1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic pidhash and scalable, time-bounded PID allocator 4 * 5 * (C) 2002-2003 Nadia Yvette Chambers, IBM 6 * (C) 2004 Nadia Yvette Chambers, Oracle 7 * (C) 2002-2004 Ingo Molnar, Red Hat 8 * 9 * pid-structures are backing objects for tasks sharing a given ID to chain 10 * against. There is very little to them aside from hashing them and 11 * parking tasks using given ID's on a list. 12 * 13 * The hash is always changed with the tasklist_lock write-acquired, 14 * and the hash is only accessed with the tasklist_lock at least 15 * read-acquired, so there's no additional SMP locking needed here. 16 * 17 * We have a list of bitmap pages, which bitmaps represent the PID space. 18 * Allocating and freeing PIDs is completely lockless. The worst-case 19 * allocation scenario when all but one out of 1 million PIDs possible are 20 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE 21 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1). 22 * 23 * Pid namespaces: 24 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. 25 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM 26 * Many thanks to Oleg Nesterov for comments and help 27 * 28 */ 29 30 #include <linux/mm.h> 31 #include <linux/export.h> 32 #include <linux/slab.h> 33 #include <linux/init.h> 34 #include <linux/rculist.h> 35 #include <linux/memblock.h> 36 #include <linux/pid_namespace.h> 37 #include <linux/init_task.h> 38 #include <linux/syscalls.h> 39 #include <linux/proc_ns.h> 40 #include <linux/refcount.h> 41 #include <linux/anon_inodes.h> 42 #include <linux/sched/signal.h> 43 #include <linux/sched/task.h> 44 #include <linux/idr.h> 45 #include <linux/pidfs.h> 46 #include <net/sock.h> 47 #include <uapi/linux/pidfd.h> 48 49 struct pid init_struct_pid = { 50 .count = REFCOUNT_INIT(1), 51 .tasks = { 52 { .first = NULL }, 53 { .first = NULL }, 54 { .first = NULL }, 55 }, 56 .level = 0, 57 .numbers = { { 58 .nr = 0, 59 .ns = &init_pid_ns, 60 }, } 61 }; 62 63 static int pid_max_min = RESERVED_PIDS + 1; 64 static int pid_max_max = PID_MAX_LIMIT; 65 66 /* 67 * PID-map pages start out as NULL, they get allocated upon 68 * first use and are never deallocated. This way a low pid_max 69 * value does not cause lots of bitmaps to be allocated, but 70 * the scheme scales to up to 4 million PIDs, runtime. 71 */ 72 struct pid_namespace init_pid_ns = { 73 .ns = NS_COMMON_INIT(init_pid_ns), 74 .idr = IDR_INIT(init_pid_ns.idr), 75 .pid_allocated = PIDNS_ADDING, 76 .level = 0, 77 .child_reaper = &init_task, 78 .user_ns = &init_user_ns, 79 .pid_max = PID_MAX_DEFAULT, 80 #if defined(CONFIG_SYSCTL) && defined(CONFIG_MEMFD_CREATE) 81 .memfd_noexec_scope = MEMFD_NOEXEC_SCOPE_EXEC, 82 #endif 83 }; 84 EXPORT_SYMBOL_GPL(init_pid_ns); 85 86 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock); 87 88 void put_pid(struct pid *pid) 89 { 90 struct pid_namespace *ns; 91 92 if (!pid) 93 return; 94 95 ns = pid->numbers[pid->level].ns; 96 if (refcount_dec_and_test(&pid->count)) { 97 pidfs_free_pid(pid); 98 kmem_cache_free(ns->pid_cachep, pid); 99 put_pid_ns(ns); 100 } 101 } 102 EXPORT_SYMBOL_GPL(put_pid); 103 104 static void delayed_put_pid(struct rcu_head *rhp) 105 { 106 struct pid *pid = container_of(rhp, struct pid, rcu); 107 put_pid(pid); 108 } 109 110 void free_pid(struct