xref: /linux/mm/vmscan.c (revision beace86e61e465dba204a268ab3f3377153a4973)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
4  *
5  *  Swap reorganised 29.12.95, Stephen Tweedie.
6  *  kswapd added: 7.1.96  sct
7  *  Removed kswapd_ctl limits, and swap out as many pages as needed
8  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10  *  Multiqueue VM started 5.8.00, Rik van Riel.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for buffer_heads_over_limit */
30 #include <linux/mm_inline.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rmap.h>
33 #include <linux/topology.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/compaction.h>
37 #include <linux/notifier.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/migrate.h>
43 #include <linux/delayacct.h>
44 #include <linux/sysctl.h>
45 #include <linux/memory-tiers.h>
46 #include <linux/oom.h>
47 #include <linux/pagevec.h>
48 #include <linux/prefetch.h>
49 #include <linux/printk.h>
50 #include <linux/dax.h>
51 #include <linux/psi.h>
52 #include <linux/pagewalk.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/ctype.h>
55 #include <linux/debugfs.h>
56 #include <linux/khugepaged.h>
57 #include <linux/rculist_nulls.h>
58 #include <linux/random.h>
59 #include <linux/mmu_notifier.h>
60 #include <linux/parser.h>
61 
62 #include <asm/tlbflush.h>
63 #include <asm/div64.h>
64 
65 #include <linux/swapops.h>
66 #include <linux/balloon_compaction.h>
67 #include <linux/sched/sysctl.h>
68 
69 #include "internal.h"
70 #include "swap.h"
71 
72 #define CREATE_TRACE_POINTS
73 #include <trace/events/vmscan.h>
74 
75 struct scan_control {
76 	/* How many pages shrink_list() should reclaim */
77 	unsigned long nr_to_reclaim;
78 
79 	/*
80 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
81 	 * are scanned.
82 	 */
83 	nodemask_t	*nodemask;
84 
85 	/*
86 	 * The memory cgroup that hit its limit and as a result is the
87 	 * primary target of this reclaim invocation.
88 	 */
89 	struct mem_cgroup *target_mem_cgroup;
90 
91 	/*
92 	 * Scan pressure balancing between anon and file LRUs
93 	 */
94 	unsigned long	anon_cost;
95 	unsigned long	file_cost;
96 
97 	/* Swappiness value for proactive reclaim. Always use sc_swappiness()! */
98 	int *proactive_swappiness;
99 
100 	/* Can active folios be deactivated as part of reclaim? */
101 #define DEACTIVATE_ANON 1
102 #define DEACTIVATE_FILE 2
103 	unsigned int may_deactivate:2;
104 	unsigned int force_deactivate:1;
105 	unsigned int skipped_deactivate:1;
106 
107 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
108 	unsigned int may_writepage:1;
109 
110 	/* Can mapped folios be reclaimed? */
111 	unsigned int may_unmap:1;
112 
113 	/* Can folios be swapped as part of reclaim? */
114 	unsigned int may_swap:1;
115 
116 	/* Not allow cache_trim_mode to be turned on as part of reclaim? */
117 	unsigned int no_cache_trim_mode:1;
118 
119 	/* Has cache_trim_mode failed at least once? */
120 	unsigned int cache_trim_mode_failed:1;
121 
122 	/* Proactive reclaim invoked by userspace */
123 	unsigned int proactive:1;
124 
125 	/*
126 	 * Cgroup memory below memory.low is protected as long as we
127 	 * don't threaten to OOM. If any cgroup is reclaimed at
128 	 * reduced force or passed over entirely due to its memory.low
129 	 * setting (memcg_low_skipped), and nothing is reclaimed as a
130 	 * result, then go back for one more cycle that reclaims the protected
131 	 * memory (memcg_low_reclaim) to avert OOM.
132 	 */
133 	unsigned int memcg_low_reclaim:1;
134 	unsigned int memcg_low_skipped:1;
135 
136 	/* Shared cgroup tree walk failed, rescan the whole tree */
137 	unsigned int memcg_full_walk:1;
138 
139 	unsigned int hibernation_mode:1;
140 
141 	/* One of the zones is ready for compaction */
142 	unsigned int compaction_ready:1;
143 
144 	/* There is easily reclaimable cold cache in the current node */
145 	unsigned int cache_trim_mode:1;
146 
147 	/* The file folios on the current node are dangerously low */
148 	unsigned int file_is_tiny:1;
149 
150 	/* Always discard instead of demoting to lower tier memory */
151 	unsigned int no_demotion:1;
152 
153 	/* Allocation order */
154 	s8 order;
155 
156 	/* Scan (total_size >> priority) pages at once */
157 	s8 priority;
158 
159 	/* The highest zone to isolate folios for reclaim from */
160 	s8 reclaim_idx;
161 
162 	/* This context's GFP mask */
163 	gfp_t gfp_mask;
164 
165 	/* Incremented by the number of inactive pages that were scanned */
166 	unsigned long nr_scanned;
167 
168 	/* Number of pages freed so far during a call to shrink_zones() */
169 	unsigned long nr_reclaimed;
170 
171 	struct {
172 		unsigned int dirty;
173 		unsigned int unqueued_dirty;
174 		unsigned int congested;
175 		unsigned int writeback;
176 		unsigned int immediate;
177 		unsigned int file_taken;
178 		unsigned int taken;
179 	} nr;
180 
181 	/* for recording the reclaimed slab by now */
182 	struct reclaim_state reclaim_state;
183 };
184 
185 #ifdef ARCH_HAS_PREFETCHW
186 #define prefetchw_prev_lru_folio(_folio, _base, _field)			\
187 	do {								\
188 		if ((_folio)->lru.prev != _base) {			\
189 			struct folio *prev;				\
190 									\
191 			prev = lru_to_folio(&(_folio->lru));		\
192 			prefetchw(&prev->_field);			\
193 		}							\
194 	} while (0)
195 #else
196 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
197 #endif
198 
199 /*
200  * From 0 .. MAX_SWAPPINESS.  Higher means more swappy.
201  */
202 int vm_swappiness = 60;
203 
204 #ifdef CONFIG_MEMCG
205 
206 /* Returns true for reclaim through cgroup limits or cgroup interfaces. */
207 static bool cgroup_reclaim(struct scan_control *sc)
208 {
209 	return sc->target_mem_cgroup;
210 }
211 
212 /*
213  * Returns true for reclaim on the root cgroup. This is true for direct
214  * allocator reclaim and reclaim through cgroup interfaces on the root cgroup.
215  */
216 static bool root_reclaim(struct scan_control *sc)
217 {
218 	return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup);
219 }
220 
221 /**
222  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
223  * @sc: scan_control in question
224  *
225  * The normal page dirty throttling mechanism in balance_dirty_pages() is
226  * completely broken with the legacy memcg and direct stalling in
227  * shrink_folio_list() is used for throttling instead, which lacks all the
228  * niceties such as fairness, adaptive pausing, bandwidth proportional
229  * allocation and configurability.
230  *
231  * This function tests whether the vmscan currently in progress can assume
232  * that the normal dirty throttling mechanism is operational.
233  */
234 static bool writeback_throttling_sane(struct scan_control *sc)
235 {
236 	if (!cgroup_reclaim(sc))
237 		return true;
238 #ifdef CONFIG_CGROUP_WRITEBACK
239 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
240 		return true;
241 #endif
242 	return false;
243 }
244 
245 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg)
246 {
247 	if (sc->proactive && sc->proactive_swappiness)
248 		return *sc->proactive_swappiness;
249 	return mem_cgroup_swappiness(memcg);
250 }
251 #else
252 static bool cgroup_reclaim(struct scan_control *sc)
253 {
254 	return false;
255 }
256 
257 static bool root_reclaim(struct scan_control *sc)
258 {
259 	return true;
260 }
261 
262 static bool writeback_throttling_sane(struct scan_control *sc)
263 {
264 	return true;
265 }
266 
267 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg)
268 {
269 	return READ_ONCE(vm_swappiness);
270 }
271 #endif
272 
273 /* for_each_managed_zone_pgdat - helper macro to iterate over all managed zones in a pgdat up to
274  * and including the specified highidx
275  * @zone: The current zone in the iterator
276  * @pgdat: The pgdat which node_zones are being iterated
277  * @idx: The index variable
278  * @highidx: The index of the highest zone to return
279  *
280  * This macro iterates through all managed zones up to and including the specified highidx.
281  * The zone iterator enters an invalid state after macro call and must be reinitialized
282  * before it can be used again.
283  */
284 #define for_each_managed_zone_pgdat(zone, pgdat, idx, highidx)	\
285 	for ((idx) = 0, (zone) = (pgdat)->node_zones;		\
286 	    (idx) <= (highidx);					\
287 	    (idx)++, (zone)++)					\
288 		if (!managed_zone(zone))			\
289 			continue;				\
290 		else
291 
292 static void set_task_reclaim_state(struct task_struct *task,
293 				   struct reclaim_state *rs)
294 {
295 	/* Check for an overwrite */
296 	WARN_ON_ONCE(rs && task->reclaim_state);
297 
298 	/* Check for the nulling of an already-nulled member */
299 	WARN_ON_ONCE(!rs && !task->reclaim_state);
300 
301 	task->reclaim_state = rs;
302 }
303 
304 /*
305  * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to
306  * scan_control->nr_reclaimed.
307  */
308 static void flush_reclaim_state(struct scan_control *sc)
309 {
310 	/*
311 	 * Currently, reclaim_state->reclaimed includes three types of pages
312 	 * freed outside of vmscan:
313 	 * (1) Slab pages.
314 	 * (2) Clean file pages from pruned inodes (on highmem systems).
315 	 * (3) XFS freed buffer pages.
316 	 *
317 	 * For all of these cases, we cannot universally link the pages to a
318 	 * single memcg. For example, a memcg-aware shrinker can free one object
319 	 * charged to the target memcg, causing an entire page to be freed.
320 	 * If we count the entire page as reclaimed from the memcg, we end up
321 	 * overestimating the reclaimed amount (potentially under-reclaiming).
322 	 *
323 	 * Only count such pages for global reclaim to prevent under-reclaiming
324 	 * from the target memcg; preventing unnecessary retries during memcg
325 	 * charging and false positives from proactive reclaim.
326 	 *
327 	 * For uncommon cases where the freed pages were actually mostly
328 	 * charged to the target memcg, we end up underestimating the reclaimed
329 	 * amount. This should be fine. The freed pages will be uncharged
330 	 * anyway, even if they are not counted here properly, and we will be
331 	 * able to make forward progress in charging (which is usually in a
332 	 * retry loop).
333 	 *
334 	 * We can go one step further, and report the uncharged objcg pages in
335 	 * memcg reclaim, to make reporting more accurate and reduce
336 	 * underestimation, but it's probably not worth the complexity for now.
337 	 */
338 	if (current->reclaim_state && root_reclaim(sc)) {
339 		sc->nr_reclaimed += current->reclaim_state->reclaimed;
340 		current->reclaim_state->reclaimed = 0;
341 	}
342 }
343 
344 static bool can_demote(int nid, struct scan_control *sc,
345 		       struct mem_cgroup *memcg)
346 {
347 	int demotion_nid;
348 
349 	if (!numa_demotion_enabled)
350 		return false;
351 	if (sc && sc->no_demotion)
352 		return false;
353 
354 	demotion_nid = next_demotion_node(nid);
355 	if (demotion_nid == NUMA_NO_NODE)
356 		return false;
357 
358 	/* If demotion node isn't in the cgroup's mems_allowed, fall back */
359 	return mem_cgroup_node_allowed(memcg, demotion_nid);
360 }
361 
362 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
363 					  int nid,
364 					  struct scan_control *sc)
365 {
366 	if (memcg == NULL) {
367 		/*
368 		 * For non-memcg reclaim, is there
369 		 * space in any swap device?
370 		 */
371 		if (get_nr_swap_pages() > 0)
372 			return true;
373 	} else {
374 		/* Is the memcg below its swap limit? */
375 		if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
376 			return true;
377 	}
378 
379 	/*
380 	 * The page can not be swapped.
381 	 *
382 	 * Can it be reclaimed from this node via demotion?
383 	 */
384 	return can_demote(nid, sc, memcg);
385 }
386 
387 /*
388  * This misses isolated folios which are not accounted for to save counters.
389  * As the data only determines if reclaim or compaction continues, it is
390  * not expected that isolated folios will be a dominating factor.
391  */
392 unsigned long zone_reclaimable_pages(struct zone *zone)
393 {
394 	unsigned long nr;
395 
396 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
397 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
398 	if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
399 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
400 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
401 	/*
402 	 * If there are no reclaimable file-backed or anonymous pages,
403 	 * ensure zones with sufficient free pages are not skipped.
404 	 * This prevents zones like DMA32 from being ignored in reclaim
405 	 * scenarios where they can still help alleviate memory pressure.
406 	 */
407 	if (nr == 0)
408 		nr = zone_page_state_snapshot(zone, NR_FREE_PAGES);
409 	return nr;
410 }
411 
412 /**
413  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
414  * @lruvec: lru vector
415  * @lru: lru to use
416  * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
417  */
418 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
419 				     int zone_idx)
420 {
421 	unsigned long size = 0;
422 	int zid;
423 	struct zone *zone;
424 
425 	for_each_managed_zone_pgdat(zone, lruvec_pgdat(lruvec), zid, zone_idx) {
426 		if (!mem_cgroup_disabled())
427 			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
428 		else
429 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
430 	}
431 	return size;
432 }
433 
434 static unsigned long drop_slab_node(int nid)
435 {
436 	unsigned long freed = 0;
437 	struct mem_cgroup *memcg = NULL;
438 
439 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
440 	do {
441 		freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
442 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
443 
444 	return freed;
445 }
446 
447 void drop_slab(void)
448 {
449 	int nid;
450 	int shift = 0;
451 	unsigned long freed;
452 
453 	do {
454 		freed = 0;
455 		for_each_online_node(nid) {
456 			if (fatal_signal_pending(current))
457 				return;
458 
459 			freed += drop_slab_node(nid);
460 		}
461 	} while ((freed >> shift++) > 1);
462 }
463 
464 #define CHECK_RECLAIMER_OFFSET(type)					\
465 	do {								\
466 		BUILD_BUG_ON(PGSTEAL_##type - PGSTEAL_KSWAPD !=		\
467 			     PGDEMOTE_##type - PGDEMOTE_KSWAPD);	\
468 		BUILD_BUG_ON(PGSTEAL_##type - PGSTEAL_KSWAPD !=		\
469 			     PGSCAN_##type - PGSCAN_KSWAPD);		\
470 	} while (0)
471 
472 static int reclaimer_offset(struct scan_control *sc)
473 {
474 	CHECK_RECLAIMER_OFFSET(DIRECT);
475 	CHECK_RECLAIMER_OFFSET(KHUGEPAGED);
476 	CHECK_RECLAIMER_OFFSET(PROACTIVE);
477 
478 	if (current_is_kswapd())
479 		return 0;
480 	if (current_is_khugepaged())
481 		return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
482 	if (sc->proactive)
483 		return PGSTEAL_PROACTIVE - PGSTEAL_KSWAPD;
484 	return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
485 }
486 
487 static inline int is_page_cache_freeable(struct folio *folio)
488 {
489 	/*
490 	 * A freeable page cache folio is referenced only by the caller
491 	 * that isolated the folio, the page cache and optional filesystem
492 	 * private data at folio->private.
493 	 */
494 	return folio_ref_count(folio) - folio_test_private(folio) ==
495 		1 + folio_nr_pages(folio);
496 }
497 
498 /*
499  * We detected a synchronous write error writing a folio out.  Probably
500  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
501  * fsync(), msync() or close().
502  *
503  * The tricky part is that after writepage we cannot touch the mapping: nothing
504  * prevents it from being freed up.  But we have a ref on the folio and once
505  * that folio is locked, the mapping is pinned.
506  *
507  * We're allowed to run sleeping folio_lock() here because we know the caller has
508  * __GFP_FS.
509  */
510 static void handle_write_error(struct address_space *mapping,
511 				struct folio *folio, int error)
512 {
513 	folio_lock(folio);
514 	if (folio_mapping(folio) == mapping)
515 		mapping_set_error(mapping, error);
516 	folio_unlock(folio);
517 }
518 
519 static bool skip_throttle_noprogress(pg_data_t *pgdat)
520 {
521 	int reclaimable = 0, write_pending = 0;
522 	int i;
523 	struct zone *zone;
524 	/*
525 	 * If kswapd is disabled, reschedule if necessary but do not
526 	 * throttle as the system is likely near OOM.
527 	 */
528 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
529 		return true;
530 
531 	/*
532 	 * If there are a lot of dirty/writeback folios then do not
533 	 * throttle as throttling will occur when the folios cycle
534 	 * towards the end of the LRU if still under writeback.
535 	 */
536 	for_each_managed_zone_pgdat(zone, pgdat, i, MAX_NR_ZONES - 1) {
537 		reclaimable += zone_reclaimable_pages(zone);
538 		write_pending += zone_page_state_snapshot(zone,
539 						  NR_ZONE_WRITE_PENDING);
540 	}
541 	if (2 * write_pending <= reclaimable)
542 		return true;
543 
544 	return false;
545 }
546 
547 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
548 {
549 	wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
550 	long timeout, ret;
551 	DEFINE_WAIT(wait);
552 
553 	/*
554 	 * Do not throttle user workers, kthreads other than kswapd or
555 	 * workqueues. They may be required for reclaim to make
556 	 * forward progress (e.g. journalling workqueues or kthreads).
557 	 */
558 	if (!current_is_kswapd() &&
559 	    current->flags & (PF_USER_WORKER|PF_KTHREAD)) {
560 		cond_resched();
561 		return;
562 	}
563 
564 	/*
565 	 * These figures are pulled out of thin air.
566 	 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
567 	 * parallel reclaimers which is a short-lived event so the timeout is
568 	 * short. Failing to make progress or waiting on writeback are
569 	 * potentially long-lived events so use a longer timeout. This is shaky
570 	 * logic as a failure to make progress could be due to anything from
571 	 * writeback to a slow device to excessive referenced folios at the tail
572 	 * of the inactive LRU.
573 	 */
574 	switch(reason) {
575 	case VMSCAN_THROTTLE_WRITEBACK:
576 		timeout = HZ/10;
577 
578 		if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
579 			WRITE_ONCE(pgdat->nr_reclaim_start,
580 				node_page_state(pgdat, NR_THROTTLED_WRITTEN));
581 		}
582 
583 		break;
584 	case VMSCAN_THROTTLE_CONGESTED:
585 		fallthrough;
586 	case VMSCAN_THROTTLE_NOPROGRESS:
587 		if (skip_throttle_noprogress(pgdat)) {
588 			cond_resched();
589 			return;
590 		}
591 
592 		timeout = 1;
593 
594 		break;
595 	case VMSCAN_THROTTLE_ISOLATED:
596 		timeout = HZ/50;
597 		break;
598 	default:
599 		WARN_ON_ONCE(1);
600 		timeout = HZ;
601 		break;
602 	}
603 
604 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
605 	ret = schedule_timeout(timeout);
606 	finish_wait(wqh, &wait);
607 
608 	if (reason == VMSCAN_THROTTLE_WRITEBACK)
609 		atomic_dec(&pgdat->nr_writeback_throttled);
610 
611 	trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
612 				jiffies_to_usecs(timeout - ret),
613 				reason);
614 }
615 
616 /*
617  * Account for folios written if tasks are throttled waiting on dirty
618  * folios to clean. If enough folios have been cleaned since throttling
619  * started then wakeup the throttled tasks.
620  */
621 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
622 							int nr_throttled)
623 {
624 	unsigned long nr_written;
625 
626 	node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
627 
628 	/*
629 	 * This is an inaccurate read as the per-cpu deltas may not
630 	 * be synchronised. However, given that the system is
631 	 * writeback throttled, it is not worth taking the penalty
632 	 * of getting an accurate count. At worst, the throttle
633 	 * timeout guarantees forward progress.
634 	 */
635 	nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
636 		READ_ONCE(pgdat->nr_reclaim_start);
637 
638 	if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
639 		wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
640 }
641 
642 /* possible outcome of pageout() */
643 typedef enum {
644 	/* failed to write folio out, folio is locked */
645 	PAGE_KEEP,
646 	/* move folio to the active list, folio is locked */
647 	PAGE_ACTIVATE,
648 	/* folio has been sent to the disk successfully, folio is unlocked */
649 	PAGE_SUCCESS,
650 	/* folio is clean and locked */
651 	PAGE_CLEAN,
652 } pageout_t;
653 
654 static pageout_t writeout(struct folio *folio, struct address_space *mapping,
655 		struct swap_iocb **plug, struct list_head *folio_list)
656 {
657 	int res;
658 
659 	folio_set_reclaim(folio);
660 
661 	/*
662 	 * The large shmem folio can be split if CONFIG_THP_SWAP is not enabled
663 	 * or we failed to allocate contiguous swap entries, in which case
664 	 * the split out folios get added back to folio_list.
665 	 */
666 	if (shmem_mapping(mapping))
667 		res = shmem_writeout(folio, plug, folio_list);
668 	else
669 		res = swap_writeout(folio, plug);
670 
671 	if (res < 0)
672 		handle_write_error(mapping, folio, res);
673 	if (res == AOP_WRITEPAGE_ACTIVATE) {
674 		folio_clear_reclaim(folio);
675 		return PAGE_ACTIVATE;
676 	}
677 
678 	/* synchronous write? */
679 	if (!folio_test_writeback(folio))
680 		folio_clear_reclaim(folio);
681 
682 	trace_mm_vmscan_write_folio(folio);
683 	node_stat_add_folio(folio, NR_VMSCAN_WRITE);
684 	return PAGE_SUCCESS;
685 }
686 
687 /*
688  * pageout is called by shrink_folio_list() for each dirty folio.
689  */
690 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
691 			 struct swap_iocb **plug, struct list_head *folio_list)
692 {
693 	/*
694 	 * We no longer attempt to writeback filesystem folios here, other
695 	 * than tmpfs/shmem.  That's taken care of in page-writeback.
696 	 * If we find a dirty filesystem folio at the end of the LRU list,
697 	 * typically that means the filesystem is saturating the storage
698 	 * with contiguous writes and telling it to write a folio here
699 	 * would only make the situation worse by injecting an element
700 	 * of random access.
701 	 *
702 	 * If the folio is swapcache, write it back even if that would
703 	 * block, for some throttling. This happens by accident, because
704 	 * swap_backing_dev_info is bust: it doesn't reflect the
705 	 * congestion state of the swapdevs.  Easy to fix, if needed.
706 	 */
707 	if (!is_page_cache_freeable(folio))
708 		return PAGE_KEEP;
709 	if (!mapping) {
710 		/*
711 		 * Some data journaling orphaned folios can have
712 		 * folio->mapping == NULL while being dirty with clean buffers.
713 		 */
714 		if (folio_test_private(folio)) {
715 			if (try_to_free_buffers(folio)) {
716 				folio_clear_dirty(folio);
717 				pr_info("%s: orphaned folio\n", __func__);
718 				return PAGE_CLEAN;
719 			}
720 		}
721 		return PAGE_KEEP;
722 	}
723 
724 	if (!shmem_mapping(mapping) && !folio_test_anon(folio))
725 		return PAGE_ACTIVATE;
726 	if (!folio_clear_dirty_for_io(folio))
727 		return PAGE_CLEAN;
728 	return writeout(folio, mapping, plug, folio_list);
729 }
730 
731 /*
732  * Same as remove_mapping, but if the folio is removed from the mapping, it
733  * gets returned with a refcount of 0.
734  */
735 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
736 			    bool reclaimed, struct mem_cgroup *target_memcg)
737 {
738 	int refcount;
739 	void *shadow = NULL;
740 
741 	BUG_ON(!folio_test_locked(folio));
742 	BUG_ON(mapping != folio_mapping(folio));
743 
744 	if (!folio_test_swapcache(folio))
745 		spin_lock(&mapping->host->i_lock);
746 	xa_lock_irq(&mapping->i_pages);
747 	/*
748 	 * The non racy check for a busy folio.
749 	 *
750 	 * Must be careful with the order of the tests. When someone has
751 	 * a ref to the folio, it may be possible that they dirty it then
752 	 * drop the reference. So if the dirty flag is tested before the
753 	 * refcount here, then the following race may occur:
754 	 *
755 	 * get_user_pages(&page);
756 	 * [user mapping goes away]
757 	 * write_to(page);
758 	 *				!folio_test_dirty(folio)    [good]
759 	 * folio_set_dirty(folio);
760 	 * folio_put(folio);
761 	 *				!refcount(folio)   [good, discard it]
762 	 *
763 	 * [oops, our write_to data is lost]
764 	 *
765 	 * Reversing the order of the tests ensures such a situation cannot
766 	 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
767 	 * load is not satisfied before that of folio->_refcount.
768 	 *
769 	 * Note that if the dirty flag is always set via folio_mark_dirty,
770 	 * and thus under the i_pages lock, then this ordering is not required.
771 	 */
772 	refcount = 1 + folio_nr_pages(folio);
773 	if (!folio_ref_freeze(folio, refcount))
774 		goto cannot_free;
775 	/* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
776 	if (unlikely(folio_test_dirty(folio))) {
777 		folio_ref_unfreeze(folio, refcount);
778 		goto cannot_free;
779 	}
780 
781 	if (folio_test_swapcache(folio)) {
782 		swp_entry_t swap = folio->swap;
783 
784 		if (reclaimed && !mapping_exiting(mapping))
785 			shadow = workingset_eviction(folio, target_memcg);
786 		__delete_from_swap_cache(folio, swap, shadow);
787 		memcg1_swapout(folio, swap);
788 		xa_unlock_irq(&mapping->i_pages);
789 		put_swap_folio(folio, swap);
790 	} else {
791 		void (*free_folio)(struct folio *);
792 
793 		free_folio = mapping->a_ops->free_folio;
794 		/*
795 		 * Remember a shadow entry for reclaimed file cache in
796 		 * order to detect refaults, thus thrashing, later on.
797 		 *
798 		 * But don't store shadows in an address space that is
799 		 * already exiting.  This is not just an optimization,
800 		 * inode reclaim needs to empty out the radix tree or
801 		 * the nodes are lost.  Don't plant shadows behind its
802 		 * back.
803 		 *
804 		 * We also don't store shadows for DAX mappings because the
805 		 * only page cache folios found in these are zero pages
806 		 * covering holes, and because we don't want to mix DAX
807 		 * exceptional entries and shadow exceptional entries in the
808 		 * same address_space.
809 		 */
810 		if (reclaimed && folio_is_file_lru(folio) &&
811 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
812 			shadow = workingset_eviction(folio, target_memcg);
813 		__filemap_remove_folio(folio, shadow);
814 		xa_unlock_irq(&mapping->i_pages);
815 		if (mapping_shrinkable(mapping))
816 			inode_add_lru(mapping->host);
817 		spin_unlock(&mapping->host->i_lock);
818 
819 		if (free_folio)
820 			free_folio(folio);
821 	}
822 
823 	return 1;
824 
825 cannot_free:
826 	xa_unlock_irq(&mapping->i_pages);
827 	if (!folio_test_swapcache(folio))
828 		spin_unlock(&mapping->host->i_lock);
829 	return 0;
830 }
831 
832 /**
833  * remove_mapping() - Attempt to remove a folio from its mapping.
834  * @mapping: The address space.
835  * @folio: The folio to remove.
836  *
837  * If the folio is dirty, under writeback or if someone else has a ref
838  * on it, removal will fail.
839  * Return: The number of pages removed from the mapping.  0 if the folio
840  * could not be removed.
841  * Context: The caller should have a single refcount on the folio and
842  * hold its lock.
843  */
844 long remove_mapping(struct address_space *mapping, struct folio *folio)
845 {
846 	if (__remove_mapping(mapping, folio, false, NULL)) {
847 		/*
848 		 * Unfreezing the refcount with 1 effectively
849 		 * drops the pagecache ref for us without requiring another
850 		 * atomic operation.
851 		 */
852 		folio_ref_unfreeze(folio, 1);
853 		return folio_nr_pages(folio);
854 	}
855 	return 0;
856 }
857 
858 /**
859  * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
860  * @folio: Folio to be returned to an LRU list.
861  *
862  * Add previously isolated @folio to appropriate LRU list.
863  * The folio may still be unevictable for other reasons.
864  *
865  * Context: lru_lock must not be held, interrupts must be enabled.
866  */
867 void folio_putback_lru(struct folio *folio)
868 {
869 	folio_add_lru(folio);
870 	folio_put(folio);		/* drop ref from isolate */
871 }
872 
873 enum folio_references {
874 	FOLIOREF_RECLAIM,
875 	FOLIOREF_RECLAIM_CLEAN,
876 	FOLIOREF_KEEP,
877 	FOLIOREF_ACTIVATE,
878 };
879 
880 #ifdef CONFIG_LRU_GEN
881 /*
882  * Only used on a mapped folio in the eviction (rmap walk) path, where promotion
883  * needs to be done by taking the folio off the LRU list and then adding it back
884  * with PG_active set. In contrast, the aging (page table walk) path uses
885  * folio_update_gen().
886  */
887 static bool lru_gen_set_refs(struct folio *folio)
888 {
889 	/* see the comment on LRU_REFS_FLAGS */
890 	if (!folio_test_referenced(folio) && !folio_test_workingset(folio)) {
891 		set_mask_bits(&folio->flags, LRU_REFS_MASK, BIT(PG_referenced));
892 		return false;
893 	}
894 
895 	set_mask_bits(&folio->flags, LRU_REFS_FLAGS, BIT(PG_workingset));
896 	return true;
897 }
898 #else
899 static bool lru_gen_set_refs(struct folio *folio)
900 {
901 	return false;
902 }
903 #endif /* CONFIG_LRU_GEN */
904 
905 static enum folio_references folio_check_references(struct folio *folio,
906 						  struct scan_control *sc)
907 {
908 	int referenced_ptes, referenced_folio;
909 	vm_flags_t vm_flags;
910 
911 	referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
912 					   &vm_flags);
913 
914 	/*
915 	 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
916 	 * Let the folio, now marked Mlocked, be moved to the unevictable list.
917 	 */
918 	if (vm_flags & VM_LOCKED)
919 		return FOLIOREF_ACTIVATE;
920 
921 	/*
922 	 * There are two cases to consider.
923 	 * 1) Rmap lock contention: rotate.
924 	 * 2) Skip the non-shared swapbacked folio mapped solely by
925 	 *    the exiting or OOM-reaped process.
926 	 */
927 	if (referenced_ptes == -1)
928 		return FOLIOREF_KEEP;
929 
930 	if (lru_gen_enabled()) {
931 		if (!referenced_ptes)
932 			return FOLIOREF_RECLAIM;
933 
934 		return lru_gen_set_refs(folio) ? FOLIOREF_ACTIVATE : FOLIOREF_KEEP;
935 	}
936 
937 	referenced_folio = folio_test_clear_referenced(folio);
938 
939 	if (referenced_ptes) {
940 		/*
941 		 * All mapped folios start out with page table
942 		 * references from the instantiating fault, so we need
943 		 * to look twice if a mapped file/anon folio is used more
944 		 * than once.
945 		 *
946 		 * Mark it and spare it for another trip around the
947 		 * inactive list.  Another page table reference will
948 		 * lead to its activation.
949 		 *
950 		 * Note: the mark is set for activated folios as well
951 		 * so that recently deactivated but used folios are
952 		 * quickly recovered.
953 		 */
954 		folio_set_referenced(folio);
955 
956 		if (referenced_folio || referenced_ptes > 1)
957 			return FOLIOREF_ACTIVATE;
958 
959 		/*
960 		 * Activate file-backed executable folios after first usage.
961 		 */
962 		if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
963 			return FOLIOREF_ACTIVATE;
964 
965 		return FOLIOREF_KEEP;
966 	}
967 
968 	/* Reclaim if clean, defer dirty folios to writeback */
969 	if (referenced_folio && folio_is_file_lru(folio))
970 		return FOLIOREF_RECLAIM_CLEAN;
971 
972 	return FOLIOREF_RECLAIM;
973 }
974 
975 /* Check if a folio is dirty or under writeback */
976 static void folio_check_dirty_writeback(struct folio *folio,
977 				       bool *dirty, bool *writeback)
978 {
979 	struct address_space *mapping;
980 
981 	/*
982 	 * Anonymous folios are not handled by flushers and must be written
983 	 * from reclaim context. Do not stall reclaim based on them.
984 	 * MADV_FREE anonymous folios are put into inactive file list too.
985 	 * They could be mistakenly treated as file lru. So further anon
986 	 * test is needed.
987 	 */
988 	if (!folio_is_file_lru(folio) ||
989 	    (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
990 		*dirty = false;
991 		*writeback = false;
992 		return;
993 	}
994 
995 	/* By default assume that the folio flags are accurate */
996 	*dirty = folio_test_dirty(folio);
997 	*writeback = folio_test_writeback(folio);
998 
999 	/* Verify dirty/writeback state if the filesystem supports it */
1000 	if (!folio_test_private(folio))
1001 		return;
1002 
1003 	mapping = folio_mapping(folio);
1004 	if (mapping && mapping->a_ops->is_dirty_writeback)
1005 		mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
1006 }
1007 
1008 static struct folio *alloc_demote_folio(struct folio *src,
1009 		unsigned long private)
1010 {
1011 	struct folio *dst;
1012 	nodemask_t *allowed_mask;
1013 	struct migration_target_control *mtc;
1014 
1015 	mtc = (struct migration_target_control *)private;
1016 
1017 	allowed_mask = mtc->nmask;
1018 	/*
1019 	 * make sure we allocate from the target node first also trying to
1020 	 * demote or reclaim pages from the target node via kswapd if we are
1021 	 * low on free memory on target node. If we don't do this and if
1022 	 * we have free memory on the slower(lower) memtier, we would start
1023 	 * allocating pages from slower(lower) memory tiers without even forcing
1024 	 * a demotion of cold pages from the target memtier. This can result
1025 	 * in the kernel placing hot pages in slower(lower) memory tiers.
