1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/anon_inodes.h>
3 #include <linux/exportfs.h>
4 #include <linux/file.h>
5 #include <linux/fs.h>
6 #include <linux/cgroup.h>
7 #include <linux/magic.h>
8 #include <linux/mount.h>
9 #include <linux/pid.h>
10 #include <linux/pidfs.h>
11 #include <linux/pid_namespace.h>
12 #include <linux/poll.h>
13 #include <linux/proc_fs.h>
14 #include <linux/proc_ns.h>
15 #include <linux/pseudo_fs.h>
16 #include <linux/ptrace.h>
17 #include <linux/seq_file.h>
18 #include <uapi/linux/pidfd.h>
19 #include <linux/ipc_namespace.h>
20 #include <linux/time_namespace.h>
21 #include <linux/utsname.h>
22 #include <net/net_namespace.h>
23 #include <linux/coredump.h>
24 #include <linux/xattr.h>
25
26 #include "internal.h"
27 #include "mount.h"
28
29 #define PIDFS_PID_DEAD ERR_PTR(-ESRCH)
30
31 static struct kmem_cache *pidfs_attr_cachep __ro_after_init;
32 static struct kmem_cache *pidfs_xattr_cachep __ro_after_init;
33
34 static struct path pidfs_root_path = {};
35
pidfs_get_root(struct path * path)36 void pidfs_get_root(struct path *path)
37 {
38 *path = pidfs_root_path;
39 path_get(path);
40 }
41
42 /*
43 * Stashes information that userspace needs to access even after the
44 * process has been reaped.
45 */
46 struct pidfs_exit_info {
47 __u64 cgroupid;
48 __s32 exit_code;
49 __u32 coredump_mask;
50 };
51
52 struct pidfs_attr {
53 struct simple_xattrs *xattrs;
54 struct pidfs_exit_info __pei;
55 struct pidfs_exit_info *exit_info;
56 };
57
58 static struct rb_root pidfs_ino_tree = RB_ROOT;
59
60 #if BITS_PER_LONG == 32
pidfs_ino(u64 ino)61 static inline unsigned long pidfs_ino(u64 ino)
62 {
63 return lower_32_bits(ino);
64 }
65
66 /* On 32 bit the generation number are the upper 32 bits. */
pidfs_gen(u64 ino)67 static inline u32 pidfs_gen(u64 ino)
68 {
69 return upper_32_bits(ino);
70 }
71
72 #else
73
74 /* On 64 bit simply return ino. */
pidfs_ino(u64 ino)75 static inline unsigned long pidfs_ino(u64 ino)
76 {
77 return ino;
78 }
79
80 /* On 64 bit the generation number is 0. */
pidfs_gen(u64 ino)81 static inline u32 pidfs_gen(u64 ino)
82 {
83 return 0;
84 }
85 #endif
86
pidfs_ino_cmp(struct rb_node * a,const struct rb_node * b)87 static int pidfs_ino_cmp(struct rb_node *a, const struct rb_node *b)
88 {
89 struct pid *pid_a = rb_entry(a, struct pid, pidfs_node);
90 struct pid *pid_b = rb_entry(b, struct pid, pidfs_node);
91 u64 pid_ino_a = pid_a->ino;
92 u64 pid_ino_b = pid_b->ino;
93
94 if (pid_ino_a < pid_ino_b)
95 return -1;
96 if (pid_ino_a > pid_ino_b)
97 return 1;
98 return 0;
99 }
100
pidfs_add_pid(struct pid * pid)101 void pidfs_add_pid(struct pid *pid)
102 {
103 static u64 pidfs_ino_nr = 2;
104
105 /*
106 * On 64 bit nothing special happens. The 64bit number assigned
107 * to struct pid is the inode number.
108 *
109 * On 32 bit the 64 bit number assigned to struct pid is split
110 * into two 32 bit numbers. The lower 32 bits are used as the
111 * inode number and the upper 32 bits are used as the inode
112 * generation number.
113 *
114 * On 32 bit pidfs_ino() will return the lower 32 bit. When
115 * pidfs_ino() returns zero a wrap around happened. When a
116 * wraparound happens the 64 bit number will be incremented by 2
117 * so inode numbering starts at 2 again.
118 *
119 * On 64 bit comparing two pidfds is as simple as comparing
120 * inode numbers.
121 *
122 * When a wraparound happens on 32 bit multiple pidfds with the
123 * same inode number are likely to exist (This isn't a problem
124 * since before pidfs pidfds used the anonymous inode meaning
125 * all pidfds had the same inode number.). Userspace can
126 * reconstruct the 64 bit identifier by retrieving both the
127 * inode number and the inode generation number to compare or
128 * use file handles.
129 */
130 if (pidfs_ino(pidfs_ino_nr) == 0)
131 pidfs_ino_nr += 2;
132
133 pid->ino = pidfs_ino_nr;
134 pid->stashed = NULL;
135 pid->attr = NULL;
136 pidfs_ino_nr++;
137
138 write_seqcount_begin(&pidmap_lock_seq);
139 rb_find_add_rcu(&pid->pidfs_node, &pidfs_ino_tree, pidfs_ino_cmp);
140 write_seqcount_end(&pidmap_lock_seq);
141 }
142
pidfs_remove_pid(struct pid * pid)143 void pidfs_remove_pid(struct pid *pid)
144 {
145 write_seqcount_begin(&pidmap_lock_seq);
146 rb_erase(&pid->pidfs_node, &pidfs_ino_tree);
147 write_seqcount_end(&pidmap_lock_seq);
148 }
149
pidfs_free_pid(struct pid * pid)150 void pidfs_free_pid(struct pid *pid)
151 {
152 struct pidfs_attr *attr __free(kfree) = no_free_ptr(pid->attr);
153 struct simple_xattrs *xattrs __free(kfree) = NULL;
154
155 /*
156 * Any dentry must've been wiped from the pid by now.
