1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Page Attribute Table (PAT) support: handle memory caching attributes in page tables.
4 *
5 * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
6 * Suresh B Siddha <suresh.b.siddha@intel.com>
7 *
8 * Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen.
9 *
10 * Basic principles:
11 *
12 * PAT is a CPU feature supported by all modern x86 CPUs, to allow the firmware and
13 * the kernel to set one of a handful of 'caching type' attributes for physical
14 * memory ranges: uncached, write-combining, write-through, write-protected,
15 * and the most commonly used and default attribute: write-back caching.
16 *
17 * PAT support supersedes and augments MTRR support in a compatible fashion: MTRR is
18 * a hardware interface to enumerate a limited number of physical memory ranges
19 * and set their caching attributes explicitly, programmed into the CPU via MSRs.
20 * Even modern CPUs have MTRRs enabled - but these are typically not touched
21 * by the kernel or by user-space (such as the X server), we rely on PAT for any
22 * additional cache attribute logic.
23 *
24 * PAT doesn't work via explicit memory ranges, but uses page table entries to add
25 * cache attribute information to the mapped memory range: there's 3 bits used,
26 * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT), with the 8 possible values mapped by the
27 * CPU to actual cache attributes via an MSR loaded into the CPU (MSR_IA32_CR_PAT).
28 *
29 * ( There's a metric ton of finer details, such as compatibility with CPU quirks
30 * that only support 4 types of PAT entries, and interaction with MTRRs, see
31 * below for details. )
32 */
33
34 #include <linux/seq_file.h>
35 #include <linux/memblock.h>
36 #include <linux/debugfs.h>
37 #include <linux/ioport.h>
38 #include <linux/kernel.h>
39 #include <linux/pfn_t.h>
40 #include <linux/slab.h>
41 #include <linux/io.h>
42 #include <linux/mm.h>
43 #include <linux/highmem.h>
44 #include <linux/fs.h>
45 #include <linux/rbtree.h>
46
47 #include <asm/cpu_device_id.h>
48 #include <asm/cacheflush.h>
49 #include <asm/cacheinfo.h>
50 #include <asm/processor.h>
51 #include <asm/tlbflush.h>
52 #include <asm/x86_init.h>
53 #include <asm/fcntl.h>
54 #include <asm/e820/api.h>
55 #include <asm/mtrr.h>
56 #include <asm/page.h>
57 #include <asm/msr.h>
58 #include <asm/memtype.h>
59 #include <asm/io.h>
60
61 #include "memtype.h"
62 #include "../mm_internal.h"
63
64 #undef pr_fmt
65 #define pr_fmt(fmt) "" fmt
66
67 static bool __read_mostly pat_disabled = !IS_ENABLED(CONFIG_X86_PAT);
68 static u64 __ro_after_init pat_msr_val;
69
70 /*
71 * PAT support is enabled by default, but can be disabled for
72 * various user-requested or hardware-forced reasons:
73 */
pat_disable(const char * msg_reason)74 static void __init pat_disable(const char *msg_reason)
75 {
76 if (pat_disabled)
77 return;
78
79 pat_disabled = true;
80 pr_info("x86/PAT: %s\n", msg_reason);
81
82 memory_caching_control &= ~CACHE_PAT;
83 }
84
nopat(char * str)85 static int __init nopat(char *str)
86 {
87 pat_disable("PAT support disabled via boot option.");
88 return 0;
89 }
90 early_param("nopat", nopat);
91
pat_enabled(void)92 bool pat_enabled(void)
93 {
94 return !pat_disabled;
95 }
96 EXPORT_SYMBOL_GPL(pat_enabled);
97
98 int pat_debug_enable;
99
pat_debug_setup(char * str)100 static int __init pat_debug_setup(char *str)
101 {
102 pat_debug_enable = 1;
103 return 1;
104 }
105 __setup("debugpat", pat_debug_setup);
106
107 #ifdef CONFIG_X86_PAT
108 /*
109 * X86 PAT uses page flags arch_1 and arch_2 together to keep track of
110 * memory type of pages that have backing page struct.
111 *
112 * X86 PAT supports 4 different memory types:
113 * - _PAGE_CACHE_MODE_WB
114 * - _PAGE_CACHE_MODE_WC
115 * - _PAGE_CACHE_MODE_UC_MINUS
116 * - _PAGE_CACHE_MODE_WT
117 *
118 * _PAGE_CACHE_MODE_WB is the default type.
