xref: /linux/drivers/gpu/drm/msm/msm_gpu.h (revision 5f2b6c5f6b692c696a232d12c43b8e41c0d393b9)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2013 Red Hat
4  * Author: Rob Clark <robdclark@gmail.com>
5  */
6 
7 #ifndef __MSM_GPU_H__
8 #define __MSM_GPU_H__
9 
10 #include <linux/adreno-smmu-priv.h>
11 #include <linux/clk.h>
12 #include <linux/devfreq.h>
13 #include <linux/interconnect.h>
14 #include <linux/pm_opp.h>
15 #include <linux/regulator/consumer.h>
16 
17 #include "msm_drv.h"
18 #include "msm_fence.h"
19 #include "msm_ringbuffer.h"
20 #include "msm_gem.h"
21 
22 struct msm_gem_submit;
23 struct msm_gpu_perfcntr;
24 struct msm_gpu_state;
25 struct msm_file_private;
26 
27 struct msm_gpu_config {
28 	const char *ioname;
29 	unsigned int nr_rings;
30 };
31 
32 /* So far, with hardware that I've seen to date, we can have:
33  *  + zero, one, or two z180 2d cores
34  *  + a3xx or a2xx 3d core, which share a common CP (the firmware
35  *    for the CP seems to implement some different PM4 packet types
36  *    but the basics of cmdstream submission are the same)
37  *
38  * Which means that the eventual complete "class" hierarchy, once
39  * support for all past and present hw is in place, becomes:
40  *  + msm_gpu
41  *    + adreno_gpu
42  *      + a3xx_gpu
43  *      + a2xx_gpu
44  *    + z180_gpu
45  */
46 struct msm_gpu_funcs {
47 	int (*get_param)(struct msm_gpu *gpu, struct msm_file_private *ctx,
48 			 uint32_t param, uint64_t *value, uint32_t *len);
49 	int (*set_param)(struct msm_gpu *gpu, struct msm_file_private *ctx,
50 			 uint32_t param, uint64_t value, uint32_t len);
51 	int (*hw_init)(struct msm_gpu *gpu);
52 
53 	/**
54 	 * @ucode_load: Optional hook to upload fw to GEM objs
55 	 */
56 	int (*ucode_load)(struct msm_gpu *gpu);
57 
58 	int (*pm_suspend)(struct msm_gpu *gpu);
59 	int (*pm_resume)(struct msm_gpu *gpu);
60 	void (*submit)(struct msm_gpu *gpu, struct msm_gem_submit *submit);
61 	void (*flush)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
62 	irqreturn_t (*irq)(struct msm_gpu *irq);
63 	struct msm_ringbuffer *(*active_ring)(struct msm_gpu *gpu);
64 	void (*recover)(struct msm_gpu *gpu);
65 	void (*destroy)(struct msm_gpu *gpu);
66 #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP)
67 	/* show GPU status in debugfs: */
68 	void (*show)(struct msm_gpu *gpu, struct msm_gpu_state *state,
69 			struct drm_printer *p);
70 	/* for generation specific debugfs: */
71 	void (*debugfs_init)(struct msm_gpu *gpu, struct drm_minor *minor);
72 #endif
73 	/* note: gpu_busy() can assume that we have been pm_resumed */
74 	u64 (*gpu_busy)(struct msm_gpu *gpu, unsigned long *out_sample_rate);
75 	struct msm_gpu_state *(*gpu_state_get)(struct msm_gpu *gpu);
76 	int (*gpu_state_put)(struct msm_gpu_state *state);
77 	unsigned long (*gpu_get_freq)(struct msm_gpu *gpu);
78 	/* note: gpu_set_freq() can assume that we have been pm_resumed */
79 	void (*gpu_set_freq)(struct msm_gpu *gpu, struct dev_pm_opp *opp,
80 			     bool suspended);
81 	struct msm_gem_address_space *(*create_address_space)
82 		(struct msm_gpu *gpu, struct platform_device *pdev);
83 	struct msm_gem_address_space *(*create_private_address_space)
84 		(struct msm_gpu *gpu);
85 	uint32_t (*get_rptr)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
86 
87 	/**
88 	 * progress: Has the GPU made progress?
