidfd_info __user *uinfo = (struct pidfd_info __user *)arg;
299 struct task_struct *task __free(put_task) = NULL;
300 struct pid *pid = pidfd_pid(file);
301 size_t usize = _IOC_SIZE(cmd);
302 struct pidfd_info kinfo = {};
303 struct pidfs_exit_info *exit_info;
304 struct user_namespace *user_ns;
305 struct pidfs_attr *attr;
306 const struct cred *c;
307 __u64 mask;
308
309 if (!uinfo)
310 return -EINVAL;
311 if (usize < PIDFD_INFO_SIZE_VER0)
312 return -EINVAL; /* First version, no smaller struct possible */
313
314 if (copy_from_user(&mask, &uinfo->mask, sizeof(mask)))
315 return -EFAULT;
316
317 /*
318 * Restrict information retrieval to tasks within the caller's pid
319 * namespace hierarchy.
320 */
321 if (!pid_in_current_pidns(pid))
322 return -ESRCH;
323
324 attr = READ_ONCE(pid->attr);
325 if (mask & PIDFD_INFO_EXIT) {
326 exit_info = READ_ONCE(attr->exit_info);
327 if (exit_info) {
328 kinfo.mask |= PIDFD_INFO_EXIT;
329 #ifdef CONFIG_CGROUPS
330 kinfo.cgroupid = exit_info->cgroupid;
331 kinfo.mask |= PIDFD_INFO_CGROUPID;
332 #endif
333 kinfo.exit_code = exit_info->exit_code;
334 }
335 }
336
337 if (mask & PIDFD_INFO_COREDUMP) {
338 kinfo.mask |= PIDFD_INFO_COREDUMP;
339 kinfo.coredump_mask = READ_ONCE(attr->__pei.coredump_mask);
340 }
341
342 task = get_pid_task(pid, PIDTYPE_PID);
343 if (!task) {
344 /*
345 * If the task has already been reaped, only exit
346 * information is available
347 */
348 if (!(mask & PIDFD_INFO_EXIT))
349 return -ESRCH;
350
351 goto copy_out;
352 }
353
354 c = get_task_cred(task);
355 if (!c)
356 return -ESRCH;
357
358 if ((kinfo.mask & PIDFD_INFO_COREDUMP) && !(kinfo.coredump_mask)) {
359 task_lock(task);
360 if (task->mm) {
361 unsigned long flags = __mm_flags_get_dumpable(task->mm);
362
363 kinfo.coredump_mask = pidfs_coredump_mask(flags);
364 }
365 task_unlock(task);
366 }
367
368 /* Unconditionally return identifiers and credentials, the rest only on request */
369
370 user_ns = current_user_ns();
371 kinfo.ruid = from_kuid_munged(user_ns, c->uid);
372 kinfo.rgid = from_kgid_munged(user_ns, c->gid);
373 kinfo.euid = from_kuid_munged(user_ns, c->euid);
374 kinfo.egid = from_kgid_munged(user_ns, c->egid);
375 kinfo.suid = from_kuid_munged(user_ns, c->suid);
376 kinfo.sgid = from_kgid_munged(user_ns, c->sgid);
377 kinfo.fsuid = from_kuid_munged(user_ns, c->fsuid);
378 kinfo.fsgid = from_kgid_munged(user_ns, c->fsgid);
379 kinfo.mask |= PIDFD_INFO_CREDS;
380 put_cred(c);
381
382 #ifdef CONFIG_CGROUPS
383 if (!kinfo.cgroupid) {
384 struct cgroup *cgrp;
385
386 rcu_read_lock();
387 cgrp = task_dfl_cgroup(task);
388 kinfo.cgroupid = cgroup_id(cgrp);
389 kinfo.mask |= PIDFD_INFO_CGROUPID;
390 rcu_read_unlock();
391 }
392 #endif
393
394 /*
395 * Copy pid/tgid last, to reduce the chances the information might be
396 * stale. Note that it is not possible to ensure it will be valid as the
397 * task might return as soon as the copy_to_user finishes, but that's ok
398 * and userspace expects that might happen and can act accordingly, so
399 * this is just best-effort. What we can do however is checking that all
400 * the fields are set correctly, or return ESRCH to avoid providing
401 * incomplete information. */
402
403 kinfo.ppid = task_ppid_nr_ns(task, NULL);
404 kinfo.tgid = task_tgid_vnr(task);
405 kinfo.pid = task_pid_vnr(task);
406 kinfo.mask |= PIDFD_INFO_PID;
407
408 if (kinfo.pid == 0 || kinfo.tgid == 0)
409 return -ESRCH;
410
411 copy_out:
412 /*
413 * If userspace and the kernel have the same struct size it can just
414 * be copied. If userspace provides an older struct, only the bits that
415 * userspace knows about will be copied. If userspace provides a new
416 * struct, only the bits that the kernel knows about will be copied.
