1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * builtin-kwork.c
4 *
5 * Copyright (c) 2022 Huawei Inc, Yang Jihong <yangjihong1@huawei.com>
6 */
7
8 #include "builtin.h"
9
10 #include "util/data.h"
11 #include "util/evlist.h"
12 #include "util/evsel.h"
13 #include "util/header.h"
14 #include "util/kwork.h"
15 #include "util/debug.h"
16 #include "util/session.h"
17 #include "util/symbol.h"
18 #include "util/thread.h"
19 #include "util/string2.h"
20 #include "util/callchain.h"
21 #include "util/evsel_fprintf.h"
22 #include "util/util.h"
23
24 #include <subcmd/pager.h>
25 #include <subcmd/parse-options.h>
26 #include <traceevent/event-parse.h>
27
28 #include <errno.h>
29 #include <inttypes.h>
30 #include <signal.h>
31 #include <linux/err.h>
32 #include <linux/time64.h>
33 #include <linux/zalloc.h>
34
35 /*
36 * report header elements width
37 */
38 #define PRINT_CPU_WIDTH 4
39 #define PRINT_COUNT_WIDTH 9
40 #define PRINT_RUNTIME_WIDTH 10
41 #define PRINT_LATENCY_WIDTH 10
42 #define PRINT_TIMESTAMP_WIDTH 17
43 #define PRINT_KWORK_NAME_WIDTH 30
44 #define RPINT_DECIMAL_WIDTH 3
45 #define PRINT_BRACKETPAIR_WIDTH 2
46 #define PRINT_TIME_UNIT_SEC_WIDTH 2
47 #define PRINT_TIME_UNIT_MESC_WIDTH 3
48 #define PRINT_PID_WIDTH 7
49 #define PRINT_TASK_NAME_WIDTH 16
50 #define PRINT_CPU_USAGE_WIDTH 6
51 #define PRINT_CPU_USAGE_DECIMAL_WIDTH 2
52 #define PRINT_CPU_USAGE_HIST_WIDTH 30
53 #define PRINT_RUNTIME_HEADER_WIDTH (PRINT_RUNTIME_WIDTH + PRINT_TIME_UNIT_MESC_WIDTH)
54 #define PRINT_LATENCY_HEADER_WIDTH (PRINT_LATENCY_WIDTH + PRINT_TIME_UNIT_MESC_WIDTH)
55 #define PRINT_TIMEHIST_CPU_WIDTH (PRINT_CPU_WIDTH + PRINT_BRACKETPAIR_WIDTH)
56 #define PRINT_TIMESTAMP_HEADER_WIDTH (PRINT_TIMESTAMP_WIDTH + PRINT_TIME_UNIT_SEC_WIDTH)
57
58 struct sort_dimension {
59 const char *name;
60 int (*cmp)(struct kwork_work *l, struct kwork_work *r);
61 struct list_head list;
62 };
63
id_cmp(struct kwork_work * l,struct kwork_work * r)64 static int id_cmp(struct kwork_work *l, struct kwork_work *r)
65 {
66 if (l->cpu > r->cpu)
67 return 1;
68 if (l->cpu < r->cpu)
69 return -1;
70
71 if (l->id > r->id)
72 return 1;
73 if (l->id < r->id)
74 return -1;
75
76 return 0;
77 }
78
count_cmp(struct kwork_work * l,struct kwork_work * r)79 static int count_cmp(struct kwork_work *l, struct kwork_work *r)
80 {
81 if (l->nr_atoms > r->nr_atoms)
82 return 1;
83 if (l->nr_atoms < r->nr_atoms)
84 return -1;
85
86 return 0;
87 }
88
runtime_cmp(struct kwork_work * l,struct kwork_work * r)89 static int runtime_cmp(struct kwork_work *l, struct kwork_work *r)
90 {
91 if (l->total_runtime > r->total_runtime)
92 return 1;
93 if (l->total_runtime < r->total_runtime)
94 return -1;
95
96 return 0;
97 }
98
max_runtime_cmp(struct kwork_work * l,struct kwork_work * r)99 static int max_runtime_cmp(struct kwork_work *l, struct kwork_work *r)
100 {
101 if (l->max_runtime > r->max_runtime)
102 return 1;
103 if (l->max_runtime < r->max_runtime)
104 return -1;
105
106 return 0;
107 }
108
avg_latency_cmp(struct kwork_work * l,struct kwork_work * r)109 static int avg_latency_cmp(struct kwork_work *l, struct kwork_work *r)
110 {
111 u64 avgl, avgr;
112
113 if (!r->nr_atoms)
114 return 1;
115 if (!l->nr_atoms)
116 return -1;
117
118 avgl = l->total_latency / l->nr_atoms;
119 avgr = r->total_latency / r->nr_atoms;
120
121 if (avgl > avgr)
122 return 1;
123 if (avgl < avgr)
124 return -1;
125
126 return 0;
127 }
128
max_latency_cmp(struct kwork_work * l,struct kwork_work * r)129 static int max_latency_cmp(struct kwork_work *l, struct kwork_work *r)
130 {
131 if (l->max_latency > r->max_latency)
132 return 1;