89 	 *
90 	 * Return true if GPU position in cmdstream has advanced (or changed)
91 	 * since the last call.  To avoid false negatives, this should account
92 	 * for cmdstream that is buffered in this FIFO upstream of the CP fw.
93 	 */
94 	bool (*progress)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
95 };
96 
97 /* Additional state for iommu faults: */
98 struct msm_gpu_fault_info {
99 	u64 ttbr0;
100 	unsigned long iova;
101 	int flags;
102 	const char *type;
103 	const char *block;
104 
105 	/* Information about what we think/expect is the current SMMU state,
106 	 * for example expected_ttbr0 should match smmu_info.ttbr0 which
107 	 * was read back from SMMU registers.
108 	 */
109 	phys_addr_t pgtbl_ttbr0;
110 	u64 ptes[4];
111 	int asid;
112 };
113 
114 /**
115  * struct msm_gpu_devfreq - devfreq related state
116  */
117 struct msm_gpu_devfreq {
118 	/** devfreq: devfreq instance */
119 	struct devfreq *devfreq;
120 
121 	/** lock: lock for "suspended", "busy_cycles", and "time" */
122 	struct mutex lock;
123 
124 	/**
125 	 * idle_freq:
126 	 *
127 	 * Shadow frequency used while the GPU is idle.  From the PoV of
128 	 * the devfreq governor, we are continuing to sample busyness and
129 	 * adjust frequency while the GPU is idle, but we use this shadow
130 	 * value as the GPU is actually clamped to minimum frequency while
131 	 * it is inactive.
132 	 */
133 	unsigned long idle_freq;
134 
135 	/**
136 	 * boost_constraint:
137 	 *
138 	 * A PM QoS constraint to boost min freq for a period of time
139 	 * until the boost expires.
140 	 */
141 	struct dev_pm_qos_request boost_freq;
142 
143 	/**
144 	 * busy_cycles: Last busy counter value, for calculating elapsed busy
145 	 * cycles since last sampling period.
146 	 */
147 	u64 busy_cycles;
148 
149 	/** time: Time of last sampling period. */
150 	ktime_t time;
151 
152 	/** idle_time: Time of last transition to idle: */
153 	ktime_t idle_time;
154 
155 	/**
156 	 * idle_work:
157 	 *
158 	 * Used to delay clamping to idle freq on active->idle transition.
159 	 */
160 	struct msm_hrtimer_work idle_work;
161 
162 	/**
163 	 * boost_work:
164 	 *
165 	 * Used to reset the boost_constraint after the boost period has
166 	 * elapsed
167 	 */
168 	struct msm_hrtimer_work boost_work;
169 
170 	/** suspended: tracks if we're suspended */
171 	bool suspended;
172 };
173 
174 struct msm_gpu {
175 	const char *name;
176 	struct drm_device *dev;
177 	struct platform_device *pdev;
178 	const struct msm_gpu_funcs *funcs;
179 
180 	struct adreno_smmu_priv adreno_smmu;
181 
182 	/* performance counters (hw & sw): */
183 	spinlock_t perf_lock;
184 	bool perfcntr_active;
185 	struct {
186 		bool active;
187 		ktime_t time;
188 	} last_sample;
189 	uint32_t totaltime, activetime;    /* sw counters */
190 	uint32_t last_cntrs[5];            /* hw counters */
191 	const struct msm_gpu_perfcntr *perfcntrs;
192 	uint32_t num_perfcntrs;
193 
194 	struct msm_ringbuffer *rb[MSM_GPU_MAX_RINGS];
195 	int nr_rings;
196 
197 	/**
198 	 * sysprof_active:
199 	 *
200 	 * The count of contexts that have enabled system profiling.
201 	 */
202 	refcount_t sysprof_active;
203 
204 	/**
205 	 * lock:
206 	 *
207 	 * General lock for serializing all the gpu things.
