xref: /linux/drivers/firewire/core-transaction.c (revision 2912d799e5342de7c06821668b930fd94639bd78)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Core IEEE1394 transaction logic
4  *
5  * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
6  */
7 
8 #include <linux/bug.h>
9 #include <linux/completion.h>
10 #include <linux/device.h>
11 #include <linux/errno.h>
12 #include <linux/firewire.h>
13 #include <linux/firewire-constants.h>
14 #include <linux/fs.h>
15 #include <linux/init.h>
16 #include <linux/jiffies.h>
17 #include <linux/kernel.h>
18 #include <linux/list.h>
19 #include <linux/module.h>
20 #include <linux/rculist.h>
21 #include <linux/slab.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/timer.h>
25 #include <linux/types.h>
26 #include <linux/workqueue.h>
27 
28 #include <asm/byteorder.h>
29 
30 #include "core.h"
31 #include "packet-header-definitions.h"
32 #include "phy-packet-definitions.h"
33 #include <trace/events/firewire.h>
34 
35 #define HEADER_DESTINATION_IS_BROADCAST(header) \
36 	((async_header_get_destination(header) & 0x3f) == 0x3f)
37 
38 /* returns 0 if the split timeout handler is already running */
try_cancel_split_timeout(struct fw_transaction * t)39 static int try_cancel_split_timeout(struct fw_transaction *t)
40 {
41 	if (t->is_split_transaction)
42 		return timer_delete(&t->split_timeout_timer);
43 	else
44 		return 1;
45 }
46 
47 // card->transactions.lock must be acquired in advance.
remove_transaction_entry(struct fw_card * card,struct fw_transaction * entry)48 static void remove_transaction_entry(struct fw_card *card, struct fw_transaction *entry)
49 {
50 	list_del_init(&entry->link);
51 	card->transactions.tlabel_mask &= ~(1ULL << entry->tlabel);
52 }
53 
54 // Must be called without holding card->transactions.lock.
fw_cancel_pending_transactions(struct fw_card * card)55 void fw_cancel_pending_transactions(struct fw_card *card)
56 {
57 	struct fw_transaction *t, *tmp;
58 	LIST_HEAD(pending_list);
59 
60 	// NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for
61 	// local destination never runs in any type of IRQ context.
62 	scoped_guard(spinlock_irqsave, &card->transactions.lock) {
63 		list_for_each_entry_safe(t, tmp, &card->transactions.list, link) {
64 			if (try_cancel_split_timeout(t))
65 				list_move(&t->link, &pending_list);
66 		}
67 	}
68 
69 	list_for_each_entry_safe(t, tmp, &pending_list, link) {
70 		list_del(&t->link);
71 
72 		if (!t->with_tstamp) {
73 			t->callback.without_tstamp(card, RCODE_CANCELLED, NULL, 0,
74 						   t->callback_data);
75 		} else {
76 			t->callback.with_tstamp(card, RCODE_CANCELLED, t->packet.timestamp, 0,
77 						NULL, 0, t->callback_data);
78 		}
79 	}
80 }
81 
82 // card->transactions.lock must be acquired in advance.
83 #define find_and_pop_transaction_entry(card, condition)			\
84 ({									\
85 	struct fw_transaction *iter, *t = NULL;				\
86 	list_for_each_entry(iter, &card->transactions.list, link) {	\
87 		if (condition) {					\
88 			t = iter;					\
89 			break;						\
90 		}							\
91 	}								\
92 	if (t && try_cancel_split_timeout(t))				\
93 		remove_transaction_entry(card, t);			\
94 	t;								\
95 })
96 
close_transaction(struct fw_transaction * transaction,struct fw_card * card,int rcode,u32 response_tstamp)97 static int close_transaction(struct fw_transaction *transaction, struct fw_card *card, int rcode,
98 			     u32 response_tstamp)
99 {
100 	struct fw_transaction *t;
101 
102 	// NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for
103 	// local destination never runs in any type of IRQ context.
104 	scoped_guard(spinlock_irqsave, &card->transactions.lock) {
105 		t = find_and_pop_transaction_entry(card, iter == transaction);
106 		if (!t)
107 			return -ENOENT;
108 	}
109 
110 	if (!t->with_tstamp) {
111 		t->callback.without_tstamp(card, rcode, NULL, 0, t->callback_data);
112 	} else {
113 		t->callback.with_tstamp(card, rcode, t->packet.timestamp, response_tstamp, NULL, 0,
114 					t->callback_data);
115 	}
116 
117 	return 0;
118 }
119 
120 /*
121  * Only valid for transactions that are potentially pending (ie have
122  * been sent).
123  */
fw_cancel_transaction(struct fw_card * card,struct fw_transaction * transaction)124 int fw_cancel_transaction(struct fw_card *card,
125 			  struct fw_transaction *transaction)
126 {
127 	u32 tstamp;
128 
129 	/*
130 	 * Cancel the packet transmission if it's still queued.  That
131 	 * will call the packet transmission callback which cancels
132 	 * the transaction.
133 	 */
134 
135 	if (card->driver->cancel_packet(card, &transaction->packet) == 0)
136 		return 0;
137 
138 	/*
139 	 * If the request packet has already been sent, we need to see
140 	 * if the transaction is still pending and remove it in that case.
141 	 */
142 
143 	if (transaction->packet.ack == 0) {
144 		// The timestamp is reused since it was just read now.
145 		tstamp = transaction->packet.timestamp;
146 	} else {
147 		u32 curr_cycle_time = 0;
148 
149 		(void)fw_card_read_cycle_time(card, &curr_cycle_time);
150 		tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time);
151 	}
152 
153 	return close_transaction(transaction, card, RCODE_CANCELLED, tstamp);
154 }
155 EXPORT_SYMBOL(fw_cancel_transaction);
156 
split_transaction_timeout_callback(struct timer_list * timer)157 static void split_transaction_timeout_callback(struct timer_list *timer)
158 {
159 	struct fw_transaction *t = timer_container_of(t, timer, split_timeout_timer);
160 	struct fw_card *card = t->card;
161 
162 	scoped_guard(spinlock_irqsave, &card->transactions.lock) {
163 		if (list_empty(&t->link))
164 			return;
165 		remove_transaction_entry(card, t);
166 	}
167 
168 	if (!t->with_tstamp) {
169 		t->callback.without_tstamp(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
170 	} else {
171 		t->callback.with_tstamp(card, RCODE_CANCELLED, t->packet.timestamp,
172 					t->split_timeout_cycle, NULL, 0, t->callback_data);
173 	}
174 }
175 
176 // card->transactions.lock should be acquired in advance for the linked list.
start_split_transaction_timeout(struct fw_transaction * t,unsigned int delta)177 static void start_split_transaction_timeout(struct fw_transaction *t, unsigned int delta)
178 {
179 	if (list_empty(&t->link) || WARN_ON(t->is_split_transaction))
180 		return;
181 
182 	t->is_split_transaction = true;
183 
184 	mod_timer(&t->split_timeout_timer, jiffies + delta);
185 }
186 
187 static u32 compute_split_timeout_timestamp(struct fw_card *card, u32 request_timestamp);
188 
transmit_complete_callback(struct fw_packet * packet,struct fw_card * card,int status)189 static void transmit_complete_callback(struct fw_packet *packet,
190 				       struct fw_card *card, int status)
191 {
192 	struct fw_transaction *t =
193 	    container_of(packet, struct fw_transaction, packet);
194 
195 	trace_async_request_outbound_complete((uintptr_t)t, card->index, packet->generation,
196 					      packet->speed, status, packet->timestamp);
197 
198 	switch (status) {
199 	case ACK_COMPLETE:
200 		close_transaction(t, card, RCODE_COMPLETE, packet->timestamp);
201 		break;
202 	case ACK_PENDING:
203 	{
204 		unsigned int delta;
205 
206 		// NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for
207 		// local destination never runs in any type of IRQ context.