417 */
418 return copy_struct_to_user(uinfo, usize, &kinfo, sizeof(kinfo), NULL);
419 }
420
pidfs_ioctl_valid(unsigned int cmd)421 static bool pidfs_ioctl_valid(unsigned int cmd)
422 {
423 switch (cmd) {
424 case FS_IOC_GETVERSION:
425 case PIDFD_GET_CGROUP_NAMESPACE:
426 case PIDFD_GET_IPC_NAMESPACE:
427 case PIDFD_GET_MNT_NAMESPACE:
428 case PIDFD_GET_NET_NAMESPACE:
429 case PIDFD_GET_PID_FOR_CHILDREN_NAMESPACE:
430 case PIDFD_GET_TIME_NAMESPACE:
431 case PIDFD_GET_TIME_FOR_CHILDREN_NAMESPACE:
432 case PIDFD_GET_UTS_NAMESPACE:
433 case PIDFD_GET_USER_NAMESPACE:
434 case PIDFD_GET_PID_NAMESPACE:
435 return true;
436 }
437
438 /* Extensible ioctls require some more careful checks. */
439 switch (_IOC_NR(cmd)) {
440 case _IOC_NR(PIDFD_GET_INFO):
441 /*
442 * Try to prevent performing a pidfd ioctl when someone
443 * erronously mistook the file descriptor for a pidfd.
444 * This is not perfect but will catch most cases.
445 */
446 return extensible_ioctl_valid(cmd, PIDFD_GET_INFO, PIDFD_INFO_SIZE_VER0);
447 }
448
449 return false;
450 }
451
pidfd_ioctl(struct file * file,unsigned int cmd,unsigned long arg)452 static long pidfd_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
453 {
454 struct task_struct *task __free(put_task) = NULL;
455 struct nsproxy *nsp __free(put_nsproxy) = NULL;
456 struct ns_common *ns_common = NULL;
457 struct pid_namespace *pid_ns;
458
459 if (!pidfs_ioctl_valid(cmd))
460 return -ENOIOCTLCMD;
461
462 if (cmd == FS_IOC_GETVERSION) {
463 if (!arg)
464 return -EINVAL;
465
466 __u32 __user *argp = (__u32 __user *)arg;
467 return put_user(file_inode(file)->i_generation, argp);
468 }
469
470 /* Extensible IOCTL that does not open namespace FDs, take a shortcut */
471 if (_IOC_NR(cmd) == _IOC_NR(PIDFD_GET_INFO))
472 return pidfd_info(file, cmd, arg);
473
474 task = get_pid_task(pidfd_pid(file), PIDTYPE_PID);
475 if (!task)
476 return -ESRCH;
477
478 if (arg)
479 return -EINVAL;
480
481 scoped_guard(task_lock, task) {
482 nsp = task->nsproxy;
483 if (nsp)
484 get_nsproxy(nsp);
485 }
486 if (!nsp)
487 return -ESRCH; /* just pretend it didn't exist */
488
489 /*
490 * We're trying to open a file descriptor to the namespace so perform a
491 * filesystem cred ptrace check. Also, we mirror nsfs behavior.