208 	 *
209 	 * TODO move to per-ring locking where feasible (ie. submit/retire
210 	 * path, etc)
211 	 */
212 	struct mutex lock;
213 
214 	/**
215 	 * active_submits:
216 	 *
217 	 * The number of submitted but not yet retired submits, used to
218 	 * determine transitions between active and idle.
219 	 *
220 	 * Protected by active_lock
221 	 */
222 	int active_submits;
223 
224 	/** lock: protects active_submits and idle/active transitions */
225 	struct mutex active_lock;
226 
227 	/* does gpu need hw_init? */
228 	bool needs_hw_init;
229 
230 	/**
231 	 * global_faults: number of GPU hangs not attributed to a particular
232 	 * address space
233 	 */
234 	int global_faults;
235 
236 	void __iomem *mmio;
237 	int irq;
238 
239 	struct msm_gem_address_space *aspace;
240 
241 	/* Power Control: */
242 	struct regulator *gpu_reg, *gpu_cx;
243 	struct clk_bulk_data *grp_clks;
244 	int nr_clocks;
245 	struct clk *ebi1_clk, *core_clk, *rbbmtimer_clk;
246 	uint32_t fast_rate;
247 
248 	/* Hang and Inactivity Detection:
249 	 */
250 #define DRM_MSM_INACTIVE_PERIOD   66 /* in ms (roughly four frames) */
251 
252 #define DRM_MSM_HANGCHECK_DEFAULT_PERIOD 500 /* in ms */
253 #define DRM_MSM_HANGCHECK_PROGRESS_RETRIES 3
254 	struct timer_list hangcheck_timer;
255 
256 	/* work for handling GPU recovery: */
257 	struct kthread_work recover_work;
258 
259 	/** retire_event: notified when submits are retired: */
260 	wait_queue_head_t retire_event;
261 
262 	/* work for handling active-list retiring: */
263 	struct kthread_work retire_work;
264 
265 	/* worker for retire/recover: */
266 	struct kthread_worker *worker;
267 
268 	struct drm_gem_object *memptrs_bo;
269 
270 	struct msm_gpu_devfreq devfreq;
271 
272 	uint32_t suspend_count;
273 
274 	struct msm_gpu_state *crashstate;
275 
276 	/* True if the hardware supports expanded apriv (a650 and newer) */
277 	bool hw_apriv;
278 
279 	/**
280 	 * @allow_relocs: allow relocs in SUBMIT ioctl
281 	 *
282 	 * Mesa won't use relocs for driver version 1.4.0 and later.  This
283 	 * switch-over happened early enough in mesa a6xx bringup that we
284 	 * can disallow relocs for a6xx and newer.
285 	 */
286 	bool allow_relocs;
287 
288 	struct thermal_cooling_device *cooling;
289 };
290 
dev_to_gpu(struct device * dev)291 static inline struct msm_gpu *dev_to_gpu(struct device *dev)
292 {
293 	struct adreno_smmu_priv *adreno_smmu = dev_get_drvdata(dev);
294 
295 	if (!adreno_smmu)
296 		return NULL;
297 
298 	return container_of(adreno_smmu, struct msm_gpu, adreno_smmu);
299 }
300 
301 /* It turns out that all targets use the same ringbuffer size */
302 #define MSM_GPU_RINGBUFFER_SZ SZ_32K
303 #define MSM_GPU_RINGBUFFER_BLKSIZE 32
304 
305 #define MSM_GPU_RB_CNTL_DEFAULT \
306 		(AXXX_CP_RB_CNTL_BUFSZ(ilog2(MSM_GPU_RINGBUFFER_SZ / 8)) | \
307 		AXXX_CP_RB_CNTL_BLKSZ(ilog2(MSM_GPU_RINGBUFFER_BLKSIZE / 8)))
308 
msm_gpu_active(struct msm_gpu * gpu)309 static inline bool msm_gpu_active(struct msm_gpu *gpu)
310 {
311 	int i;
312 
313 	for (i = 0; i < gpu->nr_rings; i++) {
314 		struct msm_ringbuffer *ring = gpu->rb[i];
315 
316 		if (fence_after(ring->fctx->last_fence, ring->memptrs->fence))
317 			return true;
318 	}
319 
320 	return false;
321 }
322 
323 /* Perf-Counters:
324  * The select_reg and select_val are just there for the benefit of the child
325  * class that actually enables the perf counter..  but msm_gpu base class
326  * will handle sampling/displaying the counters.