208 		scoped_guard(spinlock_irqsave, &card->split_timeout.lock) {
209 			t->split_timeout_cycle =
210 				compute_split_timeout_timestamp(card, packet->timestamp) & 0xffff;
211 			delta = card->split_timeout.jiffies;
212 		}
213 
214 		// NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for
215 		// local destination never runs in any type of IRQ context.
216 		scoped_guard(spinlock_irqsave, &card->transactions.lock)
217 			start_split_transaction_timeout(t, delta);
218 		break;
219 	}
220 	case ACK_BUSY_X:
221 	case ACK_BUSY_A:
222 	case ACK_BUSY_B:
223 		close_transaction(t, card, RCODE_BUSY, packet->timestamp);
224 		break;
225 	case ACK_DATA_ERROR:
226 		close_transaction(t, card, RCODE_DATA_ERROR, packet->timestamp);
227 		break;
228 	case ACK_TYPE_ERROR:
229 		close_transaction(t, card, RCODE_TYPE_ERROR, packet->timestamp);
230 		break;
231 	default:
232 		/*
233 		 * In this case the ack is really a juju specific
234 		 * rcode, so just forward that to the callback.
235 		 */
236 		close_transaction(t, card, status, packet->timestamp);
237 		break;
238 	}
239 }
240 
fw_fill_request(struct fw_packet * packet,int tcode,int tlabel,int destination_id,int source_id,int generation,int speed,unsigned long long offset,void * payload,size_t length)241 static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
242 		int destination_id, int source_id, int generation, int speed,
243 		unsigned long long offset, void *payload, size_t length)
244 {
245 	int ext_tcode;
246 
247 	if (tcode == TCODE_STREAM_DATA) {
248 		// The value of destination_id argument should include tag, channel, and sy fields
249 		// as isochronous packet header has.
250 		packet->header[0] = destination_id;
251 		isoc_header_set_data_length(packet->header, length);
252 		isoc_header_set_tcode(packet->header, TCODE_STREAM_DATA);
253 		packet->header_length = 4;
254 		packet->payload = payload;
255 		packet->payload_length = length;
256 
257 		goto common;
258 	}
259 
260 	if (tcode > 0x10) {
261 		ext_tcode = tcode & ~0x10;
262 		tcode = TCODE_LOCK_REQUEST;
263 	} else
264 		ext_tcode = 0;
265 
266 	async_header_set_retry(packet->header, RETRY_X);
267 	async_header_set_tlabel(packet->header, tlabel);
268 	async_header_set_tcode(packet->header, tcode);
269 	async_header_set_destination(packet->header, destination_id);
270 	async_header_set_source(packet->header, source_id);
271 	async_header_set_offset(packet->header, offset);
272 
273 	switch (tcode) {
274 	case TCODE_WRITE_QUADLET_REQUEST:
275 		async_header_set_quadlet_data(packet->header, *(u32 *)payload);
276 		packet->header_length = 16;
277 		packet->payload_length = 0;
278 		break;
279 
280 	case TCODE_LOCK_REQUEST:
281 	case TCODE_WRITE_BLOCK_REQUEST:
282 		async_header_set_data_length(packet->header, length);
283 		async_header_set_extended_tcode(packet->header, ext_tcode);
284 		packet->header_length = 16;
285 		packet->payload = payload;
286 		packet->payload_length = length;
287 		break;
288 
289 	case TCODE_READ_QUADLET_REQUEST:
290 		packet->header_length = 12;
291 		packet->payload_length = 0;
292 		break;
293 
294 	case TCODE_READ_BLOCK_REQUEST:
295 		async_header_set_data_length(packet->header, length);
296 		async_header_set_extended_tcode(packet->header, ext_tcode);
297 		packet->header_length = 16;
298 		packet->payload_length = 0;
299 		break;
300 
301 	default:
302 		WARN(1, "wrong tcode %d\n", tcode);
303 	}
304  common:
305 	packet->speed = speed;
306 	packet->generation = generation;
307 	packet->ack = 0;
308 	packet->payload_mapped = false;
309 }
310 
allocate_tlabel(struct fw_card * card)311 static int allocate_tlabel(struct fw_card *card)
312 __must_hold(&card->transactions.lock)
313 {
314 	int tlabel;
315 
316 	lockdep_assert_held(&card->transactions.lock);
317 
318 	tlabel = card->transactions.current_tlabel;
319 	while (card->transactions.tlabel_mask & (1ULL << tlabel)) {
320 		tlabel = (tlabel + 1) & 0x3f;
321 		if (tlabel == card->transactions.current_tlabel)
322 			return -EBUSY;
323 	}
324 
325 	card->transactions.current_tlabel = (tlabel + 1) & 0x3f;
326 	card->transactions.tlabel_mask |= 1ULL << tlabel;
327 
328 	return tlabel;
329 }
330 
331 /**
332  * __fw_send_request() - submit a request packet for transmission to generate callback for response
333  *			 subaction with or without time stamp.
334  * @card:		interface to send the request at
335  * @t:			transaction instance to which the request belongs
336  * @tcode:		transaction code
337  * @destination_id:	destination node ID, consisting of bus_ID and phy_ID
338  * @generation:		bus generation in which request and response are valid
339  * @speed:		transmission speed
340  * @offset:		48bit wide offset into destination's address space
341  * @payload:		data payload for the request subaction
342  * @length:		length of the payload, in bytes
343  * @callback:		union of two functions whether to receive time stamp or not for response
344  *			subaction.
345  * @with_tstamp:	Whether to receive time stamp or not for response subaction.
346  * @callback_data:	data to be passed to the transaction completion callback
347  *
348  * Submit a request packet into the asynchronous request transmission queue.
349  * Can be called from atomic context.  If you prefer a blocking API, use
350  * fw_run_transaction() in a context that can sleep.
351  *
352  * In case of lock requests, specify one of the firewire-core specific %TCODE_
353  * constants instead of %TCODE_LOCK_REQUEST in @tcode.
354  *
355  * Make sure that the value in @destination_id is not older than the one in
356  * @generation.  Otherwise the request is in danger to be sent to a wrong node.
357  *
358  * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
359  * needs to synthesize @destination_id with fw_stream_packet_destination_id().
360  * It will contain tag, channel, and sy data instead of a node ID then.
361  *
362  * The payload buffer at @data is going to be DMA-mapped except in case of
363  * @length <= 8 or of local (loopback) requests.  Hence make sure that the
364  * buffer complies with the restrictions of the streaming DMA mapping API.
365  * @payload must not be freed before the @callback is called.
366  *
367  * In case of request types without payload, @data is NULL and @length is 0.
368  *
369  * After the transaction is completed successfully or unsuccessfully, the
370  * @callback will be called.  Among its parameters is the response code which
371  * is either one of the rcodes per IEEE 1394 or, in case of internal errors,
372  * the firewire-core specific %RCODE_SEND_ERROR.  The other firewire-core
373  * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION,
374  * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request
375  * generation, or missing ACK respectively.