492 */
493 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
494 return -EACCES;
495
496 switch (cmd) {
497 /* Namespaces that hang of nsproxy. */
498 case PIDFD_GET_CGROUP_NAMESPACE:
499 if (IS_ENABLED(CONFIG_CGROUPS)) {
500 get_cgroup_ns(nsp->cgroup_ns);
501 ns_common = to_ns_common(nsp->cgroup_ns);
502 }
503 break;
504 case PIDFD_GET_IPC_NAMESPACE:
505 if (IS_ENABLED(CONFIG_IPC_NS)) {
506 get_ipc_ns(nsp->ipc_ns);
507 ns_common = to_ns_common(nsp->ipc_ns);
508 }
509 break;
510 case PIDFD_GET_MNT_NAMESPACE:
511 get_mnt_ns(nsp->mnt_ns);
512 ns_common = to_ns_common(nsp->mnt_ns);
513 break;
514 case PIDFD_GET_NET_NAMESPACE:
515 if (IS_ENABLED(CONFIG_NET_NS)) {
516 ns_common = to_ns_common(nsp->net_ns);
517 get_net_ns(ns_common);
518 }
519 break;
520 case PIDFD_GET_PID_FOR_CHILDREN_NAMESPACE:
521 if (IS_ENABLED(CONFIG_PID_NS)) {
522 get_pid_ns(nsp->pid_ns_for_children);
523 ns_common = to_ns_common(nsp->pid_ns_for_children);
524 }
525 break;
526 case PIDFD_GET_TIME_NAMESPACE:
527 if (IS_ENABLED(CONFIG_TIME_NS)) {
528 get_time_ns(nsp->time_ns);
529 ns_common = to_ns_common(nsp->time_ns);
530 }
531 break;
532 case PIDFD_GET_TIME_FOR_CHILDREN_NAMESPACE:
533 if (IS_ENABLED(CONFIG_TIME_NS)) {
534 get_time_ns(nsp->time_ns_for_children);
535 ns_common = to_ns_common(nsp->time_ns_for_children);
536 }
537 break;
538 case PIDFD_GET_UTS_NAMESPACE:
539 if (IS_ENABLED(CONFIG_UTS_NS)) {
540 get_uts_ns(nsp->uts_ns);
541 ns_common = to_ns_common(nsp->uts_ns);
542 }
543 break;
544 /* Namespaces that don't hang of nsproxy. */
545 case PIDFD_GET_USER_NAMESPACE:
546 if (IS_ENABLED(CONFIG_USER_NS)) {
547 rcu_read_lock();
548 ns_common = to_ns_common(get_user_ns(task_cred_xxx(task, user_ns)));
549 rcu_read_unlock();
550 }
551 break;
552 case PIDFD_GET_PID_NAMESPACE:
553 if (IS_ENABLED(CONFIG_PID_NS)) {
554 rcu_read_lock();
555 pid_ns = task_active_pid_ns(task);
556 if (pid_ns)
557 ns_common = to_ns_common(get_pid_ns(pid_ns));
558 rcu_read_unlock();
559 }
560 break;
561 default:
562 return -ENOIOCTLCMD;
563 }
564
565 if (!ns_common)
566 return -EOPNOTSUPP;
567
568 /* open_namespace() unconditionally consumes the reference */
569 return open_namespace(ns_common);
570 }
571
572 static const struct file_operations pidfs_file_operations = {
573 .poll = pidfd_poll,
574 #ifdef CONFIG_PROC_FS
575 .show_fdinfo = pidfd_show_fdinfo,
576 #endif
577 .unlocked_ioctl = pidfd_ioctl,
578 .compat_ioctl = compat_ptr_ioctl,
579 };
580
pidfd_pid(const struct file * file)581 struct pid *pidfd_pid(const struct file *file)
582 {
583 if (file->f_op != &pidfs_file_operations)
584 return ERR_PTR(-EBADF);
585 return file_inode(file)->i_private;
586 }
587
588 /*
589 * We're called from release_task(). We know there's at least one
590 * reference to struct pid being held that won't be released until the
591 * task has been reaped which cannot happen until we're out of
592 * release_task().