pid *pid) 111 { 112 int i; 113 struct pid_namespace *active_ns; 114 115 lockdep_assert_not_held(&tasklist_lock); 116 117 active_ns = pid->numbers[pid->level].ns; 118 ns_ref_active_put(active_ns); 119 120 spin_lock(&pidmap_lock); 121 for (i = 0; i <= pid->level; i++) { 122 struct upid *upid = pid->numbers + i; 123 struct pid_namespace *ns = upid->ns; 124 switch (--ns->pid_allocated) { 125 case 2: 126 case 1: 127 /* When all that is left in the pid namespace 128 * is the reaper wake up the reaper. The reaper 129 * may be sleeping in zap_pid_ns_processes(). 130 */ 131 wake_up_process(ns->child_reaper); 132 break; 133 case PIDNS_ADDING: 134 /* Handle a fork failure of the first process */ 135 WARN_ON(ns->child_reaper); 136 ns->pid_allocated = 0; 137 break; 138 } 139 140 idr_remove(&ns->idr, upid->nr); 141 } 142 spin_unlock(&pidmap_lock); 143 144 pidfs_remove_pid(pid); 145 call_rcu(&pid->rcu, delayed_put_pid); 146 } 147 148 void free_pids(struct pid **pids) 149 { 150 int tmp; 151 152 /* 153 * This can batch pidmap_lock. 154 */ 155 for (tmp = PIDTYPE_MAX; --tmp >= 0; ) 156 if (pids[tmp]) 157 free_pid(pids[tmp]); 158 } 159 160 struct pid *alloc_pid(struct pid_namespace *ns, pid_t *arg_set_tid, 161 size_t arg_set_tid_size) 162 { 163 int set_tid[MAX_PID_NS_LEVEL + 1] = {}; 164 int pid_max[MAX_PID_NS_LEVEL + 1] = {}; 165 struct pid *pid; 166 enum pid_type type; 167 int i, nr; 168 struct pid_namespace *tmp; 169 struct upid *upid; 170 int retval = -ENOMEM; 171 bool retried_preload; 172 173 /* 174 * arg_set_tid_size contains the size of the arg_set_tid array. Starting at 175 * the most nested currently active PID namespace it tells alloc_pid() 176 * which PID to set for a process in that most nested PID namespace 177 * up to arg_set_tid_size PID namespaces. It does not have to set the PID 178 * for a process in all nested PID namespaces but arg_set_tid_size must 179 * never be greater than the current ns->level + 1. 180 */ 181 if (arg_set_tid_size > ns->level + 1) 182 return ERR_PTR(-EINVAL); 183 184 /* 185 * Prep before we take locks: 186 * 187 * 1. allocate and fill in pid struct 188 */ 189 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL); 190 if (!pid) 191 return ERR_PTR(retval); 192 193 get_pid_ns(ns); 194 pid->level = ns->level; 195 refcount_set(&pid->count, 1); 196 spin_lock_init(&pid->lock); 197 for (type = 0; type < PIDTYPE_MAX; ++type) 198 INIT_HLIST_HEAD(&pid->tasks[type]); 199 init_waitqueue_head(&pid->wait_pidfd); 200 INIT_HLIST_HEAD(&pid->inodes); 201 pidfs_prepare_pid(pid); 202 203 /* 204 * 2. perm check checkpoint_restore_ns_capable() 205 * 206 * This stores found pid_max to make sure the used value is the same should 207 * later code need it. 208 */ 209 for (tmp = ns, i = ns->level; i >= 0; i--) { 210 pid_max[ns->level - i] = READ_ONCE(tmp->pid_max); 211 212 if (arg_set_tid_size) { 213 int tid = set_tid[ns->level - i] = arg_set_tid[ns->level - i]; 214 215 retval = -EINVAL; 216 if (tid < 1 || tid >= pid_max[ns->level - i]) 217 goto out_abort; 218 /* 219 * Also fail if a PID != 1 is requested and 220 * no PID 1 exists. 