119 */
120
121 #define _PGMT_WB 0
122 #define _PGMT_WC (1UL << PG_arch_1)
123 #define _PGMT_UC_MINUS (1UL << PG_arch_2)
124 #define _PGMT_WT (1UL << PG_arch_2 | 1UL << PG_arch_1)
125 #define _PGMT_MASK (1UL << PG_arch_2 | 1UL << PG_arch_1)
126 #define _PGMT_CLEAR_MASK (~_PGMT_MASK)
127
get_page_memtype(struct page * pg)128 static inline enum page_cache_mode get_page_memtype(struct page *pg)
129 {
130 unsigned long pg_flags = pg->flags & _PGMT_MASK;
131
132 if (pg_flags == _PGMT_WB)
133 return _PAGE_CACHE_MODE_WB;
134 else if (pg_flags == _PGMT_WC)
135 return _PAGE_CACHE_MODE_WC;
136 else if (pg_flags == _PGMT_UC_MINUS)
137 return _PAGE_CACHE_MODE_UC_MINUS;
138 else
139 return _PAGE_CACHE_MODE_WT;
140 }
141
set_page_memtype(struct page * pg,enum page_cache_mode memtype)142 static inline void set_page_memtype(struct page *pg,
143 enum page_cache_mode memtype)
144 {
145 unsigned long memtype_flags;
146 unsigned long old_flags;
147 unsigned long new_flags;
148
149 switch (memtype) {
150 case _PAGE_CACHE_MODE_WC:
151 memtype_flags = _PGMT_WC;
152 break;
153 case _PAGE_CACHE_MODE_UC_MINUS:
154 memtype_flags = _PGMT_UC_MINUS;
155 break;
156 case _PAGE_CACHE_MODE_WT:
157 memtype_flags = _PGMT_WT;
158 break;
159 case _PAGE_CACHE_MODE_WB:
160 default:
161 memtype_flags = _PGMT_WB;
162 break;
163 }
164
165 old_flags = READ_ONCE(pg->flags);
166 do {
167 new_flags = (old_flags & _PGMT_CLEAR_MASK) | memtype_flags;
168 } while (!try_cmpxchg(&pg->flags, &old_flags, new_flags));
169 }
170 #else
get_page_memtype(struct page * pg)171 static inline enum page_cache_mode get_page_memtype(struct page *pg)
172 {
173 return -1;
174 }
set_page_memtype(struct page * pg,enum page_cache_mode memtype)175 static inline void set_page_memtype(struct page *pg,
176 enum page_cache_mode memtype)
177 {
178 }
179 #endif
180
181 #define CM(c) (_PAGE_CACHE_MODE_ ## c)
182
pat_get_cache_mode(unsigned int pat_val,char * msg)183 static enum page_cache_mode __init pat_get_cache_mode(unsigned int pat_val,
184 char *msg)
185 {
186 enum page_cache_mode cache;
187 char *cache_mode;
188
189 switch (pat_val) {
190 case X86_MEMTYPE_UC: cache = CM(UC); cache_mode = "UC "; break;
191 case X86_MEMTYPE_WC: cache = CM(WC); cache_mode = "WC "; break;
192 case X86_MEMTYPE_WT: cache = CM(WT); cache_mode = "WT "; break;
193 case X86_MEMTYPE_WP: cache = CM(WP); cache_mode = "WP "; break;
194 case X86_MEMTYPE_WB: cache = CM(WB); cache_mode = "WB "; break;
195 case X86_MEMTYPE_UC_MINUS: cache = CM(UC_MINUS); cache_mode = "UC- "; break;
196 default: cache = CM(WB); cache_mode = "WB "; break;
197 }
198
199 memcpy(msg, cache_mode, 4);
200
201 return cache;
202 }
203
204 #undef CM
205
206 /*
207 * Update the cache mode to pgprot translation tables according to PAT
208 * configuration.
209 * Using lower indices is preferred, so we start with highest index.
210 */
init_cache_modes(u64 pat)211 static void __init init_cache_modes(u64 pat)
212 {
213 enum page_cache_mode cache;
214 char pat_msg[33];
215 int i;
216
217 pat_msg[32] = 0;
218 for (i = 7; i >= 0; i--) {
219 cache = pat_get_cache_mode((pat >> (i * 8)) & 7,
220 pat_msg + 4 * i);
221 update_cache_mode_entry(i, cache);
222 }
223 pr_info("x86/PAT: Configuration [0-7]: %s\n", pat_msg);
224 }
225
pat_cpu_init(void)226 void pat_cpu_init(void)
227 {
228 if (!boot_cpu_has(X86_FEATURE_PAT)) {
229 /*
230 * If this happens we are on a secondary CPU, but switched to
231 * PAT on the boot CPU. We have no way to undo PAT.
232 */
233 panic("x86/PAT: PAT enabled, but not supported by secondary CPU\n");
234 }
235
236 wrmsrq(MSR_IA32_CR_PAT, pat_msr_val);
237
238 __flush_tlb_all();
239 }
240
241 /**
242 * pat_bp_init - Initialize the PAT MSR value and PAT table
243 *
244 * This function initializes PAT MSR value and PAT table with an OS-defined
245 * value to enable additional cache attributes, WC, WT and WP.
246 *
247 * This function prepares the calls of pat_cpu_init() via cache_cpu_init()
248 * on all CPUs.