1026 	 */
1027 	mtc->nmask = NULL;
1028 	mtc->gfp_mask |= __GFP_THISNODE;
1029 	dst = alloc_migration_target(src, (unsigned long)mtc);
1030 	if (dst)
1031 		return dst;
1032 
1033 	mtc->gfp_mask &= ~__GFP_THISNODE;
1034 	mtc->nmask = allowed_mask;
1035 
1036 	return alloc_migration_target(src, (unsigned long)mtc);
1037 }
1038 
1039 /*
1040  * Take folios on @demote_folios and attempt to demote them to another node.
1041  * Folios which are not demoted are left on @demote_folios.
1042  */
1043 static unsigned int demote_folio_list(struct list_head *demote_folios,
1044 				     struct pglist_data *pgdat)
1045 {
1046 	int target_nid = next_demotion_node(pgdat->node_id);
1047 	unsigned int nr_succeeded;
1048 	nodemask_t allowed_mask;
1049 
1050 	struct migration_target_control mtc = {
1051 		/*
1052 		 * Allocate from 'node', or fail quickly and quietly.
1053 		 * When this happens, 'page' will likely just be discarded
1054 		 * instead of migrated.
1055 		 */
1056 		.gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
1057 			__GFP_NOMEMALLOC | GFP_NOWAIT,
1058 		.nid = target_nid,
1059 		.nmask = &allowed_mask,
1060 		.reason = MR_DEMOTION,
1061 	};
1062 
1063 	if (list_empty(demote_folios))
1064 		return 0;
1065 
1066 	if (target_nid == NUMA_NO_NODE)
1067 		return 0;
1068 
1069 	node_get_allowed_targets(pgdat, &allowed_mask);
1070 
1071 	/* Demotion ignores all cpuset and mempolicy settings */
1072 	migrate_pages(demote_folios, alloc_demote_folio, NULL,
1073 		      (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
1074 		      &nr_succeeded);
1075 
1076 	return nr_succeeded;
1077 }
1078 
1079 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
1080 {
1081 	if (gfp_mask & __GFP_FS)
1082 		return true;
1083 	if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
1084 		return false;
1085 	/*
1086 	 * We can "enter_fs" for swap-cache with only __GFP_IO
1087 	 * providing this isn't SWP_FS_OPS.
1088 	 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1089 	 * but that will never affect SWP_FS_OPS, so the data_race
1090 	 * is safe.
1091 	 */
1092 	return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1093 }
1094 
1095 /*
1096  * shrink_folio_list() returns the number of reclaimed pages
1097  */
1098 static unsigned int shrink_folio_list(struct list_head *folio_list,
1099 		struct pglist_data *pgdat, struct scan_control *sc,
1100 		struct reclaim_stat *stat, bool ignore_references,
1101 		struct mem_cgroup *memcg)
1102 {
1103 	struct folio_batch free_folios;
1104 	LIST_HEAD(ret_folios);
1105 	LIST_HEAD(demote_folios);
1106 	unsigned int nr_reclaimed = 0, nr_demoted = 0;
1107 	unsigned int pgactivate = 0;
1108 	bool do_demote_pass;
1109 	struct swap_iocb *plug = NULL;
1110 
1111 	folio_batch_init(&free_folios);
1112 	memset(stat, 0, sizeof(*stat));
1113 	cond_resched();
1114 	do_demote_pass = can_demote(pgdat->node_id, sc, memcg);
1115 
1116 retry:
1117 	while (!list_empty(folio_list)) {
1118 		struct address_space *mapping;
1119 		struct folio *folio;
1120 		enum folio_references references = FOLIOREF_RECLAIM;
1121 		bool dirty, writeback;
1122 		unsigned int nr_pages;
1123 
1124 		cond_resched();
1125 
1126 		folio = lru_to_folio(folio_list);
1127 		list_del(&folio->lru);
1128 
1129 		if (!folio_trylock(folio))
1130 			goto keep;
1131 
1132 		if (folio_contain_hwpoisoned_page(folio)) {
1133 			/*
1134 			 * unmap_poisoned_folio() can't handle large
1135 			 * folio, just skip it. memory_failure() will
1136 			 * handle it if the UCE is triggered again.
1137 			 */
1138 			if (folio_test_large(folio))
1139 				goto keep_locked;
1140 
1141 			unmap_poisoned_folio(folio, folio_pfn(folio), false);
1142 			folio_unlock(folio);
1143 			folio_put(folio);
1144 			continue;
1145 		}
1146 
1147 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1148 
1149 		nr_pages = folio_nr_pages(folio);
1150 
1151 		/* Account the number of base pages */
1152 		sc->nr_scanned += nr_pages;
1153 
1154 		if (unlikely(!folio_evictable(folio)))
1155 			goto activate_locked;
1156 
1157 		if (!sc->may_unmap && folio_mapped(folio))
1158 			goto keep_locked;
1159 
1160 		/*
1161 		 * The number of dirty pages determines if a node is marked
1162 		 * reclaim_congested. kswapd will stall and start writing
1163 		 * folios if the tail of the LRU is all dirty unqueued folios.
1164 		 */
1165 		folio_check_dirty_writeback(folio, &dirty, &writeback);
1166 		if (dirty || writeback)
1167 			stat->nr_dirty += nr_pages;
1168 
1169 		if (dirty && !writeback)
1170 			stat->nr_unqueued_dirty += nr_pages;
1171 
1172 		/*
1173 		 * Treat this folio as congested if folios are cycling
1174 		 * through the LRU so quickly that the folios marked
1175 		 * for immediate reclaim are making it to the end of
1176 		 * the LRU a second time.
1177 		 */
1178 		if (writeback && folio_test_reclaim(folio))
1179 			stat->nr_congested += nr_pages;
1180 
1181 		/*
1182 		 * If a folio at the tail of the LRU is under writeback, there
1183 		 * are three cases to consider.
1184 		 *
1185 		 * 1) If reclaim is encountering an excessive number
1186 		 *    of folios under writeback and this folio has both
1187 		 *    the writeback and reclaim flags set, then it
1188 		 *    indicates that folios are being queued for I/O but
1189 		 *    are being recycled through the LRU before the I/O
1190 		 *    can complete. Waiting on the folio itself risks an
1191 		 *    indefinite stall if it is impossible to writeback
1192 		 *    the folio due to I/O error or disconnected storage
1193 		 *    so instead note that the LRU is being scanned too
1194 		 *    quickly and the caller can stall after the folio
1195 		 *    list has been processed.
1196 		 *
1197 		 * 2) Global or new memcg reclaim encounters a folio that is
1198 		 *    not marked for immediate reclaim, or the caller does not
1199 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1200 		 *    not to fs), or the folio belongs to a mapping where
1201 		 *    waiting on writeback during reclaim may lead to a deadlock.
1202 		 *    In this case mark the folio for immediate reclaim and
1203 		 *    continue scanning.
1204 		 *
1205 		 *    Require may_enter_fs() because we would wait on fs, which
1206 		 *    may not have submitted I/O yet. And the loop driver might
1207 		 *    enter reclaim, and deadlock if it waits on a folio for
1208 		 *    which it is needed to do the write (loop masks off
1209 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1210 		 *    would probably show more reasons.
1211 		 *
1212 		 * 3) Legacy memcg encounters a folio that already has the
1213 		 *    reclaim flag set. memcg does not have any dirty folio
1214 		 *    throttling so we could easily OOM just because too many
1215 		 *    folios are in writeback and there is nothing else to
1216 		 *    reclaim. Wait for the writeback to complete.
1217 		 *
1218 		 * In cases 1) and 2) we activate the folios to get them out of
1219 		 * the way while we continue scanning for clean folios on the
1220 		 * inactive list and refilling from the active list. The
1221 		 * observation here is that waiting for disk writes is more
1222 		 * expensive than potentially causing reloads down the line.
1223 		 * Since they're marked for immediate reclaim, they won't put
1224 		 * memory pressure on the cache working set any longer than it
1225 		 * takes to write them to disk.
1226 		 */
1227 		if (folio_test_writeback(folio)) {
1228 			mapping = folio_mapping(folio);
1229 
1230 			/* Case 1 above */
1231 			if (current_is_kswapd() &&
1232 			    folio_test_reclaim(folio) &&
1233 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1234 				stat->nr_immediate += nr_pages;
1235 				goto activate_locked;
1236 
1237 			/* Case 2 above */
1238 			} else if (writeback_throttling_sane(sc) ||
1239 			    !folio_test_reclaim(folio) ||
1240 			    !may_enter_fs(folio, sc->gfp_mask) ||
1241 			    (mapping &&
1242 			     mapping_writeback_may_deadlock_on_reclaim(mapping))) {
1243 				/*
1244 				 * This is slightly racy -
1245 				 * folio_end_writeback() might have
1246 				 * just cleared the reclaim flag, then
1247 				 * setting the reclaim flag here ends up
1248 				 * interpreted as the readahead flag - but
1249 				 * that does not matter enough to care.
1250 				 * What we do want is for this folio to
1251 				 * have the reclaim flag set next time
1252 				 * memcg reclaim reaches the tests above,
1253 				 * so it will then wait for writeback to
1254 				 * avoid OOM; and it's also appropriate
1255 				 * in global reclaim.
1256 				 */
1257 				folio_set_reclaim(folio);
1258 				stat->nr_writeback += nr_pages;
1259 				goto activate_locked;
1260 
1261 			/* Case 3 above */
1262 			} else {
1263 				folio_unlock(folio);
1264 				folio_wait_writeback(folio);
1265 				/* then go back and try same folio again */
1266 				list_add_tail(&folio->lru, folio_list);
1267 				continue;
1268 			}
1269 		}
1270 
1271 		if (!ignore_references)
1272 			references = folio_check_references(folio, sc);
1273 
1274 		switch (references) {
1275 		case FOLIOREF_ACTIVATE:
1276 			goto activate_locked;
1277 		case FOLIOREF_KEEP:
1278 			stat->nr_ref_keep += nr_pages;
1279 			goto keep_locked;
1280 		case FOLIOREF_RECLAIM:
1281 		case FOLIOREF_RECLAIM_CLEAN:
1282 			; /* try to reclaim the folio below */
1283 		}
1284 
1285 		/*
1286 		 * Before reclaiming the folio, try to relocate
1287 		 * its contents to another node.
1288 		 */
1289 		if (do_demote_pass &&
1290 		    (thp_migration_supported() || !folio_test_large(folio))) {
1291 			list_add(&folio->lru, &demote_folios);
1292 			folio_unlock(folio);
1293 			continue;
1294 		}
1295 
1296 		/*
1297 		 * Anonymous process memory has backing store?
1298 		 * Try to allocate it some swap space here.
1299 		 * Lazyfree folio could be freed directly
1300 		 */
1301 		if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1302 			if (!folio_test_swapcache(folio)) {
1303 				if (!(sc->gfp_mask & __GFP_IO))
1304 					goto keep_locked;
1305 				if (folio_maybe_dma_pinned(folio))
1306 					goto keep_locked;
1307 				if (folio_test_large(folio)) {
1308 					/* cannot split folio, skip it */
1309 					if (!can_split_folio(folio, 1, NULL))
1310 						goto activate_locked;
1311 					/*
1312 					 * Split partially mapped folios right away.
1313 					 * We can free the unmapped pages without IO.
1314 					 */
1315 					if (data_race(!list_empty(&folio->_deferred_list) &&
1316 					    folio_test_partially_mapped(folio)) &&
1317 					    split_folio_to_list(folio, folio_list))
1318 						goto activate_locked;
1319 				}
1320 				if (folio_alloc_swap(folio, __GFP_HIGH | __GFP_NOWARN)) {
1321 					int __maybe_unused order = folio_order(folio);
1322 
1323 					if (!folio_test_large(folio))
1324 						goto activate_locked_split;
1325 					/* Fallback to swap normal pages */
1326 					if (split_folio_to_list(folio, folio_list))
1327 						goto activate_locked;
1328 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1329 					if (nr_pages >= HPAGE_PMD_NR) {
1330 						count_memcg_folio_events(folio,
1331 							THP_SWPOUT_FALLBACK, 1);
1332 						count_vm_event(THP_SWPOUT_FALLBACK);
1333 					}
1334 #endif
1335 					count_mthp_stat(order, MTHP_STAT_SWPOUT_FALLBACK);
1336 					if (folio_alloc_swap(folio, __GFP_HIGH | __GFP_NOWARN))
1337 						goto activate_locked_split;
1338 				}
1339 				/*
1340 				 * Normally the folio will be dirtied in unmap because its
1341 				 * pte should be dirty. A special case is MADV_FREE page. The
1342 				 * page's pte could have dirty bit cleared but the folio's
1343 				 * SwapBacked flag is still set because clearing the dirty bit
1344 				 * and SwapBacked flag has no lock protected. For such folio,
1345 				 * unmap will not set dirty bit for it, so folio reclaim will
1346 				 * not write the folio out. This can cause data corruption when
1347 				 * the folio is swapped in later. Always setting the dirty flag
1348 				 * for the folio solves the problem.
1349 				 */
1350 				folio_mark_dirty(folio);
1351 			}
1352 		}
1353 
1354 		/*
1355 		 * If the folio was split above, the tail pages will make
1356 		 * their own pass through this function and be accounted
1357 		 * then.
1358 		 */
1359 		if ((nr_pages > 1) && !folio_test_large(folio)) {
1360 			sc->nr_scanned -= (nr_pages - 1);
1361 			nr_pages = 1;
1362 		}
1363 
1364 		/*
1365 		 * The folio is mapped into the page tables of one or more
1366 		 * processes. Try to unmap it here.
1367 		 */
1368 		if (folio_mapped(folio)) {
1369 			enum ttu_flags flags = TTU_BATCH_FLUSH;
1370 			bool was_swapbacked = folio_test_swapbacked(folio);
1371 
1372 			if (folio_test_pmd_mappable(folio))
1373 				flags |= TTU_SPLIT_HUGE_PMD;
1374 			/*
1375 			 * Without TTU_SYNC, try_to_unmap will only begin to
1376 			 * hold PTL from the first present PTE within a large
1377 			 * folio. Some initial PTEs might be skipped due to
1378 			 * races with parallel PTE writes in which PTEs can be
1379 			 * cleared temporarily before being written new present
1380 			 * values. This will lead to a large folio is still
1381 			 * mapped while some subpages have been partially
1382 			 * unmapped after try_to_unmap; TTU_SYNC helps
1383 			 * try_to_unmap acquire PTL from the first PTE,
1384 			 * eliminating the influence of temporary PTE values.
1385 			 */
1386 			if (folio_test_large(folio))
1387 				flags |= TTU_SYNC;
1388 
1389 			try_to_unmap(folio, flags);
1390 			if (folio_mapped(folio)) {
1391 				stat->nr_unmap_fail += nr_pages;
1392 				if (!was_swapbacked &&
1393 				    folio_test_swapbacked(folio))
1394 					stat->nr_lazyfree_fail += nr_pages;
1395 				goto activate_locked;
1396 			}
1397 		}
1398 
1399 		/*
1400 		 * Folio is unmapped now so it cannot be newly pinned anymore.
1401 		 * No point in trying to reclaim folio if it is pinned.
1402 		 * Furthermore we don't want to reclaim underlying fs metadata
1403 		 * if the folio is pinned and thus potentially modified by the
1404 		 * pinning process as that may upset the filesystem.
1405 		 */
1406 		if (folio_maybe_dma_pinned(folio))
1407 			goto activate_locked;
1408 
1409 		mapping = folio_mapping(folio);
1410 		if (folio_test_dirty(folio)) {
1411 			/*
1412 			 * Only kswapd can writeback filesystem folios
1413 			 * to avoid risk of stack overflow. But avoid
1414 			 * injecting inefficient single-folio I/O into
1415 			 * flusher writeback as much as possible: only
1416 			 * write folios when we've encountered many
1417 			 * dirty folios, and when we've already scanned
1418 			 * the rest of the LRU for clean folios and see
1419 			 * the same dirty folios again (with the reclaim
1420 			 * flag set).
1421 			 */
1422 			if (folio_is_file_lru(folio) &&
1423 			    (!current_is_kswapd() ||
1424 			     !folio_test_reclaim(folio) ||
1425 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1426 				/*
1427 				 * Immediately reclaim when written back.
1428 				 * Similar in principle to folio_deactivate()
1429 				 * except we already have the folio isolated
1430 				 * and know it's dirty
1431 				 */
1432 				node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1433 						nr_pages);
1434 				folio_set_reclaim(folio);
1435 
1436 				goto activate_locked;
1437 			}
1438 
1439 			if (references == FOLIOREF_RECLAIM_CLEAN)
1440 				goto keep_locked;
1441 			if (!may_enter_fs(folio, sc->gfp_mask))
1442 				goto keep_locked;
1443 			if (!sc->may_writepage)
1444 				goto keep_locked;
1445 
1446 			/*
1447 			 * Folio is dirty. Flush the TLB if a writable entry
1448 			 * potentially exists to avoid CPU writes after I/O
1449 			 * starts and then write it out here.
1450 			 */
1451 			try_to_unmap_flush_dirty();
1452 			switch (pageout(folio, mapping, &plug, folio_list)) {
1453 			case PAGE_KEEP:
1454 				goto keep_locked;
1455 			case PAGE_ACTIVATE:
1456 				/*
1457 				 * If shmem folio is split when writeback to swap,
1458 				 * the tail pages will make their own pass through
1459 				 * this function and be accounted then.
1460 				 */
1461 				if (nr_pages > 1 && !folio_test_large(folio)) {
1462 					sc->nr_scanned -= (nr_pages - 1);
1463 					nr_pages = 1;
1464 				}
1465 				goto activate_locked;
1466 			case PAGE_SUCCESS:
1467 				if (nr_pages > 1 && !folio_test_large(folio)) {
1468 					sc->nr_scanned -= (nr_pages - 1);
1469 					nr_pages = 1;
1470 				}
1471 				stat->nr_pageout += nr_pages;
1472 
1473 				if (folio_test_writeback(folio))
1474 					goto keep;
1475 				if (folio_test_dirty(folio))
1476 					goto keep;
1477 
1478 				/*
1479 				 * A synchronous write - probably a ramdisk.  Go
1480 				 * ahead and try to reclaim the folio.
1481 				 */
1482 				if (!folio_trylock(folio))
1483 					goto keep;
1484 				if (folio_test_dirty(folio) ||
1485 				    folio_test_writeback(folio))
1486 					goto keep_locked;
1487 				mapping = folio_mapping(folio);
1488 				fallthrough;
1489 			case PAGE_CLEAN:
1490 				; /* try to free the folio below */
1491 			}
1492 		}
1493 
1494 		/*
1495 		 * If the folio has buffers, try to free the buffer
1496 		 * mappings associated with this folio. If we succeed
1497 		 * we try to free the folio as well.
1498 		 *
1499 		 * We do this even if the folio is dirty.
1500 		 * filemap_release_folio() does not perform I/O, but it
1501 		 * is possible for a folio to have the dirty flag set,
1502 		 * but it is actually clean (all its buffers are clean).
1503 		 * This happens if the buffers were written out directly,
1504 		 * with submit_bh(). ext3 will do this, as well as
1505 		 * the blockdev mapping.  filemap_release_folio() will
1506 		 * discover that cleanness and will drop the buffers
1507 		 * and mark the folio clean - it can be freed.
1508 		 *
1509 		 * Rarely, folios can have buffers and no ->mapping.
1510 		 * These are the folios which were not successfully
1511 		 * invalidated in truncate_cleanup_folio().  We try to
1512 		 * drop those buffers here and if that worked, and the
1513 		 * folio is no longer mapped into process address space
1514 		 * (refcount == 1) it can be freed.  Otherwise, leave
1515 		 * the folio on the LRU so it is swappable.
1516 		 */
1517 		if (folio_needs_release(folio)) {
1518 			if (!filemap_release_folio(folio, sc->gfp_mask))
1519 				goto activate_locked;
1520 			if (!mapping && folio_ref_count(folio) == 1) {
1521 				folio_unlock(folio);
1522 				if (folio_put_testzero(folio))
1523 					goto free_it;
1524 				else {
1525 					/*
1526 					 * rare race with speculative reference.
1527 					 * the speculative reference will free
1528 					 * this folio shortly, so we may
1529 					 * increment nr_reclaimed here (and
1530 					 * leave it off the LRU).
1531 					 */
1532 					nr_reclaimed += nr_pages;
1533 					continue;
1534 				}
1535 			}
1536 		}
1537 
1538 		if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
1539 			/* follow __remove_mapping for reference */
1540 			if (!folio_ref_freeze(folio, 1))
1541 				goto keep_locked;
1542 			/*
1543 			 * The folio has only one reference left, which is
1544 			 * from the isolation. After the caller puts the
1545 			 * folio back on the lru and drops the reference, the
1546 			 * folio will be freed anyway. It doesn't matter
1547 			 * which lru it goes on. So we don't bother checking
1548 			 * the dirty flag here.
1549 			 */
1550 			count_vm_events(PGLAZYFREED, nr_pages);
1551 			count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
1552 		} else if (!mapping || !__remove_mapping(mapping, folio, true,
1553 							 sc->target_mem_cgroup))
1554 			goto keep_locked;
1555 
1556 		folio_unlock(folio);
1557 free_it:
1558 		/*
1559 		 * Folio may get swapped out as a whole, need to account
1560 		 * all pages in it.
1561 		 */
1562 		nr_reclaimed += nr_pages;
1563 
1564 		folio_unqueue_deferred_split(folio);
1565 		if (folio_batch_add(&free_folios, folio) == 0) {
1566 			mem_cgroup_uncharge_folios(&free_folios);
1567 			try_to_unmap_flush();
1568 			free_unref_folios(&free_folios);
1569 		}
1570 		continue;
1571 
1572 activate_locked_split:
1573 		/*
1574 		 * The tail pages that are failed to add into swap cache
1575 		 * reach here.  Fixup nr_scanned and nr_pages.
1576 		 */
1577 		if (nr_pages > 1) {
1578 			sc->nr_scanned -= (nr_pages - 1);
1579 			nr_pages = 1;
1580 		}
1581 activate_locked:
1582 		/* Not a candidate for swapping, so reclaim swap space. */
1583 		if (folio_test_swapcache(folio) &&
1584 		    (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
1585 			folio_free_swap(folio);
1586 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1587 		if (!folio_test_mlocked(folio)) {
1588 			int type = folio_is_file_lru(folio);
1589 			folio_set_active(folio);
1590 			stat->nr_activate[type] += nr_pages;
1591 			count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
1592 		}
1593 keep_locked:
1594 		folio_unlock(folio);
1595 keep:
1596 		list_add(&folio->lru, &ret_folios);
1597 		VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
1598 				folio_test_unevictable(folio), folio);
1599 	}
1600 	/* 'folio_list' is always empty here */
1601 
1602 	/* Migrate folios selected for demotion */
1603 	nr_demoted = demote_folio_list(&demote_folios, pgdat);
1604 	nr_reclaimed += nr_demoted;
1605 	stat->nr_demoted += nr_demoted;
1606 	/* Folios that could not be demoted are still in @demote_folios */
1607 	if (!list_empty(&demote_folios)) {
1608 		/* Folios which weren't demoted go back on @folio_list */
1609 		list_splice_init(&demote_folios, folio_list);
1610 
1611 		/*
1612 		 * goto retry to reclaim the undemoted folios in folio_list if
1613 		 * desired.
1614 		 *
1615 		 * Reclaiming directly from top tier nodes is not often desired
1616 		 * due to it breaking the LRU ordering: in general memory
1617 		 * should be reclaimed from lower tier nodes and demoted from
1618 		 * top tier nodes.
1619 		 *
1620 		 * However, disabling reclaim from top tier nodes entirely
1621 		 * would cause ooms in edge scenarios where lower tier memory
1622 		 * is unreclaimable for whatever reason, eg memory being
1623 		 * mlocked or too hot to reclaim. We can disable reclaim
1624 		 * from top tier nodes in proactive reclaim though as that is
1625 		 * not real memory pressure.
1626 		 */
1627 		if (!sc->proactive) {
1628 			do_demote_pass = false;
1629 			goto retry;
1630 		}
1631 	}
1632 
1633 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1634 
1635 	mem_cgroup_uncharge_folios(&free_folios);
1636 	try_to_unmap_flush();
1637 	free_unref_folios(&free_folios);
1638 
1639 	list_splice(&ret_folios, folio_list);
1640 	count_vm_events(PGACTIVATE, pgactivate);
1641 
1642 	if (plug)
1643 		swap_write_unplug(plug);
1644 	return nr_reclaimed;
1645 }
1646 
1647 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1648 					   struct list_head *folio_list)
1649 {
1650 	struct scan_control sc = {
1651 		.gfp_mask = GFP_KERNEL,
1652 		.may_unmap = 1,
1653 	};
1654 	struct reclaim_stat stat;
1655 	unsigned int nr_reclaimed;
1656 	struct folio *folio, *next;
1657 	LIST_HEAD(clean_folios);
1658 	unsigned int noreclaim_flag;
1659 
1660 	list_for_each_entry_safe(folio, next, folio_list, lru) {
1661 		/* TODO: these pages should not even appear in this list. */
1662 		if (page_has_movable_ops(&folio->page))
1663 			continue;
1664 		if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
1665 		    !folio_test_dirty(folio) && !folio_test_unevictable(folio)) {
1666 			folio_clear_active(folio);
1667 			list_move(&folio->lru, &clean_folios);
1668 		}
1669 	}
1670 
1671 	/*
1672 	 * We should be safe here since we are only dealing with file pages and
1673 	 * we are not kswapd and therefore cannot write dirty file pages. But
1674 	 * call memalloc_noreclaim_save() anyway, just in case these conditions
1675 	 * change in the future.
1676 	 */
1677 	noreclaim_flag = memalloc_noreclaim_save();
1678 	nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
1679 					&stat, true, NULL);
1680 	memalloc_noreclaim_restore(noreclaim_flag);
1681 
1682 	list_splice(&clean_folios, folio_list);
1683 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1684 			    -(long)nr_reclaimed);
1685 	/*
1686 	 * Since lazyfree pages are isolated from file LRU from the beginning,
1687 	 * they will rotate back to anonymous LRU in the end if it failed to
1688 	 * discard so isolated count will be mismatched.
1689 	 * Compensate the isolated count for both LRU lists.
1690 	 */
1691 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1692 			    stat.nr_lazyfree_fail);
1693 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1694 			    -(long)stat.nr_lazyfree_fail);
1695 	return nr_reclaimed;
1696 }
1697 
1698 /*
1699  * Update LRU sizes after isolating pages. The LRU size updates must
1700  * be complete before mem_cgroup_update_lru_size due to a sanity check.
1701  */
1702 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1703 			enum lru_list lru, unsigned long *nr_zone_taken)
1704 {
1705 	int zid;
1706 
1707 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1708 		if (!nr_zone_taken[zid])
1709 			continue;
1710 
1711 		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1712 	}
1713 
1714 }
1715 
1716 /*
1717  * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
1718  *
1719  * lruvec->lru_lock is heavily contended.  Some of the functions that
1720  * shrink the lists perform better by taking out a batch of pages
1721  * and working on them outside the LRU lock.
1722  *
1723  * For pagecache intensive workloads, this function is the hottest
1724  * spot in the kernel (apart from copy_*_user functions).
1725  *
1726  * Lru_lock must be held before calling this function.
1727  *
1728  * @nr_to_scan:	The number of eligible pages to look through on the list.
1729  * @lruvec:	The LRU vector to pull pages from.
1730  * @dst:	The temp list to put pages on to.
1731  * @nr_scanned:	The number of pages that were scanned.
1732  * @sc:		The scan_control struct for this reclaim session
1733  * @lru:	LRU list id for isolating
1734  *
1735  * returns how many pages were moved onto *@dst.
1736  */
1737 static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
1738 		struct lruvec *lruvec, struct list_head *dst,
1739 		unsigned long *nr_scanned, struct scan_control *sc,
1740 		enum lru_list lru)
1741 {
1742 	struct list_head *src = &lruvec->lists[lru];
1743 	unsigned long nr_taken = 0;
1744 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1745 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1746 	unsigned long skipped = 0, total_scan = 0, scan = 0;
1747 	unsigned long nr_pages;
1748 	unsigned long max_nr_skipped = 0;
1749 	LIST_HEAD(folios_skipped);
1750 
1751 	while (scan < nr_to_scan && !list_empty(src)) {
1752 		struct list_head *move_to = src;
1753 		struct folio *folio;
1754 
1755 		folio = lru_to_folio(src);
1756 		prefetchw_prev_lru_folio(folio, src, flags);
1757 
1758 		nr_pages = folio_nr_pages(folio);
1759 		total_scan += nr_pages;
1760 
1761 		/* Using max_nr_skipped to prevent hard LOCKUP*/
1762 		if (max_nr_skipped < SWAP_CLUSTER_MAX_SKIPPED &&
1763 		    (folio_zonenum(folio) > sc->reclaim_idx)) {
1764 			nr_skipped[folio_zonenum(folio)] += nr_pages;
1765 			move_to = &folios_skipped;
1766 			max_nr_skipped++;
1767 			goto move;
1768 		}
1769 
1770 		/*
1771 		 * Do not count skipped folios because that makes the function
1772 		 * return with no isolated folios if the LRU mostly contains
1773 		 * ineligible folios.  This causes the VM to not reclaim any
1774 		 * folios, triggering a premature OOM.
1775 		 * Account all pages in a folio.
1776 		 */
1777 		scan += nr_pages;
1778 
1779 		if (!folio_test_lru(folio))
1780 			goto move;
1781 		if (!sc->may_unmap && folio_mapped(folio))
1782 			goto move;
1783 
1784 		/*
1785 		 * Be careful not to clear the lru flag until after we're
1786 		 * sure the folio is not being freed elsewhere -- the
1787 		 * folio release code relies on it.
1788 		 */
1789 		if (unlikely(!folio_try_get(folio)))
1790 			goto move;
1791 
1792 		if (!folio_test_clear_lru(folio)) {
1793 			/* Another thread is already isolating this folio */
1794 			folio_put(folio);
1795 			goto move;
1796 		}
1797 
1798 		nr_taken += nr_pages;
1799 		nr_zone_taken[folio_zonenum(folio)] += nr_pages;
1800 		move_to = dst;
1801 move:
1802 		list_move(&folio->lru, move_to);
1803 	}
1804 
1805 	/*
1806 	 * Splice any skipped folios to the start of the LRU list. Note that
1807 	 * this disrupts the LRU order when reclaiming for lower zones but
1808 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1809 	 * scanning would soon rescan the same folios to skip and waste lots
1810 	 * of cpu cycles.
1811 	 */
1812 	if (!list_empty(&folios_skipped)) {
1813 		int zid;
1814 
1815 		list_splice(&folios_skipped, src);
1816 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1817 			if (!nr_skipped[zid])
1818 				continue;
1819 
1820 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1821 			skipped += nr_skipped[zid];
1822 		}
1823 	}
1824 	*nr_scanned = total_scan;
1825 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1826 				    total_scan, skipped, nr_taken, lru);
1827 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1828 	return nr_taken;
1829 }
1830 
1831 /**
1832  * folio_isolate_lru() - Try to isolate a folio from its LRU list.
1833  * @folio: Folio to isolate from its LRU list.
1834  *
1835  * Isolate a @folio from an LRU list and adjust the vmstat statistic
1836  * corresponding to whatever LRU list the folio was on.
1837  *
1838  * The folio will have its LRU flag cleared.  If it was found on the
1839  * active list, it will have the Active flag set.  If it was found on the
1840  * unevictable list, it will have the Unevictable flag set.  These flags
1841  * may need to be cleared by the caller before letting the page go.
1842  *
1843  * Context:
1844  *
1845  * (1) Must be called with an elevated refcount on the folio. This is a
1846  *     fundamental difference from isolate_lru_folios() (which is called
1847  *     without a stable reference).
1848  * (2) The lru_lock must not be held.
1849  * (3) Interrupts must be enabled.
1850  *
1851  * Return: true if the folio was removed from an LRU list.
1852  * false if the folio was not on an LRU list.
1853  */
1854 bool folio_isolate_lru(struct folio *folio)
1855 {
1856 	bool ret = false;
1857 
1858 	VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
1859 
1860 	if (folio_test_clear_lru(folio)) {
1861 		struct lruvec *lruvec;
1862 
1863 		folio_get(folio);
1864 		lruvec = folio_lruvec_lock_irq(folio);
1865 		lruvec_del_folio(lruvec, folio);
1866 		unlock_page_lruvec_irq(lruvec);
1867 		ret = true;
1868 	}
1869 
1870 	return ret;
1871 }
1872 
1873 /*
1874  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1875  * then get rescheduled. When there are massive number of tasks doing page
1876  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1877  * the LRU list will go small and be scanned faster than necessary, leading to
1878  * unnecessary swapping, thrashing and OOM.
