1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * VFIO: IOMMU DMA mapping support for Type1 IOMMU
4 *
5 * Copyright (C) 2012 Red Hat, Inc. All rights reserved.
6 * Author: Alex Williamson <alex.williamson@redhat.com>
7 *
8 * Derived from original vfio:
9 * Copyright 2010 Cisco Systems, Inc. All rights reserved.
10 * Author: Tom Lyon, pugs@cisco.com
11 *
12 * We arbitrarily define a Type1 IOMMU as one matching the below code.
13 * It could be called the x86 IOMMU as it's designed for AMD-Vi & Intel
14 * VT-d, but that makes it harder to re-use as theoretically anyone
15 * implementing a similar IOMMU could make use of this. We expect the
16 * IOMMU to support the IOMMU API and have few to no restrictions around
17 * the IOVA range that can be mapped. The Type1 IOMMU is currently
18 * optimized for relatively static mappings of a userspace process with
19 * userspace pages pinned into memory. We also assume devices and IOMMU
20 * domains are PCI based as the IOMMU API is still centered around a
21 * device/bus interface rather than a group interface.
22 */
23
24 #include <linux/compat.h>
25 #include <linux/device.h>
26 #include <linux/fs.h>
27 #include <linux/highmem.h>
28 #include <linux/iommu.h>
29 #include <linux/module.h>
30 #include <linux/mm.h>
31 #include <linux/kthread.h>
32 #include <linux/rbtree.h>
33 #include <linux/sched/signal.h>
34 #include <linux/sched/mm.h>
35 #include <linux/slab.h>
36 #include <linux/uaccess.h>
37 #include <linux/vfio.h>
38 #include <linux/workqueue.h>
39 #include <linux/notifier.h>
40 #include <linux/mm_inline.h>
41 #include <linux/overflow.h>
42 #include "vfio.h"
43
44 #define DRIVER_VERSION "0.2"
45 #define DRIVER_AUTHOR "Alex Williamson <alex.williamson@redhat.com>"
46 #define DRIVER_DESC "Type1 IOMMU driver for VFIO"
47
48 static bool allow_unsafe_interrupts;
49 module_param_named(allow_unsafe_interrupts,
50 allow_unsafe_interrupts, bool, S_IRUGO | S_IWUSR);
51 MODULE_PARM_DESC(allow_unsafe_interrupts,
52 "Enable VFIO IOMMU support for on platforms without interrupt remapping support.");
53
54 static bool disable_hugepages;
55 module_param_named(disable_hugepages,
56 disable_hugepages, bool, S_IRUGO | S_IWUSR);
57 MODULE_PARM_DESC(disable_hugepages,
58 "Disable VFIO IOMMU support for IOMMU hugepages.");
59
60 static unsigned int dma_entry_limit __read_mostly = U16_MAX;
61 module_param_named(dma_entry_limit, dma_entry_limit, uint, 0644);
62 MODULE_PARM_DESC(dma_entry_limit,
63 "Maximum number of user DMA mappings per container (65535).");
64
65 struct vfio_iommu {
66 struct list_head domain_list;
67 struct list_head iova_list;
68 struct mutex lock;
69 struct rb_root dma_list;
70 struct list_head device_list;
71 struct mutex device_list_lock;
72 unsigned int dma_avail;
73 unsigned int vaddr_invalid_count;
74 uint64_t pgsize_bitmap;
75 uint64_t num_non_pinned_groups;
76 bool v2;
77 bool dirty_page_tracking;
78 struct list_head emulated_iommu_groups;
79 };
80
81 struct vfio_domain {
82 struct iommu_domain *domain;
83 struct list_head next;
84 struct list_head group_list;
85 bool enforce_cache_coherency : 1;
86 };
87
88 struct vfio_dma {
89 struct rb_node node;
90 dma_addr_t iova; /* Device address */
91 unsigned long vaddr; /* Process virtual addr */
92 size_t size; /* Map size (bytes) */
93 int prot; /* IOMMU_READ/WRITE */
94 bool iommu_mapped;
95 bool lock_cap; /* capable(CAP_IPC_LOCK) */
96 bool vaddr_invalid;
97 bool has_rsvd; /* has 1 or more rsvd pfns */
98 struct task_struct *task;
99 struct rb_root pfn_list; /* Ex-user pinned pfn list */
100 unsigned long *bitmap;
101 struct mm_struct *mm;
102 size_t locked_vm;
103 };
104
105 struct vfio_batch {
106 struct page **pages; /* for pin_user_pages_remote */
107 struct page *fallback_page; /* if pages alloc fails */
108 unsigned int capacity; /* length of pages array */
109 unsigned int size; /* of batch currently */
110 unsigned int offset; /* of next entry in pages */
111 };
112
113 struct vfio_iommu_group {
114 struct iommu_group *iommu_group;
115 struct list_head next;
116 bool pinned_page_dirty_scope;
117 };
118
119 struct vfio_iova {
120 struct list_head list;
121 dma_addr_t start;
122 dma_addr_t end;
123 };
124
125 /*
126 * Guest RAM pinning working set or DMA target
127 */
128 struct vfio_pfn {
129 struct rb_node node;
130 dma_addr_t iova; /* Device address */
131 unsigned long pfn; /* Host pfn */
132 unsigned int ref_count;
133 };
134
135 struct vfio_regions {
136 struct list_head list;
137 dma_addr_t iova;
138 phys_addr_t phys;
139 size_t len;
140 };
141
142 #define DIRTY_BITMAP_BYTES(n) (ALIGN(n, BITS_PER_TYPE(u64)) / BITS_PER_BYTE)
143
144 /*
145 * Input argument of number of bits to bitmap_set() is unsigned integer, which
146 * further casts to signed integer for unaligned multi-bit operation,
147 * __bitmap_set().
148 * Then maximum bitmap size supported is 2^31 bits divided by 2^3 bits/byte,
149 * that is 2^28 (256 MB) which maps to 2^31 * 2^12 = 2^43 (8TB) on 4K page
150 * system.
151 */
152 #define DIRTY_BITMAP_PAGES_MAX ((u64)INT_MAX)
153 #define DIRTY_BITMAP_SIZE_MAX DIRTY_BITMAP_BYTES(DIRTY_BITMAP_PAGES_MAX)
154
155 static int put_pfn(unsigned long pfn, int prot);
156
157 static struct vfio_iommu_group*
158 vfio_iommu_find_iommu_group(struct vfio_iommu *iommu,
159 struct iommu_group *iommu_group);
160
161 /*
162 * This code handles mapping and unmapping of user data buffers
163 * into DMA'ble space using the IOMMU
164 */
165
vfio_find_dma(struct vfio_iommu * iommu,dma_addr_t start,size_t size)166 static struct vfio_dma *vfio_find_dma(struct vfio_iommu *iommu,
167 dma_addr_t start, size_t size)
168 {
169 struct rb_node *node = iommu->dma_list.rb_node;
170
171 WARN_ON(!size);
172
173 while (node) {
174 struct vfio_dma *dma = rb_entry(node, struct vfio_dma, node);
175
176 if (start + size - 1 < dma->iova)
177 node = node->rb_left;
178 else if (start > dma->iova + dma->size - 1)
179 node = node->rb_right;
180 else
181 return dma;
182 }
183
184 return NULL;
185 }
186
vfio_find_dma_first_node(struct vfio_iommu * iommu,dma_addr_t start,dma_addr_t end)187 static struct rb_node *vfio_find_dma_first_node(struct vfio_iommu *iommu,
188 dma_addr_t start,
189 dma_addr_t end)
190 {
191 struct rb_node *res = NULL;
192 struct rb_node *node = iommu->dma_list.rb_node;
193 struct vfio_dma *dma_res = NULL;
194
195 WARN_ON(end < start);
196
197 while (node) {
198 struct vfio_dma *dma = rb_entry(node, struct vfio_dma, node);
199
200 if (start <= dma->iova + dma->size - 1) {
201 res = node;
202 dma_res = dma;
203 if (start >= dma->iova)
204 break;
205 node = node->rb_left;
206 } else {
207 node = node->rb_right;
208 }
209 }
210 if (res && dma_res->iova > end)
211 res = NULL;
212 return res;
213 }
214
vfio_link_dma(struct vfio_iommu * iommu,struct vfio_dma * new)215 static void vfio_link_dma(struct vfio_iommu *iommu, struct vfio_dma *new)
216 {
217 struct rb_node **link = &iommu->dma_list.rb_node, *parent = NULL;
218 struct vfio_dma *dma;
219
220 WARN_ON(new->size != 0);
221
222 while (*link) {
223 parent = *link;
224 dma = rb_entry(parent, struct vfio_dma, node);
225
226 if (new->iova <= dma->iova)
227 link = &(*link)->rb_left;
228 else
229 link = &(*link)->rb_right;
230 }
231
232 rb_link_node(&new->node, parent, link);
233 rb_insert_color(&new->node, &iommu->dma_list);
234 }
235
vfio_unlink_dma(struct vfio_iommu * iommu,struct vfio_dma * old)236 static void vfio_unlink_dma(struct vfio_iommu *iommu, struct vfio_dma *old)
237 {
238 rb_erase(&old->node, &iommu->dma_list);
239 }
240
241
vfio_dma_bitmap_alloc(struct vfio_dma * dma,size_t pgsize)242 static int vfio_dma_bitmap_alloc(struct vfio_dma *dma, size_t pgsize)
243 {
244 uint64_t npages = dma->size / pgsize;
245
246 if (npages > DIRTY_BITMAP_PAGES_MAX)
247 return -EINVAL;
248
249 /*
250 * Allocate extra 64 bits that are used to calculate shift required for
251 * bitmap_shift_left() to manipulate and club unaligned number of pages
252 * in adjacent vfio_dma ranges.
253 */
254 dma->bitmap = kvzalloc(DIRTY_BITMAP_BYTES(npages) + sizeof(u64),
255 GFP_KERNEL);
256 if (!dma->bitmap)
257 return -ENOMEM;
258
259 return 0;
260 }
261
vfio_dma_bitmap_free(struct vfio_dma * dma)262 static void vfio_dma_bitmap_free(struct vfio_dma *dma)
263 {
264 kvfree(dma->bitmap);
265 dma->bitmap = NULL;
266 }
267
vfio_dma_populate_bitmap(struct vfio_dma * dma,size_t pgsize)268 static void vfio_dma_populate_bitmap(struct vfio_dma *dma, size_t pgsize)
269 {
270 struct rb_node *p;
271 unsigned long pgshift = __ffs(pgsize);
272
273 for (p = rb_first(&dma->pfn_list); p; p = rb_next(p)) {
274 struct vfio_pfn *vpfn = rb_entry(p, struct vfio_pfn, node);
275
276 bitmap_set(dma->bitmap, (vpfn->iova - dma->iova) >> pgshift, 1);
277 }
278 }
279
vfio_iommu_populate_bitmap_full(struct vfio_iommu * iommu)280 static void vfio_iommu_populate_bitmap_full(struct vfio_iommu *iommu)
281 {
282 struct rb_node *n;
283 unsigned long pgshift = __ffs(iommu->pgsize_bitmap);
284
285 for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
286 struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
287
288 bitmap_set(dma->bitmap, 0, dma->size >> pgshift);
289 }
290 }
291
vfio_dma_bitmap_alloc_all(struct vfio_iommu * iommu,size_t pgsize)292 static int vfio_dma_bitmap_alloc_all(struct vfio_iommu *iommu, size_t pgsize)
293 {
294 struct rb_node *n;
295
296 for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
297 struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
298 int ret;
299
300 ret = vfio_dma_bitmap_alloc(dma, pgsize);
301 if (ret) {
302 struct rb_node *p;
303
304 for (p = rb_prev(n); p; p = rb_prev(p)) {
305 struct vfio_dma *dma = rb_entry(p,
306 struct vfio_dma, node);
307
308 vfio_dma_bitmap_free(dma);
309 }
310 return ret;
311 }
312 vfio_dma_populate_bitmap(dma, pgsize);
313 }
314 return 0;
315 }
316
vfio_dma_bitmap_free_all(struct vfio_iommu * iommu)317 static void vfio_dma_bitmap_free_all(struct vfio_iommu *iommu)
318 {
319 struct rb_node *n;
320
321 for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
322 struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
323
324 vfio_dma_bitmap_free(dma);
325 }
326 }
327
328 /*
329 * Helper Functions for host iova-pfn list
330 */
331
332 /*
333 * Find the highest vfio_pfn that overlapping the range
334 * [iova_start, iova_end) in rb tree.
335 */
vfio_find_vpfn_range(struct vfio_dma * dma,dma_addr_t iova_start,dma_addr_t iova_end)336 static struct vfio_pfn *vfio_find_vpfn_range(struct vfio_dma *dma,
337 dma_addr_t iova_start, dma_addr_t iova_end)
338 {
339 struct vfio_pfn *vpfn;
340 struct rb_node *node = dma->pfn_list.rb_node;
341
342 while (node) {
343 vpfn = rb_entry(node, struct vfio_pfn, node);
344
345 if (iova_end <= vpfn->iova)
346 node = node->rb_left;
347 else if (iova_start > vpfn->iova)
348 node = node->rb_right;
349 else
350 return vpfn;
351 }
352 return NULL;
353 }
354
vfio_find_vpfn(struct vfio_dma * dma,dma_addr_t iova)355 static inline struct vfio_pfn *vfio_find_vpfn(struct vfio_dma *dma, dma_addr_t iova)
356 {
357 return vfio_find_vpfn_range(dma, iova, iova + 1);
358 }
359
vfio_link_pfn(struct vfio_dma * dma,struct vfio_pfn * new)360 static void vfio_link_pfn(struct vfio_dma *dma,
361 struct vfio_pfn *new)
362 {
363 struct rb_node **link, *parent = NULL;
364 struct vfio_pfn *vpfn;
365
366 link = &dma->pfn_list.rb_node;
367 while (*link) {
368 parent = *link;
369 vpfn = rb_entry(parent, struct vfio_pfn, node);
370
371 if (new->iova < vpfn->iova)
372 link = &(*link)->rb_left;
373 else
374 link = &(*link)->rb_right;
375 }
376
377 rb_link_node(&new->node, parent, link);
378 rb_insert_color(&new->node, &dma->pfn_list);
379 }
380
vfio_unlink_pfn(struct vfio_dma * dma,struct vfio_pfn * old)381 static void vfio_unlink_pfn(struct vfio_dma *dma, struct vfio_pfn *old)
382 {
383 rb_erase(&old->node, &dma->pfn_list);
384 }
385
vfio_add_to_pfn_list(struct vfio_dma * dma,dma_addr_t iova,unsigned long pfn)386 static int vfio_add_to_pfn_list(struct vfio_dma *dma, dma_addr_t iova,
387 unsigned long pfn)
388 {
389 struct vfio_pfn *vpfn;
390
391 vpfn = kzalloc(sizeof(*vpfn), GFP_KERNEL);
392 if (!vpfn)
393 return -ENOMEM;
394
395 vpfn->iova = iova;
396 vpfn->pfn = pfn;
397 vpfn->ref_count = 1;
398 vfio_link_pfn(dma, vpfn);
399 return 0;
400 }
401
vfio_remove_from_pfn_list(struct vfio_dma * dma,struct vfio_pfn * vpfn)402 static void vfio_remove_from_pfn_list(struct vfio_dma *dma,
403 struct vfio_pfn *vpfn)
404 {
405 vfio_unlink_pfn(dma, vpfn);
406 kfree(vpfn);
407 }
408
vfio_iova_get_vfio_pfn(struct vfio_dma * dma,unsigned long iova)409 static struct vfio_pfn *vfio_iova_get_vfio_pfn(struct vfio_dma *dma,
410 unsigned long iova)
411 {
412 struct vfio_pfn *vpfn = vfio_find_vpfn(dma, iova);
413
414 if (vpfn)
415 vpfn->ref_count++;
416 return vpfn;
417 }
418
vfio_iova_put_vfio_pfn(struct vfio_dma * dma,struct vfio_pfn * vpfn)419 static int vfio_iova_put_vfio_pfn(struct vfio_dma *dma, struct vfio_pfn *vpfn)
420 {
421 int ret = 0;
422
423 vpfn->ref_count--;
424 if (!vpfn->ref_count) {
425 ret = put_pfn(vpfn->pfn, dma->prot);
426 vfio_remove_from_pfn_list(dma, vpfn);
427 }
428 return ret;
429 }
430
mm_lock_acct(struct task_struct * task,struct mm_struct * mm,bool lock_cap,long npage)431 static int mm_lock_acct(struct task_struct *task, struct mm_struct *mm,
432 bool lock_cap, long npage)
433 {
434 int ret = mmap_write_lock_killable(mm);
435
436 if (ret)
437 return ret;
438
439 ret = __account_locked_vm(mm, abs(npage), npage > 0, task, lock_cap);
440 mmap_write_unlock(mm);
441 return ret;
442 }
443
vfio_lock_acct(struct vfio_dma * dma,long npage,bool async)444 static int vfio_lock_acct(struct vfio_dma *dma, long npage, bool async)
445 {
446 struct mm_struct *mm;
447 int ret;
448
449 if (!npage)
450 return 0;
451
452 mm = dma->mm;
453 if (async && !mmget_not_zero(mm))
454 return -ESRCH; /* process exited */
455
456 ret = mm_lock_acct(dma->task, mm, dma->lock_cap, npage);
457 if (!ret)
458 dma->locked_vm += npage;
459
460 if (async)
461 mmput(mm);
462
463 return ret;
464 }
465
466 /*
467 * Some mappings aren't backed by a struct page, for example an mmap'd
468 * MMIO range for our own or another device. These use a different
469 * pfn conversion and shouldn't be tracked as locked pages.