221 */ 222 if (tid != 1 && !tmp->child_reaper) 223 goto out_abort; 224 retval = -EPERM; 225 if (!checkpoint_restore_ns_capable(tmp->user_ns)) 226 goto out_abort; 227 arg_set_tid_size--; 228 } 229 230 tmp = tmp->parent; 231 } 232 233 /* 234 * Prep is done, id allocation goes here: 235 */ 236 retried_preload = false; 237 idr_preload(GFP_KERNEL); 238 spin_lock(&pidmap_lock); 239 for (tmp = ns, i = ns->level; i >= 0;) { 240 int tid = set_tid[ns->level - i]; 241 242 if (tid) { 243 nr = idr_alloc(&tmp->idr, NULL, tid, 244 tid + 1, GFP_ATOMIC); 245 /* 246 * If ENOSPC is returned it means that the PID is 247 * alreay in use. Return EEXIST in that case. 248 */ 249 if (nr == -ENOSPC) 250 251 nr = -EEXIST; 252 } else { 253 int pid_min = 1; 254 /* 255 * init really needs pid 1, but after reaching the 256 * maximum wrap back to RESERVED_PIDS 257 */ 258 if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS) 259 pid_min = RESERVED_PIDS; 260 261 /* 262 * Store a null pointer so find_pid_ns does not find 263 * a partially initialized PID (see below). 264 */ 265 nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min, 266 pid_max[ns->level - i], GFP_ATOMIC); 267 if (nr == -ENOSPC) 268 nr = -EAGAIN; 269 } 270 271 if (unlikely(nr < 0)) { 272 /* 273 * Preload more memory if idr_alloc{,cyclic} failed with -ENOMEM. 274 * 275 * The IDR API only allows us to preload memory for one call, while we may end 276 * up doing several under pidmap_lock with GFP_ATOMIC. The situation may be 277 * salvageable with GFP_KERNEL. But make sure to not loop indefinitely if preload 278 * did not help (the routine unfortunately returns void, so we have no idea 279 * if it got anywhere). 280 * 281 * The lock can be safely dropped and picked up as historically pid allocation 282 * for different namespaces was *not* atomic -- we try to hold on to it the 283 * entire time only for performance reasons. 284 */ 285 if (nr == -ENOMEM && !retried_preload) { 286 spin_unlock(&pidmap_lock); 287 idr_preload_end(); 288 retried_preload = true; 289 idr_preload(GFP_KERNEL); 290 spin_lock(&pidmap_lock); 291 continue; 292 } 293 retval = nr; 294 goto out_free; 295 } 296 297 pid->numbers[i].nr = nr; 298 pid->numbers[i].ns = tmp; 299 tmp = tmp->parent; 300 i--; 301 retried_preload = false; 302 } 303 304 /* 305 * ENOMEM is not the most obvious choice especially for the case 306 * where the child subreaper has already exited and the pid 307 * namespace denies the creation of any new processes. But ENOMEM 308 * is what we have exposed to userspace for a long time and it is 309 * documented behavior for pid namespaces. So we can't easily 310 * change it even if there were an error code better suited. 311 * 312 * This can't be done earlier because we need to preserve other 313 * error conditions. 314 */ 315 retval = -ENOMEM; 316 if (unlikely(!(ns->pid_allocated & PIDNS_ADDING))) 317 goto out_free; 318 for (upid = pid->numbers + ns->level; upid >= pid->numbers; --upid) { 319 /* Make the PID visible to find_pid_ns. */ 320 idr_replace(&upid->ns->idr, pid, upid->nr); 321 upid->ns->pid_allocated++; 322 } 323 spin_unlock(&pidmap_lock); 324 idr_preload_end(); 325 ns_ref_active_get(ns); 326 327 retval = pidfs_add_pid(pid); 328 if (unlikely(retval)) { 329 free_pid(pid); 330 pid = ERR_PTR(-ENOMEM); 331 } 332 333 return pid; 334 335 out_free: 336 while (++i <= ns->level) { 337 upid = pid->numbers + i; 338 idr_remove(&upid->ns->idr, upid->nr); 339 } 340 341 /* On failure to allocate the first pid, reset the state */ 342 if (ns->pid_allocated == PIDNS_ADDING) 