xref: /linux/tools/perf/util/header.c (revision 9e906a9dead17d81d6c2687f65e159231d0e3286)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <inttypes.h>
4 #include "string2.h"
5 #include <sys/param.h>
6 #include <sys/types.h>
7 #include <byteswap.h>
8 #include <unistd.h>
9 #include <regex.h>
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <linux/compiler.h>
13 #include <linux/list.h>
14 #include <linux/kernel.h>
15 #include <linux/bitops.h>
16 #include <linux/string.h>
17 #include <linux/stringify.h>
18 #include <linux/zalloc.h>
19 #include <sys/stat.h>
20 #include <sys/utsname.h>
21 #include <linux/time64.h>
22 #include <dirent.h>
23 #ifdef HAVE_LIBBPF_SUPPORT
24 #include <bpf/libbpf.h>
25 #endif
26 #include <perf/cpumap.h>
27 #include <tools/libc_compat.h> // reallocarray
28 
29 #include "dso.h"
30 #include "evlist.h"
31 #include "evsel.h"
32 #include "util/evsel_fprintf.h"
33 #include "header.h"
34 #include "memswap.h"
35 #include "trace-event.h"
36 #include "session.h"
37 #include "symbol.h"
38 #include "debug.h"
39 #include "cpumap.h"
40 #include "pmu.h"
41 #include "pmus.h"
42 #include "vdso.h"
43 #include "strbuf.h"
44 #include "build-id.h"
45 #include "data.h"
46 #include <api/fs/fs.h>
47 #include <api/io_dir.h>
48 #include "asm/bug.h"
49 #include "tool.h"
50 #include "time-utils.h"
51 #include "units.h"
52 #include "util/util.h" // perf_exe()
53 #include "cputopo.h"
54 #include "bpf-event.h"
55 #include "bpf-utils.h"
56 #include "clockid.h"
57 
58 #include <linux/ctype.h>
59 #include <internal/lib.h>
60 
61 #ifdef HAVE_LIBTRACEEVENT
62 #include <event-parse.h>
63 #endif
64 
65 /*
66  * magic2 = "PERFILE2"
67  * must be a numerical value to let the endianness
68  * determine the memory layout. That way we are able
69  * to detect endianness when reading the perf.data file
70  * back.
71  *
72  * we check for legacy (PERFFILE) format.
73  */
74 static const char *__perf_magic1 = "PERFFILE";
75 static const u64 __perf_magic2    = 0x32454c4946524550ULL;
76 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
77 
78 #define PERF_MAGIC	__perf_magic2
79 
80 const char perf_version_string[] = PERF_VERSION;
81 
82 struct perf_file_attr {
83 	struct perf_event_attr	attr;
84 	struct perf_file_section	ids;
85 };
86 
perf_header__set_feat(struct perf_header * header,int feat)87 void perf_header__set_feat(struct perf_header *header, int feat)
88 {
89 	__set_bit(feat, header->adds_features);
90 }
91 
perf_header__clear_feat(struct perf_header * header,int feat)92 void perf_header__clear_feat(struct perf_header *header, int feat)
93 {
94 	__clear_bit(feat, header->adds_features);
95 }
96 
perf_header__has_feat(const struct perf_header * header,int feat)97 bool perf_header__has_feat(const struct perf_header *header, int feat)
98 {
99 	return test_bit(feat, header->adds_features);
100 }
101 
__do_write_fd(struct feat_fd * ff,const void * buf,size_t size)102 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
103 {
104 	ssize_t ret = writen(ff->fd, buf, size);
105 
106 	if (ret != (ssize_t)size)
107 		return ret < 0 ? (int)ret : -1;
108 	return 0;
109 }
110 
__do_write_buf(struct feat_fd * ff,const void * buf,size_t size)111 static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
112 {
113 	/* struct perf_event_header::size is u16 */
114 	const size_t max_size = 0xffff - sizeof(struct perf_event_header);
115 	size_t new_size = ff->size;
116 	void *addr;
117 
118 	if (size + ff->offset > max_size)
119 		return -E2BIG;
120 
121 	while (size > (new_size - ff->offset))
122 		new_size <<= 1;
123 	new_size = min(max_size, new_size);
124 
125 	if (ff->size < new_size) {
126 		addr = realloc(ff->buf, new_size);
127 		if (!addr)
128 			return -ENOMEM;
129 		ff->buf = addr;
130 		ff->size = new_size;
131 	}
132 
133 	memcpy(ff->buf + ff->offset, buf, size);
134 	ff->offset += size;
135 
136 	return 0;
137 }
138 
139 /* Return: 0 if succeeded, -ERR if failed. */
do_write(struct feat_fd * ff,const void * buf,size_t size)140 int do_write(struct feat_fd *ff, const void *buf, size_t size)
141 {
142 	if (!ff->buf)
143 		return __do_write_fd(ff, buf, size);
144 	return __do_write_buf(ff, buf, size);
145 }
146 
147 /* Return: 0 if succeeded, -ERR if failed. */
do_write_bitmap(struct feat_fd * ff,unsigned long * set,u64 size)148 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
149 {
150 	u64 *p = (u64 *) set;
151 	int i, ret;
152 
153 	ret = do_write(ff, &size, sizeof(size));
154 	if (ret < 0)
155 		return ret;
156 
157 	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
158 		ret = do_write(ff, p + i, sizeof(*p));
159 		if (ret < 0)
160 			return ret;
161 	}
162 
163 	return 0;
164 }
165 
166 /* Return: 0 if succeeded, -ERR if failed. */
write_padded(struct feat_fd * ff,const void * bf,size_t count,size_t count_aligned)167 int write_padded(struct feat_fd *ff, const void *bf,
168 		 size_t count, size_t count_aligned)
169 {
170 	static const char zero_buf[NAME_ALIGN];
171 	int err = do_write(ff, bf, count);
172 
173 	if (!err)
174 		err = do_write(ff, zero_buf, count_aligned - count);
175 
176 	return err;
177 }
178 
179 #define string_size(str)						\
180 	(PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
181 
182 /* Return: 0 if succeeded, -ERR if failed. */
do_write_string(struct feat_fd * ff,const char * str)183 static int do_write_string(struct feat_fd *ff, const char *str)
184 {
185 	u32 len, olen;
186 	int ret;
187 
188 	olen = strlen(str) + 1;
189 	len = PERF_ALIGN(olen, NAME_ALIGN);
190 
191 	/* write len, incl. \0 */
192 	ret = do_write(ff, &len, sizeof(len));
193 	if (ret < 0)
194 		return ret;
195 
196 	return write_padded(ff, str, olen, len);
197 }
198 
__do_read_fd(struct feat_fd * ff,void * addr,ssize_t size)199 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
200 {
201 	ssize_t ret = readn(ff->fd, addr, size);
202 
203 	if (ret != size)
204 		return ret < 0 ? (int)ret : -1;
205 	return 0;
206 }
207 
__do_read_buf(struct feat_fd * ff,void * addr,ssize_t size)208 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
209 {
210 	if (size > (ssize_t)ff->size - ff->offset)
211 		return -1;
212 
213 	memcpy(addr, ff->buf + ff->offset, size);
214 	ff->offset += size;
215 
216 	return 0;
217 
218 }
219 
__do_read(struct feat_fd * ff,void * addr,ssize_t size)220 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
221 {
222 	if (!ff->buf)
223 		return __do_read_fd(ff, addr, size);
224 	return __do_read_buf(ff, addr, size);
225 }
226 
do_read_u32(struct feat_fd * ff,u32 * addr)227 static int do_read_u32(struct feat_fd *ff, u32 *addr)
228 {
229 	int ret;
230 
231 	ret = __do_read(ff, addr, sizeof(*addr));
232 	if (ret)
233 		return ret;
234 
235 	if (ff->ph->needs_swap)
236 		*addr = bswap_32(*addr);
237 	return 0;
238 }
239 
do_read_u64(struct feat_fd * ff,u64 * addr)240 static int do_read_u64(struct feat_fd *ff, u64 *addr)
241 {
242 	int ret;
243 
244 	ret = __do_read(ff, addr, sizeof(*addr));
245 	if (ret)
246 		return ret;
247 
248 	if (ff->ph->needs_swap)
249 		*addr = bswap_64(*addr);
250 	return 0;
251 }
252 
do_read_string(struct feat_fd * ff)253 static char *do_read_string(struct feat_fd *ff)
254 {
255 	u32 len;
256 	char *buf;
257 
258 	if (do_read_u32(ff, &len))
259 		return NULL;
260 
261 	buf = malloc(len);
262 	if (!buf)
263 		return NULL;
264 
265 	if (!__do_read(ff, buf, len)) {
266 		/*
267 		 * strings are padded by zeroes
268 		 * thus the actual strlen of buf
269 		 * may be less than len
270 		 */
271 		return buf;
272 	}
273 
274 	free(buf);
275 	return NULL;
276 }
277 
278 /* Return: 0 if succeeded, -ERR if failed. */
do_read_bitmap(struct feat_fd * ff,unsigned long ** pset,u64 * psize)279 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
280 {
281 	unsigned long *set;
282 	u64 size, *p;
283 	int i, ret;
284 
285 	ret = do_read_u64(ff, &size);
286 	if (ret)
287 		return ret;
288 
289 	set = bitmap_zalloc(size);
290 	if (!set)
291 		return -ENOMEM;
292 
293 	p = (u64 *) set;
294 
295 	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
296 		ret = do_read_u64(ff, p + i);
297 		if (ret < 0) {
298 			free(set);
299 			return ret;
300 		}
301 	}
302 
303 	*pset  = set;
304 	*psize = size;
305 	return 0;
306 }
307 
308 #ifdef HAVE_LIBTRACEEVENT
write_tracing_data(struct feat_fd * ff,struct evlist * evlist)309 static int write_tracing_data(struct feat_fd *ff,
310 			      struct evlist *evlist)
311 {
312 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
313 		return -1;
314 
315 	return read_tracing_data(ff->fd, &evlist->core.entries);
316 }
317 #endif
318 
write_build_id(struct feat_fd * ff,struct evlist * evlist __maybe_unused)319 static int write_build_id(struct feat_fd *ff,
320 			  struct evlist *evlist __maybe_unused)
321 {
322 	struct perf_session *session;
323 	int err;
324 
325 	session = container_of(ff->ph, struct perf_session, header);
326 
327 	if (!perf_session__read_build_ids(session, true))
328 		return -1;
329 
330 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
331 		return -1;
332 
333 	err = perf_session__write_buildid_table(session, ff);
334 	if (err < 0) {
335 		pr_debug("failed to write buildid table\n");
336 		return err;
337 	}
338 
339 	return 0;
340 }
341 
write_hostname(struct feat_fd * ff,struct evlist * evlist __maybe_unused)342 static int write_hostname(struct feat_fd *ff,
343 			  struct evlist *evlist __maybe_unused)
344 {
345 	struct utsname uts;
346 	int ret;
347 
348 	ret = uname(&uts);
349 	if (ret < 0)
350 		return -1;
351 
352 	return do_write_string(ff, uts.nodename);
353 }
354 
write_osrelease(struct feat_fd * ff,struct evlist * evlist __maybe_unused)355 static int write_osrelease(struct feat_fd *ff,
356 			   struct evlist *evlist __maybe_unused)
357 {
358 	struct utsname uts;
359 	int ret;
360 
361 	ret = uname(&uts);
362 	if (ret < 0)
363 		return -1;
364 
365 	return do_write_string(ff, uts.release);
366 }
367 
write_arch(struct feat_fd * ff,struct evlist * evlist __maybe_unused)368 static int write_arch(struct feat_fd *ff,
369 		      struct evlist *evlist __maybe_unused)
370 {
371 	struct utsname uts;
372 	int ret;
373 
374 	ret = uname(&uts);
375 	if (ret < 0)
376 		return -1;
377 
378 	return do_write_string(ff, uts.machine);
379 }
380 
write_version(struct feat_fd * ff,struct evlist * evlist __maybe_unused)381 static int write_version(struct feat_fd *ff,
382 			 struct evlist *evlist __maybe_unused)
383 {
384 	return do_write_string(ff, perf_version_string);
385 }
386 
__write_cpudesc(struct feat_fd * ff,const char * cpuinfo_proc)387 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
388 {
389 	FILE *file;
390 	char *buf = NULL;
391 	char *s, *p;
392 	const char *search = cpuinfo_proc;
393 	size_t len = 0;
394 	int ret = -1;
395 
396 	if (!search)
397 		return -1;
398 
399 	file = fopen("/proc/cpuinfo", "r");
400 	if (!file)
401 		return -1;
402 
403 	while (getline(&buf, &len, file) > 0) {
404 		ret = strncmp(buf, search, strlen(search));
405 		if (!ret)
406 			break;
407 	}
408 
409 	if (ret) {
410 		ret = -1;
411 		goto done;
412 	}
413 
414 	s = buf;
415 
416 	p = strchr(buf, ':');
417 	if (p && *(p+1) == ' ' && *(p+2))
418 		s = p + 2;
419 	p = strchr(s, '\n');
420 	if (p)
421 		*p = '\0';
422 
423 	/* squash extra space characters (branding string) */
424 	p = s;
425 	while (*p) {
426 		if (isspace(*p)) {
427 			char *r = p + 1;
428 			char *q = skip_spaces(r);
429 			*p = ' ';
430 			if (q != (p+1))
431 				while ((*r++ = *q++));
432 		}
433 		p++;
434 	}
435 	ret = do_write_string(ff, s);
436 done:
437 	free(buf);
438 	fclose(file);
439 	return ret;
440 }
441 
write_cpudesc(struct feat_fd * ff,struct evlist * evlist __maybe_unused)442 static int write_cpudesc(struct feat_fd *ff,
443 		       struct evlist *evlist __maybe_unused)
444 {
445 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
446 #define CPUINFO_PROC	{ "cpu", }
447 #elif defined(__s390__)
448 #define CPUINFO_PROC	{ "vendor_id", }
449 #elif defined(__sh__)
450 #define CPUINFO_PROC	{ "cpu type", }
451 #elif defined(__alpha__) || defined(__mips__)
452 #define CPUINFO_PROC	{ "cpu model", }
453 #elif defined(__arm__)
454 #define CPUINFO_PROC	{ "model name", "Processor", }
455 #elif defined(__arc__)
456 #define CPUINFO_PROC	{ "Processor", }
457 #elif defined(__xtensa__)
458 #define CPUINFO_PROC	{ "core ID", }
459 #elif defined(__loongarch__)
460 #define CPUINFO_PROC	{ "Model Name", }
461 #else
462 #define CPUINFO_PROC	{ "model name", }
463 #endif
464 	const char *cpuinfo_procs[] = CPUINFO_PROC;
465 #undef CPUINFO_PROC
466 	unsigned int i;
467 
468 	for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
469 		int ret;
470 		ret = __write_cpudesc(ff, cpuinfo_procs[i]);
471 		if (ret >= 0)
472 			return ret;
473 	}
474 	return -1;
475 }
476 
477 
write_nrcpus(struct feat_fd * ff,struct evlist * evlist __maybe_unused)478 static int write_nrcpus(struct feat_fd *ff,
479 			struct evlist *evlist __maybe_unused)
480 {
481 	long nr;
482 	u32 nrc, nra;
483 	int ret;
484 
485 	nrc = cpu__max_present_cpu().cpu;
486 
487 	nr = sysconf(_SC_NPROCESSORS_ONLN);
488 	if (nr < 0)
489 		return -1;
490 
491 	nra = (u32)(nr & UINT_MAX);
492 
493 	ret = do_write(ff, &nrc, sizeof(nrc));
494 	if (ret < 0)
495 		return ret;
496 
497 	return do_write(ff, &nra, sizeof(nra));
498 }
499 
write_event_desc(struct feat_fd * ff,struct evlist * evlist)500 static int write_event_desc(struct feat_fd *ff,
501 			    struct evlist *evlist)
502 {
503 	struct evsel *evsel;
504 	u32 nre, nri, sz;
505 	int ret;
506 
507 	nre = evlist->core.nr_entries;
508 
509 	/*
510 	 * write number of events
511 	 */
512 	ret = do_write(ff, &nre, sizeof(nre));
513 	if (ret < 0)
514 		return ret;
515 
516 	/*
517 	 * size of perf_event_attr struct
518 	 */
519 	sz = (u32)sizeof(evsel->core.attr);
520 	ret = do_write(ff, &sz, sizeof(sz));
521 	if (ret < 0)
522 		return ret;
523 
524 	evlist__for_each_entry(evlist, evsel) {
525 		ret = do_write(ff, &evsel->core.attr, sz);
526 		if (ret < 0)
527 			return ret;
528 		/*
529 		 * write number of unique id per event
530 		 * there is one id per instance of an event
531 		 *
532 		 * copy into an nri to be independent of the
533 		 * type of ids,
534 		 */
535 		nri = evsel->core.ids;
536 		ret = do_write(ff, &nri, sizeof(nri));
537 		if (ret < 0)
538 			return ret;
539 
540 		/*
541 		 * write event string as passed on cmdline
542 		 */
543 		ret = do_write_string(ff, evsel__name(evsel));
544 		if (ret < 0)
545 			return ret;
546 		/*
547 		 * write unique ids for this event
548 		 */
549 		ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
550 		if (ret < 0)
551 			return ret;
552 	}
553 	return 0;
554 }
555 
write_cmdline(struct feat_fd * ff,struct evlist * evlist __maybe_unused)556 static int write_cmdline(struct feat_fd *ff,
557 			 struct evlist *evlist __maybe_unused)
558 {
559 	struct perf_env *env = &ff->ph->env;
560 	char pbuf[MAXPATHLEN], *buf;
561 	int i, ret, n;
562 
563 	/* actual path to perf binary */
564 	buf = perf_exe(pbuf, MAXPATHLEN);
565 
566 	/* account for binary path */
567 	n = env->nr_cmdline + 1;
568 
569 	ret = do_write(ff, &n, sizeof(n));
570 	if (ret < 0)
571 		return ret;
572 
573 	ret = do_write_string(ff, buf);
574 	if (ret < 0)
575 		return ret;
576 
577 	for (i = 0 ; i < env->nr_cmdline; i++) {
578 		ret = do_write_string(ff, env->cmdline_argv[i]);
579 		if (ret < 0)
580 			return ret;
581 	}
582 	return 0;
583 }
584 
585 
write_cpu_topology(struct feat_fd * ff,struct evlist * evlist __maybe_unused)586 static int write_cpu_topology(struct feat_fd *ff,
587 			      struct evlist *evlist __maybe_unused)
588 {
589 	struct perf_env *env = &ff->ph->env;
590 	struct cpu_topology *tp;
591 	u32 i;
592 	int ret, j;
593 
594 	tp = cpu_topology__new();
595 	if (!tp)
596 		return -1;
597 
598 	ret = do_write(ff, &tp->package_cpus_lists, sizeof(tp->package_cpus_lists));
599 	if (ret < 0)
600 		goto done;
601 
602 	for (i = 0; i < tp->package_cpus_lists; i++) {
603 		ret = do_write_string(ff, tp->package_cpus_list[i]);
604 		if (ret < 0)
605 			goto done;
606 	}
607 	ret = do_write(ff, &tp->core_cpus_lists, sizeof(tp->core_cpus_lists));
608 	if (ret < 0)
609 		goto done;
610 
611 	for (i = 0; i < tp->core_cpus_lists; i++) {
612 		ret = do_write_string(ff, tp->core_cpus_list[i]);
613 		if (ret < 0)
614 			break;
615 	}
616 
617 	ret = perf_env__read_cpu_topology_map(env);
618 	if (ret < 0)
619 		goto done;
620 
621 	for (j = 0; j < env->nr_cpus_avail; j++) {
622 		ret = do_write(ff, &env->cpu[j].core_id,
623 			       sizeof(env->cpu[j].core_id));
624 		if (ret < 0)
625 			return ret;
626 		ret = do_write(ff, &env->cpu[j].socket_id,
627 			       sizeof(env->cpu[j].socket_id));
628 		if (ret < 0)
629 			return ret;
630 	}
631 
632 	if (!tp->die_cpus_lists)
633 		goto done;
634 
635 	ret = do_write(ff, &tp->die_cpus_lists, sizeof(tp->die_cpus_lists));
636 	if (ret < 0)
637 		goto done;
638 
639 	for (i = 0; i < tp->die_cpus_lists; i++) {
640 		ret = do_write_string(ff, tp->die_cpus_list[i]);
641 		if (ret < 0)
642 			goto done;
643 	}
644 
645 	for (j = 0; j < env->nr_cpus_avail; j++) {
646 		ret = do_write(ff, &env->cpu[j].die_id,
647 			       sizeof(env->cpu[j].die_id));
648 		if (ret < 0)
649 			return ret;
650 	}
651 
652 done:
653 	cpu_topology__delete(tp);
654 	return ret;
655 }
656 
657 
658 
write_total_mem(struct feat_fd * ff,struct evlist * evlist __maybe_unused)659 static int write_total_mem(struct feat_fd *ff,
660 			   struct evlist *evlist __maybe_unused)
661 {
662 	char *buf = NULL;
663 	FILE *fp;
664 	size_t len = 0;
665 	int ret = -1, n;
666 	uint64_t mem;
667 
668 	fp = fopen("/proc/meminfo", "r");
669 	if (!fp)
670 		return -1;
671 
672 	while (getline(&buf, &len, fp) > 0) {
673 		ret = strncmp(buf, "MemTotal:", 9);
674 		if (!ret)
675 			break;
676 	}
677 	if (!ret) {
678 		n = sscanf(buf, "%*s %"PRIu64, &mem);
679 		if (n == 1)
680 			ret = do_write(ff, &mem, sizeof(mem));
681 	} else
682 		ret = -1;
683 	free(buf);
684 	fclose(fp);
685 	return ret;
686 }
687 
write_numa_topology(struct feat_fd * ff,struct evlist * evlist __maybe_unused)688 static int write_numa_topology(struct feat_fd *ff,
689 			       struct evlist *evlist __maybe_unused)
690 {
691 	struct numa_topology *tp;
692 	int ret = -1;
693 	u32 i;
694 
695 	tp = numa_topology__new();
696 	if (!tp)
697 		return -ENOMEM;
698 
699 	ret = do_write(ff, &tp->nr, sizeof(u32));
700 	if (ret < 0)
701 		goto err;
702 
703 	for (i = 0; i < tp->nr; i++) {
704 		struct numa_topology_node *n = &tp->nodes[i];
705 
706 		ret = do_write(ff, &n->node, sizeof(u32));
707 		if (ret < 0)
708 			goto err;
709 
710 		ret = do_write(ff, &n->mem_total, sizeof(u64));
711 		if (ret)
712 			goto err;
713 
714 		ret = do_write(ff, &n->mem_free, sizeof(u64));
715 		if (ret)
716 			goto err;
717 
718 		ret = do_write_string(ff, n->cpus);
719 		if (ret < 0)
720 			goto err;
721 	}
722 
723 	ret = 0;
724 
725 err:
726 	numa_topology__delete(tp);
727 	return ret;
728 }
729 
730 /*
731  * File format:
732  *
733  * struct pmu_mappings {
734  *	u32	pmu_num;
735  *	struct pmu_map {
736  *		u32	type;
737  *		char	name[];
738  *	}[pmu_num];
739  * };
740  */
741 
write_pmu_mappings(struct feat_fd * ff,struct evlist * evlist __maybe_unused)742 static int write_pmu_mappings(struct feat_fd *ff,
743 			      struct evlist *evlist __maybe_unused)
744 {
745 	struct perf_pmu *pmu = NULL;
746 	u32 pmu_num = 0;
747 	int ret;
748 
749 	/*
750 	 * Do a first pass to count number of pmu to avoid lseek so this
751 	 * works in pipe mode as well.