157 * Otherwise there's a reference count bug.
158 */
159 VFS_WARN_ON_ONCE(pid->stashed);
160
161 /*
162 * This if an error occurred during e.g., task creation that
163 * causes us to never go through the exit path.
164 */
165 if (unlikely(!attr))
166 return;
167
168 /* This never had a pidfd created. */
169 if (IS_ERR(attr))
170 return;
171
172 xattrs = no_free_ptr(attr->xattrs);
173 if (xattrs)
174 simple_xattrs_free(xattrs, NULL);
175 }
176
177 #ifdef CONFIG_PROC_FS
178 /**
179 * pidfd_show_fdinfo - print information about a pidfd
180 * @m: proc fdinfo file
181 * @f: file referencing a pidfd
182 *
183 * Pid:
184 * This function will print the pid that a given pidfd refers to in the
185 * pid namespace of the procfs instance.
186 * If the pid namespace of the process is not a descendant of the pid
187 * namespace of the procfs instance 0 will be shown as its pid. This is
188 * similar to calling getppid() on a process whose parent is outside of
189 * its pid namespace.
190 *
191 * NSpid:
192 * If pid namespaces are supported then this function will also print
193 * the pid of a given pidfd refers to for all descendant pid namespaces
194 * starting from the current pid namespace of the instance, i.e. the
195 * Pid field and the first entry in the NSpid field will be identical.
196 * If the pid namespace of the process is not a descendant of the pid
197 * namespace of the procfs instance 0 will be shown as its first NSpid
198 * entry and no others will be shown.
199 * Note that this differs from the Pid and NSpid fields in
200 * /proc/<pid>/status where Pid and NSpid are always shown relative to
201 * the pid namespace of the procfs instance. The difference becomes
202 * obvious when sending around a pidfd between pid namespaces from a
203 * different branch of the tree, i.e. where no ancestral relation is
204 * present between the pid namespaces:
205 * - create two new pid namespaces ns1 and ns2 in the initial pid
206 * namespace (also take care to create new mount namespaces in the
207 * new pid namespace and mount procfs)
208 * - create a process with a pidfd in ns1
209 * - send pidfd from ns1 to ns2
210 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
211 * have exactly one entry, which is 0
212 */
pidfd_show_fdinfo(struct seq_file * m,struct file * f)213 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
214 {
215 struct pid *pid = pidfd_pid(f);
216 struct pid_namespace *ns;
217 pid_t nr = -1;
218
219 if (likely(pid_has_task(pid, PIDTYPE_PID))) {
220 ns = proc_pid_ns(file_inode(m->file)->i_sb);
221 nr = pid_nr_ns(pid, ns);
222 }
223
224 seq_put_decimal_ll(m, "Pid:\t", nr);
225
226 #ifdef CONFIG_PID_NS
227 seq_put_decimal_ll(m, "\nNSpid:\t", nr);
228 if (nr > 0) {
229 int i;
230
231 /* If nr is non-zero it means that 'pid' is valid and that
232 * ns, i.e. the pid namespace associated with the procfs
233 * instance, is in the pid namespace hierarchy of pid.
234 * Start at one below the already printed level.
235 */
236 for (i = ns->level + 1; i <= pid->level; i++)
237 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
238 }
239 #endif
240 seq_putc(m, '\n');
241 }
242 #endif
243
244 /*
245 * Poll support for process exit notification.
246 */
pidfd_poll(struct file * file,struct poll_table_struct * pts)247 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
248 {
249 struct pid *pid = pidfd_pid(file);
250 struct task_struct *task;
251 __poll_t poll_flags = 0;
252
253 poll_wait(file, &pid->wait_pidfd, pts);
254 /*
255 * Don't wake waiters if the thread-group leader exited
256 * prematurely. They either get notified when the last subthread
257 * exits or not at all if one of the remaining subthreads execs
258 * and assumes the struct pid of the old thread-group leader.