249 */
pat_bp_init(void)250 void __init pat_bp_init(void)
251 {
252 struct cpuinfo_x86 *c = &boot_cpu_data;
253
254 if (!IS_ENABLED(CONFIG_X86_PAT))
255 pr_info_once("x86/PAT: PAT support disabled because CONFIG_X86_PAT is disabled in the kernel.\n");
256
257 if (!cpu_feature_enabled(X86_FEATURE_PAT))
258 pat_disable("PAT not supported by the CPU.");
259 else
260 rdmsrq(MSR_IA32_CR_PAT, pat_msr_val);
261
262 if (!pat_msr_val) {
263 pat_disable("PAT support disabled by the firmware.");
264
265 /*
266 * No PAT. Emulate the PAT table that corresponds to the two
267 * cache bits, PWT (Write Through) and PCD (Cache Disable).
268 * This setup is also the same as the BIOS default setup.
269 *
270 * PTE encoding:
271 *
272 * PCD
273 * |PWT PAT
274 * || slot
275 * 00 0 WB : _PAGE_CACHE_MODE_WB
276 * 01 1 WT : _PAGE_CACHE_MODE_WT
277 * 10 2 UC-: _PAGE_CACHE_MODE_UC_MINUS
278 * 11 3 UC : _PAGE_CACHE_MODE_UC
279 *
280 * NOTE: When WC or WP is used, it is redirected to UC- per
281 * the default setup in __cachemode2pte_tbl[].
282 */
283 pat_msr_val = PAT_VALUE(WB, WT, UC_MINUS, UC, WB, WT, UC_MINUS, UC);
284 }
285
286 /*
287 * Xen PV doesn't allow to set PAT MSR, but all cache modes are
288 * supported.
289 */
290 if (pat_disabled || cpu_feature_enabled(X86_FEATURE_XENPV)) {
291 init_cache_modes(pat_msr_val);
292 return;
293 }
294
295 if ((c->x86_vfm >= INTEL_PENTIUM_PRO && c->x86_vfm <= INTEL_PENTIUM_M_DOTHAN) ||
296 (c->x86_vfm >= INTEL_P4_WILLAMETTE && c->x86_vfm <= INTEL_P4_CEDARMILL)) {
297 /*
298 * PAT support with the lower four entries. Intel Pentium 2,
299 * 3, M, and 4 are affected by PAT errata, which makes the
300 * upper four entries unusable. To be on the safe side, we don't
301 * use those.
302 *
303 * PTE encoding:
304 * PAT
305 * |PCD
306 * ||PWT PAT
307 * ||| slot
308 * 000 0 WB : _PAGE_CACHE_MODE_WB
309 * 001 1 WC : _PAGE_CACHE_MODE_WC
310 * 010 2 UC-: _PAGE_CACHE_MODE_UC_MINUS
311 * 011 3 UC : _PAGE_CACHE_MODE_UC
312 * PAT bit unused
313 *
314 * NOTE: When WT or WP is used, it is redirected to UC- per
315 * the default setup in __cachemode2pte_tbl[].
316 */
317 pat_msr_val = PAT_VALUE(WB, WC, UC_MINUS, UC, WB, WC, UC_MINUS, UC);
318 } else {
319 /*
320 * Full PAT support. We put WT in slot 7 to improve
321 * robustness in the presence of errata that might cause
322 * the high PAT bit to be ignored. This way, a buggy slot 7
323 * access will hit slot 3, and slot 3 is UC, so at worst
324 * we lose performance without causing a correctness issue.
325 * Pentium 4 erratum N46 is an example for such an erratum,
326 * although we try not to use PAT at all on affected CPUs.
327 *
328 * PTE encoding:
329 * PAT
330 * |PCD
331 * ||PWT PAT
332 * ||| slot
333 * 000 0 WB : _PAGE_CACHE_MODE_WB
334 * 001 1 WC : _PAGE_CACHE_MODE_WC
335 * 010 2 UC-: _PAGE_CACHE_MODE_UC_MINUS
336 * 011 3 UC : _PAGE_CACHE_MODE_UC
337 * 100 4 WB : Reserved
338 * 101 5 WP : _PAGE_CACHE_MODE_WP
339 * 110 6 UC-: Reserved
340 * 111 7 WT : _PAGE_CACHE_MODE_WT
341 *
342 * The reserved slots are unused, but mapped to their
343 * corresponding types in the presence of PAT errata.
344 */
345 pat_msr_val = PAT_VALUE(WB, WC, UC_MINUS, UC, WB, WP, UC_MINUS, WT);
346 }
347
348 memory_caching_control |= CACHE_PAT;
349
350 init_cache_modes(pat_msr_val);
351 }
352
353 static DEFINE_SPINLOCK(memtype_lock); /* protects memtype accesses */
354
355 /*
356 * Does intersection of PAT memory type and MTRR memory type and returns
357 * the resulting memory type as PAT understands it.
358 * (Type in pat and mtrr will not have same value)
359 * The intersection is based on "Effective Memory Type" tables in IA-32
360 * SDM vol 3a
361 */
pat_x_mtrr_type(u64 start,u64 end,enum page_cache_mode req_type)362 static unsigned long pat_x_mtrr_type(u64 start, u64 end,
363 enum page_cache_mode req_type)
364 {
365 /*
366 * Look for MTRR hint to get the effective type in case where PAT
367 * request is for WB.