752 	 */
753 	while ((pmu = perf_pmus__scan(pmu)))
754 		pmu_num++;
755 
756 	ret = do_write(ff, &pmu_num, sizeof(pmu_num));
757 	if (ret < 0)
758 		return ret;
759 
760 	while ((pmu = perf_pmus__scan(pmu))) {
761 		ret = do_write(ff, &pmu->type, sizeof(pmu->type));
762 		if (ret < 0)
763 			return ret;
764 
765 		ret = do_write_string(ff, pmu->name);
766 		if (ret < 0)
767 			return ret;
768 	}
769 
770 	return 0;
771 }
772 
773 /*
774  * File format:
775  *
776  * struct group_descs {
777  *	u32	nr_groups;
778  *	struct group_desc {
779  *		char	name[];
780  *		u32	leader_idx;
781  *		u32	nr_members;
782  *	}[nr_groups];
783  * };
784  */
write_group_desc(struct feat_fd * ff,struct evlist * evlist)785 static int write_group_desc(struct feat_fd *ff,
786 			    struct evlist *evlist)
787 {
788 	u32 nr_groups = evlist__nr_groups(evlist);
789 	struct evsel *evsel;
790 	int ret;
791 
792 	ret = do_write(ff, &nr_groups, sizeof(nr_groups));
793 	if (ret < 0)
794 		return ret;
795 
796 	evlist__for_each_entry(evlist, evsel) {
797 		if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
798 			const char *name = evsel->group_name ?: "{anon_group}";
799 			u32 leader_idx = evsel->core.idx;
800 			u32 nr_members = evsel->core.nr_members;
801 
802 			ret = do_write_string(ff, name);
803 			if (ret < 0)
804 				return ret;
805 
806 			ret = do_write(ff, &leader_idx, sizeof(leader_idx));
807 			if (ret < 0)
808 				return ret;
809 
810 			ret = do_write(ff, &nr_members, sizeof(nr_members));
811 			if (ret < 0)
812 				return ret;
813 		}
814 	}
815 	return 0;
816 }
817 
818 /*
819  * Return the CPU id as a raw string.
820  *
821  * Each architecture should provide a more precise id string that
822  * can be use to match the architecture's "mapfile".
823  */
get_cpuid_str(struct perf_cpu cpu __maybe_unused)824 char * __weak get_cpuid_str(struct perf_cpu cpu __maybe_unused)
825 {
826 	return NULL;
827 }
828 
get_cpuid_allow_env_override(struct perf_cpu cpu)829 char *get_cpuid_allow_env_override(struct perf_cpu cpu)
830 {
831 	char *cpuid;
832 	static bool printed;
833 
834 	cpuid = getenv("PERF_CPUID");
835 	if (cpuid)
836 		cpuid = strdup(cpuid);
837 	if (!cpuid)
838 		cpuid = get_cpuid_str(cpu);
839 	if (!cpuid)
840 		return NULL;
841 
842 	if (!printed) {
843 		pr_debug("Using CPUID %s\n", cpuid);
844 		printed = true;
845 	}
846 	return cpuid;
847 }
848 
849 /* Return zero when the cpuid from the mapfile.csv matches the
850  * cpuid string generated on this platform.
851  * Otherwise return non-zero.
852  */
strcmp_cpuid_str(const char * mapcpuid,const char * cpuid)853 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
854 {
855 	regex_t re;
856 	regmatch_t pmatch[1];
857 	int match;
858 
859 	if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
860 		/* Warn unable to generate match particular string. */
861 		pr_info("Invalid regular expression %s\n", mapcpuid);
862 		return 1;
863 	}
864 
865 	match = !regexec(&re, cpuid, 1, pmatch, 0);
866 	regfree(&re);
867 	if (match) {
868 		size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
869 
870 		/* Verify the entire string matched. */
871 		if (match_len == strlen(cpuid))
872 			return 0;
873 	}
874 	return 1;
875 }
876 
877 /*
878  * default get_cpuid(): nothing gets recorded
879  * actual implementation must be in arch/$(SRCARCH)/util/header.c
880  */
get_cpuid(char * buffer __maybe_unused,size_t sz __maybe_unused,struct perf_cpu cpu __maybe_unused)881 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused,
882 		     struct perf_cpu cpu __maybe_unused)
883 {
884 	return ENOSYS; /* Not implemented */
885 }
886 
write_cpuid(struct feat_fd * ff,struct evlist * evlist)887 static int write_cpuid(struct feat_fd *ff, struct evlist *evlist)
888 {
889 	struct perf_cpu cpu = perf_cpu_map__min(evlist->core.all_cpus);
890 	char buffer[64];
891 	int ret;
892 
893 	ret = get_cpuid(buffer, sizeof(buffer), cpu);
894 	if (ret)
895 		return -1;
896 
897 	return do_write_string(ff, buffer);
898 }
899 
write_branch_stack(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)900 static int write_branch_stack(struct feat_fd *ff __maybe_unused,
901 			      struct evlist *evlist __maybe_unused)
902 {
903 	return 0;
904 }
905 
write_auxtrace(struct feat_fd * ff,struct evlist * evlist __maybe_unused)906 static int write_auxtrace(struct feat_fd *ff,
907 			  struct evlist *evlist __maybe_unused)
908 {
909 	struct perf_session *session;
910 	int err;
911 
912 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
913 		return -1;
914 
915 	session = container_of(ff->ph, struct perf_session, header);
916 
917 	err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
918 	if (err < 0)
919 		pr_err("Failed to write auxtrace index\n");
920 	return err;
921 }
922 
write_clockid(struct feat_fd * ff,struct evlist * evlist __maybe_unused)923 static int write_clockid(struct feat_fd *ff,
924 			 struct evlist *evlist __maybe_unused)
925 {
926 	return do_write(ff, &ff->ph->env.clock.clockid_res_ns,
927 			sizeof(ff->ph->env.clock.clockid_res_ns));
928 }
929 
write_clock_data(struct feat_fd * ff,struct evlist * evlist __maybe_unused)930 static int write_clock_data(struct feat_fd *ff,
931 			    struct evlist *evlist __maybe_unused)
932 {
933 	u64 *data64;
934 	u32 data32;
935 	int ret;
936 
937 	/* version */
938 	data32 = 1;
939 
940 	ret = do_write(ff, &data32, sizeof(data32));
941 	if (ret < 0)
942 		return ret;
943 
944 	/* clockid */
945 	data32 = ff->ph->env.clock.clockid;
946 
947 	ret = do_write(ff, &data32, sizeof(data32));
948 	if (ret < 0)
949 		return ret;
950 
951 	/* TOD ref time */
952 	data64 = &ff->ph->env.clock.tod_ns;
953 
954 	ret = do_write(ff, data64, sizeof(*data64));
955 	if (ret < 0)
956 		return ret;
957 
958 	/* clockid ref time */
959 	data64 = &ff->ph->env.clock.clockid_ns;
960 
961 	return do_write(ff, data64, sizeof(*data64));
962 }
963 
write_hybrid_topology(struct feat_fd * ff,struct evlist * evlist __maybe_unused)964 static int write_hybrid_topology(struct feat_fd *ff,
965 				 struct evlist *evlist __maybe_unused)
966 {
967 	struct hybrid_topology *tp;
968 	int ret;
969 	u32 i;
970 
971 	tp = hybrid_topology__new();
972 	if (!tp)
973 		return -ENOENT;
974 
975 	ret = do_write(ff, &tp->nr, sizeof(u32));
976 	if (ret < 0)
977 		goto err;
978 
979 	for (i = 0; i < tp->nr; i++) {
980 		struct hybrid_topology_node *n = &tp->nodes[i];
981 
982 		ret = do_write_string(ff, n->pmu_name);
983 		if (ret < 0)
984 			goto err;
985 
986 		ret = do_write_string(ff, n->cpus);
987 		if (ret < 0)
988 			goto err;
989 	}
990 
991 	ret = 0;
992 
993 err:
994 	hybrid_topology__delete(tp);
995 	return ret;
996 }
997 
write_dir_format(struct feat_fd * ff,struct evlist * evlist __maybe_unused)998 static int write_dir_format(struct feat_fd *ff,
999 			    struct evlist *evlist __maybe_unused)
1000 {
1001 	struct perf_session *session;
1002 	struct perf_data *data;
1003 
1004 	session = container_of(ff->ph, struct perf_session, header);
1005 	data = session->data;
1006 
1007 	if (WARN_ON(!perf_data__is_dir(data)))
1008 		return -1;
1009 
1010 	return do_write(ff, &data->dir.version, sizeof(data->dir.version));
1011 }
1012 
1013 #ifdef HAVE_LIBBPF_SUPPORT
write_bpf_prog_info(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1014 static int write_bpf_prog_info(struct feat_fd *ff,
1015 			       struct evlist *evlist __maybe_unused)
1016 {
1017 	struct perf_env *env = &ff->ph->env;
1018 	struct rb_root *root;
1019 	struct rb_node *next;
1020 	int ret = 0;
1021 
1022 	down_read(&env->bpf_progs.lock);
1023 
1024 	ret = do_write(ff, &env->bpf_progs.infos_cnt,
1025 		       sizeof(env->bpf_progs.infos_cnt));
1026 	if (ret < 0 || env->bpf_progs.infos_cnt == 0)
1027 		goto out;
1028 
1029 	root = &env->bpf_progs.infos;
1030 	next = rb_first(root);
1031 	while (next) {
1032 		struct bpf_prog_info_node *node;
1033 		size_t len;
1034 
1035 		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1036 		next = rb_next(&node->rb_node);
1037 		len = sizeof(struct perf_bpil) +
1038 			node->info_linear->data_len;
1039 
1040 		/* before writing to file, translate address to offset */
1041 		bpil_addr_to_offs(node->info_linear);
1042 		ret = do_write(ff, node->info_linear, len);
1043 		/*
1044 		 * translate back to address even when do_write() fails,
1045 		 * so that this function never changes the data.
1046 		 */
1047 		bpil_offs_to_addr(node->info_linear);
1048 		if (ret < 0)
1049 			goto out;
1050 	}
1051 out:
1052 	up_read(&env->bpf_progs.lock);
1053 	return ret;
1054 }
1055 
write_bpf_btf(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1056 static int write_bpf_btf(struct feat_fd *ff,
1057 			 struct evlist *evlist __maybe_unused)
1058 {
1059 	struct perf_env *env = &ff->ph->env;
1060 	struct rb_root *root;
1061 	struct rb_node *next;
1062 	int ret = 0;
1063 
1064 	down_read(&env->bpf_progs.lock);
1065 
1066 	ret = do_write(ff, &env->bpf_progs.btfs_cnt,
1067 		       sizeof(env->bpf_progs.btfs_cnt));
1068 
1069 	if (ret < 0 || env->bpf_progs.btfs_cnt == 0)
1070 		goto out;
1071 
1072 	root = &env->bpf_progs.btfs;
1073 	next = rb_first(root);
1074 	while (next) {
1075 		struct btf_node *node;
1076 
1077 		node = rb_entry(next, struct btf_node, rb_node);
1078 		next = rb_next(&node->rb_node);
1079 		ret = do_write(ff, &node->id,
1080 			       sizeof(u32) * 2 + node->data_size);
1081 		if (ret < 0)
1082 			goto out;
1083 	}
1084 out:
1085 	up_read(&env->bpf_progs.lock);
1086 	return ret;
1087 }
1088 #endif // HAVE_LIBBPF_SUPPORT
1089 
cpu_cache_level__sort(const void * a,const void * b)1090 static int cpu_cache_level__sort(const void *a, const void *b)
1091 {
1092 	struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1093 	struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1094 
1095 	return cache_a->level - cache_b->level;
1096 }
1097 
cpu_cache_level__cmp(struct cpu_cache_level * a,struct cpu_cache_level * b)1098 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1099 {
1100 	if (a->level != b->level)
1101 		return false;
1102 
1103 	if (a->line_size != b->line_size)
1104 		return false;
1105 
1106 	if (a->sets != b->sets)
1107 		return false;
1108 
1109 	if (a->ways != b->ways)
1110 		return false;
1111 
1112 	if (strcmp(a->type, b->type))
1113 		return false;
1114 
1115 	if (strcmp(a->size, b->size))
1116 		return false;
1117 
1118 	if (strcmp(a->map, b->map))
1119 		return false;
1120 
1121 	return true;
1122 }
1123 
cpu_cache_level__read(struct cpu_cache_level * cache,u32 cpu,u16 level)1124 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1125 {
1126 	char path[PATH_MAX], file[PATH_MAX];
1127 	struct stat st;
1128 	size_t len;
1129 
1130 	scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1131 	scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1132 
1133 	if (stat(file, &st))
1134 		return 1;
1135 
1136 	scnprintf(file, PATH_MAX, "%s/level", path);
1137 	if (sysfs__read_int(file, (int *) &cache->level))
1138 		return -1;
1139 
1140 	scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1141 	if (sysfs__read_int(file, (int *) &cache->line_size))
1142 		return -1;
1143 
1144 	scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1145 	if (sysfs__read_int(file, (int *) &cache->sets))
1146 		return -1;
1147 
1148 	scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1149 	if (sysfs__read_int(file, (int *) &cache->ways))
1150 		return -1;
1151 
1152 	scnprintf(file, PATH_MAX, "%s/type", path);
1153 	if (sysfs__read_str(file, &cache->type, &len))
1154 		return -1;
1155 
1156 	cache->type[len] = 0;
1157 	cache->type = strim(cache->type);
1158 
1159 	scnprintf(file, PATH_MAX, "%s/size", path);
1160 	if (sysfs__read_str(file, &cache->size, &len)) {
1161 		zfree(&cache->type);
1162 		return -1;
1163 	}
1164 
1165 	cache->size[len] = 0;
1166 	cache->size = strim(cache->size);
1167 
1168 	scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1169 	if (sysfs__read_str(file, &cache->map, &len)) {
1170 		zfree(&cache->size);
1171 		zfree(&cache->type);
1172 		return -1;
1173 	}
1174 
1175 	cache->map[len] = 0;
1176 	cache->map = strim(cache->map);
1177 	return 0;
1178 }
1179 
cpu_cache_level__fprintf(FILE * out,struct cpu_cache_level * c)1180 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1181 {
1182 	fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1183 }
1184 
1185 /*
1186  * Build caches levels for a particular CPU from the data in
1187  * /sys/devices/system/cpu/cpu<cpu>/cache/
1188  * The cache level data is stored in caches[] from index at
1189  * *cntp.
