1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst
4 *
5 * Copyright (c) 2022 Meta Platforms, Inc. and affiliates.
6 * Copyright (c) 2022 Tejun Heo <tj@kernel.org>
7 * Copyright (c) 2022 David Vernet <dvernet@meta.com>
8 */
9 #define SCX_OP_IDX(op) (offsetof(struct sched_ext_ops, op) / sizeof(void (*)(void)))
10
11 enum scx_consts {
12 SCX_DSP_DFL_MAX_BATCH = 32,
13 SCX_DSP_MAX_LOOPS = 32,
14 SCX_WATCHDOG_MAX_TIMEOUT = 30 * HZ,
15
16 SCX_EXIT_BT_LEN = 64,
17 SCX_EXIT_MSG_LEN = 1024,
18 SCX_EXIT_DUMP_DFL_LEN = 32768,
19
20 SCX_CPUPERF_ONE = SCHED_CAPACITY_SCALE,
21
22 /*
23 * Iterating all tasks may take a while. Periodically drop
24 * scx_tasks_lock to avoid causing e.g. CSD and RCU stalls.
25 */
26 SCX_OPS_TASK_ITER_BATCH = 32,
27 };
28
29 enum scx_exit_kind {
30 SCX_EXIT_NONE,
31 SCX_EXIT_DONE,
32
33 SCX_EXIT_UNREG = 64, /* user-space initiated unregistration */
34 SCX_EXIT_UNREG_BPF, /* BPF-initiated unregistration */
35 SCX_EXIT_UNREG_KERN, /* kernel-initiated unregistration */
36 SCX_EXIT_SYSRQ, /* requested by 'S' sysrq */
37
38 SCX_EXIT_ERROR = 1024, /* runtime error, error msg contains details */
39 SCX_EXIT_ERROR_BPF, /* ERROR but triggered through scx_bpf_error() */
40 SCX_EXIT_ERROR_STALL, /* watchdog detected stalled runnable tasks */
41 };
42
43 /*
44 * An exit code can be specified when exiting with scx_bpf_exit() or
45 * scx_ops_exit(), corresponding to exit_kind UNREG_BPF and UNREG_KERN
46 * respectively. The codes are 64bit of the format:
47 *
48 * Bits: [63 .. 48 47 .. 32 31 .. 0]
49 * [ SYS ACT ] [ SYS RSN ] [ USR ]
50 *
51 * SYS ACT: System-defined exit actions
52 * SYS RSN: System-defined exit reasons
53 * USR : User-defined exit codes and reasons
54 *
55 * Using the above, users may communicate intention and context by ORing system
56 * actions and/or system reasons with a user-defined exit code.
57 */
58 enum scx_exit_code {
59 /* Reasons */
60 SCX_ECODE_RSN_HOTPLUG = 1LLU << 32,
61
62 /* Actions */
63 SCX_ECODE_ACT_RESTART = 1LLU << 48,
64 };
65
66 /*
67 * scx_exit_info is passed to ops.exit() to describe why the BPF scheduler is
68 * being disabled.
69 */
70 struct scx_exit_info {
71 /* %SCX_EXIT_* - broad category of the exit reason */
72 enum scx_exit_kind kind;
73
74 /* exit code if gracefully exiting */
75 s64 exit_code;
76
77 /* textual representation of the above */
78 const char *reason;
79
80 /* backtrace if exiting due to an error */
81 unsigned long *bt;
82 u32 bt_len;
83
84 /* informational message */
85 char *msg;
86
87 /* debug dump */
88 char *dump;
89 };
90
91 /* sched_ext_ops.flags */
92 enum scx_ops_flags {
93 /*
94 * Keep built-in idle tracking even if ops.update_idle() is implemented.
95 */
96 SCX_OPS_KEEP_BUILTIN_IDLE = 1LLU << 0,
97
98 /*
99 * By default, if there are no other task to run on the CPU, ext core
100 * keeps running the current task even after its slice expires. If this
101 * flag is specified, such tasks are passed to ops.enqueue() with
102 * %SCX_ENQ_LAST. See the comment above %SCX_ENQ_LAST for more info.
103 */
104 SCX_OPS_ENQ_LAST = 1LLU << 1,
105
106 /*
107 * An exiting task may schedule after PF_EXITING is set. In such cases,
108 * bpf_task_from_pid() may not be able to find the task and if the BPF
109 * scheduler depends on pid lookup for dispatching, the task will be
110 * lost leading to various issues including RCU grace period stalls.
111 *
112 * To mask this problem, by default, unhashed tasks are automatically
113 * dispatched to the local DSQ on enqueue. If the BPF scheduler doesn't
114 * depend on pid lookups and wants to handle these tasks directly, the
115 * following flag can be used.
116 */
117 SCX_OPS_ENQ_EXITING = 1LLU << 2,
118
119 /*
120 * If set, only tasks with policy set to SCHED_EXT are attached to
121 * sched_ext. If clear, SCHED_NORMAL tasks are also included.
122 */
123 SCX_OPS_SWITCH_PARTIAL = 1LLU << 3,
124
125 /*
126 * CPU cgroup support flags
127 */
128 SCX_OPS_HAS_CGROUP_WEIGHT = 1LLU << 16, /* cpu.weight */
129
130 SCX_OPS_ALL_FLAGS = SCX_OPS_KEEP_BUILTIN_IDLE |
131 SCX_OPS_ENQ_LAST |
132 SCX_OPS_ENQ_EXITING |
133 SCX_OPS_SWITCH_PARTIAL |
134 SCX_OPS_HAS_CGROUP_WEIGHT,
135 };
136
137 /* argument container for ops.init_task() */
138 struct scx_init_task_args {
139 /*
140 * Set if ops.init_task() is being invoked on the fork path, as opposed
141 * to the scheduler transition path.
142 */
143 bool fork;
144 #ifdef CONFIG_EXT_GROUP_SCHED
145 /* the cgroup the task is joining */
146 struct cgroup *cgroup;
147 #endif
148 };
149
150 /* argument container for ops.exit_task() */
151 struct scx_exit_task_args {
152 /* Whether the task exited before running on sched_ext. */
153 bool cancelled;
154 };
155
156 /* argument container for ops->cgroup_init() */
157 struct scx_cgroup_init_args {
158 /* the weight of the cgroup [1..10000] */
159 u32 weight;
160 };
161
162 enum scx_cpu_preempt_reason {
163 /* next task is being scheduled by &sched_class_rt */
164 SCX_CPU_PREEMPT_RT,
165 /* next task is being scheduled by &sched_class_dl */
166 SCX_CPU_PREEMPT_DL,
167 /* next task is being scheduled by &sched_class_stop */
168 SCX_CPU_PREEMPT_STOP,
169 /* unknown reason for SCX being preempted */
170 SCX_CPU_PREEMPT_UNKNOWN,
171 };
172
173 /*
174 * Argument container for ops->cpu_acquire(). Currently empty, but may be
175 * expanded in the future.
176 */
177 struct scx_cpu_acquire_args {};
178
179 /* argument container for ops->cpu_release() */
180 struct scx_cpu_release_args {
181 /* the reason the CPU was preempted */
182 enum scx_cpu_preempt_reason reason;
183
184 /* the task that's going to be scheduled on the CPU */
185 struct task_struct *task;
186 };
187
188 /*
189 * Informational context provided to dump operations.
190 */
191 struct scx_dump_ctx {
192 enum scx_exit_kind kind;
193 s64 exit_code;
194 const char *reason;
195 u64 at_ns;
196 u64 at_jiffies;
197 };
198
199 /**
200 * struct sched_ext_ops - Operation table for BPF scheduler implementation
201 *
202 * Userland can implement an arbitrary scheduling policy by implementing and
203 * loading operations in this table.
204 */
205 struct sched_ext_ops {
206 /**
207 * select_cpu - Pick the target CPU for a task which is being woken up
208 * @p: task being woken up
209 * @prev_cpu: the cpu @p was on before sleeping
210 * @wake_flags: SCX_WAKE_*
211 *
212 * Decision made here isn't final. @p may be moved to any CPU while it
213 * is getting dispatched for execution later. However, as @p is not on
214 * the rq at this point, getting the eventual execution CPU right here
215 * saves a small bit of overhead down the line.
216 *
217 * If an idle CPU is returned, the CPU is kicked and will try to
218 * dispatch. While an explicit custom mechanism can be added,
219 * select_cpu() serves as the default way to wake up idle CPUs.
220 *
221 * @p may be dispatched directly by calling scx_bpf_dispatch(). If @p
222 * is dispatched, the ops.enqueue() callback will be skipped. Finally,
223 * if @p is dispatched to SCX_DSQ_LOCAL, it will be dispatched to the
224 * local DSQ of whatever CPU is returned by this callback.
225 */
226 s32 (*select_cpu)(struct task_struct *p, s32 prev_cpu, u64 wake_flags);
227
228 /**
229 * enqueue - Enqueue a task on the BPF scheduler
230 * @p: task being enqueued
231 * @enq_flags: %SCX_ENQ_*
232 *
233 * @p is ready to run. Dispatch directly by calling scx_bpf_dispatch()
234 * or enqueue on the BPF scheduler. If not directly dispatched, the bpf
235 * scheduler owns @p and if it fails to dispatch @p, the task will
236 * stall.
237 *
238 * If @p was dispatched from ops.select_cpu(), this callback is
239 * skipped.
240 */
241 void (*enqueue)(struct task_struct *p, u64 enq_flags);
242
243 /**
244 * dequeue - Remove a task from the BPF scheduler
245 * @p: task being dequeued
246 * @deq_flags: %SCX_DEQ_*
247 *
248 * Remove @p from the BPF scheduler. This is usually called to isolate
249 * the task while updating its scheduling properties (e.g. priority).
250 *
251 * The ext core keeps track of whether the BPF side owns a given task or
252 * not and can gracefully ignore spurious dispatches from BPF side,
253 * which makes it safe to not implement this method. However, depending
254 * on the scheduling logic, this can lead to confusing behaviors - e.g.
255 * scheduling position not being updated across a priority change.
256 */
257 void (*dequeue)(struct task_struct *p, u64 deq_flags);
258
259 /**
260 * dispatch - Dispatch tasks from the BPF scheduler and/or consume DSQs
261 * @cpu: CPU to dispatch tasks for
262 * @prev: previous task being switched out
263 *
264 * Called when a CPU's local dsq is empty. The operation should dispatch
265 * one or more tasks from the BPF scheduler into the DSQs using
266 * scx_bpf_dispatch() and/or consume user DSQs into the local DSQ using
267 * scx_bpf_consume().
268 *
269 * The maximum number of times scx_bpf_dispatch() can be called without
270 * an intervening scx_bpf_consume() is specified by
271 * ops.dispatch_max_batch. See the comments on top of the two functions
272 * for more details.
273 *
274 * When not %NULL, @prev is an SCX task with its slice depleted. If
275 * @prev is still runnable as indicated by set %SCX_TASK_QUEUED in
276 * @prev->scx.flags, it is not enqueued yet and will be enqueued after
277 * ops.dispatch() returns. To keep executing @prev, return without
278 * dispatching or consuming any tasks. Also see %SCX_OPS_ENQ_LAST.
279 */
280 void (*dispatch)(s32 cpu, struct task_struct *prev);
281
282 /**
283 * tick - Periodic tick
284 * @p: task running currently
285 *
286 * This operation is called every 1/HZ seconds on CPUs which are
287 * executing an SCX task. Setting @p->scx.slice to 0 will trigger an
288 * immediate dispatch cycle on the CPU.
289 */
290 void (*tick)(struct task_struct *p);
291
292 /**
293 * runnable - A task is becoming runnable on its associated CPU
294 * @p: task becoming runnable
295 * @enq_flags: %SCX_ENQ_*
296 *
297 * This and the following three functions can be used to track a task's
298 * execution state transitions. A task becomes ->runnable() on a CPU,
299 * and then goes through one or more ->running() and ->stopping() pairs
300 * as it runs on the CPU, and eventually becomes ->quiescent() when it's
301 * done running on the CPU.
302 *
303 * @p is becoming runnable on the CPU because it's
304 *
305 * - waking up (%SCX_ENQ_WAKEUP)
306 * - being moved from another CPU
307 * - being restored after temporarily taken off the queue for an
308 * attribute change.
309 *
310 * This and ->enqueue() are related but not coupled. This operation
311 * notifies @p's state transition and may not be followed by ->enqueue()
312 * e.g. when @p is being dispatched to a remote CPU, or when @p is
313 * being enqueued on a CPU experiencing a hotplug event. Likewise, a
314 * task may be ->enqueue()'d without being preceded by this operation
315 * e.g. after exhausting its slice.
316 */
317 void (*runnable)(struct task_struct *p, u64 enq_flags);
318
319 /**
320 * running - A task is starting to run on its associated CPU
321 * @p: task starting to run
322 *
323 * See ->runnable() for explanation on the task state notifiers.
324 */
325 void (*running)(struct task_struct *p);
326
327 /**
328 * stopping - A task is stopping execution
329 * @p: task stopping to run
330 * @runnable: is task @p still runnable?
331 *
332 * See ->runnable() for explanation on the task state notifiers. If
333 * !@runnable, ->quiescent() will be invoked after this operation
334 * returns.
335 */
336 void (*stopping)(struct task_struct *p, bool runnable);
337
338 /**
339 * quiescent - A task is becoming not runnable on its associated CPU
340 * @p: task becoming not runnable
341 * @deq_flags: %SCX_DEQ_*
342 *
343 * See ->runnable() for explanation on the task state notifiers.
344 *
345 * @p is becoming quiescent on the CPU because it's
346 *
347 * - sleeping (%SCX_DEQ_SLEEP)
348 * - being moved to another CPU
349 * - being temporarily taken off the queue for an attribute change
350 * (%SCX_DEQ_SAVE)
351 *
352 * This and ->dequeue() are related but not coupled. This operation
353 * notifies @p's state transition and may not be preceded by ->dequeue()
354 * e.g. when @p is being dispatched to a remote CPU.
355 */
356 void (*quiescent)(struct task_struct *p, u64 deq_flags);
357
358 /**
359 * yield - Yield CPU
360 * @from: yielding task
361 * @to: optional yield target task
362 *
363 * If @to is NULL, @from is yielding the CPU to other runnable tasks.
364 * The BPF scheduler should ensure that other available tasks are
365 * dispatched before the yielding task. Return value is ignored in this
366 * case.
367 *
368 * If @to is not-NULL, @from wants to yield the CPU to @to. If the bpf
369 * scheduler can implement the request, return %true; otherwise, %false.
370 */
371 bool (*yield)(struct task_struct *from, struct task_struct *to);
372
373 /**
374 * core_sched_before - Task ordering for core-sched
375 * @a: task A
376 * @b: task B
377 *
378 * Used by core-sched to determine the ordering between two tasks. See
379 * Documentation/admin-guide/hw-vuln/core-scheduling.rst for details on
380 * core-sched.
381 *
382 * Both @a and @b are runnable and may or may not currently be queued on
383 * the BPF scheduler. Should return %true if @a should run before @b.
384 * %false if there's no required ordering or @b should run before @a.
385 *
386 * If not specified, the default is ordering them according to when they
387 * became runnable.
388 */
389 bool (*core_sched_before)(struct task_struct *a, struct task_struct *b);
390
391 /**
392 * set_weight - Set task weight
393 * @p: task to set weight for
394 * @weight: new weight [1..10000]
395 *
396 * Update @p's weight to @weight.
397 */
398 void (*set_weight)(struct task_struct *p, u32 weight);
399
400 /**
401 * set_cpumask - Set CPU affinity
402 * @p: task to set CPU affinity for
403 * @cpumask: cpumask of cpus that @p can run on
404 *
405 * Update @p's CPU affinity to @cpumask.
406 */
407 void (*set_cpumask)(struct task_struct *p,
408 const struct cpumask *cpumask);
409
410 /**
411 * update_idle - Update the idle state of a CPU
412 * @cpu: CPU to udpate the idle state for
413 * @idle: whether entering or exiting the idle state
414 *
415 * This operation is called when @rq's CPU goes or leaves the idle
416 * state. By default, implementing this operation disables the built-in
417 * idle CPU tracking and the following helpers become unavailable:
418 *
419 * - scx_bpf_select_cpu_dfl()
420 * - scx_bpf_test_and_clear_cpu_idle()
421 * - scx_bpf_pick_idle_cpu()
422 *
423 * The user also must implement ops.select_cpu() as the default
424 * implementation relies on scx_bpf_select_cpu_dfl().
425 *
426 * Specify the %SCX_OPS_KEEP_BUILTIN_IDLE flag to keep the built-in idle
427 * tracking.
428 */
429 void (*update_idle)(s32 cpu, bool idle);
430
431 /**
432 * cpu_acquire - A CPU is becoming available to the BPF scheduler
433 * @cpu: The CPU being acquired by the BPF scheduler.
434 * @args: Acquire arguments, see the struct definition.
435 *
436 * A CPU that was previously released from the BPF scheduler is now once
437 * again under its control.
438 */
439 void (*cpu_acquire)(s32 cpu, struct scx_cpu_acquire_args *args);
440
441 /**
442 * cpu_release - A CPU is taken away from the BPF scheduler
443 * @cpu: The CPU being released by the BPF scheduler.
444 * @args: Release arguments, see the struct definition.
445 *
446 * The specified CPU is no longer under the control of the BPF
447 * scheduler. This could be because it was preempted by a higher
448 * priority sched_class, though there may be other reasons as well. The
449 * caller should consult @args->reason to determine the cause.
450 */
451 void (*cpu_release)(s32 cpu, struct scx_cpu_release_args *args);
452
453 /**
454 * init_task - Initialize a task to run in a BPF scheduler
455 * @p: task to initialize for BPF scheduling
456 * @args: init arguments, see the struct definition
457 *
458 * Either we're loading a BPF scheduler or a new task is being forked.
459 * Initialize @p for BPF scheduling. This operation may block and can
460 * be used for allocations, and is called exactly once for a task.
461 *
462 * Return 0 for success, -errno for failure. An error return while
463 * loading will abort loading of the BPF scheduler. During a fork, it
464 * will abort that specific fork.
465 */
466 s32 (*init_task)(struct task_struct *p, struct scx_init_task_args *args);
467
468 /**
469 * exit_task - Exit a previously-running task from the system
470 * @p: task to exit
471 *
472 * @p is exiting or the BPF scheduler is being unloaded. Perform any
473 * necessary cleanup for @p.
474 */
475 void (*exit_task)(struct task_struct *p, struct scx_exit_task_args *args);
476
477 /**
478 * enable - Enable BPF scheduling for a task
479 * @p: task to enable BPF scheduling for
480 *
481 * Enable @p for BPF scheduling. enable() is called on @p any time it
482 * enters SCX, and is always paired with a matching disable().
483 */
484 void (*enable)(struct task_struct *p);
485
486 /**
487 * disable - Disable BPF scheduling for a task
488 * @p: task to disable BPF scheduling for
489 *
490 * @p is exiting, leaving SCX or the BPF scheduler is being unloaded.
491 * Disable BPF scheduling for @p. A disable() call is always matched
492 * with a prior enable() call.
493 */
494 void (*disable)(struct task_struct *p);
495
496 /**
497 * dump - Dump BPF scheduler state on error
498 * @ctx: debug dump context
499 *
500 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump.
501 */
502 void (*dump)(struct scx_dump_ctx *ctx);
503
504 /**
505 * dump_cpu - Dump BPF scheduler state for a CPU on error
506 * @ctx: debug dump context
507 * @cpu: CPU to generate debug dump for
508 * @idle: @cpu is currently idle without any runnable tasks
509 *
510 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for
511 * @cpu. If @idle is %true and this operation doesn't produce any
512 * output, @cpu is skipped for dump.
513 */
514 void (*dump_cpu)(struct scx_dump_ctx *ctx, s32 cpu, bool idle);
515
516 /**
517 * dump_task - Dump BPF scheduler state for a runnable task on error
518 * @ctx: debug dump context
519 * @p: runnable task to generate debug dump for
520 *
521 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for
522 * @p.
523 */
524 void (*dump_task)(struct scx_dump_ctx *ctx, struct task_struct *p);
525
526 #ifdef CONFIG_EXT_GROUP_SCHED
527 /**
528 * cgroup_init - Initialize a cgroup
529 * @cgrp: cgroup being initialized
530 * @args: init arguments, see the struct definition
531 *
532 * Either the BPF scheduler is being loaded or @cgrp created, initialize
533 * @cgrp for sched_ext. This operation may block.
534 *
535 * Return 0 for success, -errno for failure. An error return while
536 * loading will abort loading of the BPF scheduler. During cgroup
537 * creation, it will abort the specific cgroup creation.
538 */
539 s32 (*cgroup_init)(struct cgroup *cgrp,
540 struct scx_cgroup_init_args *args);
541
542 /**
543 * cgroup_exit - Exit a cgroup
544 * @cgrp: cgroup being exited
545 *
546 * Either the BPF scheduler is being unloaded or @cgrp destroyed, exit
547 * @cgrp for sched_ext. This operation my block.
548 */
549 void (*cgroup_exit)(struct cgroup *cgrp);
550
551 /**
552 * cgroup_prep_move - Prepare a task to be moved to a different cgroup
553 * @p: task being moved
554 * @from: cgroup @p is being moved from
555 * @to: cgroup @p is being moved to
556 *
557 * Prepare @p for move from cgroup @from to @to. This operation may
558 * block and can be used for allocations.
559 *
560 * Return 0 for success, -errno for failure. An error return aborts the
561 * migration.
562 */
563 s32 (*cgroup_prep_move)(struct task_struct *p,
564 struct cgroup *from, struct cgroup *to);
565
566 /**
567 * cgroup_move - Commit cgroup move
568 * @p: task being moved
569 * @from: cgroup @p is being moved from
570 * @to: cgroup @p is being moved to
571 *
572 * Commit the move. @p is dequeued during this operation.
573 */
574 void (*cgroup_move)(struct task_struct *p,
575 struct cgroup *from, struct cgroup *to);
576
577 /**
578 * cgroup_cancel_move - Cancel cgroup move
579 * @p: task whose cgroup move is being canceled
580 * @from: cgroup @p was being moved from
581 * @to: cgroup @p was being moved to
582 *
583 * @p was cgroup_prep_move()'d but failed before reaching cgroup_move().
584 * Undo the preparation.
585 */
586 void (*cgroup_cancel_move)(struct task_struct *p,
587 struct cgroup *from, struct cgroup *to);
588
589 /**
590 * cgroup_set_weight - A cgroup's weight is being changed
591 * @cgrp: cgroup whose weight is being updated
592 * @weight: new weight [1..10000]
593 *
594 * Update @tg's weight to @weight.
595 */
596 void (*cgroup_set_weight)(struct cgroup *cgrp, u32 weight);
597 #endif /* CONFIG_CGROUPS */
598
599 /*
600 * All online ops must come before ops.cpu_online().
601 */
602
603 /**
604 * cpu_online - A CPU became online
605 * @cpu: CPU which just came up
606 *
607 * @cpu just came online. @cpu will not call ops.enqueue() or
608 * ops.dispatch(), nor run tasks associated with other CPUs beforehand.
609 */
610 void (*cpu_online)(s32 cpu);
611
612 /**
613 * cpu_offline - A CPU is going offline
614 * @cpu: CPU which is going offline
615 *
616 * @cpu is going offline. @cpu will not call ops.enqueue() or
617 * ops.dispatch(), nor run tasks associated with other CPUs afterwards.
618 */
619 void (*cpu_offline)(s32 cpu);
620
621 /*
622 * All CPU hotplug ops must come before ops.init().
623 */
624
625 /**
626 * init - Initialize the BPF scheduler
627 */
628 s32 (*init)(void);
629
630 /**
631 * exit - Clean up after the BPF scheduler
632 * @info: Exit info
633 *
634 * ops.exit() is also called on ops.init() failure, which is a bit
635 * unusual. This is to allow rich reporting through @info on how
636 * ops.init() failed.
637 */
638 void (*exit)(struct scx_exit_info *info);
639
640 /**
641 * dispatch_max_batch - Max nr of tasks that dispatch() can dispatch
642 */
643 u32 dispatch_max_batch;
644
645 /**
646 * flags - %SCX_OPS_* flags
647 */
648 u64 flags;
649
650 /**
651 * timeout_ms - The maximum amount of time, in milliseconds, that a
652 * runnable task should be able to wait before being scheduled. The
653 * maximum timeout may not exceed the default timeout of 30 seconds.
654 *
655 * Defaults to the maximum allowed timeout value of 30 seconds.
656 */
657 u32 timeout_ms;
658
659 /**
660 * exit_dump_len - scx_exit_info.dump buffer length. If 0, the default
661 * value of 32768 is used.
662 */
663 u32 exit_dump_len;
664
665 /**
666 * hotplug_seq - A sequence number that may be set by the scheduler to
667 * detect when a hotplug event has occurred during the loading process.
668 * If 0, no detection occurs. Otherwise, the scheduler will fail to
669 * load if the sequence number does not match @scx_hotplug_seq on the
670 * enable path.
671 */
672 u64 hotplug_seq;
673
674 /**
675 * name - BPF scheduler's name
676 *
677 * Must be a non-zero valid BPF object name including only isalnum(),
678 * '_' and '.' chars. Shows up in kernel.sched_ext_ops sysctl while the
679 * BPF scheduler is enabled.
680 */
681 char name[SCX_OPS_NAME_LEN];
682 };
683
684 enum scx_opi {
685 SCX_OPI_BEGIN = 0,
686 SCX_OPI_NORMAL_BEGIN = 0,
687 SCX_OPI_NORMAL_END = SCX_OP_IDX(cpu_online),
688 SCX_OPI_CPU_HOTPLUG_BEGIN = SCX_OP_IDX(cpu_online),
689 SCX_OPI_CPU_HOTPLUG_END = SCX_OP_IDX(init),
690 SCX_OPI_END = SCX_OP_IDX(init),
691 };
692
693 enum scx_wake_flags {
694 /* expose select WF_* flags as enums */
695 SCX_WAKE_FORK = WF_FORK,
696 SCX_WAKE_TTWU = WF_TTWU,
697 SCX_WAKE_SYNC = WF_SYNC,
698 };
699
700 enum scx_enq_flags {
701 /* expose select ENQUEUE_* flags as enums */
702 SCX_ENQ_WAKEUP = ENQUEUE_WAKEUP,
703 SCX_ENQ_HEAD = ENQUEUE_HEAD,
704 SCX_ENQ_CPU_SELECTED = ENQUEUE_RQ_SELECTED,
705
706 /* high 32bits are SCX specific */
707
708 /*
709 * Set the following to trigger preemption when calling
710 * scx_bpf_dispatch() with a local dsq as the target. The slice of the
711 * current task is cleared to zero and the CPU is kicked into the
712 * scheduling path. Implies %SCX_ENQ_HEAD.
713 */
714 SCX_ENQ_PREEMPT = 1LLU << 32,
715
716 /*
717 * The task being enqueued was previously enqueued on the current CPU's
718 * %SCX_DSQ_LOCAL, but was removed from it in a call to the
719 * bpf_scx_reenqueue_local() kfunc. If bpf_scx_reenqueue_local() was
720 * invoked in a ->cpu_release() callback, and the task is again
721 * dispatched back to %SCX_LOCAL_DSQ by this current ->enqueue(), the
722 * task will not be scheduled on the CPU until at least the next invocation
723 * of the ->cpu_acquire() callback.
724 */
725 SCX_ENQ_REENQ = 1LLU << 40,
726
727 /*
728 * The task being enqueued is the only task available for the cpu. By
729 * default, ext core keeps executing such tasks but when
730 * %SCX_OPS_ENQ_LAST is specified, they're ops.enqueue()'d with the
731 * %SCX_ENQ_LAST flag set.
732 *
733 * The BPF scheduler is responsible for triggering a follow-up
734 * scheduling event. Otherwise, Execution may stall.
735 */
736 SCX_ENQ_LAST = 1LLU << 41,
737
738 /* high 8 bits are internal */
739 __SCX_ENQ_INTERNAL_MASK = 0xffLLU << 56,
740
741 SCX_ENQ_CLEAR_OPSS = 1LLU << 56,
742 SCX_ENQ_DSQ_PRIQ = 1LLU << 57,
743 };
744
745 enum scx_deq_flags {
746 /* expose select DEQUEUE_* flags as enums */
747 SCX_DEQ_SLEEP = DEQUEUE_SLEEP,
748
749 /* high 32bits are SCX specific */
750
751 /*
752 * The generic core-sched layer decided to execute the task even though
753 * it hasn't been dispatched yet. Dequeue from the BPF side.
754 */
755 SCX_DEQ_CORE_SCHED_EXEC = 1LLU << 32,
756 };
757
758 enum scx_pick_idle_cpu_flags {
759 SCX_PICK_IDLE_CORE = 1LLU << 0, /* pick a CPU whose SMT siblings are also idle */
760 };
761
762 enum scx_kick_flags {
763 /*
764 * Kick the target CPU if idle. Guarantees that the target CPU goes
765 * through at least one full scheduling cycle before going idle. If the
766 * target CPU can be determined to be currently not idle and going to go
767 * through a scheduling cycle before going idle, noop.
768 */
769 SCX_KICK_IDLE = 1LLU << 0,
770
771 /*
772 * Preempt the current task and execute the dispatch path. If the
773 * current task of the target CPU is an SCX task, its ->scx.slice is
774 * cleared to zero before the scheduling path is invoked so that the
775 * task expires and the dispatch path is invoked.
776 */
777 SCX_KICK_PREEMPT = 1LLU << 1,
778
779 /*
780 * Wait for the CPU to be rescheduled. The scx_bpf_kick_cpu() call will
781 * return after the target CPU finishes picking the next task.
782 */
783 SCX_KICK_WAIT = 1LLU << 2,
784 };
785
786 enum scx_tg_flags {
787 SCX_TG_ONLINE = 1U << 0,
788 SCX_TG_INITED = 1U << 1,
789 };
790
791 enum scx_ops_enable_state {
792 SCX_OPS_ENABLING,
793 SCX_OPS_ENABLED,
794 SCX_OPS_DISABLING,
795 SCX_OPS_DISABLED,
796 };
797
798 static const char *scx_ops_enable_state_str[] = {
799 [SCX_OPS_ENABLING] = "enabling",
800 [SCX_OPS_ENABLED] = "enabled",
801 [SCX_OPS_DISABLING] = "disabling",
802 [SCX_OPS_DISABLED] = "disabled",
803 };
804
805 /*
806 * sched_ext_entity->ops_state
807 *
808 * Used to track the task ownership between the SCX core and the BPF scheduler.
809 * State transitions look as follows:
810 *
811 * NONE -> QUEUEING -> QUEUED -> DISPATCHING
812 * ^ | |
813 * | v v
814 * \-------------------------------/
815 *
816 * QUEUEING and DISPATCHING states can be waited upon. See wait_ops_state() call
817 * sites for explanations on the conditions being waited upon and why they are
818 * safe. Transitions out of them into NONE or QUEUED must store_release and the
819 * waiters should load_acquire.
820 *
821 * Tracking scx_ops_state enables sched_ext core to reliably determine whether
822 * any given task can be dispatched by the BPF scheduler at all times and thus
823 * relaxes the requirements on the BPF scheduler. This allows the BPF scheduler
824 * to try to dispatch any task anytime regardless of its state as the SCX core
825 * can safely reject invalid dispatches.
826 */
827 enum scx_ops_state {
828 SCX_OPSS_NONE, /* owned by the SCX core */
829 SCX_OPSS_QUEUEING, /* in transit to the BPF scheduler */
830 SCX_OPSS_QUEUED, /* owned by the BPF scheduler */
831 SCX_OPSS_DISPATCHING, /* in transit back to the SCX core */
832
833 /*
834 * QSEQ brands each QUEUED instance so that, when dispatch races
835 * dequeue/requeue, the dispatcher can tell whether it still has a claim
836 * on the task being dispatched.
837 *
838 * As some 32bit archs can't do 64bit store_release/load_acquire,
839 * p->scx.ops_state is atomic_long_t which leaves 30 bits for QSEQ on
840 * 32bit machines. The dispatch race window QSEQ protects is very narrow
841 * and runs with IRQ disabled. 30 bits should be sufficient.
842 */
843 SCX_OPSS_QSEQ_SHIFT = 2,
844 };
845
846 /* Use macros to ensure that the type is unsigned long for the masks */
847 #define SCX_OPSS_STATE_MASK ((1LU << SCX_OPSS_QSEQ_SHIFT) - 1)
848 #define SCX_OPSS_QSEQ_MASK (~SCX_OPSS_STATE_MASK)
849
850 /*
851 * During exit, a task may schedule after losing its PIDs. When disabling the
852 * BPF scheduler, we need to be able to iterate tasks in every state to
853 * guarantee system safety. Maintain a dedicated task list which contains every
854 * task between its fork and eventual free.
855 */
856 static DEFINE_SPINLOCK(scx_tasks_lock);
857 static LIST_HEAD(scx_tasks);
858
859 /* ops enable/disable */
860 static struct kthread_worker *scx_ops_helper;
861 static DEFINE_MUTEX(scx_ops_enable_mutex);
862 DEFINE_STATIC_KEY_FALSE(__scx_ops_enabled);
863 DEFINE_STATIC_PERCPU_RWSEM(scx_fork_rwsem);
864 static atomic_t scx_ops_enable_state_var = ATOMIC_INIT(SCX_OPS_DISABLED);
865 static int scx_ops_bypass_depth;
866 static DEFINE_RAW_SPINLOCK(__scx_ops_bypass_lock);
867 static bool scx_ops_init_task_enabled;
868 static bool scx_switching_all;
869 DEFINE_STATIC_KEY_FALSE(__scx_switched_all);
870
871 static struct sched_ext_ops scx_ops;
872 static bool scx_warned_zero_slice;
873
874 static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_last);
875 static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_exiting);
876 static DEFINE_STATIC_KEY_FALSE(scx_ops_cpu_preempt);
877 static DEFINE_STATIC_KEY_FALSE(scx_builtin_idle_enabled);
878
879 static struct static_key_false scx_has_op[SCX_OPI_END] =
880 { [0 ... SCX_OPI_END-1] = STATIC_KEY_FALSE_INIT };
881
882 static atomic_t scx_exit_kind = ATOMIC_INIT(SCX_EXIT_DONE);
883 static struct scx_exit_info *scx_exit_info;
884
885 static atomic_long_t scx_nr_rejected = ATOMIC_LONG_INIT(0);
886 static atomic_long_t scx_hotplug_seq = ATOMIC_LONG_INIT(0);
887
888 /*
889 * A monotically increasing sequence number that is incremented every time a
890 * scheduler is enabled. This can be used by to check if any custom sched_ext
891 * scheduler has ever been used in the system.
892 */
893 static atomic_long_t scx_enable_seq = ATOMIC_LONG_INIT(0);
894
895 /*
896 * The maximum amount of time in jiffies that a task may be runnable without
897 * being scheduled on a CPU. If this timeout is exceeded, it will trigger
898 * scx_ops_error().
899 */
900 static unsigned long scx_watchdog_timeout;
901
902 /*
903 * The last time the delayed work was run. This delayed work relies on
904 * ksoftirqd being able to run to service timer interrupts, so it's possible
905 * that this work itself could get wedged. To account for this, we check that
906 * it's not stalled in the timer tick, and trigger an error if it is.
907 */
908 static unsigned long scx_watchdog_timestamp = INITIAL_JIFFIES;
909
910 static struct delayed_work scx_watchdog_work;
911
912 /* idle tracking */
913 #ifdef CONFIG_SMP
914 #ifdef CONFIG_CPUMASK_OFFSTACK
915 #define CL_ALIGNED_IF_ONSTACK
916 #else
917 #define CL_ALIGNED_IF_ONSTACK __cacheline_aligned_in_smp
918 #endif
919
920 static struct {
921 cpumask_var_t cpu;
922 cpumask_var_t smt;
923 } idle_masks CL_ALIGNED_IF_ONSTACK;
924
925 #endif /* CONFIG_SMP */
926
927 /* for %SCX_KICK_WAIT */
928 static unsigned long __percpu *scx_kick_cpus_pnt_seqs;
929
930 /*
931 * Direct dispatch marker.
932 *
933 * Non-NULL values are used for direct dispatch from enqueue path. A valid
934 * pointer points to the task currently being enqueued. An ERR_PTR value is used
935 * to indicate that direct dispatch has already happened.
936 */
937 static DEFINE_PER_CPU(struct task_struct *, direct_dispatch_task);
938
939 /*
940 * Dispatch queues.
941 *
942 * The global DSQ (%SCX_DSQ_GLOBAL) is split per-node for scalability. This is
943 * to avoid live-locking in bypass mode where all tasks are dispatched to
944 * %SCX_DSQ_GLOBAL and all CPUs consume from it. If per-node split isn't
945 * sufficient, it can be further split.