1879  */
1880 static bool too_many_isolated(struct pglist_data *pgdat, int file,
1881 		struct scan_control *sc)
1882 {
1883 	unsigned long inactive, isolated;
1884 	bool too_many;
1885 
1886 	if (current_is_kswapd())
1887 		return false;
1888 
1889 	if (!writeback_throttling_sane(sc))
1890 		return false;
1891 
1892 	if (file) {
1893 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1894 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1895 	} else {
1896 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1897 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1898 	}
1899 
1900 	/*
1901 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1902 	 * won't get blocked by normal direct-reclaimers, forming a circular
1903 	 * deadlock.
1904 	 */
1905 	if (gfp_has_io_fs(sc->gfp_mask))
1906 		inactive >>= 3;
1907 
1908 	too_many = isolated > inactive;
1909 
1910 	/* Wake up tasks throttled due to too_many_isolated. */
1911 	if (!too_many)
1912 		wake_throttle_isolated(pgdat);
1913 
1914 	return too_many;
1915 }
1916 
1917 /*
1918  * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
1919  *
1920  * Returns the number of pages moved to the given lruvec.
1921  */
1922 static unsigned int move_folios_to_lru(struct lruvec *lruvec,
1923 		struct list_head *list)
1924 {
1925 	int nr_pages, nr_moved = 0;
1926 	struct folio_batch free_folios;
1927 
1928 	folio_batch_init(&free_folios);
1929 	while (!list_empty(list)) {
1930 		struct folio *folio = lru_to_folio(list);
1931 
1932 		VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
1933 		list_del(&folio->lru);
1934 		if (unlikely(!folio_evictable(folio))) {
1935 			spin_unlock_irq(&lruvec->lru_lock);
1936 			folio_putback_lru(folio);
1937 			spin_lock_irq(&lruvec->lru_lock);
1938 			continue;
1939 		}
1940 
1941 		/*
1942 		 * The folio_set_lru needs to be kept here for list integrity.
1943 		 * Otherwise:
1944 		 *   #0 move_folios_to_lru             #1 release_pages
1945 		 *   if (!folio_put_testzero())
1946 		 *				      if (folio_put_testzero())
1947 		 *				        !lru //skip lru_lock
1948 		 *     folio_set_lru()
1949 		 *     list_add(&folio->lru,)
1950 		 *                                        list_add(&folio->lru,)
1951 		 */
1952 		folio_set_lru(folio);
1953 
1954 		if (unlikely(folio_put_testzero(folio))) {
1955 			__folio_clear_lru_flags(folio);
1956 
1957 			folio_unqueue_deferred_split(folio);
1958 			if (folio_batch_add(&free_folios, folio) == 0) {
1959 				spin_unlock_irq(&lruvec->lru_lock);
1960 				mem_cgroup_uncharge_folios(&free_folios);
1961 				free_unref_folios(&free_folios);
1962 				spin_lock_irq(&lruvec->lru_lock);
1963 			}
1964 
1965 			continue;
1966 		}
1967 
1968 		/*
1969 		 * All pages were isolated from the same lruvec (and isolation
1970 		 * inhibits memcg migration).
1971 		 */
1972 		VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
1973 		lruvec_add_folio(lruvec, folio);
1974 		nr_pages = folio_nr_pages(folio);
1975 		nr_moved += nr_pages;
1976 		if (folio_test_active(folio))
1977 			workingset_age_nonresident(lruvec, nr_pages);
1978 	}
1979 
1980 	if (free_folios.nr) {
1981 		spin_unlock_irq(&lruvec->lru_lock);
1982 		mem_cgroup_uncharge_folios(&free_folios);
1983 		free_unref_folios(&free_folios);
1984 		spin_lock_irq(&lruvec->lru_lock);
1985 	}
1986 
1987 	return nr_moved;
1988 }
1989 
1990 /*
1991  * If a kernel thread (such as nfsd for loop-back mounts) services a backing
1992  * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
1993  * we should not throttle.  Otherwise it is safe to do so.
1994  */
1995 static int current_may_throttle(void)
1996 {
1997 	return !(current->flags & PF_LOCAL_THROTTLE);
1998 }
1999 
2000 /*
2001  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
2002  * of reclaimed pages
2003  */
2004 static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
2005 		struct lruvec *lruvec, struct scan_control *sc,
2006 		enum lru_list lru)
2007 {
2008 	LIST_HEAD(folio_list);
2009 	unsigned long nr_scanned;
2010 	unsigned int nr_reclaimed = 0;
2011 	unsigned long nr_taken;
2012 	struct reclaim_stat stat;
2013 	bool file = is_file_lru(lru);
2014 	enum vm_event_item item;
2015 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2016 	bool stalled = false;
2017 
2018 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
2019 		if (stalled)
2020 			return 0;
2021 
2022 		/* wait a bit for the reclaimer. */
2023 		stalled = true;
2024 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
2025 
2026 		/* We are about to die and free our memory. Return now. */
2027 		if (fatal_signal_pending(current))
2028 			return SWAP_CLUSTER_MAX;
2029 	}
2030 
2031 	lru_add_drain();
2032 
2033 	spin_lock_irq(&lruvec->lru_lock);
2034 
2035 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
2036 				     &nr_scanned, sc, lru);
2037 
2038 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2039 	item = PGSCAN_KSWAPD + reclaimer_offset(sc);
2040 	if (!cgroup_reclaim(sc))
2041 		__count_vm_events(item, nr_scanned);
2042 	count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2043 	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
2044 
2045 	spin_unlock_irq(&lruvec->lru_lock);
2046 
2047 	if (nr_taken == 0)
2048 		return 0;
2049 
2050 	nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false,
2051 					 lruvec_memcg(lruvec));
2052 
2053 	spin_lock_irq(&lruvec->lru_lock);
2054 	move_folios_to_lru(lruvec, &folio_list);
2055 
2056 	__mod_lruvec_state(lruvec, PGDEMOTE_KSWAPD + reclaimer_offset(sc),
2057 					stat.nr_demoted);
2058 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2059 	item = PGSTEAL_KSWAPD + reclaimer_offset(sc);
2060 	if (!cgroup_reclaim(sc))
2061 		__count_vm_events(item, nr_reclaimed);
2062 	count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2063 	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2064 
2065 	lru_note_cost_unlock_irq(lruvec, file, stat.nr_pageout,
2066 					nr_scanned - nr_reclaimed);
2067 
2068 	/*
2069 	 * If dirty folios are scanned that are not queued for IO, it
2070 	 * implies that flushers are not doing their job. This can
2071 	 * happen when memory pressure pushes dirty folios to the end of
2072 	 * the LRU before the dirty limits are breached and the dirty
2073 	 * data has expired. It can also happen when the proportion of
2074 	 * dirty folios grows not through writes but through memory
2075 	 * pressure reclaiming all the clean cache. And in some cases,
2076 	 * the flushers simply cannot keep up with the allocation
2077 	 * rate. Nudge the flusher threads in case they are asleep.
2078 	 */
2079 	if (stat.nr_unqueued_dirty == nr_taken) {
2080 		wakeup_flusher_threads(WB_REASON_VMSCAN);
2081 		/*
2082 		 * For cgroupv1 dirty throttling is achieved by waking up
2083 		 * the kernel flusher here and later waiting on folios
2084 		 * which are in writeback to finish (see shrink_folio_list()).
2085 		 *
2086 		 * Flusher may not be able to issue writeback quickly
2087 		 * enough for cgroupv1 writeback throttling to work
2088 		 * on a large system.
2089 		 */
2090 		if (!writeback_throttling_sane(sc))
2091 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
2092 	}
2093 
2094 	sc->nr.dirty += stat.nr_dirty;
2095 	sc->nr.congested += stat.nr_congested;
2096 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2097 	sc->nr.writeback += stat.nr_writeback;
2098 	sc->nr.immediate += stat.nr_immediate;
2099 	sc->nr.taken += nr_taken;
2100 	if (file)
2101 		sc->nr.file_taken += nr_taken;
2102 
2103 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2104 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2105 	return nr_reclaimed;
2106 }
2107 
2108 /*
2109  * shrink_active_list() moves folios from the active LRU to the inactive LRU.
2110  *
2111  * We move them the other way if the folio is referenced by one or more
2112  * processes.
2113  *
2114  * If the folios are mostly unmapped, the processing is fast and it is
2115  * appropriate to hold lru_lock across the whole operation.  But if
2116  * the folios are mapped, the processing is slow (folio_referenced()), so
2117  * we should drop lru_lock around each folio.  It's impossible to balance
2118  * this, so instead we remove the folios from the LRU while processing them.
2119  * It is safe to rely on the active flag against the non-LRU folios in here
2120  * because nobody will play with that bit on a non-LRU folio.
2121  *
2122  * The downside is that we have to touch folio->_refcount against each folio.
2123  * But we had to alter folio->flags anyway.
2124  */
2125 static void shrink_active_list(unsigned long nr_to_scan,
2126 			       struct lruvec *lruvec,
2127 			       struct scan_control *sc,
2128 			       enum lru_list lru)
2129 {
2130 	unsigned long nr_taken;
2131 	unsigned long nr_scanned;
2132 	vm_flags_t vm_flags;
2133 	LIST_HEAD(l_hold);	/* The folios which were snipped off */
2134 	LIST_HEAD(l_active);
2135 	LIST_HEAD(l_inactive);
2136 	unsigned nr_deactivate, nr_activate;
2137 	unsigned nr_rotated = 0;
2138 	bool file = is_file_lru(lru);
2139 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2140 
2141 	lru_add_drain();
2142 
2143 	spin_lock_irq(&lruvec->lru_lock);
2144 
2145 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
2146 				     &nr_scanned, sc, lru);
2147 
2148 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2149 
2150 	if (!cgroup_reclaim(sc))
2151 		__count_vm_events(PGREFILL, nr_scanned);
2152 	count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2153 
2154 	spin_unlock_irq(&lruvec->lru_lock);
2155 
2156 	while (!list_empty(&l_hold)) {
2157 		struct folio *folio;
2158 
2159 		cond_resched();
2160 		folio = lru_to_folio(&l_hold);
2161 		list_del(&folio->lru);
2162 
2163 		if (unlikely(!folio_evictable(folio))) {
2164 			folio_putback_lru(folio);
2165 			continue;
2166 		}
2167 
2168 		if (unlikely(buffer_heads_over_limit)) {
2169 			if (folio_needs_release(folio) &&
2170 			    folio_trylock(folio)) {
2171 				filemap_release_folio(folio, 0);
2172 				folio_unlock(folio);
2173 			}
2174 		}
2175 
2176 		/* Referenced or rmap lock contention: rotate */
2177 		if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2178 				     &vm_flags) != 0) {
2179 			/*
2180 			 * Identify referenced, file-backed active folios and
2181 			 * give them one more trip around the active list. So
2182 			 * that executable code get better chances to stay in
2183 			 * memory under moderate memory pressure.  Anon folios
2184 			 * are not likely to be evicted by use-once streaming
2185 			 * IO, plus JVM can create lots of anon VM_EXEC folios,
2186 			 * so we ignore them here.
2187 			 */
2188 			if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2189 				nr_rotated += folio_nr_pages(folio);
2190 				list_add(&folio->lru, &l_active);
2191 				continue;
2192 			}
2193 		}
2194 
2195 		folio_clear_active(folio);	/* we are de-activating */
2196 		folio_set_workingset(folio);
2197 		list_add(&folio->lru, &l_inactive);
2198 	}
2199 
2200 	/*
2201 	 * Move folios back to the lru list.
2202 	 */
2203 	spin_lock_irq(&lruvec->lru_lock);
2204 
2205 	nr_activate = move_folios_to_lru(lruvec, &l_active);
2206 	nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
2207 
2208 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2209 	count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2210 
2211 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2212 
2213 	lru_note_cost_unlock_irq(lruvec, file, 0, nr_rotated);
2214 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2215 			nr_deactivate, nr_rotated, sc->priority, file);
2216 }
2217 
2218 static unsigned int reclaim_folio_list(struct list_head *folio_list,
2219 				      struct pglist_data *pgdat)
2220 {
2221 	struct reclaim_stat stat;
2222 	unsigned int nr_reclaimed;
2223 	struct folio *folio;
2224 	struct scan_control sc = {
2225 		.gfp_mask = GFP_KERNEL,
2226 		.may_writepage = 1,
2227 		.may_unmap = 1,
2228 		.may_swap = 1,
2229 		.no_demotion = 1,
2230 	};
2231 
2232 	nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &stat, true, NULL);
2233 	while (!list_empty(folio_list)) {
2234 		folio = lru_to_folio(folio_list);
2235 		list_del(&folio->lru);
2236 		folio_putback_lru(folio);
2237 	}
2238 	trace_mm_vmscan_reclaim_pages(pgdat->node_id, sc.nr_scanned, nr_reclaimed, &stat);
2239 
2240 	return nr_reclaimed;
2241 }
2242 
2243 unsigned long reclaim_pages(struct list_head *folio_list)
2244 {
2245 	int nid;
2246 	unsigned int nr_reclaimed = 0;
2247 	LIST_HEAD(node_folio_list);
2248 	unsigned int noreclaim_flag;
2249 
2250 	if (list_empty(folio_list))
2251 		return nr_reclaimed;
2252 
2253 	noreclaim_flag = memalloc_noreclaim_save();
2254 
2255 	nid = folio_nid(lru_to_folio(folio_list));
2256 	do {
2257 		struct folio *folio = lru_to_folio(folio_list);
2258 
2259 		if (nid == folio_nid(folio)) {
2260 			folio_clear_active(folio);
2261 			list_move(&folio->lru, &node_folio_list);
2262 			continue;
2263 		}
2264 
2265 		nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2266 		nid = folio_nid(lru_to_folio(folio_list));
2267 	} while (!list_empty(folio_list));
2268 
2269 	nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2270 
2271 	memalloc_noreclaim_restore(noreclaim_flag);
2272 
2273 	return nr_reclaimed;
2274 }
2275 
2276 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2277 				 struct lruvec *lruvec, struct scan_control *sc)
2278 {
2279 	if (is_active_lru(lru)) {
2280 		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2281 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2282 		else
2283 			sc->skipped_deactivate = 1;
2284 		return 0;
2285 	}
2286 
2287 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2288 }
2289 
2290 /*
2291  * The inactive anon list should be small enough that the VM never has
2292  * to do too much work.
2293  *
2294  * The inactive file list should be small enough to leave most memory
2295  * to the established workingset on the scan-resistant active list,
2296  * but large enough to avoid thrashing the aggregate readahead window.
2297  *
2298  * Both inactive lists should also be large enough that each inactive
2299  * folio has a chance to be referenced again before it is reclaimed.
2300  *
2301  * If that fails and refaulting is observed, the inactive list grows.
2302  *
2303  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2304  * on this LRU, maintained by the pageout code. An inactive_ratio
2305  * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2306  *
2307  * total     target    max
2308  * memory    ratio     inactive
2309  * -------------------------------------
2310  *   10MB       1         5MB
2311  *  100MB       1        50MB
2312  *    1GB       3       250MB
2313  *   10GB      10       0.9GB
2314  *  100GB      31         3GB
2315  *    1TB     101        10GB
2316  *   10TB     320        32GB
2317  */
2318 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2319 {
2320 	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2321 	unsigned long inactive, active;
2322 	unsigned long inactive_ratio;
2323 	unsigned long gb;
2324 
2325 	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2326 	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2327 
2328 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2329 	if (gb)
2330 		inactive_ratio = int_sqrt(10 * gb);
2331 	else
2332 		inactive_ratio = 1;
2333 
2334 	return inactive * inactive_ratio < active;
2335 }
2336 
2337 enum scan_balance {
2338 	SCAN_EQUAL,
2339 	SCAN_FRACT,
2340 	SCAN_ANON,
2341 	SCAN_FILE,
2342 };
2343 
2344 static void prepare_scan_control(pg_data_t *pgdat, struct scan_control *sc)
2345 {
2346 	unsigned long file;
2347 	struct lruvec *target_lruvec;
2348 
2349 	if (lru_gen_enabled())
2350 		return;
2351 
2352 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2353 
2354 	/*
2355 	 * Flush the memory cgroup stats in rate-limited way as we don't need
2356 	 * most accurate stats here. We may switch to regular stats flushing
2357 	 * in the future once it is cheap enough.
2358 	 */
2359 	mem_cgroup_flush_stats_ratelimited(sc->target_mem_cgroup);
2360 
2361 	/*
2362 	 * Determine the scan balance between anon and file LRUs.
2363 	 */
2364 	spin_lock_irq(&target_lruvec->lru_lock);
2365 	sc->anon_cost = target_lruvec->anon_cost;
2366 	sc->file_cost = target_lruvec->file_cost;
2367 	spin_unlock_irq(&target_lruvec->lru_lock);
2368 
2369 	/*
2370 	 * Target desirable inactive:active list ratios for the anon
2371 	 * and file LRU lists.
2372 	 */
2373 	if (!sc->force_deactivate) {
2374 		unsigned long refaults;
2375 
2376 		/*
2377 		 * When refaults are being observed, it means a new
2378 		 * workingset is being established. Deactivate to get
2379 		 * rid of any stale active pages quickly.
2380 		 */
2381 		refaults = lruvec_page_state(target_lruvec,
2382 				WORKINGSET_ACTIVATE_ANON);
2383 		if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2384 			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2385 			sc->may_deactivate |= DEACTIVATE_ANON;
2386 		else
2387 			sc->may_deactivate &= ~DEACTIVATE_ANON;
2388 
2389 		refaults = lruvec_page_state(target_lruvec,
2390 				WORKINGSET_ACTIVATE_FILE);
2391 		if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2392 		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2393 			sc->may_deactivate |= DEACTIVATE_FILE;
2394 		else
2395 			sc->may_deactivate &= ~DEACTIVATE_FILE;
2396 	} else
2397 		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2398 
2399 	/*
2400 	 * If we have plenty of inactive file pages that aren't
2401 	 * thrashing, try to reclaim those first before touching
2402 	 * anonymous pages.
2403 	 */
2404 	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2405 	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE) &&
2406 	    !sc->no_cache_trim_mode)
2407 		sc->cache_trim_mode = 1;
2408 	else
2409 		sc->cache_trim_mode = 0;
2410 
2411 	/*
2412 	 * Prevent the reclaimer from falling into the cache trap: as
2413 	 * cache pages start out inactive, every cache fault will tip
2414 	 * the scan balance towards the file LRU.  And as the file LRU
2415 	 * shrinks, so does the window for rotation from references.
2416 	 * This means we have a runaway feedback loop where a tiny
2417 	 * thrashing file LRU becomes infinitely more attractive than
2418 	 * anon pages.  Try to detect this based on file LRU size.
2419 	 */
2420 	if (!cgroup_reclaim(sc)) {
2421 		unsigned long total_high_wmark = 0;
2422 		unsigned long free, anon;
2423 		int z;
2424 		struct zone *zone;
2425 
2426 		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2427 		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2428 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2429 
2430 		for_each_managed_zone_pgdat(zone, pgdat, z, MAX_NR_ZONES - 1) {
2431 			total_high_wmark += high_wmark_pages(zone);
2432 		}
2433 
2434 		/*
2435 		 * Consider anon: if that's low too, this isn't a
2436 		 * runaway file reclaim problem, but rather just
2437 		 * extreme pressure. Reclaim as per usual then.
2438 		 */
2439 		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2440 
2441 		sc->file_is_tiny =
2442 			file + free <= total_high_wmark &&
2443 			!(sc->may_deactivate & DEACTIVATE_ANON) &&
2444 			anon >> sc->priority;
2445 	}
2446 }
2447 
2448 static inline void calculate_pressure_balance(struct scan_control *sc,
2449 			int swappiness, u64 *fraction, u64 *denominator)
2450 {
2451 	unsigned long anon_cost, file_cost, total_cost;
2452 	unsigned long ap, fp;
2453 
2454 	/*
2455 	 * Calculate the pressure balance between anon and file pages.
2456 	 *
2457 	 * The amount of pressure we put on each LRU is inversely
2458 	 * proportional to the cost of reclaiming each list, as
2459 	 * determined by the share of pages that are refaulting, times
2460 	 * the relative IO cost of bringing back a swapped out
2461 	 * anonymous page vs reloading a filesystem page (swappiness).
2462 	 *
2463 	 * Although we limit that influence to ensure no list gets
2464 	 * left behind completely: at least a third of the pressure is
2465 	 * applied, before swappiness.
2466 	 *
2467 	 * With swappiness at 100, anon and file have equal IO cost.
2468 	 */
2469 	total_cost = sc->anon_cost + sc->file_cost;
2470 	anon_cost = total_cost + sc->anon_cost;
2471 	file_cost = total_cost + sc->file_cost;
2472 	total_cost = anon_cost + file_cost;
2473 
2474 	ap = swappiness * (total_cost + 1);
2475 	ap /= anon_cost + 1;
2476 
2477 	fp = (MAX_SWAPPINESS - swappiness) * (total_cost + 1);
2478 	fp /= file_cost + 1;
2479 
2480 	fraction[WORKINGSET_ANON] = ap;
2481 	fraction[WORKINGSET_FILE] = fp;
2482 	*denominator = ap + fp;
2483 }
2484 
2485 static unsigned long apply_proportional_protection(struct mem_cgroup *memcg,
2486 		struct scan_control *sc, unsigned long scan)
2487 {
2488 	unsigned long min, low;
2489 
2490 	mem_cgroup_protection(sc->target_mem_cgroup, memcg, &min, &low);
2491 
2492 	if (min || low) {
2493 		/*
2494 		 * Scale a cgroup's reclaim pressure by proportioning
2495 		 * its current usage to its memory.low or memory.min
2496 		 * setting.
2497 		 *
2498 		 * This is important, as otherwise scanning aggression
2499 		 * becomes extremely binary -- from nothing as we
2500 		 * approach the memory protection threshold, to totally
2501 		 * nominal as we exceed it.  This results in requiring
2502 		 * setting extremely liberal protection thresholds. It
2503 		 * also means we simply get no protection at all if we
2504 		 * set it too low, which is not ideal.
2505 		 *
2506 		 * If there is any protection in place, we reduce scan
2507 		 * pressure by how much of the total memory used is
2508 		 * within protection thresholds.
2509 		 *
2510 		 * There is one special case: in the first reclaim pass,
2511 		 * we skip over all groups that are within their low
2512 		 * protection. If that fails to reclaim enough pages to
2513 		 * satisfy the reclaim goal, we come back and override
2514 		 * the best-effort low protection. However, we still
2515 		 * ideally want to honor how well-behaved groups are in
2516 		 * that case instead of simply punishing them all
2517 		 * equally. As such, we reclaim them based on how much
2518 		 * memory they are using, reducing the scan pressure
2519 		 * again by how much of the total memory used is under
2520 		 * hard protection.
2521 		 */
2522 		unsigned long cgroup_size = mem_cgroup_size(memcg);
2523 		unsigned long protection;
2524 
2525 		/* memory.low scaling, make sure we retry before OOM */
2526 		if (!sc->memcg_low_reclaim && low > min) {
2527 			protection = low;
2528 			sc->memcg_low_skipped = 1;
2529 		} else {
2530 			protection = min;
2531 		}
2532 
2533 		/* Avoid TOCTOU with earlier protection check */
2534 		cgroup_size = max(cgroup_size, protection);
2535 
2536 		scan -= scan * protection / (cgroup_size + 1);
2537 
2538 		/*
2539 		 * Minimally target SWAP_CLUSTER_MAX pages to keep
2540 		 * reclaim moving forwards, avoiding decrementing
2541 		 * sc->priority further than desirable.
2542 		 */
2543 		scan = max(scan, SWAP_CLUSTER_MAX);
2544 	}
2545 	return scan;
2546 }
2547 
2548 /*
2549  * Determine how aggressively the anon and file LRU lists should be
2550  * scanned.
2551  *
2552  * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
2553  * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
2554  */
2555 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2556 			   unsigned long *nr)
2557 {
2558 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2559 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2560 	int swappiness = sc_swappiness(sc, memcg);
2561 	u64 fraction[ANON_AND_FILE];
2562 	u64 denominator = 0;	/* gcc */
2563 	enum scan_balance scan_balance;
2564 	enum lru_list lru;
2565 
2566 	/* If we have no swap space, do not bother scanning anon folios. */
2567 	if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2568 		scan_balance = SCAN_FILE;
2569 		goto out;
2570 	}
2571 
2572 	/*
2573 	 * Global reclaim will swap to prevent OOM even with no
2574 	 * swappiness, but memcg users want to use this knob to
2575 	 * disable swapping for individual groups completely when
2576 	 * using the memory controller's swap limit feature would be
2577 	 * too expensive.
2578 	 */
2579 	if (cgroup_reclaim(sc) && !swappiness) {
2580 		scan_balance = SCAN_FILE;
2581 		goto out;
2582 	}
2583 
2584 	/* Proactive reclaim initiated by userspace for anonymous memory only */
2585 	if (swappiness == SWAPPINESS_ANON_ONLY) {
2586 		WARN_ON_ONCE(!sc->proactive);
2587 		scan_balance = SCAN_ANON;
2588 		goto out;
2589 	}
2590 
2591 	/*
2592 	 * Do not apply any pressure balancing cleverness when the
2593 	 * system is close to OOM, scan both anon and file equally
2594 	 * (unless the swappiness setting disagrees with swapping).
2595 	 */
2596 	if (!sc->priority && swappiness) {
2597 		scan_balance = SCAN_EQUAL;
2598 		goto out;
2599 	}
2600 
2601 	/*
2602 	 * If the system is almost out of file pages, force-scan anon.
2603 	 */
2604 	if (sc->file_is_tiny) {
2605 		scan_balance = SCAN_ANON;
2606 		goto out;
2607 	}
2608 
2609 	/*
2610 	 * If there is enough inactive page cache, we do not reclaim
2611 	 * anything from the anonymous working right now to make sure
2612          * a streaming file access pattern doesn't cause swapping.
2613 	 */
2614 	if (sc->cache_trim_mode) {
2615 		scan_balance = SCAN_FILE;
2616 		goto out;
2617 	}
2618 
2619 	scan_balance = SCAN_FRACT;
2620 	calculate_pressure_balance(sc, swappiness, fraction, &denominator);
2621 
2622 out:
2623 	for_each_evictable_lru(lru) {
2624 		bool file = is_file_lru(lru);
2625 		unsigned long lruvec_size;
2626 		unsigned long scan;
2627 
2628 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2629 		scan = apply_proportional_protection(memcg, sc, lruvec_size);
2630 		scan >>= sc->priority;
2631 
2632 		/*
2633 		 * If the cgroup's already been deleted, make sure to
2634 		 * scrape out the remaining cache.
2635 		 */
2636 		if (!scan && !mem_cgroup_online(memcg))
2637 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2638 
2639 		switch (scan_balance) {
2640 		case SCAN_EQUAL:
2641 			/* Scan lists relative to size */
2642 			break;
2643 		case SCAN_FRACT:
2644 			/*
2645 			 * Scan types proportional to swappiness and
2646 			 * their relative recent reclaim efficiency.
2647 			 * Make sure we don't miss the last page on
2648 			 * the offlined memory cgroups because of a
2649 			 * round-off error.
2650 			 */
2651 			scan = mem_cgroup_online(memcg) ?
2652 			       div64_u64(scan * fraction[file], denominator) :
2653 			       DIV64_U64_ROUND_UP(scan * fraction[file],
2654 						  denominator);
2655 			break;
2656 		case SCAN_FILE:
2657 		case SCAN_ANON:
2658 			/* Scan one type exclusively */
2659 			if ((scan_balance == SCAN_FILE) != file)
2660 				scan = 0;
2661 			break;
2662 		default:
2663 			/* Look ma, no brain */
2664 			BUG();
2665 		}
2666 
2667 		nr[lru] = scan;
2668 	}
2669 }
2670 
2671 /*
2672  * Anonymous LRU management is a waste if there is
2673  * ultimately no way to reclaim the memory.
2674  */
2675 static bool can_age_anon_pages(struct lruvec *lruvec,
2676 			       struct scan_control *sc)
2677 {
2678 	/* Aging the anon LRU is valuable if swap is present: */
2679 	if (total_swap_pages > 0)
2680 		return true;
2681 
2682 	/* Also valuable if anon pages can be demoted: */
2683 	return can_demote(lruvec_pgdat(lruvec)->node_id, sc,
2684 			  lruvec_memcg(lruvec));
2685 }
2686 
2687 #ifdef CONFIG_LRU_GEN
2688 
2689 #ifdef CONFIG_LRU_GEN_ENABLED
2690 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
2691 #define get_cap(cap)	static_branch_likely(&lru_gen_caps[cap])
2692 #else
2693 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
2694 #define get_cap(cap)	static_branch_unlikely(&lru_gen_caps[cap])
2695 #endif
2696 
2697 static bool should_walk_mmu(void)
2698 {
2699 	return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK);
2700 }
2701 
2702 static bool should_clear_pmd_young(void)
2703 {
2704 	return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG);
2705 }
2706 
2707 /******************************************************************************
2708  *                          shorthand helpers
2709  ******************************************************************************/
2710 
2711 #define DEFINE_MAX_SEQ(lruvec)						\
2712 	unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
2713 
2714 #define DEFINE_MIN_SEQ(lruvec)						\
2715 	unsigned long min_seq[ANON_AND_FILE] = {			\
2716 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]),	\
2717 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]),	\
2718 	}
2719 
2720 /* Get the min/max evictable type based on swappiness */
2721 #define min_type(swappiness) (!(swappiness))
2722 #define max_type(swappiness) ((swappiness) < SWAPPINESS_ANON_ONLY)
2723 
2724 #define evictable_min_seq(min_seq, swappiness)				\
2725 	min((min_seq)[min_type(swappiness)], (min_seq)[max_type(swappiness)])
2726 
2727 #define for_each_gen_type_zone(gen, type, zone)				\
2728 	for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++)			\
2729 		for ((type) = 0; (type) < ANON_AND_FILE; (type)++)	\
2730 			for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
2731 
2732 #define for_each_evictable_type(type, swappiness)			\
2733 	for ((type) = min_type(swappiness); (type) <= max_type(swappiness); (type)++)
2734 
2735 #define get_memcg_gen(seq)	((seq) % MEMCG_NR_GENS)
2736 #define get_memcg_bin(bin)	((bin) % MEMCG_NR_BINS)
2737 
2738 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
2739 {
2740 	struct pglist_data *pgdat = NODE_DATA(nid);
2741 
2742 #ifdef CONFIG_MEMCG
2743 	if (memcg) {
2744 		struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
2745 
2746 		/* see the comment in mem_cgroup_lruvec() */
2747 		if (!lruvec->pgdat)
2748 			lruvec->pgdat = pgdat;
2749 
2750 		return lruvec;
2751 	}
2752 #endif
2753 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2754 
2755 	return &pgdat->__lruvec;
2756 }
2757 
2758 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
2759 {
2760 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2761 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2762 
2763 	if (!sc->may_swap)
2764 		return 0;
2765 
2766 	if (!can_demote(pgdat->node_id, sc, memcg) &&
2767 	    mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
2768 		return 0;
2769 
2770 	return sc_swappiness(sc, memcg);
2771 }
2772 
2773 static int get_nr_gens(struct lruvec *lruvec, int type)
2774 {
2775 	return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
2776 }
2777 
2778 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
2779 {
2780 	int type;
2781 
2782 	for (type = 0; type < ANON_AND_FILE; type++) {
2783 		int n = get_nr_gens(lruvec, type);
2784 
2785 		if (n < MIN_NR_GENS || n > MAX_NR_GENS)
2786 			return false;
2787 	}
2788 
2789 	return true;
2790 }
2791 
2792 /******************************************************************************
2793  *                          Bloom filters
2794  ******************************************************************************/
2795 
2796 /*
2797  * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
2798  * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
2799  * bits in a bitmap, k is the number of hash functions and n is the number of
2800  * inserted items.
2801  *
2802  * Page table walkers use one of the two filters to reduce their search space.
2803  * To get rid of non-leaf entries that no longer have enough leaf entries, the
2804  * aging uses the double-buffering technique to flip to the other filter each
2805  * time it produces a new generation. For non-leaf entries that have enough
2806  * leaf entries, the aging carries them over to the next generation in
2807  * walk_pmd_range(); the eviction also report them when walking the rmap
2808  * in lru_gen_look_around().
2809  *
2810  * For future optimizations:
2811  * 1. It's not necessary to keep both filters all the time. The spare one can be
2812  *    freed after the RCU grace period and reallocated if needed again.
2813  * 2. And when reallocating, it's worth scaling its size according to the number
2814  *    of inserted entries in the other filter, to reduce the memory overhead on
2815  *    small systems and false positives on large systems.
2816  * 3. Jenkins' hash function is an alternative to Knuth's.