1190  */
build_caches_for_cpu(u32 cpu,struct cpu_cache_level caches[],u32 * cntp)1191 int build_caches_for_cpu(u32 cpu, struct cpu_cache_level caches[], u32 *cntp)
1192 {
1193 	u16 level;
1194 
1195 	for (level = 0; level < MAX_CACHE_LVL; level++) {
1196 		struct cpu_cache_level c;
1197 		int err;
1198 		u32 i;
1199 
1200 		err = cpu_cache_level__read(&c, cpu, level);
1201 		if (err < 0)
1202 			return err;
1203 
1204 		if (err == 1)
1205 			break;
1206 
1207 		for (i = 0; i < *cntp; i++) {
1208 			if (cpu_cache_level__cmp(&c, &caches[i]))
1209 				break;
1210 		}
1211 
1212 		if (i == *cntp) {
1213 			caches[*cntp] = c;
1214 			*cntp = *cntp + 1;
1215 		} else
1216 			cpu_cache_level__free(&c);
1217 	}
1218 
1219 	return 0;
1220 }
1221 
build_caches(struct cpu_cache_level caches[],u32 * cntp)1222 static int build_caches(struct cpu_cache_level caches[], u32 *cntp)
1223 {
1224 	u32 nr, cpu, cnt = 0;
1225 
1226 	nr = cpu__max_cpu().cpu;
1227 
1228 	for (cpu = 0; cpu < nr; cpu++) {
1229 		int ret = build_caches_for_cpu(cpu, caches, &cnt);
1230 
1231 		if (ret)
1232 			return ret;
1233 	}
1234 	*cntp = cnt;
1235 	return 0;
1236 }
1237 
write_cache(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1238 static int write_cache(struct feat_fd *ff,
1239 		       struct evlist *evlist __maybe_unused)
1240 {
1241 	u32 max_caches = cpu__max_cpu().cpu * MAX_CACHE_LVL;
1242 	struct cpu_cache_level caches[max_caches];
1243 	u32 cnt = 0, i, version = 1;
1244 	int ret;
1245 
1246 	ret = build_caches(caches, &cnt);
1247 	if (ret)
1248 		goto out;
1249 
1250 	qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1251 
1252 	ret = do_write(ff, &version, sizeof(u32));
1253 	if (ret < 0)
1254 		goto out;
1255 
1256 	ret = do_write(ff, &cnt, sizeof(u32));
1257 	if (ret < 0)
1258 		goto out;
1259 
1260 	for (i = 0; i < cnt; i++) {
1261 		struct cpu_cache_level *c = &caches[i];
1262 
1263 		#define _W(v)					\
1264 			ret = do_write(ff, &c->v, sizeof(u32));	\
1265 			if (ret < 0)				\
1266 				goto out;
1267 
1268 		_W(level)
1269 		_W(line_size)
1270 		_W(sets)
1271 		_W(ways)
1272 		#undef _W
1273 
1274 		#define _W(v)						\
1275 			ret = do_write_string(ff, (const char *) c->v);	\
1276 			if (ret < 0)					\
1277 				goto out;
1278 
1279 		_W(type)
1280 		_W(size)
1281 		_W(map)
1282 		#undef _W
1283 	}
1284 
1285 out:
1286 	for (i = 0; i < cnt; i++)
1287 		cpu_cache_level__free(&caches[i]);
1288 	return ret;
1289 }
1290 
write_stat(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)1291 static int write_stat(struct feat_fd *ff __maybe_unused,
1292 		      struct evlist *evlist __maybe_unused)
1293 {
1294 	return 0;
1295 }
1296 
write_sample_time(struct feat_fd * ff,struct evlist * evlist)1297 static int write_sample_time(struct feat_fd *ff,
1298 			     struct evlist *evlist)
1299 {
1300 	int ret;
1301 
1302 	ret = do_write(ff, &evlist->first_sample_time,
1303 		       sizeof(evlist->first_sample_time));
1304 	if (ret < 0)
1305 		return ret;
1306 
1307 	return do_write(ff, &evlist->last_sample_time,
1308 			sizeof(evlist->last_sample_time));
1309 }
1310 
1311 
memory_node__read(struct memory_node * n,unsigned long idx)1312 static int memory_node__read(struct memory_node *n, unsigned long idx)
1313 {
1314 	unsigned int phys, size = 0;
1315 	char path[PATH_MAX];
1316 	struct io_dirent64 *ent;
1317 	struct io_dir dir;
1318 
1319 #define for_each_memory(mem, dir)					\
1320 	while ((ent = io_dir__readdir(&dir)) != NULL)			\
1321 		if (strcmp(ent->d_name, ".") &&				\
1322 		    strcmp(ent->d_name, "..") &&			\
1323 		    sscanf(ent->d_name, "memory%u", &mem) == 1)
1324 
1325 	scnprintf(path, PATH_MAX,
1326 		  "%s/devices/system/node/node%lu",
1327 		  sysfs__mountpoint(), idx);
1328 
1329 	io_dir__init(&dir, open(path, O_CLOEXEC | O_DIRECTORY | O_RDONLY));
1330 	if (dir.dirfd < 0) {
1331 		pr_warning("failed: can't open memory sysfs data '%s'\n", path);
1332 		return -1;
1333 	}
1334 
1335 	for_each_memory(phys, dir) {
1336 		size = max(phys, size);
1337 	}
1338 
1339 	size++;
1340 
1341 	n->set = bitmap_zalloc(size);
1342 	if (!n->set) {
1343 		close(dir.dirfd);
1344 		return -ENOMEM;
1345 	}
1346 
1347 	n->node = idx;
1348 	n->size = size;
1349 
1350 	io_dir__rewinddir(&dir);
1351 
1352 	for_each_memory(phys, dir) {
1353 		__set_bit(phys, n->set);
1354 	}
1355 
1356 	close(dir.dirfd);
1357 	return 0;
1358 }
1359 
memory_node__delete_nodes(struct memory_node * nodesp,u64 cnt)1360 static void memory_node__delete_nodes(struct memory_node *nodesp, u64 cnt)
1361 {
1362 	for (u64 i = 0; i < cnt; i++)
1363 		bitmap_free(nodesp[i].set);
1364 
1365 	free(nodesp);
1366 }
1367 
memory_node__sort(const void * a,const void * b)1368 static int memory_node__sort(const void *a, const void *b)
1369 {
1370 	const struct memory_node *na = a;
1371 	const struct memory_node *nb = b;
1372 
1373 	return na->node - nb->node;
1374 }
1375 
build_mem_topology(struct memory_node ** nodesp,u64 * cntp)1376 static int build_mem_topology(struct memory_node **nodesp, u64 *cntp)
1377 {
1378 	char path[PATH_MAX];
1379 	struct io_dirent64 *ent;
1380 	struct io_dir dir;
1381 	int ret = 0;
1382 	size_t cnt = 0, size = 0;
1383 	struct memory_node *nodes = NULL;
1384 
1385 	scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1386 		  sysfs__mountpoint());
1387 
1388 	io_dir__init(&dir, open(path, O_CLOEXEC | O_DIRECTORY | O_RDONLY));
1389 	if (dir.dirfd < 0) {
1390 		pr_debug2("%s: couldn't read %s, does this arch have topology information?\n",
1391 			  __func__, path);
1392 		return -1;
1393 	}
1394 
1395 	while (!ret && (ent = io_dir__readdir(&dir))) {
1396 		unsigned int idx;
1397 		int r;
1398 
1399 		if (!strcmp(ent->d_name, ".") ||
1400 		    !strcmp(ent->d_name, ".."))
1401 			continue;
1402 
1403 		r = sscanf(ent->d_name, "node%u", &idx);
1404 		if (r != 1)
1405 			continue;
1406 
1407 		if (cnt >= size) {
1408 			struct memory_node *new_nodes =
1409 				reallocarray(nodes, cnt + 4, sizeof(*nodes));
1410 
1411 			if (!new_nodes) {
1412 				pr_err("Failed to write MEM_TOPOLOGY, size %zd nodes\n", size);
1413 				ret = -ENOMEM;
1414 				goto out;
1415 			}
1416 			nodes = new_nodes;
1417 			size += 4;
1418 		}
1419 		ret = memory_node__read(&nodes[cnt], idx);
1420 		if (!ret)
1421 			cnt += 1;
1422 	}
1423 out:
1424 	close(dir.dirfd);
1425 	if (!ret) {
1426 		*cntp = cnt;
1427 		*nodesp = nodes;
1428 		qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1429 	} else
1430 		memory_node__delete_nodes(nodes, cnt);
1431 
1432 	return ret;
1433 }
1434 
1435 /*
1436  * The MEM_TOPOLOGY holds physical memory map for every
1437  * node in system. The format of data is as follows:
1438  *
1439  *  0 - version          | for future changes
1440  *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1441  * 16 - count            | number of nodes
1442  *
1443  * For each node we store map of physical indexes for
1444  * each node:
1445  *
1446  * 32 - node id          | node index
1447  * 40 - size             | size of bitmap
1448  * 48 - bitmap           | bitmap of memory indexes that belongs to node
1449  */
write_mem_topology(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)1450 static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1451 			      struct evlist *evlist __maybe_unused)
1452 {
1453 	struct memory_node *nodes = NULL;
1454 	u64 bsize, version = 1, i, nr = 0;
1455 	int ret;
1456 
1457 	ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1458 			      (unsigned long long *) &bsize);
1459 	if (ret)
1460 		return ret;
1461 
1462 	ret = build_mem_topology(&nodes, &nr);
1463 	if (ret)
1464 		return ret;
1465 
1466 	ret = do_write(ff, &version, sizeof(version));
1467 	if (ret < 0)
1468 		goto out;
1469 
1470 	ret = do_write(ff, &bsize, sizeof(bsize));
1471 	if (ret < 0)
1472 		goto out;
1473 
1474 	ret = do_write(ff, &nr, sizeof(nr));
1475 	if (ret < 0)
1476 		goto out;
1477 
1478 	for (i = 0; i < nr; i++) {
1479 		struct memory_node *n = &nodes[i];
1480 
1481 		#define _W(v)						\
1482 			ret = do_write(ff, &n->v, sizeof(n->v));	\
1483 			if (ret < 0)					\
1484 				goto out;
1485 
1486 		_W(node)
1487 		_W(size)
1488 
1489 		#undef _W
1490 
1491 		ret = do_write_bitmap(ff, n->set, n->size);
1492 		if (ret < 0)
1493 			goto out;
1494 	}
1495 
1496 out:
1497 	memory_node__delete_nodes(nodes, nr);
1498 	return ret;
1499 }
1500 
write_compressed(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)1501 static int write_compressed(struct feat_fd *ff __maybe_unused,
1502 			    struct evlist *evlist __maybe_unused)
1503 {
1504 	int ret;
1505 
1506 	ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1507 	if (ret)
1508 		return ret;
1509 
1510 	ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1511 	if (ret)
1512 		return ret;
1513 
1514 	ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1515 	if (ret)
1516 		return ret;
1517 
1518 	ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1519 	if (ret)
1520 		return ret;
1521 
1522 	return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1523 }
1524 
__write_pmu_caps(struct feat_fd * ff,struct perf_pmu * pmu,bool write_pmu)1525 static int __write_pmu_caps(struct feat_fd *ff, struct perf_pmu *pmu,
1526 			    bool write_pmu)
1527 {
1528 	struct perf_pmu_caps *caps = NULL;
1529 	int ret;
1530 
1531 	ret = do_write(ff, &pmu->nr_caps, sizeof(pmu->nr_caps));
1532 	if (ret < 0)
1533 		return ret;
1534 
1535 	list_for_each_entry(caps, &pmu->caps, list) {
1536 		ret = do_write_string(ff, caps->name);
1537 		if (ret < 0)
1538 			return ret;
1539 
1540 		ret = do_write_string(ff, caps->value);
1541 		if (ret < 0)
1542 			return ret;
1543 	}
1544 
1545 	if (write_pmu) {
1546 		ret = do_write_string(ff, pmu->name);
1547 		if (ret < 0)
1548 			return ret;
1549 	}
1550 
1551 	return ret;
1552 }
1553 
write_cpu_pmu_caps(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1554 static int write_cpu_pmu_caps(struct feat_fd *ff,
1555 			      struct evlist *evlist __maybe_unused)
1556 {
1557 	struct perf_pmu *cpu_pmu = perf_pmus__find_core_pmu();
1558 	int ret;
1559 
1560 	if (!cpu_pmu)
1561 		return -ENOENT;
1562 
1563 	ret = perf_pmu__caps_parse(cpu_pmu);
1564 	if (ret < 0)
1565 		return ret;
1566 
1567 	return __write_pmu_caps(ff, cpu_pmu, false);
1568 }
1569 
write_pmu_caps(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1570 static int write_pmu_caps(struct feat_fd *ff,
1571 			  struct evlist *evlist __maybe_unused)
1572 {
1573 	struct perf_pmu *pmu = NULL;
1574 	int nr_pmu = 0;
1575 	int ret;
1576 
1577 	while ((pmu = perf_pmus__scan(pmu))) {
1578 		if (!strcmp(pmu->name, "cpu")) {
1579 			/*
1580 			 * The "cpu" PMU is special and covered by
1581 			 * HEADER_CPU_PMU_CAPS. Note, core PMUs are
1582 			 * counted/written here for ARM, s390 and Intel hybrid.
1583 			 */
1584 			continue;
1585 		}
1586 		if (perf_pmu__caps_parse(pmu) <= 0)
1587 			continue;
1588 		nr_pmu++;
1589 	}
1590 
1591 	ret = do_write(ff, &nr_pmu, sizeof(nr_pmu));
1592 	if (ret < 0)
1593 		return ret;
1594 
1595 	if (!nr_pmu)
1596 		return 0;
1597 
1598 	/*
1599 	 * Note older perf tools assume core PMUs come first, this is a property
1600 	 * of perf_pmus__scan.
1601 	 */
1602 	pmu = NULL;
1603 	while ((pmu = perf_pmus__scan(pmu))) {
1604 		if (!strcmp(pmu->name, "cpu")) {
1605 			/* Skip as above. */
1606 			continue;
1607 		}
1608 		if (perf_pmu__caps_parse(pmu) <= 0)
1609 			continue;
1610 		ret = __write_pmu_caps(ff, pmu, true);
1611 		if (ret < 0)
1612 			return ret;
1613 	}
1614 	return 0;
1615 }
1616 
print_hostname(struct feat_fd * ff,FILE * fp)1617 static void print_hostname(struct feat_fd *ff, FILE *fp)
1618 {
1619 	fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1620 }
1621 
print_osrelease(struct feat_fd * ff,FILE * fp)1622 static void print_osrelease(struct feat_fd *ff, FILE *fp)
1623 {
1624 	fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1625 }
1626 
print_arch(struct feat_fd * ff,FILE * fp)1627 static void print_arch(struct feat_fd *ff, FILE *fp)
1628 {
1629 	fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1630 }
1631 
print_cpudesc(struct feat_fd * ff,FILE * fp)1632 static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1633 {
1634 	fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1635 }
1636 
print_nrcpus(struct feat_fd * ff,FILE * fp)1637 static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1638 {
1639 	fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1640 	fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1641 }
1642 
print_version(struct feat_fd * ff,FILE * fp)1643 static void print_version(struct feat_fd *ff, FILE *fp)
1644 {
1645 	fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1646 }
1647 
print_cmdline(struct feat_fd * ff,FILE * fp)1648 static void print_cmdline(struct feat_fd *ff, FILE *fp)
1649 {
1650 	int nr, i;
1651 
1652 	nr = ff->ph->env.nr_cmdline;
1653 
1654 	fprintf(fp, "# cmdline : ");
1655 
1656 	for (i = 0; i < nr; i++) {
1657 		char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1658 		if (!argv_i) {
1659 			fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1660 		} else {
1661 			char *mem = argv_i;
1662 			do {
1663 				char *quote = strchr(argv_i, '\'');
1664 				if (!quote)
1665 					break;
1666 				*quote++ = '\0';
1667 				fprintf(fp, "%s\\\'", argv_i);
1668 				argv_i = quote;
1669 			} while (1);
1670 			fprintf(fp, "%s ", argv_i);
1671 			free(mem);
1672 		}
1673 	}
1674 	fputc('\n', fp);
1675 }
1676 
print_cpu_topology(struct feat_fd * ff,FILE * fp)1677 static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1678 {
1679 	struct perf_header *ph = ff->ph;
1680 	int cpu_nr = ph->env.nr_cpus_avail;
1681 	int nr, i;
1682 	char *str;
1683 
1684 	nr = ph->env.nr_sibling_cores;
1685 	str = ph->env.sibling_cores;
1686 
1687 	for (i = 0; i < nr; i++) {
1688 		fprintf(fp, "# sibling sockets : %s\n", str);
1689 		str += strlen(str) + 1;
1690 	}
1691 
1692 	if (ph->env.nr_sibling_dies) {
1693 		nr = ph->env.nr_sibling_dies;
1694 		str = ph->env.sibling_dies;
1695 
1696 		for (i = 0; i < nr; i++) {
1697 			fprintf(fp, "# sibling dies    : %s\n", str);
1698 			str += strlen(str) + 1;
1699 		}
1700 	}
1701 
1702 	nr = ph->env.nr_sibling_threads;
1703 	str = ph->env.sibling_threads;
1704 
1705 	for (i = 0; i < nr; i++) {
1706 		fprintf(fp, "# sibling threads : %s\n", str);
1707 		str += strlen(str) + 1;
1708 	}
1709 
1710 	if (ph->env.nr_sibling_dies) {
1711 		if (ph->env.cpu != NULL) {
1712 			for (i = 0; i < cpu_nr; i++)
1713 				fprintf(fp, "# CPU %d: Core ID %d, "
1714 					    "Die ID %d, Socket ID %d\n",
1715 					    i, ph->env.cpu[i].core_id,
1716 					    ph->env.cpu[i].die_id,
1717 					    ph->env.cpu[i].socket_id);
1718 		} else
1719 			fprintf(fp, "# Core ID, Die ID and Socket ID "
1720 				    "information is not available\n");
1721 	} else {
1722 		if (ph->env.cpu != NULL) {
1723 			for (i = 0; i < cpu_nr; i++)
1724 				fprintf(fp, "# CPU %d: Core ID %d, "
1725 					    "Socket ID %d\n",
1726 					    i, ph->env.cpu[i].core_id,
1727 					    ph->env.cpu[i].socket_id);
1728 		} else
1729 			fprintf(fp, "# Core ID and Socket ID "
1730 				    "information is not available\n");
1731 	}
1732 }
1733 
print_clockid(struct feat_fd * ff,FILE * fp)1734 static void print_clockid(struct feat_fd *ff, FILE *fp)
1735 {
1736 	fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1737 		ff->ph->env.clock.clockid_res_ns * 1000);
1738 }
1739 
print_clock_data(struct feat_fd * ff,FILE * fp)1740 static void print_clock_data(struct feat_fd *ff, FILE *fp)
1741 {
1742 	struct timespec clockid_ns;
1743 	char tstr[64], date[64];
1744 	struct timeval tod_ns;
1745 	clockid_t clockid;
1746 	struct tm ltime;
1747 	u64 ref;
1748 
1749 	if (!ff->ph->env.clock.enabled) {
1750 		fprintf(fp, "# reference time disabled\n");
1751 		return;
1752 	}
1753 
1754 	/* Compute TOD time. */
1755 	ref = ff->ph->env.clock.tod_ns;
1756 	tod_ns.tv_sec = ref / NSEC_PER_SEC;
1757 	ref -= tod_ns.tv_sec * NSEC_PER_SEC;
1758 	tod_ns.tv_usec = ref / NSEC_PER_USEC;
1759 
1760 	/* Compute clockid time. */
1761 	ref = ff->ph->env.clock.clockid_ns;
1762 	clockid_ns.tv_sec = ref / NSEC_PER_SEC;
1763 	ref -= clockid_ns.tv_sec * NSEC_PER_SEC;
1764 	clockid_ns.tv_nsec = ref;
1765 
1766 	clockid = ff->ph->env.clock.clockid;
1767 
1768 	if (localtime_r(&tod_ns.tv_sec, &ltime) == NULL)
1769 		snprintf(tstr, sizeof(tstr), "<error>");
1770 	else {
1771 		strftime(date, sizeof(date), "%F %T", &ltime);
1772 		scnprintf(tstr, sizeof(tstr), "%s.%06d",
1773 			  date, (int) tod_ns.tv_usec);
1774 	}
1775 
1776 	fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid);
1777 	fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n",
1778 		    tstr, (long) tod_ns.tv_sec, (int) tod_ns.tv_usec,
1779 		    (long) clockid_ns.tv_sec, clockid_ns.tv_nsec,
1780 		    clockid_name(clockid));
1781 }
1782 
print_hybrid_topology(struct feat_fd * ff,FILE * fp)1783 static void print_hybrid_topology(struct feat_fd *ff, FILE *fp)
1784 {
1785 	int i;
1786 	struct hybrid_node *n;
1787 
1788 	fprintf(fp, "# hybrid cpu system:\n");
1789 	for (i = 0; i < ff->ph->env.nr_hybrid_nodes; i++) {
1790 		n = &ff->ph->env.hybrid_nodes[i];
1791 		fprintf(fp, "# %s cpu list : %s\n", n->pmu_name, n->cpus);
1792 	}
1793 }
1794 
print_dir_format(struct feat_fd * ff,FILE * fp)1795 static void print_dir_format(struct feat_fd *ff, FILE *fp)
1796 {
1797 	struct perf_session *session;
1798 	struct perf_data *data;
1799 
1800 	session = container_of(ff->ph, struct perf_session, header);
1801 	data = session->data;
1802 
1803 	fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1804 }
1805 
1806 #ifdef HAVE_LIBBPF_SUPPORT
print_bpf_prog_info(struct feat_fd * ff,FILE * fp)1807 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1808 {
1809 	struct perf_env *env = &ff->ph->env;
1810 	struct rb_root *root;
1811 	struct rb_node *next;
1812 
1813 	down_read(&env->bpf_progs.lock);
1814 
1815 	root = &env->bpf_progs.infos;
1816 	next = rb_first(root);
1817 
1818 	if (!next)
1819 		printf("# bpf_prog_info empty\n");
1820 
1821 	while (next) {
1822 		struct bpf_prog_info_node *node;
1823 
1824 		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1825 		next = rb_next(&node->rb_node);
1826 
1827 		__bpf_event__print_bpf_prog_info(&node->info_linear->info,
1828 						 env, fp);
1829 	}
1830 
1831 	up_read(&env->bpf_progs.lock);
1832 }
1833 
print_bpf_btf(struct feat_fd * ff,FILE * fp)1834 static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1835 {
1836 	struct perf_env *env = &ff->ph->env;
1837 	struct rb_root *root;
1838 	struct rb_node *next;
1839 
1840 	down_read(&env->bpf_progs.lock);
1841 
1842 	root = &env->bpf_progs.btfs;
1843 	next = rb_first(root);
1844 
1845 	if (!next)
1846 		printf("# btf info empty\n");
1847 
1848 	while (next) {
1849 		struct btf_node *node;
1850 
1851 		node = rb_entry(next, struct btf_node, rb_node);
1852 		next = rb_next(&node->rb_node);
1853 		fprintf(fp, "# btf info of id %u\n", node->id);
1854 	}
1855 
1856 	up_read(&env->bpf_progs.lock);
1857 }
1858 #endif // HAVE_LIBBPF_SUPPORT
1859 
free_event_desc(struct evsel * events)1860 static void free_event_desc(struct evsel *events)
1861 {
1862 	struct evsel *evsel;
1863 
1864 	if (!events)
1865 		return;
1866 
1867 	for (evsel = events; evsel->core.attr.size; evsel++) {
1868 		zfree(&evsel->name);
1869 		zfree(&evsel->core.id);
1870 	}
1871 
1872 	free(events);
1873 }
1874 
perf_attr_check(struct perf_event_attr * attr)1875 static bool perf_attr_check(struct perf_event_attr *attr)
1876 {
1877 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) {
1878 		pr_warning("Reserved bits are set unexpectedly. "
1879 			   "Please update perf tool.\n");
1880 		return false;
1881 	}
1882 
1883 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) {
1884 		pr_warning("Unknown sample type (0x%llx) is detected. "
1885 			   "Please update perf tool.\n",
1886 			   attr->sample_type);
1887 		return false;
1888 	}
1889 
1890 	if (attr->read_format & ~(PERF_FORMAT_MAX-1)) {
1891 		pr_warning("Unknown read format (0x%llx) is detected. "
1892 			   "Please update perf tool.\n",
1893 			   attr->read_format);
1894 		return false;
1895 	}
1896 
1897 	if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) &&
1898 	    (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) {
1899 		pr_warning("Unknown branch sample type (0x%llx) is detected. "
1900 			   "Please update perf tool.\n",
1901 			   attr->branch_sample_type);
1902 
1903 		return false;
1904 	}
1905 
1906 	return true;
1907 }
1908 
read_event_desc(struct feat_fd * ff)1909 static struct evsel *read_event_desc(struct feat_fd *ff)
1910 {
1911 	struct evsel *evsel, *events = NULL;
1912 	u64 *id;
1913 	void *buf = NULL;
1914 	u32 nre, sz, nr, i, j;
1915 	size_t msz;
1916 
1917 	/* number of events */
1918 	if (do_read_u32(ff, &nre))
1919 		goto error;
1920 
1921 	if (do_read_u32(ff, &sz))
1922 		goto error;
1923 
1924 	/* buffer to hold on file attr struct */
1925 	buf = malloc(sz);
1926 	if (!buf)
1927 		goto error;
1928 
1929 	/* the last event terminates with evsel->core.attr.size == 0: */
1930 	events = calloc(nre + 1, sizeof(*events));
1931 	if (!events)
1932 		goto error;
1933 
1934 	msz = sizeof(evsel->core.attr);
1935 	if (sz < msz)
1936 		msz = sz;
1937 
1938 	for (i = 0, evsel = events; i < nre; evsel++, i++) {
1939 		evsel->core.idx = i;
1940 
1941 		/*
1942 		 * must read entire on-file attr struct to
1943 		 * sync up with layout.