343 idr_set_cursor(&ns->idr, 0); 344 345 spin_unlock(&pidmap_lock); 346 idr_preload_end(); 347 348 out_abort: 349 put_pid_ns(ns); 350 kmem_cache_free(ns->pid_cachep, pid); 351 return ERR_PTR(retval); 352 } 353 354 void disable_pid_allocation(struct pid_namespace *ns) 355 { 356 spin_lock(&pidmap_lock); 357 ns->pid_allocated &= ~PIDNS_ADDING; 358 spin_unlock(&pidmap_lock); 359 } 360 361 struct pid *find_pid_ns(int nr, struct pid_namespace *ns) 362 { 363 return idr_find(&ns->idr, nr); 364 } 365 EXPORT_SYMBOL_GPL(find_pid_ns); 366 367 struct pid *find_vpid(int nr) 368 { 369 return find_pid_ns(nr, task_active_pid_ns(current)); 370 } 371 EXPORT_SYMBOL_GPL(find_vpid); 372 373 static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type) 374 { 375 return (type == PIDTYPE_PID) ? 376 &task->thread_pid : 377 &task->signal->pids[type]; 378 } 379 380 /* 381 * attach_pid() must be called with the tasklist_lock write-held. 382 */ 383 void attach_pid(struct task_struct *task, enum pid_type type) 384 { 385 struct pid *pid; 386 387 lockdep_assert_held_write(&tasklist_lock); 388 389 pid = *task_pid_ptr(task, type); 390 hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]); 391 } 392 393 static void __change_pid(struct pid **pids, struct task_struct *task, 394 enum pid_type type, struct pid *new) 395 { 396 struct pid **pid_ptr, *pid; 397 int tmp; 398 399 lockdep_assert_held_write(&tasklist_lock); 400 401 pid_ptr = task_pid_ptr(task, type); 402 pid = *pid_ptr; 403 404 hlist_del_rcu(&task->pid_links[type]); 405 *pid_ptr = new; 406 407 for (tmp = PIDTYPE_MAX; --tmp >= 0; ) 408 if (pid_has_task(pid, tmp)) 409 return; 410 411 WARN_ON(pids[type]); 412 pids[type] = pid; 413 } 414 415 void detach_pid(struct pid **pids, struct task_struct *task, enum pid_type type) 416 { 417 __change_pid(pids, task, type, NULL); 418 } 419 420 void change_pid(struct pid **pids, struct task_struct *task, enum pid_type type, 421 struct pid *pid) 422 { 423 __change_pid(pids, task, type, pid); 424 attach_pid(task, type); 425 } 426 427 void exchange_tids(struct task_struct *left, struct task_struct *right) 428 { 429 struct pid *pid1 = left->thread_pid; 430 struct pid *pid2 = right->thread_pid; 431 struct hlist_head *head1 = &pid1->tasks[PIDTYPE_PID]; 432 struct hlist_head *head2 = &pid2->tasks[PIDTYPE_PID]; 433 434 lockdep_assert_held_write(&tasklist_lock); 435 436 /* Swap the single entry tid lists */ 437 hlists_swap_heads_rcu(head1, head2); 438 439 /* Swap the per task_struct pid */ 440 rcu_assign_pointer(left->thread_pid, pid2); 441 rcu_assign_pointer(right->thread_pid, pid1); 442 443 /* Swap the cached value */ 444 WRITE_ONCE(left->pid, pid_nr(pid2)); 445 WRITE_ONCE(right->pid, pid_nr(pid1)); 446 } 447 448 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */ 449 void transfer_pid(struct task_struct *old, struct task_struct *new, 450 enum pid_type type) 451 { 452 WARN_ON_ONCE(type == PIDTYPE_PID); 453 lockdep_assert_held_write(&tasklist_lock); 454 hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]); 455 } 456 457 struct task_struct *pid_task(struct pid *pid, enum pid_type type) 458 { 459 struct task_struct *result = NULL; 460 if (pid) { 461 struct hlist_node *first; 462 first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]), 463 lockdep_tasklist_lock_is_held()); 464 if (first) 465 result = hlist_entry(first, struct task_struct, pid_links[(type)]); 466 } 467 return result; 468 } 469 EXPORT_SYMBOL(pid_task); 470 471 /* 472 * Must be called under rcu_read_lock(). 