2817  */
2818 #define BLOOM_FILTER_SHIFT	15
2819 
2820 static inline int filter_gen_from_seq(unsigned long seq)
2821 {
2822 	return seq % NR_BLOOM_FILTERS;
2823 }
2824 
2825 static void get_item_key(void *item, int *key)
2826 {
2827 	u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
2828 
2829 	BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
2830 
2831 	key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
2832 	key[1] = hash >> BLOOM_FILTER_SHIFT;
2833 }
2834 
2835 static bool test_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
2836 			      void *item)
2837 {
2838 	int key[2];
2839 	unsigned long *filter;
2840 	int gen = filter_gen_from_seq(seq);
2841 
2842 	filter = READ_ONCE(mm_state->filters[gen]);
2843 	if (!filter)
2844 		return true;
2845 
2846 	get_item_key(item, key);
2847 
2848 	return test_bit(key[0], filter) && test_bit(key[1], filter);
2849 }
2850 
2851 static void update_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
2852 				void *item)
2853 {
2854 	int key[2];
2855 	unsigned long *filter;
2856 	int gen = filter_gen_from_seq(seq);
2857 
2858 	filter = READ_ONCE(mm_state->filters[gen]);
2859 	if (!filter)
2860 		return;
2861 
2862 	get_item_key(item, key);
2863 
2864 	if (!test_bit(key[0], filter))
2865 		set_bit(key[0], filter);
2866 	if (!test_bit(key[1], filter))
2867 		set_bit(key[1], filter);
2868 }
2869 
2870 static void reset_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq)
2871 {
2872 	unsigned long *filter;
2873 	int gen = filter_gen_from_seq(seq);
2874 
2875 	filter = mm_state->filters[gen];
2876 	if (filter) {
2877 		bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
2878 		return;
2879 	}
2880 
2881 	filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
2882 			       __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
2883 	WRITE_ONCE(mm_state->filters[gen], filter);
2884 }
2885 
2886 /******************************************************************************
2887  *                          mm_struct list
2888  ******************************************************************************/
2889 
2890 #ifdef CONFIG_LRU_GEN_WALKS_MMU
2891 
2892 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
2893 {
2894 	static struct lru_gen_mm_list mm_list = {
2895 		.fifo = LIST_HEAD_INIT(mm_list.fifo),
2896 		.lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
2897 	};
2898 
2899 #ifdef CONFIG_MEMCG
2900 	if (memcg)
2901 		return &memcg->mm_list;
2902 #endif
2903 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2904 
2905 	return &mm_list;
2906 }
2907 
2908 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
2909 {
2910 	return &lruvec->mm_state;
2911 }
2912 
2913 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
2914 {
2915 	int key;
2916 	struct mm_struct *mm;
2917 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
2918 	struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
2919 
2920 	mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
2921 	key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
2922 
2923 	if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
2924 		return NULL;
2925 
2926 	clear_bit(key, &mm->lru_gen.bitmap);
2927 
2928 	return mmget_not_zero(mm) ? mm : NULL;
2929 }
2930 
2931 void lru_gen_add_mm(struct mm_struct *mm)
2932 {
2933 	int nid;
2934 	struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
2935 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2936 
2937 	VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
2938 #ifdef CONFIG_MEMCG
2939 	VM_WARN_ON_ONCE(mm->lru_gen.memcg);
2940 	mm->lru_gen.memcg = memcg;
2941 #endif
2942 	spin_lock(&mm_list->lock);
2943 
2944 	for_each_node_state(nid, N_MEMORY) {
2945 		struct lruvec *lruvec = get_lruvec(memcg, nid);
2946 		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2947 
2948 		/* the first addition since the last iteration */
2949 		if (mm_state->tail == &mm_list->fifo)
2950 			mm_state->tail = &mm->lru_gen.list;
2951 	}
2952 
2953 	list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
2954 
2955 	spin_unlock(&mm_list->lock);
2956 }
2957 
2958 void lru_gen_del_mm(struct mm_struct *mm)
2959 {
2960 	int nid;
2961 	struct lru_gen_mm_list *mm_list;
2962 	struct mem_cgroup *memcg = NULL;
2963 
2964 	if (list_empty(&mm->lru_gen.list))
2965 		return;
2966 
2967 #ifdef CONFIG_MEMCG
2968 	memcg = mm->lru_gen.memcg;
2969 #endif
2970 	mm_list = get_mm_list(memcg);
2971 
2972 	spin_lock(&mm_list->lock);
2973 
2974 	for_each_node(nid) {
2975 		struct lruvec *lruvec = get_lruvec(memcg, nid);
2976 		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2977 
2978 		/* where the current iteration continues after */
2979 		if (mm_state->head == &mm->lru_gen.list)
2980 			mm_state->head = mm_state->head->prev;
2981 
2982 		/* where the last iteration ended before */
2983 		if (mm_state->tail == &mm->lru_gen.list)
2984 			mm_state->tail = mm_state->tail->next;
2985 	}
2986 
2987 	list_del_init(&mm->lru_gen.list);
2988 
2989 	spin_unlock(&mm_list->lock);
2990 
2991 #ifdef CONFIG_MEMCG
2992 	mem_cgroup_put(mm->lru_gen.memcg);
2993 	mm->lru_gen.memcg = NULL;
2994 #endif
2995 }
2996 
2997 #ifdef CONFIG_MEMCG
2998 void lru_gen_migrate_mm(struct mm_struct *mm)
2999 {
3000 	struct mem_cgroup *memcg;
3001 	struct task_struct *task = rcu_dereference_protected(mm->owner, true);
3002 
3003 	VM_WARN_ON_ONCE(task->mm != mm);
3004 	lockdep_assert_held(&task->alloc_lock);
3005 
3006 	/* for mm_update_next_owner() */
3007 	if (mem_cgroup_disabled())
3008 		return;
3009 
3010 	/* migration can happen before addition */
3011 	if (!mm->lru_gen.memcg)
3012 		return;
3013 
3014 	rcu_read_lock();
3015 	memcg = mem_cgroup_from_task(task);
3016 	rcu_read_unlock();
3017 	if (memcg == mm->lru_gen.memcg)
3018 		return;
3019 
3020 	VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
3021 
3022 	lru_gen_del_mm(mm);
3023 	lru_gen_add_mm(mm);
3024 }
3025 #endif
3026 
3027 #else /* !CONFIG_LRU_GEN_WALKS_MMU */
3028 
3029 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
3030 {
3031 	return NULL;
3032 }
3033 
3034 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
3035 {
3036 	return NULL;
3037 }
3038 
3039 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
3040 {
3041 	return NULL;
3042 }
3043 
3044 #endif
3045 
3046 static void reset_mm_stats(struct lru_gen_mm_walk *walk, bool last)
3047 {
3048 	int i;
3049 	int hist;
3050 	struct lruvec *lruvec = walk->lruvec;
3051 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3052 
3053 	lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
3054 
3055 	hist = lru_hist_from_seq(walk->seq);
3056 
3057 	for (i = 0; i < NR_MM_STATS; i++) {
3058 		WRITE_ONCE(mm_state->stats[hist][i],
3059 			   mm_state->stats[hist][i] + walk->mm_stats[i]);
3060 		walk->mm_stats[i] = 0;
3061 	}
3062 
3063 	if (NR_HIST_GENS > 1 && last) {
3064 		hist = lru_hist_from_seq(walk->seq + 1);
3065 
3066 		for (i = 0; i < NR_MM_STATS; i++)
3067 			WRITE_ONCE(mm_state->stats[hist][i], 0);
3068 	}
3069 }
3070 
3071 static bool iterate_mm_list(struct lru_gen_mm_walk *walk, struct mm_struct **iter)
3072 {
3073 	bool first = false;
3074 	bool last = false;
3075 	struct mm_struct *mm = NULL;
3076 	struct lruvec *lruvec = walk->lruvec;
3077 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3078 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3079 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3080 
3081 	/*
3082 	 * mm_state->seq is incremented after each iteration of mm_list. There
3083 	 * are three interesting cases for this page table walker:
3084 	 * 1. It tries to start a new iteration with a stale max_seq: there is
3085 	 *    nothing left to do.
3086 	 * 2. It started the next iteration: it needs to reset the Bloom filter
3087 	 *    so that a fresh set of PTE tables can be recorded.
3088 	 * 3. It ended the current iteration: it needs to reset the mm stats
3089 	 *    counters and tell its caller to increment max_seq.
3090 	 */
3091 	spin_lock(&mm_list->lock);
3092 
3093 	VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->seq);
3094 
3095 	if (walk->seq <= mm_state->seq)
3096 		goto done;
3097 
3098 	if (!mm_state->head)
3099 		mm_state->head = &mm_list->fifo;
3100 
3101 	if (mm_state->head == &mm_list->fifo)
3102 		first = true;
3103 
3104 	do {
3105 		mm_state->head = mm_state->head->next;
3106 		if (mm_state->head == &mm_list->fifo) {
3107 			WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3108 			last = true;
3109 			break;
3110 		}
3111 
3112 		/* force scan for those added after the last iteration */
3113 		if (!mm_state->tail || mm_state->tail == mm_state->head) {
3114 			mm_state->tail = mm_state->head->next;
3115 			walk->force_scan = true;
3116 		}
3117 	} while (!(mm = get_next_mm(walk)));
3118 done:
3119 	if (*iter || last)
3120 		reset_mm_stats(walk, last);
3121 
3122 	spin_unlock(&mm_list->lock);
3123 
3124 	if (mm && first)
3125 		reset_bloom_filter(mm_state, walk->seq + 1);
3126 
3127 	if (*iter)
3128 		mmput_async(*iter);
3129 
3130 	*iter = mm;
3131 
3132 	return last;
3133 }
3134 
3135 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long seq)
3136 {
3137 	bool success = false;
3138 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3139 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3140 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3141 
3142 	spin_lock(&mm_list->lock);
3143 
3144 	VM_WARN_ON_ONCE(mm_state->seq + 1 < seq);
3145 
3146 	if (seq > mm_state->seq) {
3147 		mm_state->head = NULL;
3148 		mm_state->tail = NULL;
3149 		WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3150 		success = true;
3151 	}
3152 
3153 	spin_unlock(&mm_list->lock);
3154 
3155 	return success;
3156 }
3157 
3158 /******************************************************************************
3159  *                          PID controller
3160  ******************************************************************************/
3161 
3162 /*
3163  * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3164  *
3165  * The P term is refaulted/(evicted+protected) from a tier in the generation
3166  * currently being evicted; the I term is the exponential moving average of the
3167  * P term over the generations previously evicted, using the smoothing factor
3168  * 1/2; the D term isn't supported.
3169  *
3170  * The setpoint (SP) is always the first tier of one type; the process variable
3171  * (PV) is either any tier of the other type or any other tier of the same
3172  * type.
3173  *
3174  * The error is the difference between the SP and the PV; the correction is to
3175  * turn off protection when SP>PV or turn on protection when SP<PV.
3176  *
3177  * For future optimizations:
3178  * 1. The D term may discount the other two terms over time so that long-lived
3179  *    generations can resist stale information.
3180  */
3181 struct ctrl_pos {
3182 	unsigned long refaulted;
3183 	unsigned long total;
3184 	int gain;
3185 };
3186 
3187 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3188 			  struct ctrl_pos *pos)
3189 {
3190 	int i;
3191 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3192 	int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3193 
3194 	pos->gain = gain;
3195 	pos->refaulted = pos->total = 0;
3196 
3197 	for (i = tier % MAX_NR_TIERS; i <= min(tier, MAX_NR_TIERS - 1); i++) {
3198 		pos->refaulted += lrugen->avg_refaulted[type][i] +
3199 				  atomic_long_read(&lrugen->refaulted[hist][type][i]);
3200 		pos->total += lrugen->avg_total[type][i] +
3201 			      lrugen->protected[hist][type][i] +
3202 			      atomic_long_read(&lrugen->evicted[hist][type][i]);
3203 	}
3204 }
3205 
3206 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3207 {
3208 	int hist, tier;
3209 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3210 	bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3211 	unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3212 
3213 	lockdep_assert_held(&lruvec->lru_lock);
3214 
3215 	if (!carryover && !clear)
3216 		return;
3217 
3218 	hist = lru_hist_from_seq(seq);
3219 
3220 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3221 		if (carryover) {
3222 			unsigned long sum;
3223 
3224 			sum = lrugen->avg_refaulted[type][tier] +
3225 			      atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3226 			WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3227 
3228 			sum = lrugen->avg_total[type][tier] +
3229 			      lrugen->protected[hist][type][tier] +
3230 			      atomic_long_read(&lrugen->evicted[hist][type][tier]);
3231 			WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3232 		}
3233 
3234 		if (clear) {
3235 			atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3236 			atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3237 			WRITE_ONCE(lrugen->protected[hist][type][tier], 0);
3238 		}
3239 	}
3240 }
3241 
3242 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3243 {
3244 	/*
3245 	 * Return true if the PV has a limited number of refaults or a lower
3246 	 * refaulted/total than the SP.
3247 	 */
3248 	return pv->refaulted < MIN_LRU_BATCH ||
3249 	       pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3250 	       (sp->refaulted + 1) * pv->total * pv->gain;
3251 }
3252 
3253 /******************************************************************************
3254  *                          the aging
3255  ******************************************************************************/
3256 
3257 /* promote pages accessed through page tables */
3258 static int folio_update_gen(struct folio *folio, int gen)
3259 {
3260 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3261 
3262 	VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3263 
3264 	/* see the comment on LRU_REFS_FLAGS */
3265 	if (!folio_test_referenced(folio) && !folio_test_workingset(folio)) {
3266 		set_mask_bits(&folio->flags, LRU_REFS_MASK, BIT(PG_referenced));
3267 		return -1;
3268 	}
3269 
3270 	do {
3271 		/* lru_gen_del_folio() has isolated this page? */
3272 		if (!(old_flags & LRU_GEN_MASK))
3273 			return -1;
3274 
3275 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_FLAGS);
3276 		new_flags |= ((gen + 1UL) << LRU_GEN_PGOFF) | BIT(PG_workingset);
3277 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3278 
3279 	return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3280 }
3281 
3282 /* protect pages accessed multiple times through file descriptors */
3283 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3284 {
3285 	int type = folio_is_file_lru(folio);
3286 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3287 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3288 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3289 
3290 	VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3291 
3292 	do {
3293 		new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3294 		/* folio_update_gen() has promoted this page? */
3295 		if (new_gen >= 0 && new_gen != old_gen)
3296 			return new_gen;
3297 
3298 		new_gen = (old_gen + 1) % MAX_NR_GENS;
3299 
3300 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_FLAGS);
3301 		new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3302 		/* for folio_end_writeback() */
3303 		if (reclaiming)
3304 			new_flags |= BIT(PG_reclaim);
3305 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3306 
3307 	lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3308 
3309 	return new_gen;
3310 }
3311 
3312 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3313 			      int old_gen, int new_gen)
3314 {
3315 	int type = folio_is_file_lru(folio);
3316 	int zone = folio_zonenum(folio);
3317 	int delta = folio_nr_pages(folio);
3318 
3319 	VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3320 	VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3321 
3322 	walk->batched++;
3323 
3324 	walk->nr_pages[old_gen][type][zone] -= delta;
3325 	walk->nr_pages[new_gen][type][zone] += delta;
3326 }
3327 
3328 static void reset_batch_size(struct lru_gen_mm_walk *walk)
3329 {
3330 	int gen, type, zone;
3331 	struct lruvec *lruvec = walk->lruvec;
3332 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3333 
3334 	walk->batched = 0;
3335 
3336 	for_each_gen_type_zone(gen, type, zone) {
3337 		enum lru_list lru = type * LRU_INACTIVE_FILE;
3338 		int delta = walk->nr_pages[gen][type][zone];
3339 
3340 		if (!delta)
3341 			continue;
3342 
3343 		walk->nr_pages[gen][type][zone] = 0;
3344 		WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3345 			   lrugen->nr_pages[gen][type][zone] + delta);
3346 
3347 		if (lru_gen_is_active(lruvec, gen))
3348 			lru += LRU_ACTIVE;
3349 		__update_lru_size(lruvec, lru, zone, delta);
3350 	}
3351 }
3352 
3353 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3354 {
3355 	struct address_space *mapping;
3356 	struct vm_area_struct *vma = args->vma;
3357 	struct lru_gen_mm_walk *walk = args->private;
3358 
3359 	if (!vma_is_accessible(vma))
3360 		return true;
3361 
3362 	if (is_vm_hugetlb_page(vma))
3363 		return true;
3364 
3365 	if (!vma_has_recency(vma))
3366 		return true;
3367 
3368 	if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL))
3369 		return true;
3370 
3371 	if (vma == get_gate_vma(vma->vm_mm))
3372 		return true;
3373 
3374 	if (vma_is_anonymous(vma))
3375 		return !walk->swappiness;
3376 
3377 	if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3378 		return true;
3379 
3380 	mapping = vma->vm_file->f_mapping;
3381 	if (mapping_unevictable(mapping))
3382 		return true;
3383 
3384 	if (shmem_mapping(mapping))
3385 		return !walk->swappiness;
3386 
3387 	if (walk->swappiness > MAX_SWAPPINESS)
3388 		return true;
3389 
3390 	/* to exclude special mappings like dax, etc. */
3391 	return !mapping->a_ops->read_folio;
3392 }
3393 
3394 /*
3395  * Some userspace memory allocators map many single-page VMAs. Instead of
3396  * returning back to the PGD table for each of such VMAs, finish an entire PMD
3397  * table to reduce zigzags and improve cache performance.
3398  */
3399 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3400 			 unsigned long *vm_start, unsigned long *vm_end)
3401 {
3402 	unsigned long start = round_up(*vm_end, size);
3403 	unsigned long end = (start | ~mask) + 1;
3404 	VMA_ITERATOR(vmi, args->mm, start);
3405 
3406 	VM_WARN_ON_ONCE(mask & size);
3407 	VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3408 
3409 	for_each_vma(vmi, args->vma) {
3410 		if (end && end <= args->vma->vm_start)
3411 			return false;
3412 
3413 		if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
3414 			continue;
3415 
3416 		*vm_start = max(start, args->vma->vm_start);
3417 		*vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3418 
3419 		return true;
3420 	}
3421 
3422 	return false;
3423 }
3424 
3425 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr,
3426 				 struct pglist_data *pgdat)
3427 {
3428 	unsigned long pfn = pte_pfn(pte);
3429 
3430 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3431 
3432 	if (!pte_present(pte) || is_zero_pfn(pfn))
3433 		return -1;
3434 
3435 	if (WARN_ON_ONCE(pte_special(pte)))
3436 		return -1;
3437 
3438 	if (!pte_young(pte) && !mm_has_notifiers(vma->vm_mm))
3439 		return -1;
3440 
3441 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3442 		return -1;
3443 
3444 	if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3445 		return -1;
3446 
3447 	return pfn;
3448 }
3449 
3450 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr,
3451 				 struct pglist_data *pgdat)
3452 {
3453 	unsigned long pfn = pmd_pfn(pmd);
3454 
3455 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3456 
3457 	if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3458 		return -1;
3459 
3460 	if (!pmd_young(pmd) && !mm_has_notifiers(vma->vm_mm))
3461 		return -1;
3462 
3463 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3464 		return -1;
3465 
3466 	if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3467 		return -1;
3468 
3469 	return pfn;
3470 }
3471 
3472 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
3473 				   struct pglist_data *pgdat)
3474 {
3475 	struct folio *folio = pfn_folio(pfn);
3476 
3477 	if (folio_lru_gen(folio) < 0)
3478 		return NULL;
3479 
3480 	if (folio_nid(folio) != pgdat->node_id)
3481 		return NULL;
3482 
3483 	if (folio_memcg(folio) != memcg)
3484 		return NULL;
3485 
3486 	return folio;
3487 }
3488 
3489 static bool suitable_to_scan(int total, int young)
3490 {
3491 	int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3492 
3493 	/* suitable if the average number of young PTEs per cacheline is >=1 */
3494 	return young * n >= total;
3495 }
3496 
3497 static void walk_update_folio(struct lru_gen_mm_walk *walk, struct folio *folio,
3498 			      int new_gen, bool dirty)
3499 {
3500 	int old_gen;
3501 
3502 	if (!folio)
3503 		return;
3504 
3505 	if (dirty && !folio_test_dirty(folio) &&
3506 	    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3507 	      !folio_test_swapcache(folio)))
3508 		folio_mark_dirty(folio);
3509 
3510 	if (walk) {
3511 		old_gen = folio_update_gen(folio, new_gen);
3512 		if (old_gen >= 0 && old_gen != new_gen)
3513 			update_batch_size(walk, folio, old_gen, new_gen);
3514 	} else if (lru_gen_set_refs(folio)) {
3515 		old_gen = folio_lru_gen(folio);
3516 		if (old_gen >= 0 && old_gen != new_gen)
3517 			folio_activate(folio);
3518 	}
3519 }
3520 
3521 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3522 			   struct mm_walk *args)
3523 {
3524 	int i;
3525 	bool dirty;
3526 	pte_t *pte;
3527 	spinlock_t *ptl;
3528 	unsigned long addr;
3529 	int total = 0;
3530 	int young = 0;
3531 	struct folio *last = NULL;
3532 	struct lru_gen_mm_walk *walk = args->private;
3533 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3534 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3535 	DEFINE_MAX_SEQ(walk->lruvec);
3536 	int gen = lru_gen_from_seq(max_seq);
3537 	pmd_t pmdval;
3538 
3539 	pte = pte_offset_map_rw_nolock(args->mm, pmd, start & PMD_MASK, &pmdval, &ptl);
3540 	if (!pte)
3541 		return false;
3542 
3543 	if (!spin_trylock(ptl)) {
3544 		pte_unmap(pte);
3545 		return true;
3546 	}
3547 
3548 	if (unlikely(!pmd_same(pmdval, pmdp_get_lockless(pmd)))) {
3549 		pte_unmap_unlock(pte, ptl);
3550 		return false;
3551 	}
3552 
3553 	arch_enter_lazy_mmu_mode();
3554 restart:
3555 	for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
3556 		unsigned long pfn;
3557 		struct folio *folio;
3558 		pte_t ptent = ptep_get(pte + i);
3559 
3560 		total++;
3561 		walk->mm_stats[MM_LEAF_TOTAL]++;
3562 
3563 		pfn = get_pte_pfn(ptent, args->vma, addr, pgdat);
3564 		if (pfn == -1)
3565 			continue;
3566 
3567 		folio = get_pfn_folio(pfn, memcg, pgdat);
3568 		if (!folio)
3569 			continue;
3570 
3571 		if (!ptep_clear_young_notify(args->vma, addr, pte + i))
3572 			continue;
3573 
3574 		if (last != folio) {
3575 			walk_update_folio(walk, last, gen, dirty);
3576 
3577 			last = folio;
3578 			dirty = false;
3579 		}
3580 
3581 		if (pte_dirty(ptent))
3582 			dirty = true;
3583 
3584 		young++;
3585 		walk->mm_stats[MM_LEAF_YOUNG]++;
3586 	}
3587 
3588 	walk_update_folio(walk, last, gen, dirty);
3589 	last = NULL;
3590 
3591 	if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
3592 		goto restart;
3593 
3594 	arch_leave_lazy_mmu_mode();
3595 	pte_unmap_unlock(pte, ptl);
3596 
3597 	return suitable_to_scan(total, young);
3598 }
3599 
3600 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
3601 				  struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
3602 {
3603 	int i;
3604 	bool dirty;
3605 	pmd_t *pmd;
3606 	spinlock_t *ptl;
3607 	struct folio *last = NULL;
3608 	struct lru_gen_mm_walk *walk = args->private;
3609 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3610 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3611 	DEFINE_MAX_SEQ(walk->lruvec);
3612 	int gen = lru_gen_from_seq(max_seq);
3613 
3614 	VM_WARN_ON_ONCE(pud_leaf(*pud));
3615 
3616 	/* try to batch at most 1+MIN_LRU_BATCH+1 entries */
3617 	if (*first == -1) {
3618 		*first = addr;
3619 		bitmap_zero(bitmap, MIN_LRU_BATCH);
3620 		return;
3621 	}
3622 
3623 	i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first);
3624 	if (i && i <= MIN_LRU_BATCH) {
3625 		__set_bit(i - 1, bitmap);
3626 		return;
3627 	}
3628 
3629 	pmd = pmd_offset(pud, *first);
3630 
3631 	ptl = pmd_lockptr(args->mm, pmd);
3632 	if (!spin_trylock(ptl))
3633 		goto done;
3634 
3635 	arch_enter_lazy_mmu_mode();
3636 
3637 	do {
3638 		unsigned long pfn;
3639 		struct folio *folio;
3640 
3641 		/* don't round down the first address */
3642 		addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first;
3643 
3644 		if (!pmd_present(pmd[i]))
3645 			goto next;
3646 
3647 		if (!pmd_trans_huge(pmd[i])) {
3648 			if (!walk->force_scan && should_clear_pmd_young() &&
3649 			    !mm_has_notifiers(args->mm))
3650 				pmdp_test_and_clear_young(vma, addr, pmd + i);
3651 			goto next;
3652 		}
3653 
3654 		pfn = get_pmd_pfn(pmd[i], vma, addr, pgdat);
3655 		if (pfn == -1)
3656 			goto next;
3657 
3658 		folio = get_pfn_folio(pfn, memcg, pgdat);
3659 		if (!folio)
3660 			goto next;
3661 
3662 		if (!pmdp_clear_young_notify(vma, addr, pmd + i))
3663 			goto next;
3664 
3665 		if (last != folio) {
3666 			walk_update_folio(walk, last, gen, dirty);
3667 
3668 			last = folio;
3669 			dirty = false;
3670 		}
3671 
3672 		if (pmd_dirty(pmd[i]))
3673 			dirty = true;
3674 
3675 		walk->mm_stats[MM_LEAF_YOUNG]++;
3676 next:
3677 		i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
3678 	} while (i <= MIN_LRU_BATCH);
3679 
3680 	walk_update_folio(walk, last, gen, dirty);
3681 
3682 	arch_leave_lazy_mmu_mode();
3683 	spin_unlock(ptl);
3684 done:
3685 	*first = -1;
3686 }
3687 
3688 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
3689 			   struct mm_walk *args)
3690 {
3691 	int i;
3692 	pmd_t *pmd;
3693 	unsigned long next;
3694 	unsigned long addr;
3695 	struct vm_area_struct *vma;
3696 	DECLARE_BITMAP(bitmap, MIN_LRU_BATCH);
3697 	unsigned long first = -1;
3698 	struct lru_gen_mm_walk *walk = args->private;
3699 	struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
3700 
3701 	VM_WARN_ON_ONCE(pud_leaf(*pud));
3702 
3703 	/*
3704 	 * Finish an entire PMD in two passes: the first only reaches to PTE
3705 	 * tables to avoid taking the PMD lock; the second, if necessary, takes
3706 	 * the PMD lock to clear the accessed bit in PMD entries.
3707 	 */
3708 	pmd = pmd_offset(pud, start & PUD_MASK);
3709 restart:
3710 	/* walk_pte_range() may call get_next_vma() */
3711 	vma = args->vma;
3712 	for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
3713 		pmd_t val = pmdp_get_lockless(pmd + i);
3714 
3715 		next = pmd_addr_end(addr, end);
3716 
3717 		if (!pmd_present(val) || is_huge_zero_pmd(val)) {
3718 			walk->mm_stats[MM_LEAF_TOTAL]++;
3719 			continue;
3720 		}
3721 
3722 		if (pmd_trans_huge(val)) {
3723 			struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3724 			unsigned long pfn = get_pmd_pfn(val, vma, addr, pgdat);
3725 
3726 			walk->mm_stats[MM_LEAF_TOTAL]++;
3727 
3728 			if (pfn != -1)
3729 				walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3730 			continue;
3731 		}
3732 
3733 		if (!walk->force_scan && should_clear_pmd_young() &&
3734 		    !mm_has_notifiers(args->mm)) {
3735 			if (!pmd_young(val))
3736 				continue;
3737 
3738 			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3739 		}
3740 
3741 		if (!walk->force_scan && !test_bloom_filter(mm_state, walk->seq, pmd + i))
3742 			continue;
3743 
3744 		walk->mm_stats[MM_NONLEAF_FOUND]++;
3745 
3746 		if (!walk_pte_range(&val, addr, next, args))
3747 			continue;
3748 
3749 		walk->mm_stats[MM_NONLEAF_ADDED]++;
3750 
3751 		/* carry over to the next generation */
3752 		update_bloom_filter(mm_state, walk->seq + 1, pmd + i);
3753 	}
3754 
3755 	walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first);
3756 
3757 	if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
3758 		goto restart;
3759 }
3760 
3761 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
3762 			  struct mm_walk *args)
3763 {
3764 	int i;
3765 	pud_t *pud;
3766 	unsigned long addr;
3767 	unsigned long next;
3768 	struct lru_gen_mm_walk *walk = args->private;
3769 
3770 	VM_WARN_ON_ONCE(p4d_leaf(*p4d));
3771 
3772 	pud = pud_offset(p4d, start & P4D_MASK);
3773 restart:
3774 	for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
3775 		pud_t val = READ_ONCE(pud[i]);
3776 
3777 		next = pud_addr_end(addr, end);
3778 
3779 		if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
3780 			continue;
3781 
3782 		walk_pmd_range(&val, addr, next, args);
3783 
3784 		if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
3785 			end = (addr | ~PUD_MASK) + 1;
3786 			goto done;
3787 		}
3788 	}
3789 
3790 	if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
3791 		goto restart;
3792 
3793 	end = round_up(end, P4D_SIZE);
3794 done:
3795 	if (!end || !args->vma)
3796 		return 1;
3797 
3798 	walk->next_addr = max(end, args->vma->vm_start);
3799 
3800 	return -EAGAIN;
3801 }
3802 
3803 static void walk_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3804 {
3805 	static const struct mm_walk_ops mm_walk_ops = {
3806 		.test_walk = should_skip_vma,
3807 		.p4d_entry = walk_pud_range,
3808 		.walk_lock = PGWALK_RDLOCK,
3809 	};
3810 	int err;
3811 	struct lruvec *lruvec = walk->lruvec;
3812 
3813 	walk->next_addr = FIRST_USER_ADDRESS;
3814 
3815 	do {
3816 		DEFINE_MAX_SEQ(lruvec);
3817 
3818 		err = -EBUSY;
3819 
3820 		/* another thread might have called inc_max_seq() */
3821 		if (walk->seq != max_seq)
3822 			break;
3823 
3824 		/* the caller might be holding the lock for write */
3825 		if (mmap_read_trylock(mm)) {
3826 			err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
3827 
3828 			mmap_read_unlock(mm);
3829 		}
3830 
3831 		if (walk->batched) {
3832 			spin_lock_irq(&lruvec->lru_lock);
3833 			reset_batch_size(walk);
3834 			spin_unlock_irq(&lruvec->lru_lock);
3835 		}
3836 
3837 		cond_resched();
3838 	} while (err == -EAGAIN);
3839 }
3840 
3841 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc)
3842 {
3843 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3844 
3845 	if (pgdat && current_is_kswapd()) {
3846 		VM_WARN_ON_ONCE(walk);
3847 
3848 		walk = &pgdat->mm_walk;
3849 	} else if (!walk && force_alloc) {
3850 		VM_WARN_ON_ONCE(current_is_kswapd());
3851 
3852 		walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3853 	}
3854 
3855 	current->reclaim_state->mm_walk = walk;
3856 
3857 	return walk;
3858 }
3859 
3860 static void clear_mm_walk(void)
3861 {
3862 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3863 
3864 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
3865 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
3866 
3867 	current->reclaim_state->mm_walk = NULL;
3868 
3869 	if (!current_is_kswapd())
3870 		kfree(walk);
3871 }
3872 
3873 static bool inc_min_seq(struct lruvec *lruvec, int type, int swappiness)
3874 {
3875 	int zone;
3876 	int remaining = MAX_LRU_BATCH;
3877 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3878 	int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3879 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3880 
3881 	/* For file type, skip the check if swappiness is anon only */
3882 	if (type && (swappiness == SWAPPINESS_ANON_ONLY))
3883 		goto done;
3884 
3885 	/* For anon type, skip the check if swappiness is zero (file only) */
3886 	if (!type && !swappiness)
3887 		goto done;
3888 
3889 	/* prevent cold/hot inversion if the type is evictable */
3890 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3891 		struct list_head *head = &lrugen->folios[old_gen][type][zone];
3892 
3893 		while (!list_empty(head)) {
3894 			struct folio *folio = lru_to_folio(head);
3895 			int refs = folio_lru_refs(folio);
3896 			bool workingset = folio_test_workingset(folio);
3897 
3898 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
3899 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
3900 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
3901 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
3902 
3903 			new_gen = folio_inc_gen(lruvec, folio, false);
3904 			list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]);
3905 
3906 			/* don't count the workingset being lazily promoted */
3907 			if (refs + workingset != BIT(LRU_REFS_WIDTH) + 1) {
3908 				int tier = lru_tier_from_refs(refs, workingset);
3909 				int delta = folio_nr_pages(folio);
3910 
3911 				WRITE_ONCE(lrugen->protected[hist][type][tier],
3912 					   lrugen->protected[hist][type][tier] + delta);
3913 			}
3914 
3915 			if (!--remaining)
3916 				return false;
3917 		}
3918 	}
3919 done:
3920 	reset_ctrl_pos(lruvec, type, true);
3921 	WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
3922 
3923 	return true;
3924 }
3925 
3926 static bool try_to_inc_min_seq(struct lruvec *lruvec, int swappiness)
3927 {
3928 	int gen, type, zone;
3929 	bool success = false;
3930 	bool seq_inc_flag = false;
3931 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3932 	DEFINE_MIN_SEQ(lruvec);
3933 
3934 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3935 
3936 	/* find the oldest populated generation */
3937 	for_each_evictable_type(type, swappiness) {
3938 		while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
3939 			gen = lru_gen_from_seq(min_seq[type]);
3940 
3941 			for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3942 				if (!list_empty(&lrugen->folios[gen][type][zone]))
3943 					goto next;
3944 			}
3945 
3946 			min_seq[type]++;
3947 			seq_inc_flag = true;
3948 		}
3949 next:
3950 		;
3951 	}
3952 
3953 	/*
3954 	 * If min_seq[type] of both anonymous and file is not increased,
3955 	 * we can directly return false to avoid unnecessary checking
3956 	 * overhead later.
