1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/anon_inodes.h>
3 #include <linux/exportfs.h>
4 #include <linux/file.h>
5 #include <linux/fs.h>
6 #include <linux/cgroup.h>
7 #include <linux/magic.h>
8 #include <linux/mount.h>
9 #include <linux/pid.h>
10 #include <linux/pidfs.h>
11 #include <linux/pid_namespace.h>
12 #include <linux/poll.h>
13 #include <linux/proc_fs.h>
14 #include <linux/proc_ns.h>
15 #include <linux/pseudo_fs.h>
16 #include <linux/ptrace.h>
17 #include <linux/seq_file.h>
18 #include <uapi/linux/pidfd.h>
19 #include <linux/ipc_namespace.h>
20 #include <linux/time_namespace.h>
21 #include <linux/utsname.h>
22 #include <net/net_namespace.h>
23 #include <linux/coredump.h>
24
25 #include "internal.h"
26 #include "mount.h"
27
28 static struct kmem_cache *pidfs_cachep __ro_after_init;
29
30 /*
31 * Stashes information that userspace needs to access even after the
32 * process has been reaped.
33 */
34 struct pidfs_exit_info {
35 __u64 cgroupid;
36 __s32 exit_code;
37 __u32 coredump_mask;
38 };
39
40 struct pidfs_inode {
41 struct pidfs_exit_info __pei;
42 struct pidfs_exit_info *exit_info;
43 struct inode vfs_inode;
44 };
45
pidfs_i(struct inode * inode)46 static inline struct pidfs_inode *pidfs_i(struct inode *inode)
47 {
48 return container_of(inode, struct pidfs_inode, vfs_inode);
49 }
50
51 static struct rb_root pidfs_ino_tree = RB_ROOT;
52
53 #if BITS_PER_LONG == 32
pidfs_ino(u64 ino)54 static inline unsigned long pidfs_ino(u64 ino)
55 {
56 return lower_32_bits(ino);
57 }
58
59 /* On 32 bit the generation number are the upper 32 bits. */
pidfs_gen(u64 ino)60 static inline u32 pidfs_gen(u64 ino)
61 {
62 return upper_32_bits(ino);
63 }
64
65 #else
66
67 /* On 64 bit simply return ino. */
pidfs_ino(u64 ino)68 static inline unsigned long pidfs_ino(u64 ino)
69 {
70 return ino;
71 }
72
73 /* On 64 bit the generation number is 0. */
pidfs_gen(u64 ino)74 static inline u32 pidfs_gen(u64 ino)
75 {
76 return 0;
77 }
78 #endif
79
pidfs_ino_cmp(struct rb_node * a,const struct rb_node * b)80 static int pidfs_ino_cmp(struct rb_node *a, const struct rb_node *b)
81 {
82 struct pid *pid_a = rb_entry(a, struct pid, pidfs_node);
83 struct pid *pid_b = rb_entry(b, struct pid, pidfs_node);
84 u64 pid_ino_a = pid_a->ino;
85 u64 pid_ino_b = pid_b->ino;
86
87 if (pid_ino_a < pid_ino_b)
88 return -1;
89 if (pid_ino_a > pid_ino_b)
90 return 1;
91 return 0;
92 }
93
pidfs_add_pid(struct pid * pid)94 void pidfs_add_pid(struct pid *pid)
95 {
96 static u64 pidfs_ino_nr = 2;
97
98 /*
99 * On 64 bit nothing special happens. The 64bit number assigned
100 * to struct pid is the inode number.
101 *
102 * On 32 bit the 64 bit number assigned to struct pid is split
103 * into two 32 bit numbers. The lower 32 bits are used as the
104 * inode number and the upper 32 bits are used as the inode
105 * generation number.
106 *
107 * On 32 bit pidfs_ino() will return the lower 32 bit. When
108 * pidfs_ino() returns zero a wrap around happened. When a
109 * wraparound happens the 64 bit number will be incremented by 2
110 * so inode numbering starts at 2 again.
111 *
112 * On 64 bit comparing two pidfds is as simple as comparing
113 * inode numbers.
114 *
115 * When a wraparound happens on 32 bit multiple pidfds with the
116 * same inode number are likely to exist (This isn't a problem
117 * since before pidfs pidfds used the anonymous inode meaning
118 * all pidfds had the same inode number.). Userspace can
119 * reconstruct the 64 bit identifier by retrieving both the
120 * inode number and the inode generation number to compare or
121 * use file handles.