473 */ 474 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns) 475 { 476 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 477 "find_task_by_pid_ns() needs rcu_read_lock() protection"); 478 return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID); 479 } 480 481 struct task_struct *find_task_by_vpid(pid_t vnr) 482 { 483 return find_task_by_pid_ns(vnr, task_active_pid_ns(current)); 484 } 485 486 struct task_struct *find_get_task_by_vpid(pid_t nr) 487 { 488 struct task_struct *task; 489 490 rcu_read_lock(); 491 task = find_task_by_vpid(nr); 492 if (task) 493 get_task_struct(task); 494 rcu_read_unlock(); 495 496 return task; 497 } 498 499 struct pid *get_task_pid(struct task_struct *task, enum pid_type type) 500 { 501 struct pid *pid; 502 rcu_read_lock(); 503 pid = get_pid(rcu_dereference(*task_pid_ptr(task, type))); 504 rcu_read_unlock(); 505 return pid; 506 } 507 EXPORT_SYMBOL_GPL(get_task_pid); 508 509 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type) 510 { 511 struct task_struct *result; 512 rcu_read_lock(); 513 result = pid_task(pid, type); 514 if (result) 515 get_task_struct(result); 516 rcu_read_unlock(); 517 return result; 518 } 519 EXPORT_SYMBOL_GPL(get_pid_task); 520 521 struct pid *find_get_pid(pid_t nr) 522 { 523 struct pid *pid; 524 525 rcu_read_lock(); 526 pid = get_pid(find_vpid(nr)); 527 rcu_read_unlock(); 528 529 return pid; 530 } 531 EXPORT_SYMBOL_GPL(find_get_pid); 532 533 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns) 534 { 535 struct upid *upid; 536 pid_t nr = 0; 537 538 if (pid && ns && ns->level <= pid->level) { 539 upid = &pid->numbers[ns->level]; 540 if (upid->ns == ns) 541 nr = upid->nr; 542 } 543 return nr; 544 } 545 EXPORT_SYMBOL_GPL(pid_nr_ns); 546 547 pid_t pid_vnr(struct pid *pid) 548 { 549 return pid_nr_ns(pid, task_active_pid_ns(current)); 550 } 551 EXPORT_SYMBOL_GPL(pid_vnr); 552 553 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 554 struct pid_namespace *ns) 555 { 556 pid_t nr = 0; 557 558 rcu_read_lock(); 559 if (!ns) 560 ns = task_active_pid_ns(current); 561 nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns); 562 rcu_read_unlock(); 563 564 return nr; 565 } 566 EXPORT_SYMBOL(__task_pid_nr_ns); 567 568 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk) 569 { 570 return ns_of_pid(task_pid(tsk)); 571 } 572 EXPORT_SYMBOL_GPL(task_active_pid_ns); 573 574 /* 575 * Used by proc to find the first pid that is greater than or equal to nr. 576 * 577 * If there is a pid at nr this function is exactly the same as find_pid_ns. 578 */ 579 struct pid *find_ge_pid(int nr, struct pid_namespace *ns) 580 { 581 return idr_get_next(&ns->idr, &nr); 582 } 583 EXPORT_SYMBOL_GPL(find_ge_pid); 584 585 struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags) 586 { 587 CLASS(fd, f)(fd); 588 struct pid *pid; 589 590 if (fd_empty(f)) 591 return ERR_PTR(-EBADF); 592 593 pid = pidfd_pid(fd_file(f)); 594 if (!IS_ERR(pid)) { 595 get_pid(pid); 596 *flags = fd_file(f)->f_flags; 597 } 598 return pid; 599 } 600 601 /** 602 * pidfd_get_task() - Get the task associated with a pidfd 603 * 604 * @pidfd: pidfd for which to get the task 605 * @flags: flags associated with this pidfd 606 * 607 * Return the task associated with @pidfd. The function takes a reference on 608 * the returned task. The caller is responsible for releasing that reference. 