470 * For compound pages, any driver that sets the reserved bit in head
471 * page needs to set the reserved bit in all subpages to be safe.
472 */
is_invalid_reserved_pfn(unsigned long pfn)473 static bool is_invalid_reserved_pfn(unsigned long pfn)
474 {
475 if (pfn_valid(pfn))
476 return PageReserved(pfn_to_page(pfn));
477
478 return true;
479 }
480
put_pfn(unsigned long pfn,int prot)481 static int put_pfn(unsigned long pfn, int prot)
482 {
483 if (!is_invalid_reserved_pfn(pfn)) {
484 struct page *page = pfn_to_page(pfn);
485
486 unpin_user_pages_dirty_lock(&page, 1, prot & IOMMU_WRITE);
487 return 1;
488 }
489 return 0;
490 }
491
492 #define VFIO_BATCH_MAX_CAPACITY (PAGE_SIZE / sizeof(struct page *))
493
__vfio_batch_init(struct vfio_batch * batch,bool single)494 static void __vfio_batch_init(struct vfio_batch *batch, bool single)
495 {
496 batch->size = 0;
497 batch->offset = 0;
498
499 if (single || unlikely(disable_hugepages))
500 goto fallback;
501
502 batch->pages = (struct page **) __get_free_page(GFP_KERNEL);
503 if (!batch->pages)
504 goto fallback;
505
506 batch->capacity = VFIO_BATCH_MAX_CAPACITY;
507 return;
508
509 fallback:
510 batch->pages = &batch->fallback_page;
511 batch->capacity = 1;
512 }
513
vfio_batch_init(struct vfio_batch * batch)514 static void vfio_batch_init(struct vfio_batch *batch)
515 {
516 __vfio_batch_init(batch, false);
517 }
518
vfio_batch_init_single(struct vfio_batch * batch)519 static void vfio_batch_init_single(struct vfio_batch *batch)
520 {
521 __vfio_batch_init(batch, true);
522 }
523
vfio_batch_unpin(struct vfio_batch * batch,struct vfio_dma * dma)524 static void vfio_batch_unpin(struct vfio_batch *batch, struct vfio_dma *dma)
525 {
526 while (batch->size) {
527 unsigned long pfn = page_to_pfn(batch->pages[batch->offset]);
528
529 put_pfn(pfn, dma->prot);
530 batch->offset++;
531 batch->size--;
532 }
533 }
534
vfio_batch_fini(struct vfio_batch * batch)535 static void vfio_batch_fini(struct vfio_batch *batch)
536 {
537 if (batch->capacity == VFIO_BATCH_MAX_CAPACITY)
538 free_page((unsigned long)batch->pages);
539 }
540
follow_fault_pfn(struct vm_area_struct * vma,struct mm_struct * mm,unsigned long vaddr,unsigned long * pfn,unsigned long * addr_mask,bool write_fault)541 static int follow_fault_pfn(struct vm_area_struct *vma, struct mm_struct *mm,
542 unsigned long vaddr, unsigned long *pfn,
543 unsigned long *addr_mask, bool write_fault)
544 {
545 struct follow_pfnmap_args args = { .vma = vma, .address = vaddr };
546 int ret;
547
548 ret = follow_pfnmap_start(&args);
549 if (ret) {
550 bool unlocked = false;
551
552 ret = fixup_user_fault(mm, vaddr,
553 FAULT_FLAG_REMOTE |
554 (write_fault ? FAULT_FLAG_WRITE : 0),
555 &unlocked);
556 if (unlocked)
557 return -EAGAIN;
558
559 if (ret)
560 return ret;
561
562 ret = follow_pfnmap_start(&args);
563 if (ret)
564 return ret;
565 }
566
567 if (write_fault && !args.writable) {
568 ret = -EFAULT;
569 } else {
570 *pfn = args.pfn;
571 *addr_mask = args.addr_mask;
572 }
573
574 follow_pfnmap_end(&args);
575 return ret;
576 }
577
578 /*
579 * Returns the positive number of pfns successfully obtained or a negative
580 * error code. The initial pfn is stored in the pfn arg. For page-backed
581 * pfns, the provided batch is also updated to indicate the filled pages and
582 * initial offset. For VM_PFNMAP pfns, only the returned number of pfns and
583 * returned initial pfn are provided; subsequent pfns are contiguous.
584 */
vaddr_get_pfns(struct mm_struct * mm,unsigned long vaddr,unsigned long npages,int prot,unsigned long * pfn,struct vfio_batch * batch)585 static long vaddr_get_pfns(struct mm_struct *mm, unsigned long vaddr,
586 unsigned long npages, int prot, unsigned long *pfn,
587 struct vfio_batch *batch)
588 {
589 unsigned long pin_pages = min_t(unsigned long, npages, batch->capacity);
590 struct vm_area_struct *vma;
591 unsigned int flags = 0;
592 long ret;
593
594 if (prot & IOMMU_WRITE)
595 flags |= FOLL_WRITE;
596
597 mmap_read_lock(mm);
598 ret = pin_user_pages_remote(mm, vaddr, pin_pages, flags | FOLL_LONGTERM,
599 batch->pages, NULL);
600 if (ret > 0) {
601 *pfn = page_to_pfn(batch->pages[0]);
602 batch->size = ret;
603 batch->offset = 0;
604 goto done;
605 } else if (!ret) {
606 ret = -EFAULT;
607 }
608
609 vaddr = untagged_addr_remote(mm, vaddr);
610
611 retry:
612 vma = vma_lookup(mm, vaddr);
613
614 if (vma && vma->vm_flags & VM_PFNMAP) {
615 unsigned long addr_mask;
616
617 ret = follow_fault_pfn(vma, mm, vaddr, pfn, &addr_mask,
618 prot & IOMMU_WRITE);
619 if (ret == -EAGAIN)
620 goto retry;
621
622 if (!ret) {
623 if (is_invalid_reserved_pfn(*pfn)) {
624 unsigned long epfn;
625
626 epfn = (*pfn | (~addr_mask >> PAGE_SHIFT)) + 1;
627 ret = min_t(long, npages, epfn - *pfn);
628 } else {
629 ret = -EFAULT;
630 }
631 }
632 }
633 done:
634 mmap_read_unlock(mm);
635 return ret;
636 }
637
638
vpfn_pages(struct vfio_dma * dma,dma_addr_t iova_start,long nr_pages)639 static long vpfn_pages(struct vfio_dma *dma,
640 dma_addr_t iova_start, long nr_pages)
641 {
642 dma_addr_t iova_end = iova_start + (nr_pages << PAGE_SHIFT);
643 struct vfio_pfn *top = vfio_find_vpfn_range(dma, iova_start, iova_end);
644 long ret = 1;
645 struct vfio_pfn *vpfn;
646 struct rb_node *prev;
647 struct rb_node *next;
648
649 if (likely(!top))
650 return 0;
651
652 prev = next = &top->node;
653
654 while ((prev = rb_prev(prev))) {
655 vpfn = rb_entry(prev, struct vfio_pfn, node);
656 if (vpfn->iova < iova_start)
657 break;
658 ret++;
659 }
660
661 while ((next = rb_next(next))) {
662 vpfn = rb_entry(next, struct vfio_pfn, node);
663 if (vpfn->iova >= iova_end)
664 break;
665 ret++;
666 }
667
668 return ret;
669 }
670
671 /*
672 * Attempt to pin pages. We really don't want to track all the pfns and
673 * the iommu can only map chunks of consecutive pfns anyway, so get the
674 * first page and all consecutive pages with the same locking.
675 */
vfio_pin_pages_remote(struct vfio_dma * dma,unsigned long vaddr,unsigned long npage,unsigned long * pfn_base,unsigned long limit,struct vfio_batch * batch)676 static long vfio_pin_pages_remote(struct vfio_dma *dma, unsigned long vaddr,
677 unsigned long npage, unsigned long *pfn_base,
678 unsigned long limit, struct vfio_batch *batch)
679 {
680 unsigned long pfn;
681 struct mm_struct *mm = current->mm;
682 long ret, pinned = 0, lock_acct = 0;
683 bool rsvd;
684 dma_addr_t iova = vaddr - dma->vaddr + dma->iova;
685
686 /* This code path is only user initiated */
687 if (!mm)
688 return -ENODEV;
689
690 if (batch->size) {
691 /* Leftover pages in batch from an earlier call. */
692 *pfn_base = page_to_pfn(batch->pages[batch->offset]);
693 pfn = *pfn_base;
694 rsvd = is_invalid_reserved_pfn(*pfn_base);
695 } else {
696 *pfn_base = 0;
697 }
698
699 if (unlikely(disable_hugepages))
700 npage = 1;
701
702 while (npage) {
703 if (!batch->size) {
704 /*
705 * Large mappings may take a while to repeatedly refill
706 * the batch, so conditionally relinquish the CPU when
707 * needed to avoid stalls.
708 */
709 cond_resched();
710
711 /* Empty batch, so refill it. */
712 ret = vaddr_get_pfns(mm, vaddr, npage, dma->prot,
713 &pfn, batch);
714 if (ret < 0)
715 goto unpin_out;
716
717 if (!*pfn_base) {
718 *pfn_base = pfn;
719 rsvd = is_invalid_reserved_pfn(*pfn_base);
720 }
721
722 /* Handle pfnmap */
723 if (!batch->size) {
724 if (pfn != *pfn_base + pinned || !rsvd)
725 goto out;
726
727 pinned += ret;
728 npage -= ret;
729 vaddr += (PAGE_SIZE * ret);
730 iova += (PAGE_SIZE * ret);
731 continue;
732 }
733 }
734
735 /*
736 * pfn is preset for the first iteration of this inner loop
737 * due to the fact that vaddr_get_pfns() needs to provide the
738 * initial pfn for pfnmaps. Therefore to reduce redundancy,
739 * the next pfn is fetched at the end of the loop.
740 * A PageReserved() page could still qualify as page backed
741 * and rsvd here, and therefore continues to use the batch.
742 */
743 while (true) {
744 long nr_pages, acct_pages = 0;
745
746 if (pfn != *pfn_base + pinned ||
747 rsvd != is_invalid_reserved_pfn(pfn))
748 goto out;
749
750 /*
751 * Using GUP with the FOLL_LONGTERM in
752 * vaddr_get_pfns() will not return invalid
753 * or reserved pages.
754 */
755 nr_pages = num_pages_contiguous(
756 &batch->pages[batch->offset],
757 batch->size);
758 if (!rsvd) {
759 acct_pages = nr_pages;
760 acct_pages -= vpfn_pages(dma, iova, nr_pages);
761 }
762
763 /*
764 * Reserved pages aren't counted against the user,
765 * externally pinned pages are already counted against
766 * the user.