376  *
377  * Note some timing corner cases:  fw_send_request() may complete much earlier
378  * than when the request packet actually hits the wire.  On the other hand,
379  * transaction completion and hence execution of @callback may happen even
380  * before fw_send_request() returns.
381  */
__fw_send_request(struct fw_card * card,struct fw_transaction * t,int tcode,int destination_id,int generation,int speed,unsigned long long offset,void * payload,size_t length,union fw_transaction_callback callback,bool with_tstamp,void * callback_data)382 void __fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
383 		int destination_id, int generation, int speed, unsigned long long offset,
384 		void *payload, size_t length, union fw_transaction_callback callback,
385 		bool with_tstamp, void *callback_data)
386 {
387 	int tlabel;
388 
389 	/*
390 	 * Allocate tlabel from the bitmap and put the transaction on
391 	 * the list while holding the card spinlock.
392 	 */
393 
394 	// NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for
395 	// local destination never runs in any type of IRQ context.
396 	scoped_guard(spinlock_irqsave, &card->transactions.lock)
397 		tlabel = allocate_tlabel(card);
398 	if (tlabel < 0) {
399 		if (!with_tstamp) {
400 			callback.without_tstamp(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
401 		} else {
402 			// Timestamping on behalf of hardware.
403 			u32 curr_cycle_time = 0;
404 			u32 tstamp;
405 
406 			(void)fw_card_read_cycle_time(card, &curr_cycle_time);
407 			tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time);
408 
409 			callback.with_tstamp(card, RCODE_SEND_ERROR, tstamp, tstamp, NULL, 0,
410 					     callback_data);
411 		}
412 		return;
413 	}
414 
415 	t->node_id = destination_id;
416 	t->tlabel = tlabel;
417 	t->card = card;
418 	t->is_split_transaction = false;
419 	timer_setup(&t->split_timeout_timer, split_transaction_timeout_callback, 0);
420 	t->callback = callback;
421 	t->with_tstamp = with_tstamp;
422 	t->callback_data = callback_data;
423 	t->packet.callback = transmit_complete_callback;
424 
425 	// NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for
426 	// local destination never runs in any type of IRQ context.
427 	scoped_guard(spinlock_irqsave, &card->lock) {
428 		// The node_id field of fw_card can be updated when handling SelfIDComplete.
429 		fw_fill_request(&t->packet, tcode, t->tlabel, destination_id, card->node_id,
430 				generation, speed, offset, payload, length);
431 	}
432 
433 	// NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for
434 	// local destination never runs in any type of IRQ context.
435 	scoped_guard(spinlock_irqsave, &card->transactions.lock)
436 		list_add_tail(&t->link, &card->transactions.list);
437 
438 	// Safe with no lock, since the index field of fw_card is immutable once assigned.
439 	trace_async_request_outbound_initiate((uintptr_t)t, card->index, generation, speed,
440 					      t->packet.header, payload,
441 					      tcode_is_read_request(tcode) ? 0 : length / 4);
442 
443 	card->driver->send_request(card, &t->packet);
444 }
445 EXPORT_SYMBOL_GPL(__fw_send_request);
446 
447 struct transaction_callback_data {
448 	struct completion done;
449 	void *payload;
450 	int rcode;
451 };
452 
transaction_callback(struct fw_card * card,int rcode,void * payload,size_t length,void * data)453 static void transaction_callback(struct fw_card *card, int rcode,
454 				 void *payload, size_t length, void *data)
455 {
456 	struct transaction_callback_data *d = data;
457 
458 	if (rcode == RCODE_COMPLETE)
459 		memcpy(d->payload, payload, length);
460 	d->rcode = rcode;
461 	complete(&d->done);
462 }
463 
464 /**
465  * fw_run_transaction() - send request and sleep until transaction is completed
466  * @card:		card interface for this request
467  * @tcode:		transaction code
468  * @destination_id:	destination node ID, consisting of bus_ID and phy_ID
469  * @generation:		bus generation in which request and response are valid
470  * @speed:		transmission speed
471  * @offset:		48bit wide offset into destination's address space
472  * @payload:		data payload for the request subaction
473  * @length:		length of the payload, in bytes
474  *
475  * Returns the RCODE.  See fw_send_request() for parameter documentation.
476  * Unlike fw_send_request(), @data points to the payload of the request or/and
477  * to the payload of the response.  DMA mapping restrictions apply to outbound
478  * request payloads of >= 8 bytes but not to inbound response payloads.
479  */
fw_run_transaction(struct fw_card * card,int tcode,int destination_id,int generation,int speed,unsigned long long offset,void * payload,size_t length)480 int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
481 		       int generation, int speed, unsigned long long offset,
482 		       void *payload, size_t length)
483 {
484 	struct transaction_callback_data d;
485 	struct fw_transaction t;
486 
487 	timer_setup_on_stack(&t.split_timeout_timer, NULL, 0);
488 	init_completion(&d.done);
489 	d.payload = payload;
490 	fw_send_request(card, &t, tcode, destination_id, generation, speed,
491 			offset, payload, length, transaction_callback, &d);
492 	wait_for_completion(&d.done);
493 	timer_destroy_on_stack(&t.split_timeout_timer);
494 
495 	return d.rcode;
496 }
497 EXPORT_SYMBOL(fw_run_transaction);
498 
499 static DEFINE_MUTEX(phy_config_mutex);
500 static DECLARE_COMPLETION(phy_config_done);
501 
transmit_phy_packet_callback(struct fw_packet * packet,struct fw_card * card,int status)502 static void transmit_phy_packet_callback(struct fw_packet *packet,
503 					 struct fw_card *card, int status)
504 {
505 	trace_async_phy_outbound_complete((uintptr_t)packet, card->index, packet->generation, status,
506 					  packet->timestamp);
507 	complete(&phy_config_done);
508 }
509 
510 static struct fw_packet phy_config_packet = {
511 	.header_length	= 12,
512 	.payload_length	= 0,
513 	.speed		= SCODE_100,
514 	.callback	= transmit_phy_packet_callback,
515 };
516 
fw_send_phy_config(struct fw_card * card,int node_id,int generation,int gap_count)517 void fw_send_phy_config(struct fw_card *card,
518 			int node_id, int generation, int gap_count)
519 {
520 	long timeout = msecs_to_jiffies(100);
521 	u32 data = 0;
522 
523 	phy_packet_set_packet_identifier(&data, PHY_PACKET_PACKET_IDENTIFIER_PHY_CONFIG);
524 
525 	if (node_id != FW_PHY_CONFIG_NO_NODE_ID) {
526 		phy_packet_phy_config_set_root_id(&data, node_id);
527 		phy_packet_phy_config_set_force_root_node(&data, true);
528 	}
529 
530 	if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
531 		gap_count = card->driver->read_phy_reg(card, 1);
532 		if (gap_count < 0)
533 			return;
534 
535 		gap_count &= 63;
536 		if (gap_count == 63)
537 			return;
538 	}
539 	phy_packet_phy_config_set_gap_count(&data, gap_count);
540 	phy_packet_phy_config_set_gap_count_optimization(&data, true);
541 
542 	guard(mutex)(&phy_config_mutex);
543 
544 	async_header_set_tcode(phy_config_packet.header, TCODE_LINK_INTERNAL);
545 	phy_config_packet.header[1] = data;
546 	phy_config_packet.header[2] = ~data;
547 	phy_config_packet.generation = generation;
548 	reinit_completion(&phy_config_done);
549 
550 	trace_async_phy_outbound_initiate((uintptr_t)&phy_config_packet, card->index,