368 */
369 if (req_type == _PAGE_CACHE_MODE_WB) {
370 u8 mtrr_type, uniform;
371
372 mtrr_type = mtrr_type_lookup(start, end, &uniform);
373 if (mtrr_type != MTRR_TYPE_WRBACK)
374 return _PAGE_CACHE_MODE_UC_MINUS;
375
376 return _PAGE_CACHE_MODE_WB;
377 }
378
379 return req_type;
380 }
381
382 struct pagerange_state {
383 unsigned long cur_pfn;
384 int ram;
385 int not_ram;
386 };
387
388 static int
pagerange_is_ram_callback(unsigned long initial_pfn,unsigned long total_nr_pages,void * arg)389 pagerange_is_ram_callback(unsigned long initial_pfn, unsigned long total_nr_pages, void *arg)
390 {
391 struct pagerange_state *state = arg;
392
393 state->not_ram |= initial_pfn > state->cur_pfn;
394 state->ram |= total_nr_pages > 0;
395 state->cur_pfn = initial_pfn + total_nr_pages;
396
397 return state->ram && state->not_ram;
398 }
399
pat_pagerange_is_ram(resource_size_t start,resource_size_t end)400 static int pat_pagerange_is_ram(resource_size_t start, resource_size_t end)
401 {
402 int ret = 0;
403 unsigned long start_pfn = start >> PAGE_SHIFT;
404 unsigned long end_pfn = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
405 struct pagerange_state state = {start_pfn, 0, 0};
406
407 /*
408 * For legacy reasons, physical address range in the legacy ISA
409 * region is tracked as non-RAM. This will allow users of
410 * /dev/mem to map portions of legacy ISA region, even when
411 * some of those portions are listed(or not even listed) with
412 * different e820 types(RAM/reserved/..)
413 */
414 if (start_pfn < ISA_END_ADDRESS >> PAGE_SHIFT)
415 start_pfn = ISA_END_ADDRESS >> PAGE_SHIFT;
416
417 if (start_pfn < end_pfn) {
418 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
419 &state, pagerange_is_ram_callback);
420 }
421
422 return (ret > 0) ? -1 : (state.ram ? 1 : 0);
423 }
424
425 /*
426 * For RAM pages, we use page flags to mark the pages with appropriate type.
427 * The page flags are limited to four types, WB (default), WC, WT and UC-.
428 * WP request fails with -EINVAL, and UC gets redirected to UC-. Setting
429 * a new memory type is only allowed for a page mapped with the default WB
430 * type.
431 *
432 * Here we do two passes:
433 * - Find the memtype of all the pages in the range, look for any conflicts.
434 * - In case of no conflicts, set the new memtype for pages in the range.
435 */
reserve_ram_pages_type(u64 start,u64 end,enum page_cache_mode req_type,enum page_cache_mode * new_type)436 static int reserve_ram_pages_type(u64 start, u64 end,
437 enum page_cache_mode req_type,
438 enum page_cache_mode *new_type)
439 {
440 struct page *page;
441 u64 pfn;
442
443 if (req_type == _PAGE_CACHE_MODE_WP) {
444 if (new_type)
445 *new_type = _PAGE_CACHE_MODE_UC_MINUS;
446 return -EINVAL;
447 }
448
449 if (req_type == _PAGE_CACHE_MODE_UC) {
450 /* We do not support strong UC */
451 WARN_ON_ONCE(1);
452 req_type = _PAGE_CACHE_MODE_UC_MINUS;
453 }
454
455 for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
456 enum page_cache_mode type;
457
458 page = pfn_to_page(pfn);
459 type = get_page_memtype(page);
460 if (type != _PAGE_CACHE_MODE_WB) {
461 pr_info("x86/PAT: reserve_ram_pages_type failed [mem %#010Lx-%#010Lx], track 0x%x, req 0x%x\n",
462 start, end - 1, type, req_type);
463 if (new_type)
464 *new_type = type;
465
466 return -EBUSY;
467 }
468 }
469
470 if (new_type)
471 *new_type = req_type;
472
473 for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
474 page = pfn_to_page(pfn);
475 set_page_memtype(page, req_type);
476 }
477 return 0;
478 }
479
free_ram_pages_type(u64 start,u64 end)480 static int free_ram_pages_type(u64 start, u64 end)
481 {
482 struct page *page;
483 u64 pfn;
484
485 for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
486 page = pfn_to_page(pfn);
487 set_page_memtype(page, _PAGE_CACHE_MODE_WB);
488 }
489 return 0;
490 }
491
sanitize_phys(u64 address)492 static u64 sanitize_phys(u64 address)
493 {
494 /*
495 * When changing the memtype for pages containing poison allow
496 * for a "decoy" virtual address (bit 63 clear) passed to
497 * set_memory_X(). __pa() on a "decoy" address results in a
498 * physical address with bit 63 set.
499 *
500 * Decoy addresses are not present for 32-bit builds, see
501 * set_mce_nospec().