122 */
123 if (pidfs_ino(pidfs_ino_nr) == 0)
124 pidfs_ino_nr += 2;
125
126 pid->ino = pidfs_ino_nr;
127 pid->stashed = NULL;
128 pidfs_ino_nr++;
129
130 write_seqcount_begin(&pidmap_lock_seq);
131 rb_find_add_rcu(&pid->pidfs_node, &pidfs_ino_tree, pidfs_ino_cmp);
132 write_seqcount_end(&pidmap_lock_seq);
133 }
134
pidfs_remove_pid(struct pid * pid)135 void pidfs_remove_pid(struct pid *pid)
136 {
137 write_seqcount_begin(&pidmap_lock_seq);
138 rb_erase(&pid->pidfs_node, &pidfs_ino_tree);
139 write_seqcount_end(&pidmap_lock_seq);
140 }
141
142 #ifdef CONFIG_PROC_FS
143 /**
144 * pidfd_show_fdinfo - print information about a pidfd
145 * @m: proc fdinfo file
146 * @f: file referencing a pidfd
147 *
148 * Pid:
149 * This function will print the pid that a given pidfd refers to in the
150 * pid namespace of the procfs instance.
151 * If the pid namespace of the process is not a descendant of the pid
152 * namespace of the procfs instance 0 will be shown as its pid. This is
153 * similar to calling getppid() on a process whose parent is outside of
154 * its pid namespace.
155 *
156 * NSpid:
157 * If pid namespaces are supported then this function will also print
158 * the pid of a given pidfd refers to for all descendant pid namespaces
159 * starting from the current pid namespace of the instance, i.e. the
160 * Pid field and the first entry in the NSpid field will be identical.
161 * If the pid namespace of the process is not a descendant of the pid
162 * namespace of the procfs instance 0 will be shown as its first NSpid
163 * entry and no others will be shown.
164 * Note that this differs from the Pid and NSpid fields in
165 * /proc/<pid>/status where Pid and NSpid are always shown relative to
166 * the pid namespace of the procfs instance. The difference becomes
167 * obvious when sending around a pidfd between pid namespaces from a
168 * different branch of the tree, i.e. where no ancestral relation is
169 * present between the pid namespaces:
170 * - create two new pid namespaces ns1 and ns2 in the initial pid
171 * namespace (also take care to create new mount namespaces in the
172 * new pid namespace and mount procfs)
173 * - create a process with a pidfd in ns1
174 * - send pidfd from ns1 to ns2
175 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
176 * have exactly one entry, which is 0
177 */
pidfd_show_fdinfo(struct seq_file * m,struct file * f)178 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
179 {
180 struct pid *pid = pidfd_pid(f);
181 struct pid_namespace *ns;
182 pid_t nr = -1;
183
184 if (likely(pid_has_task(pid, PIDTYPE_PID))) {
185 ns = proc_pid_ns(file_inode(m->file)->i_sb);
186 nr = pid_nr_ns(pid, ns);
187 }
188
189 seq_put_decimal_ll(m, "Pid:\t", nr);
190
191 #ifdef CONFIG_PID_NS
192 seq_put_decimal_ll(m, "\nNSpid:\t", nr);
193 if (nr > 0) {
194 int i;
195
196 /* If nr is non-zero it means that 'pid' is valid and that
197 * ns, i.e. the pid namespace associated with the procfs
198 * instance, is in the pid namespace hierarchy of pid.
199 * Start at one below the already printed level.
200 */
201 for (i = ns->level + 1; i <= pid->level; i++)
202 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
203 }
204 #endif
205 seq_putc(m, '\n');
206 }
207 #endif
208
209 /*
210 * Poll support for process exit notification.
211 */
pidfd_poll(struct file * file,struct poll_table_struct * pts)212 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
213 {
214 struct pid *pid = pidfd_pid(file);
215 struct task_struct *task;
216 __poll_t poll_flags = 0;
217
218 poll_wait(file, &pid->wait_pidfd, pts);
219 /*
220 * Don't wake waiters if the thread-group leader exited
221 * prematurely. They either get notified when the last subthread
222 * exits or not at all if one of the remaining subthreads execs
223 * and assumes the struct pid of the old thread-group leader.
224 */
225 guard(rcu)();
226 task = pid_task(pid, PIDTYPE_PID);
227 if (!task)
228 poll_flags = EPOLLIN | EPOLLRDNORM | EPOLLHUP;
229 else if (task->exit_state && !delay_group_leader(task))
230 poll_flags = EPOLLIN | EPOLLRDNORM;
231
232 return poll_flags;
233 }
234
pid_in_current_pidns(const struct pid * pid)235 static inline bool pid_in_current_pidns(const struct pid *pid)
236 {
237 const struct pid_namespace *ns = task_active_pid_ns(current);
238
239 if (ns->level <= pid->level)
240 return pid->numbers[ns->level].ns == ns;
241
242 return false;
243 }
244
pidfs_coredump_mask(unsigned long mm_flags)245 static __u32 pidfs_coredump_mask(unsigned long mm_flags)
246 {
247 switch (__get_dumpable(mm_flags)) {
248 case SUID_DUMP_USER:
249 return PIDFD_COREDUMP_USER;
250 case SUID_DUMP_ROOT:
251 return PIDFD_COREDUMP_ROOT;
252 case SUID_DUMP_DISABLE:
253 return PIDFD_COREDUMP_SKIP;
254 default:
255 WARN_ON_ONCE(true);
256 }
257
258 return 0;
259 }
260
pidfd_info(struct file * file,unsigned int cmd,unsigned long arg)261 static long pidfd_info(struct file *file, unsigned int cmd, unsigned long arg)
262 {
263 struct pidfd_info __user *uinfo = (struct pidfd_info __user *)arg;
264 struct inode *inode = file_inode(file);
265 struct pid *pid = pidfd_pid(file);
266 size_t usize = _IOC_SIZE(cmd);
267 struct pidfd_info kinfo = {};
268 struct pidfs_exit_info *exit_info;
269 struct user_namespace *user_ns;
270 struct task_struct *task;
271 const struct cred *c;
272 __u64 mask;
273
274 if (!uinfo)
275 return -EINVAL;
276 if (usize < PIDFD_INFO_SIZE_VER0)
277 return -EINVAL; /* First version, no smaller struct possible */
278
279 if (copy_from_user(&mask, &uinfo->mask, sizeof(mask)))
280 return -EFAULT;
281
282 /*
283 * Restrict information retrieval to tasks within the caller's pid
284 * namespace hierarchy.