3957 	 */
3958 	if (!seq_inc_flag)
3959 		return success;
3960 
3961 	/* see the comment on lru_gen_folio */
3962 	if (swappiness && swappiness <= MAX_SWAPPINESS) {
3963 		unsigned long seq = lrugen->max_seq - MIN_NR_GENS;
3964 
3965 		if (min_seq[LRU_GEN_ANON] > seq && min_seq[LRU_GEN_FILE] < seq)
3966 			min_seq[LRU_GEN_ANON] = seq;
3967 		else if (min_seq[LRU_GEN_FILE] > seq && min_seq[LRU_GEN_ANON] < seq)
3968 			min_seq[LRU_GEN_FILE] = seq;
3969 	}
3970 
3971 	for_each_evictable_type(type, swappiness) {
3972 		if (min_seq[type] <= lrugen->min_seq[type])
3973 			continue;
3974 
3975 		reset_ctrl_pos(lruvec, type, true);
3976 		WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
3977 		success = true;
3978 	}
3979 
3980 	return success;
3981 }
3982 
3983 static bool inc_max_seq(struct lruvec *lruvec, unsigned long seq, int swappiness)
3984 {
3985 	bool success;
3986 	int prev, next;
3987 	int type, zone;
3988 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3989 restart:
3990 	if (seq < READ_ONCE(lrugen->max_seq))
3991 		return false;
3992 
3993 	spin_lock_irq(&lruvec->lru_lock);
3994 
3995 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3996 
3997 	success = seq == lrugen->max_seq;
3998 	if (!success)
3999 		goto unlock;
4000 
4001 	for (type = 0; type < ANON_AND_FILE; type++) {
4002 		if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
4003 			continue;
4004 
4005 		if (inc_min_seq(lruvec, type, swappiness))
4006 			continue;
4007 
4008 		spin_unlock_irq(&lruvec->lru_lock);
4009 		cond_resched();
4010 		goto restart;
4011 	}
4012 
4013 	/*
4014 	 * Update the active/inactive LRU sizes for compatibility. Both sides of
4015 	 * the current max_seq need to be covered, since max_seq+1 can overlap
4016 	 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
4017 	 * overlap, cold/hot inversion happens.
4018 	 */
4019 	prev = lru_gen_from_seq(lrugen->max_seq - 1);
4020 	next = lru_gen_from_seq(lrugen->max_seq + 1);
4021 
4022 	for (type = 0; type < ANON_AND_FILE; type++) {
4023 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4024 			enum lru_list lru = type * LRU_INACTIVE_FILE;
4025 			long delta = lrugen->nr_pages[prev][type][zone] -
4026 				     lrugen->nr_pages[next][type][zone];
4027 
4028 			if (!delta)
4029 				continue;
4030 
4031 			__update_lru_size(lruvec, lru, zone, delta);
4032 			__update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
4033 		}
4034 	}
4035 
4036 	for (type = 0; type < ANON_AND_FILE; type++)
4037 		reset_ctrl_pos(lruvec, type, false);
4038 
4039 	WRITE_ONCE(lrugen->timestamps[next], jiffies);
4040 	/* make sure preceding modifications appear */
4041 	smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
4042 unlock:
4043 	spin_unlock_irq(&lruvec->lru_lock);
4044 
4045 	return success;
4046 }
4047 
4048 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long seq,
4049 			       int swappiness, bool force_scan)
4050 {
4051 	bool success;
4052 	struct lru_gen_mm_walk *walk;
4053 	struct mm_struct *mm = NULL;
4054 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4055 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
4056 
4057 	VM_WARN_ON_ONCE(seq > READ_ONCE(lrugen->max_seq));
4058 
4059 	if (!mm_state)
4060 		return inc_max_seq(lruvec, seq, swappiness);
4061 
4062 	/* see the comment in iterate_mm_list() */
4063 	if (seq <= READ_ONCE(mm_state->seq))
4064 		return false;
4065 
4066 	/*
4067 	 * If the hardware doesn't automatically set the accessed bit, fallback
4068 	 * to lru_gen_look_around(), which only clears the accessed bit in a
4069 	 * handful of PTEs. Spreading the work out over a period of time usually
4070 	 * is less efficient, but it avoids bursty page faults.
4071 	 */
4072 	if (!should_walk_mmu()) {
4073 		success = iterate_mm_list_nowalk(lruvec, seq);
4074 		goto done;
4075 	}
4076 
4077 	walk = set_mm_walk(NULL, true);
4078 	if (!walk) {
4079 		success = iterate_mm_list_nowalk(lruvec, seq);
4080 		goto done;
4081 	}
4082 
4083 	walk->lruvec = lruvec;
4084 	walk->seq = seq;
4085 	walk->swappiness = swappiness;
4086 	walk->force_scan = force_scan;
4087 
4088 	do {
4089 		success = iterate_mm_list(walk, &mm);
4090 		if (mm)
4091 			walk_mm(mm, walk);
4092 	} while (mm);
4093 done:
4094 	if (success) {
4095 		success = inc_max_seq(lruvec, seq, swappiness);
4096 		WARN_ON_ONCE(!success);
4097 	}
4098 
4099 	return success;
4100 }
4101 
4102 /******************************************************************************
4103  *                          working set protection
4104  ******************************************************************************/
4105 
4106 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc)
4107 {
4108 	int priority;
4109 	unsigned long reclaimable;
4110 
4111 	if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH)
4112 		return;
4113 	/*
4114 	 * Determine the initial priority based on
4115 	 * (total >> priority) * reclaimed_to_scanned_ratio = nr_to_reclaim,
4116 	 * where reclaimed_to_scanned_ratio = inactive / total.
4117 	 */
4118 	reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE);
4119 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
4120 		reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON);
4121 
4122 	/* round down reclaimable and round up sc->nr_to_reclaim */
4123 	priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1);
4124 
4125 	/*
4126 	 * The estimation is based on LRU pages only, so cap it to prevent
4127 	 * overshoots of shrinker objects by large margins.
4128 	 */
4129 	sc->priority = clamp(priority, DEF_PRIORITY / 2, DEF_PRIORITY);
4130 }
4131 
4132 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc)
4133 {
4134 	int gen, type, zone;
4135 	unsigned long total = 0;
4136 	int swappiness = get_swappiness(lruvec, sc);
4137 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4138 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4139 	DEFINE_MAX_SEQ(lruvec);
4140 	DEFINE_MIN_SEQ(lruvec);
4141 
4142 	for_each_evictable_type(type, swappiness) {
4143 		unsigned long seq;
4144 
4145 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
4146 			gen = lru_gen_from_seq(seq);
4147 
4148 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
4149 				total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4150 		}
4151 	}
4152 
4153 	/* whether the size is big enough to be helpful */
4154 	return mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
4155 }
4156 
4157 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc,
4158 				  unsigned long min_ttl)
4159 {
4160 	int gen;
4161 	unsigned long birth;
4162 	int swappiness = get_swappiness(lruvec, sc);
4163 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4164 	DEFINE_MIN_SEQ(lruvec);
4165 
4166 	if (mem_cgroup_below_min(NULL, memcg))
4167 		return false;
4168 
4169 	if (!lruvec_is_sizable(lruvec, sc))
4170 		return false;
4171 
4172 	gen = lru_gen_from_seq(evictable_min_seq(min_seq, swappiness));
4173 	birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
4174 
4175 	return time_is_before_jiffies(birth + min_ttl);
4176 }
4177 
4178 /* to protect the working set of the last N jiffies */
4179 static unsigned long lru_gen_min_ttl __read_mostly;
4180 
4181 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
4182 {
4183 	struct mem_cgroup *memcg;
4184 	unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
4185 	bool reclaimable = !min_ttl;
4186 
4187 	VM_WARN_ON_ONCE(!current_is_kswapd());
4188 
4189 	set_initial_priority(pgdat, sc);
4190 
4191 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
4192 	do {
4193 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4194 
4195 		mem_cgroup_calculate_protection(NULL, memcg);
4196 
4197 		if (!reclaimable)
4198 			reclaimable = lruvec_is_reclaimable(lruvec, sc, min_ttl);
4199 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
4200 
4201 	/*
4202 	 * The main goal is to OOM kill if every generation from all memcgs is
4203 	 * younger than min_ttl. However, another possibility is all memcgs are
4204 	 * either too small or below min.
4205 	 */
4206 	if (!reclaimable && mutex_trylock(&oom_lock)) {
4207 		struct oom_control oc = {
4208 			.gfp_mask = sc->gfp_mask,
4209 		};
4210 
4211 		out_of_memory(&oc);
4212 
4213 		mutex_unlock(&oom_lock);
4214 	}
4215 }
4216 
4217 /******************************************************************************
4218  *                          rmap/PT walk feedback
4219  ******************************************************************************/
4220 
4221 /*
4222  * This function exploits spatial locality when shrink_folio_list() walks the
4223  * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
4224  * the scan was done cacheline efficiently, it adds the PMD entry pointing to
4225  * the PTE table to the Bloom filter. This forms a feedback loop between the
4226  * eviction and the aging.
4227  */
4228 bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
4229 {
4230 	int i;
4231 	bool dirty;
4232 	unsigned long start;
4233 	unsigned long end;
4234 	struct lru_gen_mm_walk *walk;
4235 	struct folio *last = NULL;
4236 	int young = 1;
4237 	pte_t *pte = pvmw->pte;
4238 	unsigned long addr = pvmw->address;
4239 	struct vm_area_struct *vma = pvmw->vma;
4240 	struct folio *folio = pfn_folio(pvmw->pfn);
4241 	struct mem_cgroup *memcg = folio_memcg(folio);
4242 	struct pglist_data *pgdat = folio_pgdat(folio);
4243 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4244 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
4245 	DEFINE_MAX_SEQ(lruvec);
4246 	int gen = lru_gen_from_seq(max_seq);
4247 
4248 	lockdep_assert_held(pvmw->ptl);
4249 	VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
4250 
4251 	if (!ptep_clear_young_notify(vma, addr, pte))
4252 		return false;
4253 
4254 	if (spin_is_contended(pvmw->ptl))
4255 		return true;
4256 
4257 	/* exclude special VMAs containing anon pages from COW */
4258 	if (vma->vm_flags & VM_SPECIAL)
4259 		return true;
4260 
4261 	/* avoid taking the LRU lock under the PTL when possible */
4262 	walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4263 
4264 	start = max(addr & PMD_MASK, vma->vm_start);
4265 	end = min(addr | ~PMD_MASK, vma->vm_end - 1) + 1;
4266 
4267 	if (end - start == PAGE_SIZE)
4268 		return true;
4269 
4270 	if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4271 		if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4272 			end = start + MIN_LRU_BATCH * PAGE_SIZE;
4273 		else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2)
4274 			start = end - MIN_LRU_BATCH * PAGE_SIZE;
4275 		else {
4276 			start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2;
4277 			end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2;
4278 		}
4279 	}
4280 
4281 	arch_enter_lazy_mmu_mode();
4282 
4283 	pte -= (addr - start) / PAGE_SIZE;
4284 
4285 	for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4286 		unsigned long pfn;
4287 		pte_t ptent = ptep_get(pte + i);
4288 
4289 		pfn = get_pte_pfn(ptent, vma, addr, pgdat);
4290 		if (pfn == -1)
4291 			continue;
4292 
4293 		folio = get_pfn_folio(pfn, memcg, pgdat);
4294 		if (!folio)
4295 			continue;
4296 
4297 		if (!ptep_clear_young_notify(vma, addr, pte + i))
4298 			continue;
4299 
4300 		if (last != folio) {
4301 			walk_update_folio(walk, last, gen, dirty);
4302 
4303 			last = folio;
4304 			dirty = false;
4305 		}
4306 
4307 		if (pte_dirty(ptent))
4308 			dirty = true;
4309 
4310 		young++;
4311 	}
4312 
4313 	walk_update_folio(walk, last, gen, dirty);
4314 
4315 	arch_leave_lazy_mmu_mode();
4316 
4317 	/* feedback from rmap walkers to page table walkers */
4318 	if (mm_state && suitable_to_scan(i, young))
4319 		update_bloom_filter(mm_state, max_seq, pvmw->pmd);
4320 
4321 	return true;
4322 }
4323 
4324 /******************************************************************************
4325  *                          memcg LRU
4326  ******************************************************************************/
4327 
4328 /* see the comment on MEMCG_NR_GENS */
4329 enum {
4330 	MEMCG_LRU_NOP,
4331 	MEMCG_LRU_HEAD,
4332 	MEMCG_LRU_TAIL,
4333 	MEMCG_LRU_OLD,
4334 	MEMCG_LRU_YOUNG,
4335 };
4336 
4337 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op)
4338 {
4339 	int seg;
4340 	int old, new;
4341 	unsigned long flags;
4342 	int bin = get_random_u32_below(MEMCG_NR_BINS);
4343 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4344 
4345 	spin_lock_irqsave(&pgdat->memcg_lru.lock, flags);
4346 
4347 	VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4348 
4349 	seg = 0;
4350 	new = old = lruvec->lrugen.gen;
4351 
4352 	/* see the comment on MEMCG_NR_GENS */
4353 	if (op == MEMCG_LRU_HEAD)
4354 		seg = MEMCG_LRU_HEAD;
4355 	else if (op == MEMCG_LRU_TAIL)
4356 		seg = MEMCG_LRU_TAIL;
4357 	else if (op == MEMCG_LRU_OLD)
4358 		new = get_memcg_gen(pgdat->memcg_lru.seq);
4359 	else if (op == MEMCG_LRU_YOUNG)
4360 		new = get_memcg_gen(pgdat->memcg_lru.seq + 1);
4361 	else
4362 		VM_WARN_ON_ONCE(true);
4363 
4364 	WRITE_ONCE(lruvec->lrugen.seg, seg);
4365 	WRITE_ONCE(lruvec->lrugen.gen, new);
4366 
4367 	hlist_nulls_del_rcu(&lruvec->lrugen.list);
4368 
4369 	if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD)
4370 		hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4371 	else
4372 		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4373 
4374 	pgdat->memcg_lru.nr_memcgs[old]--;
4375 	pgdat->memcg_lru.nr_memcgs[new]++;
4376 
4377 	if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq))
4378 		WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4379 
4380 	spin_unlock_irqrestore(&pgdat->memcg_lru.lock, flags);
4381 }
4382 
4383 #ifdef CONFIG_MEMCG
4384 
4385 void lru_gen_online_memcg(struct mem_cgroup *memcg)
4386 {
4387 	int gen;
4388 	int nid;
4389 	int bin = get_random_u32_below(MEMCG_NR_BINS);
4390 
4391 	for_each_node(nid) {
4392 		struct pglist_data *pgdat = NODE_DATA(nid);
4393 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4394 
4395 		spin_lock_irq(&pgdat->memcg_lru.lock);
4396 
4397 		VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list));
4398 
4399 		gen = get_memcg_gen(pgdat->memcg_lru.seq);
4400 
4401 		lruvec->lrugen.gen = gen;
4402 
4403 		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]);
4404 		pgdat->memcg_lru.nr_memcgs[gen]++;
4405 
4406 		spin_unlock_irq(&pgdat->memcg_lru.lock);
4407 	}
4408 }
4409 
4410 void lru_gen_offline_memcg(struct mem_cgroup *memcg)
4411 {
4412 	int nid;
4413 
4414 	for_each_node(nid) {
4415 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4416 
4417 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD);
4418 	}
4419 }
4420 
4421 void lru_gen_release_memcg(struct mem_cgroup *memcg)
4422 {
4423 	int gen;
4424 	int nid;
4425 
4426 	for_each_node(nid) {
4427 		struct pglist_data *pgdat = NODE_DATA(nid);
4428 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4429 
4430 		spin_lock_irq(&pgdat->memcg_lru.lock);
4431 
4432 		if (hlist_nulls_unhashed(&lruvec->lrugen.list))
4433 			goto unlock;
4434 
4435 		gen = lruvec->lrugen.gen;
4436 
4437 		hlist_nulls_del_init_rcu(&lruvec->lrugen.list);
4438 		pgdat->memcg_lru.nr_memcgs[gen]--;
4439 
4440 		if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq))
4441 			WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4442 unlock:
4443 		spin_unlock_irq(&pgdat->memcg_lru.lock);
4444 	}
4445 }
4446 
4447 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
4448 {
4449 	struct lruvec *lruvec = get_lruvec(memcg, nid);
4450 
4451 	/* see the comment on MEMCG_NR_GENS */
4452 	if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_HEAD)
4453 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD);
4454 }
4455 
4456 #endif /* CONFIG_MEMCG */
4457 
4458 /******************************************************************************
4459  *                          the eviction
4460  ******************************************************************************/
4461 
4462 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc,
4463 		       int tier_idx)
4464 {
4465 	bool success;
4466 	bool dirty, writeback;
4467 	int gen = folio_lru_gen(folio);
4468 	int type = folio_is_file_lru(folio);
4469 	int zone = folio_zonenum(folio);
4470 	int delta = folio_nr_pages(folio);
4471 	int refs = folio_lru_refs(folio);
4472 	bool workingset = folio_test_workingset(folio);
4473 	int tier = lru_tier_from_refs(refs, workingset);
4474 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4475 
4476 	VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4477 
4478 	/* unevictable */
4479 	if (!folio_evictable(folio)) {
4480 		success = lru_gen_del_folio(lruvec, folio, true);
4481 		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4482 		folio_set_unevictable(folio);
4483 		lruvec_add_folio(lruvec, folio);
4484 		__count_vm_events(UNEVICTABLE_PGCULLED, delta);
4485 		return true;
4486 	}
4487 
4488 	/* promoted */
4489 	if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4490 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4491 		return true;
4492 	}
4493 
4494 	/* protected */
4495 	if (tier > tier_idx || refs + workingset == BIT(LRU_REFS_WIDTH) + 1) {
4496 		gen = folio_inc_gen(lruvec, folio, false);
4497 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4498 
4499 		/* don't count the workingset being lazily promoted */
4500 		if (refs + workingset != BIT(LRU_REFS_WIDTH) + 1) {
4501 			int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4502 
4503 			WRITE_ONCE(lrugen->protected[hist][type][tier],
4504 				   lrugen->protected[hist][type][tier] + delta);
4505 		}
4506 		return true;
4507 	}
4508 
4509 	/* ineligible */
4510 	if (!folio_test_lru(folio) || zone > sc->reclaim_idx) {
4511 		gen = folio_inc_gen(lruvec, folio, false);
4512 		list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4513 		return true;
4514 	}
4515 
4516 	dirty = folio_test_dirty(folio);
4517 	writeback = folio_test_writeback(folio);
4518 	if (type == LRU_GEN_FILE && dirty) {
4519 		sc->nr.file_taken += delta;
4520 		if (!writeback)
4521 			sc->nr.unqueued_dirty += delta;
4522 	}
4523 
4524 	/* waiting for writeback */
4525 	if (writeback || (type == LRU_GEN_FILE && dirty)) {
4526 		gen = folio_inc_gen(lruvec, folio, true);
4527 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4528 		return true;
4529 	}
4530 
4531 	return false;
4532 }
4533 
4534 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4535 {
4536 	bool success;
4537 
4538 	/* swap constrained */
4539 	if (!(sc->gfp_mask & __GFP_IO) &&
4540 	    (folio_test_dirty(folio) ||
4541 	     (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4542 		return false;
4543 
4544 	/* raced with release_pages() */
4545 	if (!folio_try_get(folio))
4546 		return false;
4547 
4548 	/* raced with another isolation */
4549 	if (!folio_test_clear_lru(folio)) {
4550 		folio_put(folio);
4551 		return false;
4552 	}
4553 
4554 	/* see the comment on LRU_REFS_FLAGS */
4555 	if (!folio_test_referenced(folio))
4556 		set_mask_bits(&folio->flags, LRU_REFS_MASK, 0);
4557 
4558 	/* for shrink_folio_list() */
4559 	folio_clear_reclaim(folio);
4560 
4561 	success = lru_gen_del_folio(lruvec, folio, true);
4562 	VM_WARN_ON_ONCE_FOLIO(!success, folio);
4563 
4564 	return true;
4565 }
4566 
4567 static int scan_folios(unsigned long nr_to_scan, struct lruvec *lruvec,
4568 		       struct scan_control *sc, int type, int tier,
4569 		       struct list_head *list)
4570 {
4571 	int i;
4572 	int gen;
4573 	enum vm_event_item item;
4574 	int sorted = 0;
4575 	int scanned = 0;
4576 	int isolated = 0;
4577 	int skipped = 0;
4578 	int remaining = min(nr_to_scan, MAX_LRU_BATCH);
4579 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4580 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4581 
4582 	VM_WARN_ON_ONCE(!list_empty(list));
4583 
4584 	if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4585 		return 0;
4586 
4587 	gen = lru_gen_from_seq(lrugen->min_seq[type]);
4588 
4589 	for (i = MAX_NR_ZONES; i > 0; i--) {
4590 		LIST_HEAD(moved);
4591 		int skipped_zone = 0;
4592 		int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES;
4593 		struct list_head *head = &lrugen->folios[gen][type][zone];
4594 
4595 		while (!list_empty(head)) {
4596 			struct folio *folio = lru_to_folio(head);
4597 			int delta = folio_nr_pages(folio);
4598 
4599 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4600 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4601 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4602 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4603 
4604 			scanned += delta;
4605 
4606 			if (sort_folio(lruvec, folio, sc, tier))
4607 				sorted += delta;
4608 			else if (isolate_folio(lruvec, folio, sc)) {
4609 				list_add(&folio->lru, list);
4610 				isolated += delta;
4611 			} else {
4612 				list_move(&folio->lru, &moved);
4613 				skipped_zone += delta;
4614 			}
4615 
4616 			if (!--remaining || max(isolated, skipped_zone) >= MIN_LRU_BATCH)
4617 				break;
4618 		}
4619 
4620 		if (skipped_zone) {
4621 			list_splice(&moved, head);
4622 			__count_zid_vm_events(PGSCAN_SKIP, zone, skipped_zone);
4623 			skipped += skipped_zone;
4624 		}
4625 
4626 		if (!remaining || isolated >= MIN_LRU_BATCH)
4627 			break;
4628 	}
4629 
4630 	item = PGSCAN_KSWAPD + reclaimer_offset(sc);
4631 	if (!cgroup_reclaim(sc)) {
4632 		__count_vm_events(item, isolated);
4633 		__count_vm_events(PGREFILL, sorted);
4634 	}
4635 	count_memcg_events(memcg, item, isolated);
4636 	count_memcg_events(memcg, PGREFILL, sorted);
4637 	__count_vm_events(PGSCAN_ANON + type, isolated);
4638 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, MAX_LRU_BATCH,
4639 				scanned, skipped, isolated,
4640 				type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4641 	if (type == LRU_GEN_FILE)
4642 		sc->nr.file_taken += isolated;
4643 	/*
4644 	 * There might not be eligible folios due to reclaim_idx. Check the
4645 	 * remaining to prevent livelock if it's not making progress.
4646 	 */
4647 	return isolated || !remaining ? scanned : 0;
4648 }
4649 
4650 static int get_tier_idx(struct lruvec *lruvec, int type)
4651 {
4652 	int tier;
4653 	struct ctrl_pos sp, pv;
4654 
4655 	/*
4656 	 * To leave a margin for fluctuations, use a larger gain factor (2:3).
4657 	 * This value is chosen because any other tier would have at least twice
4658 	 * as many refaults as the first tier.
4659 	 */
4660 	read_ctrl_pos(lruvec, type, 0, 2, &sp);
4661 	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4662 		read_ctrl_pos(lruvec, type, tier, 3, &pv);
4663 		if (!positive_ctrl_err(&sp, &pv))
4664 			break;
4665 	}
4666 
4667 	return tier - 1;
4668 }
4669 
4670 static int get_type_to_scan(struct lruvec *lruvec, int swappiness)
4671 {
4672 	struct ctrl_pos sp, pv;
4673 
4674 	if (swappiness <= MIN_SWAPPINESS + 1)
4675 		return LRU_GEN_FILE;
4676 
4677 	if (swappiness >= MAX_SWAPPINESS)
4678 		return LRU_GEN_ANON;
4679 	/*
4680 	 * Compare the sum of all tiers of anon with that of file to determine
4681 	 * which type to scan.
4682 	 */
4683 	read_ctrl_pos(lruvec, LRU_GEN_ANON, MAX_NR_TIERS, swappiness, &sp);
4684 	read_ctrl_pos(lruvec, LRU_GEN_FILE, MAX_NR_TIERS, MAX_SWAPPINESS - swappiness, &pv);
4685 
4686 	return positive_ctrl_err(&sp, &pv);
4687 }
4688 
4689 static int isolate_folios(unsigned long nr_to_scan, struct lruvec *lruvec,
4690 			  struct scan_control *sc, int swappiness,
4691 			  int *type_scanned, struct list_head *list)
4692 {
4693 	int i;
4694 	int type = get_type_to_scan(lruvec, swappiness);
4695 
4696 	for_each_evictable_type(i, swappiness) {
4697 		int scanned;
4698 		int tier = get_tier_idx(lruvec, type);
4699 
4700 		*type_scanned = type;
4701 
4702 		scanned = scan_folios(nr_to_scan, lruvec, sc, type, tier, list);
4703 		if (scanned)
4704 			return scanned;
4705 
4706 		type = !type;
4707 	}
4708 
4709 	return 0;
4710 }
4711 
4712 static int evict_folios(unsigned long nr_to_scan, struct lruvec *lruvec,
4713 			struct scan_control *sc, int swappiness)
4714 {
4715 	int type;
4716 	int scanned;
4717 	int reclaimed;
4718 	LIST_HEAD(list);
4719 	LIST_HEAD(clean);
4720 	struct folio *folio;
4721 	struct folio *next;
4722 	enum vm_event_item item;
4723 	struct reclaim_stat stat;
4724 	struct lru_gen_mm_walk *walk;
4725 	bool skip_retry = false;
4726 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4727 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4728 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4729 
4730 	spin_lock_irq(&lruvec->lru_lock);
4731 
4732 	scanned = isolate_folios(nr_to_scan, lruvec, sc, swappiness, &type, &list);
4733 
4734 	scanned += try_to_inc_min_seq(lruvec, swappiness);
4735 
4736 	if (evictable_min_seq(lrugen->min_seq, swappiness) + MIN_NR_GENS > lrugen->max_seq)
4737 		scanned = 0;
4738 
4739 	spin_unlock_irq(&lruvec->lru_lock);
4740 
4741 	if (list_empty(&list))
4742 		return scanned;
4743 retry:
4744 	reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false, memcg);
4745 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
4746 	sc->nr_reclaimed += reclaimed;
4747 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
4748 			scanned, reclaimed, &stat, sc->priority,
4749 			type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4750 
4751 	list_for_each_entry_safe_reverse(folio, next, &list, lru) {
4752 		DEFINE_MIN_SEQ(lruvec);
4753 
4754 		if (!folio_evictable(folio)) {
4755 			list_del(&folio->lru);
4756 			folio_putback_lru(folio);
4757 			continue;
4758 		}
4759 
4760 		/* retry folios that may have missed folio_rotate_reclaimable() */
4761 		if (!skip_retry && !folio_test_active(folio) && !folio_mapped(folio) &&
4762 		    !folio_test_dirty(folio) && !folio_test_writeback(folio)) {
4763 			list_move(&folio->lru, &clean);
4764 			continue;
4765 		}
4766 
4767 		/* don't add rejected folios to the oldest generation */
4768 		if (lru_gen_folio_seq(lruvec, folio, false) == min_seq[type])
4769 			set_mask_bits(&folio->flags, LRU_REFS_FLAGS, BIT(PG_active));
4770 	}
4771 
4772 	spin_lock_irq(&lruvec->lru_lock);
4773 
4774 	move_folios_to_lru(lruvec, &list);
4775 
4776 	walk = current->reclaim_state->mm_walk;
4777 	if (walk && walk->batched) {
4778 		walk->lruvec = lruvec;
4779 		reset_batch_size(walk);
4780 	}
4781 
4782 	__mod_lruvec_state(lruvec, PGDEMOTE_KSWAPD + reclaimer_offset(sc),
4783 					stat.nr_demoted);
4784 
4785 	item = PGSTEAL_KSWAPD + reclaimer_offset(sc);
4786 	if (!cgroup_reclaim(sc))
4787 		__count_vm_events(item, reclaimed);
4788 	count_memcg_events(memcg, item, reclaimed);
4789 	__count_vm_events(PGSTEAL_ANON + type, reclaimed);
4790 
4791 	spin_unlock_irq(&lruvec->lru_lock);
4792 
4793 	list_splice_init(&clean, &list);
4794 
4795 	if (!list_empty(&list)) {
4796 		skip_retry = true;
4797 		goto retry;
4798 	}
4799 
4800 	return scanned;
4801 }
4802 
4803 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq,
4804 			     int swappiness, unsigned long *nr_to_scan)
4805 {
4806 	int gen, type, zone;
4807 	unsigned long size = 0;
4808 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4809 	DEFINE_MIN_SEQ(lruvec);
4810 
4811 	*nr_to_scan = 0;
4812 	/* have to run aging, since eviction is not possible anymore */
4813 	if (evictable_min_seq(min_seq, swappiness) + MIN_NR_GENS > max_seq)
4814 		return true;
4815 
4816 	for_each_evictable_type(type, swappiness) {
4817 		unsigned long seq;
4818 
4819 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
4820 			gen = lru_gen_from_seq(seq);
4821 
4822 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
4823 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4824 		}
4825 	}
4826 
4827 	*nr_to_scan = size;
4828 	/* better to run aging even though eviction is still possible */
4829 	return evictable_min_seq(min_seq, swappiness) + MIN_NR_GENS == max_seq;
4830 }
4831 
4832 /*
4833  * For future optimizations:
4834  * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
4835  *    reclaim.
4836  */
4837 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
4838 {
4839 	bool success;
4840 	unsigned long nr_to_scan;
4841 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4842 	DEFINE_MAX_SEQ(lruvec);
4843 
4844 	if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg))
4845 		return -1;
4846 
4847 	success = should_run_aging(lruvec, max_seq, swappiness, &nr_to_scan);
4848 
4849 	/* try to scrape all its memory if this memcg was deleted */
4850 	if (nr_to_scan && !mem_cgroup_online(memcg))
4851 		return nr_to_scan;
4852 
4853 	nr_to_scan = apply_proportional_protection(memcg, sc, nr_to_scan);
4854 
4855 	/* try to get away with not aging at the default priority */
4856 	if (!success || sc->priority == DEF_PRIORITY)
4857 		return nr_to_scan >> sc->priority;
4858 
4859 	/* stop scanning this lruvec as it's low on cold folios */
4860 	return try_to_inc_max_seq(lruvec, max_seq, swappiness, false) ? -1 : 0;
4861 }
4862 
4863 static bool should_abort_scan(struct lruvec *lruvec, struct scan_control *sc)
4864 {
4865 	int i;
4866 	enum zone_watermarks mark;
4867 
4868 	/* don't abort memcg reclaim to ensure fairness */
4869 	if (!root_reclaim(sc))
4870 		return false;
4871 
4872 	if (sc->nr_reclaimed >= max(sc->nr_to_reclaim, compact_gap(sc->order)))
4873 		return true;
4874 
4875 	/* check the order to exclude compaction-induced reclaim */
4876 	if (!current_is_kswapd() || sc->order)
4877 		return false;
4878 
4879 	mark = sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ?
4880 	       WMARK_PROMO : WMARK_HIGH;
4881 
4882 	for (i = 0; i <= sc->reclaim_idx; i++) {
4883 		struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i;
4884 		unsigned long size = wmark_pages(zone, mark) + MIN_LRU_BATCH;
4885 
4886 		if (managed_zone(zone) && !zone_watermark_ok(zone, 0, size, sc->reclaim_idx, 0))
4887 			return false;
4888 	}
4889 
4890 	/* kswapd should abort if all eligible zones are safe */
4891 	return true;
4892 }
4893 
4894 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4895 {
4896 	long nr_to_scan;
4897 	unsigned long scanned = 0;
4898 	int swappiness = get_swappiness(lruvec, sc);
4899 
4900 	while (true) {
4901 		int delta;
4902 
4903 		nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness);
4904 		if (nr_to_scan <= 0)
4905 			break;
4906 
4907 		delta = evict_folios(nr_to_scan, lruvec, sc, swappiness);
4908 		if (!delta)
4909 			break;
4910 
4911 		scanned += delta;
4912 		if (scanned >= nr_to_scan)
4913 			break;
4914 
4915 		if (should_abort_scan(lruvec, sc))
4916 			break;
4917 
4918 		cond_resched();
4919 	}
4920 
4921 	/*
4922 	 * If too many file cache in the coldest generation can't be evicted
4923 	 * due to being dirty, wake up the flusher.