133 if (l->max_latency < r->max_latency)
134 return -1;
135
136 return 0;
137 }
138
cpu_usage_cmp(struct kwork_work * l,struct kwork_work * r)139 static int cpu_usage_cmp(struct kwork_work *l, struct kwork_work *r)
140 {
141 if (l->cpu_usage > r->cpu_usage)
142 return 1;
143 if (l->cpu_usage < r->cpu_usage)
144 return -1;
145
146 return 0;
147 }
148
id_or_cpu_r_cmp(struct kwork_work * l,struct kwork_work * r)149 static int id_or_cpu_r_cmp(struct kwork_work *l, struct kwork_work *r)
150 {
151 if (l->id < r->id)
152 return 1;
153 if (l->id > r->id)
154 return -1;
155
156 if (l->id != 0)
157 return 0;
158
159 if (l->cpu < r->cpu)
160 return 1;
161 if (l->cpu > r->cpu)
162 return -1;
163
164 return 0;
165 }
166
sort_dimension__add(struct perf_kwork * kwork __maybe_unused,const char * tok,struct list_head * list)167 static int sort_dimension__add(struct perf_kwork *kwork __maybe_unused,
168 const char *tok, struct list_head *list)
169 {
170 size_t i;
171 static struct sort_dimension max_sort_dimension = {
172 .name = "max",
173 .cmp = max_runtime_cmp,
174 };
175 static struct sort_dimension id_sort_dimension = {
176 .name = "id",
177 .cmp = id_cmp,
178 };
179 static struct sort_dimension runtime_sort_dimension = {
180 .name = "runtime",
181 .cmp = runtime_cmp,
182 };
183 static struct sort_dimension count_sort_dimension = {
184 .name = "count",
185 .cmp = count_cmp,
186 };
187 static struct sort_dimension avg_sort_dimension = {
188 .name = "avg",
189 .cmp = avg_latency_cmp,
190 };
191 static struct sort_dimension rate_sort_dimension = {
192 .name = "rate",
193 .cmp = cpu_usage_cmp,
194 };
195 static struct sort_dimension tid_sort_dimension = {
196 .name = "tid",
197 .cmp = id_or_cpu_r_cmp,
198 };
199 struct sort_dimension *available_sorts[] = {
200 &id_sort_dimension,
201 &max_sort_dimension,
202 &count_sort_dimension,
203 &runtime_sort_dimension,
204 &avg_sort_dimension,
205 &rate_sort_dimension,
206 &tid_sort_dimension,
207 };
208
209 if (kwork->report == KWORK_REPORT_LATENCY)
210 max_sort_dimension.cmp = max_latency_cmp;
211
212 for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
213 if (!strcmp(available_sorts[i]->name, tok)) {
214 list_add_tail(&available_sorts[i]->list, list);
215 return 0;
216 }
217 }
218
219 return -1;
220 }
221
setup_sorting(struct perf_kwork * kwork,const struct option * options,const char * const usage_msg[])222 static void setup_sorting(struct perf_kwork *kwork,
223 const struct option *options,
224 const char * const usage_msg[])
225 {
226 char *tmp, *tok, *str = strdup(kwork->sort_order);
227
228 for (tok = strtok_r(str, ", ", &tmp);
229 tok; tok = strtok_r(NULL, ", ", &tmp)) {
230 if (sort_dimension__add(kwork, tok, &kwork->sort_list) < 0)
231 usage_with_options_msg(usage_msg, options,
232 "Unknown --sort key: `%s'", tok);
233 }
234
235 pr_debug("Sort order: %s\n", kwork->sort_order);
236 free(str);
237 }
238
atom_new(struct perf_kwork * kwork,struct perf_sample * sample)239 static struct kwork_atom *atom_new(struct perf_kwork *kwork,
240 struct perf_sample *sample)
241 {
242 unsigned long i;
243 struct kwork_atom_page *page;
244 struct kwork_atom *atom = NULL;
245
246 list_for_each_entry(page, &kwork->atom_page_list, list) {
247 if (!bitmap_full(page->bitmap, NR_ATOM_PER_PAGE)) {
248 i = find_first_zero_bit(page->bitmap, NR_ATOM_PER_PAGE);
249 BUG_ON(i >= NR_ATOM_PER_PAGE);
250 atom = &page->atoms[i];
251 goto found_atom;
252 }
253 }
254
255 /*
256 * new page
257 */
258 page = zalloc(sizeof(*page));
259 if (page == NULL) {
260 pr_err("Failed to zalloc kwork atom page\n");
261 return NULL;
262 }
263
