xref: /linux/arch/x86/mm/pat/memtype.c (revision 00c010e130e58301db2ea0cec1eadc931e1cb8cf)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Page Attribute Table (PAT) support: handle memory caching attributes in page tables.
4  *
5  * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
6  *          Suresh B Siddha <suresh.b.siddha@intel.com>
7  *
8  * Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen.
9  *
10  * Basic principles:
11  *
12  * PAT is a CPU feature supported by all modern x86 CPUs, to allow the firmware and
13  * the kernel to set one of a handful of 'caching type' attributes for physical
14  * memory ranges: uncached, write-combining, write-through, write-protected,
15  * and the most commonly used and default attribute: write-back caching.
16  *
17  * PAT support supersedes and augments MTRR support in a compatible fashion: MTRR is
18  * a hardware interface to enumerate a limited number of physical memory ranges
19  * and set their caching attributes explicitly, programmed into the CPU via MSRs.
20  * Even modern CPUs have MTRRs enabled - but these are typically not touched
21  * by the kernel or by user-space (such as the X server), we rely on PAT for any
22  * additional cache attribute logic.
23  *
24  * PAT doesn't work via explicit memory ranges, but uses page table entries to add
25  * cache attribute information to the mapped memory range: there's 3 bits used,
26  * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT), with the 8 possible values mapped by the
27  * CPU to actual cache attributes via an MSR loaded into the CPU (MSR_IA32_CR_PAT).
28  *
29  * ( There's a metric ton of finer details, such as compatibility with CPU quirks
30  *   that only support 4 types of PAT entries, and interaction with MTRRs, see
31  *   below for details. )
32  */
33 
34 #include <linux/seq_file.h>
35 #include <linux/memblock.h>
36 #include <linux/debugfs.h>
37 #include <linux/ioport.h>
38 #include <linux/kernel.h>
39 #include <linux/pfn_t.h>
40 #include <linux/slab.h>
41 #include <linux/io.h>
42 #include <linux/mm.h>
43 #include <linux/highmem.h>
44 #include <linux/fs.h>
45 #include <linux/rbtree.h>
46 
47 #include <asm/cpu_device_id.h>
48 #include <asm/cacheflush.h>
49 #include <asm/cacheinfo.h>
50 #include <asm/processor.h>
51 #include <asm/tlbflush.h>
52 #include <asm/x86_init.h>
53 #include <asm/fcntl.h>
54 #include <asm/e820/api.h>
55 #include <asm/mtrr.h>
56 #include <asm/page.h>
57 #include <asm/msr.h>
58 #include <asm/memtype.h>
59 #include <asm/io.h>
60 
61 #include "memtype.h"
62 #include "../mm_internal.h"
63 
64 #undef pr_fmt
65 #define pr_fmt(fmt) "" fmt
66 
67 static bool __read_mostly pat_disabled = !IS_ENABLED(CONFIG_X86_PAT);
68 static u64 __ro_after_init pat_msr_val;
69 
70 /*
71  * PAT support is enabled by default, but can be disabled for
72  * various user-requested or hardware-forced reasons:
73  */
pat_disable(const char * msg_reason)74 static void __init pat_disable(const char *msg_reason)
75 {
76 	if (pat_disabled)
77 		return;
78 
79 	pat_disabled = true;
80 	pr_info("x86/PAT: %s\n", msg_reason);
81 
82 	memory_caching_control &= ~CACHE_PAT;
83 }
84 
nopat(char * str)85 static int __init nopat(char *str)
86 {
87 	pat_disable("PAT support disabled via boot option.");
88 	return 0;
89 }
90 early_param("nopat", nopat);
91 
pat_enabled(void)92 bool pat_enabled(void)
93 {
94 	return !pat_disabled;
95 }
96 EXPORT_SYMBOL_GPL(pat_enabled);
97 
98 int pat_debug_enable;
99 
pat_debug_setup(char * str)100 static int __init pat_debug_setup(char *str)
101 {
102 	pat_debug_enable = 1;
103 	return 1;
104 }
105 __setup("debugpat", pat_debug_setup);
106 
107 #ifdef CONFIG_X86_PAT
108 /*
109  * X86 PAT uses page flags arch_1 and arch_2 together to keep track of
110  * memory type of pages that have backing page struct.
111  *
112  * X86 PAT supports 4 different memory types:
113  *  - _PAGE_CACHE_MODE_WB
114  *  - _PAGE_CACHE_MODE_WC
115  *  - _PAGE_CACHE_MODE_UC_MINUS
116  *  - _PAGE_CACHE_MODE_WT
117  *
118  * _PAGE_CACHE_MODE_WB is the default type.