946 */
947 static struct scx_dispatch_q **global_dsqs;
948
949 static const struct rhashtable_params dsq_hash_params = {
950 .key_len = 8,
951 .key_offset = offsetof(struct scx_dispatch_q, id),
952 .head_offset = offsetof(struct scx_dispatch_q, hash_node),
953 };
954
955 static struct rhashtable dsq_hash;
956 static LLIST_HEAD(dsqs_to_free);
957
958 /* dispatch buf */
959 struct scx_dsp_buf_ent {
960 struct task_struct *task;
961 unsigned long qseq;
962 u64 dsq_id;
963 u64 enq_flags;
964 };
965
966 static u32 scx_dsp_max_batch;
967
968 struct scx_dsp_ctx {
969 struct rq *rq;
970 u32 cursor;
971 u32 nr_tasks;
972 struct scx_dsp_buf_ent buf[];
973 };
974
975 static struct scx_dsp_ctx __percpu *scx_dsp_ctx;
976
977 /* string formatting from BPF */
978 struct scx_bstr_buf {
979 u64 data[MAX_BPRINTF_VARARGS];
980 char line[SCX_EXIT_MSG_LEN];
981 };
982
983 static DEFINE_RAW_SPINLOCK(scx_exit_bstr_buf_lock);
984 static struct scx_bstr_buf scx_exit_bstr_buf;
985
986 /* ops debug dump */
987 struct scx_dump_data {
988 s32 cpu;
989 bool first;
990 s32 cursor;
991 struct seq_buf *s;
992 const char *prefix;
993 struct scx_bstr_buf buf;
994 };
995
996 static struct scx_dump_data scx_dump_data = {
997 .cpu = -1,
998 };
999
1000 /* /sys/kernel/sched_ext interface */
1001 static struct kset *scx_kset;
1002 static struct kobject *scx_root_kobj;
1003
1004 #define CREATE_TRACE_POINTS
1005 #include <trace/events/sched_ext.h>
1006
1007 static void process_ddsp_deferred_locals(struct rq *rq);
1008 static void scx_bpf_kick_cpu(s32 cpu, u64 flags);
1009 static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind,
1010 s64 exit_code,
1011 const char *fmt, ...);
1012
1013 #define scx_ops_error_kind(err, fmt, args...) \
1014 scx_ops_exit_kind((err), 0, fmt, ##args)
1015
1016 #define scx_ops_exit(code, fmt, args...) \
1017 scx_ops_exit_kind(SCX_EXIT_UNREG_KERN, (code), fmt, ##args)
1018
1019 #define scx_ops_error(fmt, args...) \
1020 scx_ops_error_kind(SCX_EXIT_ERROR, fmt, ##args)
1021
1022 #define SCX_HAS_OP(op) static_branch_likely(&scx_has_op[SCX_OP_IDX(op)])
1023
jiffies_delta_msecs(unsigned long at,unsigned long now)1024 static long jiffies_delta_msecs(unsigned long at, unsigned long now)
1025 {
1026 if (time_after(at, now))
1027 return jiffies_to_msecs(at - now);
1028 else
1029 return -(long)jiffies_to_msecs(now - at);
1030 }
1031
1032 /* if the highest set bit is N, return a mask with bits [N+1, 31] set */
higher_bits(u32 flags)1033 static u32 higher_bits(u32 flags)
1034 {
1035 return ~((1 << fls(flags)) - 1);
1036 }
1037
1038 /* return the mask with only the highest bit set */
highest_bit(u32 flags)1039 static u32 highest_bit(u32 flags)
1040 {
1041 int bit = fls(flags);
1042 return ((u64)1 << bit) >> 1;
1043 }
1044
u32_before(u32 a,u32 b)1045 static bool u32_before(u32 a, u32 b)
1046 {
1047 return (s32)(a - b) < 0;
1048 }
1049
find_global_dsq(struct task_struct * p)1050 static struct scx_dispatch_q *find_global_dsq(struct task_struct *p)
1051 {
1052 return global_dsqs[cpu_to_node(task_cpu(p))];
1053 }
1054
find_user_dsq(u64 dsq_id)1055 static struct scx_dispatch_q *find_user_dsq(u64 dsq_id)
1056 {
1057 return rhashtable_lookup_fast(&dsq_hash, &dsq_id, dsq_hash_params);
1058 }
1059
1060 /*
1061 * scx_kf_mask enforcement. Some kfuncs can only be called from specific SCX
1062 * ops. When invoking SCX ops, SCX_CALL_OP[_RET]() should be used to indicate
1063 * the allowed kfuncs and those kfuncs should use scx_kf_allowed() to check
1064 * whether it's running from an allowed context.
1065 *
1066 * @mask is constant, always inline to cull the mask calculations.
1067 */
scx_kf_allow(u32 mask)1068 static __always_inline void scx_kf_allow(u32 mask)
1069 {
1070 /* nesting is allowed only in increasing scx_kf_mask order */
1071 WARN_ONCE((mask | higher_bits(mask)) & current->scx.kf_mask,
1072 "invalid nesting current->scx.kf_mask=0x%x mask=0x%x\n",
1073 current->scx.kf_mask, mask);
1074 current->scx.kf_mask |= mask;
1075 barrier();
1076 }
1077
scx_kf_disallow(u32 mask)1078 static void scx_kf_disallow(u32 mask)
1079 {
1080 barrier();
1081 current->scx.kf_mask &= ~mask;
1082 }
1083
1084 #define SCX_CALL_OP(mask, op, args...) \
1085 do { \
1086 if (mask) { \
1087 scx_kf_allow(mask); \
1088 scx_ops.op(args); \
1089 scx_kf_disallow(mask); \
1090 } else { \
1091 scx_ops.op(args); \
1092 } \
1093 } while (0)
1094
1095 #define SCX_CALL_OP_RET(mask, op, args...) \
1096 ({ \
1097 __typeof__(scx_ops.op(args)) __ret; \
1098 if (mask) { \
1099 scx_kf_allow(mask); \
1100 __ret = scx_ops.op(args); \
1101 scx_kf_disallow(mask); \
1102 } else { \
1103 __ret = scx_ops.op(args); \
1104 } \
1105 __ret; \
1106 })
1107
1108 /*
1109 * Some kfuncs are allowed only on the tasks that are subjects of the
1110 * in-progress scx_ops operation for, e.g., locking guarantees. To enforce such
1111 * restrictions, the following SCX_CALL_OP_*() variants should be used when
1112 * invoking scx_ops operations that take task arguments. These can only be used
1113 * for non-nesting operations due to the way the tasks are tracked.
1114 *
1115 * kfuncs which can only operate on such tasks can in turn use
1116 * scx_kf_allowed_on_arg_tasks() to test whether the invocation is allowed on
1117 * the specific task.
1118 */
1119 #define SCX_CALL_OP_TASK(mask, op, task, args...) \
1120 do { \
1121 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \
1122 current->scx.kf_tasks[0] = task; \
1123 SCX_CALL_OP(mask, op, task, ##args); \
1124 current->scx.kf_tasks[0] = NULL; \
1125 } while (0)
1126
1127 #define SCX_CALL_OP_TASK_RET(mask, op, task, args...) \
1128 ({ \
1129 __typeof__(scx_ops.op(task, ##args)) __ret; \
1130 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \
1131 current->scx.kf_tasks[0] = task; \
1132 __ret = SCX_CALL_OP_RET(mask, op, task, ##args); \
1133 current->scx.kf_tasks[0] = NULL; \
1134 __ret; \
1135 })
1136
1137 #define SCX_CALL_OP_2TASKS_RET(mask, op, task0, task1, args...) \
1138 ({ \
1139 __typeof__(scx_ops.op(task0, task1, ##args)) __ret; \
1140 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \
1141 current->scx.kf_tasks[0] = task0; \
1142 current->scx.kf_tasks[1] = task1; \
1143 __ret = SCX_CALL_OP_RET(mask, op, task0, task1, ##args); \
1144 current->scx.kf_tasks[0] = NULL; \
1145 current->scx.kf_tasks[1] = NULL; \
1146 __ret; \
1147 })
1148
1149 /* @mask is constant, always inline to cull unnecessary branches */
scx_kf_allowed(u32 mask)1150 static __always_inline bool scx_kf_allowed(u32 mask)
1151 {
1152 if (unlikely(!(current->scx.kf_mask & mask))) {
1153 scx_ops_error("kfunc with mask 0x%x called from an operation only allowing 0x%x",
1154 mask, current->scx.kf_mask);
1155 return false;
1156 }
1157
1158 /*
1159 * Enforce nesting boundaries. e.g. A kfunc which can be called from
1160 * DISPATCH must not be called if we're running DEQUEUE which is nested
1161 * inside ops.dispatch(). We don't need to check boundaries for any
1162 * blocking kfuncs as the verifier ensures they're only called from
1163 * sleepable progs.
1164 */
1165 if (unlikely(highest_bit(mask) == SCX_KF_CPU_RELEASE &&
1166 (current->scx.kf_mask & higher_bits(SCX_KF_CPU_RELEASE)))) {
1167 scx_ops_error("cpu_release kfunc called from a nested operation");
1168 return false;
1169 }
1170
1171 if (unlikely(highest_bit(mask) == SCX_KF_DISPATCH &&
1172 (current->scx.kf_mask & higher_bits(SCX_KF_DISPATCH)))) {
1173 scx_ops_error("dispatch kfunc called from a nested operation");
1174 return false;
1175 }
1176
1177 return true;
1178 }
1179
1180 /* see SCX_CALL_OP_TASK() */
scx_kf_allowed_on_arg_tasks(u32 mask,struct task_struct * p)1181 static __always_inline bool scx_kf_allowed_on_arg_tasks(u32 mask,
1182 struct task_struct *p)
1183 {
1184 if (!scx_kf_allowed(mask))
1185 return false;
1186
1187 if (unlikely((p != current->scx.kf_tasks[0] &&
1188 p != current->scx.kf_tasks[1]))) {
1189 scx_ops_error("called on a task not being operated on");
1190 return false;
1191 }
1192
1193 return true;
1194 }
1195
scx_kf_allowed_if_unlocked(void)1196 static bool scx_kf_allowed_if_unlocked(void)
1197 {
1198 return !current->scx.kf_mask;
1199 }
1200
1201 /**
1202 * nldsq_next_task - Iterate to the next task in a non-local DSQ
1203 * @dsq: user dsq being interated
1204 * @cur: current position, %NULL to start iteration
1205 * @rev: walk backwards
1206 *
1207 * Returns %NULL when iteration is finished.
1208 */
nldsq_next_task(struct scx_dispatch_q * dsq,struct task_struct * cur,bool rev)1209 static struct task_struct *nldsq_next_task(struct scx_dispatch_q *dsq,
1210 struct task_struct *cur, bool rev)
1211 {
1212 struct list_head *list_node;
1213 struct scx_dsq_list_node *dsq_lnode;
1214
1215 lockdep_assert_held(&dsq->lock);
1216
1217 if (cur)
1218 list_node = &cur->scx.dsq_list.node;
1219 else
1220 list_node = &dsq->list;
1221
1222 /* find the next task, need to skip BPF iteration cursors */
1223 do {
1224 if (rev)
1225 list_node = list_node->prev;
1226 else
1227 list_node = list_node->next;
1228
1229 if (list_node == &dsq->list)
1230 return NULL;
1231
1232 dsq_lnode = container_of(list_node, struct scx_dsq_list_node,
1233 node);
1234 } while (dsq_lnode->flags & SCX_DSQ_LNODE_ITER_CURSOR);
1235
1236 return container_of(dsq_lnode, struct task_struct, scx.dsq_list);
1237 }
1238
1239 #define nldsq_for_each_task(p, dsq) \
1240 for ((p) = nldsq_next_task((dsq), NULL, false); (p); \
1241 (p) = nldsq_next_task((dsq), (p), false))
1242
1243
1244 /*
1245 * BPF DSQ iterator. Tasks in a non-local DSQ can be iterated in [reverse]
1246 * dispatch order. BPF-visible iterator is opaque and larger to allow future
1247 * changes without breaking backward compatibility. Can be used with
1248 * bpf_for_each(). See bpf_iter_scx_dsq_*().
1249 */
1250 enum scx_dsq_iter_flags {
1251 /* iterate in the reverse dispatch order */
1252 SCX_DSQ_ITER_REV = 1U << 16,
1253
1254 __SCX_DSQ_ITER_HAS_SLICE = 1U << 30,
1255 __SCX_DSQ_ITER_HAS_VTIME = 1U << 31,
1256
1257 __SCX_DSQ_ITER_USER_FLAGS = SCX_DSQ_ITER_REV,
1258 __SCX_DSQ_ITER_ALL_FLAGS = __SCX_DSQ_ITER_USER_FLAGS |
1259 __SCX_DSQ_ITER_HAS_SLICE |
1260 __SCX_DSQ_ITER_HAS_VTIME,
1261 };
1262
1263 struct bpf_iter_scx_dsq_kern {
1264 struct scx_dsq_list_node cursor;
1265 struct scx_dispatch_q *dsq;
1266 u64 slice;
1267 u64 vtime;
1268 } __attribute__((aligned(8)));
1269
1270 struct bpf_iter_scx_dsq {
1271 u64 __opaque[6];
1272 } __attribute__((aligned(8)));
1273
1274
1275 /*
1276 * SCX task iterator.
1277 */
1278 struct scx_task_iter {
1279 struct sched_ext_entity cursor;
1280 struct task_struct *locked;
1281 struct rq *rq;
1282 struct rq_flags rf;
1283 u32 cnt;
1284 };
1285
1286 /**
1287 * scx_task_iter_start - Lock scx_tasks_lock and start a task iteration
1288 * @iter: iterator to init
1289 *
1290 * Initialize @iter and return with scx_tasks_lock held. Once initialized, @iter
1291 * must eventually be stopped with scx_task_iter_stop().
1292 *
1293 * scx_tasks_lock and the rq lock may be released using scx_task_iter_unlock()
1294 * between this and the first next() call or between any two next() calls. If
1295 * the locks are released between two next() calls, the caller is responsible
1296 * for ensuring that the task being iterated remains accessible either through
1297 * RCU read lock or obtaining a reference count.
1298 *
1299 * All tasks which existed when the iteration started are guaranteed to be
1300 * visited as long as they still exist.
1301 */
scx_task_iter_start(struct scx_task_iter * iter)1302 static void scx_task_iter_start(struct scx_task_iter *iter)
1303 {
1304 BUILD_BUG_ON(__SCX_DSQ_ITER_ALL_FLAGS &
1305 ((1U << __SCX_DSQ_LNODE_PRIV_SHIFT) - 1));
1306
1307 spin_lock_irq(&scx_tasks_lock);
1308
1309 iter->cursor = (struct sched_ext_entity){ .flags = SCX_TASK_CURSOR };
1310 list_add(&iter->cursor.tasks_node, &scx_tasks);
1311 iter->locked = NULL;
1312 iter->cnt = 0;
1313 }
1314
__scx_task_iter_rq_unlock(struct scx_task_iter * iter)1315 static void __scx_task_iter_rq_unlock(struct scx_task_iter *iter)
1316 {
1317 if (iter->locked) {
1318 task_rq_unlock(iter->rq, iter->locked, &iter->rf);
1319 iter->locked = NULL;
1320 }
1321 }
1322
1323 /**
1324 * scx_task_iter_unlock - Unlock rq and scx_tasks_lock held by a task iterator
1325 * @iter: iterator to unlock
1326 *
1327 * If @iter is in the middle of a locked iteration, it may be locking the rq of
1328 * the task currently being visited in addition to scx_tasks_lock. Unlock both.
1329 * This function can be safely called anytime during an iteration.
1330 */
scx_task_iter_unlock(struct scx_task_iter * iter)1331 static void scx_task_iter_unlock(struct scx_task_iter *iter)
1332 {
1333 __scx_task_iter_rq_unlock(iter);
1334 spin_unlock_irq(&scx_tasks_lock);
1335 }
1336
1337 /**
1338 * scx_task_iter_relock - Lock scx_tasks_lock released by scx_task_iter_unlock()
1339 * @iter: iterator to re-lock
1340 *
1341 * Re-lock scx_tasks_lock unlocked by scx_task_iter_unlock(). Note that it
1342 * doesn't re-lock the rq lock. Must be called before other iterator operations.
1343 */
scx_task_iter_relock(struct scx_task_iter * iter)1344 static void scx_task_iter_relock(struct scx_task_iter *iter)
1345 {
1346 spin_lock_irq(&scx_tasks_lock);
1347 }
1348
1349 /**
1350 * scx_task_iter_stop - Stop a task iteration and unlock scx_tasks_lock
1351 * @iter: iterator to exit
1352 *
1353 * Exit a previously initialized @iter. Must be called with scx_tasks_lock held
1354 * which is released on return. If the iterator holds a task's rq lock, that rq
1355 * lock is also released. See scx_task_iter_start() for details.
1356 */
scx_task_iter_stop(struct scx_task_iter * iter)1357 static void scx_task_iter_stop(struct scx_task_iter *iter)
1358 {
1359 list_del_init(&iter->cursor.tasks_node);
1360 scx_task_iter_unlock(iter);
1361 }
1362
1363 /**
1364 * scx_task_iter_next - Next task
1365 * @iter: iterator to walk
1366 *
1367 * Visit the next task. See scx_task_iter_start() for details. Locks are dropped
1368 * and re-acquired every %SCX_OPS_TASK_ITER_BATCH iterations to avoid causing
1369 * stalls by holding scx_tasks_lock for too long.
1370 */
scx_task_iter_next(struct scx_task_iter * iter)1371 static struct task_struct *scx_task_iter_next(struct scx_task_iter *iter)
1372 {
1373 struct list_head *cursor = &iter->cursor.tasks_node;
1374 struct sched_ext_entity *pos;
1375
1376 if (!(++iter->cnt % SCX_OPS_TASK_ITER_BATCH)) {
1377 scx_task_iter_unlock(iter);
1378 cond_resched();
1379 scx_task_iter_relock(iter);
1380 }
1381
1382 list_for_each_entry(pos, cursor, tasks_node) {
1383 if (&pos->tasks_node == &scx_tasks)
1384 return NULL;
1385 if (!(pos->flags & SCX_TASK_CURSOR)) {
1386 list_move(cursor, &pos->tasks_node);
1387 return container_of(pos, struct task_struct, scx);
1388 }
1389 }
1390
1391 /* can't happen, should always terminate at scx_tasks above */
1392 BUG();
1393 }
1394
1395 /**
1396 * scx_task_iter_next_locked - Next non-idle task with its rq locked
1397 * @iter: iterator to walk
1398 * @include_dead: Whether we should include dead tasks in the iteration
1399 *
1400 * Visit the non-idle task with its rq lock held. Allows callers to specify
1401 * whether they would like to filter out dead tasks. See scx_task_iter_start()
1402 * for details.
1403 */
scx_task_iter_next_locked(struct scx_task_iter * iter)1404 static struct task_struct *scx_task_iter_next_locked(struct scx_task_iter *iter)
1405 {
1406 struct task_struct *p;
1407
1408 __scx_task_iter_rq_unlock(iter);
1409
1410 while ((p = scx_task_iter_next(iter))) {
1411 /*
1412 * scx_task_iter is used to prepare and move tasks into SCX
1413 * while loading the BPF scheduler and vice-versa while
1414 * unloading. The init_tasks ("swappers") should be excluded
1415 * from the iteration because:
1416 *
1417 * - It's unsafe to use __setschduler_prio() on an init_task to
1418 * determine the sched_class to use as it won't preserve its
1419 * idle_sched_class.
1420 *
1421 * - ops.init/exit_task() can easily be confused if called with
1422 * init_tasks as they, e.g., share PID 0.
1423 *
1424 * As init_tasks are never scheduled through SCX, they can be
1425 * skipped safely. Note that is_idle_task() which tests %PF_IDLE
1426 * doesn't work here:
1427 *
1428 * - %PF_IDLE may not be set for an init_task whose CPU hasn't
1429 * yet been onlined.
1430 *
1431 * - %PF_IDLE can be set on tasks that are not init_tasks. See
1432 * play_idle_precise() used by CONFIG_IDLE_INJECT.
1433 *
1434 * Test for idle_sched_class as only init_tasks are on it.
1435 */
1436 if (p->sched_class != &idle_sched_class)
1437 break;
1438 }
1439 if (!p)
1440 return NULL;
1441
1442 iter->rq = task_rq_lock(p, &iter->rf);
1443 iter->locked = p;
1444
1445 return p;
1446 }
1447
scx_ops_enable_state(void)1448 static enum scx_ops_enable_state scx_ops_enable_state(void)
1449 {
1450 return atomic_read(&scx_ops_enable_state_var);
1451 }
1452
1453 static enum scx_ops_enable_state
scx_ops_set_enable_state(enum scx_ops_enable_state to)1454 scx_ops_set_enable_state(enum scx_ops_enable_state to)
1455 {
1456 return atomic_xchg(&scx_ops_enable_state_var, to);
1457 }
1458
scx_ops_tryset_enable_state(enum scx_ops_enable_state to,enum scx_ops_enable_state from)1459 static bool scx_ops_tryset_enable_state(enum scx_ops_enable_state to,
1460 enum scx_ops_enable_state from)
1461 {
1462 int from_v = from;
1463
1464 return atomic_try_cmpxchg(&scx_ops_enable_state_var, &from_v, to);
1465 }
1466
scx_rq_bypassing(struct rq * rq)1467 static bool scx_rq_bypassing(struct rq *rq)
1468 {
1469 return unlikely(rq->scx.flags & SCX_RQ_BYPASSING);
1470 }
1471
1472 /**
1473 * wait_ops_state - Busy-wait the specified ops state to end
1474 * @p: target task
1475 * @opss: state to wait the end of
1476 *
1477 * Busy-wait for @p to transition out of @opss. This can only be used when the
1478 * state part of @opss is %SCX_QUEUEING or %SCX_DISPATCHING. This function also
1479 * has load_acquire semantics to ensure that the caller can see the updates made
1480 * in the enqueueing and dispatching paths.
1481 */
wait_ops_state(struct task_struct * p,unsigned long opss)1482 static void wait_ops_state(struct task_struct *p, unsigned long opss)
1483 {
1484 do {
1485 cpu_relax();
1486 } while (atomic_long_read_acquire(&p->scx.ops_state) == opss);
1487 }
1488
1489 /**
1490 * ops_cpu_valid - Verify a cpu number
1491 * @cpu: cpu number which came from a BPF ops
1492 * @where: extra information reported on error
1493 *
1494 * @cpu is a cpu number which came from the BPF scheduler and can be any value.
1495 * Verify that it is in range and one of the possible cpus. If invalid, trigger
1496 * an ops error.
1497 */
ops_cpu_valid(s32 cpu,const char * where)1498 static bool ops_cpu_valid(s32 cpu, const char *where)
1499 {
1500 if (likely(cpu >= 0 && cpu < nr_cpu_ids && cpu_possible(cpu))) {
1501 return true;
1502 } else {
1503 scx_ops_error("invalid CPU %d%s%s", cpu,
1504 where ? " " : "", where ?: "");
1505 return false;
1506 }
1507 }
1508
1509 /**
1510 * ops_sanitize_err - Sanitize a -errno value
1511 * @ops_name: operation to blame on failure
1512 * @err: -errno value to sanitize
1513 *
1514 * Verify @err is a valid -errno. If not, trigger scx_ops_error() and return
1515 * -%EPROTO. This is necessary because returning a rogue -errno up the chain can
1516 * cause misbehaviors. For an example, a large negative return from
1517 * ops.init_task() triggers an oops when passed up the call chain because the
1518 * value fails IS_ERR() test after being encoded with ERR_PTR() and then is
1519 * handled as a pointer.
1520 */
ops_sanitize_err(const char * ops_name,s32 err)1521 static int ops_sanitize_err(const char *ops_name, s32 err)
1522 {
1523 if (err < 0 && err >= -MAX_ERRNO)
1524 return err;
1525
1526 scx_ops_error("ops.%s() returned an invalid errno %d", ops_name, err);
1527 return -EPROTO;
1528 }
1529
run_deferred(struct rq * rq)1530 static void run_deferred(struct rq *rq)
1531 {
1532 process_ddsp_deferred_locals(rq);
1533 }
1534
1535 #ifdef CONFIG_SMP
deferred_bal_cb_workfn(struct rq * rq)1536 static void deferred_bal_cb_workfn(struct rq *rq)
1537 {
1538 run_deferred(rq);
1539 }
1540 #endif
1541
deferred_irq_workfn(struct irq_work * irq_work)1542 static void deferred_irq_workfn(struct irq_work *irq_work)
1543 {
1544 struct rq *rq = container_of(irq_work, struct rq, scx.deferred_irq_work);
1545
1546 raw_spin_rq_lock(rq);
1547 run_deferred(rq);
1548 raw_spin_rq_unlock(rq);
1549 }
1550
1551 /**
1552 * schedule_deferred - Schedule execution of deferred actions on an rq
1553 * @rq: target rq
1554 *
1555 * Schedule execution of deferred actions on @rq. Must be called with @rq
1556 * locked. Deferred actions are executed with @rq locked but unpinned, and thus
1557 * can unlock @rq to e.g. migrate tasks to other rqs.
1558 */
schedule_deferred(struct rq * rq)1559 static void schedule_deferred(struct rq *rq)
1560 {
1561 lockdep_assert_rq_held(rq);
1562
1563 #ifdef CONFIG_SMP
1564 /*
1565 * If in the middle of waking up a task, task_woken_scx() will be called
1566 * afterwards which will then run the deferred actions, no need to
1567 * schedule anything.
1568 */
1569 if (rq->scx.flags & SCX_RQ_IN_WAKEUP)
1570 return;
1571
1572 /*
1573 * If in balance, the balance callbacks will be called before rq lock is
1574 * released. Schedule one.
1575 */
1576 if (rq->scx.flags & SCX_RQ_IN_BALANCE) {
1577 queue_balance_callback(rq, &rq->scx.deferred_bal_cb,
1578 deferred_bal_cb_workfn);
1579 return;
1580 }
1581 #endif
1582 /*
1583 * No scheduler hooks available. Queue an irq work. They are executed on
1584 * IRQ re-enable which may take a bit longer than the scheduler hooks.
1585 * The above WAKEUP and BALANCE paths should cover most of the cases and
1586 * the time to IRQ re-enable shouldn't be long.
1587 */
1588 irq_work_queue(&rq->scx.deferred_irq_work);
1589 }
1590
1591 /**
1592 * touch_core_sched - Update timestamp used for core-sched task ordering
1593 * @rq: rq to read clock from, must be locked
1594 * @p: task to update the timestamp for
1595 *
1596 * Update @p->scx.core_sched_at timestamp. This is used by scx_prio_less() to
1597 * implement global or local-DSQ FIFO ordering for core-sched. Should be called
1598 * when a task becomes runnable and its turn on the CPU ends (e.g. slice
1599 * exhaustion).
1600 */
touch_core_sched(struct rq * rq,struct task_struct * p)1601 static void touch_core_sched(struct rq *rq, struct task_struct *p)
1602 {
1603 lockdep_assert_rq_held(rq);
1604
1605 #ifdef CONFIG_SCHED_CORE
1606 /*
1607 * It's okay to update the timestamp spuriously. Use
1608 * sched_core_disabled() which is cheaper than enabled().
1609 *
1610 * As this is used to determine ordering between tasks of sibling CPUs,
1611 * it may be better to use per-core dispatch sequence instead.
1612 */
1613 if (!sched_core_disabled())
1614 p->scx.core_sched_at = sched_clock_cpu(cpu_of(rq));
1615 #endif
1616 }
1617
1618 /**
1619 * touch_core_sched_dispatch - Update core-sched timestamp on dispatch
1620 * @rq: rq to read clock from, must be locked
1621 * @p: task being dispatched
1622 *
1623 * If the BPF scheduler implements custom core-sched ordering via
1624 * ops.core_sched_before(), @p->scx.core_sched_at is used to implement FIFO
1625 * ordering within each local DSQ. This function is called from dispatch paths
1626 * and updates @p->scx.core_sched_at if custom core-sched ordering is in effect.
1627 */
touch_core_sched_dispatch(struct rq * rq,struct task_struct * p)1628 static void touch_core_sched_dispatch(struct rq *rq, struct task_struct *p)
1629 {
1630 lockdep_assert_rq_held(rq);
1631
1632 #ifdef CONFIG_SCHED_CORE
1633 if (SCX_HAS_OP(core_sched_before))
1634 touch_core_sched(rq, p);
1635 #endif
1636 }
1637
update_curr_scx(struct rq * rq)1638 static void update_curr_scx(struct rq *rq)
1639 {
1640 struct task_struct *curr = rq->curr;
1641 s64 delta_exec;
1642
1643 delta_exec = update_curr_common(rq);
1644 if (unlikely(delta_exec <= 0))
1645 return;
1646
1647 if (curr->scx.slice != SCX_SLICE_INF) {
1648 curr->scx.slice -= min_t(u64, curr->scx.slice, delta_exec);
1649 if (!curr->scx.slice)
1650 touch_core_sched(rq, curr);
1651 }
1652 }
1653
scx_dsq_priq_less(struct rb_node * node_a,const struct rb_node * node_b)1654 static bool scx_dsq_priq_less(struct rb_node *node_a,
1655 const struct rb_node *node_b)
1656 {
1657 const struct task_struct *a =
1658 container_of(node_a, struct task_struct, scx.dsq_priq);
1659 const struct task_struct *b =
1660 container_of(node_b, struct task_struct, scx.dsq_priq);
1661
1662 return time_before64(a->scx.dsq_vtime, b->scx.dsq_vtime);
1663 }
1664
dsq_mod_nr(struct scx_dispatch_q * dsq,s32 delta)1665 static void dsq_mod_nr(struct scx_dispatch_q *dsq, s32 delta)
1666 {
1667 /* scx_bpf_dsq_nr_queued() reads ->nr without locking, use WRITE_ONCE() */
1668 WRITE_ONCE(dsq->nr, dsq->nr + delta);
1669 }
1670
dispatch_enqueue(struct scx_dispatch_q * dsq,struct task_struct * p,u64 enq_flags)1671 static void dispatch_enqueue(struct scx_dispatch_q *dsq, struct task_struct *p,
1672 u64 enq_flags)
1673 {
1674 bool is_local = dsq->id == SCX_DSQ_LOCAL;
1675
1676 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node));
1677 WARN_ON_ONCE((p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) ||
1678 !RB_EMPTY_NODE(&p->scx.dsq_priq));
1679
1680 if (!is_local) {
1681 raw_spin_lock(&dsq->lock);
1682 if (unlikely(dsq->id == SCX_DSQ_INVALID)) {
1683 scx_ops_error("attempting to dispatch to a destroyed dsq");
1684 /* fall back to the global dsq */
1685 raw_spin_unlock(&dsq->lock);
1686 dsq = find_global_dsq(p);
1687 raw_spin_lock(&dsq->lock);
1688 }
1689 }
1690
1691 if (unlikely((dsq->id & SCX_DSQ_FLAG_BUILTIN) &&
1692 (enq_flags & SCX_ENQ_DSQ_PRIQ))) {
1693 /*
1694 * SCX_DSQ_LOCAL and SCX_DSQ_GLOBAL DSQs always consume from
1695 * their FIFO queues. To avoid confusion and accidentally
1696 * starving vtime-dispatched tasks by FIFO-dispatched tasks, we
1697 * disallow any internal DSQ from doing vtime ordering of
1698 * tasks.
1699 */
1700 scx_ops_error("cannot use vtime ordering for built-in DSQs");
1701 enq_flags &= ~SCX_ENQ_DSQ_PRIQ;
1702 }
1703
1704 if (enq_flags & SCX_ENQ_DSQ_PRIQ) {
1705 struct rb_node *rbp;
1706
1707 /*
1708 * A PRIQ DSQ shouldn't be using FIFO enqueueing. As tasks are
1709 * linked to both the rbtree and list on PRIQs, this can only be
1710 * tested easily when adding the first task.
1711 */
1712 if (unlikely(RB_EMPTY_ROOT(&dsq->priq) &&
1713 nldsq_next_task(dsq, NULL, false)))
1714 scx_ops_error("DSQ ID 0x%016llx already had FIFO-enqueued tasks",
1715 dsq->id);
1716
1717 p->scx.dsq_flags |= SCX_TASK_DSQ_ON_PRIQ;
1718 rb_add(&p->scx.dsq_priq, &dsq->priq, scx_dsq_priq_less);
1719
1720 /*
1721 * Find the previous task and insert after it on the list so
1722 * that @dsq->list is vtime ordered.
1723 */
1724 rbp = rb_prev(&p->scx.dsq_priq);
1725 if (rbp) {
1726 struct task_struct *prev =
1727 container_of(rbp, struct task_struct,
1728 scx.dsq_priq);
1729 list_add(&p->scx.dsq_list.node, &prev->scx.dsq_list.node);
1730 } else {
1731 list_add(&p->scx.dsq_list.node, &dsq->list);
1732 }
1733 } else {
1734 /* a FIFO DSQ shouldn't be using PRIQ enqueuing */
1735 if (unlikely(!RB_EMPTY_ROOT(&dsq->priq)))
1736 scx_ops_error("DSQ ID 0x%016llx already had PRIQ-enqueued tasks",
1737 dsq->id);
1738
1739 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT))
1740 list_add(&p->scx.dsq_list.node, &dsq->list);
1741 else
1742 list_add_tail(&p->scx.dsq_list.node, &dsq->list);
1743 }
1744
1745 /* seq records the order tasks are queued, used by BPF DSQ iterator */
1746 dsq->seq++;
1747 p->scx.dsq_seq = dsq->seq;
1748
1749 dsq_mod_nr(dsq, 1);
1750 p->scx.dsq = dsq;
1751
1752 /*
1753 * scx.ddsp_dsq_id and scx.ddsp_enq_flags are only relevant on the
1754 * direct dispatch path, but we clear them here because the direct
1755 * dispatch verdict may be overridden on the enqueue path during e.g.
1756 * bypass.
1757 */
1758 p->scx.ddsp_dsq_id = SCX_DSQ_INVALID;
1759 p->scx.ddsp_enq_flags = 0;
1760
1761 /*
1762 * We're transitioning out of QUEUEING or DISPATCHING. store_release to
1763 * match waiters' load_acquire.
1764 */
1765 if (enq_flags & SCX_ENQ_CLEAR_OPSS)
1766 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
1767
1768 if (is_local) {
1769 struct rq *rq = container_of(dsq, struct rq, scx.local_dsq);
1770 bool preempt = false;
1771
1772 if ((enq_flags & SCX_ENQ_PREEMPT) && p != rq->curr &&
1773 rq->curr->sched_class == &ext_sched_class) {
1774 rq->curr->scx.slice = 0;
1775 preempt = true;
1776 }
1777
1778 if (preempt || sched_class_above(&ext_sched_class,
1779 rq->curr->sched_class))
1780 resched_curr(rq);
1781 } else {
1782 raw_spin_unlock(&dsq->lock);
1783 }
1784 }
1785
task_unlink_from_dsq(struct task_struct * p,struct scx_dispatch_q * dsq)1786 static void task_unlink_from_dsq(struct task_struct *p,
1787 struct scx_dispatch_q *dsq)
1788 {
1789 WARN_ON_ONCE(list_empty(&p->scx.dsq_list.node));
1790
1791 if (p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) {
1792 rb_erase(&p->scx.dsq_priq, &dsq->priq);
1793 RB_CLEAR_NODE(&p->scx.dsq_priq);
1794 p->scx.dsq_flags &= ~SCX_TASK_DSQ_ON_PRIQ;
1795 }
1796
1797 list_del_init(&p->scx.dsq_list.node);
1798 dsq_mod_nr(dsq, -1);
1799 }
1800
dispatch_dequeue(struct rq * rq,struct task_struct * p)1801 static void dispatch_dequeue(struct rq *rq, struct task_struct *p)
1802 {
1803 struct scx_dispatch_q *dsq = p->scx.dsq;
1804 bool is_local = dsq == &rq->scx.local_dsq;
1805
1806 if (!dsq) {
1807 /*
1808 * If !dsq && on-list, @p is on @rq's ddsp_deferred_locals.
1809 * Unlinking is all that's needed to cancel.
1810 */
1811 if (unlikely(!list_empty(&p->scx.dsq_list.node)))
1812 list_del_init(&p->scx.dsq_list.node);
1813
1814 /*
1815 * When dispatching directly from the BPF scheduler to a local
1816 * DSQ, the task isn't associated with any DSQ but
1817 * @p->scx.holding_cpu may be set under the protection of
1818 * %SCX_OPSS_DISPATCHING.
1819 */
1820 if (p->scx.holding_cpu >= 0)
1821 p->scx.holding_cpu = -1;
1822
1823 return;
1824 }
1825
1826 if (!is_local)
1827 raw_spin_lock(&dsq->lock);
1828
1829 /*
1830 * Now that we hold @dsq->lock, @p->holding_cpu and @p->scx.dsq_* can't
1831 * change underneath us.
1832 */
1833 if (p->scx.holding_cpu < 0) {
1834 /* @p must still be on @dsq, dequeue */
1835 task_unlink_from_dsq(p, dsq);
1836 } else {
1837 /*
1838 * We're racing against dispatch_to_local_dsq() which already
1839 * removed @p from @dsq and set @p->scx.holding_cpu. Clear the
1840 * holding_cpu which tells dispatch_to_local_dsq() that it lost
1841 * the race.
1842 */
1843 WARN_ON_ONCE(!list_empty(&p->scx.dsq_list.node));
1844 p->scx.holding_cpu = -1;
1845 }
1846 p->scx.dsq = NULL;
1847
1848 if (!is_local)
1849 raw_spin_unlock(&dsq->lock);
1850 }
1851
find_dsq_for_dispatch(struct rq * rq,u64 dsq_id,struct task_struct * p)1852 static struct scx_dispatch_q *find_dsq_for_dispatch(struct rq *rq, u64 dsq_id,
1853 struct task_struct *p)
1854 {
1855 struct scx_dispatch_q *dsq;
1856
1857 if (dsq_id == SCX_DSQ_LOCAL)
1858 return &rq->scx.local_dsq;
1859
1860 if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) {
1861 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK;
1862
1863 if (!ops_cpu_valid(cpu, "in SCX_DSQ_LOCAL_ON dispatch verdict"))
1864 return find_global_dsq(p);
1865
1866 return &cpu_rq(cpu)->scx.local_dsq;
1867 }
1868
1869 if (dsq_id == SCX_DSQ_GLOBAL)
1870 dsq = find_global_dsq(p);
1871 else
1872 dsq = find_user_dsq(dsq_id);
1873
1874 if (unlikely(!dsq)) {
1875 scx_ops_error("non-existent DSQ 0x%llx for %s[%d]",
1876 dsq_id, p->comm, p->pid);
1877 return find_global_dsq(p);
1878 }
1879
1880 return dsq;
1881 }
1882
mark_direct_dispatch(struct task_struct * ddsp_task,struct task_struct * p,u64 dsq_id,u64 enq_flags)1883 static void mark_direct_dispatch(struct task_struct *ddsp_task,
1884 struct task_struct *p, u64 dsq_id,
1885 u64 enq_flags)
1886 {
1887 /*
1888 * Mark that dispatch already happened from ops.select_cpu() or
1889 * ops.enqueue() by spoiling direct_dispatch_task with a non-NULL value
1890 * which can never match a valid task pointer.