767 */
768 if (acct_pages) {
769 if (!dma->lock_cap &&
770 mm->locked_vm + lock_acct + acct_pages > limit) {
771 pr_warn("%s: RLIMIT_MEMLOCK (%ld) exceeded\n",
772 __func__, limit << PAGE_SHIFT);
773 ret = -ENOMEM;
774 goto unpin_out;
775 }
776 lock_acct += acct_pages;
777 }
778
779 pinned += nr_pages;
780 npage -= nr_pages;
781 vaddr += PAGE_SIZE * nr_pages;
782 iova += PAGE_SIZE * nr_pages;
783 batch->offset += nr_pages;
784 batch->size -= nr_pages;
785
786 if (!batch->size)
787 break;
788
789 pfn = page_to_pfn(batch->pages[batch->offset]);
790 }
791 }
792
793 out:
794 dma->has_rsvd |= rsvd;
795 ret = vfio_lock_acct(dma, lock_acct, false);
796
797 unpin_out:
798 if (ret < 0) {
799 if (pinned && !rsvd) {
800 for (pfn = *pfn_base ; pinned ; pfn++, pinned--)
801 put_pfn(pfn, dma->prot);
802 }
803 vfio_batch_unpin(batch, dma);
804
805 return ret;
806 }
807
808 return pinned;
809 }
810
put_valid_unreserved_pfns(unsigned long start_pfn,unsigned long npage,int prot)811 static inline void put_valid_unreserved_pfns(unsigned long start_pfn,
812 unsigned long npage, int prot)
813 {
814 unpin_user_page_range_dirty_lock(pfn_to_page(start_pfn), npage,
815 prot & IOMMU_WRITE);
816 }
817
vfio_unpin_pages_remote(struct vfio_dma * dma,dma_addr_t iova,unsigned long pfn,unsigned long npage,bool do_accounting)818 static long vfio_unpin_pages_remote(struct vfio_dma *dma, dma_addr_t iova,
819 unsigned long pfn, unsigned long npage,
820 bool do_accounting)
821 {
822 long unlocked = 0, locked = vpfn_pages(dma, iova, npage);
823
824 if (dma->has_rsvd) {
825 unsigned long i;
826
827 for (i = 0; i < npage; i++)
828 if (put_pfn(pfn++, dma->prot))
829 unlocked++;
830 } else {
831 put_valid_unreserved_pfns(pfn, npage, dma->prot);
832 unlocked = npage;
833 }
834 if (do_accounting)
835 vfio_lock_acct(dma, locked - unlocked, true);
836
837 return unlocked;
838 }
839
vfio_pin_page_external(struct vfio_dma * dma,unsigned long vaddr,unsigned long * pfn_base,bool do_accounting)840 static int vfio_pin_page_external(struct vfio_dma *dma, unsigned long vaddr,
841 unsigned long *pfn_base, bool do_accounting)
842 {
843 struct vfio_batch batch;
844 struct mm_struct *mm;
845 int ret;
846
847 mm = dma->mm;
848 if (!mmget_not_zero(mm))
849 return -ENODEV;
850
851 vfio_batch_init_single(&batch);
852
853 ret = vaddr_get_pfns(mm, vaddr, 1, dma->prot, pfn_base, &batch);
854 if (ret != 1)
855 goto out;
856
857 ret = 0;
858
859 if (do_accounting && !is_invalid_reserved_pfn(*pfn_base)) {
860 ret = vfio_lock_acct(dma, 1, false);
861 if (ret) {
862 put_pfn(*pfn_base, dma->prot);
863 if (ret == -ENOMEM)
864 pr_warn("%s: Task %s (%d) RLIMIT_MEMLOCK "
865 "(%ld) exceeded\n", __func__,
866 dma->task->comm, task_pid_nr(dma->task),
867 task_rlimit(dma->task, RLIMIT_MEMLOCK));
868 }
869 }
870
871 out:
872 vfio_batch_fini(&batch);
873 mmput(mm);
874 return ret;
875 }
876
vfio_unpin_page_external(struct vfio_dma * dma,dma_addr_t iova,bool do_accounting)877 static int vfio_unpin_page_external(struct vfio_dma *dma, dma_addr_t iova,
878 bool do_accounting)
879 {
880 int unlocked;
881 struct vfio_pfn *vpfn = vfio_find_vpfn(dma, iova);
882
883 if (!vpfn)
884 return 0;
885
886 unlocked = vfio_iova_put_vfio_pfn(dma, vpfn);
887
888 if (do_accounting)
889 vfio_lock_acct(dma, -unlocked, true);
890
891 return unlocked;
892 }
893
vfio_iommu_type1_pin_pages(void * iommu_data,struct iommu_group * iommu_group,dma_addr_t user_iova,int npage,int prot,struct page ** pages)894 static int vfio_iommu_type1_pin_pages(void *iommu_data,
895 struct iommu_group *iommu_group,
896 dma_addr_t user_iova,
897 int npage, int prot,
898 struct page **pages)
899 {
900 struct vfio_iommu *iommu = iommu_data;
901 struct vfio_iommu_group *group;
902 int i, j, ret;
903 unsigned long remote_vaddr;
904 struct vfio_dma *dma;
905 bool do_accounting;
906 dma_addr_t iova_end;
907 size_t iova_size;
908
909 if (!iommu || !pages || npage <= 0)
910 return -EINVAL;
911
912 /* Supported for v2 version only */
913 if (!iommu->v2)
914 return -EACCES;
915
916 if (check_mul_overflow(npage, PAGE_SIZE, &iova_size) ||
917 check_add_overflow(user_iova, iova_size - 1, &iova_end))
918 return -EOVERFLOW;
919
920 mutex_lock(&iommu->lock);
921
922 if (WARN_ONCE(iommu->vaddr_invalid_count,
923 "vfio_pin_pages not allowed with VFIO_UPDATE_VADDR\n")) {
924 ret = -EBUSY;
925 goto pin_done;
926 }
927
928 /* Fail if no dma_umap notifier is registered */
929 if (list_empty(&iommu->device_list)) {
930 ret = -EINVAL;
931 goto pin_done;
932 }
933
934 /*
935 * If iommu capable domain exist in the container then all pages are
936 * already pinned and accounted. Accounting should be done if there is no
937 * iommu capable domain in the container.
938 */
939 do_accounting = list_empty(&iommu->domain_list);
940
941 for (i = 0; i < npage; i++) {
942 unsigned long phys_pfn;
943 dma_addr_t iova;
944 struct vfio_pfn *vpfn;
945
946 iova = user_iova + PAGE_SIZE * i;
947 dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
948 if (!dma) {
949 ret = -EINVAL;
950 goto pin_unwind;
951 }
952
953 if ((dma->prot & prot) != prot) {
954 ret = -EPERM;
955 goto pin_unwind;
956 }
957
958 vpfn = vfio_iova_get_vfio_pfn(dma, iova);
959 if (vpfn) {
960 pages[i] = pfn_to_page(vpfn->pfn);
961 continue;
962 }
963
964 remote_vaddr = dma->vaddr + (iova - dma->iova);
965 ret = vfio_pin_page_external(dma, remote_vaddr, &phys_pfn,
966 do_accounting);
967 if (ret)
968 goto pin_unwind;
969
970 if (!pfn_valid(phys_pfn)) {
971 ret = -EINVAL;
972 goto pin_unwind;
973 }
974
975 ret = vfio_add_to_pfn_list(dma, iova, phys_pfn);
976 if (ret) {
977 if (put_pfn(phys_pfn, dma->prot) && do_accounting)
978 vfio_lock_acct(dma, -1, true);
979 goto pin_unwind;
980 }
981
982 pages[i] = pfn_to_page(phys_pfn);
983
984 if (iommu->dirty_page_tracking) {
985 unsigned long pgshift = __ffs(iommu->pgsize_bitmap);
986
987 /*
988 * Bitmap populated with the smallest supported page
989 * size
990 */
991 bitmap_set(dma->bitmap,
992 (iova - dma->iova) >> pgshift, 1);
993 }
994 }
995 ret = i;
996
997 group = vfio_iommu_find_iommu_group(iommu, iommu_group);
998 if (!group->pinned_page_dirty_scope) {
999 group->pinned_page_dirty_scope = true;
1000 iommu->num_non_pinned_groups--;
1001 }
1002
1003 goto pin_done;
1004
1005 pin_unwind:
1006 pages[i] = NULL;
1007 for (j = 0; j < i; j++) {
1008 dma_addr_t iova;
1009
1010 iova = user_iova + PAGE_SIZE * j;
1011 dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
1012 vfio_unpin_page_external(dma, iova, do_accounting);
1013 pages[j] = NULL;
1014 }
1015 pin_done:
1016 mutex_unlock(&iommu->lock);
1017 return ret;
1018 }
1019
vfio_iommu_type1_unpin_pages(void * iommu_data,dma_addr_t user_iova,int npage)1020 static void vfio_iommu_type1_unpin_pages(void *iommu_data,
1021 dma_addr_t user_iova, int npage)
1022 {
1023 struct vfio_iommu *iommu = iommu_data;
1024 bool do_accounting;
1025 dma_addr_t iova_end;
1026 size_t iova_size;
1027 int i;
1028
1029 /* Supported for v2 version only */
1030 if (WARN_ON(!iommu->v2))
1031 return;
1032
1033 if (WARN_ON(npage <= 0))
1034 return;
1035
1036 if (WARN_ON(check_mul_overflow(npage, PAGE_SIZE, &iova_size) ||
1037 check_add_overflow(user_iova, iova_size - 1, &iova_end)))
1038 return;
1039
1040 mutex_lock(&iommu->lock);
1041
1042 do_accounting = list_empty(&iommu->domain_list);
1043 for (i = 0; i < npage; i++) {
1044 dma_addr_t iova = user_iova + PAGE_SIZE * i;
1045 struct vfio_dma *dma;
1046
1047 dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
1048 if (!dma)
1049 break;
1050
1051 vfio_unpin_page_external(dma, iova, do_accounting);
1052 }
1053
1054 mutex_unlock(&iommu->lock);
1055
1056 WARN_ON(i != npage);
1057 }
1058
vfio_sync_unpin(struct vfio_dma * dma,struct vfio_domain * domain,struct list_head * regions,struct iommu_iotlb_gather * iotlb_gather)1059 static long vfio_sync_unpin(struct vfio_dma *dma, struct vfio_domain *domain,
1060 struct list_head *regions,
1061 struct iommu_iotlb_gather *iotlb_gather)
1062 {
1063 long unlocked = 0;
1064 struct vfio_regions *entry, *next;
1065
1066 iommu_iotlb_sync(domain->domain, iotlb_gather);
1067
1068 list_for_each_entry_safe(entry, next, regions, list) {
1069 unlocked += vfio_unpin_pages_remote(dma,
1070 entry->iova,
1071 entry->phys >> PAGE_SHIFT,
1072 entry->len >> PAGE_SHIFT,
1073 false);
1074 list_del(&entry->list);
1075 kfree(entry);
1076 }
1077
1078 cond_resched();
1079
1080 return unlocked;
1081 }
1082
1083 /*
1084 * Generally, VFIO needs to unpin remote pages after each IOTLB flush.
1085 * Therefore, when using IOTLB flush sync interface, VFIO need to keep track
1086 * of these regions (currently using a list).
1087 *
1088 * This value specifies maximum number of regions for each IOTLB flush sync.
1089 */
1090 #define VFIO_IOMMU_TLB_SYNC_MAX 512
1091
unmap_unpin_fast(struct vfio_domain * domain,struct vfio_dma * dma,dma_addr_t iova,size_t len,phys_addr_t phys,long * unlocked,struct list_head * unmapped_list,int * unmapped_cnt,struct iommu_iotlb_gather * iotlb_gather)1092 static size_t unmap_unpin_fast(struct vfio_domain *domain,
1093 struct vfio_dma *dma, dma_addr_t iova,
1094 size_t len, phys_addr_t phys, long *unlocked,
1095 struct list_head *unmapped_list,
1096 int *unmapped_cnt,
1097 struct iommu_iotlb_gather *iotlb_gather)
1098 {
1099 size_t unmapped = 0;
1100 struct vfio_regions *entry = kzalloc(sizeof(*entry), GFP_KERNEL);
1101
1102 if (entry) {
1103 unmapped = iommu_unmap_fast(domain->domain, iova, len,
1104 iotlb_gather);
1105
1106 if (!unmapped) {
1107 kfree(entry);
1108 } else {
1109 entry->iova = iova;
1110 entry->phys = phys;
1111 entry->len = unmapped;
1112 list_add_tail(&entry->list, unmapped_list);
1113
1114 (*unmapped_cnt)++;
1115 }
1116 }
1117
1118 /*
1119 * Sync if the number of fast-unmap regions hits the limit
1120 * or in case of errors.
1121 */
1122 if (*unmapped_cnt >= VFIO_IOMMU_TLB_SYNC_MAX || !unmapped) {
1123 *unlocked += vfio_sync_unpin(dma, domain, unmapped_list,
1124 iotlb_gather);
1125 *unmapped_cnt = 0;
1126 }
1127
1128 return unmapped;
1129 }
1130
unmap_unpin_slow(struct vfio_domain * domain,struct vfio_dma * dma,dma_addr_t iova,size_t len,phys_addr_t phys,long * unlocked)1131 static size_t unmap_unpin_slow(struct vfio_domain *domain,
1132 struct vfio_dma *dma, dma_addr_t iova,
1133 size_t len, phys_addr_t phys,
1134 long *unlocked)
1135 {
1136 size_t unmapped = iommu_unmap(domain->domain, iova, len);
1137
1138 if (unmapped) {
1139 *unlocked += vfio_unpin_pages_remote(dma, iova,
1140 phys >> PAGE_SHIFT,
1141 unmapped >> PAGE_SHIFT,
1142 false);
1143 cond_resched();
1144 }
1145 return unmapped;
1146 }
1147
vfio_unmap_unpin(struct vfio_iommu * iommu,struct vfio_dma * dma,bool do_accounting)1148 static long vfio_unmap_unpin(struct vfio_iommu *iommu, struct vfio_dma *dma,
1149 bool do_accounting)
1150 {
1151 struct vfio_domain *domain, *d;
1152 LIST_HEAD(unmapped_region_list);
1153 struct iommu_iotlb_gather iotlb_gather;
1154 int unmapped_region_cnt = 0;
1155 long unlocked = 0;
1156 size_t pos = 0;
1157
1158 if (!dma->size)
1159 return 0;
1160
1161 if (list_empty(&iommu->domain_list))
1162 return 0;
1163
1164 /*
1165 * We use the IOMMU to track the physical addresses, otherwise we'd
1166 * need a much more complicated tracking system. Unfortunately that
1167 * means we need to use one of the iommu domains to figure out the
1168 * pfns to unpin. The rest need to be unmapped in advance so we have
1169 * no iommu translations remaining when the pages are unpinned.
1170 */
1171 domain = d = list_first_entry(&iommu->domain_list,
1172 struct vfio_domain, next);
1173
1174 list_for_each_entry_continue(d, &iommu->domain_list, next) {
1175 iommu_unmap(d->domain, dma->iova, dma->size);
1176 cond_resched();
1177 }
1178
1179 iommu_iotlb_gather_init(&iotlb_gather);
1180 while (pos < dma->size) {
1181 size_t unmapped, len;
1182 phys_addr_t phys, next;
1183 dma_addr_t iova = dma->iova + pos;
1184
1185 phys = iommu_iova_to_phys(domain->domain, iova);
1186 if (WARN_ON(!phys)) {
1187 pos += PAGE_SIZE;
1188 continue;
1189 }
1190
1191 /*
1192 * To optimize for fewer iommu_unmap() calls, each of which
1193 * may require hardware cache flushing, try to find the
1194 * largest contiguous physical memory chunk to unmap.
1195 */
1196 for (len = PAGE_SIZE; pos + len < dma->size; len += PAGE_SIZE) {
1197 next = iommu_iova_to_phys(domain->domain, iova + len);
1198 if (next != phys + len)
1199 break;
1200 }
1201
1202 /*
1203 * First, try to use fast unmap/unpin. In case of failure,
1204 * switch to slow unmap/unpin path.
1205 */
1206 unmapped = unmap_unpin_fast(domain, dma, iova, len, phys,
1207 &unlocked, &unmapped_region_list,
1208 &unmapped_region_cnt,
1209 &iotlb_gather);
1210 if (!unmapped) {
1211 unmapped = unmap_unpin_slow(domain, dma, iova, len,
1212 phys, &unlocked);
1213 if (WARN_ON(!unmapped))
1214 break;
1215 }
1216
1217 pos += unmapped;
1218 }
1219
1220 dma->iommu_mapped = false;
1221
1222 if (unmapped_region_cnt) {
1223 unlocked += vfio_sync_unpin(dma, domain, &unmapped_region_list,
1224 &iotlb_gather);
1225 }
1226
1227 if (do_accounting) {
1228 vfio_lock_acct(dma, -unlocked, true);
1229 return 0;
1230 }
1231 return unlocked;
1232 }
1233
vfio_remove_dma(struct vfio_iommu * iommu,struct vfio_dma * dma)1234 static void vfio_remove_dma(struct vfio_iommu *iommu, struct vfio_dma *dma)
1235 {
1236 WARN_ON(!RB_EMPTY_ROOT(&dma->pfn_list));
1237 vfio_unmap_unpin(iommu, dma, true);
1238 vfio_unlink_dma(iommu, dma);
1239 put_task_struct(dma->task);
1240 mmdrop(dma->mm);
1241 vfio_dma_bitmap_free(dma);
1242 if (dma->vaddr_invalid)
1243 iommu->vaddr_invalid_count--;
1244 kfree(dma);
1245 iommu->dma_avail++;
1246 }
1247
vfio_update_pgsize_bitmap(struct vfio_iommu * iommu)1248 static void vfio_update_pgsize_bitmap(struct vfio_iommu *iommu)
1249 {
1250 struct vfio_domain *domain;
1251
1252 iommu->pgsize_bitmap = ULONG_MAX;
1253
1254 list_for_each_entry(domain, &iommu->domain_list, next)
1255 iommu->pgsize_bitmap &= domain->domain->pgsize_bitmap;
1256
1257 /*
1258 * In case the IOMMU supports page sizes smaller than PAGE_SIZE
1259 * we pretend PAGE_SIZE is supported and hide sub-PAGE_SIZE sizes.