119  */
120 
121 #define _PGMT_WB		0
122 #define _PGMT_WC		(1UL << PG_arch_1)
123 #define _PGMT_UC_MINUS		(1UL << PG_arch_2)
124 #define _PGMT_WT		(1UL << PG_arch_2 | 1UL << PG_arch_1)
125 #define _PGMT_MASK		(1UL << PG_arch_2 | 1UL << PG_arch_1)
126 #define _PGMT_CLEAR_MASK	(~_PGMT_MASK)
127 
get_page_memtype(struct page * pg)128 static inline enum page_cache_mode get_page_memtype(struct page *pg)
129 {
130 	unsigned long pg_flags = pg->flags & _PGMT_MASK;
131 
132 	if (pg_flags == _PGMT_WB)
133 		return _PAGE_CACHE_MODE_WB;
134 	else if (pg_flags == _PGMT_WC)
135 		return _PAGE_CACHE_MODE_WC;
136 	else if (pg_flags == _PGMT_UC_MINUS)
137 		return _PAGE_CACHE_MODE_UC_MINUS;
138 	else
139 		return _PAGE_CACHE_MODE_WT;
140 }
141 
set_page_memtype(struct page * pg,enum page_cache_mode memtype)142 static inline void set_page_memtype(struct page *pg,
143 				    enum page_cache_mode memtype)
144 {
145 	unsigned long memtype_flags;
146 	unsigned long old_flags;
147 	unsigned long new_flags;
148 
149 	switch (memtype) {
150 	case _PAGE_CACHE_MODE_WC:
151 		memtype_flags = _PGMT_WC;
152 		break;
153 	case _PAGE_CACHE_MODE_UC_MINUS:
154 		memtype_flags = _PGMT_UC_MINUS;
155 		break;
156 	case _PAGE_CACHE_MODE_WT:
157 		memtype_flags = _PGMT_WT;
158 		break;
159 	case _PAGE_CACHE_MODE_WB:
160 	default:
161 		memtype_flags = _PGMT_WB;
162 		break;
163 	}
164 
165 	old_flags = READ_ONCE(pg->flags);
166 	do {
167 		new_flags = (old_flags & _PGMT_CLEAR_MASK) | memtype_flags;
168 	} while (!try_cmpxchg(&pg->flags, &old_flags, new_flags));
169 }
170 #else
get_page_memtype(struct page * pg)171 static inline enum page_cache_mode get_page_memtype(struct page *pg)
172 {
173 	return -1;
174 }
set_page_memtype(struct page * pg,enum page_cache_mode memtype)175 static inline void set_page_memtype(struct page *pg,
176 				    enum page_cache_mode memtype)
177 {
178 }
179 #endif
180 
181 #define CM(c) (_PAGE_CACHE_MODE_ ## c)
182 
pat_get_cache_mode(unsigned int pat_val,char * msg)183 static enum page_cache_mode __init pat_get_cache_mode(unsigned int pat_val,
184 						      char *msg)
185 {
186 	enum page_cache_mode cache;
187 	char *cache_mode;
188 
189 	switch (pat_val) {
190 	case X86_MEMTYPE_UC:       cache = CM(UC);       cache_mode = "UC  "; break;
191 	case X86_MEMTYPE_WC:       cache = CM(WC);       cache_mode = "WC  "; break;
192 	case X86_MEMTYPE_WT:       cache = CM(WT);       cache_mode = "WT  "; break;
193 	case X86_MEMTYPE_WP:       cache = CM(WP);       cache_mode = "WP  "; break;
194 	case X86_MEMTYPE_WB:       cache = CM(WB);       cache_mode = "WB  "; break;
195 	case X86_MEMTYPE_UC_MINUS: cache = CM(UC_MINUS); cache_mode = "UC- "; break;
196 	default:                   cache = CM(WB);       cache_mode = "WB  "; break;
197 	}
198 
199 	memcpy(msg, cache_mode, 4);
200 
201 	return cache;
202 }
203 
204 #undef CM
205 
206 /*
207  * Update the cache mode to pgprot translation tables according to PAT
208  * configuration.
209  * Using lower indices is preferred, so we start with highest index.
210  */
init_cache_modes(u64 pat)211 static void __init init_cache_modes(u64 pat)
212 {
213 	enum page_cache_mode cache;
214 	char pat_msg[33];
215 	int i;
216 
217 	pat_msg[32] = 0;
218 	for (i = 7; i >= 0; i--) {
219 		cache = pat_get_cache_mode((pat >> (i * 8)) & 7,
220 					   pat_msg + 4 * i);
221 		update_cache_mode_entry(i, cache);
222 	}
223 	pr_info("x86/PAT: Configuration [0-7]: %s\n", pat_msg);
224 }
225 
pat_cpu_init(void)226 void pat_cpu_init(void)
227 {
228 	if (!boot_cpu_has(X86_FEATURE_PAT)) {
229 		/*
230 		 * If this happens we are on a secondary CPU, but switched to
231 		 * PAT on the boot CPU. We have no way to undo PAT.
232 		 */
233 		panic("x86/PAT: PAT enabled, but not supported by secondary CPU\n");
234 	}
235 
236 	wrmsrq(MSR_IA32_CR_PAT, pat_msr_val);
237 
238 	__flush_tlb_all();
239 }
240 
241 /**
242  * pat_bp_init - Initialize the PAT MSR value and PAT table
243  *
244  * This function initializes PAT MSR value and PAT table with an OS-defined
245  * value to enable additional cache attributes, WC, WT and WP.
246  *
247  * This function prepares the calls of pat_cpu_init() via cache_cpu_init()
248  * on all CPUs.
249  */
pat_bp_init(void)250 void __init pat_bp_init(void)
251 {
252 	struct cpuinfo_x86 *c = &boot_cpu_data;
253 
254 	if (!IS_ENABLED(CONFIG_X86_PAT))
255 		pr_info_once("x86/PAT: PAT support disabled because CONFIG_X86_PAT is disabled in the kernel.\n");
256 
257 	if (!cpu_feature_enabled(X86_FEATURE_PAT))
258 		pat_disable("PAT not supported by the CPU.");
259 	else
260 		rdmsrq(MSR_IA32_CR_PAT, pat_msr_val);
261 
262 	if (!pat_msr_val) {
263 		pat_disable("PAT support disabled by the firmware.");
264 
265 		/*
266 		 * No PAT. Emulate the PAT table that corresponds to the two
267 		 * cache bits, PWT (Write Through) and PCD (Cache Disable).