4924 	 */
4925 	if (sc->nr.unqueued_dirty && sc->nr.unqueued_dirty == sc->nr.file_taken)
4926 		wakeup_flusher_threads(WB_REASON_VMSCAN);
4927 
4928 	/* whether this lruvec should be rotated */
4929 	return nr_to_scan < 0;
4930 }
4931 
4932 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc)
4933 {
4934 	bool success;
4935 	unsigned long scanned = sc->nr_scanned;
4936 	unsigned long reclaimed = sc->nr_reclaimed;
4937 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4938 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4939 
4940 	/* lru_gen_age_node() called mem_cgroup_calculate_protection() */
4941 	if (mem_cgroup_below_min(NULL, memcg))
4942 		return MEMCG_LRU_YOUNG;
4943 
4944 	if (mem_cgroup_below_low(NULL, memcg)) {
4945 		/* see the comment on MEMCG_NR_GENS */
4946 		if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL)
4947 			return MEMCG_LRU_TAIL;
4948 
4949 		memcg_memory_event(memcg, MEMCG_LOW);
4950 	}
4951 
4952 	success = try_to_shrink_lruvec(lruvec, sc);
4953 
4954 	shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority);
4955 
4956 	if (!sc->proactive)
4957 		vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned,
4958 			   sc->nr_reclaimed - reclaimed);
4959 
4960 	flush_reclaim_state(sc);
4961 
4962 	if (success && mem_cgroup_online(memcg))
4963 		return MEMCG_LRU_YOUNG;
4964 
4965 	if (!success && lruvec_is_sizable(lruvec, sc))
4966 		return 0;
4967 
4968 	/* one retry if offlined or too small */
4969 	return READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL ?
4970 	       MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG;
4971 }
4972 
4973 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
4974 {
4975 	int op;
4976 	int gen;
4977 	int bin;
4978 	int first_bin;
4979 	struct lruvec *lruvec;
4980 	struct lru_gen_folio *lrugen;
4981 	struct mem_cgroup *memcg;
4982 	struct hlist_nulls_node *pos;
4983 
4984 	gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq));
4985 	bin = first_bin = get_random_u32_below(MEMCG_NR_BINS);
4986 restart:
4987 	op = 0;
4988 	memcg = NULL;
4989 
4990 	rcu_read_lock();
4991 
4992 	hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) {
4993 		if (op) {
4994 			lru_gen_rotate_memcg(lruvec, op);
4995 			op = 0;
4996 		}
4997 
4998 		mem_cgroup_put(memcg);
4999 		memcg = NULL;
5000 
5001 		if (gen != READ_ONCE(lrugen->gen))
5002 			continue;
5003 
5004 		lruvec = container_of(lrugen, struct lruvec, lrugen);
5005 		memcg = lruvec_memcg(lruvec);
5006 
5007 		if (!mem_cgroup_tryget(memcg)) {
5008 			lru_gen_release_memcg(memcg);
5009 			memcg = NULL;
5010 			continue;
5011 		}
5012 
5013 		rcu_read_unlock();
5014 
5015 		op = shrink_one(lruvec, sc);
5016 
5017 		rcu_read_lock();
5018 
5019 		if (should_abort_scan(lruvec, sc))
5020 			break;
5021 	}
5022 
5023 	rcu_read_unlock();
5024 
5025 	if (op)
5026 		lru_gen_rotate_memcg(lruvec, op);
5027 
5028 	mem_cgroup_put(memcg);
5029 
5030 	if (!is_a_nulls(pos))
5031 		return;
5032 
5033 	/* restart if raced with lru_gen_rotate_memcg() */
5034 	if (gen != get_nulls_value(pos))
5035 		goto restart;
5036 
5037 	/* try the rest of the bins of the current generation */
5038 	bin = get_memcg_bin(bin + 1);
5039 	if (bin != first_bin)
5040 		goto restart;
5041 }
5042 
5043 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5044 {
5045 	struct blk_plug plug;
5046 
5047 	VM_WARN_ON_ONCE(root_reclaim(sc));
5048 	VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap);
5049 
5050 	lru_add_drain();
5051 
5052 	blk_start_plug(&plug);
5053 
5054 	set_mm_walk(NULL, sc->proactive);
5055 
5056 	if (try_to_shrink_lruvec(lruvec, sc))
5057 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG);
5058 
5059 	clear_mm_walk();
5060 
5061 	blk_finish_plug(&plug);
5062 }
5063 
5064 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5065 {
5066 	struct blk_plug plug;
5067 	unsigned long reclaimed = sc->nr_reclaimed;
5068 
5069 	VM_WARN_ON_ONCE(!root_reclaim(sc));
5070 
5071 	/*
5072 	 * Unmapped clean folios are already prioritized. Scanning for more of
5073 	 * them is likely futile and can cause high reclaim latency when there
5074 	 * is a large number of memcgs.
5075 	 */
5076 	if (!sc->may_writepage || !sc->may_unmap)
5077 		goto done;
5078 
5079 	lru_add_drain();
5080 
5081 	blk_start_plug(&plug);
5082 
5083 	set_mm_walk(pgdat, sc->proactive);
5084 
5085 	set_initial_priority(pgdat, sc);
5086 
5087 	if (current_is_kswapd())
5088 		sc->nr_reclaimed = 0;
5089 
5090 	if (mem_cgroup_disabled())
5091 		shrink_one(&pgdat->__lruvec, sc);
5092 	else
5093 		shrink_many(pgdat, sc);
5094 
5095 	if (current_is_kswapd())
5096 		sc->nr_reclaimed += reclaimed;
5097 
5098 	clear_mm_walk();
5099 
5100 	blk_finish_plug(&plug);
5101 done:
5102 	if (sc->nr_reclaimed > reclaimed)
5103 		pgdat->kswapd_failures = 0;
5104 }
5105 
5106 /******************************************************************************
5107  *                          state change
5108  ******************************************************************************/
5109 
5110 static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
5111 {
5112 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5113 
5114 	if (lrugen->enabled) {
5115 		enum lru_list lru;
5116 
5117 		for_each_evictable_lru(lru) {
5118 			if (!list_empty(&lruvec->lists[lru]))
5119 				return false;
5120 		}
5121 	} else {
5122 		int gen, type, zone;
5123 
5124 		for_each_gen_type_zone(gen, type, zone) {
5125 			if (!list_empty(&lrugen->folios[gen][type][zone]))
5126 				return false;
5127 		}
5128 	}
5129 
5130 	return true;
5131 }
5132 
5133 static bool fill_evictable(struct lruvec *lruvec)
5134 {
5135 	enum lru_list lru;
5136 	int remaining = MAX_LRU_BATCH;
5137 
5138 	for_each_evictable_lru(lru) {
5139 		int type = is_file_lru(lru);
5140 		bool active = is_active_lru(lru);
5141 		struct list_head *head = &lruvec->lists[lru];
5142 
5143 		while (!list_empty(head)) {
5144 			bool success;
5145 			struct folio *folio = lru_to_folio(head);
5146 
5147 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5148 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
5149 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5150 			VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
5151 
5152 			lruvec_del_folio(lruvec, folio);
5153 			success = lru_gen_add_folio(lruvec, folio, false);
5154 			VM_WARN_ON_ONCE(!success);
5155 
5156 			if (!--remaining)
5157 				return false;
5158 		}
5159 	}
5160 
5161 	return true;
5162 }
5163 
5164 static bool drain_evictable(struct lruvec *lruvec)
5165 {
5166 	int gen, type, zone;
5167 	int remaining = MAX_LRU_BATCH;
5168 
5169 	for_each_gen_type_zone(gen, type, zone) {
5170 		struct list_head *head = &lruvec->lrugen.folios[gen][type][zone];
5171 
5172 		while (!list_empty(head)) {
5173 			bool success;
5174 			struct folio *folio = lru_to_folio(head);
5175 
5176 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5177 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5178 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5179 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5180 
5181 			success = lru_gen_del_folio(lruvec, folio, false);
5182 			VM_WARN_ON_ONCE(!success);
5183 			lruvec_add_folio(lruvec, folio);
5184 
5185 			if (!--remaining)
5186 				return false;
5187 		}
5188 	}
5189 
5190 	return true;
5191 }
5192 
5193 static void lru_gen_change_state(bool enabled)
5194 {
5195 	static DEFINE_MUTEX(state_mutex);
5196 
5197 	struct mem_cgroup *memcg;
5198 
5199 	cgroup_lock();
5200 	cpus_read_lock();
5201 	get_online_mems();
5202 	mutex_lock(&state_mutex);
5203 
5204 	if (enabled == lru_gen_enabled())
5205 		goto unlock;
5206 
5207 	if (enabled)
5208 		static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5209 	else
5210 		static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5211 
5212 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5213 	do {
5214 		int nid;
5215 
5216 		for_each_node(nid) {
5217 			struct lruvec *lruvec = get_lruvec(memcg, nid);
5218 
5219 			spin_lock_irq(&lruvec->lru_lock);
5220 
5221 			VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5222 			VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5223 
5224 			lruvec->lrugen.enabled = enabled;
5225 
5226 			while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5227 				spin_unlock_irq(&lruvec->lru_lock);
5228 				cond_resched();
5229 				spin_lock_irq(&lruvec->lru_lock);
5230 			}
5231 
5232 			spin_unlock_irq(&lruvec->lru_lock);
5233 		}
5234 
5235 		cond_resched();
5236 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5237 unlock:
5238 	mutex_unlock(&state_mutex);
5239 	put_online_mems();
5240 	cpus_read_unlock();
5241 	cgroup_unlock();
5242 }
5243 
5244 /******************************************************************************
5245  *                          sysfs interface
5246  ******************************************************************************/
5247 
5248 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5249 {
5250 	return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5251 }
5252 
5253 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5254 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr,
5255 				const char *buf, size_t len)
5256 {
5257 	unsigned int msecs;
5258 
5259 	if (kstrtouint(buf, 0, &msecs))
5260 		return -EINVAL;
5261 
5262 	WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5263 
5264 	return len;
5265 }
5266 
5267 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms);
5268 
5269 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5270 {
5271 	unsigned int caps = 0;
5272 
5273 	if (get_cap(LRU_GEN_CORE))
5274 		caps |= BIT(LRU_GEN_CORE);
5275 
5276 	if (should_walk_mmu())
5277 		caps |= BIT(LRU_GEN_MM_WALK);
5278 
5279 	if (should_clear_pmd_young())
5280 		caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5281 
5282 	return sysfs_emit(buf, "0x%04x\n", caps);
5283 }
5284 
5285 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5286 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
5287 			     const char *buf, size_t len)
5288 {
5289 	int i;
5290 	unsigned int caps;
5291 
5292 	if (tolower(*buf) == 'n')
5293 		caps = 0;
5294 	else if (tolower(*buf) == 'y')
5295 		caps = -1;
5296 	else if (kstrtouint(buf, 0, &caps))
5297 		return -EINVAL;
5298 
5299 	for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5300 		bool enabled = caps & BIT(i);
5301 
5302 		if (i == LRU_GEN_CORE)
5303 			lru_gen_change_state(enabled);
5304 		else if (enabled)
5305 			static_branch_enable(&lru_gen_caps[i]);
5306 		else
5307 			static_branch_disable(&lru_gen_caps[i]);
5308 	}
5309 
5310 	return len;
5311 }
5312 
5313 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled);
5314 
5315 static struct attribute *lru_gen_attrs[] = {
5316 	&lru_gen_min_ttl_attr.attr,
5317 	&lru_gen_enabled_attr.attr,
5318 	NULL
5319 };
5320 
5321 static const struct attribute_group lru_gen_attr_group = {
5322 	.name = "lru_gen",
5323 	.attrs = lru_gen_attrs,
5324 };
5325 
5326 /******************************************************************************
5327  *                          debugfs interface
5328  ******************************************************************************/
5329 
5330 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5331 {
5332 	struct mem_cgroup *memcg;
5333 	loff_t nr_to_skip = *pos;
5334 
5335 	m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5336 	if (!m->private)
5337 		return ERR_PTR(-ENOMEM);
5338 
5339 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5340 	do {
5341 		int nid;
5342 
5343 		for_each_node_state(nid, N_MEMORY) {
5344 			if (!nr_to_skip--)
5345 				return get_lruvec(memcg, nid);
5346 		}
5347 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5348 
5349 	return NULL;
5350 }
5351 
5352 static void lru_gen_seq_stop(struct seq_file *m, void *v)
5353 {
5354 	if (!IS_ERR_OR_NULL(v))
5355 		mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5356 
5357 	kvfree(m->private);
5358 	m->private = NULL;
5359 }
5360 
5361 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5362 {
5363 	int nid = lruvec_pgdat(v)->node_id;
5364 	struct mem_cgroup *memcg = lruvec_memcg(v);
5365 
5366 	++*pos;
5367 
5368 	nid = next_memory_node(nid);
5369 	if (nid == MAX_NUMNODES) {
5370 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
5371 		if (!memcg)
5372 			return NULL;
5373 
5374 		nid = first_memory_node;
5375 	}
5376 
5377 	return get_lruvec(memcg, nid);
5378 }
5379 
5380 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5381 				  unsigned long max_seq, unsigned long *min_seq,
5382 				  unsigned long seq)
5383 {
5384 	int i;
5385 	int type, tier;
5386 	int hist = lru_hist_from_seq(seq);
5387 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5388 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5389 
5390 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5391 		seq_printf(m, "            %10d", tier);
5392 		for (type = 0; type < ANON_AND_FILE; type++) {
5393 			const char *s = "xxx";
5394 			unsigned long n[3] = {};
5395 
5396 			if (seq == max_seq) {
5397 				s = "RTx";
5398 				n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5399 				n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5400 			} else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5401 				s = "rep";
5402 				n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5403 				n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5404 				n[2] = READ_ONCE(lrugen->protected[hist][type][tier]);
5405 			}
5406 
5407 			for (i = 0; i < 3; i++)
5408 				seq_printf(m, " %10lu%c", n[i], s[i]);
5409 		}
5410 		seq_putc(m, '\n');
5411 	}
5412 
5413 	if (!mm_state)
5414 		return;
5415 
5416 	seq_puts(m, "                      ");
5417 	for (i = 0; i < NR_MM_STATS; i++) {
5418 		const char *s = "xxxx";
5419 		unsigned long n = 0;
5420 
5421 		if (seq == max_seq && NR_HIST_GENS == 1) {
5422 			s = "TYFA";
5423 			n = READ_ONCE(mm_state->stats[hist][i]);
5424 		} else if (seq != max_seq && NR_HIST_GENS > 1) {
5425 			s = "tyfa";
5426 			n = READ_ONCE(mm_state->stats[hist][i]);
5427 		}
5428 
5429 		seq_printf(m, " %10lu%c", n, s[i]);
5430 	}
5431 	seq_putc(m, '\n');
5432 }
5433 
5434 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5435 static int lru_gen_seq_show(struct seq_file *m, void *v)
5436 {
5437 	unsigned long seq;
5438 	bool full = debugfs_get_aux_num(m->file);
5439 	struct lruvec *lruvec = v;
5440 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5441 	int nid = lruvec_pgdat(lruvec)->node_id;
5442 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5443 	DEFINE_MAX_SEQ(lruvec);
5444 	DEFINE_MIN_SEQ(lruvec);
5445 
5446 	if (nid == first_memory_node) {
5447 		const char *path = memcg ? m->private : "";
5448 
5449 #ifdef CONFIG_MEMCG
5450 		if (memcg)
5451 			cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5452 #endif
5453 		seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5454 	}
5455 
5456 	seq_printf(m, " node %5d\n", nid);
5457 
5458 	if (!full)
5459 		seq = evictable_min_seq(min_seq, MAX_SWAPPINESS / 2);
5460 	else if (max_seq >= MAX_NR_GENS)
5461 		seq = max_seq - MAX_NR_GENS + 1;
5462 	else
5463 		seq = 0;
5464 
5465 	for (; seq <= max_seq; seq++) {
5466 		int type, zone;
5467 		int gen = lru_gen_from_seq(seq);
5468 		unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5469 
5470 		seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5471 
5472 		for (type = 0; type < ANON_AND_FILE; type++) {
5473 			unsigned long size = 0;
5474 			char mark = full && seq < min_seq[type] ? 'x' : ' ';
5475 
5476 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
5477 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5478 
5479 			seq_printf(m, " %10lu%c", size, mark);
5480 		}
5481 
5482 		seq_putc(m, '\n');
5483 
5484 		if (full)
5485 			lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5486 	}
5487 
5488 	return 0;
5489 }
5490 
5491 static const struct seq_operations lru_gen_seq_ops = {
5492 	.start = lru_gen_seq_start,
5493 	.stop = lru_gen_seq_stop,
5494 	.next = lru_gen_seq_next,
5495 	.show = lru_gen_seq_show,
5496 };
5497 
5498 static int run_aging(struct lruvec *lruvec, unsigned long seq,
5499 		     int swappiness, bool force_scan)
5500 {
5501 	DEFINE_MAX_SEQ(lruvec);
5502 
5503 	if (seq > max_seq)
5504 		return -EINVAL;
5505 
5506 	return try_to_inc_max_seq(lruvec, max_seq, swappiness, force_scan) ? 0 : -EEXIST;
5507 }
5508 
5509 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5510 			int swappiness, unsigned long nr_to_reclaim)
5511 {
5512 	DEFINE_MAX_SEQ(lruvec);
5513 
5514 	if (seq + MIN_NR_GENS > max_seq)
5515 		return -EINVAL;
5516 
5517 	sc->nr_reclaimed = 0;
5518 
5519 	while (!signal_pending(current)) {
5520 		DEFINE_MIN_SEQ(lruvec);
5521 
5522 		if (seq < evictable_min_seq(min_seq, swappiness))
5523 			return 0;
5524 
5525 		if (sc->nr_reclaimed >= nr_to_reclaim)
5526 			return 0;
5527 
5528 		if (!evict_folios(nr_to_reclaim - sc->nr_reclaimed, lruvec, sc,
5529 				  swappiness))
5530 			return 0;
5531 
5532 		cond_resched();
5533 	}
5534 
5535 	return -EINTR;
5536 }
5537 
5538 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
5539 		   struct scan_control *sc, int swappiness, unsigned long opt)
5540 {
5541 	struct lruvec *lruvec;
5542 	int err = -EINVAL;
5543 	struct mem_cgroup *memcg = NULL;
5544 
5545 	if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
5546 		return -EINVAL;
5547 
5548 	if (!mem_cgroup_disabled()) {
5549 		rcu_read_lock();
5550 
5551 		memcg = mem_cgroup_from_id(memcg_id);
5552 		if (!mem_cgroup_tryget(memcg))
5553 			memcg = NULL;
5554 
5555 		rcu_read_unlock();
5556 
5557 		if (!memcg)
5558 			return -EINVAL;
5559 	}
5560 
5561 	if (memcg_id != mem_cgroup_id(memcg))
5562 		goto done;
5563 
5564 	lruvec = get_lruvec(memcg, nid);
5565 
5566 	if (swappiness < MIN_SWAPPINESS)
5567 		swappiness = get_swappiness(lruvec, sc);
5568 	else if (swappiness > SWAPPINESS_ANON_ONLY)
5569 		goto done;
5570 
5571 	switch (cmd) {
5572 	case '+':
5573 		err = run_aging(lruvec, seq, swappiness, opt);
5574 		break;
5575 	case '-':
5576 		err = run_eviction(lruvec, seq, sc, swappiness, opt);
5577 		break;
5578 	}
5579 done:
5580 	mem_cgroup_put(memcg);
5581 
5582 	return err;
5583 }
5584 
5585 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5586 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
5587 				 size_t len, loff_t *pos)
5588 {
5589 	void *buf;
5590 	char *cur, *next;
5591 	unsigned int flags;
5592 	struct blk_plug plug;
5593 	int err = -EINVAL;
5594 	struct scan_control sc = {
5595 		.may_writepage = true,
5596 		.may_unmap = true,
5597 		.may_swap = true,
5598 		.reclaim_idx = MAX_NR_ZONES - 1,
5599 		.gfp_mask = GFP_KERNEL,
5600 	};
5601 
5602 	buf = kvmalloc(len + 1, GFP_KERNEL);
5603 	if (!buf)
5604 		return -ENOMEM;
5605 
5606 	if (copy_from_user(buf, src, len)) {
5607 		kvfree(buf);
5608 		return -EFAULT;
5609 	}
5610 
5611 	set_task_reclaim_state(current, &sc.reclaim_state);
5612 	flags = memalloc_noreclaim_save();
5613 	blk_start_plug(&plug);
5614 	if (!set_mm_walk(NULL, true)) {
5615 		err = -ENOMEM;
5616 		goto done;
5617 	}
5618 
5619 	next = buf;
5620 	next[len] = '\0';
5621 
5622 	while ((cur = strsep(&next, ",;\n"))) {
5623 		int n;
5624 		int end;
5625 		char cmd, swap_string[5];
5626 		unsigned int memcg_id;
5627 		unsigned int nid;
5628 		unsigned long seq;
5629 		unsigned int swappiness;
5630 		unsigned long opt = -1;
5631 
5632 		cur = skip_spaces(cur);
5633 		if (!*cur)
5634 			continue;
5635 
5636 		n = sscanf(cur, "%c %u %u %lu %n %4s %n %lu %n", &cmd, &memcg_id, &nid,
5637 			   &seq, &end, swap_string, &end, &opt, &end);
5638 		if (n < 4 || cur[end]) {
5639 			err = -EINVAL;
5640 			break;
5641 		}
5642 
5643 		if (n == 4) {
5644 			swappiness = -1;
5645 		} else if (!strcmp("max", swap_string)) {
5646 			/* set by userspace for anonymous memory only */
5647 			swappiness = SWAPPINESS_ANON_ONLY;
5648 		} else {
5649 			err = kstrtouint(swap_string, 0, &swappiness);
5650 			if (err)
5651 				break;
5652 		}
5653 
5654 		err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
5655 		if (err)
5656 			break;
5657 	}
5658 done:
5659 	clear_mm_walk();
5660 	blk_finish_plug(&plug);
5661 	memalloc_noreclaim_restore(flags);
5662 	set_task_reclaim_state(current, NULL);
5663 
5664 	kvfree(buf);
5665 
5666 	return err ? : len;
5667 }
5668 
5669 static int lru_gen_seq_open(struct inode *inode, struct file *file)
5670 {
5671 	return seq_open(file, &lru_gen_seq_ops);
5672 }
5673 
5674 static const struct file_operations lru_gen_rw_fops = {
5675 	.open = lru_gen_seq_open,
5676 	.read = seq_read,
5677 	.write = lru_gen_seq_write,
5678 	.llseek = seq_lseek,
5679 	.release = seq_release,
5680 };
5681 
5682 static const struct file_operations lru_gen_ro_fops = {
5683 	.open = lru_gen_seq_open,
5684 	.read = seq_read,
5685 	.llseek = seq_lseek,
5686 	.release = seq_release,
5687 };
5688 
5689 /******************************************************************************
5690  *                          initialization
5691  ******************************************************************************/
5692 
5693 void lru_gen_init_pgdat(struct pglist_data *pgdat)
5694 {
5695 	int i, j;
5696 
5697 	spin_lock_init(&pgdat->memcg_lru.lock);
5698 
5699 	for (i = 0; i < MEMCG_NR_GENS; i++) {
5700 		for (j = 0; j < MEMCG_NR_BINS; j++)
5701 			INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i);
5702 	}
5703 }
5704 
5705 void lru_gen_init_lruvec(struct lruvec *lruvec)
5706 {
5707 	int i;
5708 	int gen, type, zone;
5709 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5710 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5711 
5712 	lrugen->max_seq = MIN_NR_GENS + 1;
5713 	lrugen->enabled = lru_gen_enabled();
5714 
5715 	for (i = 0; i <= MIN_NR_GENS + 1; i++)
5716 		lrugen->timestamps[i] = jiffies;
5717 
5718 	for_each_gen_type_zone(gen, type, zone)
5719 		INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]);
5720 
5721 	if (mm_state)
5722 		mm_state->seq = MIN_NR_GENS;
5723 }
5724 
5725 #ifdef CONFIG_MEMCG
5726 
5727 void lru_gen_init_memcg(struct mem_cgroup *memcg)
5728 {
5729 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
5730 
5731 	if (!mm_list)
5732 		return;
5733 
5734 	INIT_LIST_HEAD(&mm_list->fifo);
5735 	spin_lock_init(&mm_list->lock);
5736 }
5737 
5738 void lru_gen_exit_memcg(struct mem_cgroup *memcg)
5739 {
5740 	int i;
5741 	int nid;
5742 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
5743 
5744 	VM_WARN_ON_ONCE(mm_list && !list_empty(&mm_list->fifo));
5745 
5746 	for_each_node(nid) {
5747 		struct lruvec *lruvec = get_lruvec(memcg, nid);
5748 		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5749 
5750 		VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
5751 					   sizeof(lruvec->lrugen.nr_pages)));
5752 
5753 		lruvec->lrugen.list.next = LIST_POISON1;
5754 
5755 		if (!mm_state)
5756 			continue;
5757 
5758 		for (i = 0; i < NR_BLOOM_FILTERS; i++) {
5759 			bitmap_free(mm_state->filters[i]);
5760 			mm_state->filters[i] = NULL;
5761 		}
5762 	}
5763 }
5764 
5765 #endif /* CONFIG_MEMCG */
5766 
5767 static int __init init_lru_gen(void)
5768 {
5769 	BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
5770 	BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
5771 
5772 	if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
5773 		pr_err("lru_gen: failed to create sysfs group\n");
5774 
5775 	debugfs_create_file_aux_num("lru_gen", 0644, NULL, NULL, 1,
5776 				    &lru_gen_rw_fops);
5777 	debugfs_create_file_aux_num("lru_gen_full", 0444, NULL, NULL, 0,
5778 				    &lru_gen_ro_fops);
5779 
5780 	return 0;
5781 };
5782 late_initcall(init_lru_gen);
5783 
5784 #else /* !CONFIG_LRU_GEN */
5785 
5786 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
5787 {
5788 	BUILD_BUG();
5789 }
5790 
5791 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5792 {
5793 	BUILD_BUG();
5794 }
5795 
5796 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5797 {
5798 	BUILD_BUG();
5799 }
5800 
5801 #endif /* CONFIG_LRU_GEN */
5802 
5803 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5804 {
5805 	unsigned long nr[NR_LRU_LISTS];
5806 	unsigned long targets[NR_LRU_LISTS];
5807 	unsigned long nr_to_scan;
5808 	enum lru_list lru;
5809 	unsigned long nr_reclaimed = 0;
5810 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
5811 	bool proportional_reclaim;
5812 	struct blk_plug plug;
5813 
5814 	if (lru_gen_enabled() && !root_reclaim(sc)) {
5815 		lru_gen_shrink_lruvec(lruvec, sc);
5816 		return;
5817 	}
5818 
5819 	get_scan_count(lruvec, sc, nr);
5820 
5821 	/* Record the original scan target for proportional adjustments later */
5822 	memcpy(targets, nr, sizeof(nr));
5823 
5824 	/*
5825 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
5826 	 * event that can occur when there is little memory pressure e.g.
5827 	 * multiple streaming readers/writers. Hence, we do not abort scanning
5828 	 * when the requested number of pages are reclaimed when scanning at
5829 	 * DEF_PRIORITY on the assumption that the fact we are direct
5830 	 * reclaiming implies that kswapd is not keeping up and it is best to
5831 	 * do a batch of work at once. For memcg reclaim one check is made to
5832 	 * abort proportional reclaim if either the file or anon lru has already
5833 	 * dropped to zero at the first pass.
5834 	 */
5835 	proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
5836 				sc->priority == DEF_PRIORITY);
5837 
5838 	blk_start_plug(&plug);
5839 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
5840 					nr[LRU_INACTIVE_FILE]) {
5841 		unsigned long nr_anon, nr_file, percentage;
5842 		unsigned long nr_scanned;
5843 
5844 		for_each_evictable_lru(lru) {
5845 			if (nr[lru]) {
5846 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
5847 				nr[lru] -= nr_to_scan;
5848 
5849 				nr_reclaimed += shrink_list(lru, nr_to_scan,
5850 							    lruvec, sc);
5851 			}
5852 		}
5853 
5854 		cond_resched();
5855 
5856 		if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
5857 			continue;
5858 
5859 		/*
5860 		 * For kswapd and memcg, reclaim at least the number of pages
5861 		 * requested. Ensure that the anon and file LRUs are scanned
5862 		 * proportionally what was requested by get_scan_count(). We
5863 		 * stop reclaiming one LRU and reduce the amount scanning
5864 		 * proportional to the original scan target.
5865 		 */
5866 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
5867 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
5868 
5869 		/*
5870 		 * It's just vindictive to attack the larger once the smaller
5871 		 * has gone to zero.  And given the way we stop scanning the
5872 		 * smaller below, this makes sure that we only make one nudge
5873 		 * towards proportionality once we've got nr_to_reclaim.
5874 		 */
5875 		if (!nr_file || !nr_anon)
5876 			break;
5877 
5878 		if (nr_file > nr_anon) {
5879 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
5880 						targets[LRU_ACTIVE_ANON] + 1;
5881 			lru = LRU_BASE;
5882 			percentage = nr_anon * 100 / scan_target;
5883 		} else {
5884 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
5885 						targets[LRU_ACTIVE_FILE] + 1;
5886 			lru = LRU_FILE;
5887 			percentage = nr_file * 100 / scan_target;
5888 		}
5889 
5890 		/* Stop scanning the smaller of the LRU */
5891 		nr[lru] = 0;
5892 		nr[lru + LRU_ACTIVE] = 0;
5893 
5894 		/*
5895 		 * Recalculate the other LRU scan count based on its original
5896 		 * scan target and the percentage scanning already complete
5897 		 */
5898 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
5899 		nr_scanned = targets[lru] - nr[lru];
5900 		nr[lru] = targets[lru] * (100 - percentage) / 100;
5901 		nr[lru] -= min(nr[lru], nr_scanned);
5902 
5903 		lru += LRU_ACTIVE;
5904 		nr_scanned = targets[lru] - nr[lru];
5905 		nr[lru] = targets[lru] * (100 - percentage) / 100;
5906 		nr[lru] -= min(nr[lru], nr_scanned);
5907 	}
5908 	blk_finish_plug(&plug);
5909 	sc->nr_reclaimed += nr_reclaimed;
5910 
5911 	/*
5912 	 * Even if we did not try to evict anon pages at all, we want to
5913 	 * rebalance the anon lru active/inactive ratio.
5914 	 */
5915 	if (can_age_anon_pages(lruvec, sc) &&
5916 	    inactive_is_low(lruvec, LRU_INACTIVE_ANON))
5917 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
5918 				   sc, LRU_ACTIVE_ANON);
5919 }
5920 
5921 /* Use reclaim/compaction for costly allocs or under memory pressure */
5922 static bool in_reclaim_compaction(struct scan_control *sc)
5923 {
5924 	if (gfp_compaction_allowed(sc->gfp_mask) && sc->order &&
5925 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
5926 			 sc->priority < DEF_PRIORITY - 2))
5927 		return true;
5928 
5929 	return false;
5930 }
5931 
5932 /*
5933  * Reclaim/compaction is used for high-order allocation requests. It reclaims
5934  * order-0 pages before compacting the zone. should_continue_reclaim() returns
5935  * true if more pages should be reclaimed such that when the page allocator
5936  * calls try_to_compact_pages() that it will have enough free pages to succeed.
5937  * It will give up earlier than that if there is difficulty reclaiming pages.
5938  */
5939 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
5940 					unsigned long nr_reclaimed,
5941 					struct scan_control *sc)
5942 {
5943 	unsigned long pages_for_compaction;
5944 	unsigned long inactive_lru_pages;
5945 	int z;
5946 	struct zone *zone;
5947 
5948 	/* If not in reclaim/compaction mode, stop */
5949 	if (!in_reclaim_compaction(sc))
5950 		return false;
5951 
5952 	/*
5953 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
5954 	 * number of pages that were scanned. This will return to the caller
5955 	 * with the risk reclaim/compaction and the resulting allocation attempt
5956 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
5957 	 * allocations through requiring that the full LRU list has been scanned
5958 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
5959 	 * scan, but that approximation was wrong, and there were corner cases
5960 	 * where always a non-zero amount of pages were scanned.
5961 	 */
5962 	if (!nr_reclaimed)
5963 		return false;
5964 
5965 	/* If compaction would go ahead or the allocation would succeed, stop */
5966 	for_each_managed_zone_pgdat(zone, pgdat, z, sc->reclaim_idx) {
5967 		unsigned long watermark = min_wmark_pages(zone);
5968 
5969 		/* Allocation can already succeed, nothing to do */
5970 		if (zone_watermark_ok(zone, sc->order, watermark,
5971 				      sc->reclaim_idx, 0))
5972 			return false;
5973 
5974 		if (compaction_suitable(zone, sc->order, watermark,
5975 					sc->reclaim_idx))
5976 			return false;
5977 	}
5978 
5979 	/*
5980 	 * If we have not reclaimed enough pages for compaction and the
5981 	 * inactive lists are large enough, continue reclaiming
5982 	 */
5983 	pages_for_compaction = compact_gap(sc->order);
5984 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
5985 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
5986 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
5987 
5988 	return inactive_lru_pages > pages_for_compaction;
5989 }
5990 
5991 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
5992 {
5993 	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
5994 	struct mem_cgroup_reclaim_cookie reclaim = {
5995 		.pgdat = pgdat,
5996 	};
5997 	struct mem_cgroup_reclaim_cookie *partial = &reclaim;
5998 	struct mem_cgroup *memcg;
5999 
6000 	/*
6001 	 * In most cases, direct reclaimers can do partial walks
6002 	 * through the cgroup tree, using an iterator state that
6003 	 * persists across invocations. This strikes a balance between
6004 	 * fairness and allocation latency.