551 					  phy_config_packet.generation, phy_config_packet.header[1],
552 					  phy_config_packet.header[2]);
553 
554 	card->driver->send_request(card, &phy_config_packet);
555 	wait_for_completion_timeout(&phy_config_done, timeout);
556 }
557 
lookup_overlapping_address_handler(struct list_head * list,unsigned long long offset,size_t length)558 static struct fw_address_handler *lookup_overlapping_address_handler(
559 	struct list_head *list, unsigned long long offset, size_t length)
560 {
561 	struct fw_address_handler *handler;
562 
563 	list_for_each_entry_rcu(handler, list, link) {
564 		if (handler->offset < offset + length &&
565 		    offset < handler->offset + handler->length)
566 			return handler;
567 	}
568 
569 	return NULL;
570 }
571 
is_enclosing_handler(struct fw_address_handler * handler,unsigned long long offset,size_t length)572 static bool is_enclosing_handler(struct fw_address_handler *handler,
573 				 unsigned long long offset, size_t length)
574 {
575 	return handler->offset <= offset &&
576 		offset + length <= handler->offset + handler->length;
577 }
578 
lookup_enclosing_address_handler(struct list_head * list,unsigned long long offset,size_t length)579 static struct fw_address_handler *lookup_enclosing_address_handler(
580 	struct list_head *list, unsigned long long offset, size_t length)
581 {
582 	struct fw_address_handler *handler;
583 
584 	list_for_each_entry_rcu(handler, list, link) {
585 		if (is_enclosing_handler(handler, offset, length))
586 			return handler;
587 	}
588 
589 	return NULL;
590 }
591 
592 static DEFINE_SPINLOCK(address_handler_list_lock);
593 static LIST_HEAD(address_handler_list);
594 
595 const struct fw_address_region fw_high_memory_region =
596 	{ .start = FW_MAX_PHYSICAL_RANGE, .end = 0xffffe0000000ULL, };
597 EXPORT_SYMBOL(fw_high_memory_region);
598 
599 static const struct fw_address_region low_memory_region =
600 	{ .start = 0x000000000000ULL, .end = FW_MAX_PHYSICAL_RANGE, };
601 
602 #if 0
603 const struct fw_address_region fw_private_region =
604 	{ .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL,  };
605 const struct fw_address_region fw_csr_region =
606 	{ .start = CSR_REGISTER_BASE,
607 	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END,  };
608 const struct fw_address_region fw_unit_space_region =
609 	{ .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
610 #endif  /*  0  */
611 
complete_address_handler(struct kref * kref)612 static void complete_address_handler(struct kref *kref)
613 {
614 	struct fw_address_handler *handler = container_of(kref, struct fw_address_handler, kref);
615 
616 	complete(&handler->done);
617 }
618 
get_address_handler(struct fw_address_handler * handler)619 static void get_address_handler(struct fw_address_handler *handler)
620 {
621 	kref_get(&handler->kref);
622 }
623 
put_address_handler(struct fw_address_handler * handler)624 static int put_address_handler(struct fw_address_handler *handler)
625 {
626 	return kref_put(&handler->kref, complete_address_handler);
627 }
628 
629 /**
630  * fw_core_add_address_handler() - register for incoming requests
631  * @handler:	callback
632  * @region:	region in the IEEE 1212 node space address range
633  *
634  * region->start, ->end, and handler->length have to be quadlet-aligned.
635  *
636  * When a request is received that falls within the specified address range, the specified callback
637  * is invoked.  The parameters passed to the callback give the details of the particular request.
638  * The callback is invoked in the workqueue context in most cases. However, if the request is
639  * initiated by the local node, the callback is invoked in the initiator's context.
640  *
641  * To be called in process context.
642  * Return value:  0 on success, non-zero otherwise.
643  *
644  * The start offset of the handler's address region is determined by
645  * fw_core_add_address_handler() and is returned in handler->offset.
646  *
647  * Address allocations are exclusive, except for the FCP registers.
648  */
fw_core_add_address_handler(struct fw_address_handler * handler,const struct fw_address_region * region)649 int fw_core_add_address_handler(struct fw_address_handler *handler,
650 				const struct fw_address_region *region)
651 {
652 	struct fw_address_handler *other;
653 	int ret = -EBUSY;
654 
655 	if (region->start & 0xffff000000000003ULL ||
656 	    region->start >= region->end ||
657 	    region->end   > 0x0001000000000000ULL ||
658 	    handler->length & 3 ||
659 	    handler->length == 0)
660 		return -EINVAL;
661 
662 	guard(spinlock)(&address_handler_list_lock);
663 
664 	handler->offset = region->start;
665 	while (handler->offset + handler->length <= region->end) {
666 		if (is_in_fcp_region(handler->offset, handler->length))
667 			other = NULL;
668 		else
669 			other = lookup_overlapping_address_handler
670 					(&address_handler_list,
671 					 handler->offset, handler->length);
672 		if (other != NULL) {
673 			handler->offset += other->length;
674 		} else {
675 			init_completion(&handler->done);
676 			kref_init(&handler->kref);
677 			list_add_tail_rcu(&handler->link, &address_handler_list);
678 			ret = 0;
679 			break;
680 		}
681 	}
682 
683 	return ret;
684 }
685 EXPORT_SYMBOL(fw_core_add_address_handler);
686 
687 /**
688  * fw_core_remove_address_handler() - unregister an address handler
689  * @handler: callback
690  *
691  * To be called in process context.
692  *
693  * When fw_core_remove_address_handler() returns, @handler->callback() is
694  * guaranteed to not run on any CPU anymore.
695  */
fw_core_remove_address_handler(struct fw_address_handler * handler)696 void fw_core_remove_address_handler(struct fw_address_handler *handler)
697 {
698 	scoped_guard(spinlock, &address_handler_list_lock)
699 		list_del_rcu(&handler->link);
700 
701 	synchronize_rcu();
702 
703 	if (!put_address_handler(handler))
704 		wait_for_completion(&handler->done);
705 }
706 EXPORT_SYMBOL(fw_core_remove_address_handler);
707 
708 struct fw_request {
709 	struct kref kref;
710 	struct fw_packet response;
711 	u32 request_header[ASYNC_HEADER_QUADLET_COUNT];
712 	int ack;
713 	u32 timestamp;
714 	u32 length;
715 	u32 data[];
716 };
717 
fw_request_get(struct fw_request * request)718 void fw_request_get(struct fw_request *request)
719 {
720 	kref_get(&request->kref);
721 }
722 
release_request(struct kref * kref)723 static void release_request(struct kref *kref)
724 {
725 	struct fw_request *request = container_of(kref, struct fw_request, kref);
726 
727 	kfree(request);
728 }
729 
fw_request_put(struct fw_request * request)730 void fw_request_put(struct fw_request *request)
731 {
732 	kref_put(&request->kref, release_request);
733 }
734 
free_response_callback(struct fw_packet * packet,struct fw_card * card,int status)735 static void free_response_callback(struct fw_packet *packet,
736 				   struct fw_card *card, int status)
737 {
738 	struct fw_request *request = container_of(packet, struct fw_request, response);
739 
740 	trace_async_response_outbound_complete((uintptr_t)request, card->index, packet->generation,
741 					       packet->speed, status, packet->timestamp);
742 
743 	// Decrease the reference count since not at in-flight.
744 	fw_request_put(request);
745 
746 	// Decrease the reference count to release the object.