268 		 * This setup is also the same as the BIOS default setup.
269 		 *
270 		 * PTE encoding:
271 		 *
272 		 *       PCD
273 		 *       |PWT  PAT
274 		 *       ||    slot
275 		 *       00    0    WB : _PAGE_CACHE_MODE_WB
276 		 *       01    1    WT : _PAGE_CACHE_MODE_WT
277 		 *       10    2    UC-: _PAGE_CACHE_MODE_UC_MINUS
278 		 *       11    3    UC : _PAGE_CACHE_MODE_UC
279 		 *
280 		 * NOTE: When WC or WP is used, it is redirected to UC- per
281 		 * the default setup in __cachemode2pte_tbl[].
282 		 */
283 		pat_msr_val = PAT_VALUE(WB, WT, UC_MINUS, UC, WB, WT, UC_MINUS, UC);
284 	}
285 
286 	/*
287 	 * Xen PV doesn't allow to set PAT MSR, but all cache modes are
288 	 * supported.
289 	 */
290 	if (pat_disabled || cpu_feature_enabled(X86_FEATURE_XENPV)) {
291 		init_cache_modes(pat_msr_val);
292 		return;
293 	}
294 
295 	if ((c->x86_vfm >= INTEL_PENTIUM_PRO   && c->x86_vfm <= INTEL_PENTIUM_M_DOTHAN) ||
296 	    (c->x86_vfm >= INTEL_P4_WILLAMETTE && c->x86_vfm <= INTEL_P4_CEDARMILL)) {
297 		/*
298 		 * PAT support with the lower four entries. Intel Pentium 2,
299 		 * 3, M, and 4 are affected by PAT errata, which makes the
300 		 * upper four entries unusable. To be on the safe side, we don't
301 		 * use those.
302 		 *
303 		 *  PTE encoding:
304 		 *      PAT
305 		 *      |PCD
306 		 *      ||PWT  PAT
307 		 *      |||    slot
308 		 *      000    0    WB : _PAGE_CACHE_MODE_WB
309 		 *      001    1    WC : _PAGE_CACHE_MODE_WC
310 		 *      010    2    UC-: _PAGE_CACHE_MODE_UC_MINUS
311 		 *      011    3    UC : _PAGE_CACHE_MODE_UC
312 		 * PAT bit unused
313 		 *
314 		 * NOTE: When WT or WP is used, it is redirected to UC- per
315 		 * the default setup in __cachemode2pte_tbl[].
316 		 */
317 		pat_msr_val = PAT_VALUE(WB, WC, UC_MINUS, UC, WB, WC, UC_MINUS, UC);
318 	} else {
319 		/*
320 		 * Full PAT support.  We put WT in slot 7 to improve
321 		 * robustness in the presence of errata that might cause
322 		 * the high PAT bit to be ignored.  This way, a buggy slot 7
323 		 * access will hit slot 3, and slot 3 is UC, so at worst
324 		 * we lose performance without causing a correctness issue.
325 		 * Pentium 4 erratum N46 is an example for such an erratum,
326 		 * although we try not to use PAT at all on affected CPUs.
327 		 *
328 		 *  PTE encoding:
329 		 *      PAT
330 		 *      |PCD
331 		 *      ||PWT  PAT
332 		 *      |||    slot
333 		 *      000    0    WB : _PAGE_CACHE_MODE_WB
334 		 *      001    1    WC : _PAGE_CACHE_MODE_WC
335 		 *      010    2    UC-: _PAGE_CACHE_MODE_UC_MINUS
336 		 *      011    3    UC : _PAGE_CACHE_MODE_UC
337 		 *      100    4    WB : Reserved
338 		 *      101    5    WP : _PAGE_CACHE_MODE_WP
339 		 *      110    6    UC-: Reserved
340 		 *      111    7    WT : _PAGE_CACHE_MODE_WT
341 		 *
342 		 * The reserved slots are unused, but mapped to their
343 		 * corresponding types in the presence of PAT errata.
344 		 */
345 		pat_msr_val = PAT_VALUE(WB, WC, UC_MINUS, UC, WB, WP, UC_MINUS, WT);
346 	}
347 
348 	memory_caching_control |= CACHE_PAT;
349 
350 	init_cache_modes(pat_msr_val);
351 }
352 
353 static DEFINE_SPINLOCK(memtype_lock);	/* protects memtype accesses */
354 
355 /*
356  * Does intersection of PAT memory type and MTRR memory type and returns
357  * the resulting memory type as PAT understands it.
358  * (Type in pat and mtrr will not have same value)
359  * The intersection is based on "Effective Memory Type" tables in IA-32
360  * SDM vol 3a
361  */
pat_x_mtrr_type(u64 start,u64 end,enum page_cache_mode req_type)362 static unsigned long pat_x_mtrr_type(u64 start, u64 end,
363 				     enum page_cache_mode req_type)
364 {
365 	/*
366 	 * Look for MTRR hint to get the effective type in case where PAT
367 	 * request is for WB.