1944 		 */
1945 		if (__do_read(ff, buf, sz))
1946 			goto error;
1947 
1948 		if (ff->ph->needs_swap)
1949 			perf_event__attr_swap(buf);
1950 
1951 		memcpy(&evsel->core.attr, buf, msz);
1952 
1953 		if (!perf_attr_check(&evsel->core.attr))
1954 			goto error;
1955 
1956 		if (do_read_u32(ff, &nr))
1957 			goto error;
1958 
1959 		if (ff->ph->needs_swap)
1960 			evsel->needs_swap = true;
1961 
1962 		evsel->name = do_read_string(ff);
1963 		if (!evsel->name)
1964 			goto error;
1965 
1966 		if (!nr)
1967 			continue;
1968 
1969 		id = calloc(nr, sizeof(*id));
1970 		if (!id)
1971 			goto error;
1972 		evsel->core.ids = nr;
1973 		evsel->core.id = id;
1974 
1975 		for (j = 0 ; j < nr; j++) {
1976 			if (do_read_u64(ff, id))
1977 				goto error;
1978 			id++;
1979 		}
1980 	}
1981 out:
1982 	free(buf);
1983 	return events;
1984 error:
1985 	free_event_desc(events);
1986 	events = NULL;
1987 	goto out;
1988 }
1989 
__desc_attr__fprintf(FILE * fp,const char * name,const char * val,void * priv __maybe_unused)1990 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1991 				void *priv __maybe_unused)
1992 {
1993 	return fprintf(fp, ", %s = %s", name, val);
1994 }
1995 
print_event_desc(struct feat_fd * ff,FILE * fp)1996 static void print_event_desc(struct feat_fd *ff, FILE *fp)
1997 {
1998 	struct evsel *evsel, *events;
1999 	u32 j;
2000 	u64 *id;
2001 
2002 	if (ff->events)
2003 		events = ff->events;
2004 	else
2005 		events = read_event_desc(ff);
2006 
2007 	if (!events) {
2008 		fprintf(fp, "# event desc: not available or unable to read\n");
2009 		return;
2010 	}
2011 
2012 	for (evsel = events; evsel->core.attr.size; evsel++) {
2013 		fprintf(fp, "# event : name = %s, ", evsel->name);
2014 
2015 		if (evsel->core.ids) {
2016 			fprintf(fp, ", id = {");
2017 			for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
2018 				if (j)
2019 					fputc(',', fp);
2020 				fprintf(fp, " %"PRIu64, *id);
2021 			}
2022 			fprintf(fp, " }");
2023 		}
2024 
2025 		perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
2026 
2027 		fputc('\n', fp);
2028 	}
2029 
2030 	free_event_desc(events);
2031 	ff->events = NULL;
2032 }
2033 
print_total_mem(struct feat_fd * ff,FILE * fp)2034 static void print_total_mem(struct feat_fd *ff, FILE *fp)
2035 {
2036 	fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
2037 }
2038 
print_numa_topology(struct feat_fd * ff,FILE * fp)2039 static void print_numa_topology(struct feat_fd *ff, FILE *fp)
2040 {
2041 	int i;
2042 	struct numa_node *n;
2043 
2044 	for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
2045 		n = &ff->ph->env.numa_nodes[i];
2046 
2047 		fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
2048 			    " free = %"PRIu64" kB\n",
2049 			n->node, n->mem_total, n->mem_free);
2050 
2051 		fprintf(fp, "# node%u cpu list : ", n->node);
2052 		cpu_map__fprintf(n->map, fp);
2053 	}
2054 }
2055 
print_cpuid(struct feat_fd * ff,FILE * fp)2056 static void print_cpuid(struct feat_fd *ff, FILE *fp)
2057 {
2058 	fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
2059 }
2060 
print_branch_stack(struct feat_fd * ff __maybe_unused,FILE * fp)2061 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
2062 {
2063 	fprintf(fp, "# contains samples with branch stack\n");
2064 }
2065 
print_auxtrace(struct feat_fd * ff __maybe_unused,FILE * fp)2066 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
2067 {
2068 	fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
2069 }
2070 
print_stat(struct feat_fd * ff __maybe_unused,FILE * fp)2071 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
2072 {
2073 	fprintf(fp, "# contains stat data\n");
2074 }
2075 
print_cache(struct feat_fd * ff,FILE * fp __maybe_unused)2076 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
2077 {
2078 	int i;
2079 
2080 	fprintf(fp, "# CPU cache info:\n");
2081 	for (i = 0; i < ff->ph->env.caches_cnt; i++) {
2082 		fprintf(fp, "#  ");
2083 		cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
2084 	}
2085 }
2086 
print_compressed(struct feat_fd * ff,FILE * fp)2087 static void print_compressed(struct feat_fd *ff, FILE *fp)
2088 {
2089 	fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
2090 		ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
2091 		ff->ph->env.comp_level, ff->ph->env.comp_ratio);
2092 }
2093 
__print_pmu_caps(FILE * fp,int nr_caps,char ** caps,char * pmu_name)2094 static void __print_pmu_caps(FILE *fp, int nr_caps, char **caps, char *pmu_name)
2095 {
2096 	const char *delimiter = "";
2097 	int i;
2098 
2099 	if (!nr_caps) {
2100 		fprintf(fp, "# %s pmu capabilities: not available\n", pmu_name);
2101 		return;
2102 	}
2103 
2104 	fprintf(fp, "# %s pmu capabilities: ", pmu_name);
2105 	for (i = 0; i < nr_caps; i++) {
2106 		fprintf(fp, "%s%s", delimiter, caps[i]);
2107 		delimiter = ", ";
2108 	}
2109 
2110 	fprintf(fp, "\n");
2111 }
2112 
print_cpu_pmu_caps(struct feat_fd * ff,FILE * fp)2113 static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
2114 {
2115 	__print_pmu_caps(fp, ff->ph->env.nr_cpu_pmu_caps,
2116 			 ff->ph->env.cpu_pmu_caps, (char *)"cpu");
2117 }
2118 
print_pmu_caps(struct feat_fd * ff,FILE * fp)2119 static void print_pmu_caps(struct feat_fd *ff, FILE *fp)
2120 {
2121 	struct perf_env *env = &ff->ph->env;
2122 	struct pmu_caps *pmu_caps;
2123 
2124 	for (int i = 0; i < env->nr_pmus_with_caps; i++) {
2125 		pmu_caps = &env->pmu_caps[i];
2126 		__print_pmu_caps(fp, pmu_caps->nr_caps, pmu_caps->caps,
2127 				 pmu_caps->pmu_name);
2128 	}
2129 
2130 	if (strcmp(perf_env__arch(env), "x86") == 0 &&
2131 	    perf_env__has_pmu_mapping(env, "ibs_op")) {
2132 		char *max_precise = perf_env__find_pmu_cap(env, "cpu", "max_precise");
2133 
2134 		if (max_precise != NULL && atoi(max_precise) == 0)
2135 			fprintf(fp, "# AMD systems uses ibs_op// PMU for some precise events, e.g.: cycles:p, see the 'perf list' man page for further details.\n");
2136 	}
2137 }
2138 
print_pmu_mappings(struct feat_fd * ff,FILE * fp)2139 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
2140 {
2141 	struct perf_env *env = &ff->ph->env;
2142 	const char *delimiter = "# pmu mappings: ";
2143 	char *str, *tmp;
2144 	u32 pmu_num;
2145 	u32 type;
2146 
2147 	pmu_num = env->nr_pmu_mappings;
2148 	if (!pmu_num) {
2149 		fprintf(fp, "# pmu mappings: not available\n");
2150 		return;
2151 	}
2152 
2153 	str = env->pmu_mappings;
2154 
2155 	while (pmu_num) {
2156 		type = strtoul(str, &tmp, 0);
2157 		if (*tmp != ':')
2158 			goto error;
2159 
2160 		str = tmp + 1;
2161 		fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
2162 
2163 		delimiter = ", ";
2164 		str += strlen(str) + 1;
2165 		pmu_num--;
2166 	}
2167 
2168 	fprintf(fp, "\n");
2169 
2170 	if (!pmu_num)
2171 		return;
2172 error:
2173 	fprintf(fp, "# pmu mappings: unable to read\n");
2174 }
2175 
print_group_desc(struct feat_fd * ff,FILE * fp)2176 static void print_group_desc(struct feat_fd *ff, FILE *fp)
2177 {
2178 	struct perf_session *session;
2179 	struct evsel *evsel;
2180 	u32 nr = 0;
2181 
2182 	session = container_of(ff->ph, struct perf_session, header);
2183 
2184 	evlist__for_each_entry(session->evlist, evsel) {
2185 		if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
2186 			fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel));
2187 
2188 			nr = evsel->core.nr_members - 1;
2189 		} else if (nr) {
2190 			fprintf(fp, ",%s", evsel__name(evsel));
2191 
2192 			if (--nr == 0)
2193 				fprintf(fp, "}\n");
2194 		}
2195 	}
2196 }
2197 
print_sample_time(struct feat_fd * ff,FILE * fp)2198 static void print_sample_time(struct feat_fd *ff, FILE *fp)
2199 {
2200 	struct perf_session *session;
2201 	char time_buf[32];
2202 	double d;
2203 
2204 	session = container_of(ff->ph, struct perf_session, header);
2205 
2206 	timestamp__scnprintf_usec(session->evlist->first_sample_time,
2207 				  time_buf, sizeof(time_buf));
2208 	fprintf(fp, "# time of first sample : %s\n", time_buf);
2209 
2210 	timestamp__scnprintf_usec(session->evlist->last_sample_time,
2211 				  time_buf, sizeof(time_buf));
2212 	fprintf(fp, "# time of last sample : %s\n", time_buf);
2213 
2214 	d = (double)(session->evlist->last_sample_time -
2215 		session->evlist->first_sample_time) / NSEC_PER_MSEC;
2216 
2217 	fprintf(fp, "# sample duration : %10.3f ms\n", d);
2218 }
2219 
memory_node__fprintf(struct memory_node * n,unsigned long long bsize,FILE * fp)2220 static void memory_node__fprintf(struct memory_node *n,
2221 				 unsigned long long bsize, FILE *fp)
2222 {
2223 	char buf_map[100], buf_size[50];
2224 	unsigned long long size;
2225 
2226 	size = bsize * bitmap_weight(n->set, n->size);
2227 	unit_number__scnprintf(buf_size, 50, size);
2228 
2229 	bitmap_scnprintf(n->set, n->size, buf_map, 100);
2230 	fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
2231 }
2232 
print_mem_topology(struct feat_fd * ff,FILE * fp)2233 static void print_mem_topology(struct feat_fd *ff, FILE *fp)
2234 {
2235 	struct perf_env *env = &ff->ph->env;
2236 	struct memory_node *nodes;
2237 	int i, nr;
2238 
2239 	nodes = env->memory_nodes;
2240 	nr    = env->nr_memory_nodes;
2241 
2242 	fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
2243 		nr, env->memory_bsize);
2244 
2245 	for (i = 0; i < nr; i++) {
2246 		memory_node__fprintf(&nodes[i], env->memory_bsize, fp);
2247 	}
2248 }
2249 
__event_process_build_id(struct perf_record_header_build_id * bev,char * filename,struct perf_session * session)2250 static int __event_process_build_id(struct perf_record_header_build_id *bev,
2251 				    char *filename,
2252 				    struct perf_session *session)
2253 {
2254 	int err = -1;
2255 	struct machine *machine;
2256 	u16 cpumode;
2257 	struct dso *dso;
2258 	enum dso_space_type dso_space;
2259 
2260 	machine = perf_session__findnew_machine(session, bev->pid);
2261 	if (!machine)
2262 		goto out;
2263 
2264 	cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2265 
2266 	switch (cpumode) {
2267 	case PERF_RECORD_MISC_KERNEL:
2268 		dso_space = DSO_SPACE__KERNEL;
2269 		break;
2270 	case PERF_RECORD_MISC_GUEST_KERNEL:
2271 		dso_space = DSO_SPACE__KERNEL_GUEST;
2272 		break;
2273 	case PERF_RECORD_MISC_USER:
2274 	case PERF_RECORD_MISC_GUEST_USER:
2275 		dso_space = DSO_SPACE__USER;
2276 		break;
2277 	default:
2278 		goto out;
2279 	}
2280 
2281 	dso = machine__findnew_dso(machine, filename);
2282 	if (dso != NULL) {
2283 		char sbuild_id[SBUILD_ID_SIZE];
2284 		struct build_id bid;
2285 		size_t size = BUILD_ID_SIZE;
2286 
2287 		if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE)
2288 			size = bev->size;
2289 
2290 		build_id__init(&bid, bev->data, size);
2291 		dso__set_build_id(dso, &bid);
2292 		dso__set_header_build_id(dso, true);
2293 
2294 		if (dso_space != DSO_SPACE__USER) {
2295 			struct kmod_path m = { .name = NULL, };
2296 
2297 			if (!kmod_path__parse_name(&m, filename) && m.kmod)
2298 				dso__set_module_info(dso, &m, machine);
2299 
2300 			dso__set_kernel(dso, dso_space);
2301 			free(m.name);
2302 		}
2303 
2304 		build_id__snprintf(dso__bid(dso), sbuild_id, sizeof(sbuild_id));
2305 		pr_debug("build id event received for %s: %s [%zu]\n",
2306 			 dso__long_name(dso), sbuild_id, size);
2307 		dso__put(dso);
2308 	}
2309 
2310 	err = 0;
2311 out:
2312 	return err;
2313 }
2314 
perf_header__read_build_ids_abi_quirk(struct perf_header * header,int input,u64 offset,u64 size)2315 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
2316 						 int input, u64 offset, u64 size)
2317 {
2318 	struct perf_session *session = container_of(header, struct perf_session, header);
2319 	struct {
2320 		struct perf_event_header   header;
2321 		u8			   build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
2322 		char			   filename[0];
2323 	} old_bev;
2324 	struct perf_record_header_build_id bev;
2325 	char filename[PATH_MAX];
2326 	u64 limit = offset + size;
2327 
2328 	while (offset < limit) {
2329 		ssize_t len;
2330 
2331 		if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
2332 			return -1;
2333 
2334 		if (header->needs_swap)
2335 			perf_event_header__bswap(&old_bev.header);
2336 
2337 		len = old_bev.header.size - sizeof(old_bev);
2338 		if (readn(input, filename, len) != len)
2339 			return -1;
2340 
2341 		bev.header = old_bev.header;
2342 
2343 		/*
2344 		 * As the pid is the missing value, we need to fill
2345 		 * it properly. The header.misc value give us nice hint.