259 */
260 guard(rcu)();
261 task = pid_task(pid, PIDTYPE_PID);
262 if (!task)
263 poll_flags = EPOLLIN | EPOLLRDNORM | EPOLLHUP;
264 else if (task->exit_state && !delay_group_leader(task))
265 poll_flags = EPOLLIN | EPOLLRDNORM;
266
267 return poll_flags;
268 }
269
pid_in_current_pidns(const struct pid * pid)270 static inline bool pid_in_current_pidns(const struct pid *pid)
271 {
272 const struct pid_namespace *ns = task_active_pid_ns(current);
273
274 if (ns->level <= pid->level)
275 return pid->numbers[ns->level].ns == ns;
276
277 return false;
278 }
279
pidfs_coredump_mask(unsigned long mm_flags)280 static __u32 pidfs_coredump_mask(unsigned long mm_flags)
281 {
282 switch (__get_dumpable(mm_flags)) {
283 case SUID_DUMP_USER:
284 return PIDFD_COREDUMP_USER;
285 case SUID_DUMP_ROOT:
286 return PIDFD_COREDUMP_ROOT;
287 case SUID_DUMP_DISABLE:
288 return PIDFD_COREDUMP_SKIP;
289 default:
290 WARN_ON_ONCE(true);
291 }
292
293 return 0;
294 }
295
pidfd_info(struct file * file,unsigned int cmd,unsigned long arg)296 static long pidfd_info(struct file *file, unsigned int cmd, unsigned long arg)
297 {
298 struct pidfd_info __user *uinfo = (struct pidfd_info __user *)arg;
299 struct task_struct *task __free(put_task) = NULL;
300 struct pid *pid = pidfd_pid(file);
301 size_t usize = _IOC_SIZE(cmd);
302 struct pidfd_info kinfo = {};
303 struct pidfs_exit_info *exit_info;
304 struct user_namespace *user_ns;
305 struct pidfs_attr *attr;
306 const struct cred *c;
307 __u64 mask;
308
309 if (!uinfo)
310 return -EINVAL;
311 if (usize < PIDFD_INFO_SIZE_VER0)
312 return -EINVAL; /* First version, no smaller struct possible */
313
314 if (copy_from_user(&mask, &uinfo->mask, sizeof(mask)))
315 return -EFAULT;
316
317 /*
318 * Restrict information retrieval to tasks within the caller's pid
319 * namespace hierarchy.
320 */
321 if (!pid_in_current_pidns(pid))
322 return -ESRCH;
323
324 attr = READ_ONCE(pid->attr);
325 if (mask & PIDFD_INFO_EXIT) {
326 exit_info = READ_ONCE(attr->exit_info);
327 if (exit_info) {
328 kinfo.mask |= PIDFD_INFO_EXIT;
329 #ifdef CONFIG_CGROUPS
330 kinfo.cgroupid = exit_info->cgroupid;
331 kinfo.mask |= PIDFD_INFO_CGROUPID;
332 #endif
333 kinfo.exit_code = exit_info->exit_code;
334 }
335 }
336
337 if (mask & PIDFD_INFO_COREDUMP) {
338 kinfo.mask |= PIDFD_INFO_COREDUMP;
339 kinfo.coredump_mask = READ_ONCE(attr->__pei.coredump_mask);
340 }
341
342 task = get_pid_task(pid, PIDTYPE_PID);
343 if (!task) {
344 /*
345 * If the task has already been reaped, only exit
346 * information is available
347 */
348 if (!(mask & PIDFD_INFO_EXIT))
349 return -ESRCH;
350
351 goto copy_out;
352 }
353
354 c = get_task_cred(task);
355 if (!c)
356 return -ESRCH;
357
358 if ((kinfo.mask & PIDFD_INFO_COREDUMP) && !(kinfo.coredump_mask)) {
359 task_lock(task);
360 if (task->mm)
361 kinfo.coredump_mask = pidfs_coredump_mask(task->mm->flags);
362 task_unlock(task);
363 }
364
365 /* Unconditionally return identifiers and credentials, the rest only on request */
366
367 user_ns = current_user_ns();
368 kinfo.ruid = from_kuid_munged(user_ns, c->uid);
369 kinfo.rgid = from_kgid_munged(user_ns, c->gid);
370 kinfo.euid = from_kuid_munged(user_ns, c->euid);
371 kinfo.egid = from_kgid_munged(user_ns, c->egid);
372 kinfo.suid = from_kuid_munged(user_ns, c->suid);
373 kinfo.sgid = from_kgid_munged(user_ns, c->sgid);
374 kinfo.fsuid = from_kuid_munged(user_ns, c->fsuid);
375 kinfo.fsgid = from_kgid_munged(user_ns, c->fsgid);
376 kinfo.mask |= PIDFD_INFO_CREDS;
377 put_cred(c);
378
379 #ifdef CONFIG_CGROUPS
380 if (!kinfo.cgroupid) {
381 struct cgroup *cgrp;
382
383 rcu_read_lock();
384 cgrp = task_dfl_cgroup(task);
385 kinfo.cgroupid = cgroup_id(cgrp);
386 kinfo.mask |= PIDFD_INFO_CGROUPID;
387 rcu_read_unlock();
388 }
389 #endif
390
391 /*
392 * Copy pid/tgid last, to reduce the chances the information might be
393 * stale. Note that it is not possible to ensure it will be valid as the
394 * task might return as soon as the copy_to_user finishes, but that's ok
395 * and userspace expects that might happen and can act accordingly, so
396 * this is just best-effort. What we can do however is checking that all
397 * the fields are set correctly, or return ESRCH to avoid providing
398 * incomplete information. */
399
400 kinfo.ppid = task_ppid_nr_ns(task, NULL);
401 kinfo.tgid = task_tgid_vnr(task);
402 kinfo.pid = task_pid_vnr(task);
403 kinfo.mask |= PIDFD_INFO_PID;
404
405 if (kinfo.pid == 0 || kinfo.tgid == 0)
406 return -ESRCH;
407
408 copy_out:
409 /*
410 * If userspace and the kernel have the same struct size it can just
411 * be copied. If userspace provides an older struct, only the bits that
412 * userspace knows about will be copied. If userspace provides a new
413 * struct, only the bits that the kernel knows about will be copied.