368 	 */
369 	if (req_type == _PAGE_CACHE_MODE_WB) {
370 		u8 mtrr_type, uniform;
371 
372 		mtrr_type = mtrr_type_lookup(start, end, &uniform);
373 		if (mtrr_type != MTRR_TYPE_WRBACK)
374 			return _PAGE_CACHE_MODE_UC_MINUS;
375 
376 		return _PAGE_CACHE_MODE_WB;
377 	}
378 
379 	return req_type;
380 }
381 
382 struct pagerange_state {
383 	unsigned long		cur_pfn;
384 	int			ram;
385 	int			not_ram;
386 };
387 
388 static int
pagerange_is_ram_callback(unsigned long initial_pfn,unsigned long total_nr_pages,void * arg)389 pagerange_is_ram_callback(unsigned long initial_pfn, unsigned long total_nr_pages, void *arg)
390 {
391 	struct pagerange_state *state = arg;
392 
393 	state->not_ram	|= initial_pfn > state->cur_pfn;
394 	state->ram	|= total_nr_pages > 0;
395 	state->cur_pfn	 = initial_pfn + total_nr_pages;
396 
397 	return state->ram && state->not_ram;
398 }
399 
pat_pagerange_is_ram(resource_size_t start,resource_size_t end)400 static int pat_pagerange_is_ram(resource_size_t start, resource_size_t end)
401 {
402 	int ret = 0;
403 	unsigned long start_pfn = start >> PAGE_SHIFT;
404 	unsigned long end_pfn = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
405 	struct pagerange_state state = {start_pfn, 0, 0};
406 
407 	/*
408 	 * For legacy reasons, physical address range in the legacy ISA
409 	 * region is tracked as non-RAM. This will allow users of
410 	 * /dev/mem to map portions of legacy ISA region, even when
411 	 * some of those portions are listed(or not even listed) with
412 	 * different e820 types(RAM/reserved/..)
413 	 */
414 	if (start_pfn < ISA_END_ADDRESS >> PAGE_SHIFT)
415 		start_pfn = ISA_END_ADDRESS >> PAGE_SHIFT;
416 
417 	if (start_pfn < end_pfn) {
418 		ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
419 				&state, pagerange_is_ram_callback);
420 	}
421 
422 	return (ret > 0) ? -1 : (state.ram ? 1 : 0);
423 }
424 
425 /*
426  * For RAM pages, we use page flags to mark the pages with appropriate type.
427  * The page flags are limited to four types, WB (default), WC, WT and UC-.
428  * WP request fails with -EINVAL, and UC gets redirected to UC-.  Setting
429  * a new memory type is only allowed for a page mapped with the default WB
430  * type.
431  *
432  * Here we do two passes:
433  * - Find the memtype of all the pages in the range, look for any conflicts.
434  * - In case of no conflicts, set the new memtype for pages in the range.
435  */
reserve_ram_pages_type(u64 start,u64 end,enum page_cache_mode req_type,enum page_cache_mode * new_type)436 static int reserve_ram_pages_type(u64 start, u64 end,
437 				  enum page_cache_mode req_type,
438 				  enum page_cache_mode *new_type)
439 {
440 	struct page *page;
441 	u64 pfn;
442 
443 	if (req_type == _PAGE_CACHE_MODE_WP) {
444 		if (new_type)
445 			*new_type = _PAGE_CACHE_MODE_UC_MINUS;
446 		return -EINVAL;
447 	}
448 
449 	if (req_type == _PAGE_CACHE_MODE_UC) {
450 		/* We do not support strong UC */
451 		WARN_ON_ONCE(1);
452 		req_type = _PAGE_CACHE_MODE_UC_MINUS;
453 	}
454 
455 	for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
456 		enum page_cache_mode type;
457 
458 		page = pfn_to_page(pfn);
459 		type = get_page_memtype(page);
460 		if (type != _PAGE_CACHE_MODE_WB) {
461 			pr_info("x86/PAT: reserve_ram_pages_type failed [mem %#010Lx-%#010Lx], track 0x%x, req 0x%x\n",
462 				start, end - 1, type, req_type);
463 			if (new_type)
464 				*new_type = type;
465 
466 			return -EBUSY;
467 		}
468 	}
469 
470 	if (new_type)
471 		*new_type = req_type;
472 
473 	for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
474 		page = pfn_to_page(pfn);
475 		set_page_memtype(page, req_type);
476 	}
477 	return 0;
478 }
479 
free_ram_pages_type(u64 start,u64 end)480 static int free_ram_pages_type(u64 start, u64 end)
481 {
482 	struct page *page;
483 	u64 pfn;
484 
485 	for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
486 		page = pfn_to_page(pfn);
487 		set_page_memtype(page, _PAGE_CACHE_MODE_WB);
488 	}
489 	return 0;
490 }
491 
sanitize_phys(u64 address)492 static u64 sanitize_phys(u64 address)
493 {
494 	/*
495 	 * When changing the memtype for pages containing poison allow
496 	 * for a "decoy" virtual address (bit 63 clear) passed to
497 	 * set_memory_X(). __pa() on a "decoy" address results in a
498 	 * physical address with bit 63 set.
499 	 *
500 	 * Decoy addresses are not present for 32-bit builds, see
501 	 * set_mce_nospec().