593 *
594 * If this struct pid has at least once been referred to by a pidfd then
595 * pid->attr will be allocated. If not we mark the struct pid as dead so
596 * anyone who is trying to register it with pidfs will fail to do so.
597 * Otherwise we would hand out pidfs for reaped tasks without having
598 * exit information available.
599 *
600 * Worst case is that we've filled in the info and the pid gets freed
601 * right away in free_pid() when no one holds a pidfd anymore. Since
602 * pidfs_exit() currently is placed after exit_task_work() we know that
603 * it cannot be us aka the exiting task holding a pidfd to itself.
604 */
pidfs_exit(struct task_struct * tsk)605 void pidfs_exit(struct task_struct *tsk)
606 {
607 struct pid *pid = task_pid(tsk);
608 struct pidfs_attr *attr;
609 struct pidfs_exit_info *exit_info;
610 #ifdef CONFIG_CGROUPS
611 struct cgroup *cgrp;
612 #endif
613
614 might_sleep();
615
616 guard(spinlock_irq)(&pid->wait_pidfd.lock);
617 attr = pid->attr;
618 if (!attr) {
619 /*
620 * No one ever held a pidfd for this struct pid.
621 * Mark it as dead so no one can add a pidfs
622 * entry anymore. We're about to be reaped and
623 * so no exit information would be available.
624 */
625 pid->attr = PIDFS_PID_DEAD;
626 return;
627 }
628
629 /*
630 * If @pid->attr is set someone might still legitimately hold a
631 * pidfd to @pid or someone might concurrently still be getting
632 * a reference to an already stashed dentry from @pid->stashed.
633 * So defer cleaning @pid->attr until the last reference to @pid
634 * is put
635 */
636
637 exit_info = &attr->__pei;
638
639 #ifdef CONFIG_CGROUPS
640 rcu_read_lock();
641 cgrp = task_dfl_cgroup(tsk);
642 exit_info->cgroupid = cgroup_id(cgrp);
643 rcu_read_unlock();
644 #endif
645 exit_info->exit_code = tsk->exit_code;
646
647 /* Ensure that PIDFD_GET_INFO sees either all or nothing. */
648 smp_store_release(&attr->exit_info, &attr->__pei);
649 }
650
651 #ifdef CONFIG_COREDUMP
pidfs_coredump(const struct coredump_params * cprm)652 void pidfs_coredump(const struct coredump_params *cprm)
653 {
654 struct pid *pid = cprm->pid;
655 struct pidfs_exit_info *exit_info;
656 struct pidfs_attr *attr;
657 __u32 coredump_mask = 0;
658
659 attr = READ_ONCE(pid->attr);
660
661 VFS_WARN_ON_ONCE(!attr);
662 VFS_WARN_ON_ONCE(attr == PIDFS_PID_DEAD);
663
664 exit_info = &attr->__pei;
665 /* Note how we were coredumped. */
666 coredump_mask = pidfs_coredump_mask(cprm->mm_flags);
667 /* Note that we actually did coredump. */
668 coredump_mask |= PIDFD_COREDUMPED;
669 /* If coredumping is set to skip we should never end up here. */
670 VFS_WARN_ON_ONCE(coredump_mask & PIDFD_COREDUMP_SKIP);
671 smp_store_release(&exit_info->coredump_mask, coredump_mask);
672 }
673 #endif
674
675 static struct vfsmount *pidfs_mnt __ro_after_init;
676
677 /*
678 * The vfs falls back to simple_setattr() if i_op->setattr() isn't
679 * implemented. Let's reject it completely until we have a clean
680 * permission concept for pidfds.