2346 		 */
2347 		bev.pid	= HOST_KERNEL_ID;
2348 		if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
2349 		    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
2350 			bev.pid	= DEFAULT_GUEST_KERNEL_ID;
2351 
2352 		memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
2353 		__event_process_build_id(&bev, filename, session);
2354 
2355 		offset += bev.header.size;
2356 	}
2357 
2358 	return 0;
2359 }
2360 
perf_header__read_build_ids(struct perf_header * header,int input,u64 offset,u64 size)2361 static int perf_header__read_build_ids(struct perf_header *header,
2362 				       int input, u64 offset, u64 size)
2363 {
2364 	struct perf_session *session = container_of(header, struct perf_session, header);
2365 	struct perf_record_header_build_id bev;
2366 	char filename[PATH_MAX];
2367 	u64 limit = offset + size, orig_offset = offset;
2368 	int err = -1;
2369 
2370 	while (offset < limit) {
2371 		ssize_t len;
2372 
2373 		if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2374 			goto out;
2375 
2376 		if (header->needs_swap)
2377 			perf_event_header__bswap(&bev.header);
2378 
2379 		len = bev.header.size - sizeof(bev);
2380 		if (readn(input, filename, len) != len)
2381 			goto out;
2382 		/*
2383 		 * The a1645ce1 changeset:
2384 		 *
2385 		 * "perf: 'perf kvm' tool for monitoring guest performance from host"
2386 		 *
2387 		 * Added a field to struct perf_record_header_build_id that broke the file
2388 		 * format.
2389 		 *
2390 		 * Since the kernel build-id is the first entry, process the
2391 		 * table using the old format if the well known
2392 		 * '[kernel.kallsyms]' string for the kernel build-id has the
2393 		 * first 4 characters chopped off (where the pid_t sits).
2394 		 */
2395 		if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2396 			if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2397 				return -1;
2398 			return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2399 		}
2400 
2401 		__event_process_build_id(&bev, filename, session);
2402 
2403 		offset += bev.header.size;
2404 	}
2405 	err = 0;
2406 out:
2407 	return err;
2408 }
2409 
2410 /* Macro for features that simply need to read and store a string. */
2411 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2412 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2413 {\
2414 	free(ff->ph->env.__feat_env);		     \
2415 	ff->ph->env.__feat_env = do_read_string(ff); \
2416 	return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2417 }
2418 
2419 FEAT_PROCESS_STR_FUN(hostname, hostname);
2420 FEAT_PROCESS_STR_FUN(osrelease, os_release);
2421 FEAT_PROCESS_STR_FUN(version, version);
2422 FEAT_PROCESS_STR_FUN(arch, arch);
2423 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2424 FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2425 
2426 #ifdef HAVE_LIBTRACEEVENT
process_tracing_data(struct feat_fd * ff,void * data)2427 static int process_tracing_data(struct feat_fd *ff, void *data)
2428 {
2429 	ssize_t ret = trace_report(ff->fd, data, false);
2430 
2431 	return ret < 0 ? -1 : 0;
2432 }
2433 #endif
2434 
process_build_id(struct feat_fd * ff,void * data __maybe_unused)2435 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2436 {
2437 	if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2438 		pr_debug("Failed to read buildids, continuing...\n");
2439 	return 0;
2440 }
2441 
process_nrcpus(struct feat_fd * ff,void * data __maybe_unused)2442 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2443 {
2444 	struct perf_env *env = &ff->ph->env;
2445 	int ret;
2446 	u32 nr_cpus_avail, nr_cpus_online;
2447 
2448 	ret = do_read_u32(ff, &nr_cpus_avail);
2449 	if (ret)
2450 		return ret;
2451 
2452 	ret = do_read_u32(ff, &nr_cpus_online);
2453 	if (ret)
2454 		return ret;
2455 	env->nr_cpus_avail = (int)nr_cpus_avail;
2456 	env->nr_cpus_online = (int)nr_cpus_online;
2457 	return 0;
2458 }
2459 
process_total_mem(struct feat_fd * ff,void * data __maybe_unused)2460 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2461 {
2462 	struct perf_env *env = &ff->ph->env;
2463 	u64 total_mem;
2464 	int ret;
2465 
2466 	ret = do_read_u64(ff, &total_mem);
2467 	if (ret)
2468 		return -1;
2469 	env->total_mem = (unsigned long long)total_mem;
2470 	return 0;
2471 }
2472 
evlist__find_by_index(struct evlist * evlist,int idx)2473 static struct evsel *evlist__find_by_index(struct evlist *evlist, int idx)
2474 {
2475 	struct evsel *evsel;
2476 
2477 	evlist__for_each_entry(evlist, evsel) {
2478 		if (evsel->core.idx == idx)
2479 			return evsel;
2480 	}
2481 
2482 	return NULL;
2483 }
2484 
evlist__set_event_name(struct evlist * evlist,struct evsel * event)2485 static void evlist__set_event_name(struct evlist *evlist, struct evsel *event)
2486 {
2487 	struct evsel *evsel;
2488 
2489 	if (!event->name)
2490 		return;
2491 
2492 	evsel = evlist__find_by_index(evlist, event->core.idx);
2493 	if (!evsel)
2494 		return;
2495 
2496 	if (evsel->name)
2497 		return;
2498 
2499 	evsel->name = strdup(event->name);
2500 }
2501 
2502 static int
process_event_desc(struct feat_fd * ff,void * data __maybe_unused)2503 process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2504 {
2505 	struct perf_session *session;
2506 	struct evsel *evsel, *events = read_event_desc(ff);
2507 
2508 	if (!events)
2509 		return 0;
2510 
2511 	session = container_of(ff->ph, struct perf_session, header);
2512 
2513 	if (session->data->is_pipe) {
2514 		/* Save events for reading later by print_event_desc,
2515 		 * since they can't be read again in pipe mode. */
2516 		ff->events = events;
2517 	}
2518 
2519 	for (evsel = events; evsel->core.attr.size; evsel++)
2520 		evlist__set_event_name(session->evlist, evsel);
2521 
2522 	if (!session->data->is_pipe)
2523 		free_event_desc(events);
2524 
2525 	return 0;
2526 }
2527 
process_cmdline(struct feat_fd * ff,void * data __maybe_unused)2528 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2529 {
2530 	struct perf_env *env = &ff->ph->env;
2531 	char *str, *cmdline = NULL, **argv = NULL;
2532 	u32 nr, i, len = 0;
2533 
2534 	if (do_read_u32(ff, &nr))
2535 		return -1;
2536 
2537 	env->nr_cmdline = nr;
2538 
2539 	cmdline = zalloc(ff->size + nr + 1);
2540 	if (!cmdline)
2541 		return -1;
2542 
2543 	argv = zalloc(sizeof(char *) * (nr + 1));
2544 	if (!argv)
2545 		goto error;
2546 
2547 	for (i = 0; i < nr; i++) {
2548 		str = do_read_string(ff);
2549 		if (!str)
2550 			goto error;
2551 
2552 		argv[i] = cmdline + len;
2553 		memcpy(argv[i], str, strlen(str) + 1);
2554 		len += strlen(str) + 1;
2555 		free(str);
2556 	}
2557 	env->cmdline = cmdline;
2558 	env->cmdline_argv = (const char **) argv;
2559 	return 0;
2560 
2561 error:
2562 	free(argv);
2563 	free(cmdline);
2564 	return -1;
2565 }
2566 
process_cpu_topology(struct feat_fd * ff,void * data __maybe_unused)2567 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2568 {
2569 	u32 nr, i;
2570 	char *str = NULL;
2571 	struct strbuf sb;
2572 	struct perf_env *env = &ff->ph->env;
2573 	int cpu_nr = env->nr_cpus_avail;
2574 	u64 size = 0;
2575 
2576 	env->cpu = calloc(cpu_nr, sizeof(*env->cpu));
2577 	if (!env->cpu)
2578 		return -1;
2579 
2580 	if (do_read_u32(ff, &nr))
2581 		goto free_cpu;
2582 
2583 	env->nr_sibling_cores = nr;
2584 	size += sizeof(u32);
2585 	if (strbuf_init(&sb, 128) < 0)
2586 		goto free_cpu;
2587 
2588 	for (i = 0; i < nr; i++) {
2589 		str = do_read_string(ff);
2590 		if (!str)
2591 			goto error;
2592 
2593 		/* include a NULL character at the end */
2594 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2595 			goto error;
2596 		size += string_size(str);
2597 		zfree(&str);
2598 	}
2599 	env->sibling_cores = strbuf_detach(&sb, NULL);
2600 
2601 	if (do_read_u32(ff, &nr))
2602 		return -1;
2603 
2604 	env->nr_sibling_threads = nr;
2605 	size += sizeof(u32);
2606 
2607 	for (i = 0; i < nr; i++) {
2608 		str = do_read_string(ff);
2609 		if (!str)
2610 			goto error;
2611 
2612 		/* include a NULL character at the end */
2613 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2614 			goto error;
2615 		size += string_size(str);
2616 		zfree(&str);
2617 	}
2618 	env->sibling_threads = strbuf_detach(&sb, NULL);
2619 
2620 	/*
2621 	 * The header may be from old perf,
2622 	 * which doesn't include core id and socket id information.
2623 	 */
2624 	if (ff->size <= size) {
2625 		zfree(&env->cpu);
2626 		return 0;
2627 	}
2628 
2629 	for (i = 0; i < (u32)cpu_nr; i++) {
2630 		if (do_read_u32(ff, &nr))
2631 			goto free_cpu;
2632 
2633 		env->cpu[i].core_id = nr;
2634 		size += sizeof(u32);
2635 
2636 		if (do_read_u32(ff, &nr))
2637 			goto free_cpu;
2638 
2639 		env->cpu[i].socket_id = nr;
2640 		size += sizeof(u32);
2641 	}
2642 
2643 	/*
2644 	 * The header may be from old perf,
2645 	 * which doesn't include die information.
2646 	 */
2647 	if (ff->size <= size)
2648 		return 0;
2649 
2650 	if (do_read_u32(ff, &nr))
2651 		return -1;
2652 
2653 	env->nr_sibling_dies = nr;
2654 	size += sizeof(u32);
2655 
2656 	for (i = 0; i < nr; i++) {
2657 		str = do_read_string(ff);
2658 		if (!str)
2659 			goto error;
2660 
2661 		/* include a NULL character at the end */
2662 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2663 			goto error;
2664 		size += string_size(str);
2665 		zfree(&str);
2666 	}
2667 	env->sibling_dies = strbuf_detach(&sb, NULL);
2668 
2669 	for (i = 0; i < (u32)cpu_nr; i++) {
2670 		if (do_read_u32(ff, &nr))
2671 			goto free_cpu;
2672 
2673 		env->cpu[i].die_id = nr;
2674 	}
2675 
2676 	return 0;
2677 
2678 error:
2679 	strbuf_release(&sb);
2680 	zfree(&str);
2681 free_cpu:
2682 	zfree(&env->cpu);
2683 	return -1;
2684 }
2685 
process_numa_topology(struct feat_fd * ff,void * data __maybe_unused)2686 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2687 {
2688 	struct perf_env *env = &ff->ph->env;
2689 	struct numa_node *nodes, *n;
2690 	u32 nr, i;
2691 	char *str;
2692 
2693 	/* nr nodes */
2694 	if (do_read_u32(ff, &nr))
2695 		return -1;
2696 
2697 	nodes = zalloc(sizeof(*nodes) * nr);
2698 	if (!nodes)
2699 		return -ENOMEM;
2700 
2701 	for (i = 0; i < nr; i++) {
2702 		n = &nodes[i];
2703 
2704 		/* node number */
2705 		if (do_read_u32(ff, &n->node))
2706 			goto error;
2707 
2708 		if (do_read_u64(ff, &n->mem_total))
2709 			goto error;
2710 
2711 		if (do_read_u64(ff, &n->mem_free))
2712 			goto error;
2713 
2714 		str = do_read_string(ff);
2715 		if (!str)
2716 			goto error;
2717 
2718 		n->map = perf_cpu_map__new(str);
2719 		free(str);
2720 		if (!n->map)
2721 			goto error;
2722 	}
2723 	env->nr_numa_nodes = nr;
2724 	env->numa_nodes = nodes;
2725 	return 0;
2726 
2727 error:
2728 	free(nodes);
2729 	return -1;
2730 }
2731 
process_pmu_mappings(struct feat_fd * ff,void * data __maybe_unused)2732 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2733 {
2734 	struct perf_env *env = &ff->ph->env;
2735 	char *name;
2736 	u32 pmu_num;
2737 	u32 type;
2738 	struct strbuf sb;
2739 
2740 	if (do_read_u32(ff, &pmu_num))
2741 		return -1;
2742 
2743 	if (!pmu_num) {
2744 		pr_debug("pmu mappings not available\n");
2745 		return 0;
2746 	}
2747 
2748 	env->nr_pmu_mappings = pmu_num;
2749 	if (strbuf_init(&sb, 128) < 0)
2750 		return -1;
2751 
2752 	while (pmu_num) {
2753 		if (do_read_u32(ff, &type))
2754 			goto error;
2755 
2756 		name = do_read_string(ff);
2757 		if (!name)
2758 			goto error;
2759 
2760 		if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2761 			goto error;
2762 		/* include a NULL character at the end */
2763 		if (strbuf_add(&sb, "", 1) < 0)
2764 			goto error;
2765 
2766 		if (!strcmp(name, "msr"))
2767 			env->msr_pmu_type = type;
2768 
2769 		free(name);
2770 		pmu_num--;
2771 	}
2772 	/* AMD may set it by evlist__has_amd_ibs() from perf_session__new() */
2773 	free(env->pmu_mappings);
2774 	env->pmu_mappings = strbuf_detach(&sb, NULL);
2775 	return 0;
2776 
2777 error:
2778 	strbuf_release(&sb);
2779 	return -1;
2780 }
2781 
process_group_desc(struct feat_fd * ff,void * data __maybe_unused)2782 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2783 {
2784 	struct perf_env *env = &ff->ph->env;
2785 	size_t ret = -1;
2786 	u32 i, nr, nr_groups;
2787 	struct perf_session *session;
2788 	struct evsel *evsel, *leader = NULL;
2789 	struct group_desc {
2790 		char *name;
2791 		u32 leader_idx;
2792 		u32 nr_members;
2793 	} *desc;
2794 
2795 	if (do_read_u32(ff, &nr_groups))
2796 		return -1;
2797 
2798 	env->nr_groups = nr_groups;
2799 	if (!nr_groups) {
2800 		pr_debug("group desc not available\n");
2801 		return 0;
2802 	}
2803 
2804 	desc = calloc(nr_groups, sizeof(*desc));
2805 	if (!desc)
2806 		return -1;
2807 
2808 	for (i = 0; i < nr_groups; i++) {
2809 		desc[i].name = do_read_string(ff);
2810 		if (!desc[i].name)
2811 			goto out_free;
2812 
2813 		if (do_read_u32(ff, &desc[i].leader_idx))
2814 			goto out_free;
2815 
2816 		if (do_read_u32(ff, &desc[i].nr_members))
2817 			goto out_free;
2818 	}
2819 
2820 	/*
2821 	 * Rebuild group relationship based on the group_desc
2822 	 */
2823 	session = container_of(ff->ph, struct perf_session, header);
2824 
2825 	i = nr = 0;
2826 	evlist__for_each_entry(session->evlist, evsel) {
2827 		if (i < nr_groups && evsel->core.idx == (int) desc[i].leader_idx) {
2828 			evsel__set_leader(evsel, evsel);
2829 			/* {anon_group} is a dummy name */
2830 			if (strcmp(desc[i].name, "{anon_group}")) {
2831 				evsel->group_name = desc[i].name;
2832 				desc[i].name = NULL;
2833 			}
2834 			evsel->core.nr_members = desc[i].nr_members;
2835 
2836 			if (i >= nr_groups || nr > 0) {
2837 				pr_debug("invalid group desc\n");
2838 				goto out_free;
2839 			}
2840 
2841 			leader = evsel;
2842 			nr = evsel->core.nr_members - 1;
2843 			i++;
2844 		} else if (nr) {
2845 			/* This is a group member */
2846 			evsel__set_leader(evsel, leader);
2847 
2848 			nr--;
2849 		}
2850 	}
2851 
2852 	if (i != nr_groups || nr != 0) {
2853 		pr_debug("invalid group desc\n");
2854 		goto out_free;
2855 	}
2856 
2857 	ret = 0;
2858 out_free:
2859 	for (i = 0; i < nr_groups; i++)
2860 		zfree(&desc[i].name);
2861 	free(desc);
2862 
2863 	return ret;
2864 }
2865 
process_auxtrace(struct feat_fd * ff,void * data __maybe_unused)2866 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2867 {
2868 	struct perf_session *session;
2869 	int err;
2870 
2871 	session = container_of(ff->ph, struct perf_session, header);
2872 
2873 	err = auxtrace_index__process(ff->fd, ff->size, session,
2874 				      ff->ph->needs_swap);
2875 	if (err < 0)
2876 		pr_err("Failed to process auxtrace index\n");
2877 	return err;
2878 }
2879 
process_cache(struct feat_fd * ff,void * data __maybe_unused)2880 static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2881 {
2882 	struct perf_env *env = &ff->ph->env;
2883 	struct cpu_cache_level *caches;
2884 	u32 cnt, i, version;
2885 
2886 	if (do_read_u32(ff, &version))
2887 		return -1;
2888 
2889 	if (version != 1)
2890 		return -1;
2891 
2892 	if (do_read_u32(ff, &cnt))
2893 		return -1;
2894 
2895 	caches = zalloc(sizeof(*caches) * cnt);
2896 	if (!caches)
2897 		return -1;
2898 
2899 	for (i = 0; i < cnt; i++) {
2900 		struct cpu_cache_level *c = &caches[i];
2901 
2902 		#define _R(v)						\
2903 			if (do_read_u32(ff, &c->v))			\
2904 				goto out_free_caches;			\
2905 
2906 		_R(level)
2907 		_R(line_size)
2908 		_R(sets)
2909 		_R(ways)
2910 		#undef _R
2911 
2912 		#define _R(v)					\
2913 			c->v = do_read_string(ff);		\
2914 			if (!c->v)				\
2915 				goto out_free_caches;		\
2916 
2917 		_R(type)
2918 		_R(size)
2919 		_R(map)
2920 		#undef _R
2921 	}
2922 
2923 	env->caches = caches;
2924 	env->caches_cnt = cnt;
2925 	return 0;
2926 out_free_caches:
2927 	for (i = 0; i < cnt; i++) {
2928 		free(caches[i].type);
2929 		free(caches[i].size);
2930 		free(caches[i].map);
2931 	}
2932 	free(caches);
2933 	return -1;
2934 }
2935 
process_sample_time(struct feat_fd * ff,void * data __maybe_unused)2936 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2937 {
2938 	struct perf_session *session;
2939 	u64 first_sample_time, last_sample_time;
2940 	int ret;
2941 
2942 	session = container_of(ff->ph, struct perf_session, header);
2943 
2944 	ret = do_read_u64(ff, &first_sample_time);
2945 	if (ret)
2946 		return -1;
2947 
2948 	ret = do_read_u64(ff, &last_sample_time);
2949 	if (ret)
2950 		return -1;
2951 
2952 	session->evlist->first_sample_time = first_sample_time;
2953 	session->evlist->last_sample_time = last_sample_time;
2954 	return 0;
2955 }
2956 
process_mem_topology(struct feat_fd * ff,void * data __maybe_unused)2957 static int process_mem_topology(struct feat_fd *ff,
2958 				void *data __maybe_unused)
2959 {
2960 	struct perf_env *env = &ff->ph->env;
2961 	struct memory_node *nodes;
2962 	u64 version, i, nr, bsize;
2963 	int ret = -1;
2964 
2965 	if (do_read_u64(ff, &version))
2966 		return -1;
2967 
2968 	if (version != 1)