1260 * That way the user will be able to map/unmap buffers whose size/
1261 * start address is aligned with PAGE_SIZE. Pinning code uses that
1262 * granularity while iommu driver can use the sub-PAGE_SIZE size
1263 * to map the buffer.
1264 */
1265 if (iommu->pgsize_bitmap & ~PAGE_MASK) {
1266 iommu->pgsize_bitmap &= PAGE_MASK;
1267 iommu->pgsize_bitmap |= PAGE_SIZE;
1268 }
1269 }
1270
update_user_bitmap(u64 __user * bitmap,struct vfio_iommu * iommu,struct vfio_dma * dma,dma_addr_t base_iova,size_t pgsize)1271 static int update_user_bitmap(u64 __user *bitmap, struct vfio_iommu *iommu,
1272 struct vfio_dma *dma, dma_addr_t base_iova,
1273 size_t pgsize)
1274 {
1275 unsigned long pgshift = __ffs(pgsize);
1276 unsigned long nbits = dma->size >> pgshift;
1277 unsigned long bit_offset = (dma->iova - base_iova) >> pgshift;
1278 unsigned long copy_offset = bit_offset / BITS_PER_LONG;
1279 unsigned long shift = bit_offset % BITS_PER_LONG;
1280 unsigned long leftover;
1281
1282 /*
1283 * mark all pages dirty if any IOMMU capable device is not able
1284 * to report dirty pages and all pages are pinned and mapped.
1285 */
1286 if (iommu->num_non_pinned_groups && dma->iommu_mapped)
1287 bitmap_set(dma->bitmap, 0, nbits);
1288
1289 if (shift) {
1290 bitmap_shift_left(dma->bitmap, dma->bitmap, shift,
1291 nbits + shift);
1292
1293 if (copy_from_user(&leftover,
1294 (void __user *)(bitmap + copy_offset),
1295 sizeof(leftover)))
1296 return -EFAULT;
1297
1298 bitmap_or(dma->bitmap, dma->bitmap, &leftover, shift);
1299 }
1300
1301 if (copy_to_user((void __user *)(bitmap + copy_offset), dma->bitmap,
1302 DIRTY_BITMAP_BYTES(nbits + shift)))
1303 return -EFAULT;
1304
1305 return 0;
1306 }
1307
vfio_iova_dirty_bitmap(u64 __user * bitmap,struct vfio_iommu * iommu,dma_addr_t iova,dma_addr_t iova_end,size_t pgsize)1308 static int vfio_iova_dirty_bitmap(u64 __user *bitmap, struct vfio_iommu *iommu,
1309 dma_addr_t iova, dma_addr_t iova_end, size_t pgsize)
1310 {
1311 struct vfio_dma *dma;
1312 struct rb_node *n;
1313 unsigned long pgshift = __ffs(pgsize);
1314 int ret;
1315
1316 /*
1317 * GET_BITMAP request must fully cover vfio_dma mappings. Multiple
1318 * vfio_dma mappings may be clubbed by specifying large ranges, but
1319 * there must not be any previous mappings bisected by the range.
1320 * An error will be returned if these conditions are not met.
1321 */
1322 dma = vfio_find_dma(iommu, iova, 1);
1323 if (dma && dma->iova != iova)
1324 return -EINVAL;
1325
1326 dma = vfio_find_dma(iommu, iova_end, 1);
1327 if (dma && dma->iova + dma->size - 1 != iova_end)
1328 return -EINVAL;
1329
1330 for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
1331 struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
1332
1333 if (dma->iova < iova)
1334 continue;
1335
1336 if (dma->iova > iova_end)
1337 break;
1338
1339 ret = update_user_bitmap(bitmap, iommu, dma, iova, pgsize);
1340 if (ret)
1341 return ret;
1342
1343 /*
1344 * Re-populate bitmap to include all pinned pages which are
1345 * considered as dirty but exclude pages which are unpinned and
1346 * pages which are marked dirty by vfio_dma_rw()
1347 */
1348 bitmap_clear(dma->bitmap, 0, dma->size >> pgshift);
1349 vfio_dma_populate_bitmap(dma, pgsize);
1350 }
1351 return 0;
1352 }
1353
verify_bitmap_size(uint64_t npages,uint64_t bitmap_size)1354 static int verify_bitmap_size(uint64_t npages, uint64_t bitmap_size)
1355 {
1356 if (!npages || !bitmap_size || (bitmap_size > DIRTY_BITMAP_SIZE_MAX) ||
1357 (bitmap_size < DIRTY_BITMAP_BYTES(npages)))
1358 return -EINVAL;
1359
1360 return 0;
1361 }
1362
1363 /*
1364 * Notify VFIO drivers using vfio_register_emulated_iommu_dev() to invalidate
1365 * and unmap iovas within the range we're about to unmap. Drivers MUST unpin
1366 * pages in response to an invalidation.
1367 */
vfio_notify_dma_unmap(struct vfio_iommu * iommu,struct vfio_dma * dma)1368 static void vfio_notify_dma_unmap(struct vfio_iommu *iommu,
1369 struct vfio_dma *dma)
1370 {
1371 struct vfio_device *device;
1372
1373 if (list_empty(&iommu->device_list))
1374 return;
1375
1376 /*
1377 * The device is expected to call vfio_unpin_pages() for any IOVA it has
1378 * pinned within the range. Since vfio_unpin_pages() will eventually
1379 * call back down to this code and try to obtain the iommu->lock we must
1380 * drop it.
1381 */
1382 mutex_lock(&iommu->device_list_lock);
1383 mutex_unlock(&iommu->lock);
1384
1385 list_for_each_entry(device, &iommu->device_list, iommu_entry)
1386 device->ops->dma_unmap(device, dma->iova, dma->size);
1387
1388 mutex_unlock(&iommu->device_list_lock);
1389 mutex_lock(&iommu->lock);
1390 }
1391
vfio_dma_do_unmap(struct vfio_iommu * iommu,struct vfio_iommu_type1_dma_unmap * unmap,struct vfio_bitmap * bitmap)1392 static int vfio_dma_do_unmap(struct vfio_iommu *iommu,
1393 struct vfio_iommu_type1_dma_unmap *unmap,
1394 struct vfio_bitmap *bitmap)
1395 {
1396 struct vfio_dma *dma, *dma_last = NULL;
1397 size_t unmapped = 0, pgsize;
1398 int ret = -EINVAL, retries = 0;
1399 unsigned long pgshift;
1400 dma_addr_t iova = unmap->iova;
1401 dma_addr_t iova_end;
1402 size_t size = unmap->size;
1403 bool unmap_all = unmap->flags & VFIO_DMA_UNMAP_FLAG_ALL;
1404 bool invalidate_vaddr = unmap->flags & VFIO_DMA_UNMAP_FLAG_VADDR;
1405 struct rb_node *n, *first_n;
1406
1407 mutex_lock(&iommu->lock);
1408
1409 /* Cannot update vaddr if mdev is present. */
1410 if (invalidate_vaddr && !list_empty(&iommu->emulated_iommu_groups)) {
1411 ret = -EBUSY;
1412 goto unlock;
1413 }
1414
1415 if (iova != unmap->iova || size != unmap->size) {
1416 ret = -EOVERFLOW;
1417 goto unlock;
1418 }
1419
1420 pgshift = __ffs(iommu->pgsize_bitmap);
1421 pgsize = (size_t)1 << pgshift;
1422
1423 if (iova & (pgsize - 1))
1424 goto unlock;
1425
1426 if (unmap_all) {
1427 if (iova || size)
1428 goto unlock;
1429 iova_end = ~(dma_addr_t)0;
1430 } else {
1431 if (!size || size & (pgsize - 1))
1432 goto unlock;
1433
1434 if (check_add_overflow(iova, size - 1, &iova_end)) {
1435 ret = -EOVERFLOW;
1436 goto unlock;
1437 }
1438 }
1439
1440 /* When dirty tracking is enabled, allow only min supported pgsize */
1441 if ((unmap->flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) &&
1442 (!iommu->dirty_page_tracking || (bitmap->pgsize != pgsize))) {
1443 goto unlock;
1444 }
1445
1446 WARN_ON((pgsize - 1) & PAGE_MASK);
1447 again:
1448 /*
1449 * vfio-iommu-type1 (v1) - User mappings were coalesced together to
1450 * avoid tracking individual mappings. This means that the granularity
1451 * of the original mapping was lost and the user was allowed to attempt
1452 * to unmap any range. Depending on the contiguousness of physical
1453 * memory and page sizes supported by the IOMMU, arbitrary unmaps may
1454 * or may not have worked. We only guaranteed unmap granularity
1455 * matching the original mapping; even though it was untracked here,
1456 * the original mappings are reflected in IOMMU mappings. This
1457 * resulted in a couple unusual behaviors. First, if a range is not
1458 * able to be unmapped, ex. a set of 4k pages that was mapped as a
1459 * 2M hugepage into the IOMMU, the unmap ioctl returns success but with
1460 * a zero sized unmap. Also, if an unmap request overlaps the first
1461 * address of a hugepage, the IOMMU will unmap the entire hugepage.
1462 * This also returns success and the returned unmap size reflects the
1463 * actual size unmapped.
1464 *
1465 * We attempt to maintain compatibility with this "v1" interface, but
1466 * we take control out of the hands of the IOMMU. Therefore, an unmap
1467 * request offset from the beginning of the original mapping will
1468 * return success with zero sized unmap. And an unmap request covering
1469 * the first iova of mapping will unmap the entire range.
1470 *
1471 * The v2 version of this interface intends to be more deterministic.
1472 * Unmap requests must fully cover previous mappings. Multiple
1473 * mappings may still be unmaped by specifying large ranges, but there
1474 * must not be any previous mappings bisected by the range. An error
1475 * will be returned if these conditions are not met. The v2 interface
1476 * will only return success and a size of zero if there were no
1477 * mappings within the range.
1478 */
1479 if (iommu->v2 && !unmap_all) {
1480 dma = vfio_find_dma(iommu, iova, 1);
1481 if (dma && dma->iova != iova)
1482 goto unlock;
1483
1484 dma = vfio_find_dma(iommu, iova_end, 1);
1485 if (dma && dma->iova + dma->size - 1 != iova_end)
1486 goto unlock;
1487 }
1488
1489 ret = 0;
1490 n = first_n = vfio_find_dma_first_node(iommu, iova, iova_end);
1491
1492 while (n) {
1493 dma = rb_entry(n, struct vfio_dma, node);
1494 if (dma->iova > iova_end)
1495 break;
1496
1497 if (!iommu->v2 && iova > dma->iova)
1498 break;
1499
1500 if (invalidate_vaddr) {
1501 if (dma->vaddr_invalid) {
1502 struct rb_node *last_n = n;
1503
1504 for (n = first_n; n != last_n; n = rb_next(n)) {
1505 dma = rb_entry(n,
1506 struct vfio_dma, node);
1507 dma->vaddr_invalid = false;
1508 iommu->vaddr_invalid_count--;
1509 }
1510 ret = -EINVAL;
1511 unmapped = 0;
1512 break;
1513 }
1514 dma->vaddr_invalid = true;
1515 iommu->vaddr_invalid_count++;
1516 unmapped += dma->size;
1517 n = rb_next(n);
1518 continue;
1519 }
1520
1521 if (!RB_EMPTY_ROOT(&dma->pfn_list)) {
1522 if (dma_last == dma) {
1523 BUG_ON(++retries > 10);
1524 } else {
1525 dma_last = dma;
1526 retries = 0;
1527 }
1528
1529 vfio_notify_dma_unmap(iommu, dma);
1530 goto again;
1531 }
1532
1533 if (unmap->flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) {
1534 ret = update_user_bitmap(bitmap->data, iommu, dma,
1535 iova, pgsize);
1536 if (ret)
1537 break;
1538 }
1539
1540 unmapped += dma->size;
1541 n = rb_next(n);
1542 vfio_remove_dma(iommu, dma);
1543 }
1544
1545 unlock:
1546 mutex_unlock(&iommu->lock);
1547
1548 /* Report how much was unmapped */
1549 unmap->size = unmapped;
1550
1551 return ret;
1552 }
1553
vfio_iommu_map(struct vfio_iommu * iommu,dma_addr_t iova,unsigned long pfn,long npage,int prot)1554 static int vfio_iommu_map(struct vfio_iommu *iommu, dma_addr_t iova,
1555 unsigned long pfn, long npage, int prot)
1556 {
1557 struct vfio_domain *d;
1558 int ret;
1559
1560 list_for_each_entry(d, &iommu->domain_list, next) {
1561 ret = iommu_map(d->domain, iova, (phys_addr_t)pfn << PAGE_SHIFT,
1562 npage << PAGE_SHIFT, prot | IOMMU_CACHE,
1563 GFP_KERNEL_ACCOUNT);
1564 if (ret)
1565 goto unwind;
1566
1567 cond_resched();
1568 }
1569
1570 return 0;
1571
1572 unwind:
1573 list_for_each_entry_continue_reverse(d, &iommu->domain_list, next) {
1574 iommu_unmap(d->domain, iova, npage << PAGE_SHIFT);
1575 cond_resched();
1576 }
1577
1578 return ret;
1579 }
1580
vfio_pin_map_dma(struct vfio_iommu * iommu,struct vfio_dma * dma,size_t map_size)1581 static int vfio_pin_map_dma(struct vfio_iommu *iommu, struct vfio_dma *dma,
1582 size_t map_size)
1583 {
1584 dma_addr_t iova = dma->iova;
1585 unsigned long vaddr = dma->vaddr;
1586 struct vfio_batch batch;
1587 size_t size = map_size;
1588 long npage;
1589 unsigned long pfn, limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1590 int ret = 0;
1591
1592 vfio_batch_init(&batch);
1593
1594 while (size) {
1595 /* Pin a contiguous chunk of memory */
1596 npage = vfio_pin_pages_remote(dma, vaddr + dma->size,
1597 size >> PAGE_SHIFT, &pfn, limit,
1598 &batch);
1599 if (npage <= 0) {
1600 WARN_ON(!npage);
1601 ret = (int)npage;
1602 break;
1603 }
1604
1605 /* Map it! */
1606 ret = vfio_iommu_map(iommu, iova + dma->size, pfn, npage,
1607 dma->prot);
1608 if (ret) {
1609 vfio_unpin_pages_remote(dma, iova + dma->size, pfn,
1610 npage, true);
1611 vfio_batch_unpin(&batch, dma);
1612 break;
1613 }
1614
1615 size -= npage << PAGE_SHIFT;
1616 dma->size += npage << PAGE_SHIFT;
1617 }
1618
1619 vfio_batch_fini(&batch);
1620 dma->iommu_mapped = true;
1621
1622 if (ret)
1623 vfio_remove_dma(iommu, dma);
1624
1625 return ret;
1626 }
1627
1628 /*
1629 * Check dma map request is within a valid iova range
1630 */
vfio_iommu_iova_dma_valid(struct vfio_iommu * iommu,dma_addr_t start,dma_addr_t end)1631 static bool vfio_iommu_iova_dma_valid(struct vfio_iommu *iommu,
1632 dma_addr_t start, dma_addr_t end)
1633 {
1634 struct list_head *iova = &iommu->iova_list;
1635 struct vfio_iova *node;
1636
1637 list_for_each_entry(node, iova, list) {
1638 if (start >= node->start && end <= node->end)
1639 return true;
1640 }
1641
1642 /*
1643 * Check for list_empty() as well since a container with
1644 * a single mdev device will have an empty list.