681 */
pidfs_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)682 static int pidfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
683 struct iattr *attr)
684 {
685 return anon_inode_setattr(idmap, dentry, attr);
686 }
687
pidfs_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)688 static int pidfs_getattr(struct mnt_idmap *idmap, const struct path *path,
689 struct kstat *stat, u32 request_mask,
690 unsigned int query_flags)
691 {
692 return anon_inode_getattr(idmap, path, stat, request_mask, query_flags);
693 }
694
pidfs_listxattr(struct dentry * dentry,char * buf,size_t size)695 static ssize_t pidfs_listxattr(struct dentry *dentry, char *buf, size_t size)
696 {
697 struct inode *inode = d_inode(dentry);
698 struct pid *pid = inode->i_private;
699 struct pidfs_attr *attr = pid->attr;
700 struct simple_xattrs *xattrs;
701
702 xattrs = READ_ONCE(attr->xattrs);
703 if (!xattrs)
704 return 0;
705
706 return simple_xattr_list(inode, xattrs, buf, size);
707 }
708
709 static const struct inode_operations pidfs_inode_operations = {
710 .getattr = pidfs_getattr,
711 .setattr = pidfs_setattr,
712 .listxattr = pidfs_listxattr,
713 };
714
pidfs_evict_inode(struct inode * inode)715 static void pidfs_evict_inode(struct inode *inode)
716 {
717 struct pid *pid = inode->i_private;
718
719 clear_inode(inode);
720 put_pid(pid);
721 }
722
723 static const struct super_operations pidfs_sops = {
724 .drop_inode = inode_just_drop,
725 .evict_inode = pidfs_evict_inode,
726 .statfs = simple_statfs,
727 };
728
729 /*
730 * 'lsof' has knowledge of out historical anon_inode use, and expects
731 * the pidfs dentry name to start with 'anon_inode'.
732 */
pidfs_dname(struct dentry * dentry,char * buffer,int buflen)733 static char *pidfs_dname(struct dentry *dentry, char *buffer, int buflen)
734 {
735 return dynamic_dname(buffer, buflen, "anon_inode:[pidfd]");
736 }
737
738 const struct dentry_operations pidfs_dentry_operations = {
739 .d_dname = pidfs_dname,
740 .d_prune = stashed_dentry_prune,
741 };
742
pidfs_encode_fh(struct inode * inode,u32 * fh,int * max_len,struct inode * parent)743 static int pidfs_encode_fh(struct inode *inode, u32 *fh, int *max_len,
744 struct inode *parent)
745 {
746 const struct pid *pid = inode->i_private;
747
748 if (*max_len < 2) {
749 *max_len = 2;
750 return FILEID_INVALID;
751 }
752
753 *max_len = 2;
754 *(u64 *)fh = pid->ino;
755 return FILEID_KERNFS;
756 }
757
pidfs_ino_find(const void * key,const struct rb_node * node)758 static int pidfs_ino_find(const void *key, const struct rb_node *node)
759 {
760 const u64 pid_ino = *(u64 *)key;
761 const struct pid *pid = rb_entry(node, struct pid, pidfs_node);
762
763 if (pid_ino < pid->ino)
764 return -1;
765 if (pid_ino > pid->ino)
766 return 1;
767 return 0;
768 }
769
770 /* Find a struct pid based on the inode number. */
pidfs_ino_get_pid(u64 ino)771 static struct pid *pidfs_ino_get_pid(u64 ino)
772 {
773 struct pid *pid;
774 struct rb_node *node;
775 unsigned int seq;
776
777 guard(rcu)();
778 do {
779 seq = read_seqcount_begin(&pidmap_lock_seq);
780 node = rb_find_rcu(&ino, &pidfs_ino_tree, pidfs_ino_find);
781 if (node)
782 break;
783 } while (read_seqcount_retry(&pidmap_lock_seq, seq));