2969 		return -1;
2970 
2971 	if (do_read_u64(ff, &bsize))
2972 		return -1;
2973 
2974 	if (do_read_u64(ff, &nr))
2975 		return -1;
2976 
2977 	nodes = zalloc(sizeof(*nodes) * nr);
2978 	if (!nodes)
2979 		return -1;
2980 
2981 	for (i = 0; i < nr; i++) {
2982 		struct memory_node n;
2983 
2984 		#define _R(v)				\
2985 			if (do_read_u64(ff, &n.v))	\
2986 				goto out;		\
2987 
2988 		_R(node)
2989 		_R(size)
2990 
2991 		#undef _R
2992 
2993 		if (do_read_bitmap(ff, &n.set, &n.size))
2994 			goto out;
2995 
2996 		nodes[i] = n;
2997 	}
2998 
2999 	env->memory_bsize    = bsize;
3000 	env->memory_nodes    = nodes;
3001 	env->nr_memory_nodes = nr;
3002 	ret = 0;
3003 
3004 out:
3005 	if (ret)
3006 		free(nodes);
3007 	return ret;
3008 }
3009 
process_clockid(struct feat_fd * ff,void * data __maybe_unused)3010 static int process_clockid(struct feat_fd *ff,
3011 			   void *data __maybe_unused)
3012 {
3013 	struct perf_env *env = &ff->ph->env;
3014 
3015 	if (do_read_u64(ff, &env->clock.clockid_res_ns))
3016 		return -1;
3017 
3018 	return 0;
3019 }
3020 
process_clock_data(struct feat_fd * ff,void * _data __maybe_unused)3021 static int process_clock_data(struct feat_fd *ff,
3022 			      void *_data __maybe_unused)
3023 {
3024 	struct perf_env *env = &ff->ph->env;
3025 	u32 data32;
3026 	u64 data64;
3027 
3028 	/* version */
3029 	if (do_read_u32(ff, &data32))
3030 		return -1;
3031 
3032 	if (data32 != 1)
3033 		return -1;
3034 
3035 	/* clockid */
3036 	if (do_read_u32(ff, &data32))
3037 		return -1;
3038 
3039 	env->clock.clockid = data32;
3040 
3041 	/* TOD ref time */
3042 	if (do_read_u64(ff, &data64))
3043 		return -1;
3044 
3045 	env->clock.tod_ns = data64;
3046 
3047 	/* clockid ref time */
3048 	if (do_read_u64(ff, &data64))
3049 		return -1;
3050 
3051 	env->clock.clockid_ns = data64;
3052 	env->clock.enabled = true;
3053 	return 0;
3054 }
3055 
process_hybrid_topology(struct feat_fd * ff,void * data __maybe_unused)3056 static int process_hybrid_topology(struct feat_fd *ff,
3057 				   void *data __maybe_unused)
3058 {
3059 	struct perf_env *env = &ff->ph->env;
3060 	struct hybrid_node *nodes, *n;
3061 	u32 nr, i;
3062 
3063 	/* nr nodes */
3064 	if (do_read_u32(ff, &nr))
3065 		return -1;
3066 
3067 	nodes = zalloc(sizeof(*nodes) * nr);
3068 	if (!nodes)
3069 		return -ENOMEM;
3070 
3071 	for (i = 0; i < nr; i++) {
3072 		n = &nodes[i];
3073 
3074 		n->pmu_name = do_read_string(ff);
3075 		if (!n->pmu_name)
3076 			goto error;
3077 
3078 		n->cpus = do_read_string(ff);
3079 		if (!n->cpus)
3080 			goto error;
3081 	}
3082 
3083 	env->nr_hybrid_nodes = nr;
3084 	env->hybrid_nodes = nodes;
3085 	return 0;
3086 
3087 error:
3088 	for (i = 0; i < nr; i++) {
3089 		free(nodes[i].pmu_name);
3090 		free(nodes[i].cpus);
3091 	}
3092 
3093 	free(nodes);
3094 	return -1;
3095 }
3096 
process_dir_format(struct feat_fd * ff,void * _data __maybe_unused)3097 static int process_dir_format(struct feat_fd *ff,
3098 			      void *_data __maybe_unused)
3099 {
3100 	struct perf_session *session;
3101 	struct perf_data *data;
3102 
3103 	session = container_of(ff->ph, struct perf_session, header);
3104 	data = session->data;
3105 
3106 	if (WARN_ON(!perf_data__is_dir(data)))
3107 		return -1;
3108 
3109 	return do_read_u64(ff, &data->dir.version);
3110 }
3111 
3112 #ifdef HAVE_LIBBPF_SUPPORT
process_bpf_prog_info(struct feat_fd * ff,void * data __maybe_unused)3113 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
3114 {
3115 	struct bpf_prog_info_node *info_node;
3116 	struct perf_env *env = &ff->ph->env;
3117 	struct perf_bpil *info_linear;
3118 	u32 count, i;
3119 	int err = -1;
3120 
3121 	if (ff->ph->needs_swap) {
3122 		pr_warning("interpreting bpf_prog_info from systems with endianness is not yet supported\n");
3123 		return 0;
3124 	}
3125 
3126 	if (do_read_u32(ff, &count))
3127 		return -1;
3128 
3129 	down_write(&env->bpf_progs.lock);
3130 
3131 	for (i = 0; i < count; ++i) {
3132 		u32 info_len, data_len;
3133 
3134 		info_linear = NULL;
3135 		info_node = NULL;
3136 		if (do_read_u32(ff, &info_len))
3137 			goto out;
3138 		if (do_read_u32(ff, &data_len))
3139 			goto out;
3140 
3141 		if (info_len > sizeof(struct bpf_prog_info)) {
3142 			pr_warning("detected invalid bpf_prog_info\n");
3143 			goto out;
3144 		}
3145 
3146 		info_linear = malloc(sizeof(struct perf_bpil) +
3147 				     data_len);
3148 		if (!info_linear)
3149 			goto out;
3150 		info_linear->info_len = sizeof(struct bpf_prog_info);
3151 		info_linear->data_len = data_len;
3152 		if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
3153 			goto out;
3154 		if (__do_read(ff, &info_linear->info, info_len))
3155 			goto out;
3156 		if (info_len < sizeof(struct bpf_prog_info))
3157 			memset(((void *)(&info_linear->info)) + info_len, 0,
3158 			       sizeof(struct bpf_prog_info) - info_len);
3159 
3160 		if (__do_read(ff, info_linear->data, data_len))
3161 			goto out;
3162 
3163 		info_node = malloc(sizeof(struct bpf_prog_info_node));
3164 		if (!info_node)
3165 			goto out;
3166 
3167 		/* after reading from file, translate offset to address */
3168 		bpil_offs_to_addr(info_linear);
3169 		info_node->info_linear = info_linear;
3170 		info_node->metadata = NULL;
3171 		if (!__perf_env__insert_bpf_prog_info(env, info_node)) {
3172 			free(info_linear);
3173 			free(info_node);
3174 		}
3175 	}
3176 
3177 	up_write(&env->bpf_progs.lock);
3178 	return 0;
3179 out:
3180 	free(info_linear);
3181 	free(info_node);
3182 	up_write(&env->bpf_progs.lock);
3183 	return err;
3184 }
3185 
process_bpf_btf(struct feat_fd * ff,void * data __maybe_unused)3186 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
3187 {
3188 	struct perf_env *env = &ff->ph->env;
3189 	struct btf_node *node = NULL;
3190 	u32 count, i;
3191 	int err = -1;
3192 
3193 	if (ff->ph->needs_swap) {
3194 		pr_warning("interpreting btf from systems with endianness is not yet supported\n");
3195 		return 0;
3196 	}
3197 
3198 	if (do_read_u32(ff, &count))
3199 		return -1;
3200 
3201 	down_write(&env->bpf_progs.lock);
3202 
3203 	for (i = 0; i < count; ++i) {
3204 		u32 id, data_size;
3205 
3206 		if (do_read_u32(ff, &id))
3207 			goto out;
3208 		if (do_read_u32(ff, &data_size))
3209 			goto out;
3210 
3211 		node = malloc(sizeof(struct btf_node) + data_size);
3212 		if (!node)
3213 			goto out;
3214 
3215 		node->id = id;
3216 		node->data_size = data_size;
3217 
3218 		if (__do_read(ff, node->data, data_size))
3219 			goto out;
3220 
3221 		if (!__perf_env__insert_btf(env, node))
3222 			free(node);
3223 		node = NULL;
3224 	}
3225 
3226 	err = 0;
3227 out:
3228 	up_write(&env->bpf_progs.lock);
3229 	free(node);
3230 	return err;
3231 }
3232 #endif // HAVE_LIBBPF_SUPPORT
3233 
process_compressed(struct feat_fd * ff,void * data __maybe_unused)3234 static int process_compressed(struct feat_fd *ff,
3235 			      void *data __maybe_unused)
3236 {
3237 	struct perf_env *env = &ff->ph->env;
3238 
3239 	if (do_read_u32(ff, &(env->comp_ver)))
3240 		return -1;
3241 
3242 	if (do_read_u32(ff, &(env->comp_type)))
3243 		return -1;
3244 
3245 	if (do_read_u32(ff, &(env->comp_level)))
3246 		return -1;
3247 
3248 	if (do_read_u32(ff, &(env->comp_ratio)))
3249 		return -1;
3250 
3251 	if (do_read_u32(ff, &(env->comp_mmap_len)))
3252 		return -1;
3253 
3254 	return 0;
3255 }
3256 
__process_pmu_caps(struct feat_fd * ff,int * nr_caps,char *** caps,unsigned int * max_branches,unsigned int * br_cntr_nr,unsigned int * br_cntr_width)3257 static int __process_pmu_caps(struct feat_fd *ff, int *nr_caps,
3258 			      char ***caps, unsigned int *max_branches,
3259 			      unsigned int *br_cntr_nr,
3260 			      unsigned int *br_cntr_width)
3261 {
3262 	char *name, *value, *ptr;
3263 	u32 nr_pmu_caps, i;
3264 
3265 	*nr_caps = 0;
3266 	*caps = NULL;
3267 
3268 	if (do_read_u32(ff, &nr_pmu_caps))
3269 		return -1;
3270 
3271 	if (!nr_pmu_caps)
3272 		return 0;
3273 
3274 	*caps = zalloc(sizeof(char *) * nr_pmu_caps);
3275 	if (!*caps)
3276 		return -1;
3277 
3278 	for (i = 0; i < nr_pmu_caps; i++) {
3279 		name = do_read_string(ff);
3280 		if (!name)
3281 			goto error;
3282 
3283 		value = do_read_string(ff);
3284 		if (!value)
3285 			goto free_name;
3286 
3287 		if (asprintf(&ptr, "%s=%s", name, value) < 0)
3288 			goto free_value;
3289 
3290 		(*caps)[i] = ptr;
3291 
3292 		if (!strcmp(name, "branches"))
3293 			*max_branches = atoi(value);
3294 
3295 		if (!strcmp(name, "branch_counter_nr"))
3296 			*br_cntr_nr = atoi(value);
3297 
3298 		if (!strcmp(name, "branch_counter_width"))
3299 			*br_cntr_width = atoi(value);
3300 
3301 		free(value);
3302 		free(name);
3303 	}
3304 	*nr_caps = nr_pmu_caps;
3305 	return 0;
3306 
3307 free_value:
3308 	free(value);
3309 free_name:
3310 	free(name);
3311 error:
3312 	for (; i > 0; i--)
3313 		free((*caps)[i - 1]);
3314 	free(*caps);
3315 	*caps = NULL;
3316 	*nr_caps = 0;
3317 	return -1;
3318 }
3319 
process_cpu_pmu_caps(struct feat_fd * ff,void * data __maybe_unused)3320 static int process_cpu_pmu_caps(struct feat_fd *ff,
3321 				void *data __maybe_unused)
3322 {
3323 	struct perf_env *env = &ff->ph->env;
3324 	int ret = __process_pmu_caps(ff, &env->nr_cpu_pmu_caps,
3325 				     &env->cpu_pmu_caps,
3326 				     &env->max_branches,
3327 				     &env->br_cntr_nr,
3328 				     &env->br_cntr_width);
3329 
3330 	if (!ret && !env->cpu_pmu_caps)
3331 		pr_debug("cpu pmu capabilities not available\n");
3332 	return ret;
3333 }
3334 
process_pmu_caps(struct feat_fd * ff,void * data __maybe_unused)3335 static int process_pmu_caps(struct feat_fd *ff, void *data __maybe_unused)
3336 {
3337 	struct perf_env *env = &ff->ph->env;
3338 	struct pmu_caps *pmu_caps;
3339 	u32 nr_pmu, i;
3340 	int ret;
3341 	int j;
3342 
3343 	if (do_read_u32(ff, &nr_pmu))
3344 		return -1;
3345 
3346 	if (!nr_pmu) {
3347 		pr_debug("pmu capabilities not available\n");
3348 		return 0;
3349 	}
3350 
3351 	pmu_caps = zalloc(sizeof(*pmu_caps) * nr_pmu);
3352 	if (!pmu_caps)
3353 		return -ENOMEM;
3354 
3355 	for (i = 0; i < nr_pmu; i++) {
3356 		ret = __process_pmu_caps(ff, &pmu_caps[i].nr_caps,
3357 					 &pmu_caps[i].caps,
3358 					 &pmu_caps[i].max_branches,
3359 					 &pmu_caps[i].br_cntr_nr,
3360 					 &pmu_caps[i].br_cntr_width);
3361 		if (ret)
3362 			goto err;
3363 
3364 		pmu_caps[i].pmu_name = do_read_string(ff);
3365 		if (!pmu_caps[i].pmu_name) {
3366 			ret = -1;
3367 			goto err;
3368 		}
3369 		if (!pmu_caps[i].nr_caps) {
3370 			pr_debug("%s pmu capabilities not available\n",
3371 				 pmu_caps[i].pmu_name);
3372 		}
3373 	}
3374 
3375 	env->nr_pmus_with_caps = nr_pmu;
3376 	env->pmu_caps = pmu_caps;
3377 	return 0;
3378 
3379 err:
3380 	for (i = 0; i < nr_pmu; i++) {
3381 		for (j = 0; j < pmu_caps[i].nr_caps; j++)
3382 			free(pmu_caps[i].caps[j]);
3383 		free(pmu_caps[i].caps);
3384 		free(pmu_caps[i].pmu_name);
3385 	}
3386 
3387 	free(pmu_caps);
3388 	return ret;
3389 }
3390 
3391 #define FEAT_OPR(n, func, __full_only) \
3392 	[HEADER_##n] = {					\
3393 		.name	    = __stringify(n),			\
3394 		.write	    = write_##func,			\
3395 		.print	    = print_##func,			\
3396 		.full_only  = __full_only,			\
3397 		.process    = process_##func,			\
3398 		.synthesize = true				\
3399 	}
3400 
3401 #define FEAT_OPN(n, func, __full_only) \
3402 	[HEADER_##n] = {					\
3403 		.name	    = __stringify(n),			\
3404 		.write	    = write_##func,			\
3405 		.print	    = print_##func,			\
3406 		.full_only  = __full_only,			\
3407 		.process    = process_##func			\
3408 	}
3409 
3410 /* feature_ops not implemented: */
3411 #define print_tracing_data	NULL
3412 #define print_build_id		NULL
3413 
3414 #define process_branch_stack	NULL
3415 #define process_stat		NULL
3416 
3417 // Only used in util/synthetic-events.c
3418 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
3419 
3420 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
3421 #ifdef HAVE_LIBTRACEEVENT
3422 	FEAT_OPN(TRACING_DATA,	tracing_data,	false),
3423 #endif
3424 	FEAT_OPN(BUILD_ID,	build_id,	false),
3425 	FEAT_OPR(HOSTNAME,	hostname,	false),
3426 	FEAT_OPR(OSRELEASE,	osrelease,	false),
3427 	FEAT_OPR(VERSION,	version,	false),
3428 	FEAT_OPR(ARCH,		arch,		false),
3429 	FEAT_OPR(NRCPUS,	nrcpus,		false),
3430 	FEAT_OPR(CPUDESC,	cpudesc,	false),
3431 	FEAT_OPR(CPUID,		cpuid,		false),
3432 	FEAT_OPR(TOTAL_MEM,	total_mem,	false),
3433 	FEAT_OPR(EVENT_DESC,	event_desc,	false),
3434 	FEAT_OPR(CMDLINE,	cmdline,	false),
3435 	FEAT_OPR(CPU_TOPOLOGY,	cpu_topology,	true),
3436 	FEAT_OPR(NUMA_TOPOLOGY,	numa_topology,	true),
3437 	FEAT_OPN(BRANCH_STACK,	branch_stack,	false),
3438 	FEAT_OPR(PMU_MAPPINGS,	pmu_mappings,	false),
3439 	FEAT_OPR(GROUP_DESC,	group_desc,	false),
3440 	FEAT_OPN(AUXTRACE,	auxtrace,	false),
3441 	FEAT_OPN(STAT,		stat,		false),
3442 	FEAT_OPN(CACHE,		cache,		true),
3443 	FEAT_OPR(SAMPLE_TIME,	sample_time,	false),
3444 	FEAT_OPR(MEM_TOPOLOGY,	mem_topology,	true),
3445 	FEAT_OPR(CLOCKID,	clockid,	false),
3446 	FEAT_OPN(DIR_FORMAT,	dir_format,	false),
3447 #ifdef HAVE_LIBBPF_SUPPORT
3448 	FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
3449 	FEAT_OPR(BPF_BTF,       bpf_btf,        false),
3450 #endif
3451 	FEAT_OPR(COMPRESSED,	compressed,	false),
3452 	FEAT_OPR(CPU_PMU_CAPS,	cpu_pmu_caps,	false),
3453 	FEAT_OPR(CLOCK_DATA,	clock_data,	false),
3454 	FEAT_OPN(HYBRID_TOPOLOGY,	hybrid_topology,	true),
3455 	FEAT_OPR(PMU_CAPS,	pmu_caps,	false),
3456 };
3457 
3458 struct header_print_data {
3459 	FILE *fp;
3460 	bool full; /* extended list of headers */
3461 };
3462 
perf_file_section__fprintf_info(struct perf_file_section * section,struct perf_header * ph,int feat,int fd,void * data)3463 static int perf_file_section__fprintf_info(struct perf_file_section *section,
3464 					   struct perf_header *ph,
3465 					   int feat, int fd, void *data)
3466 {
3467 	struct header_print_data *hd = data;
3468 	struct feat_fd ff;
3469 
3470 	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3471 		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3472 				"%d, continuing...\n", section->offset, feat);
3473 		return 0;
3474 	}
3475 	if (feat >= HEADER_LAST_FEATURE) {
3476 		pr_warning("unknown feature %d\n", feat);
3477 		return 0;
3478 	}
3479 	if (!feat_ops[feat].print)
3480 		return 0;
3481 
3482 	ff = (struct  feat_fd) {
3483 		.fd = fd,
3484 		.ph = ph,
3485 	};
3486 
3487 	if (!feat_ops[feat].full_only || hd->full)
3488 		feat_ops[feat].print(&ff, hd->fp);
3489 	else
3490 		fprintf(hd->fp, "# %s info available, use -I to display\n",
3491 			feat_ops[feat].name);
3492 
3493 	return 0;
3494 }
3495 
perf_header__fprintf_info(struct perf_session * session,FILE * fp,bool full)3496 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
3497 {
3498 	struct header_print_data hd;
3499 	struct perf_header *header = &session->header;
3500 	int fd = perf_data__fd(session->data);
3501 	struct stat st;
3502 	time_t stctime;
3503 	int ret, bit;
3504 
3505 	hd.fp = fp;
3506 	hd.full = full;
3507 
3508 	ret = fstat(fd, &st);
3509 	if (ret == -1)
3510 		return -1;
3511 
3512 	stctime = st.st_mtime;
3513 	fprintf(fp, "# captured on    : %s", ctime(&stctime));
3514 
3515 	fprintf(fp, "# header version : %u\n", header->version);
3516 	fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
3517 	fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
3518 	fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
3519 
3520 	perf_header__process_sections(header, fd, &hd,
3521 				      perf_file_section__fprintf_info);
3522 
3523 	if (session->data->is_pipe)
3524 		return 0;
3525 
3526 	fprintf(fp, "# missing features: ");
3527 	for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
3528 		if (bit)
3529 			fprintf(fp, "%s ", feat_ops[bit].name);
3530 	}
3531 
3532 	fprintf(fp, "\n");
3533 	return 0;
3534 }
3535 
3536 struct header_fw {
3537 	struct feat_writer	fw;
3538 	struct feat_fd		*ff;
3539 };
3540 
feat_writer_cb(struct feat_writer * fw,void * buf,size_t sz)3541 static int feat_writer_cb(struct feat_writer *fw, void *buf, size_t sz)
3542 {
3543 	struct header_fw *h = container_of(fw, struct header_fw, fw);
3544 
3545 	return do_write(h->ff, buf, sz);
3546 }
3547 
do_write_feat(struct feat_fd * ff,int type,struct perf_file_section ** p,struct evlist * evlist,struct feat_copier * fc)3548 static int do_write_feat(struct feat_fd *ff, int type,
3549 			 struct perf_file_section **p,
3550 			 struct evlist *evlist,
3551 			 struct feat_copier *fc)
3552 {
3553 	int err;
3554 	int ret = 0;
3555 
3556 	if (perf_header__has_feat(ff->ph, type)) {
3557 		if (!feat_ops[type].write)
3558 			return -1;
3559 
3560 		if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
3561 			return -1;
3562 
3563 		(*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
3564 
3565 		/*
3566 		 * Hook to let perf inject copy features sections from the input
3567 		 * file.