414 */
415 return copy_struct_to_user(uinfo, usize, &kinfo, sizeof(kinfo), NULL);
416 }
417
pidfs_ioctl_valid(unsigned int cmd)418 static bool pidfs_ioctl_valid(unsigned int cmd)
419 {
420 switch (cmd) {
421 case FS_IOC_GETVERSION:
422 case PIDFD_GET_CGROUP_NAMESPACE:
423 case PIDFD_GET_IPC_NAMESPACE:
424 case PIDFD_GET_MNT_NAMESPACE:
425 case PIDFD_GET_NET_NAMESPACE:
426 case PIDFD_GET_PID_FOR_CHILDREN_NAMESPACE:
427 case PIDFD_GET_TIME_NAMESPACE:
428 case PIDFD_GET_TIME_FOR_CHILDREN_NAMESPACE:
429 case PIDFD_GET_UTS_NAMESPACE:
430 case PIDFD_GET_USER_NAMESPACE:
431 case PIDFD_GET_PID_NAMESPACE:
432 return true;
433 }
434
435 /* Extensible ioctls require some more careful checks. */
436 switch (_IOC_NR(cmd)) {
437 case _IOC_NR(PIDFD_GET_INFO):
438 /*
439 * Try to prevent performing a pidfd ioctl when someone
440 * erronously mistook the file descriptor for a pidfd.
441 * This is not perfect but will catch most cases.
442 */
443 return (_IOC_TYPE(cmd) == _IOC_TYPE(PIDFD_GET_INFO));
444 }
445
446 return false;
447 }
448
pidfd_ioctl(struct file * file,unsigned int cmd,unsigned long arg)449 static long pidfd_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
450 {
451 struct task_struct *task __free(put_task) = NULL;
452 struct nsproxy *nsp __free(put_nsproxy) = NULL;
453 struct ns_common *ns_common = NULL;
454 struct pid_namespace *pid_ns;
455
456 if (!pidfs_ioctl_valid(cmd))
457 return -ENOIOCTLCMD;
458
459 if (cmd == FS_IOC_GETVERSION) {
460 if (!arg)
461 return -EINVAL;
462
463 __u32 __user *argp = (__u32 __user *)arg;
464 return put_user(file_inode(file)->i_generation, argp);
465 }
466
467 /* Extensible IOCTL that does not open namespace FDs, take a shortcut */
468 if (_IOC_NR(cmd) == _IOC_NR(PIDFD_GET_INFO))
469 return pidfd_info(file, cmd, arg);
470
471 task = get_pid_task(pidfd_pid(file), PIDTYPE_PID);
472 if (!task)
473 return -ESRCH;
474
475 if (arg)
476 return -EINVAL;
477
478 scoped_guard(task_lock, task) {
479 nsp = task->nsproxy;
480 if (nsp)
481 get_nsproxy(nsp);
482 }
483 if (!nsp)
484 return -ESRCH; /* just pretend it didn't exist */
485
486 /*
487 * We're trying to open a file descriptor to the namespace so perform a
488 * filesystem cred ptrace check. Also, we mirror nsfs behavior.
489 */
490 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
491 return -EACCES;
492
493 switch (cmd) {
494 /* Namespaces that hang of nsproxy. */
495 case PIDFD_GET_CGROUP_NAMESPACE:
496 if (IS_ENABLED(CONFIG_CGROUPS)) {
497 get_cgroup_ns(nsp->cgroup_ns);
498 ns_common = to_ns_common(nsp->cgroup_ns);
499 }
500 break;
501 case PIDFD_GET_IPC_NAMESPACE:
502 if (IS_ENABLED(CONFIG_IPC_NS)) {
503 get_ipc_ns(nsp->ipc_ns);
504 ns_common = to_ns_common(nsp->ipc_ns);
505 }
506 break;
507 case PIDFD_GET_MNT_NAMESPACE:
508 get_mnt_ns(nsp->mnt_ns);
509 ns_common = to_ns_common(nsp->mnt_ns);
510 break;
511 case PIDFD_GET_NET_NAMESPACE:
512 if (IS_ENABLED(CONFIG_NET_NS)) {
513 ns_common = to_ns_common(nsp->net_ns);
514 get_net_ns(ns_common);
515 }
516 break;
517 case PIDFD_GET_PID_FOR_CHILDREN_NAMESPACE:
518 if (IS_ENABLED(CONFIG_PID_NS)) {
519 get_pid_ns(nsp->pid_ns_for_children);
520 ns_common = to_ns_common(nsp->pid_ns_for_children);
521 }
522 break;
523 case PIDFD_GET_TIME_NAMESPACE:
524 if (IS_ENABLED(CONFIG_TIME_NS)) {
525 get_time_ns(nsp->time_ns);
526 ns_common = to_ns_common(nsp->time_ns);
527 }
528 break;
529 case PIDFD_GET_TIME_FOR_CHILDREN_NAMESPACE:
530 if (IS_ENABLED(CONFIG_TIME_NS)) {
531 get_time_ns(nsp->time_ns_for_children);
532 ns_common = to_ns_common(nsp->time_ns_for_children);
533 }
534 break;
535 case PIDFD_GET_UTS_NAMESPACE:
536 if (IS_ENABLED(CONFIG_UTS_NS)) {
537 get_uts_ns(nsp->uts_ns);
538 ns_common = to_ns_common(nsp->uts_ns);
539 }
540 break;
541 /* Namespaces that don't hang of nsproxy. */
542 case PIDFD_GET_USER_NAMESPACE:
543 if (IS_ENABLED(CONFIG_USER_NS)) {
544 rcu_read_lock();
545 ns_common = to_ns_common(get_user_ns(task_cred_xxx(task, user_ns)));
546 rcu_read_unlock();
547 }
548 break;
549 case PIDFD_GET_PID_NAMESPACE:
550 if (IS_ENABLED(CONFIG_PID_NS)) {
551 rcu_read_lock();