264 i = 0;
265 atom = &page->atoms[0];
266 list_add_tail(&page->list, &kwork->atom_page_list);
267
268 found_atom:
269 __set_bit(i, page->bitmap);
270 atom->time = sample->time;
271 atom->prev = NULL;
272 atom->page_addr = page;
273 atom->bit_inpage = i;
274 return atom;
275 }
276
atom_free(struct kwork_atom * atom)277 static void atom_free(struct kwork_atom *atom)
278 {
279 if (atom->prev != NULL)
280 atom_free(atom->prev);
281
282 __clear_bit(atom->bit_inpage,
283 ((struct kwork_atom_page *)atom->page_addr)->bitmap);
284 }
285
atom_del(struct kwork_atom * atom)286 static void atom_del(struct kwork_atom *atom)
287 {
288 list_del(&atom->list);
289 atom_free(atom);
290 }
291
work_cmp(struct list_head * list,struct kwork_work * l,struct kwork_work * r)292 static int work_cmp(struct list_head *list,
293 struct kwork_work *l, struct kwork_work *r)
294 {
295 int ret = 0;
296 struct sort_dimension *sort;
297
298 BUG_ON(list_empty(list));
299
300 list_for_each_entry(sort, list, list) {
301 ret = sort->cmp(l, r);
302 if (ret)
303 return ret;
304 }
305
306 return ret;
307 }
308
work_search(struct rb_root_cached * root,struct kwork_work * key,struct list_head * sort_list)309 static struct kwork_work *work_search(struct rb_root_cached *root,
310 struct kwork_work *key,
311 struct list_head *sort_list)
312 {
313 int cmp;
314 struct kwork_work *work;
315 struct rb_node *node = root->rb_root.rb_node;
316
317 while (node) {
318 work = container_of(node, struct kwork_work, node);
319 cmp = work_cmp(sort_list, key, work);
320 if (cmp > 0)
321 node = node->rb_left;
322 else if (cmp < 0)
323 node = node->rb_right;
324 else {
325 if (work->name == NULL)
326 work->name = key->name;
327 return work;
328 }
329 }
330 return NULL;
331 }
332
work_insert(struct rb_root_cached * root,struct kwork_work * key,struct list_head * sort_list)333 static void work_insert(struct rb_root_cached *root,
334 struct kwork_work *key, struct list_head *sort_list)
335 {
336 int cmp;
337 bool leftmost = true;
338 struct kwork_work *cur;
339 struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
340
341 while (*new) {
342 cur = container_of(*new, struct kwork_work, node);
343 parent = *new;
344 cmp = work_cmp(sort_list, key, cur);
345
346 if (cmp > 0)
347 new = &((*new)->rb_left);
348 else {
349 new = &((*new)->rb_right);
350 leftmost = false;
351 }
352 }
353
354 rb_link_node(&key->node, parent, new);
355 rb_insert_color_cached(&key->node, root, leftmost);
356 }
357
work_new(struct kwork_work * key)358 static struct kwork_work *work_new(struct kwork_work *key)
359 {
360 int i;
361 struct kwork_work *work = zalloc(sizeof(*work));
362
363 if (work == NULL) {
364 pr_err("Failed to zalloc kwork work\n");
365 return NULL;
366 }
367
368 for (i = 0; i < KWORK_TRACE_MAX; i++)
369 INIT_LIST_HEAD(&work->atom_list[i]);
370
371 work->id = key->id;
372 work->cpu = key->cpu;
373 work->name = key->name;
374 work->class = key->class;
375 return work;
376 }
377
work_findnew(struct rb_root_cached * root,struct kwork_work * key,struct list_head * sort_list)378 static struct kwork_work *work_findnew(struct rb_root_cached *root,
379 struct kwork_work *key,
380 struct list_head *sort_list)
381 {
382 struct kwork_work *work = work_search(root, key, sort_list);
383
384 if (work != NULL)
385 return work;
386
387 work = work_new(key);
388 if (work)
389 work_insert(root, work, sort_list);
390
391 return work;
392 }
393
profile_update_timespan(struct perf_kwork * kwork,struct perf_sample * sample)394 static void profile_update_timespan(struct perf_kwork *kwork,
395 struct perf_sample *sample)
396 {