502 	 */
503 	if (IS_ENABLED(CONFIG_X86_64))
504 		return address & __PHYSICAL_MASK;
505 	return address;
506 }
507 
508 /*
509  * req_type typically has one of the:
510  * - _PAGE_CACHE_MODE_WB
511  * - _PAGE_CACHE_MODE_WC
512  * - _PAGE_CACHE_MODE_UC_MINUS
513  * - _PAGE_CACHE_MODE_UC
514  * - _PAGE_CACHE_MODE_WT
515  *
516  * If new_type is NULL, function will return an error if it cannot reserve the
517  * region with req_type. If new_type is non-NULL, function will return
518  * available type in new_type in case of no error. In case of any error
519  * it will return a negative return value.
520  */
memtype_reserve(u64 start,u64 end,enum page_cache_mode req_type,enum page_cache_mode * new_type)521 int memtype_reserve(u64 start, u64 end, enum page_cache_mode req_type,
522 		    enum page_cache_mode *new_type)
523 {
524 	struct memtype *entry_new;
525 	enum page_cache_mode actual_type;
526 	int is_range_ram;
527 	int err = 0;
528 
529 	start = sanitize_phys(start);
530 
531 	/*
532 	 * The end address passed into this function is exclusive, but
533 	 * sanitize_phys() expects an inclusive address.
534 	 */
535 	end = sanitize_phys(end - 1) + 1;
536 	if (start >= end) {
537 		WARN(1, "%s failed: [mem %#010Lx-%#010Lx], req %s\n", __func__,
538 				start, end - 1, cattr_name(req_type));
539 		return -EINVAL;
540 	}
541 
542 	if (!pat_enabled()) {
543 		/* This is identical to page table setting without PAT */
544 		if (new_type)
545 			*new_type = req_type;
546 		return 0;
547 	}
548 
549 	/* Low ISA region is always mapped WB in page table. No need to track */
550 	if (x86_platform.is_untracked_pat_range(start, end)) {
551 		if (new_type)
552 			*new_type = _PAGE_CACHE_MODE_WB;
553 		return 0;
554 	}
555 
556 	/*
557 	 * Call mtrr_lookup to get the type hint. This is an
558 	 * optimization for /dev/mem mmap'ers into WB memory (BIOS
559 	 * tools and ACPI tools). Use WB request for WB memory and use
560 	 * UC_MINUS otherwise.
561 	 */
562 	actual_type = pat_x_mtrr_type(start, end, req_type);
563 
564 	if (new_type)
565 		*new_type = actual_type;
566 
567 	is_range_ram = pat_pagerange_is_ram(start, end);
568 	if (is_range_ram == 1) {
569 
570 		err = reserve_ram_pages_type(start, end, req_type, new_type);
571 
572 		return err;
573 	} else if (is_range_ram < 0) {
574 		return -EINVAL;
575 	}
576 
577 	entry_new = kzalloc(sizeof(struct memtype), GFP_KERNEL);
578 	if (!entry_new)
579 		return -ENOMEM;
580 
581 	entry_new->start = start;
582 	entry_new->end	 = end;
583 	entry_new->type	 = actual_type;
584 
585 	spin_lock(&memtype_lock);
586 
587 	err = memtype_check_insert(entry_new, new_type);
588 	if (err) {
589 		pr_info("x86/PAT: memtype_reserve failed [mem %#010Lx-%#010Lx], track %s, req %s\n",
590 			start, end - 1,
591 			cattr_name(entry_new->type), cattr_name(req_type));
592 		kfree(entry_new);
593 		spin_unlock(&memtype_lock);
594 
595 		return err;
596 	}
597 
598 	spin_unlock(&memtype_lock);
599 
600 	dprintk("memtype_reserve added [mem %#010Lx-%#010Lx], track %s, req %s, ret %s\n",
601 		start, end - 1, cattr_name(entry_new->type), cattr_name(req_type),
602 		new_type ? cattr_name(*new_type) : "-");
603 
604 	return err;
605 }
606 
memtype_free(u64 start,u64 end)607 int memtype_free(u64 start, u64 end)
608 {
609 	int is_range_ram;
610 	struct memtype *entry_old;
611 
612 	if (!pat_enabled())
613 		return 0;
614 
615 	start = sanitize_phys(start);
616 	end = sanitize_phys(end);
617 
618 	/* Low ISA region is always mapped WB. No need to track */
619 	if (x86_platform.is_untracked_pat_range(start, end))
620 		return 0;
621 
622 	is_range_ram = pat_pagerange_is_ram(start, end);
623 	if (is_range_ram == 1)
624 		return free_ram_pages_type(start, end);
625 	if (is_range_ram < 0)
626 		return -EINVAL;
627 
628 	spin_lock(&memtype_lock);
629 	entry_old = memtype_erase(start, end);
630 	spin_unlock(&memtype_lock);
631 
632 	if (IS_ERR(entry_old)) {
633 		pr_info("x86/PAT: %s:%d freeing invalid memtype [mem %#010Lx-%#010Lx]\n",
634 			current->comm, current->pid, start, end - 1);
635 		return -EINVAL;
636 	}
637 
638 	kfree(entry_old);
639 
640 	dprintk("memtype_free request [mem %#010Lx-%#010Lx]\n", start, end - 1);
641 
642 	return 0;
643 }
644 
645 
646 /**
647  * lookup_memtype - Looks up the memory type for a physical address
648  * @paddr: physical address of which memory type needs to be looked up
649  *
650  * Only to be called when PAT is enabled
651  *
652  * Returns _PAGE_CACHE_MODE_WB, _PAGE_CACHE_MODE_WC, _PAGE_CACHE_MODE_UC_MINUS
653  * or _PAGE_CACHE_MODE_WT.