3568 		 */
3569 		if (fc && fc->copy) {
3570 			struct header_fw h = {
3571 				.fw.write = feat_writer_cb,
3572 				.ff = ff,
3573 			};
3574 
3575 			/* ->copy() returns 0 if the feature was not copied */
3576 			err = fc->copy(fc, type, &h.fw);
3577 		} else {
3578 			err = 0;
3579 		}
3580 		if (!err)
3581 			err = feat_ops[type].write(ff, evlist);
3582 		if (err < 0) {
3583 			pr_debug("failed to write feature %s\n", feat_ops[type].name);
3584 
3585 			/* undo anything written */
3586 			lseek(ff->fd, (*p)->offset, SEEK_SET);
3587 
3588 			return -1;
3589 		}
3590 		(*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
3591 		(*p)++;
3592 	}
3593 	return ret;
3594 }
3595 
perf_header__adds_write(struct perf_header * header,struct evlist * evlist,int fd,struct feat_copier * fc)3596 static int perf_header__adds_write(struct perf_header *header,
3597 				   struct evlist *evlist, int fd,
3598 				   struct feat_copier *fc)
3599 {
3600 	int nr_sections;
3601 	struct feat_fd ff = {
3602 		.fd  = fd,
3603 		.ph = header,
3604 	};
3605 	struct perf_file_section *feat_sec, *p;
3606 	int sec_size;
3607 	u64 sec_start;
3608 	int feat;
3609 	int err;
3610 
3611 	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3612 	if (!nr_sections)
3613 		return 0;
3614 
3615 	feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3616 	if (feat_sec == NULL)
3617 		return -ENOMEM;
3618 
3619 	sec_size = sizeof(*feat_sec) * nr_sections;
3620 
3621 	sec_start = header->feat_offset;
3622 	lseek(fd, sec_start + sec_size, SEEK_SET);
3623 
3624 	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3625 		if (do_write_feat(&ff, feat, &p, evlist, fc))
3626 			perf_header__clear_feat(header, feat);
3627 	}
3628 
3629 	lseek(fd, sec_start, SEEK_SET);
3630 	/*
3631 	 * may write more than needed due to dropped feature, but
3632 	 * this is okay, reader will skip the missing entries
3633 	 */
3634 	err = do_write(&ff, feat_sec, sec_size);
3635 	if (err < 0)
3636 		pr_debug("failed to write feature section\n");
3637 	free(ff.buf); /* TODO: added to silence clang-tidy. */
3638 	free(feat_sec);
3639 	return err;
3640 }
3641 
perf_header__write_pipe(int fd)3642 int perf_header__write_pipe(int fd)
3643 {
3644 	struct perf_pipe_file_header f_header;
3645 	struct feat_fd ff = {
3646 		.fd = fd,
3647 	};
3648 	int err;
3649 
3650 	f_header = (struct perf_pipe_file_header){
3651 		.magic	   = PERF_MAGIC,
3652 		.size	   = sizeof(f_header),
3653 	};
3654 
3655 	err = do_write(&ff, &f_header, sizeof(f_header));
3656 	if (err < 0) {
3657 		pr_debug("failed to write perf pipe header\n");
3658 		return err;
3659 	}
3660 	free(ff.buf);
3661 	return 0;
3662 }
3663 
perf_session__do_write_header(struct perf_session * session,struct evlist * evlist,int fd,bool at_exit,struct feat_copier * fc,bool write_attrs_after_data)3664 static int perf_session__do_write_header(struct perf_session *session,
3665 					 struct evlist *evlist,
3666 					 int fd, bool at_exit,
3667 					 struct feat_copier *fc,
3668 					 bool write_attrs_after_data)
3669 {
3670 	struct perf_file_header f_header;
3671 	struct perf_header *header = &session->header;
3672 	struct evsel *evsel;
3673 	struct feat_fd ff = {
3674 		.ph = header,
3675 		.fd = fd,
3676 	};
3677 	u64 attr_offset = sizeof(f_header), attr_size = 0;
3678 	int err;
3679 
3680 	if (write_attrs_after_data && at_exit) {
3681 		/*
3682 		 * Write features at the end of the file first so that
3683 		 * attributes may come after them.
3684 		 */
3685 		if (!header->data_offset && header->data_size) {
3686 			pr_err("File contains data but offset unknown\n");
3687 			err = -1;
3688 			goto err_out;
3689 		}
3690 		header->feat_offset = header->data_offset + header->data_size;
3691 		err = perf_header__adds_write(header, evlist, fd, fc);
3692 		if (err < 0)
3693 			goto err_out;
3694 		attr_offset = lseek(fd, 0, SEEK_CUR);
3695 	} else {
3696 		lseek(fd, attr_offset, SEEK_SET);
3697 	}
3698 
3699 	evlist__for_each_entry(session->evlist, evsel) {
3700 		evsel->id_offset = attr_offset;
3701 		/* Avoid writing at the end of the file until the session is exiting. */
3702 		if (!write_attrs_after_data || at_exit) {
3703 			err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3704 			if (err < 0) {
3705 				pr_debug("failed to write perf header\n");
3706 				goto err_out;
3707 			}
3708 		}
3709 		attr_offset += evsel->core.ids * sizeof(u64);
3710 	}
3711 
3712 	evlist__for_each_entry(evlist, evsel) {
3713 		if (evsel->core.attr.size < sizeof(evsel->core.attr)) {
3714 			/*
3715 			 * We are likely in "perf inject" and have read
3716 			 * from an older file. Update attr size so that
3717 			 * reader gets the right offset to the ids.
3718 			 */
3719 			evsel->core.attr.size = sizeof(evsel->core.attr);
3720 		}
3721 		/* Avoid writing at the end of the file until the session is exiting. */
3722 		if (!write_attrs_after_data || at_exit) {
3723 			struct perf_file_attr f_attr = {
3724 				.attr = evsel->core.attr,
3725 				.ids  = {
3726 					.offset = evsel->id_offset,
3727 					.size   = evsel->core.ids * sizeof(u64),
3728 				}
3729 			};
3730 			err = do_write(&ff, &f_attr, sizeof(f_attr));
3731 			if (err < 0) {
3732 				pr_debug("failed to write perf header attribute\n");
3733 				goto err_out;
3734 			}
3735 		}
3736 		attr_size += sizeof(struct perf_file_attr);
3737 	}
3738 
3739 	if (!header->data_offset) {
3740 		if (write_attrs_after_data)
3741 			header->data_offset = sizeof(f_header);
3742 		else
3743 			header->data_offset = attr_offset + attr_size;
3744 	}
3745 	header->feat_offset = header->data_offset + header->data_size;
3746 
3747 	if (!write_attrs_after_data && at_exit) {
3748 		/* Write features now feat_offset is known. */
3749 		err = perf_header__adds_write(header, evlist, fd, fc);
3750 		if (err < 0)
3751 			goto err_out;
3752 	}
3753 
3754 	f_header = (struct perf_file_header){
3755 		.magic	   = PERF_MAGIC,
3756 		.size	   = sizeof(f_header),
3757 		.attr_size = sizeof(struct perf_file_attr),
3758 		.attrs = {
3759 			.offset = attr_offset,
3760 			.size   = attr_size,
3761 		},
3762 		.data = {
3763 			.offset = header->data_offset,
3764 			.size	= header->data_size,
3765 		},
3766 		/* event_types is ignored, store zeros */
3767 	};
3768 
3769 	memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3770 
3771 	lseek(fd, 0, SEEK_SET);
3772 	err = do_write(&ff, &f_header, sizeof(f_header));
3773 	if (err < 0) {
3774 		pr_debug("failed to write perf header\n");
3775 		goto err_out;
3776 	} else {
3777 		lseek(fd, 0, SEEK_END);
3778 		err = 0;
3779 	}
3780 err_out:
3781 	free(ff.buf);
3782 	return err;
3783 }
3784 
perf_session__write_header(struct perf_session * session,struct evlist * evlist,int fd,bool at_exit)3785 int perf_session__write_header(struct perf_session *session,
3786 			       struct evlist *evlist,
3787 			       int fd, bool at_exit)
3788 {
3789 	return perf_session__do_write_header(session, evlist, fd, at_exit, /*fc=*/NULL,
3790 					     /*write_attrs_after_data=*/false);
3791 }
3792 
perf_session__data_offset(const struct evlist * evlist)3793 size_t perf_session__data_offset(const struct evlist *evlist)
3794 {
3795 	struct evsel *evsel;
3796 	size_t data_offset;
3797 
3798 	data_offset = sizeof(struct perf_file_header);
3799 	evlist__for_each_entry(evlist, evsel) {
3800 		data_offset += evsel->core.ids * sizeof(u64);
3801 	}
3802 	data_offset += evlist->core.nr_entries * sizeof(struct perf_file_attr);
3803 
3804 	return data_offset;
3805 }
3806 
perf_session__inject_header(struct perf_session * session,struct evlist * evlist,int fd,struct feat_copier * fc,bool write_attrs_after_data)3807 int perf_session__inject_header(struct perf_session *session,
3808 				struct evlist *evlist,
3809 				int fd,
3810 				struct feat_copier *fc,
3811 				bool write_attrs_after_data)
3812 {
3813 	return perf_session__do_write_header(session, evlist, fd, true, fc,
3814 					     write_attrs_after_data);
3815 }
3816 
perf_header__getbuffer64(struct perf_header * header,int fd,void * buf,size_t size)3817 static int perf_header__getbuffer64(struct perf_header *header,
3818 				    int fd, void *buf, size_t size)
3819 {
3820 	if (readn(fd, buf, size) <= 0)
3821 		return -1;
3822 
3823 	if (header->needs_swap)
3824 		mem_bswap_64(buf, size);
3825 
3826 	return 0;
3827 }
3828 
perf_header__process_sections(struct perf_header * header,int fd,void * data,int (* process)(struct perf_file_section * section,struct perf_header * ph,int feat,int fd,void * data))3829 int perf_header__process_sections(struct perf_header *header, int fd,
3830 				  void *data,
3831 				  int (*process)(struct perf_file_section *section,
3832 						 struct perf_header *ph,
3833 						 int feat, int fd, void *data))
3834 {
3835 	struct perf_file_section *feat_sec, *sec;
3836 	int nr_sections;
3837 	int sec_size;
3838 	int feat;
3839 	int err;
3840 
3841 	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3842 	if (!nr_sections)
3843 		return 0;
3844 
3845 	feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3846 	if (!feat_sec)
3847 		return -1;
3848 
3849 	sec_size = sizeof(*feat_sec) * nr_sections;
3850 
3851 	lseek(fd, header->feat_offset, SEEK_SET);
3852 
3853 	err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3854 	if (err < 0)
3855 		goto out_free;
3856 
3857 	for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3858 		err = process(sec++, header, feat, fd, data);
3859 		if (err < 0)
3860 			goto out_free;
3861 	}
3862 	err = 0;
3863 out_free:
3864 	free(feat_sec);
3865 	return err;
3866 }
3867 
3868 static const int attr_file_abi_sizes[] = {
3869 	[0] = PERF_ATTR_SIZE_VER0,
3870 	[1] = PERF_ATTR_SIZE_VER1,
3871 	[2] = PERF_ATTR_SIZE_VER2,
3872 	[3] = PERF_ATTR_SIZE_VER3,
3873 	[4] = PERF_ATTR_SIZE_VER4,
3874 	0,
3875 };
3876 
3877 /*
3878  * In the legacy file format, the magic number is not used to encode endianness.
3879  * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3880  * on ABI revisions, we need to try all combinations for all endianness to
3881  * detect the endianness.
3882  */
try_all_file_abis(uint64_t hdr_sz,struct perf_header * ph)3883 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3884 {
3885 	uint64_t ref_size, attr_size;
3886 	int i;
3887 
3888 	for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3889 		ref_size = attr_file_abi_sizes[i]
3890 			 + sizeof(struct perf_file_section);
3891 		if (hdr_sz != ref_size) {
3892 			attr_size = bswap_64(hdr_sz);
3893 			if (attr_size != ref_size)
3894 				continue;
3895 
3896 			ph->needs_swap = true;
3897 		}
3898 		pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3899 			 i,
3900 			 ph->needs_swap);
3901 		return 0;
3902 	}
3903 	/* could not determine endianness */
3904 	return -1;
3905 }
3906 
3907 #define PERF_PIPE_HDR_VER0	16
3908 
3909 static const size_t attr_pipe_abi_sizes[] = {
3910 	[0] = PERF_PIPE_HDR_VER0,
3911 	0,
3912 };
3913 
3914 /*
3915  * In the legacy pipe format, there is an implicit assumption that endianness
3916  * between host recording the samples, and host parsing the samples is the
3917  * same. This is not always the case given that the pipe output may always be
3918  * redirected into a file and analyzed on a different machine with possibly a
3919  * different endianness and perf_event ABI revisions in the perf tool itself.
3920  */
try_all_pipe_abis(uint64_t hdr_sz,struct perf_header * ph)3921 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3922 {
3923 	u64 attr_size;
3924 	int i;
3925 
3926 	for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3927 		if (hdr_sz != attr_pipe_abi_sizes[i]) {
3928 			attr_size = bswap_64(hdr_sz);
3929 			if (attr_size != hdr_sz)
3930 				continue;
3931 
3932 			ph->needs_swap = true;
3933 		}
3934 		pr_debug("Pipe ABI%d perf.data file detected\n", i);
3935 		return 0;
3936 	}
3937 	return -1;
3938 }
3939 
is_perf_magic(u64 magic)3940 bool is_perf_magic(u64 magic)
3941 {
3942 	if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3943 		|| magic == __perf_magic2
3944 		|| magic == __perf_magic2_sw)
3945 		return true;
3946 
3947 	return false;
3948 }
3949 
check_magic_endian(u64 magic,uint64_t hdr_sz,bool is_pipe,struct perf_header * ph)3950 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3951 			      bool is_pipe, struct perf_header *ph)
3952 {
3953 	int ret;
3954 
3955 	/* check for legacy format */
3956 	ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3957 	if (ret == 0) {
3958 		ph->version = PERF_HEADER_VERSION_1;
3959 		pr_debug("legacy perf.data format\n");
3960 		if (is_pipe)
3961 			return try_all_pipe_abis(hdr_sz, ph);
3962 
3963 		return try_all_file_abis(hdr_sz, ph);
3964 	}
3965 	/*
3966 	 * the new magic number serves two purposes:
3967 	 * - unique number to identify actual perf.data files
3968 	 * - encode endianness of file
3969 	 */
3970 	ph->version = PERF_HEADER_VERSION_2;
3971 
3972 	/* check magic number with one endianness */
3973 	if (magic == __perf_magic2)
3974 		return 0;
3975 
3976 	/* check magic number with opposite endianness */
3977 	if (magic != __perf_magic2_sw)
3978 		return -1;
3979 
3980 	ph->needs_swap = true;
3981 
3982 	return 0;
3983 }
3984 
perf_file_header__read(struct perf_file_header * header,struct perf_header * ph,int fd)3985 int perf_file_header__read(struct perf_file_header *header,
3986 			   struct perf_header *ph, int fd)
3987 {
3988 	ssize_t ret;
3989 
3990 	lseek(fd, 0, SEEK_SET);
3991 
3992 	ret = readn(fd, header, sizeof(*header));
3993 	if (ret <= 0)
3994 		return -1;
3995 
3996 	if (check_magic_endian(header->magic,
3997 			       header->attr_size, false, ph) < 0) {
3998 		pr_debug("magic/endian check failed\n");
3999 		return -1;
4000 	}
4001 
4002 	if (ph->needs_swap) {
4003 		mem_bswap_64(header, offsetof(struct perf_file_header,
4004 			     adds_features));
4005 	}
4006 
4007 	if (header->size > header->attrs.offset) {
4008 		pr_err("Perf file header corrupt: header overlaps attrs\n");
4009 		return -1;
4010 	}
4011 
4012 	if (header->size > header->data.offset) {
4013 		pr_err("Perf file header corrupt: header overlaps data\n");
4014 		return -1;
4015 	}
4016 
4017 	if ((header->attrs.offset <= header->data.offset &&
4018 	     header->attrs.offset + header->attrs.size > header->data.offset) ||
4019 	    (header->attrs.offset > header->data.offset &&
4020 	     header->data.offset + header->data.size > header->attrs.offset)) {
4021 		pr_err("Perf file header corrupt: Attributes and data overlap\n");
4022 		return -1;
4023 	}
4024 
4025 	if (header->size != sizeof(*header)) {
4026 		/* Support the previous format */
4027 		if (header->size == offsetof(typeof(*header), adds_features))
4028 			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
4029 		else
4030 			return -1;
4031 	} else if (ph->needs_swap) {
4032 		/*
4033 		 * feature bitmap is declared as an array of unsigned longs --
4034 		 * not good since its size can differ between the host that
4035 		 * generated the data file and the host analyzing the file.
4036 		 *
4037 		 * We need to handle endianness, but we don't know the size of
4038 		 * the unsigned long where the file was generated. Take a best
4039 		 * guess at determining it: try 64-bit swap first (ie., file
4040 		 * created on a 64-bit host), and check if the hostname feature
4041 		 * bit is set (this feature bit is forced on as of fbe96f2).
4042 		 * If the bit is not, undo the 64-bit swap and try a 32-bit
4043 		 * swap. If the hostname bit is still not set (e.g., older data
4044 		 * file), punt and fallback to the original behavior --
4045 		 * clearing all feature bits and setting buildid.