1645 */
1646 return list_empty(iova);
1647 }
1648
vfio_change_dma_owner(struct vfio_dma * dma)1649 static int vfio_change_dma_owner(struct vfio_dma *dma)
1650 {
1651 struct task_struct *task = current->group_leader;
1652 struct mm_struct *mm = current->mm;
1653 long npage = dma->locked_vm;
1654 bool lock_cap;
1655 int ret;
1656
1657 if (mm == dma->mm)
1658 return 0;
1659
1660 lock_cap = capable(CAP_IPC_LOCK);
1661 ret = mm_lock_acct(task, mm, lock_cap, npage);
1662 if (ret)
1663 return ret;
1664
1665 if (mmget_not_zero(dma->mm)) {
1666 mm_lock_acct(dma->task, dma->mm, dma->lock_cap, -npage);
1667 mmput(dma->mm);
1668 }
1669
1670 if (dma->task != task) {
1671 put_task_struct(dma->task);
1672 dma->task = get_task_struct(task);
1673 }
1674 mmdrop(dma->mm);
1675 dma->mm = mm;
1676 mmgrab(dma->mm);
1677 dma->lock_cap = lock_cap;
1678 return 0;
1679 }
1680
vfio_dma_do_map(struct vfio_iommu * iommu,struct vfio_iommu_type1_dma_map * map)1681 static int vfio_dma_do_map(struct vfio_iommu *iommu,
1682 struct vfio_iommu_type1_dma_map *map)
1683 {
1684 bool set_vaddr = map->flags & VFIO_DMA_MAP_FLAG_VADDR;
1685 dma_addr_t iova = map->iova;
1686 dma_addr_t iova_end;
1687 unsigned long vaddr = map->vaddr;
1688 unsigned long vaddr_end;
1689 size_t size = map->size;
1690 int ret = 0, prot = 0;
1691 size_t pgsize;
1692 struct vfio_dma *dma;
1693
1694 /* Verify that none of our __u64 fields overflow */
1695 if (map->size != size || map->vaddr != vaddr || map->iova != iova)
1696 return -EOVERFLOW;
1697
1698 if (!size)
1699 return -EINVAL;
1700
1701 if (check_add_overflow(iova, size - 1, &iova_end) ||
1702 check_add_overflow(vaddr, size - 1, &vaddr_end))
1703 return -EOVERFLOW;
1704
1705 /* READ/WRITE from device perspective */
1706 if (map->flags & VFIO_DMA_MAP_FLAG_WRITE)
1707 prot |= IOMMU_WRITE;
1708 if (map->flags & VFIO_DMA_MAP_FLAG_READ)
1709 prot |= IOMMU_READ;
1710
1711 if ((prot && set_vaddr) || (!prot && !set_vaddr))
1712 return -EINVAL;
1713
1714 mutex_lock(&iommu->lock);
1715
1716 pgsize = (size_t)1 << __ffs(iommu->pgsize_bitmap);
1717
1718 WARN_ON((pgsize - 1) & PAGE_MASK);
1719
1720 if ((size | iova | vaddr) & (pgsize - 1)) {
1721 ret = -EINVAL;
1722 goto out_unlock;
1723 }
1724
1725 dma = vfio_find_dma(iommu, iova, size);
1726 if (set_vaddr) {
1727 if (!dma) {
1728 ret = -ENOENT;
1729 } else if (!dma->vaddr_invalid || dma->iova != iova ||
1730 dma->size != size) {
1731 ret = -EINVAL;
1732 } else {
1733 ret = vfio_change_dma_owner(dma);
1734 if (ret)
1735 goto out_unlock;
1736 dma->vaddr = vaddr;
1737 dma->vaddr_invalid = false;
1738 iommu->vaddr_invalid_count--;
1739 }
1740 goto out_unlock;
1741 } else if (dma) {
1742 ret = -EEXIST;
1743 goto out_unlock;
1744 }
1745
1746 if (!iommu->dma_avail) {
1747 ret = -ENOSPC;
1748 goto out_unlock;
1749 }
1750
1751 if (!vfio_iommu_iova_dma_valid(iommu, iova, iova_end)) {
1752 ret = -EINVAL;
1753 goto out_unlock;
1754 }
1755
1756 dma = kzalloc(sizeof(*dma), GFP_KERNEL);
1757 if (!dma) {
1758 ret = -ENOMEM;
1759 goto out_unlock;
1760 }
1761
1762 iommu->dma_avail--;
1763 dma->iova = iova;
1764 dma->vaddr = vaddr;
1765 dma->prot = prot;
1766
1767 /*
1768 * We need to be able to both add to a task's locked memory and test
1769 * against the locked memory limit and we need to be able to do both
1770 * outside of this call path as pinning can be asynchronous via the
1771 * external interfaces for mdev devices. RLIMIT_MEMLOCK requires a
1772 * task_struct. Save the group_leader so that all DMA tracking uses
1773 * the same task, to make debugging easier. VM locked pages requires
1774 * an mm_struct, so grab the mm in case the task dies.
1775 */
1776 get_task_struct(current->group_leader);
1777 dma->task = current->group_leader;
1778 dma->lock_cap = capable(CAP_IPC_LOCK);
1779 dma->mm = current->mm;
1780 mmgrab(dma->mm);
1781
1782 dma->pfn_list = RB_ROOT;
1783
1784 /* Insert zero-sized and grow as we map chunks of it */
1785 vfio_link_dma(iommu, dma);
1786
1787 /* Don't pin and map if container doesn't contain IOMMU capable domain*/
1788 if (list_empty(&iommu->domain_list))
1789 dma->size = size;
1790 else
1791 ret = vfio_pin_map_dma(iommu, dma, size);
1792
1793 if (!ret && iommu->dirty_page_tracking) {
1794 ret = vfio_dma_bitmap_alloc(dma, pgsize);
1795 if (ret)
1796 vfio_remove_dma(iommu, dma);
1797 }
1798
1799 out_unlock:
1800 mutex_unlock(&iommu->lock);
1801 return ret;
1802 }
1803
vfio_iommu_replay(struct vfio_iommu * iommu,struct vfio_domain * domain)1804 static int vfio_iommu_replay(struct vfio_iommu *iommu,
1805 struct vfio_domain *domain)
1806 {
1807 struct vfio_batch batch;
1808 struct vfio_domain *d = NULL;
1809 struct rb_node *n;
1810 unsigned long limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1811 int ret;
1812
1813 /* Arbitrarily pick the first domain in the list for lookups */
1814 if (!list_empty(&iommu->domain_list))
1815 d = list_first_entry(&iommu->domain_list,
1816 struct vfio_domain, next);
1817
1818 vfio_batch_init(&batch);
1819
1820 n = rb_first(&iommu->dma_list);
1821
1822 for (; n; n = rb_next(n)) {
1823 struct vfio_dma *dma;
1824 size_t pos = 0;
1825
1826 dma = rb_entry(n, struct vfio_dma, node);
1827
1828 while (pos < dma->size) {
1829 dma_addr_t iova = dma->iova + pos;
1830 phys_addr_t phys;
1831 size_t size;
1832
1833 if (dma->iommu_mapped) {
1834 phys_addr_t p;
1835 dma_addr_t i;
1836
1837 if (WARN_ON(!d)) { /* mapped w/o a domain?! */
1838 ret = -EINVAL;
1839 goto unwind;
1840 }
1841
1842 phys = iommu_iova_to_phys(d->domain, iova);
1843
1844 if (WARN_ON(!phys)) {
1845 pos += PAGE_SIZE;
1846 continue;
1847 }
1848
1849 size = PAGE_SIZE;
1850 p = phys + size;
1851 i = iova + size;
1852 while (pos + size < dma->size &&
1853 p == iommu_iova_to_phys(d->domain, i)) {
1854 size += PAGE_SIZE;
1855 p += PAGE_SIZE;
1856 i += PAGE_SIZE;
1857 }
1858 } else {
1859 unsigned long pfn;
1860 unsigned long vaddr = dma->vaddr + pos;
1861 size_t n = dma->size - pos;
1862 long npage;
1863
1864 npage = vfio_pin_pages_remote(dma, vaddr,
1865 n >> PAGE_SHIFT,
1866 &pfn, limit,
1867 &batch);
1868 if (npage <= 0) {
1869 WARN_ON(!npage);
1870 ret = (int)npage;
1871 goto unwind;
1872 }
1873
1874 phys = pfn << PAGE_SHIFT;
1875 size = npage << PAGE_SHIFT;
1876 }
1877
1878 ret = iommu_map(domain->domain, iova, phys, size,
1879 dma->prot | IOMMU_CACHE,
1880 GFP_KERNEL_ACCOUNT);
1881 if (ret) {
1882 if (!dma->iommu_mapped) {
1883 vfio_unpin_pages_remote(dma, iova,
1884 phys >> PAGE_SHIFT,
1885 size >> PAGE_SHIFT,
1886 true);
1887 vfio_batch_unpin(&batch, dma);
1888 }
1889 goto unwind;
1890 }
1891
1892 pos += size;
1893 }
1894 }
1895
1896 /* All dmas are now mapped, defer to second tree walk for unwind */
1897 for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
1898 struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
1899
1900 dma->iommu_mapped = true;
1901 }
1902
1903 vfio_batch_fini(&batch);
1904 return 0;
1905
1906 unwind:
1907 for (; n; n = rb_prev(n)) {
1908 struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
1909 size_t pos = 0;
1910
1911 if (dma->iommu_mapped) {
1912 iommu_unmap(domain->domain, dma->iova, dma->size);
1913 continue;
1914 }
1915
1916 while (pos < dma->size) {
1917 dma_addr_t iova = dma->iova + pos;
1918 phys_addr_t phys, p;
1919 size_t size;
1920 dma_addr_t i;
1921
1922 phys = iommu_iova_to_phys(domain->domain, iova);
1923 if (!phys) {
1924 pos += PAGE_SIZE;
1925 continue;
1926 }
1927
1928 size = PAGE_SIZE;
1929 p = phys + size;
1930 i = iova + size;
1931 while (pos + size < dma->size &&
1932 p == iommu_iova_to_phys(domain->domain, i)) {
1933 size += PAGE_SIZE;
1934 p += PAGE_SIZE;
1935 i += PAGE_SIZE;
1936 }
1937
1938 iommu_unmap(domain->domain, iova, size);
1939 vfio_unpin_pages_remote(dma, iova, phys >> PAGE_SHIFT,
1940 size >> PAGE_SHIFT, true);
1941 }
1942 }
1943
1944 vfio_batch_fini(&batch);
1945 return ret;
1946 }
1947
find_iommu_group(struct vfio_domain * domain,struct iommu_group * iommu_group)1948 static struct vfio_iommu_group *find_iommu_group(struct vfio_domain *domain,
1949 struct iommu_group *iommu_group)
1950 {
1951 struct vfio_iommu_group *g;
1952
1953 list_for_each_entry(g, &domain->group_list, next) {
1954 if (g->iommu_group == iommu_group)
1955 return g;
1956 }
1957
1958 return NULL;
1959 }
1960
1961 static struct vfio_iommu_group*
vfio_iommu_find_iommu_group(struct vfio_iommu * iommu,struct iommu_group * iommu_group)1962 vfio_iommu_find_iommu_group(struct vfio_iommu *iommu,
1963 struct iommu_group *iommu_group)
1964 {
1965 struct vfio_iommu_group *group;
1966 struct vfio_domain *domain;
1967
1968 list_for_each_entry(domain, &iommu->domain_list, next) {
1969 group = find_iommu_group(domain, iommu_group);
1970 if (group)
1971 return group;
1972 }
1973
1974 list_for_each_entry(group, &iommu->emulated_iommu_groups, next)
1975 if (group->iommu_group == iommu_group)
1976 return group;
1977 return NULL;
1978 }
1979
vfio_iommu_has_sw_msi(struct list_head * group_resv_regions,phys_addr_t * base)1980 static bool vfio_iommu_has_sw_msi(struct list_head *group_resv_regions,
1981 phys_addr_t *base)
1982 {
1983 struct iommu_resv_region *region;
1984 bool ret = false;
1985
1986 list_for_each_entry(region, group_resv_regions, list) {
1987 /*
1988 * The presence of any 'real' MSI regions should take
1989 * precedence over the software-managed one if the
1990 * IOMMU driver happens to advertise both types.
1991 */
1992 if (region->type == IOMMU_RESV_MSI) {
1993 ret = false;
1994 break;
1995 }
1996
1997 if (region->type == IOMMU_RESV_SW_MSI) {
1998 *base = region->start;
1999 ret = true;
2000 }
2001 }
2002
2003 return ret;
2004 }
2005
2006 /*
2007 * This is a helper function to insert an address range to iova list.
2008 * The list is initially created with a single entry corresponding to
2009 * the IOMMU domain geometry to which the device group is attached.
2010 * The list aperture gets modified when a new domain is added to the
2011 * container if the new aperture doesn't conflict with the current one
2012 * or with any existing dma mappings. The list is also modified to
2013 * exclude any reserved regions associated with the device group.
2014 */
vfio_iommu_iova_insert(struct list_head * head,dma_addr_t start,dma_addr_t end)2015 static int vfio_iommu_iova_insert(struct list_head *head,
2016 dma_addr_t start, dma_addr_t end)
2017 {
2018 struct vfio_iova *region;
2019
2020 region = kmalloc(sizeof(*region), GFP_KERNEL);
2021 if (!region)
2022 return -ENOMEM;
2023
2024 INIT_LIST_HEAD(®ion->list);
2025 region->start = start;
2026 region->end = end;
2027
2028 list_add_tail(®ion->list, head);
2029 return 0;
2030 }
2031
2032 /*
2033 * Check the new iommu aperture conflicts with existing aper or with any
2034 * existing dma mappings.
2035 */
vfio_iommu_aper_conflict(struct vfio_iommu * iommu,dma_addr_t start,dma_addr_t end)2036 static bool vfio_iommu_aper_conflict(struct vfio_iommu *iommu,
2037 dma_addr_t start, dma_addr_t end)
2038 {
2039 struct vfio_iova *first, *last;
2040 struct list_head *iova = &iommu->iova_list;
2041
2042 if (list_empty(iova))
2043 return false;
2044
2045 /* Disjoint sets, return conflict */
2046 first = list_first_entry(iova, struct vfio_iova, list);
2047 last = list_last_entry(iova, struct vfio_iova, list);
2048 if (start > last->end || end < first->start)
2049 return true;
2050
2051 /* Check for any existing dma mappings below the new start */
2052 if (start > first->start) {
2053 if (vfio_find_dma(iommu, first->start, start - first->start))
2054 return true;
2055 }
2056
2057 /* Check for any existing dma mappings beyond the new end */
2058 if (end < last->end) {
2059 if (vfio_find_dma(iommu, end + 1, last->end - end))
2060 return true;
2061 }
2062
2063 return false;
2064 }
2065
2066 /*
2067 * Resize iommu iova aperture window. This is called only if the new
2068 * aperture has no conflict with existing aperture and dma mappings.