397 if (!kwork->summary)
398 return;
399
400 if ((kwork->timestart == 0) || (kwork->timestart > sample->time))
401 kwork->timestart = sample->time;
402
403 if (kwork->timeend < sample->time)
404 kwork->timeend = sample->time;
405 }
406
profile_name_match(struct perf_kwork * kwork,struct kwork_work * work)407 static bool profile_name_match(struct perf_kwork *kwork,
408 struct kwork_work *work)
409 {
410 if (kwork->profile_name && work->name &&
411 (strcmp(work->name, kwork->profile_name) != 0)) {
412 return false;
413 }
414
415 return true;
416 }
417
profile_event_match(struct perf_kwork * kwork,struct kwork_work * work,struct perf_sample * sample)418 static bool profile_event_match(struct perf_kwork *kwork,
419 struct kwork_work *work,
420 struct perf_sample *sample)
421 {
422 int cpu = work->cpu;
423 u64 time = sample->time;
424 struct perf_time_interval *ptime = &kwork->ptime;
425
426 if ((kwork->cpu_list != NULL) && !test_bit(cpu, kwork->cpu_bitmap))
427 return false;
428
429 if (((ptime->start != 0) && (ptime->start > time)) ||
430 ((ptime->end != 0) && (ptime->end < time)))
431 return false;
432
433 /*
434 * report top needs to collect the runtime of all tasks to
435 * calculate the load of each core.
436 */
437 if ((kwork->report != KWORK_REPORT_TOP) &&
438 !profile_name_match(kwork, work)) {
439 return false;
440 }
441
442 profile_update_timespan(kwork, sample);
443 return true;
444 }
445
work_push_atom(struct perf_kwork * kwork,struct kwork_class * class,enum kwork_trace_type src_type,enum kwork_trace_type dst_type,struct evsel * evsel,struct perf_sample * sample,struct machine * machine,struct kwork_work ** ret_work,bool overwrite)446 static int work_push_atom(struct perf_kwork *kwork,
447 struct kwork_class *class,
448 enum kwork_trace_type src_type,
449 enum kwork_trace_type dst_type,
450 struct evsel *evsel,
451 struct perf_sample *sample,
452 struct machine *machine,
453 struct kwork_work **ret_work,
454 bool overwrite)
455 {
456 struct kwork_atom *atom, *dst_atom, *last_atom;
457 struct kwork_work *work, key;
458
459 BUG_ON(class->work_init == NULL);
460 class->work_init(kwork, class, &key, src_type, evsel, sample, machine);
461
462 atom = atom_new(kwork, sample);
463 if (atom == NULL)
464 return -1;
465
466 work = work_findnew(&class->work_root, &key, &kwork->cmp_id);
467 if (work == NULL) {
468 atom_free(atom);
469 return -1;
470 }
471
472 if (!profile_event_match(kwork, work, sample)) {
473 atom_free(atom);
474 return 0;
475 }
476
477 if (dst_type < KWORK_TRACE_MAX) {
478 dst_atom = list_last_entry_or_null(&work->atom_list[dst_type],
479 struct kwork_atom, list);
480 if (dst_atom != NULL) {
481 atom->prev = dst_atom;
482 list_del(&dst_atom->list);
483 }
484 }
485
486 if (ret_work != NULL)
487 *ret_work = work;
488
489 if (overwrite) {
490 last_atom = list_last_entry_or_null(&work->atom_list[src_type],
491 struct kwork_atom, list);
492 if (last_atom) {
493 atom_del(last_atom);
494
495 kwork->nr_skipped_events[src_type]++;
496 kwork->nr_skipped_events[KWORK_TRACE_MAX]++;
497 }
498 }
499
500 list_add_tail(&atom->list, &work->atom_list[src_type]);
501
502 return 0;
503 }
504
work_pop_atom(struct perf_kwork * kwork,struct kwork_class * class,enum kwork_trace_type src_type,enum kwork_trace_type dst_type,struct evsel * evsel,struct perf_sample * sample,struct machine * machine,struct kwork_work ** ret_work)505 static struct kwork_atom *work_pop_atom(struct perf_kwork *kwork,
506 struct kwork_class *class,
507 enum kwork_trace_type src_type,
508 enum kwork_trace_type dst_type,
509 struct evsel *evsel,
510 struct perf_sample *sample,