1891 */
1892 __this_cpu_write(direct_dispatch_task, ERR_PTR(-ESRCH));
1893
1894 /* @p must match the task on the enqueue path */
1895 if (unlikely(p != ddsp_task)) {
1896 if (IS_ERR(ddsp_task))
1897 scx_ops_error("%s[%d] already direct-dispatched",
1898 p->comm, p->pid);
1899 else
1900 scx_ops_error("scheduling for %s[%d] but trying to direct-dispatch %s[%d]",
1901 ddsp_task->comm, ddsp_task->pid,
1902 p->comm, p->pid);
1903 return;
1904 }
1905
1906 WARN_ON_ONCE(p->scx.ddsp_dsq_id != SCX_DSQ_INVALID);
1907 WARN_ON_ONCE(p->scx.ddsp_enq_flags);
1908
1909 p->scx.ddsp_dsq_id = dsq_id;
1910 p->scx.ddsp_enq_flags = enq_flags;
1911 }
1912
direct_dispatch(struct task_struct * p,u64 enq_flags)1913 static void direct_dispatch(struct task_struct *p, u64 enq_flags)
1914 {
1915 struct rq *rq = task_rq(p);
1916 struct scx_dispatch_q *dsq =
1917 find_dsq_for_dispatch(rq, p->scx.ddsp_dsq_id, p);
1918
1919 touch_core_sched_dispatch(rq, p);
1920
1921 p->scx.ddsp_enq_flags |= enq_flags;
1922
1923 /*
1924 * We are in the enqueue path with @rq locked and pinned, and thus can't
1925 * double lock a remote rq and enqueue to its local DSQ. For
1926 * DSQ_LOCAL_ON verdicts targeting the local DSQ of a remote CPU, defer
1927 * the enqueue so that it's executed when @rq can be unlocked.
1928 */
1929 if (dsq->id == SCX_DSQ_LOCAL && dsq != &rq->scx.local_dsq) {
1930 unsigned long opss;
1931
1932 opss = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_STATE_MASK;
1933
1934 switch (opss & SCX_OPSS_STATE_MASK) {
1935 case SCX_OPSS_NONE:
1936 break;
1937 case SCX_OPSS_QUEUEING:
1938 /*
1939 * As @p was never passed to the BPF side, _release is
1940 * not strictly necessary. Still do it for consistency.
1941 */
1942 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
1943 break;
1944 default:
1945 WARN_ONCE(true, "sched_ext: %s[%d] has invalid ops state 0x%lx in direct_dispatch()",
1946 p->comm, p->pid, opss);
1947 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
1948 break;
1949 }
1950
1951 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node));
1952 list_add_tail(&p->scx.dsq_list.node,
1953 &rq->scx.ddsp_deferred_locals);
1954 schedule_deferred(rq);
1955 return;
1956 }
1957
1958 dispatch_enqueue(dsq, p, p->scx.ddsp_enq_flags | SCX_ENQ_CLEAR_OPSS);
1959 }
1960
scx_rq_online(struct rq * rq)1961 static bool scx_rq_online(struct rq *rq)
1962 {
1963 /*
1964 * Test both cpu_active() and %SCX_RQ_ONLINE. %SCX_RQ_ONLINE indicates
1965 * the online state as seen from the BPF scheduler. cpu_active() test
1966 * guarantees that, if this function returns %true, %SCX_RQ_ONLINE will
1967 * stay set until the current scheduling operation is complete even if
1968 * we aren't locking @rq.
1969 */
1970 return likely((rq->scx.flags & SCX_RQ_ONLINE) && cpu_active(cpu_of(rq)));
1971 }
1972
do_enqueue_task(struct rq * rq,struct task_struct * p,u64 enq_flags,int sticky_cpu)1973 static void do_enqueue_task(struct rq *rq, struct task_struct *p, u64 enq_flags,
1974 int sticky_cpu)
1975 {
1976 struct task_struct **ddsp_taskp;
1977 unsigned long qseq;
1978
1979 WARN_ON_ONCE(!(p->scx.flags & SCX_TASK_QUEUED));
1980
1981 /* rq migration */
1982 if (sticky_cpu == cpu_of(rq))
1983 goto local_norefill;
1984
1985 /*
1986 * If !scx_rq_online(), we already told the BPF scheduler that the CPU
1987 * is offline and are just running the hotplug path. Don't bother the
1988 * BPF scheduler.
1989 */
1990 if (!scx_rq_online(rq))
1991 goto local;
1992
1993 if (scx_rq_bypassing(rq))
1994 goto global;
1995
1996 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID)
1997 goto direct;
1998
1999 /* see %SCX_OPS_ENQ_EXITING */
2000 if (!static_branch_unlikely(&scx_ops_enq_exiting) &&
2001 unlikely(p->flags & PF_EXITING))
2002 goto local;
2003
2004 if (!SCX_HAS_OP(enqueue))
2005 goto global;
2006
2007 /* DSQ bypass didn't trigger, enqueue on the BPF scheduler */
2008 qseq = rq->scx.ops_qseq++ << SCX_OPSS_QSEQ_SHIFT;
2009
2010 WARN_ON_ONCE(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE);
2011 atomic_long_set(&p->scx.ops_state, SCX_OPSS_QUEUEING | qseq);
2012
2013 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task);
2014 WARN_ON_ONCE(*ddsp_taskp);
2015 *ddsp_taskp = p;
2016
2017 SCX_CALL_OP_TASK(SCX_KF_ENQUEUE, enqueue, p, enq_flags);
2018
2019 *ddsp_taskp = NULL;
2020 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID)
2021 goto direct;
2022
2023 /*
2024 * If not directly dispatched, QUEUEING isn't clear yet and dispatch or
2025 * dequeue may be waiting. The store_release matches their load_acquire.
2026 */
2027 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_QUEUED | qseq);
2028 return;
2029
2030 direct:
2031 direct_dispatch(p, enq_flags);
2032 return;
2033
2034 local:
2035 /*
2036 * For task-ordering, slice refill must be treated as implying the end
2037 * of the current slice. Otherwise, the longer @p stays on the CPU, the
2038 * higher priority it becomes from scx_prio_less()'s POV.
2039 */
2040 touch_core_sched(rq, p);
2041 p->scx.slice = SCX_SLICE_DFL;
2042 local_norefill:
2043 dispatch_enqueue(&rq->scx.local_dsq, p, enq_flags);
2044 return;
2045
2046 global:
2047 touch_core_sched(rq, p); /* see the comment in local: */
2048 p->scx.slice = SCX_SLICE_DFL;
2049 dispatch_enqueue(find_global_dsq(p), p, enq_flags);
2050 }
2051
task_runnable(const struct task_struct * p)2052 static bool task_runnable(const struct task_struct *p)
2053 {
2054 return !list_empty(&p->scx.runnable_node);
2055 }
2056
set_task_runnable(struct rq * rq,struct task_struct * p)2057 static void set_task_runnable(struct rq *rq, struct task_struct *p)
2058 {
2059 lockdep_assert_rq_held(rq);
2060
2061 if (p->scx.flags & SCX_TASK_RESET_RUNNABLE_AT) {
2062 p->scx.runnable_at = jiffies;
2063 p->scx.flags &= ~SCX_TASK_RESET_RUNNABLE_AT;
2064 }
2065
2066 /*
2067 * list_add_tail() must be used. scx_ops_bypass() depends on tasks being
2068 * appened to the runnable_list.
2069 */
2070 list_add_tail(&p->scx.runnable_node, &rq->scx.runnable_list);
2071 }
2072
clr_task_runnable(struct task_struct * p,bool reset_runnable_at)2073 static void clr_task_runnable(struct task_struct *p, bool reset_runnable_at)
2074 {
2075 list_del_init(&p->scx.runnable_node);
2076 if (reset_runnable_at)
2077 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT;
2078 }
2079
enqueue_task_scx(struct rq * rq,struct task_struct * p,int enq_flags)2080 static void enqueue_task_scx(struct rq *rq, struct task_struct *p, int enq_flags)
2081 {
2082 int sticky_cpu = p->scx.sticky_cpu;
2083
2084 if (enq_flags & ENQUEUE_WAKEUP)
2085 rq->scx.flags |= SCX_RQ_IN_WAKEUP;
2086
2087 enq_flags |= rq->scx.extra_enq_flags;
2088
2089 if (sticky_cpu >= 0)
2090 p->scx.sticky_cpu = -1;
2091
2092 /*
2093 * Restoring a running task will be immediately followed by
2094 * set_next_task_scx() which expects the task to not be on the BPF
2095 * scheduler as tasks can only start running through local DSQs. Force
2096 * direct-dispatch into the local DSQ by setting the sticky_cpu.
2097 */
2098 if (unlikely(enq_flags & ENQUEUE_RESTORE) && task_current(rq, p))
2099 sticky_cpu = cpu_of(rq);
2100
2101 if (p->scx.flags & SCX_TASK_QUEUED) {
2102 WARN_ON_ONCE(!task_runnable(p));
2103 goto out;
2104 }
2105
2106 set_task_runnable(rq, p);
2107 p->scx.flags |= SCX_TASK_QUEUED;
2108 rq->scx.nr_running++;
2109 add_nr_running(rq, 1);
2110
2111 if (SCX_HAS_OP(runnable) && !task_on_rq_migrating(p))
2112 SCX_CALL_OP_TASK(SCX_KF_REST, runnable, p, enq_flags);
2113
2114 if (enq_flags & SCX_ENQ_WAKEUP)
2115 touch_core_sched(rq, p);
2116
2117 do_enqueue_task(rq, p, enq_flags, sticky_cpu);
2118 out:
2119 rq->scx.flags &= ~SCX_RQ_IN_WAKEUP;
2120 }
2121
ops_dequeue(struct task_struct * p,u64 deq_flags)2122 static void ops_dequeue(struct task_struct *p, u64 deq_flags)
2123 {
2124 unsigned long opss;
2125
2126 /* dequeue is always temporary, don't reset runnable_at */
2127 clr_task_runnable(p, false);
2128
2129 /* acquire ensures that we see the preceding updates on QUEUED */
2130 opss = atomic_long_read_acquire(&p->scx.ops_state);
2131
2132 switch (opss & SCX_OPSS_STATE_MASK) {
2133 case SCX_OPSS_NONE:
2134 break;
2135 case SCX_OPSS_QUEUEING:
2136 /*
2137 * QUEUEING is started and finished while holding @p's rq lock.
2138 * As we're holding the rq lock now, we shouldn't see QUEUEING.
2139 */
2140 BUG();
2141 case SCX_OPSS_QUEUED:
2142 if (SCX_HAS_OP(dequeue))
2143 SCX_CALL_OP_TASK(SCX_KF_REST, dequeue, p, deq_flags);
2144
2145 if (atomic_long_try_cmpxchg(&p->scx.ops_state, &opss,
2146 SCX_OPSS_NONE))
2147 break;
2148 fallthrough;
2149 case SCX_OPSS_DISPATCHING:
2150 /*
2151 * If @p is being dispatched from the BPF scheduler to a DSQ,
2152 * wait for the transfer to complete so that @p doesn't get
2153 * added to its DSQ after dequeueing is complete.
2154 *
2155 * As we're waiting on DISPATCHING with the rq locked, the
2156 * dispatching side shouldn't try to lock the rq while
2157 * DISPATCHING is set. See dispatch_to_local_dsq().
2158 *
2159 * DISPATCHING shouldn't have qseq set and control can reach
2160 * here with NONE @opss from the above QUEUED case block.
2161 * Explicitly wait on %SCX_OPSS_DISPATCHING instead of @opss.
2162 */
2163 wait_ops_state(p, SCX_OPSS_DISPATCHING);
2164 BUG_ON(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE);
2165 break;
2166 }
2167 }
2168
dequeue_task_scx(struct rq * rq,struct task_struct * p,int deq_flags)2169 static bool dequeue_task_scx(struct rq *rq, struct task_struct *p, int deq_flags)
2170 {
2171 if (!(p->scx.flags & SCX_TASK_QUEUED)) {
2172 WARN_ON_ONCE(task_runnable(p));
2173 return true;
2174 }
2175
2176 ops_dequeue(p, deq_flags);
2177
2178 /*
2179 * A currently running task which is going off @rq first gets dequeued
2180 * and then stops running. As we want running <-> stopping transitions
2181 * to be contained within runnable <-> quiescent transitions, trigger
2182 * ->stopping() early here instead of in put_prev_task_scx().
2183 *
2184 * @p may go through multiple stopping <-> running transitions between
2185 * here and put_prev_task_scx() if task attribute changes occur while
2186 * balance_scx() leaves @rq unlocked. However, they don't contain any
2187 * information meaningful to the BPF scheduler and can be suppressed by
2188 * skipping the callbacks if the task is !QUEUED.
2189 */
2190 if (SCX_HAS_OP(stopping) && task_current(rq, p)) {
2191 update_curr_scx(rq);
2192 SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, false);
2193 }
2194
2195 if (SCX_HAS_OP(quiescent) && !task_on_rq_migrating(p))
2196 SCX_CALL_OP_TASK(SCX_KF_REST, quiescent, p, deq_flags);
2197
2198 if (deq_flags & SCX_DEQ_SLEEP)
2199 p->scx.flags |= SCX_TASK_DEQD_FOR_SLEEP;
2200 else
2201 p->scx.flags &= ~SCX_TASK_DEQD_FOR_SLEEP;
2202
2203 p->scx.flags &= ~SCX_TASK_QUEUED;
2204 rq->scx.nr_running--;
2205 sub_nr_running(rq, 1);
2206
2207 dispatch_dequeue(rq, p);
2208 return true;
2209 }
2210
yield_task_scx(struct rq * rq)2211 static void yield_task_scx(struct rq *rq)
2212 {
2213 struct task_struct *p = rq->curr;
2214
2215 if (SCX_HAS_OP(yield))
2216 SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, p, NULL);
2217 else
2218 p->scx.slice = 0;
2219 }
2220
yield_to_task_scx(struct rq * rq,struct task_struct * to)2221 static bool yield_to_task_scx(struct rq *rq, struct task_struct *to)
2222 {
2223 struct task_struct *from = rq->curr;
2224
2225 if (SCX_HAS_OP(yield))
2226 return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, from, to);
2227 else
2228 return false;
2229 }
2230
move_local_task_to_local_dsq(struct task_struct * p,u64 enq_flags,struct scx_dispatch_q * src_dsq,struct rq * dst_rq)2231 static void move_local_task_to_local_dsq(struct task_struct *p, u64 enq_flags,
2232 struct scx_dispatch_q *src_dsq,
2233 struct rq *dst_rq)
2234 {
2235 struct scx_dispatch_q *dst_dsq = &dst_rq->scx.local_dsq;
2236
2237 /* @dsq is locked and @p is on @dst_rq */
2238 lockdep_assert_held(&src_dsq->lock);
2239 lockdep_assert_rq_held(dst_rq);
2240
2241 WARN_ON_ONCE(p->scx.holding_cpu >= 0);
2242
2243 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT))
2244 list_add(&p->scx.dsq_list.node, &dst_dsq->list);
2245 else
2246 list_add_tail(&p->scx.dsq_list.node, &dst_dsq->list);
2247
2248 dsq_mod_nr(dst_dsq, 1);
2249 p->scx.dsq = dst_dsq;
2250 }
2251
2252 #ifdef CONFIG_SMP
2253 /**
2254 * move_remote_task_to_local_dsq - Move a task from a foreign rq to a local DSQ
2255 * @p: task to move
2256 * @enq_flags: %SCX_ENQ_*
2257 * @src_rq: rq to move the task from, locked on entry, released on return
2258 * @dst_rq: rq to move the task into, locked on return
2259 *
2260 * Move @p which is currently on @src_rq to @dst_rq's local DSQ.
2261 */
move_remote_task_to_local_dsq(struct task_struct * p,u64 enq_flags,struct rq * src_rq,struct rq * dst_rq)2262 static void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags,
2263 struct rq *src_rq, struct rq *dst_rq)
2264 {
2265 lockdep_assert_rq_held(src_rq);
2266
2267 /* the following marks @p MIGRATING which excludes dequeue */
2268 deactivate_task(src_rq, p, 0);
2269 set_task_cpu(p, cpu_of(dst_rq));
2270 p->scx.sticky_cpu = cpu_of(dst_rq);
2271
2272 raw_spin_rq_unlock(src_rq);
2273 raw_spin_rq_lock(dst_rq);
2274
2275 /*
2276 * We want to pass scx-specific enq_flags but activate_task() will
2277 * truncate the upper 32 bit. As we own @rq, we can pass them through
2278 * @rq->scx.extra_enq_flags instead.
2279 */
2280 WARN_ON_ONCE(!cpumask_test_cpu(cpu_of(dst_rq), p->cpus_ptr));
2281 WARN_ON_ONCE(dst_rq->scx.extra_enq_flags);
2282 dst_rq->scx.extra_enq_flags = enq_flags;
2283 activate_task(dst_rq, p, 0);
2284 dst_rq->scx.extra_enq_flags = 0;
2285 }
2286
2287 /*
2288 * Similar to kernel/sched/core.c::is_cpu_allowed(). However, there are two
2289 * differences:
2290 *
2291 * - is_cpu_allowed() asks "Can this task run on this CPU?" while
2292 * task_can_run_on_remote_rq() asks "Can the BPF scheduler migrate the task to
2293 * this CPU?".
2294 *
2295 * While migration is disabled, is_cpu_allowed() has to say "yes" as the task
2296 * must be allowed to finish on the CPU that it's currently on regardless of
2297 * the CPU state. However, task_can_run_on_remote_rq() must say "no" as the
2298 * BPF scheduler shouldn't attempt to migrate a task which has migration
2299 * disabled.
2300 *
2301 * - The BPF scheduler is bypassed while the rq is offline and we can always say
2302 * no to the BPF scheduler initiated migrations while offline.
2303 */
task_can_run_on_remote_rq(struct task_struct * p,struct rq * rq,bool trigger_error)2304 static bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq,
2305 bool trigger_error)
2306 {
2307 int cpu = cpu_of(rq);
2308
2309 /*
2310 * We don't require the BPF scheduler to avoid dispatching to offline
2311 * CPUs mostly for convenience but also because CPUs can go offline
2312 * between scx_bpf_dispatch() calls and here. Trigger error iff the
2313 * picked CPU is outside the allowed mask.
2314 */
2315 if (!task_allowed_on_cpu(p, cpu)) {
2316 if (trigger_error)
2317 scx_ops_error("SCX_DSQ_LOCAL[_ON] verdict target cpu %d not allowed for %s[%d]",
2318 cpu_of(rq), p->comm, p->pid);
2319 return false;
2320 }
2321
2322 if (unlikely(is_migration_disabled(p)))
2323 return false;
2324
2325 if (!scx_rq_online(rq))
2326 return false;
2327
2328 return true;
2329 }
2330
2331 /**
2332 * unlink_dsq_and_lock_src_rq() - Unlink task from its DSQ and lock its task_rq
2333 * @p: target task
2334 * @dsq: locked DSQ @p is currently on
2335 * @src_rq: rq @p is currently on, stable with @dsq locked
2336 *
2337 * Called with @dsq locked but no rq's locked. We want to move @p to a different
2338 * DSQ, including any local DSQ, but are not locking @src_rq. Locking @src_rq is
2339 * required when transferring into a local DSQ. Even when transferring into a
2340 * non-local DSQ, it's better to use the same mechanism to protect against
2341 * dequeues and maintain the invariant that @p->scx.dsq can only change while
2342 * @src_rq is locked, which e.g. scx_dump_task() depends on.
2343 *
2344 * We want to grab @src_rq but that can deadlock if we try while locking @dsq,
2345 * so we want to unlink @p from @dsq, drop its lock and then lock @src_rq. As
2346 * this may race with dequeue, which can't drop the rq lock or fail, do a little
2347 * dancing from our side.
2348 *
2349 * @p->scx.holding_cpu is set to this CPU before @dsq is unlocked. If @p gets
2350 * dequeued after we unlock @dsq but before locking @src_rq, the holding_cpu
2351 * would be cleared to -1. While other cpus may have updated it to different
2352 * values afterwards, as this operation can't be preempted or recurse, the
2353 * holding_cpu can never become this CPU again before we're done. Thus, we can
2354 * tell whether we lost to dequeue by testing whether the holding_cpu still
2355 * points to this CPU. See dispatch_dequeue() for the counterpart.
2356 *
2357 * On return, @dsq is unlocked and @src_rq is locked. Returns %true if @p is
2358 * still valid. %false if lost to dequeue.
2359 */
unlink_dsq_and_lock_src_rq(struct task_struct * p,struct scx_dispatch_q * dsq,struct rq * src_rq)2360 static bool unlink_dsq_and_lock_src_rq(struct task_struct *p,
2361 struct scx_dispatch_q *dsq,
2362 struct rq *src_rq)
2363 {
2364 s32 cpu = raw_smp_processor_id();
2365
2366 lockdep_assert_held(&dsq->lock);
2367
2368 WARN_ON_ONCE(p->scx.holding_cpu >= 0);
2369 task_unlink_from_dsq(p, dsq);
2370 p->scx.holding_cpu = cpu;
2371
2372 raw_spin_unlock(&dsq->lock);
2373 raw_spin_rq_lock(src_rq);
2374
2375 /* task_rq couldn't have changed if we're still the holding cpu */
2376 return likely(p->scx.holding_cpu == cpu) &&
2377 !WARN_ON_ONCE(src_rq != task_rq(p));
2378 }
2379
consume_remote_task(struct rq * this_rq,struct task_struct * p,struct scx_dispatch_q * dsq,struct rq * src_rq)2380 static bool consume_remote_task(struct rq *this_rq, struct task_struct *p,
2381 struct scx_dispatch_q *dsq, struct rq *src_rq)
2382 {
2383 raw_spin_rq_unlock(this_rq);
2384
2385 if (unlink_dsq_and_lock_src_rq(p, dsq, src_rq)) {
2386 move_remote_task_to_local_dsq(p, 0, src_rq, this_rq);
2387 return true;
2388 } else {
2389 raw_spin_rq_unlock(src_rq);
2390 raw_spin_rq_lock(this_rq);
2391 return false;
2392 }
2393 }
2394 #else /* CONFIG_SMP */
move_remote_task_to_local_dsq(struct task_struct * p,u64 enq_flags,struct rq * src_rq,struct rq * dst_rq)2395 static inline void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags, struct rq *src_rq, struct rq *dst_rq) { WARN_ON_ONCE(1); }
task_can_run_on_remote_rq(struct task_struct * p,struct rq * rq,bool trigger_error)2396 static inline bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq, bool trigger_error) { return false; }
consume_remote_task(struct rq * this_rq,struct task_struct * p,struct scx_dispatch_q * dsq,struct rq * task_rq)2397 static inline bool consume_remote_task(struct rq *this_rq, struct task_struct *p, struct scx_dispatch_q *dsq, struct rq *task_rq) { return false; }
2398 #endif /* CONFIG_SMP */
2399
consume_dispatch_q(struct rq * rq,struct scx_dispatch_q * dsq)2400 static bool consume_dispatch_q(struct rq *rq, struct scx_dispatch_q *dsq)
2401 {
2402 struct task_struct *p;
2403 retry:
2404 /*
2405 * The caller can't expect to successfully consume a task if the task's
2406 * addition to @dsq isn't guaranteed to be visible somehow. Test
2407 * @dsq->list without locking and skip if it seems empty.
2408 */
2409 if (list_empty(&dsq->list))
2410 return false;
2411
2412 raw_spin_lock(&dsq->lock);
2413
2414 nldsq_for_each_task(p, dsq) {
2415 struct rq *task_rq = task_rq(p);
2416
2417 if (rq == task_rq) {
2418 task_unlink_from_dsq(p, dsq);
2419 move_local_task_to_local_dsq(p, 0, dsq, rq);
2420 raw_spin_unlock(&dsq->lock);
2421 return true;
2422 }
2423
2424 if (task_can_run_on_remote_rq(p, rq, false)) {
2425 if (likely(consume_remote_task(rq, p, dsq, task_rq)))
2426 return true;
2427 goto retry;
2428 }
2429 }
2430
2431 raw_spin_unlock(&dsq->lock);
2432 return false;
2433 }
2434
consume_global_dsq(struct rq * rq)2435 static bool consume_global_dsq(struct rq *rq)
2436 {
2437 int node = cpu_to_node(cpu_of(rq));
2438
2439 return consume_dispatch_q(rq, global_dsqs[node]);
2440 }
2441
2442 /**
2443 * dispatch_to_local_dsq - Dispatch a task to a local dsq
2444 * @rq: current rq which is locked
2445 * @dst_dsq: destination DSQ
2446 * @p: task to dispatch
2447 * @enq_flags: %SCX_ENQ_*
2448 *
2449 * We're holding @rq lock and want to dispatch @p to @dst_dsq which is a local
2450 * DSQ. This function performs all the synchronization dancing needed because
2451 * local DSQs are protected with rq locks.
2452 *
2453 * The caller must have exclusive ownership of @p (e.g. through
2454 * %SCX_OPSS_DISPATCHING).
2455 */
dispatch_to_local_dsq(struct rq * rq,struct scx_dispatch_q * dst_dsq,struct task_struct * p,u64 enq_flags)2456 static void dispatch_to_local_dsq(struct rq *rq, struct scx_dispatch_q *dst_dsq,
2457 struct task_struct *p, u64 enq_flags)
2458 {
2459 struct rq *src_rq = task_rq(p);
2460 struct rq *dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq);
2461
2462 /*
2463 * We're synchronized against dequeue through DISPATCHING. As @p can't
2464 * be dequeued, its task_rq and cpus_allowed are stable too.
2465 *
2466 * If dispatching to @rq that @p is already on, no lock dancing needed.
2467 */
2468 if (rq == src_rq && rq == dst_rq) {
2469 dispatch_enqueue(dst_dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS);
2470 return;
2471 }
2472
2473 #ifdef CONFIG_SMP
2474 if (unlikely(!task_can_run_on_remote_rq(p, dst_rq, true))) {
2475 dispatch_enqueue(find_global_dsq(p), p,
2476 enq_flags | SCX_ENQ_CLEAR_OPSS);
2477 return;
2478 }
2479
2480 /*
2481 * @p is on a possibly remote @src_rq which we need to lock to move the
2482 * task. If dequeue is in progress, it'd be locking @src_rq and waiting
2483 * on DISPATCHING, so we can't grab @src_rq lock while holding
2484 * DISPATCHING.
2485 *
2486 * As DISPATCHING guarantees that @p is wholly ours, we can pretend that
2487 * we're moving from a DSQ and use the same mechanism - mark the task
2488 * under transfer with holding_cpu, release DISPATCHING and then follow
2489 * the same protocol. See unlink_dsq_and_lock_src_rq().
2490 */
2491 p->scx.holding_cpu = raw_smp_processor_id();
2492
2493 /* store_release ensures that dequeue sees the above */
2494 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
2495
2496 /* switch to @src_rq lock */
2497 if (rq != src_rq) {
2498 raw_spin_rq_unlock(rq);
2499 raw_spin_rq_lock(src_rq);
2500 }
2501
2502 /* task_rq couldn't have changed if we're still the holding cpu */
2503 if (likely(p->scx.holding_cpu == raw_smp_processor_id()) &&
2504 !WARN_ON_ONCE(src_rq != task_rq(p))) {
2505 /*
2506 * If @p is staying on the same rq, there's no need to go
2507 * through the full deactivate/activate cycle. Optimize by
2508 * abbreviating move_remote_task_to_local_dsq().
2509 */
2510 if (src_rq == dst_rq) {
2511 p->scx.holding_cpu = -1;
2512 dispatch_enqueue(&dst_rq->scx.local_dsq, p, enq_flags);
2513 } else {
2514 move_remote_task_to_local_dsq(p, enq_flags,
2515 src_rq, dst_rq);
2516 }
2517
2518 /* if the destination CPU is idle, wake it up */
2519 if (sched_class_above(p->sched_class, dst_rq->curr->sched_class))
2520 resched_curr(dst_rq);
2521 }
2522
2523 /* switch back to @rq lock */
2524 if (rq != dst_rq) {
2525 raw_spin_rq_unlock(dst_rq);
2526 raw_spin_rq_lock(rq);
2527 }
2528 #else /* CONFIG_SMP */
2529 BUG(); /* control can not reach here on UP */
2530 #endif /* CONFIG_SMP */
2531 }
2532
2533 /**
2534 * finish_dispatch - Asynchronously finish dispatching a task
2535 * @rq: current rq which is locked
2536 * @p: task to finish dispatching
2537 * @qseq_at_dispatch: qseq when @p started getting dispatched
2538 * @dsq_id: destination DSQ ID
2539 * @enq_flags: %SCX_ENQ_*
2540 *
2541 * Dispatching to local DSQs may need to wait for queueing to complete or
2542 * require rq lock dancing. As we don't wanna do either while inside
2543 * ops.dispatch() to avoid locking order inversion, we split dispatching into
2544 * two parts. scx_bpf_dispatch() which is called by ops.dispatch() records the
2545 * task and its qseq. Once ops.dispatch() returns, this function is called to
2546 * finish up.
2547 *
2548 * There is no guarantee that @p is still valid for dispatching or even that it
2549 * was valid in the first place. Make sure that the task is still owned by the
2550 * BPF scheduler and claim the ownership before dispatching.
2551 */
finish_dispatch(struct rq * rq,struct task_struct * p,unsigned long qseq_at_dispatch,u64 dsq_id,u64 enq_flags)2552 static void finish_dispatch(struct rq *rq, struct task_struct *p,
2553 unsigned long qseq_at_dispatch,
2554 u64 dsq_id, u64 enq_flags)
2555 {
2556 struct scx_dispatch_q *dsq;
2557 unsigned long opss;
2558
2559 touch_core_sched_dispatch(rq, p);
2560 retry:
2561 /*
2562 * No need for _acquire here. @p is accessed only after a successful
2563 * try_cmpxchg to DISPATCHING.
2564 */
2565 opss = atomic_long_read(&p->scx.ops_state);
2566
2567 switch (opss & SCX_OPSS_STATE_MASK) {
2568 case SCX_OPSS_DISPATCHING:
2569 case SCX_OPSS_NONE:
2570 /* someone else already got to it */
2571 return;
2572 case SCX_OPSS_QUEUED:
2573 /*
2574 * If qseq doesn't match, @p has gone through at least one
2575 * dispatch/dequeue and re-enqueue cycle between
2576 * scx_bpf_dispatch() and here and we have no claim on it.
2577 */
2578 if ((opss & SCX_OPSS_QSEQ_MASK) != qseq_at_dispatch)
2579 return;
2580
2581 /*
2582 * While we know @p is accessible, we don't yet have a claim on
2583 * it - the BPF scheduler is allowed to dispatch tasks
2584 * spuriously and there can be a racing dequeue attempt. Let's
2585 * claim @p by atomically transitioning it from QUEUED to
2586 * DISPATCHING.
2587 */
2588 if (likely(atomic_long_try_cmpxchg(&p->scx.ops_state, &opss,
2589 SCX_OPSS_DISPATCHING)))
2590 break;
2591 goto retry;
2592 case SCX_OPSS_QUEUEING:
2593 /*
2594 * do_enqueue_task() is in the process of transferring the task
2595 * to the BPF scheduler while holding @p's rq lock. As we aren't
2596 * holding any kernel or BPF resource that the enqueue path may
2597 * depend upon, it's safe to wait.
2598 */
2599 wait_ops_state(p, opss);
2600 goto retry;
2601 }
2602
2603 BUG_ON(!(p->scx.flags & SCX_TASK_QUEUED));
2604
2605 dsq = find_dsq_for_dispatch(this_rq(), dsq_id, p);
2606
2607 if (dsq->id == SCX_DSQ_LOCAL)
2608 dispatch_to_local_dsq(rq, dsq, p, enq_flags);
2609 else
2610 dispatch_enqueue(dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS);
2611 }
2612
flush_dispatch_buf(struct rq * rq)2613 static void flush_dispatch_buf(struct rq *rq)
2614 {
2615 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
2616 u32 u;
2617
2618 for (u = 0; u < dspc->cursor; u++) {
2619 struct scx_dsp_buf_ent *ent = &dspc->buf[u];
2620
2621 finish_dispatch(rq, ent->task, ent->qseq, ent->dsq_id,
2622 ent->enq_flags);
2623 }
2624
2625 dspc->nr_tasks += dspc->cursor;
2626 dspc->cursor = 0;
2627 }
2628
balance_one(struct rq * rq,struct task_struct * prev)2629 static int balance_one(struct rq *rq, struct task_struct *prev)
2630 {
2631 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
2632 bool prev_on_scx = prev->sched_class == &ext_sched_class;
2633 int nr_loops = SCX_DSP_MAX_LOOPS;
2634
2635 lockdep_assert_rq_held(rq);
2636 rq->scx.flags |= SCX_RQ_IN_BALANCE;
2637 rq->scx.flags &= ~(SCX_RQ_BAL_PENDING | SCX_RQ_BAL_KEEP);
2638
2639 if (static_branch_unlikely(&scx_ops_cpu_preempt) &&
2640 unlikely(rq->scx.cpu_released)) {
2641 /*
2642 * If the previous sched_class for the current CPU was not SCX,
2643 * notify the BPF scheduler that it again has control of the
2644 * core. This callback complements ->cpu_release(), which is
2645 * emitted in scx_next_task_picked().
2646 */
2647 if (SCX_HAS_OP(cpu_acquire))
2648 SCX_CALL_OP(SCX_KF_REST, cpu_acquire, cpu_of(rq), NULL);
2649 rq->scx.cpu_released = false;
2650 }
2651
2652 if (prev_on_scx) {
2653 update_curr_scx(rq);
2654
2655 /*
2656 * If @prev is runnable & has slice left, it has priority and
2657 * fetching more just increases latency for the fetched tasks.
2658 * Tell pick_task_scx() to keep running @prev. If the BPF
2659 * scheduler wants to handle this explicitly, it should
2660 * implement ->cpu_release().
2661 *
2662 * See scx_ops_disable_workfn() for the explanation on the
2663 * bypassing test.
2664 */
2665 if ((prev->scx.flags & SCX_TASK_QUEUED) &&
2666 prev->scx.slice && !scx_rq_bypassing(rq)) {
2667 rq->scx.flags |= SCX_RQ_BAL_KEEP;
2668 goto has_tasks;
2669 }
2670 }
2671
2672 /* if there already are tasks to run, nothing to do */
2673 if (rq->scx.local_dsq.nr)
2674 goto has_tasks;
2675
2676 if (consume_global_dsq(rq))
2677 goto has_tasks;
2678
2679 if (!SCX_HAS_OP(dispatch) || scx_rq_bypassing(rq) || !scx_rq_online(rq))
2680 goto no_tasks;
2681
2682 dspc->rq = rq;
2683
2684 /*
2685 * The dispatch loop. Because flush_dispatch_buf() may drop the rq lock,
2686 * the local DSQ might still end up empty after a successful
2687 * ops.dispatch(). If the local DSQ is empty even after ops.dispatch()
2688 * produced some tasks, retry. The BPF scheduler may depend on this
2689 * looping behavior to simplify its implementation.
2690 */
2691 do {
2692 dspc->nr_tasks = 0;
2693
2694 SCX_CALL_OP(SCX_KF_DISPATCH, dispatch, cpu_of(rq),
2695 prev_on_scx ? prev : NULL);
2696
2697 flush_dispatch_buf(rq);
2698
2699 if (rq->scx.local_dsq.nr)
2700 goto has_tasks;
2701 if (consume_global_dsq(rq))
2702 goto has_tasks;
2703
2704 /*
2705 * ops.dispatch() can trap us in this loop by repeatedly
2706 * dispatching ineligible tasks. Break out once in a while to
2707 * allow the watchdog to run. As IRQ can't be enabled in
2708 * balance(), we want to complete this scheduling cycle and then
2709 * start a new one. IOW, we want to call resched_curr() on the
2710 * next, most likely idle, task, not the current one. Use
2711 * scx_bpf_kick_cpu() for deferred kicking.
2712 */
2713 if (unlikely(!--nr_loops)) {
2714 scx_bpf_kick_cpu(cpu_of(rq), 0);
2715 break;
2716 }
2717 } while (dspc->nr_tasks);
2718
2719 no_tasks:
2720 /*
2721 * Didn't find another task to run. Keep running @prev unless
2722 * %SCX_OPS_ENQ_LAST is in effect.
2723 */
2724 if ((prev->scx.flags & SCX_TASK_QUEUED) &&
2725 (!static_branch_unlikely(&scx_ops_enq_last) ||
2726 scx_rq_bypassing(rq))) {
2727 rq->scx.flags |= SCX_RQ_BAL_KEEP;
2728 goto has_tasks;
2729 }
2730 rq->scx.flags &= ~SCX_RQ_IN_BALANCE;
2731 return false;
2732
2733 has_tasks:
2734 rq->scx.flags &= ~SCX_RQ_IN_BALANCE;
2735 return true;
2736 }
2737
balance_scx(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)2738 static int balance_scx(struct rq *rq, struct task_struct *prev,
2739 struct rq_flags *rf)
2740 {
2741 int ret;
2742
2743 rq_unpin_lock(rq, rf);
2744
2745 ret = balance_one(rq, prev);
2746
2747 #ifdef CONFIG_SCHED_SMT
2748 /*
2749 * When core-sched is enabled, this ops.balance() call will be followed
2750 * by pick_task_scx() on this CPU and the SMT siblings. Balance the
2751 * siblings too.
2752 */
2753 if (sched_core_enabled(rq)) {
2754 const struct cpumask *smt_mask = cpu_smt_mask(cpu_of(rq));
2755 int scpu;
2756
2757 for_each_cpu_andnot(scpu, smt_mask, cpumask_of(cpu_of(rq))) {
2758 struct rq *srq = cpu_rq(scpu);
2759 struct task_struct *sprev = srq->curr;
2760
2761 WARN_ON_ONCE(__rq_lockp(rq) != __rq_lockp(srq));
2762 update_rq_clock(srq);
2763 balance_one(srq, sprev);
2764 }
2765 }
2766 #endif
2767 rq_repin_lock(rq, rf);
2768
2769 return ret;
2770 }
2771
process_ddsp_deferred_locals(struct rq * rq)2772 static void process_ddsp_deferred_locals(struct rq *rq)
2773 {
2774 struct task_struct *p;
2775
2776 lockdep_assert_rq_held(rq);
2777
2778 /*
2779 * Now that @rq can be unlocked, execute the deferred enqueueing of
2780 * tasks directly dispatched to the local DSQs of other CPUs. See
2781 * direct_dispatch(). Keep popping from the head instead of using
2782 * list_for_each_entry_safe() as dispatch_local_dsq() may unlock @rq
2783 * temporarily.