784
785 if (!node)
786 return NULL;
787
788 pid = rb_entry(node, struct pid, pidfs_node);
789
790 /* Within our pid namespace hierarchy? */
791 if (pid_vnr(pid) == 0)
792 return NULL;
793
794 return get_pid(pid);
795 }
796
pidfs_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)797 static struct dentry *pidfs_fh_to_dentry(struct super_block *sb,
798 struct fid *fid, int fh_len,
799 int fh_type)
800 {
801 int ret;
802 u64 pid_ino;
803 struct path path;
804 struct pid *pid;
805
806 if (fh_len < 2)
807 return NULL;
808
809 switch (fh_type) {
810 case FILEID_KERNFS:
811 pid_ino = *(u64 *)fid;
812 break;
813 default:
814 return NULL;
815 }
816
817 pid = pidfs_ino_get_pid(pid_ino);
818 if (!pid)
819 return NULL;
820
821 ret = path_from_stashed(&pid->stashed, pidfs_mnt, pid, &path);
822 if (ret < 0)
823 return ERR_PTR(ret);
824
825 VFS_WARN_ON_ONCE(!pid->attr);
826
827 mntput(path.mnt);
828 return path.dentry;
829 }
830
831 /*
832 * Make sure that we reject any nonsensical flags that users pass via
833 * open_by_handle_at(). Note that PIDFD_THREAD is defined as O_EXCL, and
834 * PIDFD_NONBLOCK as O_NONBLOCK.
835 */
836 #define VALID_FILE_HANDLE_OPEN_FLAGS \
837 (O_RDONLY | O_WRONLY | O_RDWR | O_NONBLOCK | O_CLOEXEC | O_EXCL)
838
pidfs_export_permission(struct handle_to_path_ctx * ctx,unsigned int oflags)839 static int pidfs_export_permission(struct handle_to_path_ctx *ctx,
840 unsigned int oflags)
841 {
842 if (oflags & ~(VALID_FILE_HANDLE_OPEN_FLAGS | O_LARGEFILE))
843 return -EINVAL;
844
845 /*
846 * pidfd_ino_get_pid() will verify that the struct pid is part
847 * of the caller's pid namespace hierarchy. No further
848 * permission checks are needed.
849 */
850 return 0;
851 }
852
pidfs_export_open(const struct path * path,unsigned int oflags)853 static struct file *pidfs_export_open(const struct path *path, unsigned int oflags)
854 {
855 /*
856 * Clear O_LARGEFILE as open_by_handle_at() forces it and raise
857 * O_RDWR as pidfds always are.
858 */
859 oflags &= ~O_LARGEFILE;
860 return dentry_open(path, oflags | O_RDWR, current_cred());
861 }
862
863 static const struct export_operations pidfs_export_operations = {
864 .encode_fh = pidfs_encode_fh,
865 .fh_to_dentry = pidfs_fh_to_dentry,
866 .open = pidfs_export_open,
867 .permission = pidfs_export_permission,
868 };
869
pidfs_init_inode(struct inode * inode,void * data)870 static int pidfs_init_inode(struct inode *inode, void *data)
871 {
872 const struct pid *pid = data;
873
874 inode->i_private = data;
875 inode->i_flags |= S_PRIVATE | S_ANON_INODE;
876 /* We allow to set xattrs. */
877 inode->i_flags &= ~S_IMMUTABLE;
878 inode->i_mode |= S_IRWXU;
879 inode->i_op = &pidfs_inode_operations;
880 inode->i_fop = &pidfs_file_operations;
881 inode->i_ino = pidfs_ino(pid->ino);
882 inode->i_generation = pidfs_gen(pid->ino);
883 return 0;
884 }
885
pidfs_put_data(void * data)886 static void pidfs_put_data(void *data)
887 {
888 struct pid *pid = data;
889 put_pid(pid);
890 }
891
892 /**
893 * pidfs_register_pid - register a struct pid in pidfs
894 * @pid: pid to pin
895 *
896 * Register a struct pid in pidfs.
897 *
898 * Return: On success zero, on error a negative error code is returned.