4046 		 */
4047 		mem_bswap_64(&header->adds_features,
4048 			    BITS_TO_U64(HEADER_FEAT_BITS));
4049 
4050 		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
4051 			/* unswap as u64 */
4052 			mem_bswap_64(&header->adds_features,
4053 				    BITS_TO_U64(HEADER_FEAT_BITS));
4054 
4055 			/* unswap as u32 */
4056 			mem_bswap_32(&header->adds_features,
4057 				    BITS_TO_U32(HEADER_FEAT_BITS));
4058 		}
4059 
4060 		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
4061 			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
4062 			__set_bit(HEADER_BUILD_ID, header->adds_features);
4063 		}
4064 	}
4065 
4066 	memcpy(&ph->adds_features, &header->adds_features,
4067 	       sizeof(ph->adds_features));
4068 
4069 	ph->data_offset  = header->data.offset;
4070 	ph->data_size	 = header->data.size;
4071 	ph->feat_offset  = header->data.offset + header->data.size;
4072 	return 0;
4073 }
4074 
perf_file_section__process(struct perf_file_section * section,struct perf_header * ph,int feat,int fd,void * data)4075 static int perf_file_section__process(struct perf_file_section *section,
4076 				      struct perf_header *ph,
4077 				      int feat, int fd, void *data)
4078 {
4079 	struct feat_fd fdd = {
4080 		.fd	= fd,
4081 		.ph	= ph,
4082 		.size	= section->size,
4083 		.offset	= section->offset,
4084 	};
4085 
4086 	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
4087 		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
4088 			  "%d, continuing...\n", section->offset, feat);
4089 		return 0;
4090 	}
4091 
4092 	if (feat >= HEADER_LAST_FEATURE) {
4093 		pr_debug("unknown feature %d, continuing...\n", feat);
4094 		return 0;
4095 	}
4096 
4097 	if (!feat_ops[feat].process)
4098 		return 0;
4099 
4100 	return feat_ops[feat].process(&fdd, data);
4101 }
4102 
perf_file_header__read_pipe(struct perf_pipe_file_header * header,struct perf_header * ph,struct perf_data * data)4103 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
4104 				       struct perf_header *ph,
4105 				       struct perf_data *data)
4106 {
4107 	ssize_t ret;
4108 
4109 	ret = perf_data__read(data, header, sizeof(*header));
4110 	if (ret <= 0)
4111 		return -1;
4112 
4113 	if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
4114 		pr_debug("endian/magic failed\n");
4115 		return -1;
4116 	}
4117 
4118 	if (ph->needs_swap)
4119 		header->size = bswap_64(header->size);
4120 
4121 	return 0;
4122 }
4123 
perf_header__read_pipe(struct perf_session * session)4124 static int perf_header__read_pipe(struct perf_session *session)
4125 {
4126 	struct perf_header *header = &session->header;
4127 	struct perf_pipe_file_header f_header;
4128 
4129 	if (perf_file_header__read_pipe(&f_header, header, session->data) < 0) {
4130 		pr_debug("incompatible file format\n");
4131 		return -EINVAL;
4132 	}
4133 
4134 	return f_header.size == sizeof(f_header) ? 0 : -1;
4135 }
4136 
read_attr(int fd,struct perf_header * ph,struct perf_file_attr * f_attr)4137 static int read_attr(int fd, struct perf_header *ph,
4138 		     struct perf_file_attr *f_attr)
4139 {
4140 	struct perf_event_attr *attr = &f_attr->attr;
4141 	size_t sz, left;
4142 	size_t our_sz = sizeof(f_attr->attr);
4143 	ssize_t ret;
4144 
4145 	memset(f_attr, 0, sizeof(*f_attr));
4146 
4147 	/* read minimal guaranteed structure */
4148 	ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
4149 	if (ret <= 0) {
4150 		pr_debug("cannot read %d bytes of header attr\n",
4151 			 PERF_ATTR_SIZE_VER0);
4152 		return -1;
4153 	}
4154 
4155 	/* on file perf_event_attr size */
4156 	sz = attr->size;
4157 
4158 	if (ph->needs_swap)
4159 		sz = bswap_32(sz);
4160 
4161 	if (sz == 0) {
4162 		/* assume ABI0 */
4163 		sz =  PERF_ATTR_SIZE_VER0;
4164 	} else if (sz > our_sz) {
4165 		pr_debug("file uses a more recent and unsupported ABI"
4166 			 " (%zu bytes extra)\n", sz - our_sz);
4167 		return -1;
4168 	}
4169 	/* what we have not yet read and that we know about */
4170 	left = sz - PERF_ATTR_SIZE_VER0;
4171 	if (left) {
4172 		void *ptr = attr;
4173 		ptr += PERF_ATTR_SIZE_VER0;
4174 
4175 		ret = readn(fd, ptr, left);
4176 	}
4177 	/* read perf_file_section, ids are read in caller */
4178 	ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
4179 
4180 	return ret <= 0 ? -1 : 0;
4181 }
4182 
4183 #ifdef HAVE_LIBTRACEEVENT
evsel__prepare_tracepoint_event(struct evsel * evsel,struct tep_handle * pevent)4184 static int evsel__prepare_tracepoint_event(struct evsel *evsel, struct tep_handle *pevent)
4185 {
4186 	struct tep_event *event;
4187 	char bf[128];
4188 
4189 	/* already prepared */
4190 	if (evsel->tp_format)
4191 		return 0;
4192 
4193 	if (pevent == NULL) {
4194 		pr_debug("broken or missing trace data\n");
4195 		return -1;
4196 	}
4197 
4198 	event = tep_find_event(pevent, evsel->core.attr.config);
4199 	if (event == NULL) {
4200 		pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
4201 		return -1;
4202 	}
4203 
4204 	if (!evsel->name) {
4205 		snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
4206 		evsel->name = strdup(bf);
4207 		if (evsel->name == NULL)
4208 			return -1;
4209 	}
4210 
4211 	evsel->tp_format = event;
4212 	return 0;
4213 }
4214 
evlist__prepare_tracepoint_events(struct evlist * evlist,struct tep_handle * pevent)4215 static int evlist__prepare_tracepoint_events(struct evlist *evlist, struct tep_handle *pevent)
4216 {
4217 	struct evsel *pos;
4218 
4219 	evlist__for_each_entry(evlist, pos) {
4220 		if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
4221 		    evsel__prepare_tracepoint_event(pos, pevent))
4222 			return -1;
4223 	}
4224 
4225 	return 0;
4226 }
4227 #endif
4228 
perf_session__read_header(struct perf_session * session)4229 int perf_session__read_header(struct perf_session *session)
4230 {
4231 	struct perf_data *data = session->data;
4232 	struct perf_header *header = &session->header;
4233 	struct perf_file_header	f_header;
4234 	struct perf_file_attr	f_attr;
4235 	u64			f_id;
4236 	int nr_attrs, nr_ids, i, j, err;
4237 	int fd = perf_data__fd(data);
4238 
4239 	session->evlist = evlist__new();
4240 	if (session->evlist == NULL)
4241 		return -ENOMEM;
4242 
4243 	session->evlist->session = session;
4244 	session->machines.host.env = &header->env;
4245 
4246 	/*
4247 	 * We can read 'pipe' data event from regular file,
4248 	 * check for the pipe header regardless of source.
4249 	 */
4250 	err = perf_header__read_pipe(session);
4251 	if (!err || perf_data__is_pipe(data)) {
4252 		data->is_pipe = true;
4253 		return err;
4254 	}
4255 
4256 	if (perf_file_header__read(&f_header, header, fd) < 0)
4257 		return -EINVAL;
4258 
4259 	if (header->needs_swap && data->in_place_update) {
4260 		pr_err("In-place update not supported when byte-swapping is required\n");
4261 		return -EINVAL;
4262 	}
4263 
4264 	/*
4265 	 * Sanity check that perf.data was written cleanly; data size is
4266 	 * initialized to 0 and updated only if the on_exit function is run.
4267 	 * If data size is still 0 then the file contains only partial
4268 	 * information.  Just warn user and process it as much as it can.
4269 	 */
4270 	if (f_header.data.size == 0) {
4271 		pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
4272 			   "Was the 'perf record' command properly terminated?\n",
4273 			   data->file.path);
4274 	}
4275 
4276 	if (f_header.attr_size == 0) {
4277 		pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
4278 		       "Was the 'perf record' command properly terminated?\n",
4279 		       data->file.path);
4280 		return -EINVAL;
4281 	}
4282 
4283 	nr_attrs = f_header.attrs.size / f_header.attr_size;
4284 	lseek(fd, f_header.attrs.offset, SEEK_SET);
4285 
4286 	for (i = 0; i < nr_attrs; i++) {
4287 		struct evsel *evsel;
4288 		off_t tmp;
4289 
4290 		if (read_attr(fd, header, &f_attr) < 0)
4291 			goto out_errno;
4292 
4293 		if (header->needs_swap) {
4294 			f_attr.ids.size   = bswap_64(f_attr.ids.size);
4295 			f_attr.ids.offset = bswap_64(f_attr.ids.offset);
4296 			perf_event__attr_swap(&f_attr.attr);
4297 		}
4298 
4299 		tmp = lseek(fd, 0, SEEK_CUR);
4300 		evsel = evsel__new(&f_attr.attr);
4301 
4302 		if (evsel == NULL)
4303 			goto out_delete_evlist;
4304 
4305 		evsel->needs_swap = header->needs_swap;
4306 		/*
4307 		 * Do it before so that if perf_evsel__alloc_id fails, this
4308 		 * entry gets purged too at evlist__delete().
4309 		 */
4310 		evlist__add(session->evlist, evsel);
4311 
4312 		nr_ids = f_attr.ids.size / sizeof(u64);
4313 		/*
4314 		 * We don't have the cpu and thread maps on the header, so
4315 		 * for allocating the perf_sample_id table we fake 1 cpu and
4316 		 * hattr->ids threads.
4317 		 */
4318 		if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
4319 			goto out_delete_evlist;
4320 
4321 		lseek(fd, f_attr.ids.offset, SEEK_SET);
4322 
4323 		for (j = 0; j < nr_ids; j++) {
4324 			if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
4325 				goto out_errno;
4326 
4327 			perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
4328 		}
4329 
4330 		lseek(fd, tmp, SEEK_SET);
4331 	}
4332 
4333 #ifdef HAVE_LIBTRACEEVENT
4334 	perf_header__process_sections(header, fd, &session->tevent,
4335 				      perf_file_section__process);
4336 
4337 	if (evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent))
4338 		goto out_delete_evlist;
4339 #else
4340 	perf_header__process_sections(header, fd, NULL, perf_file_section__process);
4341 #endif
4342 
4343 	return 0;
4344 out_errno:
4345 	return -errno;
4346 
4347 out_delete_evlist:
4348 	evlist__delete(session->evlist);
4349 	session->evlist = NULL;
4350 	return -ENOMEM;
4351 }
4352 
perf_event__process_feature(struct perf_session * session,union perf_event * event)4353 int perf_event__process_feature(struct perf_session *session,
4354 				union perf_event *event)
4355 {
4356 	struct feat_fd ff = { .fd = 0 };
4357 	struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
4358 	int type = fe->header.type;
4359 	u64 feat = fe->feat_id;
4360 	int ret = 0;
4361 	bool print = dump_trace;
4362 
4363 	if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
4364 		pr_warning("invalid record type %d in pipe-mode\n", type);
4365 		return 0;
4366 	}
4367 	if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
4368 		pr_warning("invalid record type %d in pipe-mode\n", type);
4369 		return -1;
4370 	}
4371 
4372 	ff.buf  = (void *)fe->data;
4373 	ff.size = event->header.size - sizeof(*fe);
4374 	ff.ph = &session->header;
4375 
4376 	if (feat_ops[feat].process && feat_ops[feat].process(&ff, NULL)) {
4377 		ret = -1;
4378 		goto out;
4379 	}
4380 
4381 	if (session->tool->show_feat_hdr) {
4382 		if (!feat_ops[feat].full_only ||
4383 		    session->tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
4384 			print = true;
4385 		} else {
4386 			fprintf(stdout, "# %s info available, use -I to display\n",
4387 				feat_ops[feat].name);
4388 		}
4389 	}
4390 
4391 	if (dump_trace)
4392 		printf(", ");
4393 
4394 	if (print) {
4395 		if (feat_ops[feat].print)
4396 			feat_ops[feat].print(&ff, stdout);
4397 		else
4398 			printf("# %s", feat_ops[feat].name);
4399 	}
4400 
4401 out:
4402 	free_event_desc(ff.events);
4403 	return ret;
4404 }
4405 
perf_event__fprintf_event_update(union perf_event * event,FILE * fp)4406 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
4407 {
4408 	struct perf_record_event_update *ev = &event->event_update;
4409 	struct perf_cpu_map *map;
4410 	size_t ret;
4411 
4412 	ret = fprintf(fp, "\n... id:    %" PRI_lu64 "\n", ev->id);
4413 
4414 	switch (ev->type) {
4415 	case PERF_EVENT_UPDATE__SCALE:
4416 		ret += fprintf(fp, "... scale: %f\n", ev->scale.scale);
4417 		break;
4418 	case PERF_EVENT_UPDATE__UNIT:
4419 		ret += fprintf(fp, "... unit:  %s\n", ev->unit);
4420 		break;
4421 	case PERF_EVENT_UPDATE__NAME:
4422 		ret += fprintf(fp, "... name:  %s\n", ev->name);
4423 		break;
4424 	case PERF_EVENT_UPDATE__CPUS:
4425 		ret += fprintf(fp, "... ");
4426 
4427 		map = cpu_map__new_data(&ev->cpus.cpus);
4428 		if (map) {
4429 			ret += cpu_map__fprintf(map, fp);
4430 			perf_cpu_map__put(map);
4431 		} else
4432 			ret += fprintf(fp, "failed to get cpus\n");
4433 		break;
4434 	default:
4435 		ret += fprintf(fp, "... unknown type\n");
4436 		break;
4437 	}
4438 
4439 	return ret;
4440 }
4441 
perf_event__fprintf_attr(union perf_event * event,FILE * fp)4442 size_t perf_event__fprintf_attr(union perf_event *event, FILE *fp)
4443 {
4444 	return perf_event_attr__fprintf(fp, &event->attr.attr, __desc_attr__fprintf, NULL);
4445 }
4446 
perf_event__process_attr(const struct perf_tool * tool __maybe_unused,union perf_event * event,struct evlist ** pevlist)4447 int perf_event__process_attr(const struct perf_tool *tool __maybe_unused,
4448 			     union perf_event *event,
4449 			     struct evlist **pevlist)
4450 {
4451 	u32 i, n_ids;
4452 	u64 *ids;
4453 	struct evsel *evsel;
4454 	struct evlist *evlist = *pevlist;
4455 
4456 	if (dump_trace)
4457 		perf_event__fprintf_attr(event, stdout);
4458 
4459 	if (evlist == NULL) {
4460 		*pevlist = evlist = evlist__new();
4461 		if (evlist == NULL)
4462 			return -ENOMEM;
4463 	}
4464 
4465 	evsel = evsel__new(&event->attr.attr);
4466 	if (evsel == NULL)
4467 		return -ENOMEM;
4468 
4469 	evlist__add(evlist, evsel);
4470 
4471 	n_ids = event->header.size - sizeof(event->header) - event->attr.attr.size;
4472 	n_ids = n_ids / sizeof(u64);
4473 	/*
4474 	 * We don't have the cpu and thread maps on the header, so
4475 	 * for allocating the perf_sample_id table we fake 1 cpu and
4476 	 * hattr->ids threads.
4477 	 */
4478 	if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
4479 		return -ENOMEM;
4480 
4481 	ids = perf_record_header_attr_id(event);
4482 	for (i = 0; i < n_ids; i++) {
4483 		perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, ids[i]);
4484 	}
4485 
4486 	return 0;
4487 }
4488 
perf_event__process_event_update(const struct perf_tool * tool __maybe_unused,union perf_event * event,struct evlist ** pevlist)4489 int perf_event__process_event_update(const struct perf_tool *tool __maybe_unused,
4490 				     union perf_event *event,
4491 				     struct evlist **pevlist)
4492 {
4493 	struct perf_record_event_update *ev = &event->event_update;
4494 	struct evlist *evlist;
4495 	struct evsel *evsel;
4496 	struct perf_cpu_map *map;
4497 
4498 	if (dump_trace)
4499 		perf_event__fprintf_event_update(event, stdout);
4500 
4501 	if (!pevlist || *pevlist == NULL)
4502 		return -EINVAL;
4503 
4504 	evlist = *pevlist;
4505 
4506 	evsel = evlist__id2evsel(evlist, ev->id);
4507 	if (evsel == NULL)
4508 		return -EINVAL;
4509 
4510 	switch (ev->type) {
4511 	case PERF_EVENT_UPDATE__UNIT:
4512 		free((char *)evsel->unit);
4513 		evsel->unit = strdup(ev->unit);
4514 		break;
4515 	case PERF_EVENT_UPDATE__NAME:
4516 		free(evsel->name);
4517 		evsel->name = strdup(ev->name);
4518 		break;
4519 	case PERF_EVENT_UPDATE__SCALE:
4520 		evsel->scale = ev->scale.scale;
4521 		break;
4522 	case PERF_EVENT_UPDATE__CPUS:
4523 		map = cpu_map__new_data(&ev->cpus.cpus);
4524 		if (map) {
4525 			perf_cpu_map__put(evsel->core.pmu_cpus);
4526 			evsel->core.pmu_cpus = map;
4527 		} else
4528 			pr_err("failed to get event_update cpus\n");
4529 	default:
4530 		break;
4531 	}
4532 
4533 	return 0;
4534 }
4535 
4536 #ifdef HAVE_LIBTRACEEVENT
perf_event__process_tracing_data(const struct perf_tool * tool __maybe_unused,struct perf_session * session,union perf_event * event)4537 int perf_event__process_tracing_data(const struct perf_tool *tool __maybe_unused,
4538 				     struct perf_session *session,
4539 				     union perf_event *event)
4540 {
4541 	ssize_t size_read, padding, size = event->tracing_data.size;
4542 	int fd = perf_data__fd(session->data);
4543 	char buf[BUFSIZ];
4544 
4545 	/*
4546 	 * The pipe fd is already in proper place and in any case
4547 	 * we can't move it, and we'd screw the case where we read
4548 	 * 'pipe' data from regular file. The trace_report reads
4549 	 * data from 'fd' so we need to set it directly behind the
4550 	 * event, where the tracing data starts.
4551 	 */
4552 	if (!perf_data__is_pipe(session->data)) {
4553 		off_t offset = lseek(fd, 0, SEEK_CUR);
4554 
4555 		/* setup for reading amidst mmap */
4556 		lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
4557 		      SEEK_SET);
4558 	}
4559 
4560 	size_read = trace_report(fd, &session->tevent, session->trace_event_repipe);
4561 	padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4562 
4563 	if (readn(fd, buf, padding) < 0) {
4564 		pr_err("%s: reading input file", __func__);
4565 		return -1;
4566 	}
4567 	if (session->trace_event_repipe) {
4568 		int retw = write(STDOUT_FILENO, buf, padding);
4569 		if (retw <= 0 || retw != padding) {
4570 			pr_err("%s: repiping tracing data padding", __func__);
4571 			return -1;
4572 		}
4573 	}
4574 
4575 	if (size_read + padding != size) {
4576 		pr_err("%s: tracing data size mismatch", __func__);
4577 		return -1;
4578 	}
4579 
4580 	evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent);
4581 
4582 	return size_read + padding;
4583 }
4584 #endif
4585 
perf_event__process_build_id(const struct perf_tool * tool __maybe_unused,struct perf_session * session,union perf_event * event)4586 int perf_event__process_build_id(const struct perf_tool *tool __maybe_unused,
4587 				 struct perf_session *session,
4588 				 union perf_event *event)
4589 {
4590 	__event_process_build_id(&event->build_id,
4591 				 event->build_id.filename,
4592 				 session);
4593 	return 0;
4594 }
4595