502 */
503 if (IS_ENABLED(CONFIG_X86_64))
504 return address & __PHYSICAL_MASK;
505 return address;
506 }
507
508 /*
509 * req_type typically has one of the:
510 * - _PAGE_CACHE_MODE_WB
511 * - _PAGE_CACHE_MODE_WC
512 * - _PAGE_CACHE_MODE_UC_MINUS
513 * - _PAGE_CACHE_MODE_UC
514 * - _PAGE_CACHE_MODE_WT
515 *
516 * If new_type is NULL, function will return an error if it cannot reserve the
517 * region with req_type. If new_type is non-NULL, function will return
518 * available type in new_type in case of no error. In case of any error
519 * it will return a negative return value.
520 */
memtype_reserve(u64 start,u64 end,enum page_cache_mode req_type,enum page_cache_mode * new_type)521 int memtype_reserve(u64 start, u64 end, enum page_cache_mode req_type,
522 enum page_cache_mode *new_type)
523 {
524 struct memtype *entry_new;
525 enum page_cache_mode actual_type;
526 int is_range_ram;
527 int err = 0;
528
529 start = sanitize_phys(start);
530
531 /*
532 * The end address passed into this function is exclusive, but
533 * sanitize_phys() expects an inclusive address.
534 */
535 end = sanitize_phys(end - 1) + 1;
536 if (start >= end) {
537 WARN(1, "%s failed: [mem %#010Lx-%#010Lx], req %s\n", __func__,
538 start, end - 1, cattr_name(req_type));
539 return -EINVAL;
540 }
541
542 if (!pat_enabled()) {
543 /* This is identical to page table setting without PAT */
544 if (new_type)
545 *new_type = req_type;
546 return 0;
547 }
548
549 /* Low ISA region is always mapped WB in page table. No need to track */
550 if (x86_platform.is_untracked_pat_range(start, end)) {
551 if (new_type)
552 *new_type = _PAGE_CACHE_MODE_WB;
553 return 0;
554 }
555
556 /*
557 * Call mtrr_lookup to get the type hint. This is an
558 * optimization for /dev/mem mmap'ers into WB memory (BIOS
559 * tools and ACPI tools). Use WB request for WB memory and use
560 * UC_MINUS otherwise.
561 */
562 actual_type = pat_x_mtrr_type(start, end, req_type);
563
564 if (new_type)
565 *new_type = actual_type;
566
567 is_range_ram = pat_pagerange_is_ram(start, end);
568 if (is_range_ram == 1) {
569
570 err = reserve_ram_pages_type(start, end, req_type, new_type);
571
572 return err;
573 } else if (is_range_ram < 0) {
574 return -EINVAL;
575 }
576
577 entry_new = kzalloc(sizeof(struct memtype), GFP_KERNEL);
578 if (!entry_new)
579 return -ENOMEM;
580
581 entry_new->start = start;
582 entry_new->end = end;
583 entry_new->type = actual_type;
584
585 spin_lock(&memtype_lock);
586
587 err = memtype_check_insert(entry_new, new_type);
588 if (err) {
589 pr_info("x86/PAT: memtype_reserve failed [mem %#010Lx-%#010Lx], track %s, req %s\n",
590 start, end - 1,
591 cattr_name(entry_new->type), cattr_name(req_type));
592 kfree(entry_new);
593 spin_unlock(&memtype_lock);
594
595 return err;
596 }
597
598 spin_unlock(&memtype_lock);
599
600 dprintk("memtype_reserve added [mem %#010Lx-%#010Lx], track %s, req %s, ret %s\n",
601 start, end - 1, cattr_name(entry_new->type), cattr_name(req_type),
602 new_type ? cattr_name(*new_type) : "-");
603
604 return err;
605 }
606
memtype_free(u64 start,u64 end)607 int memtype_free(u64 start, u64 end)
608 {
609 int is_range_ram;
610 struct memtype *entry_old;
611
612 if (!pat_enabled())
613 return 0;
614
615 start = sanitize_phys(start);
616 end = sanitize_phys(end);
617
618 /* Low ISA region is always mapped WB. No need to track */
619 if (x86_platform.is_untracked_pat_range(start, end))
620 return 0;
621
622 is_range_ram = pat_pagerange_is_ram(start, end);
623 if (is_range_ram == 1)
624 return free_ram_pages_type(start, end);
625 if (is_range_ram < 0)
626 return -EINVAL;
627
628 spin_lock(&memtype_lock);
629 entry_old = memtype_erase(start, end);
630 spin_unlock(&memtype_lock);
631
632 if (IS_ERR(entry_old)) {
633 pr_info("x86/PAT: %s:%d freeing invalid memtype [mem %#010Lx-%#010Lx]\n",
634 current->comm, current->pid, start, end - 1);
635 return -EINVAL;
636 }
637
638 kfree(entry_old);
639
640 dprintk("memtype_free request [mem %#010Lx-%#010Lx]\n", start, end - 1);
641
642 return 0;
643 }
644
645
646 /**
647 * lookup_memtype - Looks up the memory type for a physical address
648 * @paddr: physical address of which memory type needs to be looked up
649 *
650 * Only to be called when PAT is enabled
651 *
652 * Returns _PAGE_CACHE_MODE_WB, _PAGE_CACHE_MODE_WC, _PAGE_CACHE_MODE_UC_MINUS
653 * or _PAGE_CACHE_MODE_WT.