2784 */
2785 while ((p = list_first_entry_or_null(&rq->scx.ddsp_deferred_locals,
2786 struct task_struct, scx.dsq_list.node))) {
2787 struct scx_dispatch_q *dsq;
2788
2789 list_del_init(&p->scx.dsq_list.node);
2790
2791 dsq = find_dsq_for_dispatch(rq, p->scx.ddsp_dsq_id, p);
2792 if (!WARN_ON_ONCE(dsq->id != SCX_DSQ_LOCAL))
2793 dispatch_to_local_dsq(rq, dsq, p, p->scx.ddsp_enq_flags);
2794 }
2795 }
2796
set_next_task_scx(struct rq * rq,struct task_struct * p,bool first)2797 static void set_next_task_scx(struct rq *rq, struct task_struct *p, bool first)
2798 {
2799 if (p->scx.flags & SCX_TASK_QUEUED) {
2800 /*
2801 * Core-sched might decide to execute @p before it is
2802 * dispatched. Call ops_dequeue() to notify the BPF scheduler.
2803 */
2804 ops_dequeue(p, SCX_DEQ_CORE_SCHED_EXEC);
2805 dispatch_dequeue(rq, p);
2806 }
2807
2808 p->se.exec_start = rq_clock_task(rq);
2809
2810 /* see dequeue_task_scx() on why we skip when !QUEUED */
2811 if (SCX_HAS_OP(running) && (p->scx.flags & SCX_TASK_QUEUED))
2812 SCX_CALL_OP_TASK(SCX_KF_REST, running, p);
2813
2814 clr_task_runnable(p, true);
2815
2816 /*
2817 * @p is getting newly scheduled or got kicked after someone updated its
2818 * slice. Refresh whether tick can be stopped. See scx_can_stop_tick().
2819 */
2820 if ((p->scx.slice == SCX_SLICE_INF) !=
2821 (bool)(rq->scx.flags & SCX_RQ_CAN_STOP_TICK)) {
2822 if (p->scx.slice == SCX_SLICE_INF)
2823 rq->scx.flags |= SCX_RQ_CAN_STOP_TICK;
2824 else
2825 rq->scx.flags &= ~SCX_RQ_CAN_STOP_TICK;
2826
2827 sched_update_tick_dependency(rq);
2828
2829 /*
2830 * For now, let's refresh the load_avgs just when transitioning
2831 * in and out of nohz. In the future, we might want to add a
2832 * mechanism which calls the following periodically on
2833 * tick-stopped CPUs.
2834 */
2835 update_other_load_avgs(rq);
2836 }
2837 }
2838
2839 static enum scx_cpu_preempt_reason
preempt_reason_from_class(const struct sched_class * class)2840 preempt_reason_from_class(const struct sched_class *class)
2841 {
2842 #ifdef CONFIG_SMP
2843 if (class == &stop_sched_class)
2844 return SCX_CPU_PREEMPT_STOP;
2845 #endif
2846 if (class == &dl_sched_class)
2847 return SCX_CPU_PREEMPT_DL;
2848 if (class == &rt_sched_class)
2849 return SCX_CPU_PREEMPT_RT;
2850 return SCX_CPU_PREEMPT_UNKNOWN;
2851 }
2852
switch_class(struct rq * rq,struct task_struct * next)2853 static void switch_class(struct rq *rq, struct task_struct *next)
2854 {
2855 const struct sched_class *next_class = next->sched_class;
2856
2857 #ifdef CONFIG_SMP
2858 /*
2859 * Pairs with the smp_load_acquire() issued by a CPU in
2860 * kick_cpus_irq_workfn() who is waiting for this CPU to perform a
2861 * resched.
2862 */
2863 smp_store_release(&rq->scx.pnt_seq, rq->scx.pnt_seq + 1);
2864 #endif
2865 if (!static_branch_unlikely(&scx_ops_cpu_preempt))
2866 return;
2867
2868 /*
2869 * The callback is conceptually meant to convey that the CPU is no
2870 * longer under the control of SCX. Therefore, don't invoke the callback
2871 * if the next class is below SCX (in which case the BPF scheduler has
2872 * actively decided not to schedule any tasks on the CPU).
2873 */
2874 if (sched_class_above(&ext_sched_class, next_class))
2875 return;
2876
2877 /*
2878 * At this point we know that SCX was preempted by a higher priority
2879 * sched_class, so invoke the ->cpu_release() callback if we have not
2880 * done so already. We only send the callback once between SCX being
2881 * preempted, and it regaining control of the CPU.
2882 *
2883 * ->cpu_release() complements ->cpu_acquire(), which is emitted the
2884 * next time that balance_scx() is invoked.
2885 */
2886 if (!rq->scx.cpu_released) {
2887 if (SCX_HAS_OP(cpu_release)) {
2888 struct scx_cpu_release_args args = {
2889 .reason = preempt_reason_from_class(next_class),
2890 .task = next,
2891 };
2892
2893 SCX_CALL_OP(SCX_KF_CPU_RELEASE,
2894 cpu_release, cpu_of(rq), &args);
2895 }
2896 rq->scx.cpu_released = true;
2897 }
2898 }
2899
put_prev_task_scx(struct rq * rq,struct task_struct * p,struct task_struct * next)2900 static void put_prev_task_scx(struct rq *rq, struct task_struct *p,
2901 struct task_struct *next)
2902 {
2903 update_curr_scx(rq);
2904
2905 /* see dequeue_task_scx() on why we skip when !QUEUED */
2906 if (SCX_HAS_OP(stopping) && (p->scx.flags & SCX_TASK_QUEUED))
2907 SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, true);
2908
2909 if (p->scx.flags & SCX_TASK_QUEUED) {
2910 set_task_runnable(rq, p);
2911
2912 /*
2913 * If @p has slice left and is being put, @p is getting
2914 * preempted by a higher priority scheduler class or core-sched
2915 * forcing a different task. Leave it at the head of the local
2916 * DSQ.
2917 */
2918 if (p->scx.slice && !scx_rq_bypassing(rq)) {
2919 dispatch_enqueue(&rq->scx.local_dsq, p, SCX_ENQ_HEAD);
2920 return;
2921 }
2922
2923 /*
2924 * If @p is runnable but we're about to enter a lower
2925 * sched_class, %SCX_OPS_ENQ_LAST must be set. Tell
2926 * ops.enqueue() that @p is the only one available for this cpu,
2927 * which should trigger an explicit follow-up scheduling event.
2928 */
2929 if (sched_class_above(&ext_sched_class, next->sched_class)) {
2930 WARN_ON_ONCE(!static_branch_unlikely(&scx_ops_enq_last));
2931 do_enqueue_task(rq, p, SCX_ENQ_LAST, -1);
2932 } else {
2933 do_enqueue_task(rq, p, 0, -1);
2934 }
2935 }
2936
2937 if (next && next->sched_class != &ext_sched_class)
2938 switch_class(rq, next);
2939 }
2940
first_local_task(struct rq * rq)2941 static struct task_struct *first_local_task(struct rq *rq)
2942 {
2943 return list_first_entry_or_null(&rq->scx.local_dsq.list,
2944 struct task_struct, scx.dsq_list.node);
2945 }
2946
pick_task_scx(struct rq * rq)2947 static struct task_struct *pick_task_scx(struct rq *rq)
2948 {
2949 struct task_struct *prev = rq->curr;
2950 struct task_struct *p;
2951 bool prev_on_scx = prev->sched_class == &ext_sched_class;
2952 bool keep_prev = rq->scx.flags & SCX_RQ_BAL_KEEP;
2953 bool kick_idle = false;
2954
2955 /*
2956 * WORKAROUND:
2957 *
2958 * %SCX_RQ_BAL_KEEP should be set iff $prev is on SCX as it must just
2959 * have gone through balance_scx(). Unfortunately, there currently is a
2960 * bug where fair could say yes on balance() but no on pick_task(),
2961 * which then ends up calling pick_task_scx() without preceding
2962 * balance_scx().
2963 *
2964 * Keep running @prev if possible and avoid stalling from entering idle
2965 * without balancing.
2966 *
2967 * Once fair is fixed, remove the workaround and trigger WARN_ON_ONCE()
2968 * if pick_task_scx() is called without preceding balance_scx().
2969 */
2970 if (unlikely(rq->scx.flags & SCX_RQ_BAL_PENDING)) {
2971 if (prev_on_scx) {
2972 keep_prev = true;
2973 } else {
2974 keep_prev = false;
2975 kick_idle = true;
2976 }
2977 } else if (unlikely(keep_prev && !prev_on_scx)) {
2978 /* only allowed during transitions */
2979 WARN_ON_ONCE(scx_ops_enable_state() == SCX_OPS_ENABLED);
2980 keep_prev = false;
2981 }
2982
2983 /*
2984 * If balance_scx() is telling us to keep running @prev, replenish slice
2985 * if necessary and keep running @prev. Otherwise, pop the first one
2986 * from the local DSQ.
2987 */
2988 if (keep_prev) {
2989 p = prev;
2990 if (!p->scx.slice)
2991 p->scx.slice = SCX_SLICE_DFL;
2992 } else {
2993 p = first_local_task(rq);
2994 if (!p) {
2995 if (kick_idle)
2996 scx_bpf_kick_cpu(cpu_of(rq), SCX_KICK_IDLE);
2997 return NULL;
2998 }
2999
3000 if (unlikely(!p->scx.slice)) {
3001 if (!scx_rq_bypassing(rq) && !scx_warned_zero_slice) {
3002 printk_deferred(KERN_WARNING "sched_ext: %s[%d] has zero slice in %s()\n",
3003 p->comm, p->pid, __func__);
3004 scx_warned_zero_slice = true;
3005 }
3006 p->scx.slice = SCX_SLICE_DFL;
3007 }
3008 }
3009
3010 return p;
3011 }
3012
3013 #ifdef CONFIG_SCHED_CORE
3014 /**
3015 * scx_prio_less - Task ordering for core-sched
3016 * @a: task A
3017 * @b: task B
3018 *
3019 * Core-sched is implemented as an additional scheduling layer on top of the
3020 * usual sched_class'es and needs to find out the expected task ordering. For
3021 * SCX, core-sched calls this function to interrogate the task ordering.
3022 *
3023 * Unless overridden by ops.core_sched_before(), @p->scx.core_sched_at is used
3024 * to implement the default task ordering. The older the timestamp, the higher
3025 * prority the task - the global FIFO ordering matching the default scheduling
3026 * behavior.
3027 *
3028 * When ops.core_sched_before() is enabled, @p->scx.core_sched_at is used to
3029 * implement FIFO ordering within each local DSQ. See pick_task_scx().
3030 */
scx_prio_less(const struct task_struct * a,const struct task_struct * b,bool in_fi)3031 bool scx_prio_less(const struct task_struct *a, const struct task_struct *b,
3032 bool in_fi)
3033 {
3034 /*
3035 * The const qualifiers are dropped from task_struct pointers when
3036 * calling ops.core_sched_before(). Accesses are controlled by the
3037 * verifier.
3038 */
3039 if (SCX_HAS_OP(core_sched_before) && !scx_rq_bypassing(task_rq(a)))
3040 return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, core_sched_before,
3041 (struct task_struct *)a,
3042 (struct task_struct *)b);
3043 else
3044 return time_after64(a->scx.core_sched_at, b->scx.core_sched_at);
3045 }
3046 #endif /* CONFIG_SCHED_CORE */
3047
3048 #ifdef CONFIG_SMP
3049
test_and_clear_cpu_idle(int cpu)3050 static bool test_and_clear_cpu_idle(int cpu)
3051 {
3052 #ifdef CONFIG_SCHED_SMT
3053 /*
3054 * SMT mask should be cleared whether we can claim @cpu or not. The SMT
3055 * cluster is not wholly idle either way. This also prevents
3056 * scx_pick_idle_cpu() from getting caught in an infinite loop.
3057 */
3058 if (sched_smt_active()) {
3059 const struct cpumask *smt = cpu_smt_mask(cpu);
3060
3061 /*
3062 * If offline, @cpu is not its own sibling and
3063 * scx_pick_idle_cpu() can get caught in an infinite loop as
3064 * @cpu is never cleared from idle_masks.smt. Ensure that @cpu
3065 * is eventually cleared.
3066 */
3067 if (cpumask_intersects(smt, idle_masks.smt))
3068 cpumask_andnot(idle_masks.smt, idle_masks.smt, smt);
3069 else if (cpumask_test_cpu(cpu, idle_masks.smt))
3070 __cpumask_clear_cpu(cpu, idle_masks.smt);
3071 }
3072 #endif
3073 return cpumask_test_and_clear_cpu(cpu, idle_masks.cpu);
3074 }
3075
scx_pick_idle_cpu(const struct cpumask * cpus_allowed,u64 flags)3076 static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags)
3077 {
3078 int cpu;
3079
3080 retry:
3081 if (sched_smt_active()) {
3082 cpu = cpumask_any_and_distribute(idle_masks.smt, cpus_allowed);
3083 if (cpu < nr_cpu_ids)
3084 goto found;
3085
3086 if (flags & SCX_PICK_IDLE_CORE)
3087 return -EBUSY;
3088 }
3089
3090 cpu = cpumask_any_and_distribute(idle_masks.cpu, cpus_allowed);
3091 if (cpu >= nr_cpu_ids)
3092 return -EBUSY;
3093
3094 found:
3095 if (test_and_clear_cpu_idle(cpu))
3096 return cpu;
3097 else
3098 goto retry;
3099 }
3100
scx_select_cpu_dfl(struct task_struct * p,s32 prev_cpu,u64 wake_flags,bool * found)3101 static s32 scx_select_cpu_dfl(struct task_struct *p, s32 prev_cpu,
3102 u64 wake_flags, bool *found)
3103 {
3104 s32 cpu;
3105
3106 *found = false;
3107
3108 /*
3109 * If WAKE_SYNC, the waker's local DSQ is empty, and the system is
3110 * under utilized, wake up @p to the local DSQ of the waker. Checking
3111 * only for an empty local DSQ is insufficient as it could give the
3112 * wakee an unfair advantage when the system is oversaturated.
3113 * Checking only for the presence of idle CPUs is also insufficient as
3114 * the local DSQ of the waker could have tasks piled up on it even if
3115 * there is an idle core elsewhere on the system.
3116 */
3117 cpu = smp_processor_id();
3118 if ((wake_flags & SCX_WAKE_SYNC) &&
3119 !cpumask_empty(idle_masks.cpu) && !(current->flags & PF_EXITING) &&
3120 cpu_rq(cpu)->scx.local_dsq.nr == 0) {
3121 if (cpumask_test_cpu(cpu, p->cpus_ptr))
3122 goto cpu_found;
3123 }
3124
3125 /*
3126 * If CPU has SMT, any wholly idle CPU is likely a better pick than
3127 * partially idle @prev_cpu.
3128 */
3129 if (sched_smt_active()) {
3130 if (cpumask_test_cpu(prev_cpu, idle_masks.smt) &&
3131 test_and_clear_cpu_idle(prev_cpu)) {
3132 cpu = prev_cpu;
3133 goto cpu_found;
3134 }
3135
3136 cpu = scx_pick_idle_cpu(p->cpus_ptr, SCX_PICK_IDLE_CORE);
3137 if (cpu >= 0)
3138 goto cpu_found;
3139 }
3140
3141 if (test_and_clear_cpu_idle(prev_cpu)) {
3142 cpu = prev_cpu;
3143 goto cpu_found;
3144 }
3145
3146 cpu = scx_pick_idle_cpu(p->cpus_ptr, 0);
3147 if (cpu >= 0)
3148 goto cpu_found;
3149
3150 return prev_cpu;
3151
3152 cpu_found:
3153 *found = true;
3154 return cpu;
3155 }
3156
select_task_rq_scx(struct task_struct * p,int prev_cpu,int wake_flags)3157 static int select_task_rq_scx(struct task_struct *p, int prev_cpu, int wake_flags)
3158 {
3159 /*
3160 * sched_exec() calls with %WF_EXEC when @p is about to exec(2) as it
3161 * can be a good migration opportunity with low cache and memory
3162 * footprint. Returning a CPU different than @prev_cpu triggers
3163 * immediate rq migration. However, for SCX, as the current rq
3164 * association doesn't dictate where the task is going to run, this
3165 * doesn't fit well. If necessary, we can later add a dedicated method
3166 * which can decide to preempt self to force it through the regular
3167 * scheduling path.
3168 */
3169 if (unlikely(wake_flags & WF_EXEC))
3170 return prev_cpu;
3171
3172 if (SCX_HAS_OP(select_cpu) && !scx_rq_bypassing(task_rq(p))) {
3173 s32 cpu;
3174 struct task_struct **ddsp_taskp;
3175
3176 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task);
3177 WARN_ON_ONCE(*ddsp_taskp);
3178 *ddsp_taskp = p;
3179
3180 cpu = SCX_CALL_OP_TASK_RET(SCX_KF_ENQUEUE | SCX_KF_SELECT_CPU,
3181 select_cpu, p, prev_cpu, wake_flags);
3182 *ddsp_taskp = NULL;
3183 if (ops_cpu_valid(cpu, "from ops.select_cpu()"))
3184 return cpu;
3185 else
3186 return prev_cpu;
3187 } else {
3188 bool found;
3189 s32 cpu;
3190
3191 cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags, &found);
3192 if (found) {
3193 p->scx.slice = SCX_SLICE_DFL;
3194 p->scx.ddsp_dsq_id = SCX_DSQ_LOCAL;
3195 }
3196 return cpu;
3197 }
3198 }
3199
task_woken_scx(struct rq * rq,struct task_struct * p)3200 static void task_woken_scx(struct rq *rq, struct task_struct *p)
3201 {
3202 run_deferred(rq);
3203 }
3204
set_cpus_allowed_scx(struct task_struct * p,struct affinity_context * ac)3205 static void set_cpus_allowed_scx(struct task_struct *p,
3206 struct affinity_context *ac)
3207 {
3208 set_cpus_allowed_common(p, ac);
3209
3210 /*
3211 * The effective cpumask is stored in @p->cpus_ptr which may temporarily
3212 * differ from the configured one in @p->cpus_mask. Always tell the bpf
3213 * scheduler the effective one.
3214 *
3215 * Fine-grained memory write control is enforced by BPF making the const
3216 * designation pointless. Cast it away when calling the operation.
3217 */
3218 if (SCX_HAS_OP(set_cpumask))
3219 SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p,
3220 (struct cpumask *)p->cpus_ptr);
3221 }
3222
reset_idle_masks(void)3223 static void reset_idle_masks(void)
3224 {
3225 /*
3226 * Consider all online cpus idle. Should converge to the actual state
3227 * quickly.
3228 */
3229 cpumask_copy(idle_masks.cpu, cpu_online_mask);
3230 cpumask_copy(idle_masks.smt, cpu_online_mask);
3231 }
3232
__scx_update_idle(struct rq * rq,bool idle)3233 void __scx_update_idle(struct rq *rq, bool idle)
3234 {
3235 int cpu = cpu_of(rq);
3236
3237 if (SCX_HAS_OP(update_idle) && !scx_rq_bypassing(rq)) {
3238 SCX_CALL_OP(SCX_KF_REST, update_idle, cpu_of(rq), idle);
3239 if (!static_branch_unlikely(&scx_builtin_idle_enabled))
3240 return;
3241 }
3242
3243 if (idle)
3244 cpumask_set_cpu(cpu, idle_masks.cpu);
3245 else
3246 cpumask_clear_cpu(cpu, idle_masks.cpu);
3247
3248 #ifdef CONFIG_SCHED_SMT
3249 if (sched_smt_active()) {
3250 const struct cpumask *smt = cpu_smt_mask(cpu);
3251
3252 if (idle) {
3253 /*
3254 * idle_masks.smt handling is racy but that's fine as
3255 * it's only for optimization and self-correcting.
3256 */
3257 for_each_cpu(cpu, smt) {
3258 if (!cpumask_test_cpu(cpu, idle_masks.cpu))
3259 return;
3260 }
3261 cpumask_or(idle_masks.smt, idle_masks.smt, smt);
3262 } else {
3263 cpumask_andnot(idle_masks.smt, idle_masks.smt, smt);
3264 }
3265 }
3266 #endif
3267 }
3268
handle_hotplug(struct rq * rq,bool online)3269 static void handle_hotplug(struct rq *rq, bool online)
3270 {
3271 int cpu = cpu_of(rq);
3272
3273 atomic_long_inc(&scx_hotplug_seq);
3274
3275 if (online && SCX_HAS_OP(cpu_online))
3276 SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_online, cpu);
3277 else if (!online && SCX_HAS_OP(cpu_offline))
3278 SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_offline, cpu);
3279 else
3280 scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG,
3281 "cpu %d going %s, exiting scheduler", cpu,
3282 online ? "online" : "offline");
3283 }
3284
scx_rq_activate(struct rq * rq)3285 void scx_rq_activate(struct rq *rq)
3286 {
3287 handle_hotplug(rq, true);
3288 }
3289
scx_rq_deactivate(struct rq * rq)3290 void scx_rq_deactivate(struct rq *rq)
3291 {
3292 handle_hotplug(rq, false);
3293 }
3294
rq_online_scx(struct rq * rq)3295 static void rq_online_scx(struct rq *rq)
3296 {
3297 rq->scx.flags |= SCX_RQ_ONLINE;
3298 }
3299
rq_offline_scx(struct rq * rq)3300 static void rq_offline_scx(struct rq *rq)
3301 {
3302 rq->scx.flags &= ~SCX_RQ_ONLINE;
3303 }
3304
3305 #else /* CONFIG_SMP */
3306
test_and_clear_cpu_idle(int cpu)3307 static bool test_and_clear_cpu_idle(int cpu) { return false; }
scx_pick_idle_cpu(const struct cpumask * cpus_allowed,u64 flags)3308 static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags) { return -EBUSY; }
reset_idle_masks(void)3309 static void reset_idle_masks(void) {}
3310
3311 #endif /* CONFIG_SMP */
3312
check_rq_for_timeouts(struct rq * rq)3313 static bool check_rq_for_timeouts(struct rq *rq)
3314 {
3315 struct task_struct *p;
3316 struct rq_flags rf;
3317 bool timed_out = false;
3318
3319 rq_lock_irqsave(rq, &rf);
3320 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) {
3321 unsigned long last_runnable = p->scx.runnable_at;
3322
3323 if (unlikely(time_after(jiffies,
3324 last_runnable + scx_watchdog_timeout))) {
3325 u32 dur_ms = jiffies_to_msecs(jiffies - last_runnable);
3326
3327 scx_ops_error_kind(SCX_EXIT_ERROR_STALL,
3328 "%s[%d] failed to run for %u.%03us",
3329 p->comm, p->pid,
3330 dur_ms / 1000, dur_ms % 1000);
3331 timed_out = true;
3332 break;
3333 }
3334 }
3335 rq_unlock_irqrestore(rq, &rf);
3336
3337 return timed_out;
3338 }
3339
scx_watchdog_workfn(struct work_struct * work)3340 static void scx_watchdog_workfn(struct work_struct *work)
3341 {
3342 int cpu;
3343
3344 WRITE_ONCE(scx_watchdog_timestamp, jiffies);
3345
3346 for_each_online_cpu(cpu) {
3347 if (unlikely(check_rq_for_timeouts(cpu_rq(cpu))))
3348 break;
3349
3350 cond_resched();
3351 }
3352 queue_delayed_work(system_unbound_wq, to_delayed_work(work),
3353 scx_watchdog_timeout / 2);
3354 }
3355
scx_tick(struct rq * rq)3356 void scx_tick(struct rq *rq)
3357 {
3358 unsigned long last_check;
3359
3360 if (!scx_enabled())
3361 return;
3362
3363 last_check = READ_ONCE(scx_watchdog_timestamp);
3364 if (unlikely(time_after(jiffies,
3365 last_check + READ_ONCE(scx_watchdog_timeout)))) {
3366 u32 dur_ms = jiffies_to_msecs(jiffies - last_check);
3367
3368 scx_ops_error_kind(SCX_EXIT_ERROR_STALL,
3369 "watchdog failed to check in for %u.%03us",
3370 dur_ms / 1000, dur_ms % 1000);
3371 }
3372
3373 update_other_load_avgs(rq);
3374 }
3375
task_tick_scx(struct rq * rq,struct task_struct * curr,int queued)3376 static void task_tick_scx(struct rq *rq, struct task_struct *curr, int queued)
3377 {
3378 update_curr_scx(rq);
3379
3380 /*
3381 * While disabling, always resched and refresh core-sched timestamp as
3382 * we can't trust the slice management or ops.core_sched_before().
3383 */
3384 if (scx_rq_bypassing(rq)) {
3385 curr->scx.slice = 0;
3386 touch_core_sched(rq, curr);
3387 } else if (SCX_HAS_OP(tick)) {
3388 SCX_CALL_OP(SCX_KF_REST, tick, curr);
3389 }
3390
3391 if (!curr->scx.slice)
3392 resched_curr(rq);
3393 }
3394
3395 #ifdef CONFIG_EXT_GROUP_SCHED
tg_cgrp(struct task_group * tg)3396 static struct cgroup *tg_cgrp(struct task_group *tg)
3397 {
3398 /*
3399 * If CGROUP_SCHED is disabled, @tg is NULL. If @tg is an autogroup,
3400 * @tg->css.cgroup is NULL. In both cases, @tg can be treated as the
3401 * root cgroup.
3402 */
3403 if (tg && tg->css.cgroup)
3404 return tg->css.cgroup;
3405 else
3406 return &cgrp_dfl_root.cgrp;
3407 }
3408
3409 #define SCX_INIT_TASK_ARGS_CGROUP(tg) .cgroup = tg_cgrp(tg),
3410
3411 #else /* CONFIG_EXT_GROUP_SCHED */
3412
3413 #define SCX_INIT_TASK_ARGS_CGROUP(tg)
3414
3415 #endif /* CONFIG_EXT_GROUP_SCHED */
3416
scx_get_task_state(const struct task_struct * p)3417 static enum scx_task_state scx_get_task_state(const struct task_struct *p)
3418 {
3419 return (p->scx.flags & SCX_TASK_STATE_MASK) >> SCX_TASK_STATE_SHIFT;
3420 }
3421
scx_set_task_state(struct task_struct * p,enum scx_task_state state)3422 static void scx_set_task_state(struct task_struct *p, enum scx_task_state state)
3423 {
3424 enum scx_task_state prev_state = scx_get_task_state(p);
3425 bool warn = false;
3426
3427 BUILD_BUG_ON(SCX_TASK_NR_STATES > (1 << SCX_TASK_STATE_BITS));
3428
3429 switch (state) {
3430 case SCX_TASK_NONE:
3431 break;
3432 case SCX_TASK_INIT:
3433 warn = prev_state != SCX_TASK_NONE;
3434 break;
3435 case SCX_TASK_READY:
3436 warn = prev_state == SCX_TASK_NONE;
3437 break;
3438 case SCX_TASK_ENABLED:
3439 warn = prev_state != SCX_TASK_READY;
3440 break;
3441 default:
3442 warn = true;
3443 return;
3444 }
3445
3446 WARN_ONCE(warn, "sched_ext: Invalid task state transition %d -> %d for %s[%d]",
3447 prev_state, state, p->comm, p->pid);
3448
3449 p->scx.flags &= ~SCX_TASK_STATE_MASK;
3450 p->scx.flags |= state << SCX_TASK_STATE_SHIFT;
3451 }
3452
scx_ops_init_task(struct task_struct * p,struct task_group * tg,bool fork)3453 static int scx_ops_init_task(struct task_struct *p, struct task_group *tg, bool fork)
3454 {
3455 int ret;
3456
3457 p->scx.disallow = false;
3458
3459 if (SCX_HAS_OP(init_task)) {
3460 struct scx_init_task_args args = {
3461 SCX_INIT_TASK_ARGS_CGROUP(tg)
3462 .fork = fork,
3463 };
3464
3465 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, init_task, p, &args);
3466 if (unlikely(ret)) {
3467 ret = ops_sanitize_err("init_task", ret);
3468 return ret;
3469 }
3470 }
3471
3472 scx_set_task_state(p, SCX_TASK_INIT);
3473
3474 if (p->scx.disallow) {
3475 if (!fork) {
3476 struct rq *rq;
3477 struct rq_flags rf;
3478
3479 rq = task_rq_lock(p, &rf);
3480
3481 /*
3482 * We're in the load path and @p->policy will be applied
3483 * right after. Reverting @p->policy here and rejecting
3484 * %SCHED_EXT transitions from scx_check_setscheduler()
3485 * guarantees that if ops.init_task() sets @p->disallow,
3486 * @p can never be in SCX.
3487 */
3488 if (p->policy == SCHED_EXT) {
3489 p->policy = SCHED_NORMAL;
3490 atomic_long_inc(&scx_nr_rejected);
3491 }
3492
3493 task_rq_unlock(rq, p, &rf);
3494 } else if (p->policy == SCHED_EXT) {
3495 scx_ops_error("ops.init_task() set task->scx.disallow for %s[%d] during fork",
3496 p->comm, p->pid);
3497 }
3498 }
3499
3500 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT;
3501 return 0;
3502 }
3503
scx_ops_enable_task(struct task_struct * p)3504 static void scx_ops_enable_task(struct task_struct *p)
3505 {
3506 u32 weight;
3507
3508 lockdep_assert_rq_held(task_rq(p));
3509
3510 /*
3511 * Set the weight before calling ops.enable() so that the scheduler
3512 * doesn't see a stale value if they inspect the task struct.
3513 */
3514 if (task_has_idle_policy(p))
3515 weight = WEIGHT_IDLEPRIO;
3516 else
3517 weight = sched_prio_to_weight[p->static_prio - MAX_RT_PRIO];
3518
3519 p->scx.weight = sched_weight_to_cgroup(weight);
3520
3521 if (SCX_HAS_OP(enable))
3522 SCX_CALL_OP_TASK(SCX_KF_REST, enable, p);
3523 scx_set_task_state(p, SCX_TASK_ENABLED);
3524
3525 if (SCX_HAS_OP(set_weight))
3526 SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight);
3527 }
3528
scx_ops_disable_task(struct task_struct * p)3529 static void scx_ops_disable_task(struct task_struct *p)
3530 {
3531 lockdep_assert_rq_held(task_rq(p));
3532 WARN_ON_ONCE(scx_get_task_state(p) != SCX_TASK_ENABLED);
3533
3534 if (SCX_HAS_OP(disable))
3535 SCX_CALL_OP(SCX_KF_REST, disable, p);
3536 scx_set_task_state(p, SCX_TASK_READY);
3537 }
3538
scx_ops_exit_task(struct task_struct * p)3539 static void scx_ops_exit_task(struct task_struct *p)
3540 {
3541 struct scx_exit_task_args args = {
3542 .cancelled = false,
3543 };
3544
3545 lockdep_assert_rq_held(task_rq(p));
3546
3547 switch (scx_get_task_state(p)) {
3548 case SCX_TASK_NONE:
3549 return;
3550 case SCX_TASK_INIT:
3551 args.cancelled = true;
3552 break;
3553 case SCX_TASK_READY:
3554 break;
3555 case SCX_TASK_ENABLED:
3556 scx_ops_disable_task(p);
3557 break;
3558 default:
3559 WARN_ON_ONCE(true);
3560 return;
3561 }
3562
3563 if (SCX_HAS_OP(exit_task))
3564 SCX_CALL_OP(SCX_KF_REST, exit_task, p, &args);
3565 scx_set_task_state(p, SCX_TASK_NONE);
3566 }
3567
init_scx_entity(struct sched_ext_entity * scx)3568 void init_scx_entity(struct sched_ext_entity *scx)
3569 {
3570 /*
3571 * init_idle() calls this function again after fork sequence is
3572 * complete. Don't touch ->tasks_node as it's already linked.
3573 */
3574 memset(scx, 0, offsetof(struct sched_ext_entity, tasks_node));
3575
3576 INIT_LIST_HEAD(&scx->dsq_list.node);
3577 RB_CLEAR_NODE(&scx->dsq_priq);
3578 scx->sticky_cpu = -1;
3579 scx->holding_cpu = -1;
3580 INIT_LIST_HEAD(&scx->runnable_node);
3581 scx->runnable_at = jiffies;
3582 scx->ddsp_dsq_id = SCX_DSQ_INVALID;
3583 scx->slice = SCX_SLICE_DFL;
3584 }
3585
scx_pre_fork(struct task_struct * p)3586 void scx_pre_fork(struct task_struct *p)
3587 {
3588 /*
3589 * BPF scheduler enable/disable paths want to be able to iterate and
3590 * update all tasks which can become complex when racing forks. As
3591 * enable/disable are very cold paths, let's use a percpu_rwsem to
3592 * exclude forks.
3593 */
3594 percpu_down_read(&scx_fork_rwsem);
3595 }
3596
scx_fork(struct task_struct * p)3597 int scx_fork(struct task_struct *p)
3598 {
3599 percpu_rwsem_assert_held(&scx_fork_rwsem);
3600
3601 if (scx_ops_init_task_enabled)
3602 return scx_ops_init_task(p, task_group(p), true);
3603 else
3604 return 0;
3605 }
3606
scx_post_fork(struct task_struct * p)3607 void scx_post_fork(struct task_struct *p)
3608 {
3609 if (scx_ops_init_task_enabled) {
3610 scx_set_task_state(p, SCX_TASK_READY);
3611
3612 /*
3613 * Enable the task immediately if it's running on sched_ext.
3614 * Otherwise, it'll be enabled in switching_to_scx() if and
3615 * when it's ever configured to run with a SCHED_EXT policy.
3616 */
3617 if (p->sched_class == &ext_sched_class) {
3618 struct rq_flags rf;
3619 struct rq *rq;
3620
3621 rq = task_rq_lock(p, &rf);
3622 scx_ops_enable_task(p);
3623 task_rq_unlock(rq, p, &rf);
3624 }
3625 }
3626
3627 spin_lock_irq(&scx_tasks_lock);
3628 list_add_tail(&p->scx.tasks_node, &scx_tasks);
3629 spin_unlock_irq(&scx_tasks_lock);
3630
3631 percpu_up_read(&scx_fork_rwsem);
3632 }
3633
scx_cancel_fork(struct task_struct * p)3634 void scx_cancel_fork(struct task_struct *p)
3635 {
3636 if (scx_enabled()) {
3637 struct rq *rq;
3638 struct rq_flags rf;
3639
3640 rq = task_rq_lock(p, &rf);
3641 WARN_ON_ONCE(scx_get_task_state(p) >= SCX_TASK_READY);
3642 scx_ops_exit_task(p);
3643 task_rq_unlock(rq, p, &rf);
3644 }
3645
3646 percpu_up_read(&scx_fork_rwsem);
3647 }
3648
sched_ext_free(struct task_struct * p)3649 void sched_ext_free(struct task_struct *p)
3650 {
3651 unsigned long flags;
3652
3653 spin_lock_irqsave(&scx_tasks_lock, flags);
3654 list_del_init(&p->scx.tasks_node);
3655 spin_unlock_irqrestore(&scx_tasks_lock, flags);
3656
3657 /*
3658 * @p is off scx_tasks and wholly ours. scx_ops_enable()'s READY ->
3659 * ENABLED transitions can't race us. Disable ops for @p.
3660 */
3661 if (scx_get_task_state(p) != SCX_TASK_NONE) {
3662 struct rq_flags rf;
3663 struct rq *rq;
3664
3665 rq = task_rq_lock(p, &rf);
3666 scx_ops_exit_task(p);
3667 task_rq_unlock(rq, p, &rf);
3668 }
3669 }
3670
reweight_task_scx(struct rq * rq,struct task_struct * p,const struct load_weight * lw)3671 static void reweight_task_scx(struct rq *rq, struct task_struct *p,
3672 const struct load_weight *lw)
3673 {
3674 lockdep_assert_rq_held(task_rq(p));
3675
3676 p->scx.weight = sched_weight_to_cgroup(scale_load_down(lw->weight));
3677 if (SCX_HAS_OP(set_weight))
3678 SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight);
3679 }
3680
prio_changed_scx(struct rq * rq,struct task_struct * p,int oldprio)3681 static void prio_changed_scx(struct rq *rq, struct task_struct *p, int oldprio)
3682 {
3683 }
3684
switching_to_scx(struct rq * rq,struct task_struct * p)3685 static void switching_to_scx(struct rq *rq, struct task_struct *p)
3686 {
3687 scx_ops_enable_task(p);
3688
3689 /*
3690 * set_cpus_allowed_scx() is not called while @p is associated with a
3691 * different scheduler class. Keep the BPF scheduler up-to-date.
3692 */
3693 if (SCX_HAS_OP(set_cpumask))
3694 SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p,
3695 (struct cpumask *)p->cpus_ptr);
3696 }
3697
switched_from_scx(struct rq * rq,struct task_struct * p)3698 static void switched_from_scx(struct rq *rq, struct task_struct *p)
3699 {
3700 scx_ops_disable_task(p);
3701 }
3702
wakeup_preempt_scx(struct rq * rq,struct task_struct * p,int wake_flags)3703 static void wakeup_preempt_scx(struct rq *rq, struct task_struct *p,int wake_flags) {}
switched_to_scx(struct rq * rq,struct task_struct * p)3704 static void switched_to_scx(struct rq *rq, struct task_struct *p) {}
3705
scx_check_setscheduler(struct task_struct * p,int policy)3706 int scx_check_setscheduler(struct task_struct *p, int policy)
3707 {
3708 lockdep_assert_rq_held(task_rq(p));
3709
3710 /* if disallow, reject transitioning into SCX */
3711 if (scx_enabled() && READ_ONCE(p->scx.disallow) &&
3712 p->policy != policy && policy == SCHED_EXT)
3713 return -EACCES;
3714
3715 return 0;
3716 }
3717
3718 #ifdef CONFIG_NO_HZ_FULL
scx_can_stop_tick(struct rq * rq)3719 bool scx_can_stop_tick(struct rq *rq)
3720 {
3721 struct task_struct *p = rq->curr;
3722
3723 if (scx_rq_bypassing(rq))
3724 return false;
3725
3726 if (p->sched_class != &ext_sched_class)
3727 return true;
3728
3729 /*
3730 * @rq can dispatch from different DSQs, so we can't tell whether it
3731 * needs the tick or not by looking at nr_running. Allow stopping ticks
3732 * iff the BPF scheduler indicated so. See set_next_task_scx().