327  */
328 
329 struct msm_gpu_perfcntr {
330 	uint32_t select_reg;
331 	uint32_t sample_reg;
332 	uint32_t select_val;
333 	const char *name;
334 };
335 
336 /*
337  * The number of priority levels provided by drm gpu scheduler.  The
338  * DRM_SCHED_PRIORITY_KERNEL priority level is treated specially in some
339  * cases, so we don't use it (no need for kernel generated jobs).
340  */
341 #define NR_SCHED_PRIORITIES (1 + DRM_SCHED_PRIORITY_LOW - DRM_SCHED_PRIORITY_HIGH)
342 
343 /**
344  * struct msm_file_private - per-drm_file context
345  *
346  * @queuelock:    synchronizes access to submitqueues list
347  * @submitqueues: list of &msm_gpu_submitqueue created by userspace
348  * @queueid:      counter incremented each time a submitqueue is created,
349  *                used to assign &msm_gpu_submitqueue.id
350  * @aspace:       the per-process GPU address-space
351  * @ref:          reference count
352  * @seqno:        unique per process seqno
353  */
354 struct msm_file_private {
355 	rwlock_t queuelock;
356 	struct list_head submitqueues;
357 	int queueid;
358 	struct msm_gem_address_space *aspace;
359 	struct kref ref;
360 	int seqno;
361 
362 	/**
363 	 * sysprof:
364 	 *
365 	 * The value of MSM_PARAM_SYSPROF set by userspace.  This is
366 	 * intended to be used by system profiling tools like Mesa's
367 	 * pps-producer (perfetto), and restricted to CAP_SYS_ADMIN.
368 	 *
369 	 * Setting a value of 1 will preserve performance counters across
370 	 * context switches.  Setting a value of 2 will in addition
371 	 * suppress suspend.  (Performance counters lose state across
372 	 * power collapse, which is undesirable for profiling in some
373 	 * cases.)
374 	 *
375 	 * The value automatically reverts to zero when the drm device
376 	 * file is closed.
377 	 */
378 	int sysprof;
379 
380 	/**
381 	 * comm: Overridden task comm, see MSM_PARAM_COMM
382 	 *
383 	 * Accessed under msm_gpu::lock
384 	 */
385 	char *comm;
386 
387 	/**
388 	 * cmdline: Overridden task cmdline, see MSM_PARAM_CMDLINE
389 	 *
390 	 * Accessed under msm_gpu::lock
391 	 */
392 	char *cmdline;
393 
394 	/**
395 	 * elapsed:
396 	 *
397 	 * The total (cumulative) elapsed time GPU was busy with rendering
398 	 * from this context in ns.
399 	 */
400 	uint64_t elapsed_ns;
401 
402 	/**
403 	 * cycles:
404 	 *
405 	 * The total (cumulative) GPU cycles elapsed attributed to this
406 	 * context.
407 	 */
408 	uint64_t cycles;
409 
410 	/**
411 	 * entities:
412 	 *
413 	 * Table of per-priority-level sched entities used by submitqueues
414 	 * associated with this &drm_file.  Because some userspace apps
415 	 * make assumptions about rendering from multiple gl contexts
416 	 * (of the same priority) within the process happening in FIFO
417 	 * order without requiring any fencing beyond MakeCurrent(), we
418 	 * create at most one &drm_sched_entity per-process per-priority-
419 	 * level.
420 	 */
421 	struct drm_sched_entity *entities[NR_SCHED_PRIORITIES * MSM_GPU_MAX_RINGS];
422 
423 	/**
424 	 * ctx_mem:
425 	 *
426 	 * Total amount of memory of GEM buffers with handles attached for
427 	 * this context.