899 */
pidfs_register_pid(struct pid * pid)900 int pidfs_register_pid(struct pid *pid)
901 {
902 struct pidfs_attr *new_attr __free(kfree) = NULL;
903 struct pidfs_attr *attr;
904
905 might_sleep();
906
907 if (!pid)
908 return 0;
909
910 attr = READ_ONCE(pid->attr);
911 if (unlikely(attr == PIDFS_PID_DEAD))
912 return PTR_ERR(PIDFS_PID_DEAD);
913 if (attr)
914 return 0;
915
916 new_attr = kmem_cache_zalloc(pidfs_attr_cachep, GFP_KERNEL);
917 if (!new_attr)
918 return -ENOMEM;
919
920 /* Synchronize with pidfs_exit(). */
921 guard(spinlock_irq)(&pid->wait_pidfd.lock);
922
923 attr = pid->attr;
924 if (unlikely(attr == PIDFS_PID_DEAD))
925 return PTR_ERR(PIDFS_PID_DEAD);
926 if (unlikely(attr))
927 return 0;
928
929 pid->attr = no_free_ptr(new_attr);
930 return 0;
931 }
932
pidfs_stash_dentry(struct dentry ** stashed,struct dentry * dentry)933 static struct dentry *pidfs_stash_dentry(struct dentry **stashed,
934 struct dentry *dentry)
935 {
936 int ret;
937 struct pid *pid = d_inode(dentry)->i_private;
938
939 VFS_WARN_ON_ONCE(stashed != &pid->stashed);
940
941 ret = pidfs_register_pid(pid);
942 if (ret)
943 return ERR_PTR(ret);
944
945 return stash_dentry(stashed, dentry);
946 }
947
948 static const struct stashed_operations pidfs_stashed_ops = {
949 .stash_dentry = pidfs_stash_dentry,
950 .init_inode = pidfs_init_inode,
951 .put_data = pidfs_put_data,
952 };
953
pidfs_xattr_get(const struct xattr_handler * handler,struct dentry * unused,struct inode * inode,const char * suffix,void * value,size_t size)954 static int pidfs_xattr_get(const struct xattr_handler *handler,
955 struct dentry *unused, struct inode *inode,
956 const char *suffix, void *value, size_t size)
957 {
958 struct pid *pid = inode->i_private;
959 struct pidfs_attr *attr = pid->attr;
960 const char *name;
961 struct simple_xattrs *xattrs;
962
963 xattrs = READ_ONCE(attr->xattrs);
964 if (!xattrs)
965 return 0;
966
967 name = xattr_full_name(handler, suffix);
968 return simple_xattr_get(xattrs, name, value, size);
969 }
970
pidfs_xattr_set(const struct xattr_handler * handler,struct mnt_idmap * idmap,struct dentry * unused,struct inode * inode,const char * suffix,const void * value,size_t size,int flags)971 static int pidfs_xattr_set(const struct xattr_handler *handler,
972 struct mnt_idmap *idmap, struct dentry *unused,
973 struct inode *inode, const char *suffix,
974 const void *value, size_t size, int flags)
975 {
976 struct pid *pid = inode->i_private;
977 struct pidfs_attr *attr = pid->attr;
978 const char *name;
979 struct simple_xattrs *xattrs;
980 struct simple_xattr *old_xattr;
981
982 /* Ensure we're the only one to set @attr->xattrs. */
983 WARN_ON_ONCE(!inode_is_locked(inode));
984
985 xattrs = READ_ONCE(attr->xattrs);
986 if (!xattrs) {
987 xattrs = kmem_cache_zalloc(pidfs_xattr_cachep, GFP_KERNEL);
988 if (!xattrs)
989 return -ENOMEM;
990
991 simple_xattrs_init(xattrs);