285 */
286 if (!pid_in_current_pidns(pid))
287 return -ESRCH;
288
289 if (mask & PIDFD_INFO_EXIT) {
290 exit_info = READ_ONCE(pidfs_i(inode)->exit_info);
291 if (exit_info) {
292 kinfo.mask |= PIDFD_INFO_EXIT;
293 #ifdef CONFIG_CGROUPS
294 kinfo.cgroupid = exit_info->cgroupid;
295 kinfo.mask |= PIDFD_INFO_CGROUPID;
296 #endif
297 kinfo.exit_code = exit_info->exit_code;
298 }
299 }
300
301 if (mask & PIDFD_INFO_COREDUMP) {
302 kinfo.mask |= PIDFD_INFO_COREDUMP;
303 kinfo.coredump_mask = READ_ONCE(pidfs_i(inode)->__pei.coredump_mask);
304 }
305
306 task = get_pid_task(pid, PIDTYPE_PID);
307 if (!task) {
308 /*
309 * If the task has already been reaped, only exit
310 * information is available
311 */
312 if (!(mask & PIDFD_INFO_EXIT))
313 return -ESRCH;
314
315 goto copy_out;
316 }
317
318 c = get_task_cred(task);
319 if (!c)
320 return -ESRCH;
321
322 if (!(kinfo.mask & PIDFD_INFO_COREDUMP)) {
323 task_lock(task);
324 if (task->mm)
325 kinfo.coredump_mask = pidfs_coredump_mask(task->mm->flags);
326 task_unlock(task);
327 }
328
329 /* Unconditionally return identifiers and credentials, the rest only on request */
330
331 user_ns = current_user_ns();
332 kinfo.ruid = from_kuid_munged(user_ns, c->uid);
333 kinfo.rgid = from_kgid_munged(user_ns, c->gid);
334 kinfo.euid = from_kuid_munged(user_ns, c->euid);
335 kinfo.egid = from_kgid_munged(user_ns, c->egid);
336 kinfo.suid = from_kuid_munged(user_ns, c->suid);
337 kinfo.sgid = from_kgid_munged(user_ns, c->sgid);
338 kinfo.fsuid = from_kuid_munged(user_ns, c->fsuid);
339 kinfo.fsgid = from_kgid_munged(user_ns, c->fsgid);
340 kinfo.mask |= PIDFD_INFO_CREDS;
341 put_cred(c);
342
343 #ifdef CONFIG_CGROUPS
344 if (!kinfo.cgroupid) {
345 struct cgroup *cgrp;
346
347 rcu_read_lock();
348 cgrp = task_dfl_cgroup(task);
349 kinfo.cgroupid = cgroup_id(cgrp);
350 kinfo.mask |= PIDFD_INFO_CGROUPID;
351 rcu_read_unlock();
352 }
353 #endif
354
355 /*
356 * Copy pid/tgid last, to reduce the chances the information might be
357 * stale. Note that it is not possible to ensure it will be valid as the
358 * task might return as soon as the copy_to_user finishes, but that's ok
359 * and userspace expects that might happen and can act accordingly, so
360 * this is just best-effort. What we can do however is checking that all
361 * the fields are set correctly, or return ESRCH to avoid providing
362 * incomplete information. */
363
364 kinfo.ppid = task_ppid_nr_ns(task, NULL);
365 kinfo.tgid = task_tgid_vnr(task);
366 kinfo.pid = task_pid_vnr(task);
367 kinfo.mask |= PIDFD_INFO_PID;
368
369 if (kinfo.pid == 0 || kinfo.tgid == 0)
370 return -ESRCH;
371
372 copy_out:
373 /*
374 * If userspace and the kernel have the same struct size it can just
375 * be copied. If userspace provides an older struct, only the bits that
376 * userspace knows about will be copied. If userspace provides a new
377 * struct, only the bits that the kernel knows about will be copied.