654 */
lookup_memtype(u64 paddr)655 static enum page_cache_mode lookup_memtype(u64 paddr)
656 {
657 enum page_cache_mode rettype = _PAGE_CACHE_MODE_WB;
658 struct memtype *entry;
659
660 if (x86_platform.is_untracked_pat_range(paddr, paddr + PAGE_SIZE))
661 return rettype;
662
663 if (pat_pagerange_is_ram(paddr, paddr + PAGE_SIZE)) {
664 struct page *page;
665
666 page = pfn_to_page(paddr >> PAGE_SHIFT);
667 return get_page_memtype(page);
668 }
669
670 spin_lock(&memtype_lock);
671
672 entry = memtype_lookup(paddr);
673 if (entry != NULL)
674 rettype = entry->type;
675 else
676 rettype = _PAGE_CACHE_MODE_UC_MINUS;
677
678 spin_unlock(&memtype_lock);
679
680 return rettype;
681 }
682
683 /**
684 * pat_pfn_immune_to_uc_mtrr - Check whether the PAT memory type
685 * of @pfn cannot be overridden by UC MTRR memory type.
686 * @pfn: The page frame number to check.
687 *
688 * Only to be called when PAT is enabled.
689 *
690 * Returns true, if the PAT memory type of @pfn is UC, UC-, or WC.
691 * Returns false in other cases.
692 */
pat_pfn_immune_to_uc_mtrr(unsigned long pfn)693 bool pat_pfn_immune_to_uc_mtrr(unsigned long pfn)
694 {
695 enum page_cache_mode cm = lookup_memtype(PFN_PHYS(pfn));
696
697 return cm == _PAGE_CACHE_MODE_UC ||
698 cm == _PAGE_CACHE_MODE_UC_MINUS ||
699 cm == _PAGE_CACHE_MODE_WC;
700 }
701 EXPORT_SYMBOL_GPL(pat_pfn_immune_to_uc_mtrr);
702
703 /**
704 * memtype_reserve_io - Request a memory type mapping for a region of memory
705 * @start: start (physical address) of the region
706 * @end: end (physical address) of the region
707 * @type: A pointer to memtype, with requested type. On success, requested
708 * or any other compatible type that was available for the region is returned
709 *
710 * On success, returns 0
711 * On failure, returns non-zero
712 */
memtype_reserve_io(resource_size_t start,resource_size_t end,enum page_cache_mode * type)713 int memtype_reserve_io(resource_size_t start, resource_size_t end,
714 enum page_cache_mode *type)
715 {
716 resource_size_t size = end - start;
717 enum page_cache_mode req_type = *type;
718 enum page_cache_mode new_type;
719 int ret;
720
721 WARN_ON_ONCE(iomem_map_sanity_check(start, size));
722
723 ret = memtype_reserve(start, end, req_type, &new_type);
724 if (ret)
725 goto out_err;
726
727 if (!is_new_memtype_allowed(start, size, req_type, new_type))
728 goto out_free;
729
730 if (memtype_kernel_map_sync(start, size, new_type) < 0)
731 goto out_free;
732
733 *type = new_type;
734 return 0;
735
736 out_free:
737 memtype_free(start, end);
738 ret = -EBUSY;
739 out_err:
740 return ret;
741 }
742
743 /**
744 * memtype_free_io - Release a memory type mapping for a region of memory
745 * @start: start (physical address) of the region
746 * @end: end (physical address) of the region
747 */
memtype_free_io(resource_size_t start,resource_size_t end)748 void memtype_free_io(resource_size_t start, resource_size_t end)
749 {
750 memtype_free(start, end);
751 }
752
753 #ifdef CONFIG_X86_PAT
arch_io_reserve_memtype_wc(resource_size_t start,resource_size_t size)754 int arch_io_reserve_memtype_wc(resource_size_t start, resource_size_t size)
755 {
756 enum page_cache_mode type = _PAGE_CACHE_MODE_WC;
757
758 return memtype_reserve_io(start, start + size, &type);
759 }
760 EXPORT_SYMBOL(arch_io_reserve_memtype_wc);
761
arch_io_free_memtype_wc(resource_size_t start,resource_size_t size)762 void arch_io_free_memtype_wc(resource_size_t start, resource_size_t size)
763 {
764 memtype_free_io(start, start + size);
765 }
766 EXPORT_SYMBOL(arch_io_free_memtype_wc);
767 #endif
768
phys_mem_access_prot(struct file * file,unsigned long pfn,unsigned long size,pgprot_t vma_prot)769 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
770 unsigned long size, pgprot_t vma_prot)
771 {
772 if (!phys_mem_access_encrypted(pfn << PAGE_SHIFT, size))
773 vma_prot = pgprot_decrypted(vma_prot);
774
775 return vma_prot;
776 }
777
pgprot_set_cachemode(pgprot_t * prot,enum page_cache_mode pcm)778 static inline void pgprot_set_cachemode(pgprot_t *prot, enum page_cache_mode pcm)
779 {
780 *prot = __pgprot((pgprot_val(*prot) & ~_PAGE_CACHE_MASK) |
781 cachemode2protval(pcm));
782 }
783
phys_mem_access_prot_allowed(struct file * file,unsigned long pfn,unsigned long size,pgprot_t * vma_prot)784 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
785 unsigned long size, pgprot_t *vma_prot)
786 {
787 enum page_cache_mode pcm = _PAGE_CACHE_MODE_WB;
788
789 if (!pat_enabled())
790 return 1;
791
792 if (!range_is_allowed(pfn, size))
793 return 0;
794
795 if (file->f_flags & O_DSYNC)
796 pcm = _PAGE_CACHE_MODE_UC_MINUS;
797
798 pgprot_set_cachemode(vma_prot, pcm);
799 return 1;
800 }
801
802 /*
803 * Change the memory type for the physical address range in kernel identity
804 * mapping space if that range is a part of identity map.