3733 */
3734 return rq->scx.flags & SCX_RQ_CAN_STOP_TICK;
3735 }
3736 #endif
3737
3738 #ifdef CONFIG_EXT_GROUP_SCHED
3739
3740 DEFINE_STATIC_PERCPU_RWSEM(scx_cgroup_rwsem);
3741 static bool scx_cgroup_enabled;
3742 static bool cgroup_warned_missing_weight;
3743 static bool cgroup_warned_missing_idle;
3744
scx_cgroup_warn_missing_weight(struct task_group * tg)3745 static void scx_cgroup_warn_missing_weight(struct task_group *tg)
3746 {
3747 if (scx_ops_enable_state() == SCX_OPS_DISABLED ||
3748 cgroup_warned_missing_weight)
3749 return;
3750
3751 if ((scx_ops.flags & SCX_OPS_HAS_CGROUP_WEIGHT) || !tg->css.parent)
3752 return;
3753
3754 pr_warn("sched_ext: \"%s\" does not implement cgroup cpu.weight\n",
3755 scx_ops.name);
3756 cgroup_warned_missing_weight = true;
3757 }
3758
scx_cgroup_warn_missing_idle(struct task_group * tg)3759 static void scx_cgroup_warn_missing_idle(struct task_group *tg)
3760 {
3761 if (!scx_cgroup_enabled || cgroup_warned_missing_idle)
3762 return;
3763
3764 if (!tg->idle)
3765 return;
3766
3767 pr_warn("sched_ext: \"%s\" does not implement cgroup cpu.idle\n",
3768 scx_ops.name);
3769 cgroup_warned_missing_idle = true;
3770 }
3771
scx_tg_online(struct task_group * tg)3772 int scx_tg_online(struct task_group *tg)
3773 {
3774 int ret = 0;
3775
3776 WARN_ON_ONCE(tg->scx_flags & (SCX_TG_ONLINE | SCX_TG_INITED));
3777
3778 percpu_down_read(&scx_cgroup_rwsem);
3779
3780 scx_cgroup_warn_missing_weight(tg);
3781
3782 if (scx_cgroup_enabled) {
3783 if (SCX_HAS_OP(cgroup_init)) {
3784 struct scx_cgroup_init_args args =
3785 { .weight = tg->scx_weight };
3786
3787 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_init,
3788 tg->css.cgroup, &args);
3789 if (ret)
3790 ret = ops_sanitize_err("cgroup_init", ret);
3791 }
3792 if (ret == 0)
3793 tg->scx_flags |= SCX_TG_ONLINE | SCX_TG_INITED;
3794 } else {
3795 tg->scx_flags |= SCX_TG_ONLINE;
3796 }
3797
3798 percpu_up_read(&scx_cgroup_rwsem);
3799 return ret;
3800 }
3801
scx_tg_offline(struct task_group * tg)3802 void scx_tg_offline(struct task_group *tg)
3803 {
3804 WARN_ON_ONCE(!(tg->scx_flags & SCX_TG_ONLINE));
3805
3806 percpu_down_read(&scx_cgroup_rwsem);
3807
3808 if (SCX_HAS_OP(cgroup_exit) && (tg->scx_flags & SCX_TG_INITED))
3809 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_exit, tg->css.cgroup);
3810 tg->scx_flags &= ~(SCX_TG_ONLINE | SCX_TG_INITED);
3811
3812 percpu_up_read(&scx_cgroup_rwsem);
3813 }
3814
scx_cgroup_can_attach(struct cgroup_taskset * tset)3815 int scx_cgroup_can_attach(struct cgroup_taskset *tset)
3816 {
3817 struct cgroup_subsys_state *css;
3818 struct task_struct *p;
3819 int ret;
3820
3821 /* released in scx_finish/cancel_attach() */
3822 percpu_down_read(&scx_cgroup_rwsem);
3823
3824 if (!scx_cgroup_enabled)
3825 return 0;
3826
3827 cgroup_taskset_for_each(p, css, tset) {
3828 struct cgroup *from = tg_cgrp(task_group(p));
3829 struct cgroup *to = tg_cgrp(css_tg(css));
3830
3831 WARN_ON_ONCE(p->scx.cgrp_moving_from);
3832
3833 /*
3834 * sched_move_task() omits identity migrations. Let's match the
3835 * behavior so that ops.cgroup_prep_move() and ops.cgroup_move()
3836 * always match one-to-one.
3837 */
3838 if (from == to)
3839 continue;
3840
3841 if (SCX_HAS_OP(cgroup_prep_move)) {
3842 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_prep_move,
3843 p, from, css->cgroup);
3844 if (ret)
3845 goto err;
3846 }
3847
3848 p->scx.cgrp_moving_from = from;
3849 }
3850
3851 return 0;
3852
3853 err:
3854 cgroup_taskset_for_each(p, css, tset) {
3855 if (SCX_HAS_OP(cgroup_cancel_move) && p->scx.cgrp_moving_from)
3856 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_cancel_move, p,
3857 p->scx.cgrp_moving_from, css->cgroup);
3858 p->scx.cgrp_moving_from = NULL;
3859 }
3860
3861 percpu_up_read(&scx_cgroup_rwsem);
3862 return ops_sanitize_err("cgroup_prep_move", ret);
3863 }
3864
scx_move_task(struct task_struct * p)3865 void scx_move_task(struct task_struct *p)
3866 {
3867 if (!scx_cgroup_enabled)
3868 return;
3869
3870 /*
3871 * We're called from sched_move_task() which handles both cgroup and
3872 * autogroup moves. Ignore the latter.
3873 *
3874 * Also ignore exiting tasks, because in the exit path tasks transition
3875 * from the autogroup to the root group, so task_group_is_autogroup()
3876 * alone isn't able to catch exiting autogroup tasks. This is safe for
3877 * cgroup_move(), because cgroup migrations never happen for PF_EXITING
3878 * tasks.
3879 */
3880 if (task_group_is_autogroup(task_group(p)) || (p->flags & PF_EXITING))
3881 return;
3882
3883 /*
3884 * @p must have ops.cgroup_prep_move() called on it and thus
3885 * cgrp_moving_from set.
3886 */
3887 if (SCX_HAS_OP(cgroup_move) && !WARN_ON_ONCE(!p->scx.cgrp_moving_from))
3888 SCX_CALL_OP_TASK(SCX_KF_UNLOCKED, cgroup_move, p,
3889 p->scx.cgrp_moving_from, tg_cgrp(task_group(p)));
3890 p->scx.cgrp_moving_from = NULL;
3891 }
3892
scx_cgroup_finish_attach(void)3893 void scx_cgroup_finish_attach(void)
3894 {
3895 percpu_up_read(&scx_cgroup_rwsem);
3896 }
3897
scx_cgroup_cancel_attach(struct cgroup_taskset * tset)3898 void scx_cgroup_cancel_attach(struct cgroup_taskset *tset)
3899 {
3900 struct cgroup_subsys_state *css;
3901 struct task_struct *p;
3902
3903 if (!scx_cgroup_enabled)
3904 goto out_unlock;
3905
3906 cgroup_taskset_for_each(p, css, tset) {
3907 if (SCX_HAS_OP(cgroup_cancel_move) && p->scx.cgrp_moving_from)
3908 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_cancel_move, p,
3909 p->scx.cgrp_moving_from, css->cgroup);
3910 p->scx.cgrp_moving_from = NULL;
3911 }
3912 out_unlock:
3913 percpu_up_read(&scx_cgroup_rwsem);
3914 }
3915
scx_group_set_weight(struct task_group * tg,unsigned long weight)3916 void scx_group_set_weight(struct task_group *tg, unsigned long weight)
3917 {
3918 percpu_down_read(&scx_cgroup_rwsem);
3919
3920 if (scx_cgroup_enabled && tg->scx_weight != weight) {
3921 if (SCX_HAS_OP(cgroup_set_weight))
3922 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_set_weight,
3923 tg_cgrp(tg), weight);
3924 tg->scx_weight = weight;
3925 }
3926
3927 percpu_up_read(&scx_cgroup_rwsem);
3928 }
3929
scx_group_set_idle(struct task_group * tg,bool idle)3930 void scx_group_set_idle(struct task_group *tg, bool idle)
3931 {
3932 percpu_down_read(&scx_cgroup_rwsem);
3933 scx_cgroup_warn_missing_idle(tg);
3934 percpu_up_read(&scx_cgroup_rwsem);
3935 }
3936
scx_cgroup_lock(void)3937 static void scx_cgroup_lock(void)
3938 {
3939 percpu_down_write(&scx_cgroup_rwsem);
3940 }
3941
scx_cgroup_unlock(void)3942 static void scx_cgroup_unlock(void)
3943 {
3944 percpu_up_write(&scx_cgroup_rwsem);
3945 }
3946
3947 #else /* CONFIG_EXT_GROUP_SCHED */
3948
scx_cgroup_lock(void)3949 static inline void scx_cgroup_lock(void) {}
scx_cgroup_unlock(void)3950 static inline void scx_cgroup_unlock(void) {}
3951
3952 #endif /* CONFIG_EXT_GROUP_SCHED */
3953
3954 /*
3955 * Omitted operations:
3956 *
3957 * - wakeup_preempt: NOOP as it isn't useful in the wakeup path because the task
3958 * isn't tied to the CPU at that point. Preemption is implemented by resetting
3959 * the victim task's slice to 0 and triggering reschedule on the target CPU.
3960 *
3961 * - migrate_task_rq: Unnecessary as task to cpu mapping is transient.
3962 *
3963 * - task_fork/dead: We need fork/dead notifications for all tasks regardless of
3964 * their current sched_class. Call them directly from sched core instead.
3965 */
3966 DEFINE_SCHED_CLASS(ext) = {
3967 .enqueue_task = enqueue_task_scx,
3968 .dequeue_task = dequeue_task_scx,
3969 .yield_task = yield_task_scx,
3970 .yield_to_task = yield_to_task_scx,
3971
3972 .wakeup_preempt = wakeup_preempt_scx,
3973
3974 .balance = balance_scx,
3975 .pick_task = pick_task_scx,
3976
3977 .put_prev_task = put_prev_task_scx,
3978 .set_next_task = set_next_task_scx,
3979
3980 #ifdef CONFIG_SMP
3981 .select_task_rq = select_task_rq_scx,
3982 .task_woken = task_woken_scx,
3983 .set_cpus_allowed = set_cpus_allowed_scx,
3984
3985 .rq_online = rq_online_scx,
3986 .rq_offline = rq_offline_scx,
3987 #endif
3988
3989 .task_tick = task_tick_scx,
3990
3991 .switching_to = switching_to_scx,
3992 .switched_from = switched_from_scx,
3993 .switched_to = switched_to_scx,
3994 .reweight_task = reweight_task_scx,
3995 .prio_changed = prio_changed_scx,
3996
3997 .update_curr = update_curr_scx,
3998
3999 #ifdef CONFIG_UCLAMP_TASK
4000 .uclamp_enabled = 1,
4001 #endif
4002 };
4003
init_dsq(struct scx_dispatch_q * dsq,u64 dsq_id)4004 static void init_dsq(struct scx_dispatch_q *dsq, u64 dsq_id)
4005 {
4006 memset(dsq, 0, sizeof(*dsq));
4007
4008 raw_spin_lock_init(&dsq->lock);
4009 INIT_LIST_HEAD(&dsq->list);
4010 dsq->id = dsq_id;
4011 }
4012
create_dsq(u64 dsq_id,int node)4013 static struct scx_dispatch_q *create_dsq(u64 dsq_id, int node)
4014 {
4015 struct scx_dispatch_q *dsq;
4016 int ret;
4017
4018 if (dsq_id & SCX_DSQ_FLAG_BUILTIN)
4019 return ERR_PTR(-EINVAL);
4020
4021 dsq = kmalloc_node(sizeof(*dsq), GFP_KERNEL, node);
4022 if (!dsq)
4023 return ERR_PTR(-ENOMEM);
4024
4025 init_dsq(dsq, dsq_id);
4026
4027 ret = rhashtable_insert_fast(&dsq_hash, &dsq->hash_node,
4028 dsq_hash_params);
4029 if (ret) {
4030 kfree(dsq);
4031 return ERR_PTR(ret);
4032 }
4033 return dsq;
4034 }
4035
free_dsq_irq_workfn(struct irq_work * irq_work)4036 static void free_dsq_irq_workfn(struct irq_work *irq_work)
4037 {
4038 struct llist_node *to_free = llist_del_all(&dsqs_to_free);
4039 struct scx_dispatch_q *dsq, *tmp_dsq;
4040
4041 llist_for_each_entry_safe(dsq, tmp_dsq, to_free, free_node)
4042 kfree_rcu(dsq, rcu);
4043 }
4044
4045 static DEFINE_IRQ_WORK(free_dsq_irq_work, free_dsq_irq_workfn);
4046
destroy_dsq(u64 dsq_id)4047 static void destroy_dsq(u64 dsq_id)
4048 {
4049 struct scx_dispatch_q *dsq;
4050 unsigned long flags;
4051
4052 rcu_read_lock();
4053
4054 dsq = find_user_dsq(dsq_id);
4055 if (!dsq)
4056 goto out_unlock_rcu;
4057
4058 raw_spin_lock_irqsave(&dsq->lock, flags);
4059
4060 if (dsq->nr) {
4061 scx_ops_error("attempting to destroy in-use dsq 0x%016llx (nr=%u)",
4062 dsq->id, dsq->nr);
4063 goto out_unlock_dsq;
4064 }
4065
4066 if (rhashtable_remove_fast(&dsq_hash, &dsq->hash_node, dsq_hash_params))
4067 goto out_unlock_dsq;
4068
4069 /*
4070 * Mark dead by invalidating ->id to prevent dispatch_enqueue() from
4071 * queueing more tasks. As this function can be called from anywhere,
4072 * freeing is bounced through an irq work to avoid nesting RCU
4073 * operations inside scheduler locks.
4074 */
4075 dsq->id = SCX_DSQ_INVALID;
4076 llist_add(&dsq->free_node, &dsqs_to_free);
4077 irq_work_queue(&free_dsq_irq_work);
4078
4079 out_unlock_dsq:
4080 raw_spin_unlock_irqrestore(&dsq->lock, flags);
4081 out_unlock_rcu:
4082 rcu_read_unlock();
4083 }
4084
4085 #ifdef CONFIG_EXT_GROUP_SCHED
scx_cgroup_exit(void)4086 static void scx_cgroup_exit(void)
4087 {
4088 struct cgroup_subsys_state *css;
4089
4090 percpu_rwsem_assert_held(&scx_cgroup_rwsem);
4091
4092 scx_cgroup_enabled = false;
4093
4094 /*
4095 * scx_tg_on/offline() are excluded through scx_cgroup_rwsem. If we walk
4096 * cgroups and exit all the inited ones, all online cgroups are exited.
4097 */
4098 rcu_read_lock();
4099 css_for_each_descendant_post(css, &root_task_group.css) {
4100 struct task_group *tg = css_tg(css);
4101
4102 if (!(tg->scx_flags & SCX_TG_INITED))
4103 continue;
4104 tg->scx_flags &= ~SCX_TG_INITED;
4105
4106 if (!scx_ops.cgroup_exit)
4107 continue;
4108
4109 if (WARN_ON_ONCE(!css_tryget(css)))
4110 continue;
4111 rcu_read_unlock();
4112
4113 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_exit, css->cgroup);
4114
4115 rcu_read_lock();
4116 css_put(css);
4117 }
4118 rcu_read_unlock();
4119 }
4120
scx_cgroup_init(void)4121 static int scx_cgroup_init(void)
4122 {
4123 struct cgroup_subsys_state *css;
4124 int ret;
4125
4126 percpu_rwsem_assert_held(&scx_cgroup_rwsem);
4127
4128 cgroup_warned_missing_weight = false;
4129 cgroup_warned_missing_idle = false;
4130
4131 /*
4132 * scx_tg_on/offline() are excluded thorugh scx_cgroup_rwsem. If we walk
4133 * cgroups and init, all online cgroups are initialized.
4134 */
4135 rcu_read_lock();
4136 css_for_each_descendant_pre(css, &root_task_group.css) {
4137 struct task_group *tg = css_tg(css);
4138 struct scx_cgroup_init_args args = { .weight = tg->scx_weight };
4139
4140 scx_cgroup_warn_missing_weight(tg);
4141 scx_cgroup_warn_missing_idle(tg);
4142
4143 if ((tg->scx_flags &
4144 (SCX_TG_ONLINE | SCX_TG_INITED)) != SCX_TG_ONLINE)
4145 continue;
4146
4147 if (!scx_ops.cgroup_init) {
4148 tg->scx_flags |= SCX_TG_INITED;
4149 continue;
4150 }
4151
4152 if (WARN_ON_ONCE(!css_tryget(css)))
4153 continue;
4154 rcu_read_unlock();
4155
4156 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_init,
4157 css->cgroup, &args);
4158 if (ret) {
4159 css_put(css);
4160 scx_ops_error("ops.cgroup_init() failed (%d)", ret);
4161 return ret;
4162 }
4163 tg->scx_flags |= SCX_TG_INITED;
4164
4165 rcu_read_lock();
4166 css_put(css);
4167 }
4168 rcu_read_unlock();
4169
4170 WARN_ON_ONCE(scx_cgroup_enabled);
4171 scx_cgroup_enabled = true;
4172
4173 return 0;
4174 }
4175
4176 #else
scx_cgroup_exit(void)4177 static void scx_cgroup_exit(void) {}
scx_cgroup_init(void)4178 static int scx_cgroup_init(void) { return 0; }
4179 #endif
4180
4181
4182 /********************************************************************************
4183 * Sysfs interface and ops enable/disable.
4184 */
4185
4186 #define SCX_ATTR(_name) \
4187 static struct kobj_attribute scx_attr_##_name = { \
4188 .attr = { .name = __stringify(_name), .mode = 0444 }, \
4189 .show = scx_attr_##_name##_show, \
4190 }
4191
scx_attr_state_show(struct kobject * kobj,struct kobj_attribute * ka,char * buf)4192 static ssize_t scx_attr_state_show(struct kobject *kobj,
4193 struct kobj_attribute *ka, char *buf)
4194 {
4195 return sysfs_emit(buf, "%s\n",
4196 scx_ops_enable_state_str[scx_ops_enable_state()]);
4197 }
4198 SCX_ATTR(state);
4199
scx_attr_switch_all_show(struct kobject * kobj,struct kobj_attribute * ka,char * buf)4200 static ssize_t scx_attr_switch_all_show(struct kobject *kobj,
4201 struct kobj_attribute *ka, char *buf)
4202 {
4203 return sysfs_emit(buf, "%d\n", READ_ONCE(scx_switching_all));
4204 }
4205 SCX_ATTR(switch_all);
4206
scx_attr_nr_rejected_show(struct kobject * kobj,struct kobj_attribute * ka,char * buf)4207 static ssize_t scx_attr_nr_rejected_show(struct kobject *kobj,
4208 struct kobj_attribute *ka, char *buf)
4209 {
4210 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_nr_rejected));
4211 }
4212 SCX_ATTR(nr_rejected);
4213
scx_attr_hotplug_seq_show(struct kobject * kobj,struct kobj_attribute * ka,char * buf)4214 static ssize_t scx_attr_hotplug_seq_show(struct kobject *kobj,
4215 struct kobj_attribute *ka, char *buf)
4216 {
4217 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_hotplug_seq));
4218 }
4219 SCX_ATTR(hotplug_seq);
4220
scx_attr_enable_seq_show(struct kobject * kobj,struct kobj_attribute * ka,char * buf)4221 static ssize_t scx_attr_enable_seq_show(struct kobject *kobj,
4222 struct kobj_attribute *ka, char *buf)
4223 {
4224 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_enable_seq));
4225 }
4226 SCX_ATTR(enable_seq);
4227
4228 static struct attribute *scx_global_attrs[] = {
4229 &scx_attr_state.attr,
4230 &scx_attr_switch_all.attr,
4231 &scx_attr_nr_rejected.attr,
4232 &scx_attr_hotplug_seq.attr,
4233 &scx_attr_enable_seq.attr,
4234 NULL,
4235 };
4236
4237 static const struct attribute_group scx_global_attr_group = {
4238 .attrs = scx_global_attrs,
4239 };
4240
scx_kobj_release(struct kobject * kobj)4241 static void scx_kobj_release(struct kobject *kobj)
4242 {
4243 kfree(kobj);
4244 }
4245
scx_attr_ops_show(struct kobject * kobj,struct kobj_attribute * ka,char * buf)4246 static ssize_t scx_attr_ops_show(struct kobject *kobj,
4247 struct kobj_attribute *ka, char *buf)
4248 {
4249 return sysfs_emit(buf, "%s\n", scx_ops.name);
4250 }
4251 SCX_ATTR(ops);
4252
4253 static struct attribute *scx_sched_attrs[] = {
4254 &scx_attr_ops.attr,
4255 NULL,
4256 };
4257 ATTRIBUTE_GROUPS(scx_sched);
4258
4259 static const struct kobj_type scx_ktype = {
4260 .release = scx_kobj_release,
4261 .sysfs_ops = &kobj_sysfs_ops,
4262 .default_groups = scx_sched_groups,
4263 };
4264
scx_uevent(const struct kobject * kobj,struct kobj_uevent_env * env)4265 static int scx_uevent(const struct kobject *kobj, struct kobj_uevent_env *env)
4266 {
4267 return add_uevent_var(env, "SCXOPS=%s", scx_ops.name);
4268 }
4269
4270 static const struct kset_uevent_ops scx_uevent_ops = {
4271 .uevent = scx_uevent,
4272 };
4273
4274 /*
4275 * Used by sched_fork() and __setscheduler_prio() to pick the matching
4276 * sched_class. dl/rt are already handled.
4277 */
task_should_scx(int policy)4278 bool task_should_scx(int policy)
4279 {
4280 if (!scx_enabled() ||
4281 unlikely(scx_ops_enable_state() == SCX_OPS_DISABLING))
4282 return false;
4283 if (READ_ONCE(scx_switching_all))
4284 return true;
4285 return policy == SCHED_EXT;
4286 }
4287
4288 /**
4289 * scx_ops_bypass - [Un]bypass scx_ops and guarantee forward progress
4290 *
4291 * Bypassing guarantees that all runnable tasks make forward progress without
4292 * trusting the BPF scheduler. We can't grab any mutexes or rwsems as they might
4293 * be held by tasks that the BPF scheduler is forgetting to run, which
4294 * unfortunately also excludes toggling the static branches.
4295 *
4296 * Let's work around by overriding a couple ops and modifying behaviors based on
4297 * the DISABLING state and then cycling the queued tasks through dequeue/enqueue
4298 * to force global FIFO scheduling.
4299 *
4300 * - ops.select_cpu() is ignored and the default select_cpu() is used.
4301 *
4302 * - ops.enqueue() is ignored and tasks are queued in simple global FIFO order.
4303 * %SCX_OPS_ENQ_LAST is also ignored.
4304 *
4305 * - ops.dispatch() is ignored.
4306 *
4307 * - balance_scx() does not set %SCX_RQ_BAL_KEEP on non-zero slice as slice
4308 * can't be trusted. Whenever a tick triggers, the running task is rotated to
4309 * the tail of the queue with core_sched_at touched.
4310 *
4311 * - pick_next_task() suppresses zero slice warning.
4312 *
4313 * - scx_bpf_kick_cpu() is disabled to avoid irq_work malfunction during PM
4314 * operations.
4315 *
4316 * - scx_prio_less() reverts to the default core_sched_at order.
4317 */
scx_ops_bypass(bool bypass)4318 static void scx_ops_bypass(bool bypass)
4319 {
4320 int cpu;
4321 unsigned long flags;
4322
4323 raw_spin_lock_irqsave(&__scx_ops_bypass_lock, flags);
4324 if (bypass) {
4325 scx_ops_bypass_depth++;
4326 WARN_ON_ONCE(scx_ops_bypass_depth <= 0);
4327 if (scx_ops_bypass_depth != 1)
4328 goto unlock;
4329 } else {
4330 scx_ops_bypass_depth--;
4331 WARN_ON_ONCE(scx_ops_bypass_depth < 0);
4332 if (scx_ops_bypass_depth != 0)
4333 goto unlock;
4334 }
4335
4336 /*
4337 * No task property is changing. We just need to make sure all currently
4338 * queued tasks are re-queued according to the new scx_rq_bypassing()
4339 * state. As an optimization, walk each rq's runnable_list instead of
4340 * the scx_tasks list.
4341 *
4342 * This function can't trust the scheduler and thus can't use
4343 * cpus_read_lock(). Walk all possible CPUs instead of online.
4344 */
4345 for_each_possible_cpu(cpu) {
4346 struct rq *rq = cpu_rq(cpu);
4347 struct rq_flags rf;
4348 struct task_struct *p, *n;
4349
4350 rq_lock(rq, &rf);
4351
4352 if (bypass) {
4353 WARN_ON_ONCE(rq->scx.flags & SCX_RQ_BYPASSING);
4354 rq->scx.flags |= SCX_RQ_BYPASSING;
4355 } else {
4356 WARN_ON_ONCE(!(rq->scx.flags & SCX_RQ_BYPASSING));
4357 rq->scx.flags &= ~SCX_RQ_BYPASSING;
4358 }
4359
4360 /*
4361 * We need to guarantee that no tasks are on the BPF scheduler
4362 * while bypassing. Either we see enabled or the enable path
4363 * sees scx_rq_bypassing() before moving tasks to SCX.
4364 */
4365 if (!scx_enabled()) {
4366 rq_unlock_irqrestore(rq, &rf);
4367 continue;
4368 }
4369
4370 /*
4371 * The use of list_for_each_entry_safe_reverse() is required
4372 * because each task is going to be removed from and added back
4373 * to the runnable_list during iteration. Because they're added
4374 * to the tail of the list, safe reverse iteration can still
4375 * visit all nodes.
4376 */
4377 list_for_each_entry_safe_reverse(p, n, &rq->scx.runnable_list,
4378 scx.runnable_node) {
4379 struct sched_enq_and_set_ctx ctx;
4380
4381 /* cycling deq/enq is enough, see the function comment */
4382 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx);
4383 sched_enq_and_set_task(&ctx);
4384 }
4385
4386 rq_unlock(rq, &rf);
4387
4388 /* resched to restore ticks and idle state */
4389 resched_cpu(cpu);
4390 }
4391 unlock:
4392 raw_spin_unlock_irqrestore(&__scx_ops_bypass_lock, flags);
4393 }
4394
free_exit_info(struct scx_exit_info * ei)4395 static void free_exit_info(struct scx_exit_info *ei)
4396 {
4397 kfree(ei->dump);
4398 kfree(ei->msg);
4399 kfree(ei->bt);
4400 kfree(ei);
4401 }
4402
alloc_exit_info(size_t exit_dump_len)4403 static struct scx_exit_info *alloc_exit_info(size_t exit_dump_len)
4404 {
4405 struct scx_exit_info *ei;
4406
4407 ei = kzalloc(sizeof(*ei), GFP_KERNEL);
4408 if (!ei)
4409 return NULL;
4410
4411 ei->bt = kcalloc(SCX_EXIT_BT_LEN, sizeof(ei->bt[0]), GFP_KERNEL);
4412 ei->msg = kzalloc(SCX_EXIT_MSG_LEN, GFP_KERNEL);
4413 ei->dump = kzalloc(exit_dump_len, GFP_KERNEL);
4414
4415 if (!ei->bt || !ei->msg || !ei->dump) {
4416 free_exit_info(ei);
4417 return NULL;
4418 }
4419
4420 return ei;
4421 }
4422
scx_exit_reason(enum scx_exit_kind kind)4423 static const char *scx_exit_reason(enum scx_exit_kind kind)
4424 {
4425 switch (kind) {
4426 case SCX_EXIT_UNREG:
4427 return "unregistered from user space";
4428 case SCX_EXIT_UNREG_BPF:
4429 return "unregistered from BPF";
4430 case SCX_EXIT_UNREG_KERN:
4431 return "unregistered from the main kernel";
4432 case SCX_EXIT_SYSRQ:
4433 return "disabled by sysrq-S";
4434 case SCX_EXIT_ERROR:
4435 return "runtime error";
4436 case SCX_EXIT_ERROR_BPF:
4437 return "scx_bpf_error";
4438 case SCX_EXIT_ERROR_STALL:
4439 return "runnable task stall";
4440 default:
4441 return "<UNKNOWN>";
4442 }
4443 }
4444
scx_ops_disable_workfn(struct kthread_work * work)4445 static void scx_ops_disable_workfn(struct kthread_work *work)
4446 {
4447 struct scx_exit_info *ei = scx_exit_info;
4448 struct scx_task_iter sti;
4449 struct task_struct *p;
4450 struct rhashtable_iter rht_iter;
4451 struct scx_dispatch_q *dsq;
4452 int i, kind;
4453
4454 kind = atomic_read(&scx_exit_kind);
4455 while (true) {
4456 /*
4457 * NONE indicates that a new scx_ops has been registered since
4458 * disable was scheduled - don't kill the new ops. DONE
4459 * indicates that the ops has already been disabled.
4460 */
4461 if (kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE)
4462 return;
4463 if (atomic_try_cmpxchg(&scx_exit_kind, &kind, SCX_EXIT_DONE))
4464 break;
4465 }
4466 ei->kind = kind;
4467 ei->reason = scx_exit_reason(ei->kind);
4468
4469 /* guarantee forward progress by bypassing scx_ops */
4470 scx_ops_bypass(true);
4471
4472 switch (scx_ops_set_enable_state(SCX_OPS_DISABLING)) {
4473 case SCX_OPS_DISABLING:
4474 WARN_ONCE(true, "sched_ext: duplicate disabling instance?");
4475 break;
4476 case SCX_OPS_DISABLED:
4477 pr_warn("sched_ext: ops error detected without ops (%s)\n",
4478 scx_exit_info->msg);
4479 WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) !=
4480 SCX_OPS_DISABLING);
4481 goto done;
4482 default:
4483 break;
4484 }
4485
4486 /*
4487 * Here, every runnable task is guaranteed to make forward progress and
4488 * we can safely use blocking synchronization constructs. Actually
4489 * disable ops.
4490 */
4491 mutex_lock(&scx_ops_enable_mutex);
4492
4493 static_branch_disable(&__scx_switched_all);
4494 WRITE_ONCE(scx_switching_all, false);
4495
4496 /*
4497 * Shut down cgroup support before tasks so that the cgroup attach path
4498 * doesn't race against scx_ops_exit_task().
4499 */
4500 scx_cgroup_lock();
4501 scx_cgroup_exit();
4502 scx_cgroup_unlock();
4503
4504 /*
4505 * The BPF scheduler is going away. All tasks including %TASK_DEAD ones
4506 * must be switched out and exited synchronously.
4507 */
4508 percpu_down_write(&scx_fork_rwsem);
4509
4510 scx_ops_init_task_enabled = false;
4511
4512 scx_task_iter_start(&sti);
4513 while ((p = scx_task_iter_next_locked(&sti))) {
4514 const struct sched_class *old_class = p->sched_class;
4515 const struct sched_class *new_class =
4516 __setscheduler_class(p->policy, p->prio);
4517 struct sched_enq_and_set_ctx ctx;
4518
4519 if (old_class != new_class && p->se.sched_delayed)
4520 dequeue_task(task_rq(p), p, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
4521
4522 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx);
4523
4524 p->sched_class = new_class;
4525 check_class_changing(task_rq(p), p, old_class);
4526
4527 sched_enq_and_set_task(&ctx);
4528
4529 check_class_changed(task_rq(p), p, old_class, p->prio);
4530 scx_ops_exit_task(p);
4531 }
4532 scx_task_iter_stop(&sti);
4533 percpu_up_write(&scx_fork_rwsem);
4534
4535 /* no task is on scx, turn off all the switches and flush in-progress calls */
4536 static_branch_disable(&__scx_ops_enabled);
4537 for (i = SCX_OPI_BEGIN; i < SCX_OPI_END; i++)
4538 static_branch_disable(&scx_has_op[i]);
4539 static_branch_disable(&scx_ops_enq_last);
4540 static_branch_disable(&scx_ops_enq_exiting);
4541 static_branch_disable(&scx_ops_cpu_preempt);
4542 static_branch_disable(&scx_builtin_idle_enabled);
4543 synchronize_rcu();
4544
4545 if (ei->kind >= SCX_EXIT_ERROR) {
4546 pr_err("sched_ext: BPF scheduler \"%s\" disabled (%s)\n",
4547 scx_ops.name, ei->reason);
4548
4549 if (ei->msg[0] != '\0')
4550 pr_err("sched_ext: %s: %s\n", scx_ops.name, ei->msg);
4551 #ifdef CONFIG_STACKTRACE
4552 stack_trace_print(ei->bt, ei->bt_len, 2);
4553 #endif
4554 } else {
4555 pr_info("sched_ext: BPF scheduler \"%s\" disabled (%s)\n",
4556 scx_ops.name, ei->reason);
4557 }
4558
4559 if (scx_ops.exit)
4560 SCX_CALL_OP(SCX_KF_UNLOCKED, exit, ei);
4561
4562 cancel_delayed_work_sync(&scx_watchdog_work);
4563
4564 /*
4565 * Delete the kobject from the hierarchy eagerly in addition to just
4566 * dropping a reference. Otherwise, if the object is deleted
4567 * asynchronously, sysfs could observe an object of the same name still
4568 * in the hierarchy when another scheduler is loaded.
4569 */
4570 kobject_del(scx_root_kobj);
4571 kobject_put(scx_root_kobj);
4572 scx_root_kobj = NULL;
4573
4574 memset(&scx_ops, 0, sizeof(scx_ops));
4575
4576 rhashtable_walk_enter(&dsq_hash, &rht_iter);
4577 do {
4578 rhashtable_walk_start(&rht_iter);
4579
4580 while ((dsq = rhashtable_walk_next(&rht_iter)) && !IS_ERR(dsq))
4581 destroy_dsq(dsq->id);
4582
4583 rhashtable_walk_stop(&rht_iter);
4584 } while (dsq == ERR_PTR(-EAGAIN));
4585 rhashtable_walk_exit(&rht_iter);
4586
4587 free_percpu(scx_dsp_ctx);
4588 scx_dsp_ctx = NULL;
4589 scx_dsp_max_batch = 0;
4590
4591 free_exit_info(scx_exit_info);
4592 scx_exit_info = NULL;
4593
4594 mutex_unlock(&scx_ops_enable_mutex);
4595
4596 WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) !=
4597 SCX_OPS_DISABLING);
4598 done:
4599 scx_ops_bypass(false);
4600 }
4601
4602 static DEFINE_KTHREAD_WORK(scx_ops_disable_work, scx_ops_disable_workfn);
4603
schedule_scx_ops_disable_work(void)4604 static void schedule_scx_ops_disable_work(void)
4605 {
4606 struct kthread_worker *helper = READ_ONCE(scx_ops_helper);
4607
4608 /*
4609 * We may be called spuriously before the first bpf_sched_ext_reg(). If
4610 * scx_ops_helper isn't set up yet, there's nothing to do.
4611 */
4612 if (helper)
4613 kthread_queue_work(helper, &scx_ops_disable_work);
4614 }
4615
scx_ops_disable(enum scx_exit_kind kind)4616 static void scx_ops_disable(enum scx_exit_kind kind)
4617 {
4618 int none = SCX_EXIT_NONE;
4619
4620 if (WARN_ON_ONCE(kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE))
4621 kind = SCX_EXIT_ERROR;
4622
4623 atomic_try_cmpxchg(&scx_exit_kind, &none, kind);
4624
4625 schedule_scx_ops_disable_work();
4626 }
4627
dump_newline(struct seq_buf * s)4628 static void dump_newline(struct seq_buf *s)
4629 {
4630 trace_sched_ext_dump("");
4631
4632 /* @s may be zero sized and seq_buf triggers WARN if so */
4633 if (s->size)
4634 seq_buf_putc(s, '\n');
4635 }
4636
dump_line(struct seq_buf * s,const char * fmt,...)4637 static __printf(2, 3) void dump_line(struct seq_buf *s, const char *fmt, ...)
4638 {
4639 va_list args;
4640
4641 #ifdef CONFIG_TRACEPOINTS
4642 if (trace_sched_ext_dump_enabled()) {
4643 /* protected by scx_dump_state()::dump_lock */
4644 static char line_buf[SCX_EXIT_MSG_LEN];
4645
4646 va_start(args, fmt);
4647 vscnprintf(line_buf, sizeof(line_buf), fmt, args);
4648 va_end(args);
4649
4650 trace_sched_ext_dump(line_buf);
4651 }
4652 #endif
4653 /* @s may be zero sized and seq_buf triggers WARN if so */
4654 if (s->size) {
4655 va_start(args, fmt);
4656 seq_buf_vprintf(s, fmt, args);
4657 va_end(args);
4658
4659 seq_buf_putc(s, '\n');
4660 }
4661 }
4662
dump_stack_trace(struct seq_buf * s,const char * prefix,const unsigned long * bt,unsigned int len)4663 static void dump_stack_trace(struct seq_buf *s, const char *prefix,
4664 const unsigned long *bt, unsigned int len)
4665 {
4666 unsigned int i;
4667
4668 for (i = 0; i < len; i++)
4669 dump_line(s, "%s%pS", prefix, (void *)bt[i]);
4670 }
4671
ops_dump_init(struct seq_buf * s,const char * prefix)4672 static void ops_dump_init(struct seq_buf *s, const char *prefix)
4673 {
4674 struct scx_dump_data *dd = &scx_dump_data;
4675
4676 lockdep_assert_irqs_disabled();
4677
4678 dd->cpu = smp_processor_id(); /* allow scx_bpf_dump() */
4679 dd->first = true;
4680 dd->cursor = 0;
4681 dd->s = s;
4682 dd->prefix = prefix;
4683 }
4684
ops_dump_flush(void)4685 static void ops_dump_flush(void)
4686 {
4687 struct scx_dump_data *dd = &scx_dump_data;
4688 char *line = dd->buf.line;
4689
4690 if (!dd->cursor)
4691 return;
4692
4693 /*
4694 * There's something to flush and this is the first line. Insert a blank
4695 * line to distinguish ops dump.