378 */
379 return copy_struct_to_user(uinfo, usize, &kinfo, sizeof(kinfo), NULL);
380 }
381
pidfs_ioctl_valid(unsigned int cmd)382 static bool pidfs_ioctl_valid(unsigned int cmd)
383 {
384 switch (cmd) {
385 case FS_IOC_GETVERSION:
386 case PIDFD_GET_CGROUP_NAMESPACE:
387 case PIDFD_GET_IPC_NAMESPACE:
388 case PIDFD_GET_MNT_NAMESPACE:
389 case PIDFD_GET_NET_NAMESPACE:
390 case PIDFD_GET_PID_FOR_CHILDREN_NAMESPACE:
391 case PIDFD_GET_TIME_NAMESPACE:
392 case PIDFD_GET_TIME_FOR_CHILDREN_NAMESPACE:
393 case PIDFD_GET_UTS_NAMESPACE:
394 case PIDFD_GET_USER_NAMESPACE:
395 case PIDFD_GET_PID_NAMESPACE:
396 return true;
397 }
398
399 /* Extensible ioctls require some more careful checks. */
400 switch (_IOC_NR(cmd)) {
401 case _IOC_NR(PIDFD_GET_INFO):
402 /*
403 * Try to prevent performing a pidfd ioctl when someone
404 * erronously mistook the file descriptor for a pidfd.
405 * This is not perfect but will catch most cases.
406 */
407 return (_IOC_TYPE(cmd) == _IOC_TYPE(PIDFD_GET_INFO));
408 }
409
410 return false;
411 }
412
pidfd_ioctl(struct file * file,unsigned int cmd,unsigned long arg)413 static long pidfd_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
414 {
415 struct task_struct *task __free(put_task) = NULL;
416 struct nsproxy *nsp __free(put_nsproxy) = NULL;
417 struct ns_common *ns_common = NULL;
418 struct pid_namespace *pid_ns;
419
420 if (!pidfs_ioctl_valid(cmd))
421 return -ENOIOCTLCMD;
422
423 if (cmd == FS_IOC_GETVERSION) {
424 if (!arg)
425 return -EINVAL;
426
427 __u32 __user *argp = (__u32 __user *)arg;
428 return put_user(file_inode(file)->i_generation, argp);
429 }
430
431 /* Extensible IOCTL that does not open namespace FDs, take a shortcut */
432 if (_IOC_NR(cmd) == _IOC_NR(PIDFD_GET_INFO))
433 return pidfd_info(file, cmd, arg);
434
435 task = get_pid_task(pidfd_pid(file), PIDTYPE_PID);
436 if (!task)
437 return -ESRCH;
438
439 if (arg)
440 return -EINVAL;
441
442 scoped_guard(task_lock, task) {
443 nsp = task->nsproxy;
444 if (nsp)
445 get_nsproxy(nsp);
446 }
447 if (!nsp)
448 return -ESRCH; /* just pretend it didn't exist */
449
450 /*
451 * We're trying to open a file descriptor to the namespace so perform a
452 * filesystem cred ptrace check. Also, we mirror nsfs behavior.
453 */
454 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
455 return -EACCES;
456
457 switch (cmd) {
458 /* Namespaces that hang of nsproxy. */
459 case PIDFD_GET_CGROUP_NAMESPACE:
460 if (IS_ENABLED(CONFIG_CGROUPS)) {
461 get_cgroup_ns(nsp->cgroup_ns);
462 ns_common = to_ns_common(nsp->cgroup_ns);
463 }
464 break;
465 case PIDFD_GET_IPC_NAMESPACE:
466 if (IS_ENABLED(CONFIG_IPC_NS)) {
467 get_ipc_ns(nsp->ipc_ns);
468 ns_common = to_ns_common(nsp->ipc_ns);
469 }
470 break;
471 case PIDFD_GET_MNT_NAMESPACE:
472 get_mnt_ns(nsp->mnt_ns);
473 ns_common = to_ns_common(nsp->mnt_ns);
474 break;
475 case PIDFD_GET_NET_NAMESPACE:
476 if (IS_ENABLED(CONFIG_NET_NS)) {
477 ns_common = to_ns_common(nsp->net_ns);
478 get_net_ns(ns_common);
479 }
480 break;
481 case PIDFD_GET_PID_FOR_CHILDREN_NAMESPACE:
482 if (IS_ENABLED(CONFIG_PID_NS)) {
483 get_pid_ns(nsp->pid_ns_for_children);
484 ns_common = to_ns_common(nsp->pid_ns_for_children);
485 }
486 break;
487 case PIDFD_GET_TIME_NAMESPACE:
488 if (IS_ENABLED(CONFIG_TIME_NS)) {
489 get_time_ns(nsp->time_ns);
490 ns_common = to_ns_common(nsp->time_ns);
491 }
492 break;
493 case PIDFD_GET_TIME_FOR_CHILDREN_NAMESPACE:
494 if (IS_ENABLED(CONFIG_TIME_NS)) {
495 get_time_ns(nsp->time_ns_for_children);
496 ns_common = to_ns_common(nsp->time_ns_for_children);
497 }
498 break;
499 case PIDFD_GET_UTS_NAMESPACE:
500 if (IS_ENABLED(CONFIG_UTS_NS)) {
501 get_uts_ns(nsp->uts_ns);
502 ns_common = to_ns_common(nsp->uts_ns);
503 }
504 break;
505 /* Namespaces that don't hang of nsproxy. */
506 case PIDFD_GET_USER_NAMESPACE:
507 if (IS_ENABLED(CONFIG_USER_NS)) {
508 rcu_read_lock();
509 ns_common = to_ns_common(get_user_ns(task_cred_xxx(task, user_ns)));
510 rcu_read_unlock();
511 }
512 break;
513 case PIDFD_GET_PID_NAMESPACE:
514 if (IS_ENABLED(CONFIG_PID_NS)) {
515 rcu_read_lock();
516 pid_ns = task_active_pid_ns(task);
517 if (pid_ns)
518 ns_common = to_ns_common(get_pid_ns(pid_ns));
519 rcu_read_unlock();
520 }
521 break;
522 default:
523 return -ENOIOCTLCMD;
524 }
525
526 if (!ns_common)
527 return -EOPNOTSUPP;
528
529 /* open_namespace() unconditionally consumes the reference */
530 return open_namespace(ns_common);
531 }
532
533 static const struct file_operations pidfs_file_operations = {
534 .poll = pidfd_poll,
535 #ifdef CONFIG_PROC_FS
536 .show_fdinfo = pidfd_show_fdinfo,
537 #endif
538 .unlocked_ioctl = pidfd_ioctl,
539 .compat_ioctl = compat_ptr_ioctl,
540 };
541
pidfd_pid(const struct file * file)542 struct pid *pidfd_pid(const struct file *file)
543 {
544 if (file->f_op != &pidfs_file_operations)
545 return ERR_PTR(-EBADF);
546 return file_inode(file)->i_private;
547 }
548
549 /*
550 * We're called from release_task(). We know there's at least one
551 * reference to struct pid being held that won't be released until the
552 * task has been reaped which cannot happen until we're out of
553 * release_task().
554 *
555 * If this struct pid is referred to by a pidfd then
556 * stashed_dentry_get() will return the dentry and inode for that struct
557 * pid. Since we've taken a reference on it there's now an additional
558 * reference from the exit path on it. Which is fine. We're going to put
559 * it again in a second and we know that the pid is kept alive anyway.
560 *
561 * Worst case is that we've filled in the info and immediately free the
562 * dentry and inode afterwards since the pidfd has been closed. Since
563 * pidfs_exit() currently is placed after exit_task_work() we know that
564 * it cannot be us aka the exiting task holding a pidfd to ourselves.
565 */
pidfs_exit(struct task_struct * tsk)566 void pidfs_exit(struct task_struct *tsk)
567 {
568 struct dentry *dentry;
569
570 might_sleep();
571
572 dentry = stashed_dentry_get(&task_pid(tsk)->stashed);
573 if (dentry) {
574 struct inode *inode = d_inode(dentry);
575 struct pidfs_exit_info *exit_info = &pidfs_i(inode)->__pei;
576 #ifdef CONFIG_CGROUPS
577 struct cgroup *cgrp;
578
579 rcu_read_lock();
580 cgrp = task_dfl_cgroup(tsk);
581 exit_info->cgroupid = cgroup_id(cgrp);
582 rcu_read_unlock();
583 #endif
584 exit_info->exit_code = tsk->exit_code;
585
586 /* Ensure that PIDFD_GET_INFO sees either all or nothing. */
587 smp_store_release(&pidfs_i(inode)->exit_info, &pidfs_i(inode)->__pei);
588 dput(dentry);
589 }
590 }
591
592 #ifdef CONFIG_COREDUMP
pidfs_coredump(const struct coredump_params * cprm)593 void pidfs_coredump(const struct coredump_params *cprm)
594 {
595 struct pid *pid = cprm->pid;
596 struct pidfs_exit_info *exit_info;
597 struct dentry *dentry;
598 struct inode *inode;
599 __u32 coredump_mask = 0;
600
601 dentry = pid->stashed;
602 if (WARN_ON_ONCE(!dentry))
603 return;
604
605 inode = d_inode(dentry);
606 exit_info = &pidfs_i(inode)->__pei;
607 /* Note how we were coredumped. */
608 coredump_mask = pidfs_coredump_mask(cprm->mm_flags);
609 /* Note that we actually did coredump. */
610 coredump_mask |= PIDFD_COREDUMPED;
611 /* If coredumping is set to skip we should never end up here. */
612 VFS_WARN_ON_ONCE(coredump_mask & PIDFD_COREDUMP_SKIP);
613 smp_store_release(&exit_info->coredump_mask, coredump_mask);
614 }
615 #endif
616
617 static struct vfsmount *pidfs_mnt __ro_after_init;
618
619 /*
620 * The vfs falls back to simple_setattr() if i_op->setattr() isn't
621 * implemented. Let's reject it completely until we have a clean
622 * permission concept for pidfds.