552 pid_ns = task_active_pid_ns(task);
553 if (pid_ns)
554 ns_common = to_ns_common(get_pid_ns(pid_ns));
555 rcu_read_unlock();
556 }
557 break;
558 default:
559 return -ENOIOCTLCMD;
560 }
561
562 if (!ns_common)
563 return -EOPNOTSUPP;
564
565 /* open_namespace() unconditionally consumes the reference */
566 return open_namespace(ns_common);
567 }
568
569 static const struct file_operations pidfs_file_operations = {
570 .poll = pidfd_poll,
571 #ifdef CONFIG_PROC_FS
572 .show_fdinfo = pidfd_show_fdinfo,
573 #endif
574 .unlocked_ioctl = pidfd_ioctl,
575 .compat_ioctl = compat_ptr_ioctl,
576 };
577
pidfd_pid(const struct file * file)578 struct pid *pidfd_pid(const struct file *file)
579 {
580 if (file->f_op != &pidfs_file_operations)
581 return ERR_PTR(-EBADF);
582 return file_inode(file)->i_private;
583 }
584
585 /*
586 * We're called from release_task(). We know there's at least one
587 * reference to struct pid being held that won't be released until the
588 * task has been reaped which cannot happen until we're out of
589 * release_task().
590 *
591 * If this struct pid has at least once been referred to by a pidfd then
592 * pid->attr will be allocated. If not we mark the struct pid as dead so
593 * anyone who is trying to register it with pidfs will fail to do so.
594 * Otherwise we would hand out pidfs for reaped tasks without having
595 * exit information available.
596 *
597 * Worst case is that we've filled in the info and the pid gets freed
598 * right away in free_pid() when no one holds a pidfd anymore. Since
599 * pidfs_exit() currently is placed after exit_task_work() we know that
600 * it cannot be us aka the exiting task holding a pidfd to itself.
601 */
pidfs_exit(struct task_struct * tsk)602 void pidfs_exit(struct task_struct *tsk)
603 {
604 struct pid *pid = task_pid(tsk);
605 struct pidfs_attr *attr;
606 struct pidfs_exit_info *exit_info;
607 #ifdef CONFIG_CGROUPS
608 struct cgroup *cgrp;
609 #endif
610
611 might_sleep();
612
613 guard(spinlock_irq)(&pid->wait_pidfd.lock);
614 attr = pid->attr;
615 if (!attr) {
616 /*
617 * No one ever held a pidfd for this struct pid.
618 * Mark it as dead so no one can add a pidfs
619 * entry anymore. We're about to be reaped and
620 * so no exit information would be available.
621 */
622 pid->attr = PIDFS_PID_DEAD;
623 return;
624 }
625
626 /*
627 * If @pid->attr is set someone might still legitimately hold a
628 * pidfd to @pid or someone might concurrently still be getting
629 * a reference to an already stashed dentry from @pid->stashed.
630 * So defer cleaning @pid->attr until the last reference to @pid
631 * is put
632 */
633
634 exit_info = &attr->__pei;
635
636 #ifdef CONFIG_CGROUPS
637 rcu_read_lock();
638 cgrp = task_dfl_cgroup(tsk);
639 exit_info->cgroupid = cgroup_id(cgrp);
640 rcu_read_unlock();
641 #endif
642 exit_info->exit_code = tsk->exit_code;
643
644 /* Ensure that PIDFD_GET_INFO sees either all or nothing. */
645 smp_store_release(&attr->exit_info, &attr->__pei);
646 }
647
648 #ifdef CONFIG_COREDUMP
pidfs_coredump(const struct coredump_params * cprm)649 void pidfs_coredump(const struct coredump_params *cprm)
650 {
651 struct pid *pid = cprm->pid;
652 struct pidfs_exit_info *exit_info;
653 struct pidfs_attr *attr;
654 __u32 coredump_mask = 0;
655
656 attr = READ_ONCE(pid->attr);
657
658 VFS_WARN_ON_ONCE(!attr);
659 VFS_WARN_ON_ONCE(attr == PIDFS_PID_DEAD);
660
661 exit_info = &attr->__pei;
662 /* Note how we were coredumped. */
663 coredump_mask = pidfs_coredump_mask(cprm->mm_flags);
664 /* Note that we actually did coredump. */
665 coredump_mask |= PIDFD_COREDUMPED;
666 /* If coredumping is set to skip we should never end up here. */
667 VFS_WARN_ON_ONCE(coredump_mask & PIDFD_COREDUMP_SKIP);
668 smp_store_release(&exit_info->coredump_mask, coredump_mask);
669 }
670 #endif
671
672 static struct vfsmount *pidfs_mnt __ro_after_init;
673
674 /*
675 * The vfs falls back to simple_setattr() if i_op->setattr() isn't
676 * implemented. Let's reject it completely until we have a clean
677 * permission concept for pidfds.