992 smp_store_release(&pid->attr->xattrs, xattrs);
993 }
994
995 name = xattr_full_name(handler, suffix);
996 old_xattr = simple_xattr_set(xattrs, name, value, size, flags);
997 if (IS_ERR(old_xattr))
998 return PTR_ERR(old_xattr);
999
1000 simple_xattr_free(old_xattr);
1001 return 0;
1002 }
1003
1004 static const struct xattr_handler pidfs_trusted_xattr_handler = {
1005 .prefix = XATTR_TRUSTED_PREFIX,
1006 .get = pidfs_xattr_get,
1007 .set = pidfs_xattr_set,
1008 };
1009
1010 static const struct xattr_handler *const pidfs_xattr_handlers[] = {
1011 &pidfs_trusted_xattr_handler,
1012 NULL
1013 };
1014
pidfs_init_fs_context(struct fs_context * fc)1015 static int pidfs_init_fs_context(struct fs_context *fc)
1016 {
1017 struct pseudo_fs_context *ctx;
1018
1019 ctx = init_pseudo(fc, PID_FS_MAGIC);
1020 if (!ctx)
1021 return -ENOMEM;
1022
1023 fc->s_iflags |= SB_I_NOEXEC;
1024 fc->s_iflags |= SB_I_NODEV;
1025 ctx->ops = &pidfs_sops;
1026 ctx->eops = &pidfs_export_operations;
1027 ctx->dops = &pidfs_dentry_operations;
1028 ctx->xattr = pidfs_xattr_handlers;
1029 fc->s_fs_info = (void *)&pidfs_stashed_ops;
1030 return 0;
1031 }
1032
1033 static struct file_system_type pidfs_type = {
1034 .name = "pidfs",
1035 .init_fs_context = pidfs_init_fs_context,
1036 .kill_sb = kill_anon_super,
1037 };
1038
pidfs_alloc_file(struct pid * pid,unsigned int flags)1039 struct file *pidfs_alloc_file(struct pid *pid, unsigned int flags)
1040 {
1041 struct file *pidfd_file;
1042 struct path path __free(path_put) = {};
1043 int ret;
1044
1045 /*
1046 * Ensure that PIDFD_STALE can be passed as a flag without
1047 * overloading other uapi pidfd flags.
1048 */
1049 BUILD_BUG_ON(PIDFD_STALE == PIDFD_THREAD);
1050 BUILD_BUG_ON(PIDFD_STALE == PIDFD_NONBLOCK);
1051
1052 ret = path_from_stashed(&pid->stashed, pidfs_mnt, get_pid(pid), &path);
1053 if (ret < 0)
1054 return ERR_PTR(ret);
1055
1056 VFS_WARN_ON_ONCE(!pid->attr);
1057
1058 flags &= ~PIDFD_STALE;
1059 flags |= O_RDWR;
1060 pidfd_file = dentry_open(&path, flags, current_cred());
1061 /* Raise PIDFD_THREAD explicitly as do_dentry_open() strips it. */
1062 if (!IS_ERR(pidfd_file))
1063 pidfd_file->f_flags |= (flags & PIDFD_THREAD);
1064
1065 return pidfd_file;
1066 }
1067
pidfs_init(void)1068 void __init pidfs_init(void)
1069 {
1070 pidfs_attr_cachep = kmem_cache_create("pidfs_attr_cache", sizeof(struct pidfs_attr), 0,
1071 (SLAB_HWCACHE_ALIGN | SLAB_RECLAIM_ACCOUNT |
1072 SLAB_ACCOUNT | SLAB_PANIC), NULL);
1073
1074 pidfs_xattr_cachep = kmem_cache_create("pidfs_xattr_cache",
1075 sizeof(struct simple_xattrs), 0,
1076 (SLAB_HWCACHE_ALIGN | SLAB_RECLAIM_ACCOUNT |
1077 SLAB_ACCOUNT | SLAB_PANIC), NULL);
1078
1079 pidfs_mnt = kern_mount(&pidfs_type);
1080 if (IS_ERR(pidfs_mnt))
1081 panic("Failed to mount pidfs pseudo filesystem");
1082
1083 pidfs_root_path.mnt = pidfs_mnt;
1084 pidfs_root_path.dentry = pidfs_mnt->mnt_root;
1085 }
1086