2069 */
vfio_iommu_aper_resize(struct list_head * iova,dma_addr_t start,dma_addr_t end)2070 static int vfio_iommu_aper_resize(struct list_head *iova,
2071 dma_addr_t start, dma_addr_t end)
2072 {
2073 struct vfio_iova *node, *next;
2074
2075 if (list_empty(iova))
2076 return vfio_iommu_iova_insert(iova, start, end);
2077
2078 /* Adjust iova list start */
2079 list_for_each_entry_safe(node, next, iova, list) {
2080 if (start < node->start)
2081 break;
2082 if (start >= node->start && start < node->end) {
2083 node->start = start;
2084 break;
2085 }
2086 /* Delete nodes before new start */
2087 list_del(&node->list);
2088 kfree(node);
2089 }
2090
2091 /* Adjust iova list end */
2092 list_for_each_entry_safe(node, next, iova, list) {
2093 if (end > node->end)
2094 continue;
2095 if (end > node->start && end <= node->end) {
2096 node->end = end;
2097 continue;
2098 }
2099 /* Delete nodes after new end */
2100 list_del(&node->list);
2101 kfree(node);
2102 }
2103
2104 return 0;
2105 }
2106
2107 /*
2108 * Check reserved region conflicts with existing dma mappings
2109 */
vfio_iommu_resv_conflict(struct vfio_iommu * iommu,struct list_head * resv_regions)2110 static bool vfio_iommu_resv_conflict(struct vfio_iommu *iommu,
2111 struct list_head *resv_regions)
2112 {
2113 struct iommu_resv_region *region;
2114
2115 /* Check for conflict with existing dma mappings */
2116 list_for_each_entry(region, resv_regions, list) {
2117 if (region->type == IOMMU_RESV_DIRECT_RELAXABLE)
2118 continue;
2119
2120 if (vfio_find_dma(iommu, region->start, region->length))
2121 return true;
2122 }
2123
2124 return false;
2125 }
2126
2127 /*
2128 * Check iova region overlap with reserved regions and
2129 * exclude them from the iommu iova range
2130 */
vfio_iommu_resv_exclude(struct list_head * iova,struct list_head * resv_regions)2131 static int vfio_iommu_resv_exclude(struct list_head *iova,
2132 struct list_head *resv_regions)
2133 {
2134 struct iommu_resv_region *resv;
2135 struct vfio_iova *n, *next;
2136
2137 list_for_each_entry(resv, resv_regions, list) {
2138 phys_addr_t start, end;
2139
2140 if (resv->type == IOMMU_RESV_DIRECT_RELAXABLE)
2141 continue;
2142
2143 start = resv->start;
2144 end = resv->start + resv->length - 1;
2145
2146 list_for_each_entry_safe(n, next, iova, list) {
2147 int ret = 0;
2148
2149 /* No overlap */
2150 if (start > n->end || end < n->start)
2151 continue;
2152 /*
2153 * Insert a new node if current node overlaps with the
2154 * reserve region to exclude that from valid iova range.
2155 * Note that, new node is inserted before the current
2156 * node and finally the current node is deleted keeping
2157 * the list updated and sorted.
2158 */
2159 if (start > n->start)
2160 ret = vfio_iommu_iova_insert(&n->list, n->start,
2161 start - 1);
2162 if (!ret && end < n->end)
2163 ret = vfio_iommu_iova_insert(&n->list, end + 1,
2164 n->end);
2165 if (ret)
2166 return ret;
2167
2168 list_del(&n->list);
2169 kfree(n);
2170 }
2171 }
2172
2173 if (list_empty(iova))
2174 return -EINVAL;
2175
2176 return 0;
2177 }
2178
vfio_iommu_resv_free(struct list_head * resv_regions)2179 static void vfio_iommu_resv_free(struct list_head *resv_regions)
2180 {
2181 struct iommu_resv_region *n, *next;
2182
2183 list_for_each_entry_safe(n, next, resv_regions, list) {
2184 list_del(&n->list);
2185 kfree(n);
2186 }
2187 }
2188
vfio_iommu_iova_free(struct list_head * iova)2189 static void vfio_iommu_iova_free(struct list_head *iova)
2190 {
2191 struct vfio_iova *n, *next;
2192
2193 list_for_each_entry_safe(n, next, iova, list) {
2194 list_del(&n->list);
2195 kfree(n);
2196 }
2197 }
2198
vfio_iommu_iova_get_copy(struct vfio_iommu * iommu,struct list_head * iova_copy)2199 static int vfio_iommu_iova_get_copy(struct vfio_iommu *iommu,
2200 struct list_head *iova_copy)
2201 {
2202 struct list_head *iova = &iommu->iova_list;
2203 struct vfio_iova *n;
2204 int ret;
2205
2206 list_for_each_entry(n, iova, list) {
2207 ret = vfio_iommu_iova_insert(iova_copy, n->start, n->end);
2208 if (ret)
2209 goto out_free;
2210 }
2211
2212 return 0;
2213
2214 out_free:
2215 vfio_iommu_iova_free(iova_copy);
2216 return ret;
2217 }
2218
vfio_iommu_iova_insert_copy(struct vfio_iommu * iommu,struct list_head * iova_copy)2219 static void vfio_iommu_iova_insert_copy(struct vfio_iommu *iommu,
2220 struct list_head *iova_copy)
2221 {
2222 struct list_head *iova = &iommu->iova_list;
2223
2224 vfio_iommu_iova_free(iova);
2225
2226 list_splice_tail(iova_copy, iova);
2227 }
2228
vfio_iommu_domain_alloc(struct device * dev,void * data)2229 static int vfio_iommu_domain_alloc(struct device *dev, void *data)
2230 {
2231 struct iommu_domain **domain = data;
2232
2233 *domain = iommu_paging_domain_alloc(dev);
2234 return 1; /* Don't iterate */
2235 }
2236
vfio_iommu_type1_attach_group(void * iommu_data,struct iommu_group * iommu_group,enum vfio_group_type type)2237 static int vfio_iommu_type1_attach_group(void *iommu_data,
2238 struct iommu_group *iommu_group, enum vfio_group_type type)
2239 {
2240 struct vfio_iommu *iommu = iommu_data;
2241 struct vfio_iommu_group *group;
2242 struct vfio_domain *domain, *d;
2243 bool resv_msi;
2244 phys_addr_t resv_msi_base = 0;
2245 struct iommu_domain_geometry *geo;
2246 LIST_HEAD(iova_copy);
2247 LIST_HEAD(group_resv_regions);
2248 int ret = -EBUSY;
2249
2250 mutex_lock(&iommu->lock);
2251
2252 /* Attach could require pinning, so disallow while vaddr is invalid. */
2253 if (iommu->vaddr_invalid_count)
2254 goto out_unlock;
2255
2256 /* Check for duplicates */
2257 ret = -EINVAL;
2258 if (vfio_iommu_find_iommu_group(iommu, iommu_group))
2259 goto out_unlock;
2260
2261 ret = -ENOMEM;
2262 group = kzalloc(sizeof(*group), GFP_KERNEL);
2263 if (!group)
2264 goto out_unlock;
2265 group->iommu_group = iommu_group;
2266
2267 if (type == VFIO_EMULATED_IOMMU) {
2268 list_add(&group->next, &iommu->emulated_iommu_groups);
2269 /*
2270 * An emulated IOMMU group cannot dirty memory directly, it can
2271 * only use interfaces that provide dirty tracking.
2272 * The iommu scope can only be promoted with the addition of a
2273 * dirty tracking group.
2274 */
2275 group->pinned_page_dirty_scope = true;
2276 ret = 0;
2277 goto out_unlock;
2278 }
2279
2280 ret = -ENOMEM;
2281 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2282 if (!domain)
2283 goto out_free_group;
2284
2285 /*
2286 * Going via the iommu_group iterator avoids races, and trivially gives
2287 * us a representative device for the IOMMU API call. We don't actually
2288 * want to iterate beyond the first device (if any).
2289 */
2290 iommu_group_for_each_dev(iommu_group, &domain->domain,
2291 vfio_iommu_domain_alloc);
2292 if (IS_ERR(domain->domain)) {
2293 ret = PTR_ERR(domain->domain);
2294 goto out_free_domain;
2295 }
2296
2297 ret = iommu_attach_group(domain->domain, group->iommu_group);
2298 if (ret)
2299 goto out_domain;
2300
2301 /* Get aperture info */
2302 geo = &domain->domain->geometry;
2303 if (vfio_iommu_aper_conflict(iommu, geo->aperture_start,
2304 geo->aperture_end)) {
2305 ret = -EINVAL;
2306 goto out_detach;
2307 }
2308
2309 ret = iommu_get_group_resv_regions(iommu_group, &group_resv_regions);
2310 if (ret)
2311 goto out_detach;
2312
2313 if (vfio_iommu_resv_conflict(iommu, &group_resv_regions)) {
2314 ret = -EINVAL;
2315 goto out_detach;
2316 }
2317
2318 /*
2319 * We don't want to work on the original iova list as the list
2320 * gets modified and in case of failure we have to retain the
2321 * original list. Get a copy here.
2322 */
2323 ret = vfio_iommu_iova_get_copy(iommu, &iova_copy);
2324 if (ret)
2325 goto out_detach;
2326
2327 ret = vfio_iommu_aper_resize(&iova_copy, geo->aperture_start,
2328 geo->aperture_end);
2329 if (ret)
2330 goto out_detach;
2331
2332 ret = vfio_iommu_resv_exclude(&iova_copy, &group_resv_regions);
2333 if (ret)
2334 goto out_detach;
2335
2336 resv_msi = vfio_iommu_has_sw_msi(&group_resv_regions, &resv_msi_base);
2337
2338 INIT_LIST_HEAD(&domain->group_list);
2339 list_add(&group->next, &domain->group_list);
2340
2341 if (!allow_unsafe_interrupts &&
2342 !iommu_group_has_isolated_msi(iommu_group)) {
2343 pr_warn("%s: No interrupt remapping support. Use the module param \"allow_unsafe_interrupts\" to enable VFIO IOMMU support on this platform\n",
2344 __func__);
2345 ret = -EPERM;
2346 goto out_detach;
2347 }
2348
2349 /*
2350 * If the IOMMU can block non-coherent operations (ie PCIe TLPs with
2351 * no-snoop set) then VFIO always turns this feature on because on Intel
2352 * platforms it optimizes KVM to disable wbinvd emulation.
2353 */
2354 if (domain->domain->ops->enforce_cache_coherency)
2355 domain->enforce_cache_coherency =
2356 domain->domain->ops->enforce_cache_coherency(
2357 domain->domain);
2358
2359 /*
2360 * Try to match an existing compatible domain. We don't want to
2361 * preclude an IOMMU driver supporting multiple bus_types and being
2362 * able to include different bus_types in the same IOMMU domain, so
2363 * we test whether the domains use the same iommu_ops rather than
2364 * testing if they're on the same bus_type.
2365 */
2366 list_for_each_entry(d, &iommu->domain_list, next) {
2367 if (d->domain->ops == domain->domain->ops &&
2368 d->enforce_cache_coherency ==
2369 domain->enforce_cache_coherency) {
2370 iommu_detach_group(domain->domain, group->iommu_group);
2371 if (!iommu_attach_group(d->domain,
2372 group->iommu_group)) {
2373 list_add(&group->next, &d->group_list);
2374 iommu_domain_free(domain->domain);
2375 kfree(domain);
2376 goto done;
2377 }
2378
2379 ret = iommu_attach_group(domain->domain,
2380 group->iommu_group);
2381 if (ret)
2382 goto out_domain;
2383 }
2384 }
2385
2386 /* replay mappings on new domains */
2387 ret = vfio_iommu_replay(iommu, domain);
2388 if (ret)
2389 goto out_detach;
2390
2391 if (resv_msi) {
2392 ret = iommu_get_msi_cookie(domain->domain, resv_msi_base);
2393 if (ret && ret != -ENODEV)
2394 goto out_detach;
2395 }
2396
2397 list_add(&domain->next, &iommu->domain_list);
2398 vfio_update_pgsize_bitmap(iommu);
2399 done:
2400 /* Delete the old one and insert new iova list */
2401 vfio_iommu_iova_insert_copy(iommu, &iova_copy);
2402
2403 /*
2404 * An iommu backed group can dirty memory directly and therefore
2405 * demotes the iommu scope until it declares itself dirty tracking
2406 * capable via the page pinning interface.
2407 */
2408 iommu->num_non_pinned_groups++;
2409 mutex_unlock(&iommu->lock);
2410 vfio_iommu_resv_free(&group_resv_regions);
2411
2412 return 0;
2413
2414 out_detach:
2415 iommu_detach_group(domain->domain, group->iommu_group);
2416 out_domain:
2417 iommu_domain_free(domain->domain);
2418 vfio_iommu_iova_free(&iova_copy);
2419 vfio_iommu_resv_free(&group_resv_regions);
2420 out_free_domain:
2421 kfree(domain);
2422 out_free_group:
2423 kfree(group);
2424 out_unlock:
2425 mutex_unlock(&iommu->lock);
2426 return ret;
2427 }
2428
vfio_iommu_unmap_unpin_all(struct vfio_iommu * iommu)2429 static void vfio_iommu_unmap_unpin_all(struct vfio_iommu *iommu)
2430 {
2431 struct rb_node *node;
2432
2433 while ((node = rb_first(&iommu->dma_list)))
2434 vfio_remove_dma(iommu, rb_entry(node, struct vfio_dma, node));
2435 }
2436
vfio_iommu_unmap_unpin_reaccount(struct vfio_iommu * iommu)2437 static void vfio_iommu_unmap_unpin_reaccount(struct vfio_iommu *iommu)
2438 {
2439 struct rb_node *n, *p;
2440
2441 n = rb_first(&iommu->dma_list);
2442 for (; n; n = rb_next(n)) {
2443 struct vfio_dma *dma;
2444 long locked = 0, unlocked = 0;
2445
2446 dma = rb_entry(n, struct vfio_dma, node);
2447 unlocked += vfio_unmap_unpin(iommu, dma, false);
2448 p = rb_first(&dma->pfn_list);
2449 for (; p; p = rb_next(p)) {
2450 struct vfio_pfn *vpfn = rb_entry(p, struct vfio_pfn,
2451 node);
2452
2453 if (!is_invalid_reserved_pfn(vpfn->pfn))
2454 locked++;
2455 }
2456 vfio_lock_acct(dma, locked - unlocked, true);
2457 }
2458 }
2459
2460 /*
2461 * Called when a domain is removed in detach. It is possible that
2462 * the removed domain decided the iova aperture window. Modify the
2463 * iova aperture with the smallest window among existing domains.
2464 */
vfio_iommu_aper_expand(struct vfio_iommu * iommu,struct list_head * iova_copy)2465 static void vfio_iommu_aper_expand(struct vfio_iommu *iommu,
2466 struct list_head *iova_copy)
2467 {
2468 struct vfio_domain *domain;
2469 struct vfio_iova *node;
2470 dma_addr_t start = 0;
2471 dma_addr_t end = (dma_addr_t)~0;
2472
2473 if (list_empty(iova_copy))
2474 return;
2475
2476 list_for_each_entry(domain, &iommu->domain_list, next) {
2477 struct iommu_domain_geometry *geo = &domain->domain->geometry;
2478
2479 if (geo->aperture_start > start)
2480 start = geo->aperture_start;
2481 if (geo->aperture_end < end)
2482 end = geo->aperture_end;
2483 }
2484
2485 /* Modify aperture limits. The new aper is either same or bigger */
2486 node = list_first_entry(iova_copy, struct vfio_iova, list);
2487 node->start = start;
2488 node = list_last_entry(iova_copy, struct vfio_iova, list);
2489 node->end = end;
2490 }
2491
2492 /*
2493 * Called when a group is detached. The reserved regions for that
2494 * group can be part of valid iova now. But since reserved regions
2495 * may be duplicated among groups, populate the iova valid regions
2496 * list again.