805 */
memtype_kernel_map_sync(u64 base,unsigned long size,enum page_cache_mode pcm)806 int memtype_kernel_map_sync(u64 base, unsigned long size,
807 enum page_cache_mode pcm)
808 {
809 unsigned long id_sz;
810
811 if (base > __pa(high_memory-1))
812 return 0;
813
814 /*
815 * Some areas in the middle of the kernel identity range
816 * are not mapped, for example the PCI space.
817 */
818 if (!page_is_ram(base >> PAGE_SHIFT))
819 return 0;
820
821 id_sz = (__pa(high_memory-1) <= base + size) ?
822 __pa(high_memory) - base : size;
823
824 if (ioremap_change_attr((unsigned long)__va(base), id_sz, pcm) < 0) {
825 pr_info("x86/PAT: %s:%d ioremap_change_attr failed %s for [mem %#010Lx-%#010Lx]\n",
826 current->comm, current->pid,
827 cattr_name(pcm),
828 base, (unsigned long long)(base + size-1));
829 return -EINVAL;
830 }
831 return 0;
832 }
833
834 /*
835 * Internal interface to reserve a range of physical memory with prot.
836 * Reserved non RAM regions only and after successful memtype_reserve,
837 * this func also keeps identity mapping (if any) in sync with this new prot.
838 */
reserve_pfn_range(u64 paddr,unsigned long size,pgprot_t * vma_prot)839 static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot)
840 {
841 int is_ram = 0;
842 int ret;
843 enum page_cache_mode want_pcm = pgprot2cachemode(*vma_prot);
844 enum page_cache_mode pcm = want_pcm;
845
846 is_ram = pat_pagerange_is_ram(paddr, paddr + size);
847
848 /*
849 * reserve_pfn_range() for RAM pages. We do not refcount to keep
850 * track of number of mappings of RAM pages. We can assert that
851 * the type requested matches the type of first page in the range.
852 */
853 if (is_ram) {
854 if (!pat_enabled())
855 return 0;
856
857 pcm = lookup_memtype(paddr);
858 if (want_pcm != pcm) {
859 pr_warn("x86/PAT: %s:%d map pfn RAM range req %s for [mem %#010Lx-%#010Lx], got %s\n",
860 current->comm, current->pid,
861 cattr_name(want_pcm),
862 (unsigned long long)paddr,
863 (unsigned long long)(paddr + size - 1),
864 cattr_name(pcm));
865 pgprot_set_cachemode(vma_prot, pcm);
866 }
867 return 0;
868 }
869
870 ret = memtype_reserve(paddr, paddr + size, want_pcm, &pcm);
871 if (ret)
872 return ret;
873
874 if (pcm != want_pcm) {
875 if (!is_new_memtype_allowed(paddr, size, want_pcm, pcm)) {
876 memtype_free(paddr, paddr + size);
877 pr_err("x86/PAT: %s:%d map pfn expected mapping type %s for [mem %#010Lx-%#010Lx], got %s\n",
878 current->comm, current->pid,
879 cattr_name(want_pcm),
880 (unsigned long long)paddr,
881 (unsigned long long)(paddr + size - 1),
882 cattr_name(pcm));
883 return -EINVAL;
884 }
885 pgprot_set_cachemode(vma_prot, pcm);
886 }
887
888 if (memtype_kernel_map_sync(paddr, size, pcm) < 0) {
889 memtype_free(paddr, paddr + size);
890 return -EINVAL;
891 }
892 return 0;
893 }
894
895 /*
896 * Internal interface to free a range of physical memory.
897 * Frees non RAM regions only.