747 	fw_request_put(request);
748 }
749 
fw_get_response_length(struct fw_request * r)750 int fw_get_response_length(struct fw_request *r)
751 {
752 	int tcode, ext_tcode, data_length;
753 
754 	tcode = async_header_get_tcode(r->request_header);
755 
756 	switch (tcode) {
757 	case TCODE_WRITE_QUADLET_REQUEST:
758 	case TCODE_WRITE_BLOCK_REQUEST:
759 		return 0;
760 
761 	case TCODE_READ_QUADLET_REQUEST:
762 		return 4;
763 
764 	case TCODE_READ_BLOCK_REQUEST:
765 		data_length = async_header_get_data_length(r->request_header);
766 		return data_length;
767 
768 	case TCODE_LOCK_REQUEST:
769 		ext_tcode = async_header_get_extended_tcode(r->request_header);
770 		data_length = async_header_get_data_length(r->request_header);
771 		switch (ext_tcode) {
772 		case EXTCODE_FETCH_ADD:
773 		case EXTCODE_LITTLE_ADD:
774 			return data_length;
775 		default:
776 			return data_length / 2;
777 		}
778 
779 	default:
780 		WARN(1, "wrong tcode %d\n", tcode);
781 		return 0;
782 	}
783 }
784 
fw_fill_response(struct fw_packet * response,u32 * request_header,int rcode,void * payload,size_t length)785 void fw_fill_response(struct fw_packet *response, u32 *request_header,
786 		      int rcode, void *payload, size_t length)
787 {
788 	int tcode, tlabel, extended_tcode, source, destination;
789 
790 	tcode = async_header_get_tcode(request_header);
791 	tlabel = async_header_get_tlabel(request_header);
792 	source = async_header_get_destination(request_header); // Exchange.
793 	destination = async_header_get_source(request_header); // Exchange.
794 	extended_tcode = async_header_get_extended_tcode(request_header);
795 
796 	async_header_set_retry(response->header, RETRY_1);
797 	async_header_set_tlabel(response->header, tlabel);
798 	async_header_set_destination(response->header, destination);
799 	async_header_set_source(response->header, source);
800 	async_header_set_rcode(response->header, rcode);
801 	response->header[2] = 0;	// The field is reserved.
802 
803 	switch (tcode) {
804 	case TCODE_WRITE_QUADLET_REQUEST:
805 	case TCODE_WRITE_BLOCK_REQUEST:
806 		async_header_set_tcode(response->header, TCODE_WRITE_RESPONSE);
807 		response->header_length = 12;
808 		response->payload_length = 0;
809 		break;
810 
811 	case TCODE_READ_QUADLET_REQUEST:
812 		async_header_set_tcode(response->header, TCODE_READ_QUADLET_RESPONSE);
813 		if (payload != NULL)
814 			async_header_set_quadlet_data(response->header, *(u32 *)payload);
815 		else
816 			async_header_set_quadlet_data(response->header, 0);
817 		response->header_length = 16;
818 		response->payload_length = 0;
819 		break;
820 
821 	case TCODE_READ_BLOCK_REQUEST:
822 	case TCODE_LOCK_REQUEST:
823 		async_header_set_tcode(response->header, tcode + 2);
824 		async_header_set_data_length(response->header, length);
825 		async_header_set_extended_tcode(response->header, extended_tcode);
826 		response->header_length = 16;
827 		response->payload = payload;
828 		response->payload_length = length;
829 		break;
830 
831 	default:
832 		WARN(1, "wrong tcode %d\n", tcode);
833 	}
834 
835 	response->payload_mapped = false;
836 }
837 EXPORT_SYMBOL(fw_fill_response);
838 
compute_split_timeout_timestamp(struct fw_card * card,u32 request_timestamp)839 static u32 compute_split_timeout_timestamp(struct fw_card *card,
840 					   u32 request_timestamp)
841 __must_hold(&card->split_timeout.lock)
842 {
843 	unsigned int cycles;
844 	u32 timestamp;
845 
846 	lockdep_assert_held(&card->split_timeout.lock);
847 
848 	cycles = card->split_timeout.cycles;
849 	cycles += request_timestamp & 0x1fff;
850 
851 	timestamp = request_timestamp & ~0x1fff;
852 	timestamp += (cycles / 8000) << 13;
853 	timestamp |= cycles % 8000;
854 
855 	return timestamp;
856 }
857 
allocate_request(struct fw_card * card,struct fw_packet * p)858 static struct fw_request *allocate_request(struct fw_card *card,
859 					   struct fw_packet *p)
860 {
861 	struct fw_request *request;
862 	u32 *data, length;
863 	int request_tcode;
864 
865 	request_tcode = async_header_get_tcode(p->header);
866 	switch (request_tcode) {
867 	case TCODE_WRITE_QUADLET_REQUEST:
868 		data = &p->header[3];
869 		length = 4;
870 		break;
871 
872 	case TCODE_WRITE_BLOCK_REQUEST:
873 	case TCODE_LOCK_REQUEST:
874 		data = p->payload;
875 		length = async_header_get_data_length(p->header);
876 		break;
877 
878 	case TCODE_READ_QUADLET_REQUEST:
879 		data = NULL;
880 		length = 4;
881 		break;
882 
883 	case TCODE_READ_BLOCK_REQUEST:
884 		data = NULL;
885 		length = async_header_get_data_length(p->header);
886 		break;
887 
888 	default:
889 		fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n",
890 			 p->header[0], p->header[1], p->header[2]);
891 		return NULL;
892 	}
893 
894 	request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
895 	if (request == NULL)
896 		return NULL;
897 	kref_init(&request->kref);
898 
899 	// NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for
900 	// local destination never runs in any type of IRQ context.
901 	scoped_guard(spinlock_irqsave, &card->split_timeout.lock)
902 		request->response.timestamp = compute_split_timeout_timestamp(card, p->timestamp);
903 
904 	request->response.speed = p->speed;
905 	request->response.generation = p->generation;
906 	request->response.ack = 0;
907 	request->response.callback = free_response_callback;
908 	request->ack = p->ack;
909 	request->timestamp = p->timestamp;
910 	request->length = length;
911 	if (data)
912 		memcpy(request->data, data, length);
913 
914 	memcpy(request->request_header, p->header, sizeof(p->header));
915 
916 	return request;
917 }
918 
919 /**
920  * fw_send_response: - send response packet for asynchronous transaction.
921  * @card:	interface to send the response at.
922  * @request:	firewire request data for the transaction.
923  * @rcode:	response code to send.
924  *
925  * Submit a response packet into the asynchronous response transmission queue. The @request
926  * is going to be released when the transmission successfully finishes later.
927  */
fw_send_response(struct fw_card * card,struct fw_request * request,int rcode)928 void fw_send_response(struct fw_card *card,
929 		      struct fw_request *request, int rcode)
930 {
931 	u32 *data = NULL;
932 	unsigned int data_length = 0;
933 
934 	/* unified transaction or broadcast transaction: don't respond */
935 	if (request->ack != ACK_PENDING ||
936 	    HEADER_DESTINATION_IS_BROADCAST(request->request_header)) {
937 		fw_request_put(request);
938 		return;
939 	}
940 
941 	if (rcode == RCODE_COMPLETE) {
942 		data = request->data;
943 		data_length = fw_get_response_length(request);
944 	}
945 
946 	fw_fill_response(&request->response, request->request_header, rcode, data, data_length);
947 
948 	// Increase the reference count so that the object is kept during in-flight.