2497 */
vfio_iommu_resv_refresh(struct vfio_iommu * iommu,struct list_head * iova_copy)2498 static int vfio_iommu_resv_refresh(struct vfio_iommu *iommu,
2499 struct list_head *iova_copy)
2500 {
2501 struct vfio_domain *d;
2502 struct vfio_iommu_group *g;
2503 struct vfio_iova *node;
2504 dma_addr_t start, end;
2505 LIST_HEAD(resv_regions);
2506 int ret;
2507
2508 if (list_empty(iova_copy))
2509 return -EINVAL;
2510
2511 list_for_each_entry(d, &iommu->domain_list, next) {
2512 list_for_each_entry(g, &d->group_list, next) {
2513 ret = iommu_get_group_resv_regions(g->iommu_group,
2514 &resv_regions);
2515 if (ret)
2516 goto done;
2517 }
2518 }
2519
2520 node = list_first_entry(iova_copy, struct vfio_iova, list);
2521 start = node->start;
2522 node = list_last_entry(iova_copy, struct vfio_iova, list);
2523 end = node->end;
2524
2525 /* purge the iova list and create new one */
2526 vfio_iommu_iova_free(iova_copy);
2527
2528 ret = vfio_iommu_aper_resize(iova_copy, start, end);
2529 if (ret)
2530 goto done;
2531
2532 /* Exclude current reserved regions from iova ranges */
2533 ret = vfio_iommu_resv_exclude(iova_copy, &resv_regions);
2534 done:
2535 vfio_iommu_resv_free(&resv_regions);
2536 return ret;
2537 }
2538
vfio_iommu_type1_detach_group(void * iommu_data,struct iommu_group * iommu_group)2539 static void vfio_iommu_type1_detach_group(void *iommu_data,
2540 struct iommu_group *iommu_group)
2541 {
2542 struct vfio_iommu *iommu = iommu_data;
2543 struct vfio_domain *domain;
2544 struct vfio_iommu_group *group;
2545 bool update_dirty_scope = false;
2546 LIST_HEAD(iova_copy);
2547
2548 mutex_lock(&iommu->lock);
2549 list_for_each_entry(group, &iommu->emulated_iommu_groups, next) {
2550 if (group->iommu_group != iommu_group)
2551 continue;
2552 update_dirty_scope = !group->pinned_page_dirty_scope;
2553 list_del(&group->next);
2554 kfree(group);
2555
2556 if (list_empty(&iommu->emulated_iommu_groups) &&
2557 list_empty(&iommu->domain_list)) {
2558 WARN_ON(!list_empty(&iommu->device_list));
2559 vfio_iommu_unmap_unpin_all(iommu);
2560 }
2561 goto detach_group_done;
2562 }
2563
2564 /*
2565 * Get a copy of iova list. This will be used to update
2566 * and to replace the current one later. Please note that
2567 * we will leave the original list as it is if update fails.
2568 */
2569 vfio_iommu_iova_get_copy(iommu, &iova_copy);
2570
2571 list_for_each_entry(domain, &iommu->domain_list, next) {
2572 group = find_iommu_group(domain, iommu_group);
2573 if (!group)
2574 continue;
2575
2576 iommu_detach_group(domain->domain, group->iommu_group);
2577 update_dirty_scope = !group->pinned_page_dirty_scope;
2578 list_del(&group->next);
2579 kfree(group);
2580 /*
2581 * Group ownership provides privilege, if the group list is
2582 * empty, the domain goes away. If it's the last domain with
2583 * iommu and external domain doesn't exist, then all the
2584 * mappings go away too. If it's the last domain with iommu and
2585 * external domain exist, update accounting
2586 */
2587 if (list_empty(&domain->group_list)) {
2588 if (list_is_singular(&iommu->domain_list)) {
2589 if (list_empty(&iommu->emulated_iommu_groups)) {
2590 WARN_ON(!list_empty(
2591 &iommu->device_list));
2592 vfio_iommu_unmap_unpin_all(iommu);
2593 } else {
2594 vfio_iommu_unmap_unpin_reaccount(iommu);
2595 }
2596 }
2597 iommu_domain_free(domain->domain);
2598 list_del(&domain->next);
2599 kfree(domain);
2600 vfio_iommu_aper_expand(iommu, &iova_copy);
2601 vfio_update_pgsize_bitmap(iommu);
2602 }
2603 break;
2604 }
2605
2606 if (!vfio_iommu_resv_refresh(iommu, &iova_copy))
2607 vfio_iommu_iova_insert_copy(iommu, &iova_copy);
2608 else
2609 vfio_iommu_iova_free(&iova_copy);
2610
2611 detach_group_done:
2612 /*
2613 * Removal of a group without dirty tracking may allow the iommu scope
2614 * to be promoted.
2615 */
2616 if (update_dirty_scope) {
2617 iommu->num_non_pinned_groups--;
2618 if (iommu->dirty_page_tracking)
2619 vfio_iommu_populate_bitmap_full(iommu);
2620 }
2621 mutex_unlock(&iommu->lock);
2622 }
2623
vfio_iommu_type1_open(unsigned long arg)2624 static void *vfio_iommu_type1_open(unsigned long arg)
2625 {
2626 struct vfio_iommu *iommu;
2627
2628 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
2629 if (!iommu)
2630 return ERR_PTR(-ENOMEM);
2631
2632 switch (arg) {
2633 case VFIO_TYPE1_IOMMU:
2634 break;
2635 case __VFIO_RESERVED_TYPE1_NESTING_IOMMU:
2636 case VFIO_TYPE1v2_IOMMU:
2637 iommu->v2 = true;
2638 break;
2639 default:
2640 kfree(iommu);
2641 return ERR_PTR(-EINVAL);
2642 }
2643
2644 INIT_LIST_HEAD(&iommu->domain_list);
2645 INIT_LIST_HEAD(&iommu->iova_list);
2646 iommu->dma_list = RB_ROOT;
2647 iommu->dma_avail = dma_entry_limit;
2648 mutex_init(&iommu->lock);
2649 mutex_init(&iommu->device_list_lock);
2650 INIT_LIST_HEAD(&iommu->device_list);
2651 iommu->pgsize_bitmap = PAGE_MASK;
2652 INIT_LIST_HEAD(&iommu->emulated_iommu_groups);
2653
2654 return iommu;
2655 }
2656
vfio_release_domain(struct vfio_domain * domain)2657 static void vfio_release_domain(struct vfio_domain *domain)
2658 {
2659 struct vfio_iommu_group *group, *group_tmp;
2660
2661 list_for_each_entry_safe(group, group_tmp,
2662 &domain->group_list, next) {
2663 iommu_detach_group(domain->domain, group->iommu_group);
2664 list_del(&group->next);
2665 kfree(group);
2666 }
2667
2668 iommu_domain_free(domain->domain);
2669 }
2670
vfio_iommu_type1_release(void * iommu_data)2671 static void vfio_iommu_type1_release(void *iommu_data)
2672 {
2673 struct vfio_iommu *iommu = iommu_data;
2674 struct vfio_domain *domain, *domain_tmp;
2675 struct vfio_iommu_group *group, *next_group;
2676
2677 list_for_each_entry_safe(group, next_group,
2678 &iommu->emulated_iommu_groups, next) {
2679 list_del(&group->next);
2680 kfree(group);
2681 }
2682
2683 vfio_iommu_unmap_unpin_all(iommu);
2684
2685 list_for_each_entry_safe(domain, domain_tmp,
2686 &iommu->domain_list, next) {
2687 vfio_release_domain(domain);
2688 list_del(&domain->next);
2689 kfree(domain);
2690 }
2691
2692 vfio_iommu_iova_free(&iommu->iova_list);
2693
2694 kfree(iommu);
2695 }
2696
vfio_domains_have_enforce_cache_coherency(struct vfio_iommu * iommu)2697 static int vfio_domains_have_enforce_cache_coherency(struct vfio_iommu *iommu)
2698 {
2699 struct vfio_domain *domain;
2700 int ret = 1;
2701
2702 mutex_lock(&iommu->lock);
2703 list_for_each_entry(domain, &iommu->domain_list, next) {
2704 if (!(domain->enforce_cache_coherency)) {
2705 ret = 0;
2706 break;
2707 }
2708 }
2709 mutex_unlock(&iommu->lock);
2710
2711 return ret;
2712 }
2713
vfio_iommu_has_emulated(struct vfio_iommu * iommu)2714 static bool vfio_iommu_has_emulated(struct vfio_iommu *iommu)
2715 {
2716 bool ret;
2717
2718 mutex_lock(&iommu->lock);
2719 ret = !list_empty(&iommu->emulated_iommu_groups);
2720 mutex_unlock(&iommu->lock);
2721 return ret;
2722 }
2723
vfio_iommu_type1_check_extension(struct vfio_iommu * iommu,unsigned long arg)2724 static int vfio_iommu_type1_check_extension(struct vfio_iommu *iommu,
2725 unsigned long arg)
2726 {
2727 switch (arg) {
2728 case VFIO_TYPE1_IOMMU:
2729 case VFIO_TYPE1v2_IOMMU:
2730 case VFIO_UNMAP_ALL:
2731 return 1;
2732 case VFIO_UPDATE_VADDR:
2733 /*
2734 * Disable this feature if mdevs are present. They cannot
2735 * safely pin/unpin/rw while vaddrs are being updated.
2736 */
2737 return iommu && !vfio_iommu_has_emulated(iommu);
2738 case VFIO_DMA_CC_IOMMU:
2739 if (!iommu)
2740 return 0;
2741 return vfio_domains_have_enforce_cache_coherency(iommu);
2742 default:
2743 return 0;
2744 }
2745 }
2746
vfio_iommu_iova_add_cap(struct vfio_info_cap * caps,struct vfio_iommu_type1_info_cap_iova_range * cap_iovas,size_t size)2747 static int vfio_iommu_iova_add_cap(struct vfio_info_cap *caps,
2748 struct vfio_iommu_type1_info_cap_iova_range *cap_iovas,
2749 size_t size)
2750 {
2751 struct vfio_info_cap_header *header;
2752 struct vfio_iommu_type1_info_cap_iova_range *iova_cap;
2753
2754 header = vfio_info_cap_add(caps, size,
2755 VFIO_IOMMU_TYPE1_INFO_CAP_IOVA_RANGE, 1);
2756 if (IS_ERR(header))
2757 return PTR_ERR(header);
2758
2759 iova_cap = container_of(header,
2760 struct vfio_iommu_type1_info_cap_iova_range,
2761 header);
2762 iova_cap->nr_iovas = cap_iovas->nr_iovas;
2763 memcpy(iova_cap->iova_ranges, cap_iovas->iova_ranges,
2764 cap_iovas->nr_iovas * sizeof(*cap_iovas->iova_ranges));
2765 return 0;
2766 }
2767
vfio_iommu_iova_build_caps(struct vfio_iommu * iommu,struct vfio_info_cap * caps)2768 static int vfio_iommu_iova_build_caps(struct vfio_iommu *iommu,
2769 struct vfio_info_cap *caps)
2770 {
2771 struct vfio_iommu_type1_info_cap_iova_range *cap_iovas;
2772 struct vfio_iova *iova;
2773 size_t size;
2774 int iovas = 0, i = 0, ret;
2775
2776 list_for_each_entry(iova, &iommu->iova_list, list)
2777 iovas++;
2778
2779 if (!iovas) {
2780 /*
2781 * Return 0 as a container with a single mdev device
2782 * will have an empty list
2783 */
2784 return 0;
2785 }
2786
2787 size = struct_size(cap_iovas, iova_ranges, iovas);
2788
2789 cap_iovas = kzalloc(size, GFP_KERNEL);
2790 if (!cap_iovas)
2791 return -ENOMEM;
2792
2793 cap_iovas->nr_iovas = iovas;
2794
2795 list_for_each_entry(iova, &iommu->iova_list, list) {
2796 cap_iovas->iova_ranges[i].start = iova->start;
2797 cap_iovas->iova_ranges[i].end = iova->end;
2798 i++;
2799 }
2800
2801 ret = vfio_iommu_iova_add_cap(caps, cap_iovas, size);
2802
2803 kfree(cap_iovas);
2804 return ret;
2805 }
2806
vfio_iommu_migration_build_caps(struct vfio_iommu * iommu,struct vfio_info_cap * caps)2807 static int vfio_iommu_migration_build_caps(struct vfio_iommu *iommu,
2808 struct vfio_info_cap *caps)
2809 {
2810 struct vfio_iommu_type1_info_cap_migration cap_mig = {};
2811
2812 cap_mig.header.id = VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION;
2813 cap_mig.header.version = 1;
2814
2815 cap_mig.flags = 0;
2816 /* support minimum pgsize */
2817 cap_mig.pgsize_bitmap = (size_t)1 << __ffs(iommu->pgsize_bitmap);
2818 cap_mig.max_dirty_bitmap_size = DIRTY_BITMAP_SIZE_MAX;
2819
2820 return vfio_info_add_capability(caps, &cap_mig.header, sizeof(cap_mig));
2821 }
2822
vfio_iommu_dma_avail_build_caps(struct vfio_iommu * iommu,struct vfio_info_cap * caps)2823 static int vfio_iommu_dma_avail_build_caps(struct vfio_iommu *iommu,
2824 struct vfio_info_cap *caps)
2825 {
2826 struct vfio_iommu_type1_info_dma_avail cap_dma_avail;
2827
2828 cap_dma_avail.header.id = VFIO_IOMMU_TYPE1_INFO_DMA_AVAIL;
2829 cap_dma_avail.header.version = 1;
2830
2831 cap_dma_avail.avail = iommu->dma_avail;
2832
2833 return vfio_info_add_capability(caps, &cap_dma_avail.header,
2834 sizeof(cap_dma_avail));
2835 }
2836
vfio_iommu_type1_get_info(struct vfio_iommu * iommu,unsigned long arg)2837 static int vfio_iommu_type1_get_info(struct vfio_iommu *iommu,
2838 unsigned long arg)
2839 {
2840 struct vfio_iommu_type1_info info = {};
2841 unsigned long minsz;
2842 struct vfio_info_cap caps = { .buf = NULL, .size = 0 };
2843 int ret;
2844
2845 minsz = offsetofend(struct vfio_iommu_type1_info, iova_pgsizes);
2846
2847 if (copy_from_user(&info, (void __user *)arg, minsz))
2848 return -EFAULT;
2849
2850 if (info.argsz < minsz)
2851 return -EINVAL;
2852
2853 minsz = min_t(size_t, info.argsz, sizeof(info));
2854
2855 mutex_lock(&iommu->lock);
2856 info.flags = VFIO_IOMMU_INFO_PGSIZES;
2857
2858 info.iova_pgsizes = iommu->pgsize_bitmap;
2859
2860 ret = vfio_iommu_migration_build_caps(iommu, &caps);
2861
2862 if (!ret)
2863 ret = vfio_iommu_dma_avail_build_caps(iommu, &caps);
2864
2865 if (!ret)
2866 ret = vfio_iommu_iova_build_caps(iommu, &caps);
2867
2868 mutex_unlock(&iommu->lock);
2869
2870 if (ret)
2871 return ret;
2872
2873 if (caps.size) {
2874 info.flags |= VFIO_IOMMU_INFO_CAPS;
2875
2876 if (info.argsz < sizeof(info) + caps.size) {
2877 info.argsz = sizeof(info) + caps.size;
2878 } else {
2879 vfio_info_cap_shift(&caps, sizeof(info));
2880 if (copy_to_user((void __user *)arg +
2881 sizeof(info), caps.buf,
2882 caps.size)) {
2883 kfree(caps.buf);
2884 return -EFAULT;
2885 }
2886 info.cap_offset = sizeof(info);
2887 }
2888
2889 kfree(caps.buf);
2890 }
2891
2892 return copy_to_user((void __user *)arg, &info, minsz) ?