4696 */
4697 if (dd->first) {
4698 dump_newline(dd->s);
4699 dd->first = false;
4700 }
4701
4702 /*
4703 * There may be multiple lines in $line. Scan and emit each line
4704 * separately.
4705 */
4706 while (true) {
4707 char *end = line;
4708 char c;
4709
4710 while (*end != '\n' && *end != '\0')
4711 end++;
4712
4713 /*
4714 * If $line overflowed, it may not have newline at the end.
4715 * Always emit with a newline.
4716 */
4717 c = *end;
4718 *end = '\0';
4719 dump_line(dd->s, "%s%s", dd->prefix, line);
4720 if (c == '\0')
4721 break;
4722
4723 /* move to the next line */
4724 end++;
4725 if (*end == '\0')
4726 break;
4727 line = end;
4728 }
4729
4730 dd->cursor = 0;
4731 }
4732
ops_dump_exit(void)4733 static void ops_dump_exit(void)
4734 {
4735 ops_dump_flush();
4736 scx_dump_data.cpu = -1;
4737 }
4738
scx_dump_task(struct seq_buf * s,struct scx_dump_ctx * dctx,struct task_struct * p,char marker)4739 static void scx_dump_task(struct seq_buf *s, struct scx_dump_ctx *dctx,
4740 struct task_struct *p, char marker)
4741 {
4742 static unsigned long bt[SCX_EXIT_BT_LEN];
4743 char dsq_id_buf[19] = "(n/a)";
4744 unsigned long ops_state = atomic_long_read(&p->scx.ops_state);
4745 unsigned int bt_len = 0;
4746
4747 if (p->scx.dsq)
4748 scnprintf(dsq_id_buf, sizeof(dsq_id_buf), "0x%llx",
4749 (unsigned long long)p->scx.dsq->id);
4750
4751 dump_newline(s);
4752 dump_line(s, " %c%c %s[%d] %+ldms",
4753 marker, task_state_to_char(p), p->comm, p->pid,
4754 jiffies_delta_msecs(p->scx.runnable_at, dctx->at_jiffies));
4755 dump_line(s, " scx_state/flags=%u/0x%x dsq_flags=0x%x ops_state/qseq=%lu/%lu",
4756 scx_get_task_state(p), p->scx.flags & ~SCX_TASK_STATE_MASK,
4757 p->scx.dsq_flags, ops_state & SCX_OPSS_STATE_MASK,
4758 ops_state >> SCX_OPSS_QSEQ_SHIFT);
4759 dump_line(s, " sticky/holding_cpu=%d/%d dsq_id=%s dsq_vtime=%llu",
4760 p->scx.sticky_cpu, p->scx.holding_cpu, dsq_id_buf,
4761 p->scx.dsq_vtime);
4762 dump_line(s, " cpus=%*pb", cpumask_pr_args(p->cpus_ptr));
4763
4764 if (SCX_HAS_OP(dump_task)) {
4765 ops_dump_init(s, " ");
4766 SCX_CALL_OP(SCX_KF_REST, dump_task, dctx, p);
4767 ops_dump_exit();
4768 }
4769
4770 #ifdef CONFIG_STACKTRACE
4771 bt_len = stack_trace_save_tsk(p, bt, SCX_EXIT_BT_LEN, 1);
4772 #endif
4773 if (bt_len) {
4774 dump_newline(s);
4775 dump_stack_trace(s, " ", bt, bt_len);
4776 }
4777 }
4778
scx_dump_state(struct scx_exit_info * ei,size_t dump_len)4779 static void scx_dump_state(struct scx_exit_info *ei, size_t dump_len)
4780 {
4781 static DEFINE_SPINLOCK(dump_lock);
4782 static const char trunc_marker[] = "\n\n~~~~ TRUNCATED ~~~~\n";
4783 struct scx_dump_ctx dctx = {
4784 .kind = ei->kind,
4785 .exit_code = ei->exit_code,
4786 .reason = ei->reason,
4787 .at_ns = ktime_get_ns(),
4788 .at_jiffies = jiffies,
4789 };
4790 struct seq_buf s;
4791 unsigned long flags;
4792 char *buf;
4793 int cpu;
4794
4795 spin_lock_irqsave(&dump_lock, flags);
4796
4797 seq_buf_init(&s, ei->dump, dump_len);
4798
4799 if (ei->kind == SCX_EXIT_NONE) {
4800 dump_line(&s, "Debug dump triggered by %s", ei->reason);
4801 } else {
4802 dump_line(&s, "%s[%d] triggered exit kind %d:",
4803 current->comm, current->pid, ei->kind);
4804 dump_line(&s, " %s (%s)", ei->reason, ei->msg);
4805 dump_newline(&s);
4806 dump_line(&s, "Backtrace:");
4807 dump_stack_trace(&s, " ", ei->bt, ei->bt_len);
4808 }
4809
4810 if (SCX_HAS_OP(dump)) {
4811 ops_dump_init(&s, "");
4812 SCX_CALL_OP(SCX_KF_UNLOCKED, dump, &dctx);
4813 ops_dump_exit();
4814 }
4815
4816 dump_newline(&s);
4817 dump_line(&s, "CPU states");
4818 dump_line(&s, "----------");
4819
4820 for_each_possible_cpu(cpu) {
4821 struct rq *rq = cpu_rq(cpu);
4822 struct rq_flags rf;
4823 struct task_struct *p;
4824 struct seq_buf ns;
4825 size_t avail, used;
4826 bool idle;
4827
4828 rq_lock(rq, &rf);
4829
4830 idle = list_empty(&rq->scx.runnable_list) &&
4831 rq->curr->sched_class == &idle_sched_class;
4832
4833 if (idle && !SCX_HAS_OP(dump_cpu))
4834 goto next;
4835
4836 /*
4837 * We don't yet know whether ops.dump_cpu() will produce output
4838 * and we may want to skip the default CPU dump if it doesn't.
4839 * Use a nested seq_buf to generate the standard dump so that we
4840 * can decide whether to commit later.
4841 */
4842 avail = seq_buf_get_buf(&s, &buf);
4843 seq_buf_init(&ns, buf, avail);
4844
4845 dump_newline(&ns);
4846 dump_line(&ns, "CPU %-4d: nr_run=%u flags=0x%x cpu_rel=%d ops_qseq=%lu pnt_seq=%lu",
4847 cpu, rq->scx.nr_running, rq->scx.flags,
4848 rq->scx.cpu_released, rq->scx.ops_qseq,
4849 rq->scx.pnt_seq);
4850 dump_line(&ns, " curr=%s[%d] class=%ps",
4851 rq->curr->comm, rq->curr->pid,
4852 rq->curr->sched_class);
4853 if (!cpumask_empty(rq->scx.cpus_to_kick))
4854 dump_line(&ns, " cpus_to_kick : %*pb",
4855 cpumask_pr_args(rq->scx.cpus_to_kick));
4856 if (!cpumask_empty(rq->scx.cpus_to_kick_if_idle))
4857 dump_line(&ns, " idle_to_kick : %*pb",
4858 cpumask_pr_args(rq->scx.cpus_to_kick_if_idle));
4859 if (!cpumask_empty(rq->scx.cpus_to_preempt))
4860 dump_line(&ns, " cpus_to_preempt: %*pb",
4861 cpumask_pr_args(rq->scx.cpus_to_preempt));
4862 if (!cpumask_empty(rq->scx.cpus_to_wait))
4863 dump_line(&ns, " cpus_to_wait : %*pb",
4864 cpumask_pr_args(rq->scx.cpus_to_wait));
4865
4866 used = seq_buf_used(&ns);
4867 if (SCX_HAS_OP(dump_cpu)) {
4868 ops_dump_init(&ns, " ");
4869 SCX_CALL_OP(SCX_KF_REST, dump_cpu, &dctx, cpu, idle);
4870 ops_dump_exit();
4871 }
4872
4873 /*
4874 * If idle && nothing generated by ops.dump_cpu(), there's
4875 * nothing interesting. Skip.
4876 */
4877 if (idle && used == seq_buf_used(&ns))
4878 goto next;
4879
4880 /*
4881 * $s may already have overflowed when $ns was created. If so,
4882 * calling commit on it will trigger BUG.
4883 */
4884 if (avail) {
4885 seq_buf_commit(&s, seq_buf_used(&ns));
4886 if (seq_buf_has_overflowed(&ns))
4887 seq_buf_set_overflow(&s);
4888 }
4889
4890 if (rq->curr->sched_class == &ext_sched_class)
4891 scx_dump_task(&s, &dctx, rq->curr, '*');
4892
4893 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node)
4894 scx_dump_task(&s, &dctx, p, ' ');
4895 next:
4896 rq_unlock(rq, &rf);
4897 }
4898
4899 if (seq_buf_has_overflowed(&s) && dump_len >= sizeof(trunc_marker))
4900 memcpy(ei->dump + dump_len - sizeof(trunc_marker),
4901 trunc_marker, sizeof(trunc_marker));
4902
4903 spin_unlock_irqrestore(&dump_lock, flags);
4904 }
4905
scx_ops_error_irq_workfn(struct irq_work * irq_work)4906 static void scx_ops_error_irq_workfn(struct irq_work *irq_work)
4907 {
4908 struct scx_exit_info *ei = scx_exit_info;
4909
4910 if (ei->kind >= SCX_EXIT_ERROR)
4911 scx_dump_state(ei, scx_ops.exit_dump_len);
4912
4913 schedule_scx_ops_disable_work();
4914 }
4915
4916 static DEFINE_IRQ_WORK(scx_ops_error_irq_work, scx_ops_error_irq_workfn);
4917
scx_ops_exit_kind(enum scx_exit_kind kind,s64 exit_code,const char * fmt,...)4918 static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind,
4919 s64 exit_code,
4920 const char *fmt, ...)
4921 {
4922 struct scx_exit_info *ei = scx_exit_info;
4923 int none = SCX_EXIT_NONE;
4924 va_list args;
4925
4926 if (!atomic_try_cmpxchg(&scx_exit_kind, &none, kind))
4927 return;
4928
4929 ei->exit_code = exit_code;
4930 #ifdef CONFIG_STACKTRACE
4931 if (kind >= SCX_EXIT_ERROR)
4932 ei->bt_len = stack_trace_save(ei->bt, SCX_EXIT_BT_LEN, 1);
4933 #endif
4934 va_start(args, fmt);
4935 vscnprintf(ei->msg, SCX_EXIT_MSG_LEN, fmt, args);
4936 va_end(args);
4937
4938 /*
4939 * Set ei->kind and ->reason for scx_dump_state(). They'll be set again
4940 * in scx_ops_disable_workfn().
4941 */
4942 ei->kind = kind;
4943 ei->reason = scx_exit_reason(ei->kind);
4944
4945 irq_work_queue(&scx_ops_error_irq_work);
4946 }
4947
scx_create_rt_helper(const char * name)4948 static struct kthread_worker *scx_create_rt_helper(const char *name)
4949 {
4950 struct kthread_worker *helper;
4951
4952 helper = kthread_create_worker(0, name);
4953 if (helper)
4954 sched_set_fifo(helper->task);
4955 return helper;
4956 }
4957
check_hotplug_seq(const struct sched_ext_ops * ops)4958 static void check_hotplug_seq(const struct sched_ext_ops *ops)
4959 {
4960 unsigned long long global_hotplug_seq;
4961
4962 /*
4963 * If a hotplug event has occurred between when a scheduler was
4964 * initialized, and when we were able to attach, exit and notify user
4965 * space about it.
4966 */
4967 if (ops->hotplug_seq) {
4968 global_hotplug_seq = atomic_long_read(&scx_hotplug_seq);
4969 if (ops->hotplug_seq != global_hotplug_seq) {
4970 scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG,
4971 "expected hotplug seq %llu did not match actual %llu",
4972 ops->hotplug_seq, global_hotplug_seq);
4973 }
4974 }
4975 }
4976
validate_ops(const struct sched_ext_ops * ops)4977 static int validate_ops(const struct sched_ext_ops *ops)
4978 {
4979 /*
4980 * It doesn't make sense to specify the SCX_OPS_ENQ_LAST flag if the
4981 * ops.enqueue() callback isn't implemented.
4982 */
4983 if ((ops->flags & SCX_OPS_ENQ_LAST) && !ops->enqueue) {
4984 scx_ops_error("SCX_OPS_ENQ_LAST requires ops.enqueue() to be implemented");
4985 return -EINVAL;
4986 }
4987
4988 return 0;
4989 }
4990
scx_ops_enable(struct sched_ext_ops * ops,struct bpf_link * link)4991 static int scx_ops_enable(struct sched_ext_ops *ops, struct bpf_link *link)
4992 {
4993 struct scx_task_iter sti;
4994 struct task_struct *p;
4995 unsigned long timeout;
4996 int i, cpu, node, ret;
4997
4998 if (!cpumask_equal(housekeeping_cpumask(HK_TYPE_DOMAIN),
4999 cpu_possible_mask)) {
5000 pr_err("sched_ext: Not compatible with \"isolcpus=\" domain isolation\n");
5001 return -EINVAL;
5002 }
5003
5004 mutex_lock(&scx_ops_enable_mutex);
5005
5006 if (!scx_ops_helper) {
5007 WRITE_ONCE(scx_ops_helper,
5008 scx_create_rt_helper("sched_ext_ops_helper"));
5009 if (!scx_ops_helper) {
5010 ret = -ENOMEM;
5011 goto err_unlock;
5012 }
5013 }
5014
5015 if (!global_dsqs) {
5016 struct scx_dispatch_q **dsqs;
5017
5018 dsqs = kcalloc(nr_node_ids, sizeof(dsqs[0]), GFP_KERNEL);
5019 if (!dsqs) {
5020 ret = -ENOMEM;
5021 goto err_unlock;
5022 }
5023
5024 for_each_node_state(node, N_POSSIBLE) {
5025 struct scx_dispatch_q *dsq;
5026
5027 dsq = kzalloc_node(sizeof(*dsq), GFP_KERNEL, node);
5028 if (!dsq) {
5029 for_each_node_state(node, N_POSSIBLE)
5030 kfree(dsqs[node]);
5031 kfree(dsqs);
5032 ret = -ENOMEM;
5033 goto err_unlock;
5034 }
5035
5036 init_dsq(dsq, SCX_DSQ_GLOBAL);
5037 dsqs[node] = dsq;
5038 }
5039
5040 global_dsqs = dsqs;
5041 }
5042
5043 if (scx_ops_enable_state() != SCX_OPS_DISABLED) {
5044 ret = -EBUSY;
5045 goto err_unlock;
5046 }
5047
5048 scx_root_kobj = kzalloc(sizeof(*scx_root_kobj), GFP_KERNEL);
5049 if (!scx_root_kobj) {
5050 ret = -ENOMEM;
5051 goto err_unlock;
5052 }
5053
5054 scx_root_kobj->kset = scx_kset;
5055 ret = kobject_init_and_add(scx_root_kobj, &scx_ktype, NULL, "root");
5056 if (ret < 0)
5057 goto err;
5058
5059 scx_exit_info = alloc_exit_info(ops->exit_dump_len);
5060 if (!scx_exit_info) {
5061 ret = -ENOMEM;
5062 goto err_del;
5063 }
5064
5065 /*
5066 * Set scx_ops, transition to ENABLING and clear exit info to arm the
5067 * disable path. Failure triggers full disabling from here on.
5068 */
5069 scx_ops = *ops;
5070
5071 WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_ENABLING) !=
5072 SCX_OPS_DISABLED);
5073
5074 atomic_set(&scx_exit_kind, SCX_EXIT_NONE);
5075 scx_warned_zero_slice = false;
5076
5077 atomic_long_set(&scx_nr_rejected, 0);
5078
5079 for_each_possible_cpu(cpu)
5080 cpu_rq(cpu)->scx.cpuperf_target = SCX_CPUPERF_ONE;
5081
5082 /*
5083 * Keep CPUs stable during enable so that the BPF scheduler can track
5084 * online CPUs by watching ->on/offline_cpu() after ->init().
5085 */
5086 cpus_read_lock();
5087
5088 if (scx_ops.init) {
5089 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, init);
5090 if (ret) {
5091 ret = ops_sanitize_err("init", ret);
5092 cpus_read_unlock();
5093 scx_ops_error("ops.init() failed (%d)", ret);
5094 goto err_disable;
5095 }
5096 }
5097
5098 for (i = SCX_OPI_CPU_HOTPLUG_BEGIN; i < SCX_OPI_CPU_HOTPLUG_END; i++)
5099 if (((void (**)(void))ops)[i])
5100 static_branch_enable_cpuslocked(&scx_has_op[i]);
5101
5102 check_hotplug_seq(ops);
5103 cpus_read_unlock();
5104
5105 ret = validate_ops(ops);
5106 if (ret)
5107 goto err_disable;
5108
5109 WARN_ON_ONCE(scx_dsp_ctx);
5110 scx_dsp_max_batch = ops->dispatch_max_batch ?: SCX_DSP_DFL_MAX_BATCH;
5111 scx_dsp_ctx = __alloc_percpu(struct_size_t(struct scx_dsp_ctx, buf,
5112 scx_dsp_max_batch),
5113 __alignof__(struct scx_dsp_ctx));
5114 if (!scx_dsp_ctx) {
5115 ret = -ENOMEM;
5116 goto err_disable;
5117 }
5118
5119 if (ops->timeout_ms)
5120 timeout = msecs_to_jiffies(ops->timeout_ms);
5121 else
5122 timeout = SCX_WATCHDOG_MAX_TIMEOUT;
5123
5124 WRITE_ONCE(scx_watchdog_timeout, timeout);
5125 WRITE_ONCE(scx_watchdog_timestamp, jiffies);
5126 queue_delayed_work(system_unbound_wq, &scx_watchdog_work,
5127 scx_watchdog_timeout / 2);
5128
5129 /*
5130 * Once __scx_ops_enabled is set, %current can be switched to SCX
5131 * anytime. This can lead to stalls as some BPF schedulers (e.g.
5132 * userspace scheduling) may not function correctly before all tasks are
5133 * switched. Init in bypass mode to guarantee forward progress.
5134 */
5135 scx_ops_bypass(true);
5136
5137 for (i = SCX_OPI_NORMAL_BEGIN; i < SCX_OPI_NORMAL_END; i++)
5138 if (((void (**)(void))ops)[i])
5139 static_branch_enable(&scx_has_op[i]);
5140
5141 if (ops->flags & SCX_OPS_ENQ_LAST)
5142 static_branch_enable(&scx_ops_enq_last);
5143
5144 if (ops->flags & SCX_OPS_ENQ_EXITING)
5145 static_branch_enable(&scx_ops_enq_exiting);
5146 if (scx_ops.cpu_acquire || scx_ops.cpu_release)
5147 static_branch_enable(&scx_ops_cpu_preempt);
5148
5149 if (!ops->update_idle || (ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE)) {
5150 reset_idle_masks();
5151 static_branch_enable(&scx_builtin_idle_enabled);
5152 } else {
5153 static_branch_disable(&scx_builtin_idle_enabled);
5154 }
5155
5156 /*
5157 * Lock out forks, cgroup on/offlining and moves before opening the
5158 * floodgate so that they don't wander into the operations prematurely.
5159 */
5160 percpu_down_write(&scx_fork_rwsem);
5161
5162 WARN_ON_ONCE(scx_ops_init_task_enabled);
5163 scx_ops_init_task_enabled = true;
5164
5165 /*
5166 * Enable ops for every task. Fork is excluded by scx_fork_rwsem
5167 * preventing new tasks from being added. No need to exclude tasks
5168 * leaving as sched_ext_free() can handle both prepped and enabled
5169 * tasks. Prep all tasks first and then enable them with preemption
5170 * disabled.
5171 *
5172 * All cgroups should be initialized before scx_ops_init_task() so that
5173 * the BPF scheduler can reliably track each task's cgroup membership
5174 * from scx_ops_init_task(). Lock out cgroup on/offlining and task
5175 * migrations while tasks are being initialized so that
5176 * scx_cgroup_can_attach() never sees uninitialized tasks.
5177 */
5178 scx_cgroup_lock();
5179 ret = scx_cgroup_init();
5180 if (ret)
5181 goto err_disable_unlock_all;
5182
5183 scx_task_iter_start(&sti);
5184 while ((p = scx_task_iter_next_locked(&sti))) {
5185 /*
5186 * @p may already be dead, have lost all its usages counts and
5187 * be waiting for RCU grace period before being freed. @p can't
5188 * be initialized for SCX in such cases and should be ignored.
5189 */
5190 if (!tryget_task_struct(p))
5191 continue;
5192
5193 scx_task_iter_unlock(&sti);
5194
5195 ret = scx_ops_init_task(p, task_group(p), false);
5196 if (ret) {
5197 put_task_struct(p);
5198 scx_task_iter_relock(&sti);
5199 scx_task_iter_stop(&sti);
5200 scx_ops_error("ops.init_task() failed (%d) for %s[%d]",
5201 ret, p->comm, p->pid);
5202 goto err_disable_unlock_all;
5203 }
5204
5205 scx_set_task_state(p, SCX_TASK_READY);
5206
5207 put_task_struct(p);
5208 scx_task_iter_relock(&sti);
5209 }
5210 scx_task_iter_stop(&sti);
5211 scx_cgroup_unlock();
5212 percpu_up_write(&scx_fork_rwsem);
5213
5214 /*
5215 * All tasks are READY. It's safe to turn on scx_enabled() and switch
5216 * all eligible tasks.
5217 */
5218 WRITE_ONCE(scx_switching_all, !(ops->flags & SCX_OPS_SWITCH_PARTIAL));
5219 static_branch_enable(&__scx_ops_enabled);
5220
5221 /*
5222 * We're fully committed and can't fail. The task READY -> ENABLED
5223 * transitions here are synchronized against sched_ext_free() through
5224 * scx_tasks_lock.
5225 */
5226 percpu_down_write(&scx_fork_rwsem);
5227 scx_task_iter_start(&sti);
5228 while ((p = scx_task_iter_next_locked(&sti))) {
5229 const struct sched_class *old_class = p->sched_class;
5230 const struct sched_class *new_class =
5231 __setscheduler_class(p->policy, p->prio);
5232 struct sched_enq_and_set_ctx ctx;
5233
5234 if (old_class != new_class && p->se.sched_delayed)
5235 dequeue_task(task_rq(p), p, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
5236
5237 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx);
5238
5239 p->scx.slice = SCX_SLICE_DFL;
5240 p->sched_class = new_class;
5241 check_class_changing(task_rq(p), p, old_class);
5242
5243 sched_enq_and_set_task(&ctx);
5244
5245 check_class_changed(task_rq(p), p, old_class, p->prio);
5246 }
5247 scx_task_iter_stop(&sti);
5248 percpu_up_write(&scx_fork_rwsem);
5249
5250 scx_ops_bypass(false);
5251
5252 if (!scx_ops_tryset_enable_state(SCX_OPS_ENABLED, SCX_OPS_ENABLING)) {
5253 WARN_ON_ONCE(atomic_read(&scx_exit_kind) == SCX_EXIT_NONE);
5254 goto err_disable;
5255 }
5256
5257 if (!(ops->flags & SCX_OPS_SWITCH_PARTIAL))
5258 static_branch_enable(&__scx_switched_all);
5259
5260 pr_info("sched_ext: BPF scheduler \"%s\" enabled%s\n",
5261 scx_ops.name, scx_switched_all() ? "" : " (partial)");
5262 kobject_uevent(scx_root_kobj, KOBJ_ADD);
5263 mutex_unlock(&scx_ops_enable_mutex);
5264
5265 atomic_long_inc(&scx_enable_seq);
5266
5267 return 0;
5268
5269 err_del:
5270 kobject_del(scx_root_kobj);
5271 err:
5272 kobject_put(scx_root_kobj);
5273 scx_root_kobj = NULL;
5274 if (scx_exit_info) {
5275 free_exit_info(scx_exit_info);
5276 scx_exit_info = NULL;
5277 }
5278 err_unlock:
5279 mutex_unlock(&scx_ops_enable_mutex);
5280 return ret;
5281
5282 err_disable_unlock_all:
5283 scx_cgroup_unlock();
5284 percpu_up_write(&scx_fork_rwsem);
5285 scx_ops_bypass(false);
5286 err_disable:
5287 mutex_unlock(&scx_ops_enable_mutex);
5288 /*
5289 * Returning an error code here would not pass all the error information
5290 * to userspace. Record errno using scx_ops_error() for cases
5291 * scx_ops_error() wasn't already invoked and exit indicating success so
5292 * that the error is notified through ops.exit() with all the details.
5293 *
5294 * Flush scx_ops_disable_work to ensure that error is reported before
5295 * init completion.
5296 */
5297 scx_ops_error("scx_ops_enable() failed (%d)", ret);
5298 kthread_flush_work(&scx_ops_disable_work);
5299 return 0;
5300 }
5301
5302
5303 /********************************************************************************
5304 * bpf_struct_ops plumbing.
5305 */
5306 #include <linux/bpf_verifier.h>
5307 #include <linux/bpf.h>
5308 #include <linux/btf.h>
5309
5310 extern struct btf *btf_vmlinux;
5311 static const struct btf_type *task_struct_type;
5312 static u32 task_struct_type_id;
5313
set_arg_maybe_null(const char * op,int arg_n,int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)5314 static bool set_arg_maybe_null(const char *op, int arg_n, int off, int size,
5315 enum bpf_access_type type,
5316 const struct bpf_prog *prog,
5317 struct bpf_insn_access_aux *info)
5318 {
5319 struct btf *btf = bpf_get_btf_vmlinux();
5320 const struct bpf_struct_ops_desc *st_ops_desc;
5321 const struct btf_member *member;
5322 const struct btf_type *t;
5323 u32 btf_id, member_idx;
5324 const char *mname;
5325
5326 /* struct_ops op args are all sequential, 64-bit numbers */
5327 if (off != arg_n * sizeof(__u64))
5328 return false;
5329
5330 /* btf_id should be the type id of struct sched_ext_ops */
5331 btf_id = prog->aux->attach_btf_id;
5332 st_ops_desc = bpf_struct_ops_find(btf, btf_id);
5333 if (!st_ops_desc)
5334 return false;
5335
5336 /* BTF type of struct sched_ext_ops */
5337 t = st_ops_desc->type;
5338
5339 member_idx = prog->expected_attach_type;
5340 if (member_idx >= btf_type_vlen(t))
5341 return false;
5342
5343 /*
5344 * Get the member name of this struct_ops program, which corresponds to
5345 * a field in struct sched_ext_ops. For example, the member name of the
5346 * dispatch struct_ops program (callback) is "dispatch".
5347 */
5348 member = &btf_type_member(t)[member_idx];
5349 mname = btf_name_by_offset(btf_vmlinux, member->name_off);
5350
5351 if (!strcmp(mname, op)) {
5352 /*
5353 * The value is a pointer to a type (struct task_struct) given
5354 * by a BTF ID (PTR_TO_BTF_ID). It is trusted (PTR_TRUSTED),
5355 * however, can be a NULL (PTR_MAYBE_NULL). The BPF program
5356 * should check the pointer to make sure it is not NULL before
5357 * using it, or the verifier will reject the program.
5358 *
5359 * Longer term, this is something that should be addressed by
5360 * BTF, and be fully contained within the verifier.
5361 */
5362 info->reg_type = PTR_MAYBE_NULL | PTR_TO_BTF_ID | PTR_TRUSTED;
5363 info->btf = btf_vmlinux;
5364 info->btf_id = task_struct_type_id;
5365
5366 return true;
5367 }
5368
5369 return false;
5370 }
5371
bpf_scx_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)5372 static bool bpf_scx_is_valid_access(int off, int size,
5373 enum bpf_access_type type,
5374 const struct bpf_prog *prog,
5375 struct bpf_insn_access_aux *info)
5376 {
5377 if (type != BPF_READ)
5378 return false;
5379 if (set_arg_maybe_null("dispatch", 1, off, size, type, prog, info) ||
5380 set_arg_maybe_null("yield", 1, off, size, type, prog, info))
5381 return true;
5382 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
5383 return false;
5384 if (off % size != 0)
5385 return false;
5386
5387 return btf_ctx_access(off, size, type, prog, info);
5388 }
5389
bpf_scx_btf_struct_access(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,int off,int size)5390 static int bpf_scx_btf_struct_access(struct bpf_verifier_log *log,
5391 const struct bpf_reg_state *reg, int off,
5392 int size)
5393 {
5394 const struct btf_type *t;
5395
5396 t = btf_type_by_id(reg->btf, reg->btf_id);
5397 if (t == task_struct_type) {
5398 if (off >= offsetof(struct task_struct, scx.slice) &&
5399 off + size <= offsetofend(struct task_struct, scx.slice))
5400 return SCALAR_VALUE;
5401 if (off >= offsetof(struct task_struct, scx.dsq_vtime) &&
5402 off + size <= offsetofend(struct task_struct, scx.dsq_vtime))
5403 return SCALAR_VALUE;
5404 if (off >= offsetof(struct task_struct, scx.disallow) &&
5405 off + size <= offsetofend(struct task_struct, scx.disallow))
5406 return SCALAR_VALUE;
5407 }
5408
5409 return -EACCES;
5410 }
5411
5412 static const struct bpf_func_proto *
bpf_scx_get_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)5413 bpf_scx_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5414 {
5415 switch (func_id) {
5416 case BPF_FUNC_task_storage_get:
5417 return &bpf_task_storage_get_proto;
5418 case BPF_FUNC_task_storage_delete:
5419 return &bpf_task_storage_delete_proto;
5420 default:
5421 return bpf_base_func_proto(func_id, prog);
5422 }
5423 }
5424
5425 static const struct bpf_verifier_ops bpf_scx_verifier_ops = {
5426 .get_func_proto = bpf_scx_get_func_proto,
5427 .is_valid_access = bpf_scx_is_valid_access,
5428 .btf_struct_access = bpf_scx_btf_struct_access,
5429 };
5430
bpf_scx_init_member(const struct btf_type * t,const struct btf_member * member,void * kdata,const void * udata)5431 static int bpf_scx_init_member(const struct btf_type *t,
5432 const struct btf_member *member,
5433 void *kdata, const void *udata)
5434 {
5435 const struct sched_ext_ops *uops = udata;
5436 struct sched_ext_ops *ops = kdata;
5437 u32 moff = __btf_member_bit_offset(t, member) / 8;
5438 int ret;
5439
5440 switch (moff) {
5441 case offsetof(struct sched_ext_ops, dispatch_max_batch):
5442 if (*(u32 *)(udata + moff) > INT_MAX)
5443 return -E2BIG;
5444 ops->dispatch_max_batch = *(u32 *)(udata + moff);
5445 return 1;
5446 case offsetof(struct sched_ext_ops, flags):
5447 if (*(u64 *)(udata + moff) & ~SCX_OPS_ALL_FLAGS)
5448 return -EINVAL;
5449 ops->flags = *(u64 *)(udata + moff);
5450 return 1;
5451 case offsetof(struct sched_ext_ops, name):
5452 ret = bpf_obj_name_cpy(ops->name, uops->name,
5453 sizeof(ops->name));
5454 if (ret < 0)
5455 return ret;
5456 if (ret == 0)
5457 return -EINVAL;
5458 return 1;
5459 case offsetof(struct sched_ext_ops, timeout_ms):
5460 if (msecs_to_jiffies(*(u32 *)(udata + moff)) >
5461 SCX_WATCHDOG_MAX_TIMEOUT)
5462 return -E2BIG;
5463 ops->timeout_ms = *(u32 *)(udata + moff);
5464 return 1;
5465 case offsetof(struct sched_ext_ops, exit_dump_len):
5466 ops->exit_dump_len =
5467 *(u32 *)(udata + moff) ?: SCX_EXIT_DUMP_DFL_LEN;
5468 return 1;
5469 case offsetof(struct sched_ext_ops, hotplug_seq):
5470 ops->hotplug_seq = *(u64 *)(udata + moff);
5471 return 1;
5472 }
5473
5474 return 0;
5475 }
5476
bpf_scx_check_member(const struct btf_type * t,const struct btf_member * member,const struct bpf_prog * prog)5477 static int bpf_scx_check_member(const struct btf_type *t,
5478 const struct btf_member *member,
5479 const struct bpf_prog *prog)
5480 {
5481 u32 moff = __btf_member_bit_offset(t, member) / 8;
5482
5483 switch (moff) {
5484 case offsetof(struct sched_ext_ops, init_task):
5485 #ifdef CONFIG_EXT_GROUP_SCHED
5486 case offsetof(struct sched_ext_ops, cgroup_init):
5487 case offsetof(struct sched_ext_ops, cgroup_exit):
5488 case offsetof(struct sched_ext_ops, cgroup_prep_move):
5489 #endif
5490 case offsetof(struct sched_ext_ops, cpu_online):
5491 case offsetof(struct sched_ext_ops, cpu_offline):
5492 case offsetof(struct sched_ext_ops, init):
5493 case offsetof(struct sched_ext_ops, exit):
5494 break;
5495 default:
5496 if (prog->sleepable)
5497 return -EINVAL;
5498 }
5499
5500 return 0;
5501 }
5502
bpf_scx_reg(void * kdata,struct bpf_link * link)5503 static int bpf_scx_reg(void *kdata, struct bpf_link *link)
5504 {
5505 return scx_ops_enable(kdata, link);
5506 }
5507
bpf_scx_unreg(void * kdata,struct bpf_link * link)5508 static void bpf_scx_unreg(void *kdata, struct bpf_link *link)
5509 {
5510 scx_ops_disable(SCX_EXIT_UNREG);
5511 kthread_flush_work(&scx_ops_disable_work);
5512 }
5513
bpf_scx_init(struct btf * btf)5514 static int bpf_scx_init(struct btf *btf)
5515 {
5516 s32 type_id;
5517
5518 type_id = btf_find_by_name_kind(btf, "task_struct", BTF_KIND_STRUCT);
5519 if (type_id < 0)
5520 return -EINVAL;
5521 task_struct_type = btf_type_by_id(btf, type_id);
5522 task_struct_type_id = type_id;
5523
5524 return 0;
5525 }
5526
bpf_scx_update(void * kdata,void * old_kdata,struct bpf_link * link)5527 static int bpf_scx_update(void *kdata, void *old_kdata, struct bpf_link *link)
5528 {
5529 /*
5530 * sched_ext does not support updating the actively-loaded BPF
5531 * scheduler, as registering a BPF scheduler can always fail if the
5532 * scheduler returns an error code for e.g. ops.init(), ops.init_task(),
5533 * etc. Similarly, we can always race with unregistration happening
5534 * elsewhere, such as with sysrq.