654  */
lookup_memtype(u64 paddr)655 static enum page_cache_mode lookup_memtype(u64 paddr)
656 {
657 	enum page_cache_mode rettype = _PAGE_CACHE_MODE_WB;
658 	struct memtype *entry;
659 
660 	if (x86_platform.is_untracked_pat_range(paddr, paddr + PAGE_SIZE))
661 		return rettype;
662 
663 	if (pat_pagerange_is_ram(paddr, paddr + PAGE_SIZE)) {
664 		struct page *page;
665 
666 		page = pfn_to_page(paddr >> PAGE_SHIFT);
667 		return get_page_memtype(page);
668 	}
669 
670 	spin_lock(&memtype_lock);
671 
672 	entry = memtype_lookup(paddr);
673 	if (entry != NULL)
674 		rettype = entry->type;
675 	else
676 		rettype = _PAGE_CACHE_MODE_UC_MINUS;
677 
678 	spin_unlock(&memtype_lock);
679 
680 	return rettype;
681 }
682 
683 /**
684  * pat_pfn_immune_to_uc_mtrr - Check whether the PAT memory type
685  * of @pfn cannot be overridden by UC MTRR memory type.
686  * @pfn: The page frame number to check.
687  *
688  * Only to be called when PAT is enabled.
689  *
690  * Returns true, if the PAT memory type of @pfn is UC, UC-, or WC.
691  * Returns false in other cases.
692  */
pat_pfn_immune_to_uc_mtrr(unsigned long pfn)693 bool pat_pfn_immune_to_uc_mtrr(unsigned long pfn)
694 {
695 	enum page_cache_mode cm = lookup_memtype(PFN_PHYS(pfn));
696 
697 	return cm == _PAGE_CACHE_MODE_UC ||
698 	       cm == _PAGE_CACHE_MODE_UC_MINUS ||
699 	       cm == _PAGE_CACHE_MODE_WC;
700 }
701 EXPORT_SYMBOL_GPL(pat_pfn_immune_to_uc_mtrr);
702 
703 /**
704  * memtype_reserve_io - Request a memory type mapping for a region of memory
705  * @start: start (physical address) of the region
706  * @end: end (physical address) of the region
707  * @type: A pointer to memtype, with requested type. On success, requested
708  * or any other compatible type that was available for the region is returned
709  *
710  * On success, returns 0
711  * On failure, returns non-zero
712  */
memtype_reserve_io(resource_size_t start,resource_size_t end,enum page_cache_mode * type)713 int memtype_reserve_io(resource_size_t start, resource_size_t end,
714 			enum page_cache_mode *type)
715 {
716 	resource_size_t size = end - start;
717 	enum page_cache_mode req_type = *type;
718 	enum page_cache_mode new_type;
719 	int ret;
720 
721 	WARN_ON_ONCE(iomem_map_sanity_check(start, size));
722 
723 	ret = memtype_reserve(start, end, req_type, &new_type);
724 	if (ret)
725 		goto out_err;
726 
727 	if (!is_new_memtype_allowed(start, size, req_type, new_type))
728 		goto out_free;
729 
730 	if (memtype_kernel_map_sync(start, size, new_type) < 0)
731 		goto out_free;
732 
733 	*type = new_type;
734 	return 0;
735 
736 out_free:
737 	memtype_free(start, end);
738 	ret = -EBUSY;
739 out_err:
740 	return ret;
741 }
742 
743 /**
744  * memtype_free_io - Release a memory type mapping for a region of memory
745  * @start: start (physical address) of the region
746  * @end: end (physical address) of the region
747  */
memtype_free_io(resource_size_t start,resource_size_t end)748 void memtype_free_io(resource_size_t start, resource_size_t end)
749 {
750 	memtype_free(start, end);
751 }
752 
753 #ifdef CONFIG_X86_PAT
arch_io_reserve_memtype_wc(resource_size_t start,resource_size_t size)754 int arch_io_reserve_memtype_wc(resource_size_t start, resource_size_t size)
755 {
756 	enum page_cache_mode type = _PAGE_CACHE_MODE_WC;
757 
758 	return memtype_reserve_io(start, start + size, &type);
759 }
760 EXPORT_SYMBOL(arch_io_reserve_memtype_wc);
761 
arch_io_free_memtype_wc(resource_size_t start,resource_size_t size)762 void arch_io_free_memtype_wc(resource_size_t start, resource_size_t size)
763 {
764 	memtype_free_io(start, start + size);
765 }
766 EXPORT_SYMBOL(arch_io_free_memtype_wc);
767 #endif
768 
phys_mem_access_prot(struct file * file,unsigned long pfn,unsigned long size,pgprot_t vma_prot)769 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
770 				unsigned long size, pgprot_t vma_prot)
771 {
772 	if (!phys_mem_access_encrypted(pfn << PAGE_SHIFT, size))
773 		vma_prot = pgprot_decrypted(vma_prot);
774 
775 	return vma_prot;
776 }
777 
pgprot_set_cachemode(pgprot_t * prot,enum page_cache_mode pcm)778 static inline void pgprot_set_cachemode(pgprot_t *prot, enum page_cache_mode pcm)
779 {
780 	*prot = __pgprot((pgprot_val(*prot) & ~_PAGE_CACHE_MASK) |
781 			 cachemode2protval(pcm));
782 }
783 
phys_mem_access_prot_allowed(struct file * file,unsigned long pfn,unsigned long size,pgprot_t * vma_prot)784 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
785 				unsigned long size, pgprot_t *vma_prot)
786 {
787 	enum page_cache_mode pcm = _PAGE_CACHE_MODE_WB;
788 
789 	if (!pat_enabled())
790 		return 1;
791 
792 	if (!range_is_allowed(pfn, size))
793 		return 0;
794 
795 	if (file->f_flags & O_DSYNC)
796 		pcm = _PAGE_CACHE_MODE_UC_MINUS;
797 
798 	pgprot_set_cachemode(vma_prot, pcm);
799 	return 1;
800 }
801 
802 /*
803  * Change the memory type for the physical address range in kernel identity
804  * mapping space if that range is a part of identity map.