949 	fw_request_get(request);
950 
951 	trace_async_response_outbound_initiate((uintptr_t)request, card->index,
952 					       request->response.generation, request->response.speed,
953 					       request->response.header, data,
954 					       data ? data_length / 4 : 0);
955 
956 	card->driver->send_response(card, &request->response);
957 }
958 EXPORT_SYMBOL(fw_send_response);
959 
960 /**
961  * fw_get_request_speed() - returns speed at which the @request was received
962  * @request: firewire request data
963  */
fw_get_request_speed(struct fw_request * request)964 int fw_get_request_speed(struct fw_request *request)
965 {
966 	return request->response.speed;
967 }
968 EXPORT_SYMBOL(fw_get_request_speed);
969 
970 /**
971  * fw_request_get_timestamp: Get timestamp of the request.
972  * @request: The opaque pointer to request structure.
973  *
974  * Get timestamp when 1394 OHCI controller receives the asynchronous request subaction. The
975  * timestamp consists of the low order 3 bits of second field and the full 13 bits of count
976  * field of isochronous cycle time register.
977  *
978  * Returns: timestamp of the request.
979  */
fw_request_get_timestamp(const struct fw_request * request)980 u32 fw_request_get_timestamp(const struct fw_request *request)
981 {
982 	return request->timestamp;
983 }
984 EXPORT_SYMBOL_GPL(fw_request_get_timestamp);
985 
handle_exclusive_region_request(struct fw_card * card,struct fw_packet * p,struct fw_request * request,unsigned long long offset)986 static void handle_exclusive_region_request(struct fw_card *card,
987 					    struct fw_packet *p,
988 					    struct fw_request *request,
989 					    unsigned long long offset)
990 {
991 	struct fw_address_handler *handler;
992 	int tcode, destination, source;
993 
994 	destination = async_header_get_destination(p->header);
995 	source = async_header_get_source(p->header);
996 	tcode = async_header_get_tcode(p->header);
997 	if (tcode == TCODE_LOCK_REQUEST)
998 		tcode = 0x10 + async_header_get_extended_tcode(p->header);
999 
1000 	scoped_guard(rcu) {
1001 		handler = lookup_enclosing_address_handler(&address_handler_list, offset,
1002 							   request->length);
1003 		if (handler)
1004 			get_address_handler(handler);
1005 	}
1006 
1007 	if (!handler) {
1008 		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1009 		return;
1010 	}
1011 
1012 	// Outside the RCU read-side critical section. Without spinlock. With reference count.
1013 	handler->address_callback(card, request, tcode, destination, source, p->generation, offset,
1014 				  request->data, request->length, handler->callback_data);
1015 	put_address_handler(handler);
1016 }
1017 
1018 // To use kmalloc allocator efficiently, this should be power of two.
1019 #define BUFFER_ON_KERNEL_STACK_SIZE	4
1020 
handle_fcp_region_request(struct fw_card * card,struct fw_packet * p,struct fw_request * request,unsigned long long offset)1021 static void handle_fcp_region_request(struct fw_card *card,
1022 				      struct fw_packet *p,
1023 				      struct fw_request *request,
1024 				      unsigned long long offset)
1025 {
1026 	struct fw_address_handler *buffer_on_kernel_stack[BUFFER_ON_KERNEL_STACK_SIZE];
1027 	struct fw_address_handler *handler, **handlers;
1028 	int tcode, destination, source, i, count, buffer_size;
1029 
1030 	if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
1031 	     offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
1032 	    request->length > 0x200) {
1033 		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1034 
1035 		return;
1036 	}
1037 
1038 	tcode = async_header_get_tcode(p->header);
1039 	destination = async_header_get_destination(p->header);
1040 	source = async_header_get_source(p->header);
1041 
1042 	if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
1043 	    tcode != TCODE_WRITE_BLOCK_REQUEST) {
1044 		fw_send_response(card, request, RCODE_TYPE_ERROR);
1045 
1046 		return;
1047 	}
1048 
1049 	count = 0;
1050 	handlers = buffer_on_kernel_stack;
1051 	buffer_size = ARRAY_SIZE(buffer_on_kernel_stack);
1052 	scoped_guard(rcu) {
1053 		list_for_each_entry_rcu(handler, &address_handler_list, link) {
1054 			if (is_enclosing_handler(handler, offset, request->length)) {
1055 				if (count >= buffer_size) {
1056 					int next_size = buffer_size * 2;
1057 					struct fw_address_handler **buffer_on_kernel_heap;
1058 
1059 					if (handlers == buffer_on_kernel_stack)
1060 						buffer_on_kernel_heap = NULL;
1061 					else
1062 						buffer_on_kernel_heap = handlers;
1063 
1064 					buffer_on_kernel_heap =
1065 						krealloc_array(buffer_on_kernel_heap, next_size,
1066 							sizeof(*buffer_on_kernel_heap), GFP_ATOMIC);
1067 					// FCP is used for purposes unrelated to significant system
1068 					// resources (e.g. storage or networking), so allocation
1069 					// failures are not considered so critical.
1070 					if (!buffer_on_kernel_heap)
1071 						break;
1072 
1073 					if (handlers == buffer_on_kernel_stack) {
1074 						memcpy(buffer_on_kernel_heap, buffer_on_kernel_stack,
1075 						       sizeof(buffer_on_kernel_stack));
1076 					}
1077 
1078 					handlers = buffer_on_kernel_heap;
1079 					buffer_size = next_size;
1080 				}
1081 				get_address_handler(handler);
1082 				handlers[count++] = handler;
1083 			}
1084 		}
1085 	}
1086 
1087 	for (i = 0; i < count; ++i) {
1088 		handler = handlers[i];
1089 		handler->address_callback(card, request, tcode, destination, source,
1090 					  p->generation, offset, request->data,
1091 					  request->length, handler->callback_data);
1092 		put_address_handler(handler);
1093 	}
1094 
1095 	if (handlers != buffer_on_kernel_stack)
1096 		kfree(handlers);
1097 
1098 	fw_send_response(card, request, RCODE_COMPLETE);
1099 }
1100 
fw_core_handle_request(struct fw_card * card,struct fw_packet * p)1101 void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
1102 {
1103 	struct fw_request *request;
1104 	unsigned long long offset;
1105 	unsigned int tcode;
1106 
1107 	if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
1108 		return;
1109 
1110 	tcode = async_header_get_tcode(p->header);
1111 	if (tcode_is_link_internal(tcode)) {
1112 		trace_async_phy_inbound((uintptr_t)p, card->index, p->generation, p->ack, p->timestamp,
1113 					 p->header[1], p->header[2]);
1114 		fw_cdev_handle_phy_packet(card, p);
1115 		return;
1116 	}
1117 
1118 	request = allocate_request(card, p);
1119 	if (request == NULL) {
1120 		/* FIXME: send statically allocated busy packet. */
1121 		return;
1122 	}
1123 
1124 	trace_async_request_inbound((uintptr_t)request, card->index, p->generation, p->speed,
1125 				    p->ack, p->timestamp, p->header, request->data,
1126 				    tcode_is_read_request(tcode) ? 0 : request->length / 4);
1127 
1128 	offset = async_header_get_offset(p->header);
1129 
1130 	if (!is_in_fcp_region(offset, request->length))
1131 		handle_exclusive_region_request(card, p, request, offset);
1132 	else
1133 		handle_fcp_region_request(card, p, request, offset);
1134 
1135 }
1136 EXPORT_SYMBOL(fw_core_handle_request);
1137 
fw_core_handle_response(struct fw_card * card,struct fw_packet * p)1138 void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
1139 {
1140 	struct fw_transaction *t = NULL;
1141 	u32 *data;
1142 	size_t data_length;
1143 	int tcode, tlabel, source, rcode;
1144 
1145 	tcode = async_header_get_tcode(p->header);
1146 	tlabel = async_header_get_tlabel(p->header);
1147 	source = async_header_get_source(p->header);
1148 	rcode = async_header_get_rcode(p->header);
1149 
1150 	// FIXME: sanity check packet, is length correct, does tcodes
1151 	// and addresses match to the transaction request queried later.