5535 */
5536 return -EOPNOTSUPP;
5537 }
5538
bpf_scx_validate(void * kdata)5539 static int bpf_scx_validate(void *kdata)
5540 {
5541 return 0;
5542 }
5543
select_cpu_stub(struct task_struct * p,s32 prev_cpu,u64 wake_flags)5544 static s32 select_cpu_stub(struct task_struct *p, s32 prev_cpu, u64 wake_flags) { return -EINVAL; }
enqueue_stub(struct task_struct * p,u64 enq_flags)5545 static void enqueue_stub(struct task_struct *p, u64 enq_flags) {}
dequeue_stub(struct task_struct * p,u64 enq_flags)5546 static void dequeue_stub(struct task_struct *p, u64 enq_flags) {}
dispatch_stub(s32 prev_cpu,struct task_struct * p)5547 static void dispatch_stub(s32 prev_cpu, struct task_struct *p) {}
tick_stub(struct task_struct * p)5548 static void tick_stub(struct task_struct *p) {}
runnable_stub(struct task_struct * p,u64 enq_flags)5549 static void runnable_stub(struct task_struct *p, u64 enq_flags) {}
running_stub(struct task_struct * p)5550 static void running_stub(struct task_struct *p) {}
stopping_stub(struct task_struct * p,bool runnable)5551 static void stopping_stub(struct task_struct *p, bool runnable) {}
quiescent_stub(struct task_struct * p,u64 deq_flags)5552 static void quiescent_stub(struct task_struct *p, u64 deq_flags) {}
yield_stub(struct task_struct * from,struct task_struct * to)5553 static bool yield_stub(struct task_struct *from, struct task_struct *to) { return false; }
core_sched_before_stub(struct task_struct * a,struct task_struct * b)5554 static bool core_sched_before_stub(struct task_struct *a, struct task_struct *b) { return false; }
set_weight_stub(struct task_struct * p,u32 weight)5555 static void set_weight_stub(struct task_struct *p, u32 weight) {}
set_cpumask_stub(struct task_struct * p,const struct cpumask * mask)5556 static void set_cpumask_stub(struct task_struct *p, const struct cpumask *mask) {}
update_idle_stub(s32 cpu,bool idle)5557 static void update_idle_stub(s32 cpu, bool idle) {}
cpu_acquire_stub(s32 cpu,struct scx_cpu_acquire_args * args)5558 static void cpu_acquire_stub(s32 cpu, struct scx_cpu_acquire_args *args) {}
cpu_release_stub(s32 cpu,struct scx_cpu_release_args * args)5559 static void cpu_release_stub(s32 cpu, struct scx_cpu_release_args *args) {}
init_task_stub(struct task_struct * p,struct scx_init_task_args * args)5560 static s32 init_task_stub(struct task_struct *p, struct scx_init_task_args *args) { return -EINVAL; }
exit_task_stub(struct task_struct * p,struct scx_exit_task_args * args)5561 static void exit_task_stub(struct task_struct *p, struct scx_exit_task_args *args) {}
enable_stub(struct task_struct * p)5562 static void enable_stub(struct task_struct *p) {}
disable_stub(struct task_struct * p)5563 static void disable_stub(struct task_struct *p) {}
5564 #ifdef CONFIG_EXT_GROUP_SCHED
cgroup_init_stub(struct cgroup * cgrp,struct scx_cgroup_init_args * args)5565 static s32 cgroup_init_stub(struct cgroup *cgrp, struct scx_cgroup_init_args *args) { return -EINVAL; }
cgroup_exit_stub(struct cgroup * cgrp)5566 static void cgroup_exit_stub(struct cgroup *cgrp) {}
cgroup_prep_move_stub(struct task_struct * p,struct cgroup * from,struct cgroup * to)5567 static s32 cgroup_prep_move_stub(struct task_struct *p, struct cgroup *from, struct cgroup *to) { return -EINVAL; }
cgroup_move_stub(struct task_struct * p,struct cgroup * from,struct cgroup * to)5568 static void cgroup_move_stub(struct task_struct *p, struct cgroup *from, struct cgroup *to) {}
cgroup_cancel_move_stub(struct task_struct * p,struct cgroup * from,struct cgroup * to)5569 static void cgroup_cancel_move_stub(struct task_struct *p, struct cgroup *from, struct cgroup *to) {}
cgroup_set_weight_stub(struct cgroup * cgrp,u32 weight)5570 static void cgroup_set_weight_stub(struct cgroup *cgrp, u32 weight) {}
5571 #endif
cpu_online_stub(s32 cpu)5572 static void cpu_online_stub(s32 cpu) {}
cpu_offline_stub(s32 cpu)5573 static void cpu_offline_stub(s32 cpu) {}
init_stub(void)5574 static s32 init_stub(void) { return -EINVAL; }
exit_stub(struct scx_exit_info * info)5575 static void exit_stub(struct scx_exit_info *info) {}
dump_stub(struct scx_dump_ctx * ctx)5576 static void dump_stub(struct scx_dump_ctx *ctx) {}
dump_cpu_stub(struct scx_dump_ctx * ctx,s32 cpu,bool idle)5577 static void dump_cpu_stub(struct scx_dump_ctx *ctx, s32 cpu, bool idle) {}
dump_task_stub(struct scx_dump_ctx * ctx,struct task_struct * p)5578 static void dump_task_stub(struct scx_dump_ctx *ctx, struct task_struct *p) {}
5579
5580 static struct sched_ext_ops __bpf_ops_sched_ext_ops = {
5581 .select_cpu = select_cpu_stub,
5582 .enqueue = enqueue_stub,
5583 .dequeue = dequeue_stub,
5584 .dispatch = dispatch_stub,
5585 .tick = tick_stub,
5586 .runnable = runnable_stub,
5587 .running = running_stub,
5588 .stopping = stopping_stub,
5589 .quiescent = quiescent_stub,
5590 .yield = yield_stub,
5591 .core_sched_before = core_sched_before_stub,
5592 .set_weight = set_weight_stub,
5593 .set_cpumask = set_cpumask_stub,
5594 .update_idle = update_idle_stub,
5595 .cpu_acquire = cpu_acquire_stub,
5596 .cpu_release = cpu_release_stub,
5597 .init_task = init_task_stub,
5598 .exit_task = exit_task_stub,
5599 .enable = enable_stub,
5600 .disable = disable_stub,
5601 #ifdef CONFIG_EXT_GROUP_SCHED
5602 .cgroup_init = cgroup_init_stub,
5603 .cgroup_exit = cgroup_exit_stub,
5604 .cgroup_prep_move = cgroup_prep_move_stub,
5605 .cgroup_move = cgroup_move_stub,
5606 .cgroup_cancel_move = cgroup_cancel_move_stub,
5607 .cgroup_set_weight = cgroup_set_weight_stub,
5608 #endif
5609 .cpu_online = cpu_online_stub,
5610 .cpu_offline = cpu_offline_stub,
5611 .init = init_stub,
5612 .exit = exit_stub,
5613 .dump = dump_stub,
5614 .dump_cpu = dump_cpu_stub,
5615 .dump_task = dump_task_stub,
5616 };
5617
5618 static struct bpf_struct_ops bpf_sched_ext_ops = {
5619 .verifier_ops = &bpf_scx_verifier_ops,
5620 .reg = bpf_scx_reg,
5621 .unreg = bpf_scx_unreg,
5622 .check_member = bpf_scx_check_member,
5623 .init_member = bpf_scx_init_member,
5624 .init = bpf_scx_init,
5625 .update = bpf_scx_update,
5626 .validate = bpf_scx_validate,
5627 .name = "sched_ext_ops",
5628 .owner = THIS_MODULE,
5629 .cfi_stubs = &__bpf_ops_sched_ext_ops
5630 };
5631
5632
5633 /********************************************************************************
5634 * System integration and init.
5635 */
5636
sysrq_handle_sched_ext_reset(u8 key)5637 static void sysrq_handle_sched_ext_reset(u8 key)
5638 {
5639 if (scx_ops_helper)
5640 scx_ops_disable(SCX_EXIT_SYSRQ);
5641 else
5642 pr_info("sched_ext: BPF scheduler not yet used\n");
5643 }
5644
5645 static const struct sysrq_key_op sysrq_sched_ext_reset_op = {
5646 .handler = sysrq_handle_sched_ext_reset,
5647 .help_msg = "reset-sched-ext(S)",
5648 .action_msg = "Disable sched_ext and revert all tasks to CFS",
5649 .enable_mask = SYSRQ_ENABLE_RTNICE,
5650 };
5651
sysrq_handle_sched_ext_dump(u8 key)5652 static void sysrq_handle_sched_ext_dump(u8 key)
5653 {
5654 struct scx_exit_info ei = { .kind = SCX_EXIT_NONE, .reason = "SysRq-D" };
5655
5656 if (scx_enabled())
5657 scx_dump_state(&ei, 0);
5658 }
5659
5660 static const struct sysrq_key_op sysrq_sched_ext_dump_op = {
5661 .handler = sysrq_handle_sched_ext_dump,
5662 .help_msg = "dump-sched-ext(D)",
5663 .action_msg = "Trigger sched_ext debug dump",
5664 .enable_mask = SYSRQ_ENABLE_RTNICE,
5665 };
5666
can_skip_idle_kick(struct rq * rq)5667 static bool can_skip_idle_kick(struct rq *rq)
5668 {
5669 lockdep_assert_rq_held(rq);
5670
5671 /*
5672 * We can skip idle kicking if @rq is going to go through at least one
5673 * full SCX scheduling cycle before going idle. Just checking whether
5674 * curr is not idle is insufficient because we could be racing
5675 * balance_one() trying to pull the next task from a remote rq, which
5676 * may fail, and @rq may become idle afterwards.
5677 *
5678 * The race window is small and we don't and can't guarantee that @rq is
5679 * only kicked while idle anyway. Skip only when sure.
5680 */
5681 return !is_idle_task(rq->curr) && !(rq->scx.flags & SCX_RQ_IN_BALANCE);
5682 }
5683
kick_one_cpu(s32 cpu,struct rq * this_rq,unsigned long * pseqs)5684 static bool kick_one_cpu(s32 cpu, struct rq *this_rq, unsigned long *pseqs)
5685 {
5686 struct rq *rq = cpu_rq(cpu);
5687 struct scx_rq *this_scx = &this_rq->scx;
5688 bool should_wait = false;
5689 unsigned long flags;
5690
5691 raw_spin_rq_lock_irqsave(rq, flags);
5692
5693 /*
5694 * During CPU hotplug, a CPU may depend on kicking itself to make
5695 * forward progress. Allow kicking self regardless of online state.
5696 */
5697 if (cpu_online(cpu) || cpu == cpu_of(this_rq)) {
5698 if (cpumask_test_cpu(cpu, this_scx->cpus_to_preempt)) {
5699 if (rq->curr->sched_class == &ext_sched_class)
5700 rq->curr->scx.slice = 0;
5701 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt);
5702 }
5703
5704 if (cpumask_test_cpu(cpu, this_scx->cpus_to_wait)) {
5705 pseqs[cpu] = rq->scx.pnt_seq;
5706 should_wait = true;
5707 }
5708
5709 resched_curr(rq);
5710 } else {
5711 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt);
5712 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait);
5713 }
5714
5715 raw_spin_rq_unlock_irqrestore(rq, flags);
5716
5717 return should_wait;
5718 }
5719
kick_one_cpu_if_idle(s32 cpu,struct rq * this_rq)5720 static void kick_one_cpu_if_idle(s32 cpu, struct rq *this_rq)
5721 {
5722 struct rq *rq = cpu_rq(cpu);
5723 unsigned long flags;
5724
5725 raw_spin_rq_lock_irqsave(rq, flags);
5726
5727 if (!can_skip_idle_kick(rq) &&
5728 (cpu_online(cpu) || cpu == cpu_of(this_rq)))
5729 resched_curr(rq);
5730
5731 raw_spin_rq_unlock_irqrestore(rq, flags);
5732 }
5733
kick_cpus_irq_workfn(struct irq_work * irq_work)5734 static void kick_cpus_irq_workfn(struct irq_work *irq_work)
5735 {
5736 struct rq *this_rq = this_rq();
5737 struct scx_rq *this_scx = &this_rq->scx;
5738 unsigned long *pseqs = this_cpu_ptr(scx_kick_cpus_pnt_seqs);
5739 bool should_wait = false;
5740 s32 cpu;
5741
5742 for_each_cpu(cpu, this_scx->cpus_to_kick) {
5743 should_wait |= kick_one_cpu(cpu, this_rq, pseqs);
5744 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick);
5745 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle);
5746 }
5747
5748 for_each_cpu(cpu, this_scx->cpus_to_kick_if_idle) {
5749 kick_one_cpu_if_idle(cpu, this_rq);
5750 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle);
5751 }
5752
5753 if (!should_wait)
5754 return;
5755
5756 for_each_cpu(cpu, this_scx->cpus_to_wait) {
5757 unsigned long *wait_pnt_seq = &cpu_rq(cpu)->scx.pnt_seq;
5758
5759 if (cpu != cpu_of(this_rq)) {
5760 /*
5761 * Pairs with smp_store_release() issued by this CPU in
5762 * scx_next_task_picked() on the resched path.
5763 *
5764 * We busy-wait here to guarantee that no other task can
5765 * be scheduled on our core before the target CPU has
5766 * entered the resched path.
5767 */
5768 while (smp_load_acquire(wait_pnt_seq) == pseqs[cpu])
5769 cpu_relax();
5770 }
5771
5772 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait);
5773 }
5774 }
5775
5776 /**
5777 * print_scx_info - print out sched_ext scheduler state
5778 * @log_lvl: the log level to use when printing
5779 * @p: target task
5780 *
5781 * If a sched_ext scheduler is enabled, print the name and state of the
5782 * scheduler. If @p is on sched_ext, print further information about the task.
5783 *
5784 * This function can be safely called on any task as long as the task_struct
5785 * itself is accessible. While safe, this function isn't synchronized and may
5786 * print out mixups or garbages of limited length.
5787 */
print_scx_info(const char * log_lvl,struct task_struct * p)5788 void print_scx_info(const char *log_lvl, struct task_struct *p)
5789 {
5790 enum scx_ops_enable_state state = scx_ops_enable_state();
5791 const char *all = READ_ONCE(scx_switching_all) ? "+all" : "";
5792 char runnable_at_buf[22] = "?";
5793 struct sched_class *class;
5794 unsigned long runnable_at;
5795
5796 if (state == SCX_OPS_DISABLED)
5797 return;
5798
5799 /*
5800 * Carefully check if the task was running on sched_ext, and then
5801 * carefully copy the time it's been runnable, and its state.
5802 */
5803 if (copy_from_kernel_nofault(&class, &p->sched_class, sizeof(class)) ||
5804 class != &ext_sched_class) {
5805 printk("%sSched_ext: %s (%s%s)", log_lvl, scx_ops.name,
5806 scx_ops_enable_state_str[state], all);
5807 return;
5808 }
5809
5810 if (!copy_from_kernel_nofault(&runnable_at, &p->scx.runnable_at,
5811 sizeof(runnable_at)))
5812 scnprintf(runnable_at_buf, sizeof(runnable_at_buf), "%+ldms",
5813 jiffies_delta_msecs(runnable_at, jiffies));
5814
5815 /* print everything onto one line to conserve console space */
5816 printk("%sSched_ext: %s (%s%s), task: runnable_at=%s",
5817 log_lvl, scx_ops.name, scx_ops_enable_state_str[state], all,
5818 runnable_at_buf);
5819 }
5820
scx_pm_handler(struct notifier_block * nb,unsigned long event,void * ptr)5821 static int scx_pm_handler(struct notifier_block *nb, unsigned long event, void *ptr)
5822 {
5823 /*
5824 * SCX schedulers often have userspace components which are sometimes
5825 * involved in critial scheduling paths. PM operations involve freezing
5826 * userspace which can lead to scheduling misbehaviors including stalls.
5827 * Let's bypass while PM operations are in progress.
5828 */
5829 switch (event) {
5830 case PM_HIBERNATION_PREPARE:
5831 case PM_SUSPEND_PREPARE:
5832 case PM_RESTORE_PREPARE:
5833 scx_ops_bypass(true);
5834 break;
5835 case PM_POST_HIBERNATION:
5836 case PM_POST_SUSPEND:
5837 case PM_POST_RESTORE:
5838 scx_ops_bypass(false);
5839 break;
5840 }
5841
5842 return NOTIFY_OK;
5843 }
5844
5845 static struct notifier_block scx_pm_notifier = {
5846 .notifier_call = scx_pm_handler,
5847 };
5848
init_sched_ext_class(void)5849 void __init init_sched_ext_class(void)
5850 {
5851 s32 cpu, v;
5852
5853 /*
5854 * The following is to prevent the compiler from optimizing out the enum
5855 * definitions so that BPF scheduler implementations can use them
5856 * through the generated vmlinux.h.
5857 */
5858 WRITE_ONCE(v, SCX_ENQ_WAKEUP | SCX_DEQ_SLEEP | SCX_KICK_PREEMPT |
5859 SCX_TG_ONLINE);
5860
5861 BUG_ON(rhashtable_init(&dsq_hash, &dsq_hash_params));
5862 #ifdef CONFIG_SMP
5863 BUG_ON(!alloc_cpumask_var(&idle_masks.cpu, GFP_KERNEL));
5864 BUG_ON(!alloc_cpumask_var(&idle_masks.smt, GFP_KERNEL));
5865 #endif
5866 scx_kick_cpus_pnt_seqs =
5867 __alloc_percpu(sizeof(scx_kick_cpus_pnt_seqs[0]) * nr_cpu_ids,
5868 __alignof__(scx_kick_cpus_pnt_seqs[0]));
5869 BUG_ON(!scx_kick_cpus_pnt_seqs);
5870
5871 for_each_possible_cpu(cpu) {
5872 struct rq *rq = cpu_rq(cpu);
5873
5874 init_dsq(&rq->scx.local_dsq, SCX_DSQ_LOCAL);
5875 INIT_LIST_HEAD(&rq->scx.runnable_list);
5876 INIT_LIST_HEAD(&rq->scx.ddsp_deferred_locals);
5877
5878 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick, GFP_KERNEL));
5879 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick_if_idle, GFP_KERNEL));
5880 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_preempt, GFP_KERNEL));
5881 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_wait, GFP_KERNEL));
5882 init_irq_work(&rq->scx.deferred_irq_work, deferred_irq_workfn);
5883 init_irq_work(&rq->scx.kick_cpus_irq_work, kick_cpus_irq_workfn);
5884
5885 if (cpu_online(cpu))
5886 cpu_rq(cpu)->scx.flags |= SCX_RQ_ONLINE;
5887 }
5888
5889 register_sysrq_key('S', &sysrq_sched_ext_reset_op);
5890 register_sysrq_key('D', &sysrq_sched_ext_dump_op);
5891 INIT_DELAYED_WORK(&scx_watchdog_work, scx_watchdog_workfn);
5892 }
5893
5894
5895 /********************************************************************************
5896 * Helpers that can be called from the BPF scheduler.
5897 */
5898 #include <linux/btf_ids.h>
5899
5900 __bpf_kfunc_start_defs();
5901
5902 /**
5903 * scx_bpf_select_cpu_dfl - The default implementation of ops.select_cpu()
5904 * @p: task_struct to select a CPU for
5905 * @prev_cpu: CPU @p was on previously
5906 * @wake_flags: %SCX_WAKE_* flags
5907 * @is_idle: out parameter indicating whether the returned CPU is idle
5908 *
5909 * Can only be called from ops.select_cpu() if the built-in CPU selection is
5910 * enabled - ops.update_idle() is missing or %SCX_OPS_KEEP_BUILTIN_IDLE is set.
5911 * @p, @prev_cpu and @wake_flags match ops.select_cpu().
5912 *
5913 * Returns the picked CPU with *@is_idle indicating whether the picked CPU is
5914 * currently idle and thus a good candidate for direct dispatching.
5915 */
scx_bpf_select_cpu_dfl(struct task_struct * p,s32 prev_cpu,u64 wake_flags,bool * is_idle)5916 __bpf_kfunc s32 scx_bpf_select_cpu_dfl(struct task_struct *p, s32 prev_cpu,
5917 u64 wake_flags, bool *is_idle)
5918 {
5919 if (!static_branch_likely(&scx_builtin_idle_enabled)) {
5920 scx_ops_error("built-in idle tracking is disabled");
5921 goto prev_cpu;
5922 }
5923
5924 if (!scx_kf_allowed(SCX_KF_SELECT_CPU))
5925 goto prev_cpu;
5926
5927 #ifdef CONFIG_SMP
5928 return scx_select_cpu_dfl(p, prev_cpu, wake_flags, is_idle);
5929 #endif
5930
5931 prev_cpu:
5932 *is_idle = false;
5933 return prev_cpu;
5934 }
5935
5936 __bpf_kfunc_end_defs();
5937
5938 BTF_KFUNCS_START(scx_kfunc_ids_select_cpu)
5939 BTF_ID_FLAGS(func, scx_bpf_select_cpu_dfl, KF_RCU)
5940 BTF_KFUNCS_END(scx_kfunc_ids_select_cpu)
5941
5942 static const struct btf_kfunc_id_set scx_kfunc_set_select_cpu = {
5943 .owner = THIS_MODULE,
5944 .set = &scx_kfunc_ids_select_cpu,
5945 };
5946
scx_dispatch_preamble(struct task_struct * p,u64 enq_flags)5947 static bool scx_dispatch_preamble(struct task_struct *p, u64 enq_flags)
5948 {
5949 if (!scx_kf_allowed(SCX_KF_ENQUEUE | SCX_KF_DISPATCH))
5950 return false;
5951
5952 lockdep_assert_irqs_disabled();
5953
5954 if (unlikely(!p)) {
5955 scx_ops_error("called with NULL task");
5956 return false;
5957 }
5958
5959 if (unlikely(enq_flags & __SCX_ENQ_INTERNAL_MASK)) {
5960 scx_ops_error("invalid enq_flags 0x%llx", enq_flags);
5961 return false;
5962 }
5963
5964 return true;
5965 }
5966
scx_dispatch_commit(struct task_struct * p,u64 dsq_id,u64 enq_flags)5967 static void scx_dispatch_commit(struct task_struct *p, u64 dsq_id, u64 enq_flags)
5968 {
5969 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
5970 struct task_struct *ddsp_task;
5971
5972 ddsp_task = __this_cpu_read(direct_dispatch_task);
5973 if (ddsp_task) {
5974 mark_direct_dispatch(ddsp_task, p, dsq_id, enq_flags);
5975 return;
5976 }
5977
5978 if (unlikely(dspc->cursor >= scx_dsp_max_batch)) {
5979 scx_ops_error("dispatch buffer overflow");
5980 return;
5981 }
5982
5983 dspc->buf[dspc->cursor++] = (struct scx_dsp_buf_ent){
5984 .task = p,
5985 .qseq = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_QSEQ_MASK,
5986 .dsq_id = dsq_id,
5987 .enq_flags = enq_flags,
5988 };
5989 }
5990
5991 __bpf_kfunc_start_defs();
5992
5993 /**
5994 * scx_bpf_dispatch - Dispatch a task into the FIFO queue of a DSQ
5995 * @p: task_struct to dispatch
5996 * @dsq_id: DSQ to dispatch to
5997 * @slice: duration @p can run for in nsecs, 0 to keep the current value
5998 * @enq_flags: SCX_ENQ_*
5999 *
6000 * Dispatch @p into the FIFO queue of the DSQ identified by @dsq_id. It is safe
6001 * to call this function spuriously. Can be called from ops.enqueue(),
6002 * ops.select_cpu(), and ops.dispatch().
6003 *
6004 * When called from ops.select_cpu() or ops.enqueue(), it's for direct dispatch
6005 * and @p must match the task being enqueued. Also, %SCX_DSQ_LOCAL_ON can't be
6006 * used to target the local DSQ of a CPU other than the enqueueing one. Use
6007 * ops.select_cpu() to be on the target CPU in the first place.
6008 *
6009 * When called from ops.select_cpu(), @enq_flags and @dsp_id are stored, and @p
6010 * will be directly dispatched to the corresponding dispatch queue after
6011 * ops.select_cpu() returns. If @p is dispatched to SCX_DSQ_LOCAL, it will be
6012 * dispatched to the local DSQ of the CPU returned by ops.select_cpu().
6013 * @enq_flags are OR'd with the enqueue flags on the enqueue path before the
6014 * task is dispatched.
6015 *
6016 * When called from ops.dispatch(), there are no restrictions on @p or @dsq_id
6017 * and this function can be called upto ops.dispatch_max_batch times to dispatch
6018 * multiple tasks. scx_bpf_dispatch_nr_slots() returns the number of the
6019 * remaining slots. scx_bpf_consume() flushes the batch and resets the counter.
6020 *
6021 * This function doesn't have any locking restrictions and may be called under
6022 * BPF locks (in the future when BPF introduces more flexible locking).
6023 *
6024 * @p is allowed to run for @slice. The scheduling path is triggered on slice
6025 * exhaustion. If zero, the current residual slice is maintained. If
6026 * %SCX_SLICE_INF, @p never expires and the BPF scheduler must kick the CPU with
6027 * scx_bpf_kick_cpu() to trigger scheduling.
6028 */
scx_bpf_dispatch(struct task_struct * p,u64 dsq_id,u64 slice,u64 enq_flags)6029 __bpf_kfunc void scx_bpf_dispatch(struct task_struct *p, u64 dsq_id, u64 slice,
6030 u64 enq_flags)
6031 {
6032 if (!scx_dispatch_preamble(p, enq_flags))
6033 return;
6034
6035 if (slice)
6036 p->scx.slice = slice;
6037 else
6038 p->scx.slice = p->scx.slice ?: 1;
6039
6040 scx_dispatch_commit(p, dsq_id, enq_flags);
6041 }
6042
6043 /**
6044 * scx_bpf_dispatch_vtime - Dispatch a task into the vtime priority queue of a DSQ
6045 * @p: task_struct to dispatch
6046 * @dsq_id: DSQ to dispatch to
6047 * @slice: duration @p can run for in nsecs, 0 to keep the current value
6048 * @vtime: @p's ordering inside the vtime-sorted queue of the target DSQ
6049 * @enq_flags: SCX_ENQ_*
6050 *
6051 * Dispatch @p into the vtime priority queue of the DSQ identified by @dsq_id.
6052 * Tasks queued into the priority queue are ordered by @vtime and always
6053 * consumed after the tasks in the FIFO queue. All other aspects are identical
6054 * to scx_bpf_dispatch().
6055 *
6056 * @vtime ordering is according to time_before64() which considers wrapping. A
6057 * numerically larger vtime may indicate an earlier position in the ordering and
6058 * vice-versa.
6059 */
scx_bpf_dispatch_vtime(struct task_struct * p,u64 dsq_id,u64 slice,u64 vtime,u64 enq_flags)6060 __bpf_kfunc void scx_bpf_dispatch_vtime(struct task_struct *p, u64 dsq_id,
6061 u64 slice, u64 vtime, u64 enq_flags)
6062 {
6063 if (!scx_dispatch_preamble(p, enq_flags))
6064 return;
6065
6066 if (slice)
6067 p->scx.slice = slice;
6068 else
6069 p->scx.slice = p->scx.slice ?: 1;
6070
6071 p->scx.dsq_vtime = vtime;
6072
6073 scx_dispatch_commit(p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ);
6074 }
6075
6076 __bpf_kfunc_end_defs();
6077
6078 BTF_KFUNCS_START(scx_kfunc_ids_enqueue_dispatch)
6079 BTF_ID_FLAGS(func, scx_bpf_dispatch, KF_RCU)
6080 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime, KF_RCU)
6081 BTF_KFUNCS_END(scx_kfunc_ids_enqueue_dispatch)
6082
6083 static const struct btf_kfunc_id_set scx_kfunc_set_enqueue_dispatch = {
6084 .owner = THIS_MODULE,
6085 .set = &scx_kfunc_ids_enqueue_dispatch,
6086 };
6087
scx_dispatch_from_dsq(struct bpf_iter_scx_dsq_kern * kit,struct task_struct * p,u64 dsq_id,u64 enq_flags)6088 static bool scx_dispatch_from_dsq(struct bpf_iter_scx_dsq_kern *kit,
6089 struct task_struct *p, u64 dsq_id,
6090 u64 enq_flags)
6091 {
6092 struct scx_dispatch_q *src_dsq = kit->dsq, *dst_dsq;
6093 struct rq *this_rq, *src_rq, *dst_rq, *locked_rq;
6094 bool dispatched = false;
6095 bool in_balance;
6096 unsigned long flags;
6097
6098 if (!scx_kf_allowed_if_unlocked() && !scx_kf_allowed(SCX_KF_DISPATCH))
6099 return false;
6100
6101 /*
6102 * Can be called from either ops.dispatch() locking this_rq() or any
6103 * context where no rq lock is held. If latter, lock @p's task_rq which
6104 * we'll likely need anyway.
6105 */
6106 src_rq = task_rq(p);
6107
6108 local_irq_save(flags);
6109 this_rq = this_rq();
6110 in_balance = this_rq->scx.flags & SCX_RQ_IN_BALANCE;
6111
6112 if (in_balance) {
6113 if (this_rq != src_rq) {
6114 raw_spin_rq_unlock(this_rq);
6115 raw_spin_rq_lock(src_rq);
6116 }
6117 } else {
6118 raw_spin_rq_lock(src_rq);
6119 }
6120
6121 locked_rq = src_rq;
6122 raw_spin_lock(&src_dsq->lock);
6123
6124 /*
6125 * Did someone else get to it? @p could have already left $src_dsq, got
6126 * re-enqueud, or be in the process of being consumed by someone else.
6127 */
6128 if (unlikely(p->scx.dsq != src_dsq ||
6129 u32_before(kit->cursor.priv, p->scx.dsq_seq) ||
6130 p->scx.holding_cpu >= 0) ||
6131 WARN_ON_ONCE(src_rq != task_rq(p))) {
6132 raw_spin_unlock(&src_dsq->lock);
6133 goto out;
6134 }
6135
6136 /* @p is still on $src_dsq and stable, determine the destination */
6137 dst_dsq = find_dsq_for_dispatch(this_rq, dsq_id, p);
6138
6139 if (dst_dsq->id == SCX_DSQ_LOCAL) {
6140 dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq);
6141 if (!task_can_run_on_remote_rq(p, dst_rq, true)) {
6142 dst_dsq = find_global_dsq(p);
6143 dst_rq = src_rq;
6144 }
6145 } else {
6146 /* no need to migrate if destination is a non-local DSQ */
6147 dst_rq = src_rq;
6148 }
6149
6150 /*
6151 * Move @p into $dst_dsq. If $dst_dsq is the local DSQ of a different
6152 * CPU, @p will be migrated.
6153 */
6154 if (dst_dsq->id == SCX_DSQ_LOCAL) {
6155 /* @p is going from a non-local DSQ to a local DSQ */
6156 if (src_rq == dst_rq) {
6157 task_unlink_from_dsq(p, src_dsq);
6158 move_local_task_to_local_dsq(p, enq_flags,
6159 src_dsq, dst_rq);
6160 raw_spin_unlock(&src_dsq->lock);
6161 } else {
6162 raw_spin_unlock(&src_dsq->lock);
6163 move_remote_task_to_local_dsq(p, enq_flags,
6164 src_rq, dst_rq);
6165 locked_rq = dst_rq;
6166 }
6167 } else {
6168 /*
6169 * @p is going from a non-local DSQ to a non-local DSQ. As
6170 * $src_dsq is already locked, do an abbreviated dequeue.
6171 */
6172 task_unlink_from_dsq(p, src_dsq);
6173 p->scx.dsq = NULL;
6174 raw_spin_unlock(&src_dsq->lock);
6175
6176 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_VTIME)
6177 p->scx.dsq_vtime = kit->vtime;
6178 dispatch_enqueue(dst_dsq, p, enq_flags);
6179 }
6180
6181 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_SLICE)
6182 p->scx.slice = kit->slice;
6183
6184 dispatched = true;
6185 out:
6186 if (in_balance) {
6187 if (this_rq != locked_rq) {
6188 raw_spin_rq_unlock(locked_rq);
6189 raw_spin_rq_lock(this_rq);
6190 }
6191 } else {
6192 raw_spin_rq_unlock_irqrestore(locked_rq, flags);
6193 }
6194
6195 kit->cursor.flags &= ~(__SCX_DSQ_ITER_HAS_SLICE |
6196 __SCX_DSQ_ITER_HAS_VTIME);
6197 return dispatched;
6198 }
6199
6200 __bpf_kfunc_start_defs();
6201
6202 /**
6203 * scx_bpf_dispatch_nr_slots - Return the number of remaining dispatch slots
6204 *
6205 * Can only be called from ops.dispatch().
6206 */
scx_bpf_dispatch_nr_slots(void)6207 __bpf_kfunc u32 scx_bpf_dispatch_nr_slots(void)
6208 {
6209 if (!scx_kf_allowed(SCX_KF_DISPATCH))
6210 return 0;
6211
6212 return scx_dsp_max_batch - __this_cpu_read(scx_dsp_ctx->cursor);
6213 }
6214
6215 /**
6216 * scx_bpf_dispatch_cancel - Cancel the latest dispatch
6217 *
6218 * Cancel the latest dispatch. Can be called multiple times to cancel further
6219 * dispatches. Can only be called from ops.dispatch().
6220 */
scx_bpf_dispatch_cancel(void)6221 __bpf_kfunc void scx_bpf_dispatch_cancel(void)
6222 {
6223 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
6224
6225 if (!scx_kf_allowed(SCX_KF_DISPATCH))
6226 return;
6227
6228 if (dspc->cursor > 0)
6229 dspc->cursor--;
6230 else
6231 scx_ops_error("dispatch buffer underflow");
6232 }
6233
6234 /**
6235 * scx_bpf_consume - Transfer a task from a DSQ to the current CPU's local DSQ
6236 * @dsq_id: DSQ to consume
6237 *
6238 * Consume a task from the non-local DSQ identified by @dsq_id and transfer it
6239 * to the current CPU's local DSQ for execution. Can only be called from
6240 * ops.dispatch().
6241 *
6242 * This function flushes the in-flight dispatches from scx_bpf_dispatch() before
6243 * trying to consume the specified DSQ. It may also grab rq locks and thus can't
6244 * be called under any BPF locks.
6245 *
6246 * Returns %true if a task has been consumed, %false if there isn't any task to
6247 * consume.
6248 */
scx_bpf_consume(u64 dsq_id)6249 __bpf_kfunc bool scx_bpf_consume(u64 dsq_id)
6250 {
6251 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
6252 struct scx_dispatch_q *dsq;
6253
6254 if (!scx_kf_allowed(SCX_KF_DISPATCH))
6255 return false;
6256
6257 flush_dispatch_buf(dspc->rq);
6258
6259 dsq = find_user_dsq(dsq_id);
6260 if (unlikely(!dsq)) {
6261 scx_ops_error("invalid DSQ ID 0x%016llx", dsq_id);
6262 return false;
6263 }
6264
6265 if (consume_dispatch_q(dspc->rq, dsq)) {
6266 /*
6267 * A successfully consumed task can be dequeued before it starts
6268 * running while the CPU is trying to migrate other dispatched
6269 * tasks. Bump nr_tasks to tell balance_scx() to retry on empty
6270 * local DSQ.
6271 */
6272 dspc->nr_tasks++;
6273 return true;
6274 } else {
6275 return false;
6276 }
6277 }
6278
6279 /**
6280 * scx_bpf_dispatch_from_dsq_set_slice - Override slice when dispatching from DSQ
6281 * @it__iter: DSQ iterator in progress
6282 * @slice: duration the dispatched task can run for in nsecs
6283 *
6284 * Override the slice of the next task that will be dispatched from @it__iter
6285 * using scx_bpf_dispatch_from_dsq[_vtime](). If this function is not called,
6286 * the previous slice duration is kept.
6287 */
scx_bpf_dispatch_from_dsq_set_slice(struct bpf_iter_scx_dsq * it__iter,u64 slice)6288 __bpf_kfunc void scx_bpf_dispatch_from_dsq_set_slice(
6289 struct bpf_iter_scx_dsq *it__iter, u64 slice)
6290 {
6291 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter;
6292
6293 kit->slice = slice;
6294 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_SLICE;
6295 }
6296
6297 /**
6298 * scx_bpf_dispatch_from_dsq_set_vtime - Override vtime when dispatching from DSQ
6299 * @it__iter: DSQ iterator in progress
6300 * @vtime: task's ordering inside the vtime-sorted queue of the target DSQ
6301 *
6302 * Override the vtime of the next task that will be dispatched from @it__iter
6303 * using scx_bpf_dispatch_from_dsq_vtime(). If this function is not called, the
6304 * previous slice vtime is kept. If scx_bpf_dispatch_from_dsq() is used to
6305 * dispatch the next task, the override is ignored and cleared.
6306 */
scx_bpf_dispatch_from_dsq_set_vtime(struct bpf_iter_scx_dsq * it__iter,u64 vtime)6307 __bpf_kfunc void scx_bpf_dispatch_from_dsq_set_vtime(
6308 struct bpf_iter_scx_dsq *it__iter, u64 vtime)
6309 {
6310 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter;
6311
6312 kit->vtime = vtime;
6313 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_VTIME;
6314 }
6315
6316 /**
6317 * scx_bpf_dispatch_from_dsq - Move a task from DSQ iteration to a DSQ
6318 * @it__iter: DSQ iterator in progress
6319 * @p: task to transfer
6320 * @dsq_id: DSQ to move @p to
6321 * @enq_flags: SCX_ENQ_*
6322 *
6323 * Transfer @p which is on the DSQ currently iterated by @it__iter to the DSQ
6324 * specified by @dsq_id. All DSQs - local DSQs, global DSQ and user DSQs - can
6325 * be the destination.
6326 *
6327 * For the transfer to be successful, @p must still be on the DSQ and have been
6328 * queued before the DSQ iteration started. This function doesn't care whether
6329 * @p was obtained from the DSQ iteration. @p just has to be on the DSQ and have
6330 * been queued before the iteration started.
6331 *
6332 * @p's slice is kept by default. Use scx_bpf_dispatch_from_dsq_set_slice() to
6333 * update.
6334 *
6335 * Can be called from ops.dispatch() or any BPF context which doesn't hold a rq
6336 * lock (e.g. BPF timers or SYSCALL programs).
6337 *
6338 * Returns %true if @p has been consumed, %false if @p had already been consumed
6339 * or dequeued.
6340 */
scx_bpf_dispatch_from_dsq(struct bpf_iter_scx_dsq * it__iter,struct task_struct * p,u64 dsq_id,u64 enq_flags)6341 __bpf_kfunc bool scx_bpf_dispatch_from_dsq(struct bpf_iter_scx_dsq *it__iter,
6342 struct task_struct *p, u64 dsq_id,
6343 u64 enq_flags)
6344 {
6345 return scx_dispatch_from_dsq((struct bpf_iter_scx_dsq_kern *)it__iter,
6346 p, dsq_id, enq_flags);
6347 }
6348
6349 /**
6350 * scx_bpf_dispatch_vtime_from_dsq - Move a task from DSQ iteration to a PRIQ DSQ
6351 * @it__iter: DSQ iterator in progress
6352 * @p: task to transfer
6353 * @dsq_id: DSQ to move @p to
6354 * @enq_flags: SCX_ENQ_*
6355 *
6356 * Transfer @p which is on the DSQ currently iterated by @it__iter to the
6357 * priority queue of the DSQ specified by @dsq_id. The destination must be a
6358 * user DSQ as only user DSQs support priority queue.
6359 *
6360 * @p's slice and vtime are kept by default. Use
6361 * scx_bpf_dispatch_from_dsq_set_slice() and
6362 * scx_bpf_dispatch_from_dsq_set_vtime() to update.
6363 *
6364 * All other aspects are identical to scx_bpf_dispatch_from_dsq(). See
6365 * scx_bpf_dispatch_vtime() for more information on @vtime.
6366 */
scx_bpf_dispatch_vtime_from_dsq(struct bpf_iter_scx_dsq * it__iter,struct task_struct * p,u64 dsq_id,u64 enq_flags)6367 __bpf_kfunc bool scx_bpf_dispatch_vtime_from_dsq(struct bpf_iter_scx_dsq *it__iter,
6368 struct task_struct *p, u64 dsq_id,
6369 u64 enq_flags)
6370 {
6371 return scx_dispatch_from_dsq((struct bpf_iter_scx_dsq_kern *)it__iter,
6372 p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ);
6373 }
6374
6375 __bpf_kfunc_end_defs();
6376
6377 BTF_KFUNCS_START(scx_kfunc_ids_dispatch)
6378 BTF_ID_FLAGS(func, scx_bpf_dispatch_nr_slots)
6379 BTF_ID_FLAGS(func, scx_bpf_dispatch_cancel)
6380 BTF_ID_FLAGS(func, scx_bpf_consume)
6381 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_slice)
6382 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_vtime)
6383 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq, KF_RCU)
6384 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime_from_dsq, KF_RCU)
6385 BTF_KFUNCS_END(scx_kfunc_ids_dispatch)
6386
6387 static const struct btf_kfunc_id_set scx_kfunc_set_dispatch = {
6388 .owner = THIS_MODULE,
6389 .set = &scx_kfunc_ids_dispatch,
6390 };
6391
6392 __bpf_kfunc_start_defs();
6393
6394 /**
6395 * scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ
6396 *
6397 * Iterate over all of the tasks currently enqueued on the local DSQ of the
6398 * caller's CPU, and re-enqueue them in the BPF scheduler. Returns the number of
6399 * processed tasks. Can only be called from ops.cpu_release().