805  */
memtype_kernel_map_sync(u64 base,unsigned long size,enum page_cache_mode pcm)806 int memtype_kernel_map_sync(u64 base, unsigned long size,
807 			    enum page_cache_mode pcm)
808 {
809 	unsigned long id_sz;
810 
811 	if (base > __pa(high_memory-1))
812 		return 0;
813 
814 	/*
815 	 * Some areas in the middle of the kernel identity range
816 	 * are not mapped, for example the PCI space.
817 	 */
818 	if (!page_is_ram(base >> PAGE_SHIFT))
819 		return 0;
820 
821 	id_sz = (__pa(high_memory-1) <= base + size) ?
822 				__pa(high_memory) - base : size;
823 
824 	if (ioremap_change_attr((unsigned long)__va(base), id_sz, pcm) < 0) {
825 		pr_info("x86/PAT: %s:%d ioremap_change_attr failed %s for [mem %#010Lx-%#010Lx]\n",
826 			current->comm, current->pid,
827 			cattr_name(pcm),
828 			base, (unsigned long long)(base + size-1));
829 		return -EINVAL;
830 	}
831 	return 0;
832 }
833 
834 /*
835  * Internal interface to reserve a range of physical memory with prot.
836  * Reserved non RAM regions only and after successful memtype_reserve,
837  * this func also keeps identity mapping (if any) in sync with this new prot.
838  */
reserve_pfn_range(u64 paddr,unsigned long size,pgprot_t * vma_prot)839 static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot)
840 {
841 	int is_ram = 0;
842 	int ret;
843 	enum page_cache_mode want_pcm = pgprot2cachemode(*vma_prot);
844 	enum page_cache_mode pcm = want_pcm;
845 
846 	is_ram = pat_pagerange_is_ram(paddr, paddr + size);
847 
848 	/*
849 	 * reserve_pfn_range() for RAM pages. We do not refcount to keep
850 	 * track of number of mappings of RAM pages. We can assert that
851 	 * the type requested matches the type of first page in the range.
852 	 */
853 	if (is_ram) {
854 		if (!pat_enabled())
855 			return 0;
856 
857 		pcm = lookup_memtype(paddr);
858 		if (want_pcm != pcm) {
859 			pr_warn("x86/PAT: %s:%d map pfn RAM range req %s for [mem %#010Lx-%#010Lx], got %s\n",
860 				current->comm, current->pid,
861 				cattr_name(want_pcm),
862 				(unsigned long long)paddr,
863 				(unsigned long long)(paddr + size - 1),
864 				cattr_name(pcm));
865 			pgprot_set_cachemode(vma_prot, pcm);
866 		}
867 		return 0;
868 	}
869 
870 	ret = memtype_reserve(paddr, paddr + size, want_pcm, &pcm);
871 	if (ret)
872 		return ret;
873 
874 	if (pcm != want_pcm) {
875 		if (!is_new_memtype_allowed(paddr, size, want_pcm, pcm)) {
876 			memtype_free(paddr, paddr + size);
877 			pr_err("x86/PAT: %s:%d map pfn expected mapping type %s for [mem %#010Lx-%#010Lx], got %s\n",
878 			       current->comm, current->pid,
879 			       cattr_name(want_pcm),
880 			       (unsigned long long)paddr,
881 			       (unsigned long long)(paddr + size - 1),
882 			       cattr_name(pcm));
883 			return -EINVAL;
884 		}
885 		pgprot_set_cachemode(vma_prot, pcm);
886 	}
887 
888 	if (memtype_kernel_map_sync(paddr, size, pcm) < 0) {
889 		memtype_free(paddr, paddr + size);
890 		return -EINVAL;
891 	}
892 	return 0;
893 }
894 
895 /*
896  * Internal interface to free a range of physical memory.
897  * Frees non RAM regions only.