678 */
pidfs_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)679 static int pidfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
680 struct iattr *attr)
681 {
682 return anon_inode_setattr(idmap, dentry, attr);
683 }
684
pidfs_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)685 static int pidfs_getattr(struct mnt_idmap *idmap, const struct path *path,
686 struct kstat *stat, u32 request_mask,
687 unsigned int query_flags)
688 {
689 return anon_inode_getattr(idmap, path, stat, request_mask, query_flags);
690 }
691
pidfs_listxattr(struct dentry * dentry,char * buf,size_t size)692 static ssize_t pidfs_listxattr(struct dentry *dentry, char *buf, size_t size)
693 {
694 struct inode *inode = d_inode(dentry);
695 struct pid *pid = inode->i_private;
696 struct pidfs_attr *attr = pid->attr;
697 struct simple_xattrs *xattrs;
698
699 xattrs = READ_ONCE(attr->xattrs);
700 if (!xattrs)
701 return 0;
702
703 return simple_xattr_list(inode, xattrs, buf, size);
704 }
705
706 static const struct inode_operations pidfs_inode_operations = {
707 .getattr = pidfs_getattr,
708 .setattr = pidfs_setattr,
709 .listxattr = pidfs_listxattr,
710 };
711
pidfs_evict_inode(struct inode * inode)712 static void pidfs_evict_inode(struct inode *inode)
713 {
714 struct pid *pid = inode->i_private;
715
716 clear_inode(inode);
717 put_pid(pid);
718 }
719
720 static const struct super_operations pidfs_sops = {
721 .drop_inode = generic_delete_inode,
722 .evict_inode = pidfs_evict_inode,
723 .statfs = simple_statfs,
724 };
725
726 /*
727 * 'lsof' has knowledge of out historical anon_inode use, and expects
728 * the pidfs dentry name to start with 'anon_inode'.
729 */
pidfs_dname(struct dentry * dentry,char * buffer,int buflen)730 static char *pidfs_dname(struct dentry *dentry, char *buffer, int buflen)
731 {
732 return dynamic_dname(buffer, buflen, "anon_inode:[pidfd]");
733 }
734
735 const struct dentry_operations pidfs_dentry_operations = {
736 .d_dname = pidfs_dname,
737 .d_prune = stashed_dentry_prune,
738 };
739
pidfs_encode_fh(struct inode * inode,u32 * fh,int * max_len,struct inode * parent)740 static int pidfs_encode_fh(struct inode *inode, u32 *fh, int *max_len,
741 struct inode *parent)
742 {
743 const struct pid *pid = inode->i_private;
744
745 if (*max_len < 2) {
746 *max_len = 2;
747 return FILEID_INVALID;
748 }
749
750 *max_len = 2;
751 *(u64 *)fh = pid->ino;
752 return FILEID_KERNFS;
753 }
754
pidfs_ino_find(const void * key,const struct rb_node * node)755 static int pidfs_ino_find(const void *key, const struct rb_node *node)
756 {
757 const u64 pid_ino = *(u64 *)key;
758 const struct pid *pid = rb_entry(node, struct pid, pidfs_node);
759
760 if (pid_ino < pid->ino)
761 return -1;
762 if (pid_ino > pid->ino)
763 return 1;
764 return 0;
765 }
766
767 /* Find a struct pid based on the inode number. */
pidfs_ino_get_pid(u64 ino)768 static struct pid *pidfs_ino_get_pid(u64 ino)
769 {
770 struct pid *pid;
771 struct rb_node *node;
772 unsigned int seq;
773
774 guard(rcu)();
775 do {
776 seq = read_seqcount_begin(&pidmap_lock_seq);
777 node = rb_find_rcu(&ino, &pidfs_ino_tree, pidfs_ino_find);
778 if (node)
779 break;
780 } while (read_seqcount_retry(&pidmap_lock_seq, seq));
781
782 if (!node)
783 return NULL;
784
785 pid = rb_entry(node, struct pid, pidfs_node);
786
787 /* Within our pid namespace hierarchy? */
788 if (pid_vnr(pid) == 0)
789 return NULL;
790
791 return get_pid(pid);
792 }
793
pidfs_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)794 static struct dentry *pidfs_fh_to_dentry(struct super_block *sb,
795 struct fid *fid, int fh_len,
796 int fh_type)
797 {
798 int ret;
799 u64 pid_ino;
800 struct path path;
801 struct pid *pid;
802
803 if (fh_len < 2)
804 return NULL;
805
806 switch (fh_type) {
807 case FILEID_KERNFS:
808 pid_ino = *(u64 *)fid;
809 break;
810 default:
811 return NULL;
812 }
813
814 pid = pidfs_ino_get_pid(pid_ino);
815 if (!pid)
816 return NULL;
817
818 ret = path_from_stashed(&pid->stashed, pidfs_mnt, pid, &path);
819 if (ret < 0)
820 return ERR_PTR(ret);
821
822 VFS_WARN_ON_ONCE(!pid->attr);
823
824 mntput(path.mnt);
825 return path.dentry;
826 }
827
828 /*
829 * Make sure that we reject any nonsensical flags that users pass via
830 * open_by_handle_at(). Note that PIDFD_THREAD is defined as O_EXCL, and
831 * PIDFD_NONBLOCK as O_NONBLOCK.