511 struct machine *machine,
512 struct kwork_work **ret_work)
513 {
514 struct kwork_atom *atom, *src_atom;
515 struct kwork_work *work, key;
516
517 BUG_ON(class->work_init == NULL);
518 class->work_init(kwork, class, &key, src_type, evsel, sample, machine);
519
520 work = work_findnew(&class->work_root, &key, &kwork->cmp_id);
521 if (ret_work != NULL)
522 *ret_work = work;
523
524 if (work == NULL)
525 return NULL;
526
527 if (!profile_event_match(kwork, work, sample))
528 return NULL;
529
530 atom = list_last_entry_or_null(&work->atom_list[dst_type],
531 struct kwork_atom, list);
532 if (atom != NULL)
533 return atom;
534
535 src_atom = atom_new(kwork, sample);
536 if (src_atom != NULL)
537 list_add_tail(&src_atom->list, &work->atom_list[src_type]);
538 else {
539 if (ret_work != NULL)
540 *ret_work = NULL;
541 }
542
543 return NULL;
544 }
545
find_work_by_id(struct rb_root_cached * root,u64 id,int cpu)546 static struct kwork_work *find_work_by_id(struct rb_root_cached *root,
547 u64 id, int cpu)
548 {
549 struct rb_node *next;
550 struct kwork_work *work;
551
552 next = rb_first_cached(root);
553 while (next) {
554 work = rb_entry(next, struct kwork_work, node);
555 if ((cpu != -1 && work->id == id && work->cpu == cpu) ||
556 (cpu == -1 && work->id == id))
557 return work;
558
559 next = rb_next(next);
560 }
561
562 return NULL;
563 }
564
get_kwork_class(struct perf_kwork * kwork,enum kwork_class_type type)565 static struct kwork_class *get_kwork_class(struct perf_kwork *kwork,
566 enum kwork_class_type type)
567 {
568 struct kwork_class *class;
569
570 list_for_each_entry(class, &kwork->class_list, list) {
571 if (class->type == type)
572 return class;
573 }
574
575 return NULL;
576 }
577
report_update_exit_event(struct kwork_work * work,struct kwork_atom * atom,struct perf_sample * sample)578 static void report_update_exit_event(struct kwork_work *work,
579 struct kwork_atom *atom,
580 struct perf_sample *sample)
581 {
582 u64 delta;
583 u64 exit_time = sample->time;
584 u64 entry_time = atom->time;
585
586 if ((entry_time != 0) && (exit_time >= entry_time)) {
587 delta = exit_time - entry_time;
588 if ((delta > work->max_runtime) ||
589 (work->max_runtime == 0)) {
590 work->max_runtime = delta;
591 work->max_runtime_start = entry_time;
592 work->max_runtime_end = exit_time;
593 }
594 work->total_runtime += delta;
595 work->nr_atoms++;
596 }
597 }
598
report_entry_event(struct perf_kwork * kwork,struct kwork_class * class,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)599 static int report_entry_event(struct perf_kwork *kwork,
600 struct kwork_class *class,
601 struct evsel *evsel,
602 struct perf_sample *sample,
603 struct machine *machine)
604 {
605 return work_push_atom(kwork, class, KWORK_TRACE_ENTRY,
606 KWORK_TRACE_MAX, evsel, sample,
607 machine, NULL, true);
608 }
609
report_exit_event(struct perf_kwork * kwork,struct kwork_class * class,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)610 static int report_exit_event(struct perf_kwork *kwork,
611 struct kwork_class *class,
612 struct evsel *evsel,
613 struct perf_sample *sample,
614 struct machine *machine)
615 {
616 struct kwork_atom *atom = NULL;
617 struct kwork_work *work = NULL;
618
619 atom = work_pop_atom(kwork, class, KWORK_TRACE_EXIT,
620 KWORK_TRACE_ENTRY, evsel, sample,
621 machine, &work);
622 if (work == NULL)
623 return -1;
624
625 if (atom != NULL) {
626 report_update_exit_event(work, atom, sample);
627 atom_del(atom);
628 }
629
630 return 0;
631 }
632
latency_update_entry_event(struct kwork_work * work,struct kwork_atom * atom,struct perf_sample * sample)633 static void latency_update_entry_event(struct kwork_work *work,