623 */
pidfs_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)624 static int pidfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
625 struct iattr *attr)
626 {
627 return anon_inode_setattr(idmap, dentry, attr);
628 }
629
pidfs_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)630 static int pidfs_getattr(struct mnt_idmap *idmap, const struct path *path,
631 struct kstat *stat, u32 request_mask,
632 unsigned int query_flags)
633 {
634 return anon_inode_getattr(idmap, path, stat, request_mask, query_flags);
635 }
636
637 static const struct inode_operations pidfs_inode_operations = {
638 .getattr = pidfs_getattr,
639 .setattr = pidfs_setattr,
640 };
641
pidfs_evict_inode(struct inode * inode)642 static void pidfs_evict_inode(struct inode *inode)
643 {
644 struct pid *pid = inode->i_private;
645
646 clear_inode(inode);
647 put_pid(pid);
648 }
649
pidfs_alloc_inode(struct super_block * sb)650 static struct inode *pidfs_alloc_inode(struct super_block *sb)
651 {
652 struct pidfs_inode *pi;
653
654 pi = alloc_inode_sb(sb, pidfs_cachep, GFP_KERNEL);
655 if (!pi)
656 return NULL;
657
658 memset(&pi->__pei, 0, sizeof(pi->__pei));
659 pi->exit_info = NULL;
660
661 return &pi->vfs_inode;
662 }
663
pidfs_free_inode(struct inode * inode)664 static void pidfs_free_inode(struct inode *inode)
665 {
666 kmem_cache_free(pidfs_cachep, pidfs_i(inode));
667 }
668
669 static const struct super_operations pidfs_sops = {
670 .alloc_inode = pidfs_alloc_inode,
671 .drop_inode = generic_delete_inode,
672 .evict_inode = pidfs_evict_inode,
673 .free_inode = pidfs_free_inode,
674 .statfs = simple_statfs,
675 };
676
677 /*
678 * 'lsof' has knowledge of out historical anon_inode use, and expects
679 * the pidfs dentry name to start with 'anon_inode'.
680 */
pidfs_dname(struct dentry * dentry,char * buffer,int buflen)681 static char *pidfs_dname(struct dentry *dentry, char *buffer, int buflen)
682 {
683 return dynamic_dname(buffer, buflen, "anon_inode:[pidfd]");
684 }
685
686 const struct dentry_operations pidfs_dentry_operations = {
687 .d_dname = pidfs_dname,
688 .d_prune = stashed_dentry_prune,
689 };
690
pidfs_encode_fh(struct inode * inode,u32 * fh,int * max_len,struct inode * parent)691 static int pidfs_encode_fh(struct inode *inode, u32 *fh, int *max_len,
692 struct inode *parent)
693 {
694 const struct pid *pid = inode->i_private;
695
696 if (*max_len < 2) {
697 *max_len = 2;
698 return FILEID_INVALID;
699 }
700
701 *max_len = 2;
702 *(u64 *)fh = pid->ino;
703 return FILEID_KERNFS;
704 }
705
pidfs_ino_find(const void * key,const struct rb_node * node)706 static int pidfs_ino_find(const void *key, const struct rb_node *node)
707 {
708 const u64 pid_ino = *(u64 *)key;
709 const struct pid *pid = rb_entry(node, struct pid, pidfs_node);
710
711 if (pid_ino < pid->ino)
712 return -1;
713 if (pid_ino > pid->ino)
714 return 1;
715 return 0;
716 }
717
718 /* Find a struct pid based on the inode number. */
pidfs_ino_get_pid(u64 ino)719 static struct pid *pidfs_ino_get_pid(u64 ino)
720 {
721 struct pid *pid;
722 struct rb_node *node;
723 unsigned int seq;
724
725 guard(rcu)();
726 do {
727 seq = read_seqcount_begin(&pidmap_lock_seq);
728 node = rb_find_rcu(&ino, &pidfs_ino_tree, pidfs_ino_find);
729 if (node)
730 break;
731 } while (read_seqcount_retry(&pidmap_lock_seq, seq));
732
733 if (!node)
734 return NULL;
735
736 pid = rb_entry(node, struct pid, pidfs_node);
737
738 /* Within our pid namespace hierarchy? */
739 if (pid_vnr(pid) == 0)
740 return NULL;
741
742 return get_pid(pid);
743 }
744
pidfs_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)745 static struct dentry *pidfs_fh_to_dentry(struct super_block *sb,
746 struct fid *fid, int fh_len,
747 int fh_type)
748 {
749 int ret;
750 u64 pid_ino;
751 struct path path;
752 struct pid *pid;
753
754 if (fh_len < 2)
755 return NULL;
756
757 switch (fh_type) {
758 case FILEID_KERNFS:
759 pid_ino = *(u64 *)fid;
760 break;
761 default:
762 return NULL;
763 }
764
765 pid = pidfs_ino_get_pid(pid_ino);
766 if (!pid)
767 return NULL;
768
769 ret = path_from_stashed(&pid->stashed, pidfs_mnt, pid, &path);
770 if (ret < 0)
771 return ERR_PTR(ret);
772
773 mntput(path.mnt);
774 return path.dentry;
775 }
776
777 /*
778 * Make sure that we reject any nonsensical flags that users pass via
779 * open_by_handle_at(). Note that PIDFD_THREAD is defined as O_EXCL, and
780 * PIDFD_NONBLOCK as O_NONBLOCK.