832 */
833 #define VALID_FILE_HANDLE_OPEN_FLAGS \
834 (O_RDONLY | O_WRONLY | O_RDWR | O_NONBLOCK | O_CLOEXEC | O_EXCL)
835
pidfs_export_permission(struct handle_to_path_ctx * ctx,unsigned int oflags)836 static int pidfs_export_permission(struct handle_to_path_ctx *ctx,
837 unsigned int oflags)
838 {
839 if (oflags & ~(VALID_FILE_HANDLE_OPEN_FLAGS | O_LARGEFILE))
840 return -EINVAL;
841
842 /*
843 * pidfd_ino_get_pid() will verify that the struct pid is part
844 * of the caller's pid namespace hierarchy. No further
845 * permission checks are needed.
846 */
847 return 0;
848 }
849
pidfs_export_open(struct path * path,unsigned int oflags)850 static struct file *pidfs_export_open(struct path *path, unsigned int oflags)
851 {
852 /*
853 * Clear O_LARGEFILE as open_by_handle_at() forces it and raise
854 * O_RDWR as pidfds always are.
855 */
856 oflags &= ~O_LARGEFILE;
857 return dentry_open(path, oflags | O_RDWR, current_cred());
858 }
859
860 static const struct export_operations pidfs_export_operations = {
861 .encode_fh = pidfs_encode_fh,
862 .fh_to_dentry = pidfs_fh_to_dentry,
863 .open = pidfs_export_open,
864 .permission = pidfs_export_permission,
865 };
866
pidfs_init_inode(struct inode * inode,void * data)867 static int pidfs_init_inode(struct inode *inode, void *data)
868 {
869 const struct pid *pid = data;
870
871 inode->i_private = data;
872 inode->i_flags |= S_PRIVATE | S_ANON_INODE;
873 /* We allow to set xattrs. */
874 inode->i_flags &= ~S_IMMUTABLE;
875 inode->i_mode |= S_IRWXU;
876 inode->i_op = &pidfs_inode_operations;
877 inode->i_fop = &pidfs_file_operations;
878 inode->i_ino = pidfs_ino(pid->ino);
879 inode->i_generation = pidfs_gen(pid->ino);
880 return 0;
881 }
882
pidfs_put_data(void * data)883 static void pidfs_put_data(void *data)
884 {
885 struct pid *pid = data;
886 put_pid(pid);
887 }
888
889 /**
890 * pidfs_register_pid - register a struct pid in pidfs
891 * @pid: pid to pin
892 *
893 * Register a struct pid in pidfs.
894 *
895 * Return: On success zero, on error a negative error code is returned.
896 */
pidfs_register_pid(struct pid * pid)897 int pidfs_register_pid(struct pid *pid)
898 {
899 struct pidfs_attr *new_attr __free(kfree) = NULL;
900 struct pidfs_attr *attr;
901
902 might_sleep();
903
904 if (!pid)
905 return 0;
906
907 attr = READ_ONCE(pid->attr);
908 if (unlikely(attr == PIDFS_PID_DEAD))
909 return PTR_ERR(PIDFS_PID_DEAD);
910 if (attr)
911 return 0;
912
913 new_attr = kmem_cache_zalloc(pidfs_attr_cachep, GFP_KERNEL);
914 if (!new_attr)
915 return -ENOMEM;
916
917 /* Synchronize with pidfs_exit(). */
918 guard(spinlock_irq)(&pid->wait_pidfd.lock);
919
920 attr = pid->attr;
921 if (unlikely(attr == PIDFS_PID_DEAD))
922 return PTR_ERR(PIDFS_PID_DEAD);
923 if (unlikely(attr))
924 return 0;
925
926 pid->attr = no_free_ptr(new_attr);
927 return 0;
928 }
929
pidfs_stash_dentry(struct dentry ** stashed,struct dentry * dentry)930 static struct dentry *pidfs_stash_dentry(struct dentry **stashed,
931 struct dentry *dentry)
932 {
933 int ret;
934 struct pid *pid = d_inode(dentry)->i_private;
935
936 VFS_WARN_ON_ONCE(stashed != &pid->stashed);
937
938 ret = pidfs_register_pid(pid);
939 if (ret)
940 return ERR_PTR(ret);
941
942 return stash_dentry(stashed, dentry);
943 }
944
945 static const struct stashed_operations pidfs_stashed_ops = {
946 .stash_dentry = pidfs_stash_dentry,
947 .init_inode = pidfs_init_inode,
948 .put_data = pidfs_put_data,
949 };
950
pidfs_xattr_get(const struct xattr_handler * handler,struct dentry * unused,struct inode * inode,const char * suffix,void * value,size_t size)951 static int pidfs_xattr_get(const struct xattr_handler *handler,
952 struct dentry *unused, struct inode *inode,
953 const char *suffix, void *value, size_t size)
954 {
955 struct pid *pid = inode->i_private;
956 struct pidfs_attr *attr = pid->attr;
957 const char *name;
958 struct simple_xattrs *xattrs;
959
960 xattrs = READ_ONCE(attr->xattrs);