898 */
free_pfn_range(u64 paddr,unsigned long size)899 static void free_pfn_range(u64 paddr, unsigned long size)
900 {
901 int is_ram;
902
903 is_ram = pat_pagerange_is_ram(paddr, paddr + size);
904 if (is_ram == 0)
905 memtype_free(paddr, paddr + size);
906 }
907
pfnmap_setup_cachemode(unsigned long pfn,unsigned long size,pgprot_t * prot)908 int pfnmap_setup_cachemode(unsigned long pfn, unsigned long size, pgprot_t *prot)
909 {
910 resource_size_t paddr = (resource_size_t)pfn << PAGE_SHIFT;
911 enum page_cache_mode pcm;
912
913 if (!pat_enabled())
914 return 0;
915
916 pcm = lookup_memtype(paddr);
917
918 /* Check memtype for the remaining pages */
919 while (size > PAGE_SIZE) {
920 size -= PAGE_SIZE;
921 paddr += PAGE_SIZE;
922 if (pcm != lookup_memtype(paddr))
923 return -EINVAL;
924 }
925
926 pgprot_set_cachemode(prot, pcm);
927 return 0;
928 }
929
pfnmap_track(unsigned long pfn,unsigned long size,pgprot_t * prot)930 int pfnmap_track(unsigned long pfn, unsigned long size, pgprot_t *prot)
931 {
932 const resource_size_t paddr = (resource_size_t)pfn << PAGE_SHIFT;
933
934 return reserve_pfn_range(paddr, size, prot);
935 }
936
pfnmap_untrack(unsigned long pfn,unsigned long size)937 void pfnmap_untrack(unsigned long pfn, unsigned long size)
938 {
939 const resource_size_t paddr = (resource_size_t)pfn << PAGE_SHIFT;
940
941 free_pfn_range(paddr, size);
942 }
943
pgprot_writecombine(pgprot_t prot)944 pgprot_t pgprot_writecombine(pgprot_t prot)
945 {
946 pgprot_set_cachemode(&prot, _PAGE_CACHE_MODE_WC);
947 return prot;
948 }
949 EXPORT_SYMBOL_GPL(pgprot_writecombine);
950
pgprot_writethrough(pgprot_t prot)951 pgprot_t pgprot_writethrough(pgprot_t prot)
952 {
953 pgprot_set_cachemode(&prot, _PAGE_CACHE_MODE_WT);
954 return prot;
955 }
956 EXPORT_SYMBOL_GPL(pgprot_writethrough);
957
958 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT)
959
960 /*
961 * We are allocating a temporary printout-entry to be passed
962 * between seq_start()/next() and seq_show():
963 */
memtype_get_idx(loff_t pos)964 static struct memtype *memtype_get_idx(loff_t pos)
965 {
966 struct memtype *entry_print;
967 int ret;
968
969 entry_print = kzalloc(sizeof(struct memtype), GFP_KERNEL);
970 if (!entry_print)
971 return NULL;
972
973 spin_lock(&memtype_lock);
974 ret = memtype_copy_nth_element(entry_print, pos);
975 spin_unlock(&memtype_lock);
976
977 /* Free it on error: */
978 if (ret) {
979 kfree(entry_print);
980 return NULL;
981 }
982
983 return entry_print;
984 }
985
memtype_seq_start(struct seq_file * seq,loff_t * pos)986 static void *memtype_seq_start(struct seq_file *seq, loff_t *pos)
987 {
988 if (*pos == 0) {
989 ++*pos;
990 seq_puts(seq, "PAT memtype list:\n");
991 }
992
993 return memtype_get_idx(*pos);
994 }
995
memtype_seq_next(struct seq_file * seq,void * v,loff_t * pos)996 static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
997 {
998 kfree(v);
999 ++*pos;
1000 return memtype_get_idx(*pos);
1001 }
1002
memtype_seq_stop(struct seq_file * seq,void * v)1003 static void memtype_seq_stop(struct seq_file *seq, void *v)
1004 {
1005 kfree(v);
1006 }
1007
memtype_seq_show(struct seq_file * seq,void * v)1008 static int memtype_seq_show(struct seq_file *seq, void *v)
1009 {
1010 struct memtype *entry_print = (struct memtype *)v;
1011
1012 seq_printf(seq, "PAT: [mem 0x%016Lx-0x%016Lx] %s\n",
1013 entry_print->start,
1014 entry_print->end,
1015 cattr_name(entry_print->type));
1016
1017 return 0;
1018 }
1019
1020 static const struct seq_operations memtype_seq_ops = {
1021 .start = memtype_seq_start,
1022 .next = memtype_seq_next,
1023 .stop = memtype_seq_stop,
1024 .show = memtype_seq_show,
1025 };
1026
memtype_seq_open(struct inode * inode,struct file * file)1027 static int memtype_seq_open(struct inode *inode, struct file *file)
1028 {
1029 return seq_open(file, &memtype_seq_ops);
1030 }
1031
1032 static const struct file_operations memtype_fops = {
1033 .open = memtype_seq_open,
1034 .read = seq_read,
1035 .llseek = seq_lseek,
1036 .release = seq_release,
1037 };
1038
pat_memtype_list_init(void)1039 static int __init pat_memtype_list_init(void)
1040 {
1041 if (pat_enabled()) {
1042 debugfs_create_file("pat_memtype_list", S_IRUSR,
1043 arch_debugfs_dir, NULL, &memtype_fops);
1044 }
1045 return 0;
1046 }
1047 late_initcall(pat_memtype_list_init);
1048
1049 #endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */
1050