781 */
782 #define VALID_FILE_HANDLE_OPEN_FLAGS \
783 (O_RDONLY | O_WRONLY | O_RDWR | O_NONBLOCK | O_CLOEXEC | O_EXCL)
784
pidfs_export_permission(struct handle_to_path_ctx * ctx,unsigned int oflags)785 static int pidfs_export_permission(struct handle_to_path_ctx *ctx,
786 unsigned int oflags)
787 {
788 if (oflags & ~(VALID_FILE_HANDLE_OPEN_FLAGS | O_LARGEFILE))
789 return -EINVAL;
790
791 /*
792 * pidfd_ino_get_pid() will verify that the struct pid is part
793 * of the caller's pid namespace hierarchy. No further
794 * permission checks are needed.
795 */
796 return 0;
797 }
798
pidfs_pid_valid(struct pid * pid,const struct path * path,unsigned int flags)799 static inline bool pidfs_pid_valid(struct pid *pid, const struct path *path,
800 unsigned int flags)
801 {
802 enum pid_type type;
803
804 if (flags & PIDFD_STALE)
805 return true;
806
807 /*
808 * Make sure that if a pidfd is created PIDFD_INFO_EXIT
809 * information will be available. So after an inode for the
810 * pidfd has been allocated perform another check that the pid
811 * is still alive. If it is exit information is available even
812 * if the task gets reaped before the pidfd is returned to
813 * userspace. The only exception are indicated by PIDFD_STALE:
814 *
815 * (1) The kernel is in the middle of task creation and thus no
816 * task linkage has been established yet.
817 * (2) The caller knows @pid has been registered in pidfs at a
818 * time when the task was still alive.
819 *
820 * In both cases exit information will have been reported.
821 */
822 if (flags & PIDFD_THREAD)
823 type = PIDTYPE_PID;
824 else
825 type = PIDTYPE_TGID;
826
827 /*
828 * Since pidfs_exit() is called before struct pid's task linkage
829 * is removed the case where the task got reaped but a dentry
830 * was already attached to struct pid and exit information was
831 * recorded and published can be handled correctly.
832 */
833 if (unlikely(!pid_has_task(pid, type))) {
834 struct inode *inode = d_inode(path->dentry);
835 return !!READ_ONCE(pidfs_i(inode)->exit_info);
836 }
837
838 return true;
839 }
840
pidfs_export_open(struct path * path,unsigned int oflags)841 static struct file *pidfs_export_open(struct path *path, unsigned int oflags)
842 {
843 if (!pidfs_pid_valid(d_inode(path->dentry)->i_private, path, oflags))
844 return ERR_PTR(-ESRCH);
845
846 /*
847 * Clear O_LARGEFILE as open_by_handle_at() forces it and raise
848 * O_RDWR as pidfds always are.
849 */
850 oflags &= ~O_LARGEFILE;
851 return dentry_open(path, oflags | O_RDWR, current_cred());
852 }
853
854 static const struct export_operations pidfs_export_operations = {
855 .encode_fh = pidfs_encode_fh,
856 .fh_to_dentry = pidfs_fh_to_dentry,
857 .open = pidfs_export_open,
858 .permission = pidfs_export_permission,
859 };
860
pidfs_init_inode(struct inode * inode,void * data)861 static int pidfs_init_inode(struct inode *inode, void *data)
862 {
863 const struct pid *pid = data;
864
865 inode->i_private = data;
866 inode->i_flags |= S_PRIVATE | S_ANON_INODE;
867 inode->i_mode |= S_IRWXU;
868 inode->i_op = &pidfs_inode_operations;
869 inode->i_fop = &pidfs_file_operations;
870 inode->i_ino = pidfs_ino(pid->ino);
871 inode->i_generation = pidfs_gen(pid->ino);
872 return 0;
873 }
874
pidfs_put_data(void * data)875 static void pidfs_put_data(void *data)
876 {
877 struct pid *pid = data;
878 put_pid(pid);
879 }
880
881 static const struct stashed_operations pidfs_stashed_ops = {
882 .init_inode = pidfs_init_inode,
883 .put_data = pidfs_put_data,
884 };
885
pidfs_init_fs_context(struct fs_context * fc)886 static int pidfs_init_fs_context(struct fs_context *fc)
887 {
888 struct pseudo_fs_context *ctx;
889
890 ctx = init_pseudo(fc, PID_FS_MAGIC);
891 if (!ctx)
892 return -ENOMEM;
893
894 ctx->ops = &pidfs_sops;
895 ctx->eops = &pidfs_export_operations;
896 ctx->dops = &pidfs_dentry_operations;
897 fc->s_fs_info = (void *)&pidfs_stashed_ops;
898 return 0;
899 }
900
901 static struct file_system_type pidfs_type = {
902 .name = "pidfs",
903 .init_fs_context = pidfs_init_fs_context,
904 .kill_sb = kill_anon_super,
905 };
906
pidfs_alloc_file(struct pid * pid,unsigned int flags)907 struct file *pidfs_alloc_file(struct pid *pid, unsigned int flags)
908 {
909 struct file *pidfd_file;
910 struct path path __free(path_put) = {};
911 int ret;
912
913 /*
914 * Ensure that PIDFD_STALE can be passed as a flag without
915 * overloading other uapi pidfd flags.