2893 -EFAULT : 0;
2894 }
2895
vfio_iommu_type1_map_dma(struct vfio_iommu * iommu,unsigned long arg)2896 static int vfio_iommu_type1_map_dma(struct vfio_iommu *iommu,
2897 unsigned long arg)
2898 {
2899 struct vfio_iommu_type1_dma_map map;
2900 unsigned long minsz;
2901 uint32_t mask = VFIO_DMA_MAP_FLAG_READ | VFIO_DMA_MAP_FLAG_WRITE |
2902 VFIO_DMA_MAP_FLAG_VADDR;
2903
2904 minsz = offsetofend(struct vfio_iommu_type1_dma_map, size);
2905
2906 if (copy_from_user(&map, (void __user *)arg, minsz))
2907 return -EFAULT;
2908
2909 if (map.argsz < minsz || map.flags & ~mask)
2910 return -EINVAL;
2911
2912 return vfio_dma_do_map(iommu, &map);
2913 }
2914
vfio_iommu_type1_unmap_dma(struct vfio_iommu * iommu,unsigned long arg)2915 static int vfio_iommu_type1_unmap_dma(struct vfio_iommu *iommu,
2916 unsigned long arg)
2917 {
2918 struct vfio_iommu_type1_dma_unmap unmap;
2919 struct vfio_bitmap bitmap = { 0 };
2920 uint32_t mask = VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP |
2921 VFIO_DMA_UNMAP_FLAG_VADDR |
2922 VFIO_DMA_UNMAP_FLAG_ALL;
2923 unsigned long minsz;
2924 int ret;
2925
2926 minsz = offsetofend(struct vfio_iommu_type1_dma_unmap, size);
2927
2928 if (copy_from_user(&unmap, (void __user *)arg, minsz))
2929 return -EFAULT;
2930
2931 if (unmap.argsz < minsz || unmap.flags & ~mask)
2932 return -EINVAL;
2933
2934 if ((unmap.flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) &&
2935 (unmap.flags & (VFIO_DMA_UNMAP_FLAG_ALL |
2936 VFIO_DMA_UNMAP_FLAG_VADDR)))
2937 return -EINVAL;
2938
2939 if (unmap.flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) {
2940 unsigned long pgshift;
2941
2942 if (unmap.argsz < (minsz + sizeof(bitmap)))
2943 return -EINVAL;
2944
2945 if (copy_from_user(&bitmap,
2946 (void __user *)(arg + minsz),
2947 sizeof(bitmap)))
2948 return -EFAULT;
2949
2950 if (!access_ok((void __user *)bitmap.data, bitmap.size))
2951 return -EINVAL;
2952
2953 pgshift = __ffs(bitmap.pgsize);
2954 ret = verify_bitmap_size(unmap.size >> pgshift,
2955 bitmap.size);
2956 if (ret)
2957 return ret;
2958 }
2959
2960 ret = vfio_dma_do_unmap(iommu, &unmap, &bitmap);
2961 if (ret)
2962 return ret;
2963
2964 return copy_to_user((void __user *)arg, &unmap, minsz) ?
2965 -EFAULT : 0;
2966 }
2967
vfio_iommu_type1_dirty_pages(struct vfio_iommu * iommu,unsigned long arg)2968 static int vfio_iommu_type1_dirty_pages(struct vfio_iommu *iommu,
2969 unsigned long arg)
2970 {
2971 struct vfio_iommu_type1_dirty_bitmap dirty;
2972 uint32_t mask = VFIO_IOMMU_DIRTY_PAGES_FLAG_START |
2973 VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP |
2974 VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP;
2975 unsigned long minsz;
2976 int ret = 0;
2977
2978 if (!iommu->v2)
2979 return -EACCES;
2980
2981 minsz = offsetofend(struct vfio_iommu_type1_dirty_bitmap, flags);
2982
2983 if (copy_from_user(&dirty, (void __user *)arg, minsz))
2984 return -EFAULT;
2985
2986 if (dirty.argsz < minsz || dirty.flags & ~mask)
2987 return -EINVAL;
2988
2989 /* only one flag should be set at a time */
2990 if (__ffs(dirty.flags) != __fls(dirty.flags))
2991 return -EINVAL;
2992
2993 if (dirty.flags & VFIO_IOMMU_DIRTY_PAGES_FLAG_START) {
2994 size_t pgsize;
2995
2996 mutex_lock(&iommu->lock);
2997 pgsize = 1 << __ffs(iommu->pgsize_bitmap);
2998 if (!iommu->dirty_page_tracking) {
2999 ret = vfio_dma_bitmap_alloc_all(iommu, pgsize);
3000 if (!ret)
3001 iommu->dirty_page_tracking = true;
3002 }
3003 mutex_unlock(&iommu->lock);
3004 return ret;
3005 } else if (dirty.flags & VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP) {
3006 mutex_lock(&iommu->lock);
3007 if (iommu->dirty_page_tracking) {
3008 iommu->dirty_page_tracking = false;
3009 vfio_dma_bitmap_free_all(iommu);
3010 }
3011 mutex_unlock(&iommu->lock);
3012 return 0;
3013 } else if (dirty.flags & VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP) {
3014 struct vfio_iommu_type1_dirty_bitmap_get range;
3015 unsigned long pgshift;
3016 size_t data_size = dirty.argsz - minsz;
3017 size_t size, iommu_pgsize;
3018 dma_addr_t iova, iova_end;
3019
3020 if (!data_size || data_size < sizeof(range))
3021 return -EINVAL;
3022
3023 if (copy_from_user(&range, (void __user *)(arg + minsz),
3024 sizeof(range)))
3025 return -EFAULT;
3026
3027 iova = range.iova;
3028 size = range.size;
3029
3030 if (iova != range.iova || size != range.size)
3031 return -EOVERFLOW;
3032
3033 if (!size)
3034 return -EINVAL;
3035
3036 if (check_add_overflow(iova, size - 1, &iova_end))
3037 return -EOVERFLOW;
3038
3039 if (!access_ok((void __user *)range.bitmap.data,
3040 range.bitmap.size))
3041 return -EINVAL;
3042
3043 pgshift = __ffs(range.bitmap.pgsize);
3044 ret = verify_bitmap_size(size >> pgshift,
3045 range.bitmap.size);
3046 if (ret)
3047 return ret;
3048
3049 mutex_lock(&iommu->lock);
3050
3051 iommu_pgsize = (size_t)1 << __ffs(iommu->pgsize_bitmap);
3052
3053 /* allow only smallest supported pgsize */
3054 if (range.bitmap.pgsize != iommu_pgsize) {
3055 ret = -EINVAL;
3056 goto out_unlock;
3057 }
3058 if (iova & (iommu_pgsize - 1)) {
3059 ret = -EINVAL;
3060 goto out_unlock;
3061 }
3062 if (size & (iommu_pgsize - 1)) {
3063 ret = -EINVAL;
3064 goto out_unlock;
3065 }
3066
3067 if (iommu->dirty_page_tracking)
3068 ret = vfio_iova_dirty_bitmap(range.bitmap.data,
3069 iommu, iova, iova_end,
3070 range.bitmap.pgsize);
3071 else
3072 ret = -EINVAL;
3073 out_unlock:
3074 mutex_unlock(&iommu->lock);
3075
3076 return ret;
3077 }
3078
3079 return -EINVAL;
3080 }
3081
vfio_iommu_type1_ioctl(void * iommu_data,unsigned int cmd,unsigned long arg)3082 static long vfio_iommu_type1_ioctl(void *iommu_data,
3083 unsigned int cmd, unsigned long arg)
3084 {
3085 struct vfio_iommu *iommu = iommu_data;
3086
3087 switch (cmd) {
3088 case VFIO_CHECK_EXTENSION:
3089 return vfio_iommu_type1_check_extension(iommu, arg);
3090 case VFIO_IOMMU_GET_INFO:
3091 return vfio_iommu_type1_get_info(iommu, arg);
3092 case VFIO_IOMMU_MAP_DMA:
3093 return vfio_iommu_type1_map_dma(iommu, arg);
3094 case VFIO_IOMMU_UNMAP_DMA:
3095 return vfio_iommu_type1_unmap_dma(iommu, arg);
3096 case VFIO_IOMMU_DIRTY_PAGES:
3097 return vfio_iommu_type1_dirty_pages(iommu, arg);
3098 default:
3099 return -ENOTTY;
3100 }
3101 }
3102
vfio_iommu_type1_register_device(void * iommu_data,struct vfio_device * vdev)3103 static void vfio_iommu_type1_register_device(void *iommu_data,
3104 struct vfio_device *vdev)
3105 {
3106 struct vfio_iommu *iommu = iommu_data;
3107
3108 if (!vdev->ops->dma_unmap)
3109 return;
3110
3111 /*
3112 * list_empty(&iommu->device_list) is tested under the iommu->lock while
3113 * iteration for dma_unmap must be done under the device_list_lock.
3114 * Holding both locks here allows avoiding the device_list_lock in
3115 * several fast paths. See vfio_notify_dma_unmap()
3116 */
3117 mutex_lock(&iommu->lock);
3118 mutex_lock(&iommu->device_list_lock);
3119 list_add(&vdev->iommu_entry, &iommu->device_list);
3120 mutex_unlock(&iommu->device_list_lock);
3121 mutex_unlock(&iommu->lock);
3122 }
3123
vfio_iommu_type1_unregister_device(void * iommu_data,struct vfio_device * vdev)3124 static void vfio_iommu_type1_unregister_device(void *iommu_data,
3125 struct vfio_device *vdev)
3126 {
3127 struct vfio_iommu *iommu = iommu_data;
3128
3129 if (!vdev->ops->dma_unmap)
3130 return;
3131
3132 mutex_lock(&iommu->lock);
3133 mutex_lock(&iommu->device_list_lock);
3134 list_del(&vdev->iommu_entry);
3135 mutex_unlock(&iommu->device_list_lock);
3136 mutex_unlock(&iommu->lock);
3137 }
3138
vfio_iommu_type1_dma_rw_chunk(struct vfio_iommu * iommu,dma_addr_t user_iova,void * data,size_t count,bool write,size_t * copied)3139 static int vfio_iommu_type1_dma_rw_chunk(struct vfio_iommu *iommu,
3140 dma_addr_t user_iova, void *data,
3141 size_t count, bool write,
3142 size_t *copied)
3143 {
3144 struct mm_struct *mm;
3145 unsigned long vaddr;
3146 struct vfio_dma *dma;
3147 bool kthread = current->mm == NULL;
3148 size_t offset;
3149
3150 *copied = 0;
3151
3152 dma = vfio_find_dma(iommu, user_iova, 1);
3153 if (!dma)
3154 return -EINVAL;
3155
3156 if ((write && !(dma->prot & IOMMU_WRITE)) ||
3157 !(dma->prot & IOMMU_READ))
3158 return -EPERM;
3159
3160 mm = dma->mm;
3161 if (!mmget_not_zero(mm))
3162 return -EPERM;
3163
3164 if (kthread)
3165 kthread_use_mm(mm);
3166 else if (current->mm != mm)
3167 goto out;
3168
3169 offset = user_iova - dma->iova;
3170
3171 if (count > dma->size - offset)
3172 count = dma->size - offset;
3173
3174 vaddr = dma->vaddr + offset;
3175
3176 if (write) {
3177 *copied = copy_to_user((void __user *)vaddr, data,
3178 count) ? 0 : count;
3179 if (*copied && iommu->dirty_page_tracking) {
3180 unsigned long pgshift = __ffs(iommu->pgsize_bitmap);
3181 /*
3182 * Bitmap populated with the smallest supported page
3183 * size
3184 */
3185 bitmap_set(dma->bitmap, offset >> pgshift,
3186 ((offset + *copied - 1) >> pgshift) -
3187 (offset >> pgshift) + 1);
3188 }
3189 } else
3190 *copied = copy_from_user(data, (void __user *)vaddr,
3191 count) ? 0 : count;
3192 if (kthread)
3193 kthread_unuse_mm(mm);
3194 out:
3195 mmput(mm);
3196 return *copied ? 0 : -EFAULT;
3197 }
3198
vfio_iommu_type1_dma_rw(void * iommu_data,dma_addr_t user_iova,void * data,size_t count,bool write)3199 static int vfio_iommu_type1_dma_rw(void *iommu_data, dma_addr_t user_iova,
3200 void *data, size_t count, bool write)
3201 {
3202 struct vfio_iommu *iommu = iommu_data;
3203 int ret = 0;
3204 size_t done;
3205
3206 mutex_lock(&iommu->lock);
3207
3208 if (WARN_ONCE(iommu->vaddr_invalid_count,
3209 "vfio_dma_rw not allowed with VFIO_UPDATE_VADDR\n")) {
3210 ret = -EBUSY;
3211 goto out;
3212 }
3213
3214 while (count > 0) {
3215 ret = vfio_iommu_type1_dma_rw_chunk(iommu, user_iova, data,
3216 count, write, &done);
3217 if (ret)
3218 break;
3219
3220 count -= done;
3221 data += done;
3222 user_iova += done;
3223 }
3224
3225 out:
3226 mutex_unlock(&iommu->lock);
3227 return ret;
3228 }
3229
3230 static struct iommu_domain *
vfio_iommu_type1_group_iommu_domain(void * iommu_data,struct iommu_group * iommu_group)3231 vfio_iommu_type1_group_iommu_domain(void *iommu_data,
3232 struct iommu_group *iommu_group)
3233 {
3234 struct iommu_domain *domain = ERR_PTR(-ENODEV);
3235 struct vfio_iommu *iommu = iommu_data;
3236 struct vfio_domain *d;
3237
3238 if (!iommu || !iommu_group)
3239 return ERR_PTR(-EINVAL);
3240
3241 mutex_lock(&iommu->lock);
3242 list_for_each_entry(d, &iommu->domain_list, next) {
3243 if (find_iommu_group(d, iommu_group)) {
3244 domain = d->domain;
3245 break;
3246 }
3247 }
3248 mutex_unlock(&iommu->lock);
3249
3250 return domain;
3251 }
3252
3253 static const struct vfio_iommu_driver_ops vfio_iommu_driver_ops_type1 = {
3254 .name = "vfio-iommu-type1",
3255 .owner = THIS_MODULE,
3256 .open = vfio_iommu_type1_open,
3257 .release = vfio_iommu_type1_release,
3258 .ioctl = vfio_iommu_type1_ioctl,
3259 .attach_group = vfio_iommu_type1_attach_group,
3260 .detach_group = vfio_iommu_type1_detach_group,
3261 .pin_pages = vfio_iommu_type1_pin_pages,
3262 .unpin_pages = vfio_iommu_type1_unpin_pages,
3263 .register_device = vfio_iommu_type1_register_device,
3264 .unregister_device = vfio_iommu_type1_unregister_device,
3265 .dma_rw = vfio_iommu_type1_dma_rw,
3266 .group_iommu_domain = vfio_iommu_type1_group_iommu_domain,
3267 };
3268
vfio_iommu_type1_init(void)3269 static int __init vfio_iommu_type1_init(void)
3270 {
3271 return vfio_register_iommu_driver(&vfio_iommu_driver_ops_type1);
3272 }
3273
vfio_iommu_type1_cleanup(void)3274 static void __exit vfio_iommu_type1_cleanup(void)
3275 {
3276 vfio_unregister_iommu_driver(&vfio_iommu_driver_ops_type1);
3277 }
3278
3279 module_init(vfio_iommu_type1_init);
3280 module_exit(vfio_iommu_type1_cleanup);
3281
3282 MODULE_VERSION(DRIVER_VERSION);
3283 MODULE_LICENSE("GPL v2");
3284 MODULE_AUTHOR(DRIVER_AUTHOR);
3285 MODULE_DESCRIPTION(DRIVER_DESC);
3286