428 	 */
429 	atomic64_t ctx_mem;
430 };
431 
432 /**
433  * msm_gpu_convert_priority - Map userspace priority to ring # and sched priority
434  *
435  * @gpu:        the gpu instance
436  * @prio:       the userspace priority level
437  * @ring_nr:    [out] the ringbuffer the userspace priority maps to
438  * @sched_prio: [out] the gpu scheduler priority level which the userspace
439  *              priority maps to
440  *
441  * With drm/scheduler providing it's own level of prioritization, our total
442  * number of available priority levels is (nr_rings * NR_SCHED_PRIORITIES).
443  * Each ring is associated with it's own scheduler instance.  However, our
444  * UABI is that lower numerical values are higher priority.  So mapping the
445  * single userspace priority level into ring_nr and sched_prio takes some
446  * care.  The userspace provided priority (when a submitqueue is created)
447  * is mapped to ring nr and scheduler priority as such:
448  *
449  *   ring_nr    = userspace_prio / NR_SCHED_PRIORITIES
450  *   sched_prio = NR_SCHED_PRIORITIES -
451  *                (userspace_prio % NR_SCHED_PRIORITIES) - 1
452  *
453  * This allows generations without preemption (nr_rings==1) to have some
454  * amount of prioritization, and provides more priority levels for gens
455  * that do have preemption.
456  */
msm_gpu_convert_priority(struct msm_gpu * gpu,int prio,unsigned * ring_nr,enum drm_sched_priority * sched_prio)457 static inline int msm_gpu_convert_priority(struct msm_gpu *gpu, int prio,
458 		unsigned *ring_nr, enum drm_sched_priority *sched_prio)
459 {
460 	unsigned rn, sp;
461 
462 	rn = div_u64_rem(prio, NR_SCHED_PRIORITIES, &sp);
463 
464 	/* invert sched priority to map to higher-numeric-is-higher-
465 	 * priority convention
466 	 */
467 	sp = NR_SCHED_PRIORITIES - sp - 1;
468 
469 	if (rn >= gpu->nr_rings)
470 		return -EINVAL;
471 
472 	*ring_nr = rn;
473 	*sched_prio = sp;
474 
475 	return 0;
476 }
477 
478 /**
479  * struct msm_gpu_submitqueues - Userspace created context.
480  *
481  * A submitqueue is associated with a gl context or vk queue (or equiv)
482  * in userspace.
483  *
484  * @id:        userspace id for the submitqueue, unique within the drm_file
485  * @flags:     userspace flags for the submitqueue, specified at creation
486  *             (currently unusued)
487  * @ring_nr:   the ringbuffer used by this submitqueue, which is determined
488  *             by the submitqueue's priority
489  * @faults:    the number of GPU hangs associated with this submitqueue
490  * @last_fence: the sequence number of the last allocated fence (for error
491  *             checking)
492  * @ctx:       the per-drm_file context associated with the submitqueue (ie.
493  *             which set of pgtables do submits jobs associated with the
494  *             submitqueue use)
495  * @node:      node in the context's list of submitqueues
496  * @fence_idr: maps fence-id to dma_fence for userspace visible fence
497  *             seqno, protected by submitqueue lock
498  * @idr_lock:  for serializing access to fence_idr
499  * @lock:      submitqueue lock for serializing submits on a queue
500  * @ref:       reference count
501  * @entity:    the submit job-queue
502  */
503 struct msm_gpu_submitqueue {
504 	int id;
505 	u32 flags;
506 	u32 ring_nr;
507 	int faults;
508 	uint32_t last_fence;