6400 */
scx_bpf_reenqueue_local(void)6401 __bpf_kfunc u32 scx_bpf_reenqueue_local(void)
6402 {
6403 LIST_HEAD(tasks);
6404 u32 nr_enqueued = 0;
6405 struct rq *rq;
6406 struct task_struct *p, *n;
6407
6408 if (!scx_kf_allowed(SCX_KF_CPU_RELEASE))
6409 return 0;
6410
6411 rq = cpu_rq(smp_processor_id());
6412 lockdep_assert_rq_held(rq);
6413
6414 /*
6415 * The BPF scheduler may choose to dispatch tasks back to
6416 * @rq->scx.local_dsq. Move all candidate tasks off to a private list
6417 * first to avoid processing the same tasks repeatedly.
6418 */
6419 list_for_each_entry_safe(p, n, &rq->scx.local_dsq.list,
6420 scx.dsq_list.node) {
6421 /*
6422 * If @p is being migrated, @p's current CPU may not agree with
6423 * its allowed CPUs and the migration_cpu_stop is about to
6424 * deactivate and re-activate @p anyway. Skip re-enqueueing.
6425 *
6426 * While racing sched property changes may also dequeue and
6427 * re-enqueue a migrating task while its current CPU and allowed
6428 * CPUs disagree, they use %ENQUEUE_RESTORE which is bypassed to
6429 * the current local DSQ for running tasks and thus are not
6430 * visible to the BPF scheduler.
6431 */
6432 if (p->migration_pending)
6433 continue;
6434
6435 dispatch_dequeue(rq, p);
6436 list_add_tail(&p->scx.dsq_list.node, &tasks);
6437 }
6438
6439 list_for_each_entry_safe(p, n, &tasks, scx.dsq_list.node) {
6440 list_del_init(&p->scx.dsq_list.node);
6441 do_enqueue_task(rq, p, SCX_ENQ_REENQ, -1);
6442 nr_enqueued++;
6443 }
6444
6445 return nr_enqueued;
6446 }
6447
6448 __bpf_kfunc_end_defs();
6449
6450 BTF_KFUNCS_START(scx_kfunc_ids_cpu_release)
6451 BTF_ID_FLAGS(func, scx_bpf_reenqueue_local)
6452 BTF_KFUNCS_END(scx_kfunc_ids_cpu_release)
6453
6454 static const struct btf_kfunc_id_set scx_kfunc_set_cpu_release = {
6455 .owner = THIS_MODULE,
6456 .set = &scx_kfunc_ids_cpu_release,
6457 };
6458
6459 __bpf_kfunc_start_defs();
6460
6461 /**
6462 * scx_bpf_create_dsq - Create a custom DSQ
6463 * @dsq_id: DSQ to create
6464 * @node: NUMA node to allocate from
6465 *
6466 * Create a custom DSQ identified by @dsq_id. Can be called from any sleepable
6467 * scx callback, and any BPF_PROG_TYPE_SYSCALL prog.
6468 */
scx_bpf_create_dsq(u64 dsq_id,s32 node)6469 __bpf_kfunc s32 scx_bpf_create_dsq(u64 dsq_id, s32 node)
6470 {
6471 if (unlikely(node >= (int)nr_node_ids ||
6472 (node < 0 && node != NUMA_NO_NODE)))
6473 return -EINVAL;
6474 return PTR_ERR_OR_ZERO(create_dsq(dsq_id, node));
6475 }
6476
6477 __bpf_kfunc_end_defs();
6478
6479 BTF_KFUNCS_START(scx_kfunc_ids_unlocked)
6480 BTF_ID_FLAGS(func, scx_bpf_create_dsq, KF_SLEEPABLE)
6481 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq, KF_RCU)
6482 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime_from_dsq, KF_RCU)
6483 BTF_KFUNCS_END(scx_kfunc_ids_unlocked)
6484
6485 static const struct btf_kfunc_id_set scx_kfunc_set_unlocked = {
6486 .owner = THIS_MODULE,
6487 .set = &scx_kfunc_ids_unlocked,
6488 };
6489
6490 __bpf_kfunc_start_defs();
6491
6492 /**
6493 * scx_bpf_kick_cpu - Trigger reschedule on a CPU
6494 * @cpu: cpu to kick
6495 * @flags: %SCX_KICK_* flags
6496 *
6497 * Kick @cpu into rescheduling. This can be used to wake up an idle CPU or
6498 * trigger rescheduling on a busy CPU. This can be called from any online
6499 * scx_ops operation and the actual kicking is performed asynchronously through
6500 * an irq work.
6501 */
scx_bpf_kick_cpu(s32 cpu,u64 flags)6502 __bpf_kfunc void scx_bpf_kick_cpu(s32 cpu, u64 flags)
6503 {
6504 struct rq *this_rq;
6505 unsigned long irq_flags;
6506
6507 if (!ops_cpu_valid(cpu, NULL))
6508 return;
6509
6510 local_irq_save(irq_flags);
6511
6512 this_rq = this_rq();
6513
6514 /*
6515 * While bypassing for PM ops, IRQ handling may not be online which can
6516 * lead to irq_work_queue() malfunction such as infinite busy wait for
6517 * IRQ status update. Suppress kicking.
6518 */
6519 if (scx_rq_bypassing(this_rq))
6520 goto out;
6521
6522 /*
6523 * Actual kicking is bounced to kick_cpus_irq_workfn() to avoid nesting
6524 * rq locks. We can probably be smarter and avoid bouncing if called
6525 * from ops which don't hold a rq lock.
6526 */
6527 if (flags & SCX_KICK_IDLE) {
6528 struct rq *target_rq = cpu_rq(cpu);
6529
6530 if (unlikely(flags & (SCX_KICK_PREEMPT | SCX_KICK_WAIT)))
6531 scx_ops_error("PREEMPT/WAIT cannot be used with SCX_KICK_IDLE");
6532
6533 if (raw_spin_rq_trylock(target_rq)) {
6534 if (can_skip_idle_kick(target_rq)) {
6535 raw_spin_rq_unlock(target_rq);
6536 goto out;
6537 }
6538 raw_spin_rq_unlock(target_rq);
6539 }
6540 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick_if_idle);
6541 } else {
6542 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick);
6543
6544 if (flags & SCX_KICK_PREEMPT)
6545 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_preempt);
6546 if (flags & SCX_KICK_WAIT)
6547 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_wait);
6548 }
6549
6550 irq_work_queue(&this_rq->scx.kick_cpus_irq_work);
6551 out:
6552 local_irq_restore(irq_flags);
6553 }
6554
6555 /**
6556 * scx_bpf_dsq_nr_queued - Return the number of queued tasks
6557 * @dsq_id: id of the DSQ
6558 *
6559 * Return the number of tasks in the DSQ matching @dsq_id. If not found,
6560 * -%ENOENT is returned.
6561 */
scx_bpf_dsq_nr_queued(u64 dsq_id)6562 __bpf_kfunc s32 scx_bpf_dsq_nr_queued(u64 dsq_id)
6563 {
6564 struct scx_dispatch_q *dsq;
6565 s32 ret;
6566
6567 preempt_disable();
6568
6569 if (dsq_id == SCX_DSQ_LOCAL) {
6570 ret = READ_ONCE(this_rq()->scx.local_dsq.nr);
6571 goto out;
6572 } else if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) {
6573 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK;
6574
6575 if (ops_cpu_valid(cpu, NULL)) {
6576 ret = READ_ONCE(cpu_rq(cpu)->scx.local_dsq.nr);
6577 goto out;
6578 }
6579 } else {
6580 dsq = find_user_dsq(dsq_id);
6581 if (dsq) {
6582 ret = READ_ONCE(dsq->nr);
6583 goto out;
6584 }
6585 }
6586 ret = -ENOENT;
6587 out:
6588 preempt_enable();
6589 return ret;
6590 }
6591
6592 /**
6593 * scx_bpf_destroy_dsq - Destroy a custom DSQ
6594 * @dsq_id: DSQ to destroy
6595 *
6596 * Destroy the custom DSQ identified by @dsq_id. Only DSQs created with
6597 * scx_bpf_create_dsq() can be destroyed. The caller must ensure that the DSQ is
6598 * empty and no further tasks are dispatched to it. Ignored if called on a DSQ
6599 * which doesn't exist. Can be called from any online scx_ops operations.
6600 */
scx_bpf_destroy_dsq(u64 dsq_id)6601 __bpf_kfunc void scx_bpf_destroy_dsq(u64 dsq_id)
6602 {
6603 destroy_dsq(dsq_id);
6604 }
6605
6606 /**
6607 * bpf_iter_scx_dsq_new - Create a DSQ iterator
6608 * @it: iterator to initialize
6609 * @dsq_id: DSQ to iterate
6610 * @flags: %SCX_DSQ_ITER_*
6611 *
6612 * Initialize BPF iterator @it which can be used with bpf_for_each() to walk
6613 * tasks in the DSQ specified by @dsq_id. Iteration using @it only includes
6614 * tasks which are already queued when this function is invoked.
6615 */
bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq * it,u64 dsq_id,u64 flags)6616 __bpf_kfunc int bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq *it, u64 dsq_id,
6617 u64 flags)
6618 {
6619 struct bpf_iter_scx_dsq_kern *kit = (void *)it;
6620
6621 BUILD_BUG_ON(sizeof(struct bpf_iter_scx_dsq_kern) >
6622 sizeof(struct bpf_iter_scx_dsq));
6623 BUILD_BUG_ON(__alignof__(struct bpf_iter_scx_dsq_kern) !=
6624 __alignof__(struct bpf_iter_scx_dsq));
6625
6626 if (flags & ~__SCX_DSQ_ITER_USER_FLAGS)
6627 return -EINVAL;
6628
6629 kit->dsq = find_user_dsq(dsq_id);
6630 if (!kit->dsq)
6631 return -ENOENT;
6632
6633 INIT_LIST_HEAD(&kit->cursor.node);
6634 kit->cursor.flags |= SCX_DSQ_LNODE_ITER_CURSOR | flags;
6635 kit->cursor.priv = READ_ONCE(kit->dsq->seq);
6636
6637 return 0;
6638 }
6639
6640 /**
6641 * bpf_iter_scx_dsq_next - Progress a DSQ iterator
6642 * @it: iterator to progress
6643 *
6644 * Return the next task. See bpf_iter_scx_dsq_new().
6645 */
bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq * it)6646 __bpf_kfunc struct task_struct *bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq *it)
6647 {
6648 struct bpf_iter_scx_dsq_kern *kit = (void *)it;
6649 bool rev = kit->cursor.flags & SCX_DSQ_ITER_REV;
6650 struct task_struct *p;
6651 unsigned long flags;
6652
6653 if (!kit->dsq)
6654 return NULL;
6655
6656 raw_spin_lock_irqsave(&kit->dsq->lock, flags);
6657
6658 if (list_empty(&kit->cursor.node))
6659 p = NULL;
6660 else
6661 p = container_of(&kit->cursor, struct task_struct, scx.dsq_list);
6662
6663 /*
6664 * Only tasks which were queued before the iteration started are
6665 * visible. This bounds BPF iterations and guarantees that vtime never
6666 * jumps in the other direction while iterating.
6667 */
6668 do {
6669 p = nldsq_next_task(kit->dsq, p, rev);
6670 } while (p && unlikely(u32_before(kit->cursor.priv, p->scx.dsq_seq)));
6671
6672 if (p) {
6673 if (rev)
6674 list_move_tail(&kit->cursor.node, &p->scx.dsq_list.node);
6675 else
6676 list_move(&kit->cursor.node, &p->scx.dsq_list.node);
6677 } else {
6678 list_del_init(&kit->cursor.node);
6679 }
6680
6681 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags);
6682
6683 return p;
6684 }
6685
6686 /**
6687 * bpf_iter_scx_dsq_destroy - Destroy a DSQ iterator
6688 * @it: iterator to destroy
6689 *
6690 * Undo scx_iter_scx_dsq_new().
6691 */
bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq * it)6692 __bpf_kfunc void bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq *it)
6693 {
6694 struct bpf_iter_scx_dsq_kern *kit = (void *)it;
6695
6696 if (!kit->dsq)
6697 return;
6698
6699 if (!list_empty(&kit->cursor.node)) {
6700 unsigned long flags;
6701
6702 raw_spin_lock_irqsave(&kit->dsq->lock, flags);
6703 list_del_init(&kit->cursor.node);
6704 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags);
6705 }
6706 kit->dsq = NULL;
6707 }
6708
6709 __bpf_kfunc_end_defs();
6710
__bstr_format(u64 * data_buf,char * line_buf,size_t line_size,char * fmt,unsigned long long * data,u32 data__sz)6711 static s32 __bstr_format(u64 *data_buf, char *line_buf, size_t line_size,
6712 char *fmt, unsigned long long *data, u32 data__sz)
6713 {
6714 struct bpf_bprintf_data bprintf_data = { .get_bin_args = true };
6715 s32 ret;
6716
6717 if (data__sz % 8 || data__sz > MAX_BPRINTF_VARARGS * 8 ||
6718 (data__sz && !data)) {
6719 scx_ops_error("invalid data=%p and data__sz=%u",
6720 (void *)data, data__sz);
6721 return -EINVAL;
6722 }
6723
6724 ret = copy_from_kernel_nofault(data_buf, data, data__sz);
6725 if (ret < 0) {
6726 scx_ops_error("failed to read data fields (%d)", ret);
6727 return ret;
6728 }
6729
6730 ret = bpf_bprintf_prepare(fmt, UINT_MAX, data_buf, data__sz / 8,
6731 &bprintf_data);
6732 if (ret < 0) {
6733 scx_ops_error("format preparation failed (%d)", ret);
6734 return ret;
6735 }
6736
6737 ret = bstr_printf(line_buf, line_size, fmt,
6738 bprintf_data.bin_args);
6739 bpf_bprintf_cleanup(&bprintf_data);
6740 if (ret < 0) {
6741 scx_ops_error("(\"%s\", %p, %u) failed to format",
6742 fmt, data, data__sz);
6743 return ret;
6744 }
6745
6746 return ret;
6747 }
6748
bstr_format(struct scx_bstr_buf * buf,char * fmt,unsigned long long * data,u32 data__sz)6749 static s32 bstr_format(struct scx_bstr_buf *buf,
6750 char *fmt, unsigned long long *data, u32 data__sz)
6751 {
6752 return __bstr_format(buf->data, buf->line, sizeof(buf->line),
6753 fmt, data, data__sz);
6754 }
6755
6756 __bpf_kfunc_start_defs();
6757
6758 /**
6759 * scx_bpf_exit_bstr - Gracefully exit the BPF scheduler.
6760 * @exit_code: Exit value to pass to user space via struct scx_exit_info.
6761 * @fmt: error message format string
6762 * @data: format string parameters packaged using ___bpf_fill() macro
6763 * @data__sz: @data len, must end in '__sz' for the verifier
6764 *
6765 * Indicate that the BPF scheduler wants to exit gracefully, and initiate ops
6766 * disabling.
6767 */
scx_bpf_exit_bstr(s64 exit_code,char * fmt,unsigned long long * data,u32 data__sz)6768 __bpf_kfunc void scx_bpf_exit_bstr(s64 exit_code, char *fmt,
6769 unsigned long long *data, u32 data__sz)
6770 {
6771 unsigned long flags;
6772
6773 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags);
6774 if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0)
6775 scx_ops_exit_kind(SCX_EXIT_UNREG_BPF, exit_code, "%s",
6776 scx_exit_bstr_buf.line);
6777 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags);
6778 }
6779
6780 /**
6781 * scx_bpf_error_bstr - Indicate fatal error
6782 * @fmt: error message format string
6783 * @data: format string parameters packaged using ___bpf_fill() macro
6784 * @data__sz: @data len, must end in '__sz' for the verifier
6785 *
6786 * Indicate that the BPF scheduler encountered a fatal error and initiate ops
6787 * disabling.
6788 */
scx_bpf_error_bstr(char * fmt,unsigned long long * data,u32 data__sz)6789 __bpf_kfunc void scx_bpf_error_bstr(char *fmt, unsigned long long *data,
6790 u32 data__sz)
6791 {
6792 unsigned long flags;
6793
6794 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags);
6795 if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0)
6796 scx_ops_exit_kind(SCX_EXIT_ERROR_BPF, 0, "%s",
6797 scx_exit_bstr_buf.line);
6798 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags);
6799 }
6800
6801 /**
6802 * scx_bpf_dump - Generate extra debug dump specific to the BPF scheduler
6803 * @fmt: format string
6804 * @data: format string parameters packaged using ___bpf_fill() macro
6805 * @data__sz: @data len, must end in '__sz' for the verifier
6806 *
6807 * To be called through scx_bpf_dump() helper from ops.dump(), dump_cpu() and
6808 * dump_task() to generate extra debug dump specific to the BPF scheduler.
6809 *
6810 * The extra dump may be multiple lines. A single line may be split over
6811 * multiple calls. The last line is automatically terminated.
6812 */
scx_bpf_dump_bstr(char * fmt,unsigned long long * data,u32 data__sz)6813 __bpf_kfunc void scx_bpf_dump_bstr(char *fmt, unsigned long long *data,
6814 u32 data__sz)
6815 {
6816 struct scx_dump_data *dd = &scx_dump_data;
6817 struct scx_bstr_buf *buf = &dd->buf;
6818 s32 ret;
6819
6820 if (raw_smp_processor_id() != dd->cpu) {
6821 scx_ops_error("scx_bpf_dump() must only be called from ops.dump() and friends");
6822 return;
6823 }
6824
6825 /* append the formatted string to the line buf */
6826 ret = __bstr_format(buf->data, buf->line + dd->cursor,
6827 sizeof(buf->line) - dd->cursor, fmt, data, data__sz);
6828 if (ret < 0) {
6829 dump_line(dd->s, "%s[!] (\"%s\", %p, %u) failed to format (%d)",
6830 dd->prefix, fmt, data, data__sz, ret);
6831 return;
6832 }
6833
6834 dd->cursor += ret;
6835 dd->cursor = min_t(s32, dd->cursor, sizeof(buf->line));
6836
6837 if (!dd->cursor)
6838 return;
6839
6840 /*
6841 * If the line buf overflowed or ends in a newline, flush it into the
6842 * dump. This is to allow the caller to generate a single line over
6843 * multiple calls. As ops_dump_flush() can also handle multiple lines in
6844 * the line buf, the only case which can lead to an unexpected
6845 * truncation is when the caller keeps generating newlines in the middle
6846 * instead of the end consecutively. Don't do that.
6847 */
6848 if (dd->cursor >= sizeof(buf->line) || buf->line[dd->cursor - 1] == '\n')
6849 ops_dump_flush();
6850 }
6851
6852 /**
6853 * scx_bpf_cpuperf_cap - Query the maximum relative capacity of a CPU
6854 * @cpu: CPU of interest
6855 *
6856 * Return the maximum relative capacity of @cpu in relation to the most
6857 * performant CPU in the system. The return value is in the range [1,
6858 * %SCX_CPUPERF_ONE]. See scx_bpf_cpuperf_cur().
6859 */
scx_bpf_cpuperf_cap(s32 cpu)6860 __bpf_kfunc u32 scx_bpf_cpuperf_cap(s32 cpu)
6861 {
6862 if (ops_cpu_valid(cpu, NULL))
6863 return arch_scale_cpu_capacity(cpu);
6864 else
6865 return SCX_CPUPERF_ONE;
6866 }
6867
6868 /**
6869 * scx_bpf_cpuperf_cur - Query the current relative performance of a CPU
6870 * @cpu: CPU of interest
6871 *
6872 * Return the current relative performance of @cpu in relation to its maximum.
6873 * The return value is in the range [1, %SCX_CPUPERF_ONE].
6874 *
6875 * The current performance level of a CPU in relation to the maximum performance
6876 * available in the system can be calculated as follows:
6877 *
6878 * scx_bpf_cpuperf_cap() * scx_bpf_cpuperf_cur() / %SCX_CPUPERF_ONE
6879 *
6880 * The result is in the range [1, %SCX_CPUPERF_ONE].
6881 */
scx_bpf_cpuperf_cur(s32 cpu)6882 __bpf_kfunc u32 scx_bpf_cpuperf_cur(s32 cpu)
6883 {
6884 if (ops_cpu_valid(cpu, NULL))
6885 return arch_scale_freq_capacity(cpu);
6886 else
6887 return SCX_CPUPERF_ONE;
6888 }
6889
6890 /**
6891 * scx_bpf_cpuperf_set - Set the relative performance target of a CPU
6892 * @cpu: CPU of interest
6893 * @perf: target performance level [0, %SCX_CPUPERF_ONE]
6894 * @flags: %SCX_CPUPERF_* flags
6895 *
6896 * Set the target performance level of @cpu to @perf. @perf is in linear
6897 * relative scale between 0 and %SCX_CPUPERF_ONE. This determines how the
6898 * schedutil cpufreq governor chooses the target frequency.
6899 *
6900 * The actual performance level chosen, CPU grouping, and the overhead and
6901 * latency of the operations are dependent on the hardware and cpufreq driver in
6902 * use. Consult hardware and cpufreq documentation for more information. The
6903 * current performance level can be monitored using scx_bpf_cpuperf_cur().
6904 */
scx_bpf_cpuperf_set(s32 cpu,u32 perf)6905 __bpf_kfunc void scx_bpf_cpuperf_set(s32 cpu, u32 perf)
6906 {
6907 if (unlikely(perf > SCX_CPUPERF_ONE)) {
6908 scx_ops_error("Invalid cpuperf target %u for CPU %d", perf, cpu);
6909 return;
6910 }
6911
6912 if (ops_cpu_valid(cpu, NULL)) {
6913 struct rq *rq = cpu_rq(cpu);
6914
6915 rq->scx.cpuperf_target = perf;
6916
6917 rcu_read_lock_sched_notrace();
6918 cpufreq_update_util(cpu_rq(cpu), 0);
6919 rcu_read_unlock_sched_notrace();
6920 }
6921 }
6922
6923 /**
6924 * scx_bpf_nr_cpu_ids - Return the number of possible CPU IDs
6925 *
6926 * All valid CPU IDs in the system are smaller than the returned value.
6927 */
scx_bpf_nr_cpu_ids(void)6928 __bpf_kfunc u32 scx_bpf_nr_cpu_ids(void)
6929 {
6930 return nr_cpu_ids;
6931 }
6932
6933 /**
6934 * scx_bpf_get_possible_cpumask - Get a referenced kptr to cpu_possible_mask
6935 */
scx_bpf_get_possible_cpumask(void)6936 __bpf_kfunc const struct cpumask *scx_bpf_get_possible_cpumask(void)
6937 {
6938 return cpu_possible_mask;
6939 }
6940
6941 /**
6942 * scx_bpf_get_online_cpumask - Get a referenced kptr to cpu_online_mask
6943 */
scx_bpf_get_online_cpumask(void)6944 __bpf_kfunc const struct cpumask *scx_bpf_get_online_cpumask(void)
6945 {
6946 return cpu_online_mask;
6947 }
6948
6949 /**
6950 * scx_bpf_put_cpumask - Release a possible/online cpumask
6951 * @cpumask: cpumask to release
6952 */
scx_bpf_put_cpumask(const struct cpumask * cpumask)6953 __bpf_kfunc void scx_bpf_put_cpumask(const struct cpumask *cpumask)
6954 {
6955 /*
6956 * Empty function body because we aren't actually acquiring or releasing
6957 * a reference to a global cpumask, which is read-only in the caller and
6958 * is never released. The acquire / release semantics here are just used
6959 * to make the cpumask is a trusted pointer in the caller.
6960 */
6961 }
6962
6963 /**
6964 * scx_bpf_get_idle_cpumask - Get a referenced kptr to the idle-tracking
6965 * per-CPU cpumask.
6966 *
6967 * Returns NULL if idle tracking is not enabled, or running on a UP kernel.
6968 */
scx_bpf_get_idle_cpumask(void)6969 __bpf_kfunc const struct cpumask *scx_bpf_get_idle_cpumask(void)
6970 {
6971 if (!static_branch_likely(&scx_builtin_idle_enabled)) {
6972 scx_ops_error("built-in idle tracking is disabled");
6973 return cpu_none_mask;
6974 }
6975
6976 #ifdef CONFIG_SMP
6977 return idle_masks.cpu;
6978 #else
6979 return cpu_none_mask;
6980 #endif
6981 }
6982
6983 /**
6984 * scx_bpf_get_idle_smtmask - Get a referenced kptr to the idle-tracking,
6985 * per-physical-core cpumask. Can be used to determine if an entire physical
6986 * core is free.
6987 *
6988 * Returns NULL if idle tracking is not enabled, or running on a UP kernel.
6989 */
scx_bpf_get_idle_smtmask(void)6990 __bpf_kfunc const struct cpumask *scx_bpf_get_idle_smtmask(void)
6991 {
6992 if (!static_branch_likely(&scx_builtin_idle_enabled)) {
6993 scx_ops_error("built-in idle tracking is disabled");
6994 return cpu_none_mask;
6995 }
6996
6997 #ifdef CONFIG_SMP
6998 if (sched_smt_active())
6999 return idle_masks.smt;
7000 else
7001 return idle_masks.cpu;
7002 #else
7003 return cpu_none_mask;
7004 #endif
7005 }
7006
7007 /**
7008 * scx_bpf_put_idle_cpumask - Release a previously acquired referenced kptr to
7009 * either the percpu, or SMT idle-tracking cpumask.
7010 */
scx_bpf_put_idle_cpumask(const struct cpumask * idle_mask)7011 __bpf_kfunc void scx_bpf_put_idle_cpumask(const struct cpumask *idle_mask)
7012 {
7013 /*
7014 * Empty function body because we aren't actually acquiring or releasing
7015 * a reference to a global idle cpumask, which is read-only in the
7016 * caller and is never released. The acquire / release semantics here
7017 * are just used to make the cpumask a trusted pointer in the caller.
7018 */
7019 }
7020
7021 /**
7022 * scx_bpf_test_and_clear_cpu_idle - Test and clear @cpu's idle state
7023 * @cpu: cpu to test and clear idle for
7024 *
7025 * Returns %true if @cpu was idle and its idle state was successfully cleared.
7026 * %false otherwise.
7027 *
7028 * Unavailable if ops.update_idle() is implemented and
7029 * %SCX_OPS_KEEP_BUILTIN_IDLE is not set.
7030 */
scx_bpf_test_and_clear_cpu_idle(s32 cpu)7031 __bpf_kfunc bool scx_bpf_test_and_clear_cpu_idle(s32 cpu)
7032 {
7033 if (!static_branch_likely(&scx_builtin_idle_enabled)) {
7034 scx_ops_error("built-in idle tracking is disabled");
7035 return false;
7036 }
7037
7038 if (ops_cpu_valid(cpu, NULL))
7039 return test_and_clear_cpu_idle(cpu);
7040 else
7041 return false;
7042 }
7043
7044 /**
7045 * scx_bpf_pick_idle_cpu - Pick and claim an idle cpu
7046 * @cpus_allowed: Allowed cpumask
7047 * @flags: %SCX_PICK_IDLE_CPU_* flags
7048 *
7049 * Pick and claim an idle cpu in @cpus_allowed. Returns the picked idle cpu
7050 * number on success. -%EBUSY if no matching cpu was found.
7051 *
7052 * Idle CPU tracking may race against CPU scheduling state transitions. For
7053 * example, this function may return -%EBUSY as CPUs are transitioning into the
7054 * idle state. If the caller then assumes that there will be dispatch events on
7055 * the CPUs as they were all busy, the scheduler may end up stalling with CPUs
7056 * idling while there are pending tasks. Use scx_bpf_pick_any_cpu() and
7057 * scx_bpf_kick_cpu() to guarantee that there will be at least one dispatch
7058 * event in the near future.
7059 *
7060 * Unavailable if ops.update_idle() is implemented and
7061 * %SCX_OPS_KEEP_BUILTIN_IDLE is not set.
7062 */
scx_bpf_pick_idle_cpu(const struct cpumask * cpus_allowed,u64 flags)7063 __bpf_kfunc s32 scx_bpf_pick_idle_cpu(const struct cpumask *cpus_allowed,
7064 u64 flags)
7065 {
7066 if (!static_branch_likely(&scx_builtin_idle_enabled)) {
7067 scx_ops_error("built-in idle tracking is disabled");
7068 return -EBUSY;
7069 }
7070
7071 return scx_pick_idle_cpu(cpus_allowed, flags);
7072 }
7073
7074 /**
7075 * scx_bpf_pick_any_cpu - Pick and claim an idle cpu if available or pick any CPU
7076 * @cpus_allowed: Allowed cpumask
7077 * @flags: %SCX_PICK_IDLE_CPU_* flags
7078 *
7079 * Pick and claim an idle cpu in @cpus_allowed. If none is available, pick any
7080 * CPU in @cpus_allowed. Guaranteed to succeed and returns the picked idle cpu
7081 * number if @cpus_allowed is not empty. -%EBUSY is returned if @cpus_allowed is
7082 * empty.
7083 *
7084 * If ops.update_idle() is implemented and %SCX_OPS_KEEP_BUILTIN_IDLE is not
7085 * set, this function can't tell which CPUs are idle and will always pick any
7086 * CPU.
7087 */
scx_bpf_pick_any_cpu(const struct cpumask * cpus_allowed,u64 flags)7088 __bpf_kfunc s32 scx_bpf_pick_any_cpu(const struct cpumask *cpus_allowed,
7089 u64 flags)
7090 {
7091 s32 cpu;
7092
7093 if (static_branch_likely(&scx_builtin_idle_enabled)) {
7094 cpu = scx_pick_idle_cpu(cpus_allowed, flags);
7095 if (cpu >= 0)
7096 return cpu;
7097 }
7098
7099 cpu = cpumask_any_distribute(cpus_allowed);
7100 if (cpu < nr_cpu_ids)
7101 return cpu;
7102 else
7103 return -EBUSY;
7104 }
7105
7106 /**
7107 * scx_bpf_task_running - Is task currently running?
7108 * @p: task of interest
7109 */
scx_bpf_task_running(const struct task_struct * p)7110 __bpf_kfunc bool scx_bpf_task_running(const struct task_struct *p)
7111 {
7112 return task_rq(p)->curr == p;
7113 }
7114
7115 /**
7116 * scx_bpf_task_cpu - CPU a task is currently associated with
7117 * @p: task of interest
7118 */
scx_bpf_task_cpu(const struct task_struct * p)7119 __bpf_kfunc s32 scx_bpf_task_cpu(const struct task_struct *p)
7120 {
7121 return task_cpu(p);
7122 }
7123
7124 /**
7125 * scx_bpf_cpu_rq - Fetch the rq of a CPU
7126 * @cpu: CPU of the rq
7127 */
scx_bpf_cpu_rq(s32 cpu)7128 __bpf_kfunc struct rq *scx_bpf_cpu_rq(s32 cpu)
7129 {
7130 if (!ops_cpu_valid(cpu, NULL))
7131 return NULL;
7132
7133 return cpu_rq(cpu);
7134 }
7135
7136 /**
7137 * scx_bpf_task_cgroup - Return the sched cgroup of a task
7138 * @p: task of interest
7139 *
7140 * @p->sched_task_group->css.cgroup represents the cgroup @p is associated with
7141 * from the scheduler's POV. SCX operations should use this function to
7142 * determine @p's current cgroup as, unlike following @p->cgroups,
7143 * @p->sched_task_group is protected by @p's rq lock and thus atomic w.r.t. all
7144 * rq-locked operations. Can be called on the parameter tasks of rq-locked
7145 * operations. The restriction guarantees that @p's rq is locked by the caller.
7146 */
7147 #ifdef CONFIG_CGROUP_SCHED
scx_bpf_task_cgroup(struct task_struct * p)7148 __bpf_kfunc struct cgroup *scx_bpf_task_cgroup(struct task_struct *p)
7149 {
7150 struct task_group *tg = p->sched_task_group;
7151 struct cgroup *cgrp = &cgrp_dfl_root.cgrp;
7152
7153 if (!scx_kf_allowed_on_arg_tasks(__SCX_KF_RQ_LOCKED, p))
7154 goto out;
7155
7156 /*
7157 * A task_group may either be a cgroup or an autogroup. In the latter
7158 * case, @tg->css.cgroup is %NULL. A task_group can't become the other
7159 * kind once created.
7160 */
7161 if (tg && tg->css.cgroup)
7162 cgrp = tg->css.cgroup;
7163 else
7164 cgrp = &cgrp_dfl_root.cgrp;
7165 out:
7166 cgroup_get(cgrp);
7167 return cgrp;
7168 }
7169 #endif
7170
7171 __bpf_kfunc_end_defs();
7172
7173 BTF_KFUNCS_START(scx_kfunc_ids_any)
7174 BTF_ID_FLAGS(func, scx_bpf_kick_cpu)
7175 BTF_ID_FLAGS(func, scx_bpf_dsq_nr_queued)
7176 BTF_ID_FLAGS(func, scx_bpf_destroy_dsq)
7177 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_new, KF_ITER_NEW | KF_RCU_PROTECTED)
7178 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_next, KF_ITER_NEXT | KF_RET_NULL)
7179 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_destroy, KF_ITER_DESTROY)
7180 BTF_ID_FLAGS(func, scx_bpf_exit_bstr, KF_TRUSTED_ARGS)
7181 BTF_ID_FLAGS(func, scx_bpf_error_bstr, KF_TRUSTED_ARGS)
7182 BTF_ID_FLAGS(func, scx_bpf_dump_bstr, KF_TRUSTED_ARGS)
7183 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cap)
7184 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cur)
7185 BTF_ID_FLAGS(func, scx_bpf_cpuperf_set)
7186 BTF_ID_FLAGS(func, scx_bpf_nr_cpu_ids)
7187 BTF_ID_FLAGS(func, scx_bpf_get_possible_cpumask, KF_ACQUIRE)
7188 BTF_ID_FLAGS(func, scx_bpf_get_online_cpumask, KF_ACQUIRE)
7189 BTF_ID_FLAGS(func, scx_bpf_put_cpumask, KF_RELEASE)
7190 BTF_ID_FLAGS(func, scx_bpf_get_idle_cpumask, KF_ACQUIRE)
7191 BTF_ID_FLAGS(func, scx_bpf_get_idle_smtmask, KF_ACQUIRE)
7192 BTF_ID_FLAGS(func, scx_bpf_put_idle_cpumask, KF_RELEASE)
7193 BTF_ID_FLAGS(func, scx_bpf_test_and_clear_cpu_idle)
7194 BTF_ID_FLAGS(func, scx_bpf_pick_idle_cpu, KF_RCU)
7195 BTF_ID_FLAGS(func, scx_bpf_pick_any_cpu, KF_RCU)
7196 BTF_ID_FLAGS(func, scx_bpf_task_running, KF_RCU)
7197 BTF_ID_FLAGS(func, scx_bpf_task_cpu, KF_RCU)
7198 BTF_ID_FLAGS(func, scx_bpf_cpu_rq)
7199 #ifdef CONFIG_CGROUP_SCHED
7200 BTF_ID_FLAGS(func, scx_bpf_task_cgroup, KF_RCU | KF_ACQUIRE)
7201 #endif
7202 BTF_KFUNCS_END(scx_kfunc_ids_any)
7203
7204 static const struct btf_kfunc_id_set scx_kfunc_set_any = {
7205 .owner = THIS_MODULE,
7206 .set = &scx_kfunc_ids_any,
7207 };
7208
scx_init(void)7209 static int __init scx_init(void)
7210 {
7211 int ret;
7212
7213 /*
7214 * kfunc registration can't be done from init_sched_ext_class() as
7215 * register_btf_kfunc_id_set() needs most of the system to be up.
7216 *
7217 * Some kfuncs are context-sensitive and can only be called from
7218 * specific SCX ops. They are grouped into BTF sets accordingly.
7219 * Unfortunately, BPF currently doesn't have a way of enforcing such
7220 * restrictions. Eventually, the verifier should be able to enforce
7221 * them. For now, register them the same and make each kfunc explicitly
7222 * check using scx_kf_allowed().
7223 */
7224 if ((ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7225 &scx_kfunc_set_select_cpu)) ||
7226 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7227 &scx_kfunc_set_enqueue_dispatch)) ||
7228 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7229 &scx_kfunc_set_dispatch)) ||
7230 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7231 &scx_kfunc_set_cpu_release)) ||
7232 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7233 &scx_kfunc_set_unlocked)) ||
7234 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL,
7235 &scx_kfunc_set_unlocked)) ||
7236 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7237 &scx_kfunc_set_any)) ||
7238 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING,
7239 &scx_kfunc_set_any)) ||
7240 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL,
7241 &scx_kfunc_set_any))) {
7242 pr_err("sched_ext: Failed to register kfunc sets (%d)\n", ret);
7243 return ret;
7244 }
7245
7246 ret = register_bpf_struct_ops(&bpf_sched_ext_ops, sched_ext_ops);
7247 if (ret) {
7248 pr_err("sched_ext: Failed to register struct_ops (%d)\n", ret);
7249 return ret;
7250 }
7251
7252 ret = register_pm_notifier(&scx_pm_notifier);
7253 if (ret) {
7254 pr_err("sched_ext: Failed to register PM notifier (%d)\n", ret);
7255 return ret;
7256 }
7257
7258 scx_kset = kset_create_and_add("sched_ext", &scx_uevent_ops, kernel_kobj);
7259 if (!scx_kset) {
7260 pr_err("sched_ext: Failed to create /sys/kernel/sched_ext\n");
7261 return -ENOMEM;
7262 }
7263
7264 ret = sysfs_create_group(&scx_kset->kobj, &scx_global_attr_group);
7265 if (ret < 0) {
7266 pr_err("sched_ext: Failed to add global attributes\n");
7267 return ret;
7268 }
7269
7270 return 0;
7271 }
7272 __initcall(scx_init);
7273