6005 	 *
6006 	 * For kswapd, reliable forward progress is more important
6007 	 * than a quick return to idle. Always do full walks.
6008 	 */
6009 	if (current_is_kswapd() || sc->memcg_full_walk)
6010 		partial = NULL;
6011 
6012 	memcg = mem_cgroup_iter(target_memcg, NULL, partial);
6013 	do {
6014 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6015 		unsigned long reclaimed;
6016 		unsigned long scanned;
6017 
6018 		/*
6019 		 * This loop can become CPU-bound when target memcgs
6020 		 * aren't eligible for reclaim - either because they
6021 		 * don't have any reclaimable pages, or because their
6022 		 * memory is explicitly protected. Avoid soft lockups.
6023 		 */
6024 		cond_resched();
6025 
6026 		mem_cgroup_calculate_protection(target_memcg, memcg);
6027 
6028 		if (mem_cgroup_below_min(target_memcg, memcg)) {
6029 			/*
6030 			 * Hard protection.
6031 			 * If there is no reclaimable memory, OOM.
6032 			 */
6033 			continue;
6034 		} else if (mem_cgroup_below_low(target_memcg, memcg)) {
6035 			/*
6036 			 * Soft protection.
6037 			 * Respect the protection only as long as
6038 			 * there is an unprotected supply
6039 			 * of reclaimable memory from other cgroups.
6040 			 */
6041 			if (!sc->memcg_low_reclaim) {
6042 				sc->memcg_low_skipped = 1;
6043 				continue;
6044 			}
6045 			memcg_memory_event(memcg, MEMCG_LOW);
6046 		}
6047 
6048 		reclaimed = sc->nr_reclaimed;
6049 		scanned = sc->nr_scanned;
6050 
6051 		shrink_lruvec(lruvec, sc);
6052 
6053 		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
6054 			    sc->priority);
6055 
6056 		/* Record the group's reclaim efficiency */
6057 		if (!sc->proactive)
6058 			vmpressure(sc->gfp_mask, memcg, false,
6059 				   sc->nr_scanned - scanned,
6060 				   sc->nr_reclaimed - reclaimed);
6061 
6062 		/* If partial walks are allowed, bail once goal is reached */
6063 		if (partial && sc->nr_reclaimed >= sc->nr_to_reclaim) {
6064 			mem_cgroup_iter_break(target_memcg, memcg);
6065 			break;
6066 		}
6067 	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, partial)));
6068 }
6069 
6070 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
6071 {
6072 	unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed;
6073 	struct lruvec *target_lruvec;
6074 	bool reclaimable = false;
6075 
6076 	if (lru_gen_enabled() && root_reclaim(sc)) {
6077 		memset(&sc->nr, 0, sizeof(sc->nr));
6078 		lru_gen_shrink_node(pgdat, sc);
6079 		return;
6080 	}
6081 
6082 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
6083 
6084 again:
6085 	memset(&sc->nr, 0, sizeof(sc->nr));
6086 
6087 	nr_reclaimed = sc->nr_reclaimed;
6088 	nr_scanned = sc->nr_scanned;
6089 
6090 	prepare_scan_control(pgdat, sc);
6091 
6092 	shrink_node_memcgs(pgdat, sc);
6093 
6094 	flush_reclaim_state(sc);
6095 
6096 	nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed;
6097 
6098 	/* Record the subtree's reclaim efficiency */
6099 	if (!sc->proactive)
6100 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
6101 			   sc->nr_scanned - nr_scanned, nr_node_reclaimed);
6102 
6103 	if (nr_node_reclaimed)
6104 		reclaimable = true;
6105 
6106 	if (current_is_kswapd()) {
6107 		/*
6108 		 * If reclaim is isolating dirty pages under writeback,
6109 		 * it implies that the long-lived page allocation rate
6110 		 * is exceeding the page laundering rate. Either the
6111 		 * global limits are not being effective at throttling
6112 		 * processes due to the page distribution throughout
6113 		 * zones or there is heavy usage of a slow backing
6114 		 * device. The only option is to throttle from reclaim
6115 		 * context which is not ideal as there is no guarantee
6116 		 * the dirtying process is throttled in the same way
6117 		 * balance_dirty_pages() manages.
6118 		 *
6119 		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
6120 		 * count the number of pages under pages flagged for
6121 		 * immediate reclaim and stall if any are encountered
6122 		 * in the nr_immediate check below.
6123 		 */
6124 		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
6125 			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
6126 
6127 		/* Allow kswapd to start writing pages during reclaim.*/
6128 		if (sc->nr.unqueued_dirty &&
6129 			sc->nr.unqueued_dirty == sc->nr.file_taken)
6130 			set_bit(PGDAT_DIRTY, &pgdat->flags);
6131 
6132 		/*
6133 		 * If kswapd scans pages marked for immediate
6134 		 * reclaim and under writeback (nr_immediate), it
6135 		 * implies that pages are cycling through the LRU
6136 		 * faster than they are written so forcibly stall
6137 		 * until some pages complete writeback.
6138 		 */
6139 		if (sc->nr.immediate)
6140 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
6141 	}
6142 
6143 	/*
6144 	 * Tag a node/memcg as congested if all the dirty pages were marked
6145 	 * for writeback and immediate reclaim (counted in nr.congested).
6146 	 *
6147 	 * Legacy memcg will stall in page writeback so avoid forcibly
6148 	 * stalling in reclaim_throttle().
6149 	 */
6150 	if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) {
6151 		if (cgroup_reclaim(sc) && writeback_throttling_sane(sc))
6152 			set_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags);
6153 
6154 		if (current_is_kswapd())
6155 			set_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags);
6156 	}
6157 
6158 	/*
6159 	 * Stall direct reclaim for IO completions if the lruvec is
6160 	 * node is congested. Allow kswapd to continue until it
6161 	 * starts encountering unqueued dirty pages or cycling through
6162 	 * the LRU too quickly.
6163 	 */
6164 	if (!current_is_kswapd() && current_may_throttle() &&
6165 	    !sc->hibernation_mode &&
6166 	    (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) ||
6167 	     test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags)))
6168 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
6169 
6170 	if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc))
6171 		goto again;
6172 
6173 	/*
6174 	 * Kswapd gives up on balancing particular nodes after too
6175 	 * many failures to reclaim anything from them and goes to
6176 	 * sleep. On reclaim progress, reset the failure counter. A
6177 	 * successful direct reclaim run will revive a dormant kswapd.
6178 	 */
6179 	if (reclaimable)
6180 		pgdat->kswapd_failures = 0;
6181 	else if (sc->cache_trim_mode)
6182 		sc->cache_trim_mode_failed = 1;
6183 }
6184 
6185 /*
6186  * Returns true if compaction should go ahead for a costly-order request, or
6187  * the allocation would already succeed without compaction. Return false if we
6188  * should reclaim first.
6189  */
6190 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
6191 {
6192 	unsigned long watermark;
6193 
6194 	if (!gfp_compaction_allowed(sc->gfp_mask))
6195 		return false;
6196 
6197 	/* Allocation can already succeed, nothing to do */
6198 	if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
6199 			      sc->reclaim_idx, 0))
6200 		return true;
6201 
6202 	/*
6203 	 * Direct reclaim usually targets the min watermark, but compaction
6204 	 * takes time to run and there are potentially other callers using the
6205 	 * pages just freed. So target a higher buffer to give compaction a
6206 	 * reasonable chance of completing and allocating the pages.
6207 	 *
6208 	 * Note that we won't actually reclaim the whole buffer in one attempt
6209 	 * as the target watermark in should_continue_reclaim() is lower. But if
6210 	 * we are already above the high+gap watermark, don't reclaim at all.
6211 	 */
6212 	watermark = high_wmark_pages(zone);
6213 	if (compaction_suitable(zone, sc->order, watermark, sc->reclaim_idx))
6214 		return true;
6215 
6216 	return false;
6217 }
6218 
6219 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6220 {
6221 	/*
6222 	 * If reclaim is making progress greater than 12% efficiency then
6223 	 * wake all the NOPROGRESS throttled tasks.
6224 	 */
6225 	if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
6226 		wait_queue_head_t *wqh;
6227 
6228 		wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6229 		if (waitqueue_active(wqh))
6230 			wake_up(wqh);
6231 
6232 		return;
6233 	}
6234 
6235 	/*
6236 	 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6237 	 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6238 	 * under writeback and marked for immediate reclaim at the tail of the
6239 	 * LRU.
6240 	 */
6241 	if (current_is_kswapd() || cgroup_reclaim(sc))
6242 		return;
6243 
6244 	/* Throttle if making no progress at high prioities. */
6245 	if (sc->priority == 1 && !sc->nr_reclaimed)
6246 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
6247 }
6248 
6249 /*
6250  * This is the direct reclaim path, for page-allocating processes.  We only
6251  * try to reclaim pages from zones which will satisfy the caller's allocation
6252  * request.
6253  *
6254  * If a zone is deemed to be full of pinned pages then just give it a light
6255  * scan then give up on it.
6256  */
6257 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6258 {
6259 	struct zoneref *z;
6260 	struct zone *zone;
6261 	unsigned long nr_soft_reclaimed;
6262 	unsigned long nr_soft_scanned;
6263 	gfp_t orig_mask;
6264 	pg_data_t *last_pgdat = NULL;
6265 	pg_data_t *first_pgdat = NULL;
6266 
6267 	/*
6268 	 * If the number of buffer_heads in the machine exceeds the maximum
6269 	 * allowed level, force direct reclaim to scan the highmem zone as
6270 	 * highmem pages could be pinning lowmem pages storing buffer_heads
6271 	 */
6272 	orig_mask = sc->gfp_mask;
6273 	if (buffer_heads_over_limit) {
6274 		sc->gfp_mask |= __GFP_HIGHMEM;
6275 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
6276 	}
6277 
6278 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6279 					sc->reclaim_idx, sc->nodemask) {
6280 		/*
6281 		 * Take care memory controller reclaiming has small influence
6282 		 * to global LRU.
6283 		 */
6284 		if (!cgroup_reclaim(sc)) {
6285 			if (!cpuset_zone_allowed(zone,
6286 						 GFP_KERNEL | __GFP_HARDWALL))
6287 				continue;
6288 
6289 			/*
6290 			 * If we already have plenty of memory free for
6291 			 * compaction in this zone, don't free any more.
6292 			 * Even though compaction is invoked for any
6293 			 * non-zero order, only frequent costly order
6294 			 * reclamation is disruptive enough to become a
6295 			 * noticeable problem, like transparent huge
6296 			 * page allocations.
6297 			 */
6298 			if (IS_ENABLED(CONFIG_COMPACTION) &&
6299 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6300 			    compaction_ready(zone, sc)) {
6301 				sc->compaction_ready = true;
6302 				continue;
6303 			}
6304 
6305 			/*
6306 			 * Shrink each node in the zonelist once. If the
6307 			 * zonelist is ordered by zone (not the default) then a
6308 			 * node may be shrunk multiple times but in that case
6309 			 * the user prefers lower zones being preserved.
6310 			 */
6311 			if (zone->zone_pgdat == last_pgdat)
6312 				continue;
6313 
6314 			/*
6315 			 * This steals pages from memory cgroups over softlimit
6316 			 * and returns the number of reclaimed pages and
6317 			 * scanned pages. This works for global memory pressure
6318 			 * and balancing, not for a memcg's limit.
6319 			 */
6320 			nr_soft_scanned = 0;
6321 			nr_soft_reclaimed = memcg1_soft_limit_reclaim(zone->zone_pgdat,
6322 								      sc->order, sc->gfp_mask,
6323 								      &nr_soft_scanned);
6324 			sc->nr_reclaimed += nr_soft_reclaimed;
6325 			sc->nr_scanned += nr_soft_scanned;
6326 			/* need some check for avoid more shrink_zone() */
6327 		}
6328 
6329 		if (!first_pgdat)
6330 			first_pgdat = zone->zone_pgdat;
6331 
6332 		/* See comment about same check for global reclaim above */
6333 		if (zone->zone_pgdat == last_pgdat)
6334 			continue;
6335 		last_pgdat = zone->zone_pgdat;
6336 		shrink_node(zone->zone_pgdat, sc);
6337 	}
6338 
6339 	if (first_pgdat)
6340 		consider_reclaim_throttle(first_pgdat, sc);
6341 
6342 	/*
6343 	 * Restore to original mask to avoid the impact on the caller if we
6344 	 * promoted it to __GFP_HIGHMEM.
6345 	 */
6346 	sc->gfp_mask = orig_mask;
6347 }
6348 
6349 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6350 {
6351 	struct lruvec *target_lruvec;
6352 	unsigned long refaults;
6353 
6354 	if (lru_gen_enabled())
6355 		return;
6356 
6357 	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6358 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6359 	target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6360 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6361 	target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6362 }
6363 
6364 /*
6365  * This is the main entry point to direct page reclaim.
6366  *
6367  * If a full scan of the inactive list fails to free enough memory then we
6368  * are "out of memory" and something needs to be killed.
6369  *
6370  * If the caller is !__GFP_FS then the probability of a failure is reasonably
6371  * high - the zone may be full of dirty or under-writeback pages, which this
6372  * caller can't do much about.  We kick the writeback threads and take explicit
6373  * naps in the hope that some of these pages can be written.  But if the
6374  * allocating task holds filesystem locks which prevent writeout this might not
6375  * work, and the allocation attempt will fail.
6376  *
6377  * returns:	0, if no pages reclaimed
6378  * 		else, the number of pages reclaimed
6379  */
6380 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6381 					  struct scan_control *sc)
6382 {
6383 	int initial_priority = sc->priority;
6384 	pg_data_t *last_pgdat;
6385 	struct zoneref *z;
6386 	struct zone *zone;
6387 retry:
6388 	delayacct_freepages_start();
6389 
6390 	if (!cgroup_reclaim(sc))
6391 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6392 
6393 	do {
6394 		if (!sc->proactive)
6395 			vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6396 					sc->priority);
6397 		sc->nr_scanned = 0;
6398 		shrink_zones(zonelist, sc);
6399 
6400 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6401 			break;
6402 
6403 		if (sc->compaction_ready)
6404 			break;
6405 
6406 		/*
6407 		 * If we're getting trouble reclaiming, start doing
6408 		 * writepage even in laptop mode.
6409 		 */
6410 		if (sc->priority < DEF_PRIORITY - 2)
6411 			sc->may_writepage = 1;
6412 	} while (--sc->priority >= 0);
6413 
6414 	last_pgdat = NULL;
6415 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6416 					sc->nodemask) {
6417 		if (zone->zone_pgdat == last_pgdat)
6418 			continue;
6419 		last_pgdat = zone->zone_pgdat;
6420 
6421 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
6422 
6423 		if (cgroup_reclaim(sc)) {
6424 			struct lruvec *lruvec;
6425 
6426 			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6427 						   zone->zone_pgdat);
6428 			clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6429 		}
6430 	}
6431 
6432 	delayacct_freepages_end();
6433 
6434 	if (sc->nr_reclaimed)
6435 		return sc->nr_reclaimed;
6436 
6437 	/* Aborted reclaim to try compaction? don't OOM, then */
6438 	if (sc->compaction_ready)
6439 		return 1;
6440 
6441 	/*
6442 	 * In most cases, direct reclaimers can do partial walks
6443 	 * through the cgroup tree to meet the reclaim goal while
6444 	 * keeping latency low. Since the iterator state is shared
6445 	 * among all direct reclaim invocations (to retain fairness
6446 	 * among cgroups), though, high concurrency can result in
6447 	 * individual threads not seeing enough cgroups to make
6448 	 * meaningful forward progress. Avoid false OOMs in this case.
6449 	 */
6450 	if (!sc->memcg_full_walk) {
6451 		sc->priority = initial_priority;
6452 		sc->memcg_full_walk = 1;
6453 		goto retry;
6454 	}
6455 
6456 	/*
6457 	 * We make inactive:active ratio decisions based on the node's
6458 	 * composition of memory, but a restrictive reclaim_idx or a
6459 	 * memory.low cgroup setting can exempt large amounts of
6460 	 * memory from reclaim. Neither of which are very common, so
6461 	 * instead of doing costly eligibility calculations of the
6462 	 * entire cgroup subtree up front, we assume the estimates are
6463 	 * good, and retry with forcible deactivation if that fails.
6464 	 */
6465 	if (sc->skipped_deactivate) {
6466 		sc->priority = initial_priority;
6467 		sc->force_deactivate = 1;
6468 		sc->skipped_deactivate = 0;
6469 		goto retry;
6470 	}
6471 
6472 	/* Untapped cgroup reserves?  Don't OOM, retry. */
6473 	if (sc->memcg_low_skipped) {
6474 		sc->priority = initial_priority;
6475 		sc->force_deactivate = 0;
6476 		sc->memcg_low_reclaim = 1;
6477 		sc->memcg_low_skipped = 0;
6478 		goto retry;
6479 	}
6480 
6481 	return 0;
6482 }
6483 
6484 static bool allow_direct_reclaim(pg_data_t *pgdat)
6485 {
6486 	struct zone *zone;
6487 	unsigned long pfmemalloc_reserve = 0;
6488 	unsigned long free_pages = 0;
6489 	int i;
6490 	bool wmark_ok;
6491 
6492 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6493 		return true;
6494 
6495 	for_each_managed_zone_pgdat(zone, pgdat, i, ZONE_NORMAL) {
6496 		if (!zone_reclaimable_pages(zone))
6497 			continue;
6498 
6499 		pfmemalloc_reserve += min_wmark_pages(zone);
6500 		free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES);
6501 	}
6502 
6503 	/* If there are no reserves (unexpected config) then do not throttle */
6504 	if (!pfmemalloc_reserve)
6505 		return true;
6506 
6507 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
6508 
6509 	/* kswapd must be awake if processes are being throttled */
6510 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6511 		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6512 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6513 
6514 		wake_up_interruptible(&pgdat->kswapd_wait);
6515 	}
6516 
6517 	return wmark_ok;
6518 }
6519 
6520 /*
6521  * Throttle direct reclaimers if backing storage is backed by the network
6522  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6523  * depleted. kswapd will continue to make progress and wake the processes
6524  * when the low watermark is reached.
6525  *
6526  * Returns true if a fatal signal was delivered during throttling. If this
6527  * happens, the page allocator should not consider triggering the OOM killer.
6528  */
6529 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6530 					nodemask_t *nodemask)
6531 {
6532 	struct zoneref *z;
6533 	struct zone *zone;
6534 	pg_data_t *pgdat = NULL;
6535 
6536 	/*
6537 	 * Kernel threads should not be throttled as they may be indirectly
6538 	 * responsible for cleaning pages necessary for reclaim to make forward
6539 	 * progress. kjournald for example may enter direct reclaim while
6540 	 * committing a transaction where throttling it could forcing other
6541 	 * processes to block on log_wait_commit().
6542 	 */
6543 	if (current->flags & PF_KTHREAD)
6544 		goto out;
6545 
6546 	/*
6547 	 * If a fatal signal is pending, this process should not throttle.
6548 	 * It should return quickly so it can exit and free its memory
6549 	 */
6550 	if (fatal_signal_pending(current))
6551 		goto out;
6552 
6553 	/*
6554 	 * Check if the pfmemalloc reserves are ok by finding the first node
6555 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6556 	 * GFP_KERNEL will be required for allocating network buffers when
6557 	 * swapping over the network so ZONE_HIGHMEM is unusable.
6558 	 *
6559 	 * Throttling is based on the first usable node and throttled processes
6560 	 * wait on a queue until kswapd makes progress and wakes them. There
6561 	 * is an affinity then between processes waking up and where reclaim
6562 	 * progress has been made assuming the process wakes on the same node.
6563 	 * More importantly, processes running on remote nodes will not compete
6564 	 * for remote pfmemalloc reserves and processes on different nodes
6565 	 * should make reasonable progress.
6566 	 */
6567 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6568 					gfp_zone(gfp_mask), nodemask) {
6569 		if (zone_idx(zone) > ZONE_NORMAL)
6570 			continue;
6571 
6572 		/* Throttle based on the first usable node */
6573 		pgdat = zone->zone_pgdat;
6574 		if (allow_direct_reclaim(pgdat))
6575 			goto out;
6576 		break;
6577 	}
6578 
6579 	/* If no zone was usable by the allocation flags then do not throttle */
6580 	if (!pgdat)
6581 		goto out;
6582 
6583 	/* Account for the throttling */
6584 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
6585 
6586 	/*
6587 	 * If the caller cannot enter the filesystem, it's possible that it
6588 	 * is due to the caller holding an FS lock or performing a journal
6589 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
6590 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
6591 	 * blocked waiting on the same lock. Instead, throttle for up to a
6592 	 * second before continuing.
6593 	 */
6594 	if (!(gfp_mask & __GFP_FS))
6595 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
6596 			allow_direct_reclaim(pgdat), HZ);
6597 	else
6598 		/* Throttle until kswapd wakes the process */
6599 		wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
6600 			allow_direct_reclaim(pgdat));
6601 
6602 	if (fatal_signal_pending(current))
6603 		return true;
6604 
6605 out:
6606 	return false;
6607 }
6608 
6609 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
6610 				gfp_t gfp_mask, nodemask_t *nodemask)
6611 {
6612 	unsigned long nr_reclaimed;
6613 	struct scan_control sc = {
6614 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
6615 		.gfp_mask = current_gfp_context(gfp_mask),
6616 		.reclaim_idx = gfp_zone(gfp_mask),
6617 		.order = order,
6618 		.nodemask = nodemask,
6619 		.priority = DEF_PRIORITY,
6620 		.may_writepage = !laptop_mode,
6621 		.may_unmap = 1,
6622 		.may_swap = 1,
6623 	};
6624 
6625 	/*
6626 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
6627 	 * Confirm they are large enough for max values.
6628 	 */
6629 	BUILD_BUG_ON(MAX_PAGE_ORDER >= S8_MAX);
6630 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
6631 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
6632 
6633 	/*
6634 	 * Do not enter reclaim if fatal signal was delivered while throttled.
6635 	 * 1 is returned so that the page allocator does not OOM kill at this
6636 	 * point.
6637 	 */
6638 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
6639 		return 1;
6640 
6641 	set_task_reclaim_state(current, &sc.reclaim_state);
6642 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
6643 
6644 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6645 
6646 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
6647 	set_task_reclaim_state(current, NULL);
6648 
6649 	return nr_reclaimed;
6650 }
6651 
6652 #ifdef CONFIG_MEMCG
6653 
6654 /* Only used by soft limit reclaim. Do not reuse for anything else. */
6655 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
6656 						gfp_t gfp_mask, bool noswap,
6657 						pg_data_t *pgdat,
6658 						unsigned long *nr_scanned)
6659 {
6660 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6661 	struct scan_control sc = {
6662 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
6663 		.target_mem_cgroup = memcg,
6664 		.may_writepage = !laptop_mode,
6665 		.may_unmap = 1,
6666 		.reclaim_idx = MAX_NR_ZONES - 1,
6667 		.may_swap = !noswap,
6668 	};
6669 
6670 	WARN_ON_ONCE(!current->reclaim_state);
6671 
6672 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
6673 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
6674 
6675 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
6676 						      sc.gfp_mask);
6677 
6678 	/*
6679 	 * NOTE: Although we can get the priority field, using it
6680 	 * here is not a good idea, since it limits the pages we can scan.
6681 	 * if we don't reclaim here, the shrink_node from balance_pgdat
6682 	 * will pick up pages from other mem cgroup's as well. We hack
6683 	 * the priority and make it zero.
6684 	 */
6685 	shrink_lruvec(lruvec, &sc);
6686 
6687 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
6688 
6689 	*nr_scanned = sc.nr_scanned;
6690 
6691 	return sc.nr_reclaimed;
6692 }
6693 
6694 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
6695 					   unsigned long nr_pages,
6696 					   gfp_t gfp_mask,
6697 					   unsigned int reclaim_options,
6698 					   int *swappiness)
6699 {
6700 	unsigned long nr_reclaimed;
6701 	unsigned int noreclaim_flag;
6702 	struct scan_control sc = {
6703 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
6704 		.proactive_swappiness = swappiness,
6705 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
6706 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
6707 		.reclaim_idx = MAX_NR_ZONES - 1,
6708 		.target_mem_cgroup = memcg,
6709 		.priority = DEF_PRIORITY,
6710 		.may_writepage = !laptop_mode,
6711 		.may_unmap = 1,
6712 		.may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
6713 		.proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
6714 	};
6715 	/*
6716 	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
6717 	 * equal pressure on all the nodes. This is based on the assumption that
6718 	 * the reclaim does not bail out early.
6719 	 */
6720 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
6721 
6722 	set_task_reclaim_state(current, &sc.reclaim_state);
6723 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
6724 	noreclaim_flag = memalloc_noreclaim_save();
6725 
6726 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6727 
6728 	memalloc_noreclaim_restore(noreclaim_flag);
6729 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
6730 	set_task_reclaim_state(current, NULL);
6731 
6732 	return nr_reclaimed;
6733 }
6734 #else
6735 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
6736 					   unsigned long nr_pages,
6737 					   gfp_t gfp_mask,
6738 					   unsigned int reclaim_options,
6739 					   int *swappiness)
6740 {
6741 	return 0;
6742 }
6743 #endif
6744 
6745 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
6746 {
6747 	struct mem_cgroup *memcg;
6748 	struct lruvec *lruvec;
6749 
6750 	if (lru_gen_enabled()) {
6751 		lru_gen_age_node(pgdat, sc);
6752 		return;
6753 	}
6754 
6755 	lruvec = mem_cgroup_lruvec(NULL, pgdat);
6756 	if (!can_age_anon_pages(lruvec, sc))
6757 		return;
6758 
6759 	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6760 		return;
6761 
6762 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
6763 	do {
6764 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
6765 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6766 				   sc, LRU_ACTIVE_ANON);
6767 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
6768 	} while (memcg);
6769 }
6770 
6771 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
6772 {
6773 	int i;
6774 	struct zone *zone;
6775 
6776 	/*
6777 	 * Check for watermark boosts top-down as the higher zones
6778 	 * are more likely to be boosted. Both watermarks and boosts
6779 	 * should not be checked at the same time as reclaim would
6780 	 * start prematurely when there is no boosting and a lower
6781 	 * zone is balanced.
6782 	 */
6783 	for (i = highest_zoneidx; i >= 0; i--) {
6784 		zone = pgdat->node_zones + i;
6785 		if (!managed_zone(zone))
6786 			continue;
6787 
6788 		if (zone->watermark_boost)
6789 			return true;
6790 	}
6791 
6792 	return false;
6793 }
6794 
6795 /*
6796  * Returns true if there is an eligible zone balanced for the request order
6797  * and highest_zoneidx
6798  */
6799 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
6800 {
6801 	int i;
6802 	unsigned long mark = -1;
6803 	struct zone *zone;
6804 
6805 	/*
6806 	 * Check watermarks bottom-up as lower zones are more likely to
6807 	 * meet watermarks.
6808 	 */
6809 	for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) {
6810 		enum zone_stat_item item;
6811 		unsigned long free_pages;
6812 
6813 		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
6814 			mark = promo_wmark_pages(zone);
6815 		else
6816 			mark = high_wmark_pages(zone);
6817 
6818 		/*
6819 		 * In defrag_mode, watermarks must be met in whole
6820 		 * blocks to avoid polluting allocator fallbacks.
6821 		 *
6822 		 * However, kswapd usually cannot accomplish this on
6823 		 * its own and needs kcompactd support. Once it's
6824 		 * reclaimed a compaction gap, and kswapd_shrink_node
6825 		 * has dropped order, simply ensure there are enough
6826 		 * base pages for compaction, wake kcompactd & sleep.
6827 		 */
6828 		if (defrag_mode && order)
6829 			item = NR_FREE_PAGES_BLOCKS;
6830 		else
6831 			item = NR_FREE_PAGES;
6832 
6833 		/*
6834 		 * When there is a high number of CPUs in the system,
6835 		 * the cumulative error from the vmstat per-cpu cache
6836 		 * can blur the line between the watermarks. In that
6837 		 * case, be safe and get an accurate snapshot.
6838 		 *
6839 		 * TODO: NR_FREE_PAGES_BLOCKS moves in steps of
6840 		 * pageblock_nr_pages, while the vmstat pcp threshold
6841 		 * is limited to 125. On many configurations that
6842 		 * counter won't actually be per-cpu cached. But keep
6843 		 * things simple for now; revisit when somebody cares.
6844 		 */
6845 		free_pages = zone_page_state(zone, item);
6846 		if (zone->percpu_drift_mark && free_pages < zone->percpu_drift_mark)
6847 			free_pages = zone_page_state_snapshot(zone, item);
6848 
6849 		if (__zone_watermark_ok(zone, order, mark, highest_zoneidx,
6850 					0, free_pages))
6851 			return true;
6852 	}
6853 
6854 	/*
6855 	 * If a node has no managed zone within highest_zoneidx, it does not
6856 	 * need balancing by definition. This can happen if a zone-restricted
6857 	 * allocation tries to wake a remote kswapd.
6858 	 */
6859 	if (mark == -1)
6860 		return true;
6861 
6862 	return false;
6863 }
6864 
6865 /* Clear pgdat state for congested, dirty or under writeback. */
6866 static void clear_pgdat_congested(pg_data_t *pgdat)
6867 {
6868 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
6869 
6870 	clear_bit(LRUVEC_NODE_CONGESTED, &lruvec->flags);
6871 	clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6872 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
6873 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
6874 }
6875 
6876 /*
6877  * Prepare kswapd for sleeping. This verifies that there are no processes
6878  * waiting in throttle_direct_reclaim() and that watermarks have been met.
6879  *
6880  * Returns true if kswapd is ready to sleep
6881  */
6882 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
6883 				int highest_zoneidx)
6884 {
6885 	/*
6886 	 * The throttled processes are normally woken up in balance_pgdat() as
6887 	 * soon as allow_direct_reclaim() is true. But there is a potential
6888 	 * race between when kswapd checks the watermarks and a process gets
6889 	 * throttled. There is also a potential race if processes get
6890 	 * throttled, kswapd wakes, a large process exits thereby balancing the
6891 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
6892 	 * the wake up checks. If kswapd is going to sleep, no process should
6893 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
6894 	 * the wake up is premature, processes will wake kswapd and get
6895 	 * throttled again. The difference from wake ups in balance_pgdat() is
6896 	 * that here we are under prepare_to_wait().
6897 	 */
6898 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
6899 		wake_up_all(&pgdat->pfmemalloc_wait);
6900 
6901 	/* Hopeless node, leave it to direct reclaim */
6902 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6903 		return true;
6904 
6905 	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
6906 		clear_pgdat_congested(pgdat);
6907 		return true;
6908 	}
6909 
6910 	return false;
6911 }
6912 
6913 /*
6914  * kswapd shrinks a node of pages that are at or below the highest usable
6915  * zone that is currently unbalanced.
6916  *
6917  * Returns true if kswapd scanned at least the requested number of pages to
6918  * reclaim or if the lack of progress was due to pages under writeback.
6919  * This is used to determine if the scanning priority needs to be raised.
6920  */
6921 static bool kswapd_shrink_node(pg_data_t *pgdat,
6922 			       struct scan_control *sc)
6923 {
6924 	struct zone *zone;
6925 	int z;
6926 	unsigned long nr_reclaimed = sc->nr_reclaimed;
6927 
6928 	/* Reclaim a number of pages proportional to the number of zones */
6929 	sc->nr_to_reclaim = 0;
6930 	for_each_managed_zone_pgdat(zone, pgdat, z, sc->reclaim_idx) {
6931 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
6932 	}
6933 
6934 	/*
6935 	 * Historically care was taken to put equal pressure on all zones but
6936 	 * now pressure is applied based on node LRU order.
6937 	 */
6938 	shrink_node(pgdat, sc);
6939 
6940 	/*
6941 	 * Fragmentation may mean that the system cannot be rebalanced for
6942 	 * high-order allocations. If twice the allocation size has been
6943 	 * reclaimed then recheck watermarks only at order-0 to prevent
6944 	 * excessive reclaim. Assume that a process requested a high-order
6945 	 * can direct reclaim/compact.
6946 	 */
6947 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
6948 		sc->order = 0;
6949 
6950 	/* account for progress from mm_account_reclaimed_pages() */
6951 	return max(sc->nr_scanned, sc->nr_reclaimed - nr_reclaimed) >= sc->nr_to_reclaim;
6952 }
6953 
6954 /* Page allocator PCP high watermark is lowered if reclaim is active. */
6955 static inline void
6956 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
6957 {
6958 	int i;
6959 	struct zone *zone;
6960 
6961 	for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) {
6962 		if (active)
6963 			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6964 		else
6965 			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6966 	}
6967 }
6968 
6969 static inline void
6970 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6971 {
6972 	update_reclaim_active(pgdat, highest_zoneidx, true);
6973 }
6974 
6975 static inline void
6976 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6977 {
6978 	update_reclaim_active(pgdat, highest_zoneidx, false);
6979 }
6980 
6981 /*
6982  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
6983  * that are eligible for use by the caller until at least one zone is
6984  * balanced.