509 	struct msm_file_private *ctx;
510 	struct list_head node;
511 	struct idr fence_idr;
512 	struct spinlock idr_lock;
513 	struct mutex lock;
514 	struct kref ref;
515 	struct drm_sched_entity *entity;
516 };
517 
518 struct msm_gpu_state_bo {
519 	u64 iova;
520 	size_t size;
521 	u32 flags;
522 	void *data;
523 	bool encoded;
524 	char name[32];
525 };
526 
527 struct msm_gpu_state {
528 	struct kref ref;
529 	struct timespec64 time;
530 
531 	struct {
532 		u64 iova;
533 		u32 fence;
534 		u32 seqno;
535 		u32 rptr;
536 		u32 wptr;
537 		void *data;
538 		int data_size;
539 		bool encoded;
540 	} ring[MSM_GPU_MAX_RINGS];
541 
542 	int nr_registers;
543 	u32 *registers;
544 
545 	u32 rbbm_status;
546 
547 	char *comm;
548 	char *cmd;
549 
550 	struct msm_gpu_fault_info fault_info;
551 
552 	int nr_bos;
553 	struct msm_gpu_state_bo *bos;
554 };
555 
gpu_write(struct msm_gpu * gpu,u32 reg,u32 data)556 static inline void gpu_write(struct msm_gpu *gpu, u32 reg, u32 data)
557 {
558 	writel(data, gpu->mmio + (reg << 2));
559 }
560 
gpu_read(struct msm_gpu * gpu,u32 reg)561 static inline u32 gpu_read(struct msm_gpu *gpu, u32 reg)
562 {
563 	return readl(gpu->mmio + (reg << 2));
564 }
565 
gpu_rmw(struct msm_gpu * gpu,u32 reg,u32 mask,u32 or)566 static inline void gpu_rmw(struct msm_gpu *gpu, u32 reg, u32 mask, u32 or)
567 {
568 	msm_rmw(gpu->mmio + (reg << 2), mask, or);
569 }
570 
gpu_read64(struct msm_gpu * gpu,u32 reg)571 static inline u64 gpu_read64(struct msm_gpu *gpu, u32 reg)
572 {
573 	u64 val;
574 
575 	/*
576 	 * Why not a readq here? Two reasons: 1) many of the LO registers are
577 	 * not quad word aligned and 2) the GPU hardware designers have a bit
578 	 * of a history of putting registers where they fit, especially in
579 	 * spins. The longer a GPU family goes the higher the chance that
580 	 * we'll get burned.  We could do a series of validity checks if we
581 	 * wanted to, but really is a readq() that much better? Nah.
582 	 */
583 
584 	/*
585 	 * For some lo/hi registers (like perfcounters), the hi value is latched
586 	 * when the lo is read, so make sure to read the lo first to trigger
587 	 * that
588 	 */
589 	val = (u64) readl(gpu->mmio + (reg << 2));
590 	val |= ((u64) readl(gpu->mmio + ((reg + 1) << 2)) << 32);
591 
592 	return val;
593 }
594 
gpu_write64(struct msm_gpu * gpu,u32 reg,u64 val)595 static inline void gpu_write64(struct msm_gpu *gpu, u32 reg, u64 val)
596 {
597 	/* Why not a writeq here? Read the screed above */
598 	writel(lower_32_bits(val), gpu->mmio + (reg << 2));
599 	writel(upper_32_bits(val), gpu->mmio + ((reg + 1) << 2));
600 }
601 
602 int msm_gpu_pm_suspend(struct msm_gpu *gpu);
603 int msm_gpu_pm_resume(struct msm_gpu *gpu);
604 
605 void msm_gpu_show_fdinfo(struct msm_gpu *gpu, struct msm_file_private *ctx,
606 			 struct drm_printer *p);
607 
608 int msm_submitqueue_init(struct drm_device *drm, struct msm_file_private *ctx);
609 struct msm_gpu_submitqueue *msm_submitqueue_get(struct msm_file_private *ctx,
610 		u32 id);
611 int msm_submitqueue_create(struct drm_device *drm,
612 		struct msm_file_private *ctx,
613 		u32 prio, u32 flags, u32 *id);
614 int msm_submitqueue_query(struct drm_device *drm, struct msm_file_private *ctx,
615 		struct drm_msm_submitqueue_query *args);
616 int msm_submitqueue_remove(struct msm_file_private *ctx, u32 id);