609 * 610 * Return: On success, the task_struct associated with the pidfd. 611 * On error, a negative errno number will be returned. 612 */ 613 struct task_struct *pidfd_get_task(int pidfd, unsigned int *flags) 614 { 615 unsigned int f_flags = 0; 616 struct pid *pid; 617 struct task_struct *task; 618 enum pid_type type; 619 620 switch (pidfd) { 621 case PIDFD_SELF_THREAD: 622 type = PIDTYPE_PID; 623 pid = get_task_pid(current, type); 624 break; 625 case PIDFD_SELF_THREAD_GROUP: 626 type = PIDTYPE_TGID; 627 pid = get_task_pid(current, type); 628 break; 629 default: 630 pid = pidfd_get_pid(pidfd, &f_flags); 631 if (IS_ERR(pid)) 632 return ERR_CAST(pid); 633 type = PIDTYPE_TGID; 634 break; 635 } 636 637 task = get_pid_task(pid, type); 638 put_pid(pid); 639 if (!task) 640 return ERR_PTR(-ESRCH); 641 642 *flags = f_flags; 643 return task; 644 } 645 646 /** 647 * pidfd_create() - Create a new pid file descriptor. 648 * 649 * @pid: struct pid that the pidfd will reference 650 * @flags: flags to pass 651 * 652 * This creates a new pid file descriptor with the O_CLOEXEC flag set. 653 * 654 * Note, that this function can only be called after the fd table has 655 * been unshared to avoid leaking the pidfd to the new process. 656 * 657 * This symbol should not be explicitly exported to loadable modules. 658 * 659 * Return: On success, a cloexec pidfd is returned. 660 * On error, a negative errno number will be returned. 661 */ 662 static int pidfd_create(struct pid *pid, unsigned int flags) 663 { 664 int pidfd; 665 struct file *pidfd_file; 666 667 pidfd = pidfd_prepare(pid, flags, &pidfd_file); 668 if (pidfd < 0) 669 return pidfd; 670 671 fd_install(pidfd, pidfd_file); 672 return pidfd; 673 } 674 675 /** 676 * sys_pidfd_open() - Open new pid file descriptor. 677 * 678 * @pid: pid for which to retrieve a pidfd 679 * @flags: flags to pass 680 * 681 * This creates a new pid file descriptor with the O_CLOEXEC flag set for 682 * the task identified by @pid. Without PIDFD_THREAD flag the target task 683 * must be a thread-group leader. 684 * 685 * Return: On success, a cloexec pidfd is returned. 686 * On error, a negative errno number will be returned. 687 */ 688 SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags) 689 { 690 int fd; 691 struct pid *p; 692 693 if (flags & ~(PIDFD_NONBLOCK | PIDFD_THREAD)) 694 return -EINVAL; 695 696 if (pid <= 0) 697 return -EINVAL; 698 699 p = find_get_pid(pid); 700 if (!p) 701 return -ESRCH; 702 703 fd = pidfd_create(p, flags); 704 705 put_pid(p); 706 return fd; 707 } 708 709 #ifdef CONFIG_SYSCTL 710 static struct ctl_table_set *pid_table_root_lookup(struct ctl_table_root *root) 711 { 712 return &task_active_pid_ns(current)->set; 713 } 714 715 static int set_is_seen(struct ctl_table_set *set) 716 { 717 return &task_active_pid_ns(current)->set == set; 718 } 719 720 static int pid_table_root_permissions(struct ctl_table_header *head, 721 const struct ctl_table *table) 722 { 723 struct pid_namespace *pidns = 724 container_of(head->set, struct pid_namespace, set); 725 int mode = table->mode; 726 727 if (ns_capable_noaudit(pidns->user_ns, CAP_SYS_ADMIN) || 728 uid_eq(current_euid(), make_kuid(pidns->user_ns, 0))) 729 mode = (mode & S_IRWXU) >> 6; 730 else if (in_egroup_p(make_kgid(pidns->user_ns, 0))) 731 mode = (mode & S_IRWXG) >> 3; 732 else 733 mode = mode & S_IROTH; 734 return (mode << 6) | (mode << 3) | mode; 735 } 736 737 static void pid_table_root_set_ownership(struct ctl_table_header *head, 738 kuid_t *uid, kgid_t *gid) 739 { 740 struct pid_namespace *pidns = 741 container_of(head->set, struct pid_namespace, set); 742 kuid_t ns_root_uid; 743 kgid_t ns_root_gid; 744 745 ns_root_uid = make_kuid(pidns->user_ns, 0); 746 if (uid_valid(ns_root_uid)) 747 *uid = ns_root_uid; 748 749 ns_root_gid = make_kgid(pidns->user_ns, 0); 750 if (gid_valid(ns_root_gid)) 751 *gid = ns_root_gid; 752 } 753 754 static struct ctl_table_root pid_table_root = { 755 .lookup = pid_table_root_lookup, 756 .permissions = pid_table_root_permissions, 757 .set_ownership = pid_table_root_set_ownership, 758 }; 759 760 static int proc_do_cad_pid(const struct ctl_table *table, int write, void *buffer, 761 size_t *lenp, loff_t *ppos) 762 { 763 struct pid *new_pid; 764 pid_t tmp_pid; 765 int r; 766 struct ctl_table tmp_table = *table; 767 768 tmp_pid = pid_vnr(cad_pid); 769 tmp_table.data = &tmp_pid; 770 771 r = proc_dointvec(&tmp_table, write, buffer, lenp, ppos); 772 if (r || !write) 773 return r; 774 775 new_pid = find_get_pid(tmp_pid); 776 if (!new_pid) 777 return -ESRCH; 778 779 put_pid(xchg(&cad_pid, new_pid)); 780 return 0; 781 } 782 783 static const struct ctl_table pid_table[] = { 784 { 785 .procname = "pid_max", 786 .data = &init_pid_ns.pid_max, 787 .maxlen = sizeof(int), 788 .mode = 0644, 789 .proc_handler = proc_dointvec_minmax, 790 .extra1 = &pid_max_min, 791 .extra2 = &pid_max_max, 792 }, 793 #ifdef CONFIG_PROC_SYSCTL 794 { 795 .procname = "cad_pid", 796 .maxlen = sizeof(int), 797 .mode = 0600, 798 .proc_handler = proc_do_cad_pid, 799 }, 800 #endif 801 }; 802 #endif 803 804 int register_pidns_sysctls(struct pid_namespace *pidns) 805 { 806 #ifdef CONFIG_SYSCTL 807 struct ctl_table *tbl; 808 809 setup_sysctl_set(&pidns->set, &pid_table_root, set_is_seen); 810 811 tbl = kmemdup(pid_table, sizeof(pid_table), GFP_KERNEL); 812 if (!tbl) 813 return -ENOMEM; 814 tbl->data = &pidns->pid_max; 815 pidns->pid_max = min(pid_max_max, max_t(int, pidns->pid_max, 816 PIDS_PER_CPU_DEFAULT * num_possible_cpus())); 817 818 pidns->sysctls = __register_sysctl_table(&pidns->set, "kernel", tbl, 819 ARRAY_SIZE(pid_table)); 820 if (!pidns->sysctls) { 821 kfree(tbl); 822 retire_sysctl_set(&pidns->set); 823 return -ENOMEM; 824 } 825 #endif 826 return 0; 827 } 828 829 void unregister_pidns_sysctls(struct pid_namespace *pidns) 830 { 831 #ifdef CONFIG_SYSCTL 832 const struct ctl_table *tbl; 833 834 tbl = pidns->sysctls->ctl_table_arg; 835 unregister_sysctl_table(pidns->sysctls); 836 retire_sysctl_set(&pidns->set); 837 kfree(tbl); 838 #endif 839 } 840 841 void __init pid_idr_init(void) 842 { 843 /* Verify no one has done anything silly: */ 844 BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING); 845 846 /* bump default and minimum pid_max based on number of cpus */ 847 init_pid_ns.pid_max = min(pid_max_max, max_t(int, init_pid_ns.pid_max, 848 PIDS_PER_CPU_DEFAULT * num_possible_cpus())); 849 