6985  *
6986  * Returns the order kswapd finished reclaiming at.
6987  *
6988  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
6989  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
6990  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
6991  * or lower is eligible for reclaim until at least one usable zone is
6992  * balanced.
6993  */
6994 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
6995 {
6996 	int i;
6997 	unsigned long nr_soft_reclaimed;
6998 	unsigned long nr_soft_scanned;
6999 	unsigned long pflags;
7000 	unsigned long nr_boost_reclaim;
7001 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
7002 	bool boosted;
7003 	struct zone *zone;
7004 	struct scan_control sc = {
7005 		.gfp_mask = GFP_KERNEL,
7006 		.order = order,
7007 		.may_unmap = 1,
7008 	};
7009 
7010 	set_task_reclaim_state(current, &sc.reclaim_state);
7011 	psi_memstall_enter(&pflags);
7012 	__fs_reclaim_acquire(_THIS_IP_);
7013 
7014 	count_vm_event(PAGEOUTRUN);
7015 
7016 	/*
7017 	 * Account for the reclaim boost. Note that the zone boost is left in
7018 	 * place so that parallel allocations that are near the watermark will
7019 	 * stall or direct reclaim until kswapd is finished.
7020 	 */
7021 	nr_boost_reclaim = 0;
7022 	for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) {
7023 		nr_boost_reclaim += zone->watermark_boost;
7024 		zone_boosts[i] = zone->watermark_boost;
7025 	}
7026 	boosted = nr_boost_reclaim;
7027 
7028 restart:
7029 	set_reclaim_active(pgdat, highest_zoneidx);
7030 	sc.priority = DEF_PRIORITY;
7031 	do {
7032 		unsigned long nr_reclaimed = sc.nr_reclaimed;
7033 		bool raise_priority = true;
7034 		bool balanced;
7035 		bool ret;
7036 		bool was_frozen;
7037 
7038 		sc.reclaim_idx = highest_zoneidx;
7039 
7040 		/*
7041 		 * If the number of buffer_heads exceeds the maximum allowed
7042 		 * then consider reclaiming from all zones. This has a dual
7043 		 * purpose -- on 64-bit systems it is expected that
7044 		 * buffer_heads are stripped during active rotation. On 32-bit
7045 		 * systems, highmem pages can pin lowmem memory and shrinking
7046 		 * buffers can relieve lowmem pressure. Reclaim may still not
7047 		 * go ahead if all eligible zones for the original allocation
7048 		 * request are balanced to avoid excessive reclaim from kswapd.
7049 		 */
7050 		if (buffer_heads_over_limit) {
7051 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
7052 				zone = pgdat->node_zones + i;
7053 				if (!managed_zone(zone))
7054 					continue;
7055 
7056 				sc.reclaim_idx = i;
7057 				break;
7058 			}
7059 		}
7060 
7061 		/*
7062 		 * If the pgdat is imbalanced then ignore boosting and preserve
7063 		 * the watermarks for a later time and restart. Note that the
7064 		 * zone watermarks will be still reset at the end of balancing
7065 		 * on the grounds that the normal reclaim should be enough to
7066 		 * re-evaluate if boosting is required when kswapd next wakes.
7067 		 */
7068 		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
7069 		if (!balanced && nr_boost_reclaim) {
7070 			nr_boost_reclaim = 0;
7071 			goto restart;
7072 		}
7073 
7074 		/*
7075 		 * If boosting is not active then only reclaim if there are no
7076 		 * eligible zones. Note that sc.reclaim_idx is not used as
7077 		 * buffer_heads_over_limit may have adjusted it.
7078 		 */
7079 		if (!nr_boost_reclaim && balanced)
7080 			goto out;
7081 
7082 		/* Limit the priority of boosting to avoid reclaim writeback */
7083 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
7084 			raise_priority = false;
7085 
7086 		/*
7087 		 * Do not writeback or swap pages for boosted reclaim. The
7088 		 * intent is to relieve pressure not issue sub-optimal IO
7089 		 * from reclaim context. If no pages are reclaimed, the
7090 		 * reclaim will be aborted.
7091 		 */
7092 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
7093 		sc.may_swap = !nr_boost_reclaim;
7094 
7095 		/*
7096 		 * Do some background aging, to give pages a chance to be
7097 		 * referenced before reclaiming. All pages are rotated
7098 		 * regardless of classzone as this is about consistent aging.
7099 		 */
7100 		kswapd_age_node(pgdat, &sc);
7101 
7102 		/*
7103 		 * If we're getting trouble reclaiming, start doing writepage
7104 		 * even in laptop mode.
7105 		 */
7106 		if (sc.priority < DEF_PRIORITY - 2)
7107 			sc.may_writepage = 1;
7108 
7109 		/* Call soft limit reclaim before calling shrink_node. */
7110 		sc.nr_scanned = 0;
7111 		nr_soft_scanned = 0;
7112 		nr_soft_reclaimed = memcg1_soft_limit_reclaim(pgdat, sc.order,
7113 							      sc.gfp_mask, &nr_soft_scanned);
7114 		sc.nr_reclaimed += nr_soft_reclaimed;
7115 
7116 		/*
7117 		 * There should be no need to raise the scanning priority if
7118 		 * enough pages are already being scanned that that high
7119 		 * watermark would be met at 100% efficiency.
7120 		 */
7121 		if (kswapd_shrink_node(pgdat, &sc))
7122 			raise_priority = false;
7123 
7124 		/*
7125 		 * If the low watermark is met there is no need for processes
7126 		 * to be throttled on pfmemalloc_wait as they should not be
7127 		 * able to safely make forward progress. Wake them
7128 		 */
7129 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
7130 				allow_direct_reclaim(pgdat))
7131 			wake_up_all(&pgdat->pfmemalloc_wait);
7132 
7133 		/* Check if kswapd should be suspending */
7134 		__fs_reclaim_release(_THIS_IP_);
7135 		ret = kthread_freezable_should_stop(&was_frozen);
7136 		__fs_reclaim_acquire(_THIS_IP_);
7137 		if (was_frozen || ret)
7138 			break;
7139 
7140 		/*
7141 		 * Raise priority if scanning rate is too low or there was no
7142 		 * progress in reclaiming pages
7143 		 */
7144 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
7145 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
7146 
7147 		/*
7148 		 * If reclaim made no progress for a boost, stop reclaim as
7149 		 * IO cannot be queued and it could be an infinite loop in
7150 		 * extreme circumstances.
7151 		 */
7152 		if (nr_boost_reclaim && !nr_reclaimed)
7153 			break;
7154 
7155 		if (raise_priority || !nr_reclaimed)
7156 			sc.priority--;
7157 	} while (sc.priority >= 1);
7158 
7159 	/*
7160 	 * Restart only if it went through the priority loop all the way,
7161 	 * but cache_trim_mode didn't work.
7162 	 */
7163 	if (!sc.nr_reclaimed && sc.priority < 1 &&
7164 	    !sc.no_cache_trim_mode && sc.cache_trim_mode_failed) {
7165 		sc.no_cache_trim_mode = 1;
7166 		goto restart;
7167 	}
7168 
7169 	if (!sc.nr_reclaimed)
7170 		pgdat->kswapd_failures++;
7171 
7172 out:
7173 	clear_reclaim_active(pgdat, highest_zoneidx);
7174 
7175 	/* If reclaim was boosted, account for the reclaim done in this pass */
7176 	if (boosted) {
7177 		unsigned long flags;
7178 
7179 		for (i = 0; i <= highest_zoneidx; i++) {
7180 			if (!zone_boosts[i])
7181 				continue;
7182 
7183 			/* Increments are under the zone lock */
7184 			zone = pgdat->node_zones + i;
7185 			spin_lock_irqsave(&zone->lock, flags);
7186 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
7187 			spin_unlock_irqrestore(&zone->lock, flags);
7188 		}
7189 
7190 		/*
7191 		 * As there is now likely space, wakeup kcompact to defragment
7192 		 * pageblocks.
7193 		 */
7194 		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
7195 	}
7196 
7197 	snapshot_refaults(NULL, pgdat);
7198 	__fs_reclaim_release(_THIS_IP_);
7199 	psi_memstall_leave(&pflags);
7200 	set_task_reclaim_state(current, NULL);
7201 
7202 	/*
7203 	 * Return the order kswapd stopped reclaiming at as
7204 	 * prepare_kswapd_sleep() takes it into account. If another caller
7205 	 * entered the allocator slow path while kswapd was awake, order will
7206 	 * remain at the higher level.
7207 	 */
7208 	return sc.order;
7209 }
7210 
7211 /*
7212  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
7213  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
7214  * not a valid index then either kswapd runs for first time or kswapd couldn't
7215  * sleep after previous reclaim attempt (node is still unbalanced). In that
7216  * case return the zone index of the previous kswapd reclaim cycle.
7217  */
7218 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
7219 					   enum zone_type prev_highest_zoneidx)
7220 {
7221 	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7222 
7223 	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
7224 }
7225 
7226 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
7227 				unsigned int highest_zoneidx)
7228 {
7229 	long remaining = 0;
7230 	DEFINE_WAIT(wait);
7231 
7232 	if (freezing(current) || kthread_should_stop())
7233 		return;
7234 
7235 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7236 
7237 	/*
7238 	 * Try to sleep for a short interval. Note that kcompactd will only be
7239 	 * woken if it is possible to sleep for a short interval. This is
7240 	 * deliberate on the assumption that if reclaim cannot keep an
7241 	 * eligible zone balanced that it's also unlikely that compaction will
7242 	 * succeed.
7243 	 */
7244 	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7245 		/*
7246 		 * Compaction records what page blocks it recently failed to
7247 		 * isolate pages from and skips them in the future scanning.
7248 		 * When kswapd is going to sleep, it is reasonable to assume
7249 		 * that pages and compaction may succeed so reset the cache.
7250 		 */
7251 		reset_isolation_suitable(pgdat);
7252 
7253 		/*
7254 		 * We have freed the memory, now we should compact it to make
7255 		 * allocation of the requested order possible.
7256 		 */
7257 		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
7258 
7259 		remaining = schedule_timeout(HZ/10);
7260 
7261 		/*
7262 		 * If woken prematurely then reset kswapd_highest_zoneidx and
7263 		 * order. The values will either be from a wakeup request or
7264 		 * the previous request that slept prematurely.
7265 		 */
7266 		if (remaining) {
7267 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7268 					kswapd_highest_zoneidx(pgdat,
7269 							highest_zoneidx));
7270 
7271 			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7272 				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
7273 		}
7274 
7275 		finish_wait(&pgdat->kswapd_wait, &wait);
7276 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7277 	}
7278 
7279 	/*
7280 	 * After a short sleep, check if it was a premature sleep. If not, then
7281 	 * go fully to sleep until explicitly woken up.
7282 	 */
7283 	if (!remaining &&
7284 	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7285 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7286 
7287 		/*
7288 		 * vmstat counters are not perfectly accurate and the estimated
7289 		 * value for counters such as NR_FREE_PAGES can deviate from the
7290 		 * true value by nr_online_cpus * threshold. To avoid the zone
7291 		 * watermarks being breached while under pressure, we reduce the
7292 		 * per-cpu vmstat threshold while kswapd is awake and restore
7293 		 * them before going back to sleep.
7294 		 */
7295 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
7296 
7297 		if (!kthread_should_stop())
7298 			schedule();
7299 
7300 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7301 	} else {
7302 		if (remaining)
7303 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7304 		else
7305 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7306 	}
7307 	finish_wait(&pgdat->kswapd_wait, &wait);
7308 }
7309 
7310 /*
7311  * The background pageout daemon, started as a kernel thread
7312  * from the init process.
7313  *
7314  * This basically trickles out pages so that we have _some_
7315  * free memory available even if there is no other activity
7316  * that frees anything up. This is needed for things like routing
7317  * etc, where we otherwise might have all activity going on in
7318  * asynchronous contexts that cannot page things out.
7319  *
7320  * If there are applications that are active memory-allocators
7321  * (most normal use), this basically shouldn't matter.
7322  */
7323 static int kswapd(void *p)
7324 {
7325 	unsigned int alloc_order, reclaim_order;
7326 	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7327 	pg_data_t *pgdat = (pg_data_t *)p;
7328 	struct task_struct *tsk = current;
7329 
7330 	/*
7331 	 * Tell the memory management that we're a "memory allocator",
7332 	 * and that if we need more memory we should get access to it
7333 	 * regardless (see "__alloc_pages()"). "kswapd" should
7334 	 * never get caught in the normal page freeing logic.
7335 	 *
7336 	 * (Kswapd normally doesn't need memory anyway, but sometimes
7337 	 * you need a small amount of memory in order to be able to
7338 	 * page out something else, and this flag essentially protects
7339 	 * us from recursively trying to free more memory as we're
7340 	 * trying to free the first piece of memory in the first place).
7341 	 */
7342 	tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7343 	set_freezable();
7344 
7345 	WRITE_ONCE(pgdat->kswapd_order, 0);
7346 	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7347 	atomic_set(&pgdat->nr_writeback_throttled, 0);
7348 	for ( ; ; ) {
7349 		bool was_frozen;
7350 
7351 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7352 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7353 							highest_zoneidx);
7354 
7355 kswapd_try_sleep:
7356 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7357 					highest_zoneidx);
7358 
7359 		/* Read the new order and highest_zoneidx */
7360 		alloc_order = READ_ONCE(pgdat->kswapd_order);
7361 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7362 							highest_zoneidx);
7363 		WRITE_ONCE(pgdat->kswapd_order, 0);
7364 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7365 
7366 		if (kthread_freezable_should_stop(&was_frozen))
7367 			break;
7368 
7369 		/*
7370 		 * We can speed up thawing tasks if we don't call balance_pgdat
7371 		 * after returning from the refrigerator
7372 		 */
7373 		if (was_frozen)
7374 			continue;
7375 
7376 		/*
7377 		 * Reclaim begins at the requested order but if a high-order
7378 		 * reclaim fails then kswapd falls back to reclaiming for
7379 		 * order-0. If that happens, kswapd will consider sleeping
7380 		 * for the order it finished reclaiming at (reclaim_order)
7381 		 * but kcompactd is woken to compact for the original
7382 		 * request (alloc_order).
7383 		 */
7384 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7385 						alloc_order);
7386 		reclaim_order = balance_pgdat(pgdat, alloc_order,
7387 						highest_zoneidx);
7388 		if (reclaim_order < alloc_order)
7389 			goto kswapd_try_sleep;
7390 	}
7391 
7392 	tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
7393 
7394 	return 0;
7395 }
7396 
7397 /*
7398  * A zone is low on free memory or too fragmented for high-order memory.  If
7399  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7400  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
7401  * has failed or is not needed, still wake up kcompactd if only compaction is
7402  * needed.
7403  */
7404 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7405 		   enum zone_type highest_zoneidx)
7406 {
7407 	pg_data_t *pgdat;
7408 	enum zone_type curr_idx;
7409 
7410 	if (!managed_zone(zone))
7411 		return;
7412 
7413 	if (!cpuset_zone_allowed(zone, gfp_flags))
7414 		return;
7415 
7416 	pgdat = zone->zone_pgdat;
7417 	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7418 
7419 	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7420 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7421 
7422 	if (READ_ONCE(pgdat->kswapd_order) < order)
7423 		WRITE_ONCE(pgdat->kswapd_order, order);
7424 
7425 	if (!waitqueue_active(&pgdat->kswapd_wait))
7426 		return;
7427 
7428 	/* Hopeless node, leave it to direct reclaim if possible */
7429 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
7430 	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7431 	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7432 		/*
7433 		 * There may be plenty of free memory available, but it's too
7434 		 * fragmented for high-order allocations.  Wake up kcompactd
7435 		 * and rely on compaction_suitable() to determine if it's
7436 		 * needed.  If it fails, it will defer subsequent attempts to
7437 		 * ratelimit its work.
7438 		 */
7439 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7440 			wakeup_kcompactd(pgdat, order, highest_zoneidx);
7441 		return;
7442 	}
7443 
7444 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
7445 				      gfp_flags);
7446 	wake_up_interruptible(&pgdat->kswapd_wait);
7447 }
7448 
7449 #ifdef CONFIG_HIBERNATION
7450 /*
7451  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7452  * freed pages.
7453  *
7454  * Rather than trying to age LRUs the aim is to preserve the overall
7455  * LRU order by reclaiming preferentially
7456  * inactive > active > active referenced > active mapped
7457  */
7458 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7459 {
7460 	struct scan_control sc = {
7461 		.nr_to_reclaim = nr_to_reclaim,
7462 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
7463 		.reclaim_idx = MAX_NR_ZONES - 1,
7464 		.priority = DEF_PRIORITY,
7465 		.may_writepage = 1,
7466 		.may_unmap = 1,
7467 		.may_swap = 1,
7468 		.hibernation_mode = 1,
7469 	};
7470 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7471 	unsigned long nr_reclaimed;
7472 	unsigned int noreclaim_flag;
7473 
7474 	fs_reclaim_acquire(sc.gfp_mask);
7475 	noreclaim_flag = memalloc_noreclaim_save();
7476 	set_task_reclaim_state(current, &sc.reclaim_state);
7477 
7478 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7479 
7480 	set_task_reclaim_state(current, NULL);
7481 	memalloc_noreclaim_restore(noreclaim_flag);
7482 	fs_reclaim_release(sc.gfp_mask);
7483 
7484 	return nr_reclaimed;
7485 }
7486 #endif /* CONFIG_HIBERNATION */
7487 
7488 /*
7489  * This kswapd start function will be called by init and node-hot-add.
7490  */
7491 void __meminit kswapd_run(int nid)
7492 {
7493 	pg_data_t *pgdat = NODE_DATA(nid);
7494 
7495 	pgdat_kswapd_lock(pgdat);
7496 	if (!pgdat->kswapd) {
7497 		pgdat->kswapd = kthread_create_on_node(kswapd, pgdat, nid, "kswapd%d", nid);
7498 		if (IS_ERR(pgdat->kswapd)) {
7499 			/* failure at boot is fatal */
7500 			pr_err("Failed to start kswapd on node %d,ret=%ld\n",
7501 				   nid, PTR_ERR(pgdat->kswapd));
7502 			BUG_ON(system_state < SYSTEM_RUNNING);
7503 			pgdat->kswapd = NULL;
7504 		} else {
7505 			wake_up_process(pgdat->kswapd);
7506 		}
7507 	}
7508 	pgdat_kswapd_unlock(pgdat);
7509 }
7510 
7511 /*
7512  * Called by memory hotplug when all memory in a node is offlined.  Caller must
7513  * be holding mem_hotplug_begin/done().
7514  */
7515 void __meminit kswapd_stop(int nid)
7516 {
7517 	pg_data_t *pgdat = NODE_DATA(nid);
7518 	struct task_struct *kswapd;
7519 
7520 	pgdat_kswapd_lock(pgdat);
7521 	kswapd = pgdat->kswapd;
7522 	if (kswapd) {
7523 		kthread_stop(kswapd);
7524 		pgdat->kswapd = NULL;
7525 	}
7526 	pgdat_kswapd_unlock(pgdat);
7527 }
7528 
7529 static const struct ctl_table vmscan_sysctl_table[] = {
7530 	{
7531 		.procname	= "swappiness",
7532 		.data		= &vm_swappiness,
7533 		.maxlen		= sizeof(vm_swappiness),
7534 		.mode		= 0644,
7535 		.proc_handler	= proc_dointvec_minmax,
7536 		.extra1		= SYSCTL_ZERO,
7537 		.extra2		= SYSCTL_TWO_HUNDRED,
7538 	},
7539 #ifdef CONFIG_NUMA
7540 	{
7541 		.procname	= "zone_reclaim_mode",
7542 		.data		= &node_reclaim_mode,
7543 		.maxlen		= sizeof(node_reclaim_mode),
7544 		.mode		= 0644,
7545 		.proc_handler	= proc_dointvec_minmax,
7546 		.extra1		= SYSCTL_ZERO,
7547 	}
7548 #endif
7549 };
7550 
7551 static int __init kswapd_init(void)
7552 {
7553 	int nid;
7554 
7555 	swap_setup();
7556 	for_each_node_state(nid, N_MEMORY)
7557  		kswapd_run(nid);
7558 	register_sysctl_init("vm", vmscan_sysctl_table);
7559 	return 0;
7560 }
7561 
7562 module_init(kswapd_init)
7563 
7564 #ifdef CONFIG_NUMA
7565 /*
7566  * Node reclaim mode
7567  *
7568  * If non-zero call node_reclaim when the number of free pages falls below
7569  * the watermarks.
7570  */
7571 int node_reclaim_mode __read_mostly;
7572 
7573 /*
7574  * Priority for NODE_RECLAIM. This determines the fraction of pages
7575  * of a node considered for each zone_reclaim. 4 scans 1/16th of
7576  * a zone.
7577  */
7578 #define NODE_RECLAIM_PRIORITY 4
7579 
7580 /*
7581  * Percentage of pages in a zone that must be unmapped for node_reclaim to
7582  * occur.
7583  */
7584 int sysctl_min_unmapped_ratio = 1;
7585 
7586 /*
7587  * If the number of slab pages in a zone grows beyond this percentage then
7588  * slab reclaim needs to occur.
7589  */
7590 int sysctl_min_slab_ratio = 5;
7591 
7592 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7593 {
7594 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7595 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7596 		node_page_state(pgdat, NR_ACTIVE_FILE);
7597 
7598 	/*
7599 	 * It's possible for there to be more file mapped pages than
7600 	 * accounted for by the pages on the file LRU lists because
7601 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7602 	 */
7603 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7604 }
7605 
7606 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
7607 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
7608 {
7609 	unsigned long nr_pagecache_reclaimable;
7610 	unsigned long delta = 0;
7611 
7612 	/*
7613 	 * If RECLAIM_UNMAP is set, then all file pages are considered
7614 	 * potentially reclaimable. Otherwise, we have to worry about
7615 	 * pages like swapcache and node_unmapped_file_pages() provides
7616 	 * a better estimate
7617 	 */
7618 	if (node_reclaim_mode & RECLAIM_UNMAP)
7619 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
7620 	else
7621 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
7622 
7623 	/* If we can't clean pages, remove dirty pages from consideration */
7624 	if (!(node_reclaim_mode & RECLAIM_WRITE))
7625 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
7626 
7627 	/* Watch for any possible underflows due to delta */
7628 	if (unlikely(delta > nr_pagecache_reclaimable))
7629 		delta = nr_pagecache_reclaimable;
7630 
7631 	return nr_pagecache_reclaimable - delta;
7632 }
7633 
7634 /*
7635  * Try to free up some pages from this node through reclaim.
7636  */
7637 static unsigned long __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask,
7638 				    unsigned long nr_pages,
7639 				    struct scan_control *sc)
7640 {
7641 	struct task_struct *p = current;
7642 	unsigned int noreclaim_flag;
7643 	unsigned long pflags;
7644 
7645 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, sc->order,
7646 					   sc->gfp_mask);
7647 
7648 	cond_resched();
7649 	psi_memstall_enter(&pflags);
7650 	delayacct_freepages_start();
7651 	fs_reclaim_acquire(sc->gfp_mask);
7652 	/*
7653 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
7654 	 */
7655 	noreclaim_flag = memalloc_noreclaim_save();
7656 	set_task_reclaim_state(p, &sc->reclaim_state);
7657 
7658 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
7659 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
7660 		/*
7661 		 * Free memory by calling shrink node with increasing
7662 		 * priorities until we have enough memory freed.
7663 		 */
7664 		do {
7665 			shrink_node(pgdat, sc);
7666 		} while (sc->nr_reclaimed < nr_pages && --sc->priority >= 0);
7667 	}
7668 
7669 	set_task_reclaim_state(p, NULL);
7670 	memalloc_noreclaim_restore(noreclaim_flag);
7671 	fs_reclaim_release(sc->gfp_mask);
7672 	delayacct_freepages_end();
7673 	psi_memstall_leave(&pflags);
7674 
7675 	trace_mm_vmscan_node_reclaim_end(sc->nr_reclaimed);
7676 
7677 	return sc->nr_reclaimed;
7678 }
7679 
7680 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7681 {
7682 	int ret;
7683 	/* Minimum pages needed in order to stay on node */
7684 	const unsigned long nr_pages = 1 << order;
7685 	struct scan_control sc = {
7686 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7687 		.gfp_mask = current_gfp_context(gfp_mask),
7688 		.order = order,
7689 		.priority = NODE_RECLAIM_PRIORITY,
7690 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
7691 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
7692 		.may_swap = 1,
7693 		.reclaim_idx = gfp_zone(gfp_mask),
7694 	};
7695 
7696 	/*
7697 	 * Node reclaim reclaims unmapped file backed pages and
7698 	 * slab pages if we are over the defined limits.
7699 	 *
7700 	 * A small portion of unmapped file backed pages is needed for
7701 	 * file I/O otherwise pages read by file I/O will be immediately
7702 	 * thrown out if the node is overallocated. So we do not reclaim
7703 	 * if less than a specified percentage of the node is used by
7704 	 * unmapped file backed pages.
7705 	 */
7706 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
7707 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
7708 	    pgdat->min_slab_pages)
7709 		return NODE_RECLAIM_FULL;
7710 
7711 	/*
7712 	 * Do not scan if the allocation should not be delayed.
7713 	 */
7714 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
7715 		return NODE_RECLAIM_NOSCAN;
7716 
7717 	/*
7718 	 * Only run node reclaim on the local node or on nodes that do not
7719 	 * have associated processors. This will favor the local processor
7720 	 * over remote processors and spread off node memory allocations
7721 	 * as wide as possible.
7722 	 */
7723 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
7724 		return NODE_RECLAIM_NOSCAN;
7725 
7726 	if (test_and_set_bit_lock(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
7727 		return NODE_RECLAIM_NOSCAN;
7728 
7729 	ret = __node_reclaim(pgdat, gfp_mask, nr_pages, &sc) >= nr_pages;
7730 	clear_bit_unlock(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
7731 
7732 	if (ret)
7733 		count_vm_event(PGSCAN_ZONE_RECLAIM_SUCCESS);
7734 	else
7735 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
7736 
7737 	return ret;
7738 }
7739 
7740 enum {
7741 	MEMORY_RECLAIM_SWAPPINESS = 0,
7742 	MEMORY_RECLAIM_SWAPPINESS_MAX,
7743 	MEMORY_RECLAIM_NULL,
7744 };
7745 static const match_table_t tokens = {
7746 	{ MEMORY_RECLAIM_SWAPPINESS, "swappiness=%d"},
7747 	{ MEMORY_RECLAIM_SWAPPINESS_MAX, "swappiness=max"},
7748 	{ MEMORY_RECLAIM_NULL, NULL },
7749 };
7750 
7751 int user_proactive_reclaim(char *buf,
7752 			   struct mem_cgroup *memcg, pg_data_t *pgdat)
7753 {
7754 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
7755 	unsigned long nr_to_reclaim, nr_reclaimed = 0;
7756 	int swappiness = -1;
7757 	char *old_buf, *start;
7758 	substring_t args[MAX_OPT_ARGS];
7759 	gfp_t gfp_mask = GFP_KERNEL;
7760 
7761 	if (!buf || (!memcg && !pgdat) || (memcg && pgdat))
7762 		return -EINVAL;
7763 
7764 	buf = strstrip(buf);
7765 
7766 	old_buf = buf;
7767 	nr_to_reclaim = memparse(buf, &buf) / PAGE_SIZE;
7768 	if (buf == old_buf)
7769 		return -EINVAL;
7770 
7771 	buf = strstrip(buf);
7772 
7773 	while ((start = strsep(&buf, " ")) != NULL) {
7774 		if (!strlen(start))
7775 			continue;
7776 		switch (match_token(start, tokens, args)) {
7777 		case MEMORY_RECLAIM_SWAPPINESS:
7778 			if (match_int(&args[0], &swappiness))
7779 				return -EINVAL;
7780 			if (swappiness < MIN_SWAPPINESS ||
7781 			    swappiness > MAX_SWAPPINESS)
7782 				return -EINVAL;
7783 			break;
7784 		case MEMORY_RECLAIM_SWAPPINESS_MAX:
7785 			swappiness = SWAPPINESS_ANON_ONLY;
7786 			break;
7787 		default:
7788 			return -EINVAL;
7789 		}
7790 	}
7791 
7792 	while (nr_reclaimed < nr_to_reclaim) {
7793 		/* Will converge on zero, but reclaim enforces a minimum */
7794 		unsigned long batch_size = (nr_to_reclaim - nr_reclaimed) / 4;
7795 		unsigned long reclaimed;
7796 
7797 		if (signal_pending(current))
7798 			return -EINTR;
7799 
7800 		/*
7801 		 * This is the final attempt, drain percpu lru caches in the
7802 		 * hope of introducing more evictable pages.
7803 		 */
7804 		if (!nr_retries)
7805 			lru_add_drain_all();
7806 
7807 		if (memcg) {
7808 			unsigned int reclaim_options;
7809 
7810 			reclaim_options = MEMCG_RECLAIM_MAY_SWAP |
7811 					  MEMCG_RECLAIM_PROACTIVE;
7812 			reclaimed = try_to_free_mem_cgroup_pages(memcg,
7813 						 batch_size, gfp_mask,
7814 						 reclaim_options,
7815 						 swappiness == -1 ? NULL : &swappiness);
7816 		} else {
7817 			struct scan_control sc = {
7818 				.gfp_mask = current_gfp_context(gfp_mask),
7819 				.reclaim_idx = gfp_zone(gfp_mask),
7820 				.proactive_swappiness = swappiness == -1 ? NULL : &swappiness,
7821 				.priority = DEF_PRIORITY,
7822 				.may_writepage = !laptop_mode,
7823 				.nr_to_reclaim = max(batch_size, SWAP_CLUSTER_MAX),
7824 				.may_unmap = 1,
7825 				.may_swap = 1,
7826 				.proactive = 1,
7827 			};
7828 
7829 			if (test_and_set_bit_lock(PGDAT_RECLAIM_LOCKED,
7830 						  &pgdat->flags))
7831 				return -EBUSY;
7832 
7833 			reclaimed = __node_reclaim(pgdat, gfp_mask,
7834 						   batch_size, &sc);
7835 			clear_bit_unlock(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
7836 		}
7837 
7838 		if (!reclaimed && !nr_retries--)
7839 			return -EAGAIN;
7840 
7841 		nr_reclaimed += reclaimed;
7842 	}
7843 
7844 	return 0;
7845 }
7846 
7847 #endif
7848 
7849 /**
7850  * check_move_unevictable_folios - Move evictable folios to appropriate zone
7851  * lru list
7852  * @fbatch: Batch of lru folios to check.
7853  *
7854  * Checks folios for evictability, if an evictable folio is in the unevictable
7855  * lru list, moves it to the appropriate evictable lru list. This function
7856  * should be only used for lru folios.
7857  */
7858 void check_move_unevictable_folios(struct folio_batch *fbatch)
7859 {
7860 	struct lruvec *lruvec = NULL;
7861 	int pgscanned = 0;
7862 	int pgrescued = 0;
7863 	int i;
7864 
7865 	for (i = 0; i < fbatch->nr; i++) {
7866 		struct folio *folio = fbatch->folios[i];
7867 		int nr_pages = folio_nr_pages(folio);
7868 
7869 		pgscanned += nr_pages;
7870 
7871 		/* block memcg migration while the folio moves between lrus */
7872 		if (!folio_test_clear_lru(folio))
7873 			continue;
7874 
7875 		lruvec = folio_lruvec_relock_irq(folio, lruvec);
7876 		if (folio_evictable(folio) && folio_test_unevictable(folio)) {
7877 			lruvec_del_folio(lruvec, folio);
7878 			folio_clear_unevictable(folio);
7879 			lruvec_add_folio(lruvec, folio);
7880 			pgrescued += nr_pages;
7881 		}
7882 		folio_set_lru(folio);
7883 	}
7884 
7885 	if (lruvec) {
7886 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
7887 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7888 		unlock_page_lruvec_irq(lruvec);
7889 	} else if (pgscanned) {
7890 		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7891 	}
7892 }
7893 EXPORT_SYMBOL_GPL(check_move_unevictable_folios);
7894 
7895 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
7896 static ssize_t reclaim_store(struct device *dev,
7897 			     struct device_attribute *attr,
7898 			     const char *buf, size_t count)
7899 {
7900 	int ret, nid = dev->id;
7901 
7902 	ret = user_proactive_reclaim((char *)buf, NULL, NODE_DATA(nid));
7903 	return ret ? -EAGAIN : count;
7904 }
7905 
7906 static DEVICE_ATTR_WO(reclaim);
7907 int reclaim_register_node(struct node *node)
7908 {
7909 	return device_create_file(&node->dev, &dev_attr_reclaim);
7910 }
7911 
7912 void reclaim_unregister_node(struct node *node)
7913 {
7914 	return device_remove_file(&node->dev, &dev_attr_reclaim);
7915 }
7916 #endif
7917