617 void msm_submitqueue_close(struct msm_file_private *ctx);
618 
619 void msm_submitqueue_destroy(struct kref *kref);
620 
621 int msm_file_private_set_sysprof(struct msm_file_private *ctx,
622 				 struct msm_gpu *gpu, int sysprof);
623 void __msm_file_private_destroy(struct kref *kref);
624 
msm_file_private_put(struct msm_file_private * ctx)625 static inline void msm_file_private_put(struct msm_file_private *ctx)
626 {
627 	kref_put(&ctx->ref, __msm_file_private_destroy);
628 }
629 
msm_file_private_get(struct msm_file_private * ctx)630 static inline struct msm_file_private *msm_file_private_get(
631 	struct msm_file_private *ctx)
632 {
633 	kref_get(&ctx->ref);
634 	return ctx;
635 }
636 
637 void msm_devfreq_init(struct msm_gpu *gpu);
638 void msm_devfreq_cleanup(struct msm_gpu *gpu);
639 void msm_devfreq_resume(struct msm_gpu *gpu);
640 void msm_devfreq_suspend(struct msm_gpu *gpu);
641 void msm_devfreq_boost(struct msm_gpu *gpu, unsigned factor);
642 void msm_devfreq_active(struct msm_gpu *gpu);
643 void msm_devfreq_idle(struct msm_gpu *gpu);
644 
645 int msm_gpu_hw_init(struct msm_gpu *gpu);
646 
647 void msm_gpu_perfcntr_start(struct msm_gpu *gpu);
648 void msm_gpu_perfcntr_stop(struct msm_gpu *gpu);
649 int msm_gpu_perfcntr_sample(struct msm_gpu *gpu, uint32_t *activetime,
650 		uint32_t *totaltime, uint32_t ncntrs, uint32_t *cntrs);
651 
652 void msm_gpu_retire(struct msm_gpu *gpu);
653 void msm_gpu_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit);
654 
655 int msm_gpu_init(struct drm_device *drm, struct platform_device *pdev,
656 		struct msm_gpu *gpu, const struct msm_gpu_funcs *funcs,
657 		const char *name, struct msm_gpu_config *config);
658 
659 struct msm_gem_address_space *
660 msm_gpu_create_private_address_space(struct msm_gpu *gpu, struct task_struct *task);
661 
662 void msm_gpu_cleanup(struct msm_gpu *gpu);
663 
664 struct msm_gpu *adreno_load_gpu(struct drm_device *dev);
665 bool adreno_has_gpu(struct device_node *node);
666 void __init adreno_register(void);
667 void __exit adreno_unregister(void);
668 
msm_submitqueue_put(struct msm_gpu_submitqueue * queue)669 static inline void msm_submitqueue_put(struct msm_gpu_submitqueue *queue)
670 {
671 	if (queue)
672 		kref_put(&queue->ref, msm_submitqueue_destroy);
673 }
674 
msm_gpu_crashstate_get(struct msm_gpu * gpu)675 static inline struct msm_gpu_state *msm_gpu_crashstate_get(struct msm_gpu *gpu)
676 {
677 	struct msm_gpu_state *state = NULL;
678 
679 	mutex_lock(&gpu->lock);
680 
681 	if (gpu->crashstate) {
682 		kref_get(&gpu->crashstate->ref);
683 		state = gpu->crashstate;
684 	}
685 
686 	mutex_unlock(&gpu->lock);
687 
688 	return state;
689 }
690 
msm_gpu_crashstate_put(struct msm_gpu * gpu)691 static inline void msm_gpu_crashstate_put(struct msm_gpu *gpu)
692 {
693 	mutex_lock(&gpu->lock);
694 
695 	if (gpu->crashstate) {
696 		if (gpu->funcs->gpu_state_put(gpu->crashstate))
697 			gpu->crashstate = NULL;
698 	}
699 
700 	mutex_unlock(&gpu->lock);
701 }
702 
703 void msm_gpu_fault_crashstate_capture(struct msm_gpu *gpu, struct msm_gpu_fault_info *fault_info);
704 
705 /*
706  * Simple macro to semi-cleanly add the MAP_PRIV flag for targets that can
707  * support expanded privileges
708  */
709 #define check_apriv(gpu, flags) \
710 	(((gpu)->hw_apriv ? MSM_BO_MAP_PRIV : 0) | (flags))
711 
712 
713 #endif /* __MSM_GPU_H__ */
714