pid_max_min = max_t(int, pid_max_min, 850 PIDS_PER_CPU_MIN * num_possible_cpus()); 851 pr_info("pid_max: default: %u minimum: %u\n", init_pid_ns.pid_max, pid_max_min); 852 853 idr_init(&init_pid_ns.idr); 854 855 init_pid_ns.pid_cachep = kmem_cache_create("pid", 856 struct_size_t(struct pid, numbers, 1), 857 __alignof__(struct pid), 858 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT, 859 NULL); 860 } 861 862 static __init int pid_namespace_sysctl_init(void) 863 { 864 #ifdef CONFIG_SYSCTL 865 /* "kernel" directory will have already been initialized. */ 866 BUG_ON(register_pidns_sysctls(&init_pid_ns)); 867 #endif 868 return 0; 869 } 870 subsys_initcall(pid_namespace_sysctl_init); 871 872 static struct file *__pidfd_fget(struct task_struct *task, int fd) 873 { 874 struct file *file; 875 int ret; 876 877 ret = down_read_killable(&task->signal->exec_update_lock); 878 if (ret) 879 return ERR_PTR(ret); 880 881 if (ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS)) 882 file = fget_task(task, fd); 883 else 884 file = ERR_PTR(-EPERM); 885 886 up_read(&task->signal->exec_update_lock); 887 888 if (!file) { 889 /* 890 * It is possible that the target thread is exiting; it can be 891 * either: 892 * 1. before exit_signals(), which gives a real fd 893 * 2. before exit_files() takes the task_lock() gives a real fd 894 * 3. after exit_files() releases task_lock(), ->files is NULL; 895 * this has PF_EXITING, since it was set in exit_signals(), 896 * __pidfd_fget() returns EBADF. 897 * In case 3 we get EBADF, but that really means ESRCH, since 898 * the task is currently exiting and has freed its files 899 * struct, so we fix it up. 900 */ 901 if (task->flags & PF_EXITING) 902 file = ERR_PTR(-ESRCH); 903 else 904 file = ERR_PTR(-EBADF); 905 } 906 907 return file; 908 } 909 910 static int pidfd_getfd(struct pid *pid, int fd) 911 { 912 struct task_struct *task; 913 struct file *file; 914 int ret; 915 916 task = get_pid_task(pid, PIDTYPE_PID); 917 if (!task) 918 return -ESRCH; 919 920 file = __pidfd_fget(task, fd); 921 put_task_struct(task); 922 if (IS_ERR(file)) 923 return PTR_ERR(file); 924 925 ret = receive_fd(file, NULL, O_CLOEXEC); 926 fput(file); 927 928 return ret; 929 } 930 931 /** 932 * sys_pidfd_getfd() - Get a file descriptor from another process 933 * 934 * @pidfd: the pidfd file descriptor of the process 935 * @fd: the file descriptor number to get 936 * @flags: flags on how to get the fd (reserved) 937 * 938 * This syscall gets a copy of a file descriptor from another process 939 * based on the pidfd, and file descriptor number. It requires that 940 * the calling process has the ability to ptrace the process represented 941 * by the pidfd. The process which is having its file descriptor copied 942 * is otherwise unaffected. 943 * 944 * Return: On success, a cloexec file descriptor is returned. 945 * On error, a negative errno number will be returned. 946 */ 947 SYSCALL_DEFINE3(pidfd_getfd, int, pidfd, int, fd, 948 unsigned int, flags) 949 { 950 struct pid *pid; 951 952 /* flags is currently unused - make sure it's unset */ 953 if (flags) 954 return -EINVAL; 955 956 CLASS(fd, f)(pidfd); 957 if (fd_empty(f)) 958 return -EBADF; 959 960 pid = pidfd_pid(fd_file(f)); 961 if (IS_ERR(pid)) 962 return PTR_ERR(pid); 963 964 return pidfd_getfd(pid, fd); 965 } 966