898  */
free_pfn_range(u64 paddr,unsigned long size)899 static void free_pfn_range(u64 paddr, unsigned long size)
900 {
901 	int is_ram;
902 
903 	is_ram = pat_pagerange_is_ram(paddr, paddr + size);
904 	if (is_ram == 0)
905 		memtype_free(paddr, paddr + size);
906 }
907 
pfnmap_setup_cachemode(unsigned long pfn,unsigned long size,pgprot_t * prot)908 int pfnmap_setup_cachemode(unsigned long pfn, unsigned long size, pgprot_t *prot)
909 {
910 	resource_size_t paddr = (resource_size_t)pfn << PAGE_SHIFT;
911 	enum page_cache_mode pcm;
912 
913 	if (!pat_enabled())
914 		return 0;
915 
916 	pcm = lookup_memtype(paddr);
917 
918 	/* Check memtype for the remaining pages */
919 	while (size > PAGE_SIZE) {
920 		size -= PAGE_SIZE;
921 		paddr += PAGE_SIZE;
922 		if (pcm != lookup_memtype(paddr))
923 			return -EINVAL;
924 	}
925 
926 	pgprot_set_cachemode(prot, pcm);
927 	return 0;
928 }
929 
pfnmap_track(unsigned long pfn,unsigned long size,pgprot_t * prot)930 int pfnmap_track(unsigned long pfn, unsigned long size, pgprot_t *prot)
931 {
932 	const resource_size_t paddr = (resource_size_t)pfn << PAGE_SHIFT;
933 
934 	return reserve_pfn_range(paddr, size, prot);
935 }
936 
pfnmap_untrack(unsigned long pfn,unsigned long size)937 void pfnmap_untrack(unsigned long pfn, unsigned long size)
938 {
939 	const resource_size_t paddr = (resource_size_t)pfn << PAGE_SHIFT;
940 
941 	free_pfn_range(paddr, size);
942 }
943 
pgprot_writecombine(pgprot_t prot)944 pgprot_t pgprot_writecombine(pgprot_t prot)
945 {
946 	pgprot_set_cachemode(&prot, _PAGE_CACHE_MODE_WC);
947 	return prot;
948 }
949 EXPORT_SYMBOL_GPL(pgprot_writecombine);
950 
pgprot_writethrough(pgprot_t prot)951 pgprot_t pgprot_writethrough(pgprot_t prot)
952 {
953 	pgprot_set_cachemode(&prot, _PAGE_CACHE_MODE_WT);
954 	return prot;
955 }
956 EXPORT_SYMBOL_GPL(pgprot_writethrough);
957 
958 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT)
959 
960 /*
961  * We are allocating a temporary printout-entry to be passed
962  * between seq_start()/next() and seq_show():
963  */
memtype_get_idx(loff_t pos)964 static struct memtype *memtype_get_idx(loff_t pos)
965 {
966 	struct memtype *entry_print;
967 	int ret;
968 
969 	entry_print  = kzalloc(sizeof(struct memtype), GFP_KERNEL);
970 	if (!entry_print)
971 		return NULL;
972 
973 	spin_lock(&memtype_lock);
974 	ret = memtype_copy_nth_element(entry_print, pos);
975 	spin_unlock(&memtype_lock);
976 
977 	/* Free it on error: */
978 	if (ret) {
979 		kfree(entry_print);
980 		return NULL;
981 	}
982 
983 	return entry_print;
984 }
985 
memtype_seq_start(struct seq_file * seq,loff_t * pos)986 static void *memtype_seq_start(struct seq_file *seq, loff_t *pos)
987 {
988 	if (*pos == 0) {
989 		++*pos;
990 		seq_puts(seq, "PAT memtype list:\n");
991 	}
992 
993 	return memtype_get_idx(*pos);
994 }
995 
memtype_seq_next(struct seq_file * seq,void * v,loff_t * pos)996 static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
997 {
998 	kfree(v);
999 	++*pos;
1000 	return memtype_get_idx(*pos);
1001 }
1002 
memtype_seq_stop(struct seq_file * seq,void * v)1003 static void memtype_seq_stop(struct seq_file *seq, void *v)
1004 {
1005 	kfree(v);
1006 }
1007 
memtype_seq_show(struct seq_file * seq,void * v)1008 static int memtype_seq_show(struct seq_file *seq, void *v)
1009 {
1010 	struct memtype *entry_print = (struct memtype *)v;
1011 
1012 	seq_printf(seq, "PAT: [mem 0x%016Lx-0x%016Lx] %s\n",
1013 			entry_print->start,
1014 			entry_print->end,
1015 			cattr_name(entry_print->type));
1016 
1017 	return 0;
1018 }
1019 
1020 static const struct seq_operations memtype_seq_ops = {
1021 	.start = memtype_seq_start,
1022 	.next  = memtype_seq_next,
1023 	.stop  = memtype_seq_stop,
1024 	.show  = memtype_seq_show,
1025 };
1026 
memtype_seq_open(struct inode * inode,struct file * file)1027 static int memtype_seq_open(struct inode *inode, struct file *file)
1028 {
1029 	return seq_open(file, &memtype_seq_ops);
1030 }
1031 
1032 static const struct file_operations memtype_fops = {
1033 	.open    = memtype_seq_open,
1034 	.read    = seq_read,
1035 	.llseek  = seq_lseek,
1036 	.release = seq_release,
1037 };
1038 
pat_memtype_list_init(void)1039 static int __init pat_memtype_list_init(void)
1040 {
1041 	if (pat_enabled()) {
1042 		debugfs_create_file("pat_memtype_list", S_IRUSR,
1043 				    arch_debugfs_dir, NULL, &memtype_fops);
1044 	}
1045 	return 0;
1046 }
1047 late_initcall(pat_memtype_list_init);
1048 
1049 #endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */
1050