1152 	//
1153 	// For the tracepoints event, let us decode the header here against the concern.
1154 
1155 	switch (tcode) {
1156 	case TCODE_READ_QUADLET_RESPONSE:
1157 		data = (u32 *) &p->header[3];
1158 		data_length = 4;
1159 		break;
1160 
1161 	case TCODE_WRITE_RESPONSE:
1162 		data = NULL;
1163 		data_length = 0;
1164 		break;
1165 
1166 	case TCODE_READ_BLOCK_RESPONSE:
1167 	case TCODE_LOCK_RESPONSE:
1168 		data = p->payload;
1169 		data_length = async_header_get_data_length(p->header);
1170 		break;
1171 
1172 	default:
1173 		/* Should never happen, this is just to shut up gcc. */
1174 		data = NULL;
1175 		data_length = 0;
1176 		break;
1177 	}
1178 
1179 	// NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for
1180 	// local destination never runs in any type of IRQ context.
1181 	scoped_guard(spinlock_irqsave, &card->transactions.lock) {
1182 		t = find_and_pop_transaction_entry(card,
1183 				iter->node_id == source && iter->tlabel == tlabel);
1184 	}
1185 
1186 	trace_async_response_inbound((uintptr_t)t, card->index, p->generation, p->speed, p->ack,
1187 				     p->timestamp, p->header, data, data_length / 4);
1188 
1189 	if (!t) {
1190 		fw_notice(card, "unsolicited response (source %x, tlabel %x)\n",
1191 			  source, tlabel);
1192 		return;
1193 	}
1194 
1195 	/*
1196 	 * The response handler may be executed while the request handler
1197 	 * is still pending.  Cancel the request handler.
1198 	 */
1199 	card->driver->cancel_packet(card, &t->packet);
1200 
1201 	if (!t->with_tstamp) {
1202 		t->callback.without_tstamp(card, rcode, data, data_length, t->callback_data);
1203 	} else {
1204 		t->callback.with_tstamp(card, rcode, t->packet.timestamp, p->timestamp, data,
1205 					data_length, t->callback_data);
1206 	}
1207 }
1208 EXPORT_SYMBOL(fw_core_handle_response);
1209 
1210 /**
1211  * fw_rcode_string - convert a firewire result code to an error description
1212  * @rcode: the result code
1213  */
fw_rcode_string(int rcode)1214 const char *fw_rcode_string(int rcode)
1215 {
1216 	static const char *const names[] = {
1217 		[RCODE_COMPLETE]       = "no error",
1218 		[RCODE_CONFLICT_ERROR] = "conflict error",
1219 		[RCODE_DATA_ERROR]     = "data error",
1220 		[RCODE_TYPE_ERROR]     = "type error",
1221 		[RCODE_ADDRESS_ERROR]  = "address error",
1222 		[RCODE_SEND_ERROR]     = "send error",
1223 		[RCODE_CANCELLED]      = "timeout",
1224 		[RCODE_BUSY]           = "busy",
1225 		[RCODE_GENERATION]     = "bus reset",
1226 		[RCODE_NO_ACK]         = "no ack",
1227 	};
1228 
1229 	if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode])
1230 		return names[rcode];
1231 	else
1232 		return "unknown";
1233 }
1234 EXPORT_SYMBOL(fw_rcode_string);
1235 
1236 static const struct fw_address_region topology_map_region =
1237 	{ .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
1238 	  .end   = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
1239 
handle_topology_map(struct fw_card * card,struct fw_request * request,int tcode,int destination,int source,int generation,unsigned long long offset,void * payload,size_t length,void * callback_data)1240 static void handle_topology_map(struct fw_card *card, struct fw_request *request,
1241 		int tcode, int destination, int source, int generation,
1242 		unsigned long long offset, void *payload, size_t length,
1243 		void *callback_data)
1244 {
1245 	int start;
1246 
1247 	if (!tcode_is_read_request(tcode)) {
1248 		fw_send_response(card, request, RCODE_TYPE_ERROR);
1249 		return;
1250 	}
1251 
1252 	if ((offset & 3) > 0 || (length & 3) > 0) {
1253 		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1254 		return;
1255 	}
1256 
1257 	start = (offset - topology_map_region.start) / 4;
1258 
1259 	// NOTE: This can be without irqsave when we can guarantee that fw_send_request() for local
1260 	// destination never runs in any type of IRQ context.
1261 	scoped_guard(spinlock_irqsave, &card->topology_map.lock)
1262 		memcpy(payload, &card->topology_map.buffer[start], length);
1263 
1264 	fw_send_response(card, request, RCODE_COMPLETE);
1265 }
1266 
1267 static struct fw_address_handler topology_map = {
1268 	.length			= 0x400,
1269 	.address_callback	= handle_topology_map,
1270 };
1271 
1272 static const struct fw_address_region registers_region =
1273 	{ .start = CSR_REGISTER_BASE,
1274 	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
1275 
update_split_timeout(struct fw_card * card)1276 static void update_split_timeout(struct fw_card *card)
1277 __must_hold(&card->split_timeout.lock)
1278 {
1279 	unsigned int cycles;
1280 
1281 	cycles = card->split_timeout.hi * 8000 + (card->split_timeout.lo >> 19);
1282 
1283 	/* minimum per IEEE 1394, maximum which doesn't overflow OHCI */
1284 	cycles = clamp(cycles, 800u, 3u * 8000u);
1285 
1286 	card->split_timeout.cycles = cycles;
1287 	card->split_timeout.jiffies = isoc_cycles_to_jiffies(cycles);
1288 }
1289 
handle_registers(struct fw_card * card,struct fw_request * request,int tcode,int destination,int source,int generation,unsigned long long offset,void * payload,size_t length,void * callback_data)1290 static void handle_registers(struct fw_card *card, struct fw_request *request,
1291 		int tcode, int destination, int source, int generation,
1292 		unsigned long long offset, void *payload, size_t length,
1293 		void *callback_data)
1294 {
1295 	int reg = offset & ~CSR_REGISTER_BASE;
1296 	__be32 *data = payload;
1297 	int rcode = RCODE_COMPLETE;
1298 
1299 	switch (reg) {
1300 	case CSR_PRIORITY_BUDGET:
1301 		if (!card->priority_budget_implemented) {
1302 			rcode = RCODE_ADDRESS_ERROR;
1303 			break;
1304 		}
1305 		fallthrough;
1306 
1307 	case CSR_NODE_IDS:
1308 		/*
1309 		 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
1310 		 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges
1311 		 */
1312 		fallthrough;
1313 
1314 	case CSR_STATE_CLEAR:
1315 	case CSR_STATE_SET:
1316 	case CSR_CYCLE_TIME:
1317 	case CSR_BUS_TIME:
1318 	case CSR_BUSY_TIMEOUT:
1319 		if (tcode == TCODE_READ_QUADLET_REQUEST)
1320 			*data = cpu_to_be32(card->driver->read_csr(card, reg));
1321 		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1322 			card->driver->write_csr(card, reg, be32_to_cpu(*data));
1323 		else
1324 			rcode = RCODE_TYPE_ERROR;
1325 		break;
1326 
1327 	case CSR_RESET_START:
1328 		if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1329 			card->driver->write_csr(card, CSR_STATE_CLEAR,
1330 						CSR_STATE_BIT_ABDICATE);
1331 		else
1332 			rcode = RCODE_TYPE_ERROR;
1333 		break;
1334 
1335 	case CSR_SPLIT_TIMEOUT_HI:
1336 		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1337 			*data = cpu_to_be32(card->split_timeout.hi);
1338 		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1339 			// NOTE: This can be without irqsave when we can guarantee that
1340 			// __fw_send_request() for local destination never runs in any type of IRQ
1341 			// context.