916 */
917 BUILD_BUG_ON(PIDFD_STALE == PIDFD_THREAD);
918 BUILD_BUG_ON(PIDFD_STALE == PIDFD_NONBLOCK);
919
920 ret = path_from_stashed(&pid->stashed, pidfs_mnt, get_pid(pid), &path);
921 if (ret < 0)
922 return ERR_PTR(ret);
923
924 if (!pidfs_pid_valid(pid, &path, flags))
925 return ERR_PTR(-ESRCH);
926
927 flags &= ~PIDFD_STALE;
928 flags |= O_RDWR;
929 pidfd_file = dentry_open(&path, flags, current_cred());
930 /* Raise PIDFD_THREAD explicitly as do_dentry_open() strips it. */
931 if (!IS_ERR(pidfd_file))
932 pidfd_file->f_flags |= (flags & PIDFD_THREAD);
933
934 return pidfd_file;
935 }
936
937 /**
938 * pidfs_register_pid - register a struct pid in pidfs
939 * @pid: pid to pin
940 *
941 * Register a struct pid in pidfs. Needs to be paired with
942 * pidfs_put_pid() to not risk leaking the pidfs dentry and inode.
943 *
944 * Return: On success zero, on error a negative error code is returned.
945 */
pidfs_register_pid(struct pid * pid)946 int pidfs_register_pid(struct pid *pid)
947 {
948 struct path path __free(path_put) = {};
949 int ret;
950
951 might_sleep();
952
953 if (!pid)
954 return 0;
955
956 ret = path_from_stashed(&pid->stashed, pidfs_mnt, get_pid(pid), &path);
957 if (unlikely(ret))
958 return ret;
959 /* Keep the dentry and only put the reference to the mount. */
960 path.dentry = NULL;
961 return 0;
962 }
963
964 /**
965 * pidfs_get_pid - pin a struct pid through pidfs
966 * @pid: pid to pin
967 *
968 * Similar to pidfs_register_pid() but only valid if the caller knows
969 * there's a reference to the @pid through a dentry already that can't
970 * go away.
971 */
pidfs_get_pid(struct pid * pid)972 void pidfs_get_pid(struct pid *pid)
973 {
974 if (!pid)
975 return;
976 WARN_ON_ONCE(!stashed_dentry_get(&pid->stashed));
977 }
978
979 /**
980 * pidfs_put_pid - drop a pidfs reference
981 * @pid: pid to drop
982 *
983 * Drop a reference to @pid via pidfs. This is only safe if the
984 * reference has been taken via pidfs_get_pid().
985 */
pidfs_put_pid(struct pid * pid)986 void pidfs_put_pid(struct pid *pid)
987 {
988 might_sleep();
989
990 if (!pid)
991 return;
992 VFS_WARN_ON_ONCE(!pid->stashed);
993 dput(pid->stashed);
994 }
995
pidfs_inode_init_once(void * data)996 static void pidfs_inode_init_once(void *data)
997 {
998 struct pidfs_inode *pi = data;
999
1000 inode_init_once(&pi->vfs_inode);
1001 }
1002
pidfs_init(void)1003 void __init pidfs_init(void)
1004 {
1005 pidfs_cachep = kmem_cache_create("pidfs_cache", sizeof(struct pidfs_inode), 0,
1006 (SLAB_HWCACHE_ALIGN | SLAB_RECLAIM_ACCOUNT |
1007 SLAB_ACCOUNT | SLAB_PANIC),
1008 pidfs_inode_init_once);
1009 pidfs_mnt = kern_mount(&pidfs_type);
1010 if (IS_ERR(pidfs_mnt))
1011 panic("Failed to mount pidfs pseudo filesystem");
1012 }
1013