961 if (!xattrs)
962 return 0;
963
964 name = xattr_full_name(handler, suffix);
965 return simple_xattr_get(xattrs, name, value, size);
966 }
967
pidfs_xattr_set(const struct xattr_handler * handler,struct mnt_idmap * idmap,struct dentry * unused,struct inode * inode,const char * suffix,const void * value,size_t size,int flags)968 static int pidfs_xattr_set(const struct xattr_handler *handler,
969 struct mnt_idmap *idmap, struct dentry *unused,
970 struct inode *inode, const char *suffix,
971 const void *value, size_t size, int flags)
972 {
973 struct pid *pid = inode->i_private;
974 struct pidfs_attr *attr = pid->attr;
975 const char *name;
976 struct simple_xattrs *xattrs;
977 struct simple_xattr *old_xattr;
978
979 /* Ensure we're the only one to set @attr->xattrs. */
980 WARN_ON_ONCE(!inode_is_locked(inode));
981
982 xattrs = READ_ONCE(attr->xattrs);
983 if (!xattrs) {
984 xattrs = kmem_cache_zalloc(pidfs_xattr_cachep, GFP_KERNEL);
985 if (!xattrs)
986 return -ENOMEM;
987
988 simple_xattrs_init(xattrs);
989 smp_store_release(&pid->attr->xattrs, xattrs);
990 }
991
992 name = xattr_full_name(handler, suffix);
993 old_xattr = simple_xattr_set(xattrs, name, value, size, flags);
994 if (IS_ERR(old_xattr))
995 return PTR_ERR(old_xattr);
996
997 simple_xattr_free(old_xattr);
998 return 0;
999 }
1000
1001 static const struct xattr_handler pidfs_trusted_xattr_handler = {
1002 .prefix = XATTR_TRUSTED_PREFIX,
1003 .get = pidfs_xattr_get,
1004 .set = pidfs_xattr_set,
1005 };
1006
1007 static const struct xattr_handler *const pidfs_xattr_handlers[] = {
1008 &pidfs_trusted_xattr_handler,
1009 NULL
1010 };
1011
pidfs_init_fs_context(struct fs_context * fc)1012 static int pidfs_init_fs_context(struct fs_context *fc)
1013 {
1014 struct pseudo_fs_context *ctx;
1015
1016 ctx = init_pseudo(fc, PID_FS_MAGIC);
1017 if (!ctx)
1018 return -ENOMEM;
1019
1020 fc->s_iflags |= SB_I_NOEXEC;
1021 fc->s_iflags |= SB_I_NODEV;
1022 ctx->ops = &pidfs_sops;
1023 ctx->eops = &pidfs_export_operations;
1024 ctx->dops = &pidfs_dentry_operations;
1025 ctx->xattr = pidfs_xattr_handlers;
1026 fc->s_fs_info = (void *)&pidfs_stashed_ops;
1027 return 0;
1028 }
1029
1030 static struct file_system_type pidfs_type = {
1031 .name = "pidfs",
1032 .init_fs_context = pidfs_init_fs_context,
1033 .kill_sb = kill_anon_super,
1034 };
1035
pidfs_alloc_file(struct pid * pid,unsigned int flags)1036 struct file *pidfs_alloc_file(struct pid *pid, unsigned int flags)
1037 {
1038 struct file *pidfd_file;
1039 struct path path __free(path_put) = {};
1040 int ret;
1041
1042 /*
1043 * Ensure that PIDFD_STALE can be passed as a flag without
1044 * overloading other uapi pidfd flags.
1045 */
1046 BUILD_BUG_ON(PIDFD_STALE == PIDFD_THREAD);
1047 BUILD_BUG_ON(PIDFD_STALE == PIDFD_NONBLOCK);
1048
1049 ret = path_from_stashed(&pid->stashed, pidfs_mnt, get_pid(pid), &path);
1050 if (ret < 0)
1051 return ERR_PTR(ret);
1052
1053 VFS_WARN_ON_ONCE(!pid->attr);
1054
1055 flags &= ~PIDFD_STALE;
1056 flags |= O_RDWR;
1057 pidfd_file = dentry_open(&path, flags, current_cred());
1058 /* Raise PIDFD_THREAD explicitly as do_dentry_open() strips it. */
1059 if (!IS_ERR(pidfd_file))
1060 pidfd_file->f_flags |= (flags & PIDFD_THREAD);
1061
1062 return pidfd_file;
1063 }
1064
pidfs_init(void)1065 void __init pidfs_init(void)
1066 {
1067 pidfs_attr_cachep = kmem_cache_create("pidfs_attr_cache", sizeof(struct pidfs_attr), 0,
1068 (SLAB_HWCACHE_ALIGN | SLAB_RECLAIM_ACCOUNT |
1069 SLAB_ACCOUNT | SLAB_PANIC), NULL);
1070
1071 pidfs_xattr_cachep = kmem_cache_create("pidfs_xattr_cache",
1072 sizeof(struct simple_xattrs), 0,
1073 (SLAB_HWCACHE_ALIGN | SLAB_RECLAIM_ACCOUNT |
1074 SLAB_ACCOUNT | SLAB_PANIC), NULL);
1075
1076 pidfs_mnt = kern_mount(&pidfs_type);
1077 if (IS_ERR(pidfs_mnt))
1078 panic("Failed to mount pidfs pseudo filesystem");
1079
1080 pidfs_root_path.mnt = pidfs_mnt;
1081 pidfs_root_path.dentry = pidfs_mnt->mnt_root;
1082 }
1083