1342 			scoped_guard(spinlock_irqsave, &card->split_timeout.lock) {
1343 				card->split_timeout.hi = be32_to_cpu(*data) & 7;
1344 				update_split_timeout(card);
1345 			}
1346 		} else {
1347 			rcode = RCODE_TYPE_ERROR;
1348 		}
1349 		break;
1350 
1351 	case CSR_SPLIT_TIMEOUT_LO:
1352 		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1353 			*data = cpu_to_be32(card->split_timeout.lo);
1354 		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1355 			// NOTE: This can be without irqsave when we can guarantee that
1356 			// __fw_send_request() for local destination never runs in any type of IRQ
1357 			// context.
1358 			scoped_guard(spinlock_irqsave, &card->split_timeout.lock) {
1359 				card->split_timeout.lo = be32_to_cpu(*data) & 0xfff80000;
1360 				update_split_timeout(card);
1361 			}
1362 		} else {
1363 			rcode = RCODE_TYPE_ERROR;
1364 		}
1365 		break;
1366 
1367 	case CSR_MAINT_UTILITY:
1368 		if (tcode == TCODE_READ_QUADLET_REQUEST)
1369 			*data = card->maint_utility_register;
1370 		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1371 			card->maint_utility_register = *data;
1372 		else
1373 			rcode = RCODE_TYPE_ERROR;
1374 		break;
1375 
1376 	case CSR_BROADCAST_CHANNEL:
1377 		if (tcode == TCODE_READ_QUADLET_REQUEST)
1378 			*data = cpu_to_be32(card->broadcast_channel);
1379 		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1380 			card->broadcast_channel =
1381 			    (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
1382 			    BROADCAST_CHANNEL_INITIAL;
1383 		else
1384 			rcode = RCODE_TYPE_ERROR;
1385 		break;
1386 
1387 	case CSR_BUS_MANAGER_ID:
1388 	case CSR_BANDWIDTH_AVAILABLE:
1389 	case CSR_CHANNELS_AVAILABLE_HI:
1390 	case CSR_CHANNELS_AVAILABLE_LO:
1391 		/*
1392 		 * FIXME: these are handled by the OHCI hardware and
1393 		 * the stack never sees these request. If we add
1394 		 * support for a new type of controller that doesn't
1395 		 * handle this in hardware we need to deal with these
1396 		 * transactions.
1397 		 */
1398 		BUG();
1399 		break;
1400 
1401 	default:
1402 		rcode = RCODE_ADDRESS_ERROR;
1403 		break;
1404 	}
1405 
1406 	fw_send_response(card, request, rcode);
1407 }
1408 
1409 static struct fw_address_handler registers = {
1410 	.length			= 0x400,
1411 	.address_callback	= handle_registers,
1412 };
1413 
handle_low_memory(struct fw_card * card,struct fw_request * request,int tcode,int destination,int source,int generation,unsigned long long offset,void * payload,size_t length,void * callback_data)1414 static void handle_low_memory(struct fw_card *card, struct fw_request *request,
1415 		int tcode, int destination, int source, int generation,
1416 		unsigned long long offset, void *payload, size_t length,
1417 		void *callback_data)
1418 {
1419 	/*
1420 	 * This catches requests not handled by the physical DMA unit,
1421 	 * i.e., wrong transaction types or unauthorized source nodes.
1422 	 */
1423 	fw_send_response(card, request, RCODE_TYPE_ERROR);
1424 }
1425 
1426 static struct fw_address_handler low_memory = {
1427 	.length			= FW_MAX_PHYSICAL_RANGE,
1428 	.address_callback	= handle_low_memory,
1429 };
1430 
1431 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1432 MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
1433 MODULE_LICENSE("GPL");
1434 
1435 static const u32 vendor_textual_descriptor[] = {
1436 	/* textual descriptor leaf () */
1437 	0x00060000,
1438 	0x00000000,
1439 	0x00000000,
1440 	0x4c696e75,		/* L i n u */
1441 	0x78204669,		/* x   F i */
1442 	0x72657769,		/* r e w i */
1443 	0x72650000,		/* r e     */
1444 };
1445 
1446 static const u32 model_textual_descriptor[] = {
1447 	/* model descriptor leaf () */
1448 	0x00030000,
1449 	0x00000000,
1450 	0x00000000,
1451 	0x4a756a75,		/* J u j u */
1452 };
1453 
1454 static struct fw_descriptor vendor_id_descriptor = {
1455 	.length = ARRAY_SIZE(vendor_textual_descriptor),
1456 	.immediate = 0x03001f11,
1457 	.key = 0x81000000,
1458 	.data = vendor_textual_descriptor,
1459 };
1460 
1461 static struct fw_descriptor model_id_descriptor = {
1462 	.length = ARRAY_SIZE(model_textual_descriptor),
1463 	.immediate = 0x17023901,
1464 	.key = 0x81000000,
1465 	.data = model_textual_descriptor,
1466 };
1467 
fw_core_init(void)1468 static int __init fw_core_init(void)
1469 {
1470 	int ret;
1471 
1472 	fw_workqueue = alloc_workqueue("firewire", WQ_MEM_RECLAIM | WQ_UNBOUND,
1473 				       0);
1474 	if (!fw_workqueue)
1475 		return -ENOMEM;
1476 
1477 	ret = bus_register(&fw_bus_type);
1478 	if (ret < 0) {
1479 		destroy_workqueue(fw_workqueue);
1480 		return ret;
1481 	}
1482 
1483 	fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
1484 	if (fw_cdev_major < 0) {
1485 		bus_unregister(&fw_bus_type);
1486 		destroy_workqueue(fw_workqueue);
1487 		return fw_cdev_major;
1488 	}
1489 
1490 	fw_core_add_address_handler(&topology_map, &topology_map_region);
1491 	fw_core_add_address_handler(&registers, &registers_region);
1492 	fw_core_add_address_handler(&low_memory, &low_memory_region);
1493 	fw_core_add_descriptor(&vendor_id_descriptor);
1494 	fw_core_add_descriptor(&model_id_descriptor);
1495 
1496 	return 0;
1497 }
1498 
fw_core_cleanup(void)1499 static void __exit fw_core_cleanup(void)
1500 {
1501 	unregister_chrdev(fw_cdev_major, "firewire");
1502 	bus_unregister(&fw_bus_type);
1503 	destroy_workqueue(fw_workqueue);
1504 	xa_destroy(&fw_device_xa);
1505 }
1506 
1507 module_init(fw_core_init);
1508 module_exit(fw_core_cleanup);
1509