634 struct kwork_atom *atom,
635 struct perf_sample *sample)
636 {
637 u64 delta;
638 u64 entry_time = sample->time;
639 u64 raise_time = atom->time;
640
641 if ((raise_time != 0) && (entry_time >= raise_time)) {
642 delta = entry_time - raise_time;
643 if ((delta > work->max_latency) ||
644 (work->max_latency == 0)) {
645 work->max_latency = delta;
646 work->max_latency_start = raise_time;
647 work->max_latency_end = entry_time;
648 }
649 work->total_latency += delta;
650 work->nr_atoms++;
651 }
652 }
653
latency_raise_event(struct perf_kwork * kwork,struct kwork_class * class,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)654 static int latency_raise_event(struct perf_kwork *kwork,
655 struct kwork_class *class,
656 struct evsel *evsel,
657 struct perf_sample *sample,
658 struct machine *machine)
659 {
660 return work_push_atom(kwork, class, KWORK_TRACE_RAISE,
661 KWORK_TRACE_MAX, evsel, sample,
662 machine, NULL, true);
663 }
664
latency_entry_event(struct perf_kwork * kwork,struct kwork_class * class,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)665 static int latency_entry_event(struct perf_kwork *kwork,
666 struct kwork_class *class,
667 struct evsel *evsel,
668 struct perf_sample *sample,
669 struct machine *machine)
670 {
671 struct kwork_atom *atom = NULL;
672 struct kwork_work *work = NULL;
673
674 atom = work_pop_atom(kwork, class, KWORK_TRACE_ENTRY,
675 KWORK_TRACE_RAISE, evsel, sample,
676 machine, &work);
677 if (work == NULL)
678 return -1;
679
680 if (atom != NULL) {
681 latency_update_entry_event(work, atom, sample);
682 atom_del(atom);
683 }
684
685 return 0;
686 }
687
timehist_save_callchain(struct perf_kwork * kwork,struct perf_sample * sample,struct evsel * evsel,struct machine * machine)688 static void timehist_save_callchain(struct perf_kwork *kwork,
689 struct perf_sample *sample,
690 struct evsel *evsel,
691 struct machine *machine)
692 {
693 struct symbol *sym;
694 struct thread *thread;
695 struct callchain_cursor_node *node;
696 struct callchain_cursor *cursor;
697
698 if (!kwork->show_callchain || sample->callchain == NULL)
699 return;
700
701 /* want main thread for process - has maps */
702 thread = machine__findnew_thread(machine, sample->pid, sample->pid);
703 if (thread == NULL) {
704 pr_debug("Failed to get thread for pid %d\n", sample->pid);
705 return;
706 }
707
708 cursor = get_tls_callchain_cursor();
709
710 if (thread__resolve_callchain(thread, cursor, evsel, sample,
711 NULL, NULL, kwork->max_stack + 2) != 0) {
712 pr_debug("Failed to resolve callchain, skipping\n");
713 goto out_put;
714 }
715
716 callchain_cursor_commit(cursor);
717
718 while (true) {
719 node = callchain_cursor_current(cursor);
720 if (node == NULL)
721 break;
722
723 sym = node->ms.sym;
724 if (sym) {
725 if (!strcmp(sym->name, "__softirqentry_text_start") ||
726 !strcmp(sym->name, "__do_softirq"))
727 sym->ignore = 1;
728 }
729
730 callchain_cursor_advance(cursor);
731 }
732
733 out_put:
734 thread__put(thread);
735 }
736
timehist_print_event(struct perf_kwork * kwork,struct kwork_work * work,struct kwork_atom * atom,struct perf_sample * sample,struct addr_location * al)737 static void timehist_print_event(struct perf_kwork *kwork,
738 struct kwork_work *work,
739 struct kwork_atom *atom,
740 struct perf_sample *sample,
741 struct addr_location *al)
742 {
743 char entrytime[32], exittime[32];
744 char kwork_name[PRINT_KWORK_NAME_WIDTH];
745
746 /*
747 * runtime start
748 */
749 timestamp__scnprintf_usec(atom->time,
750 entrytime, sizeof(entrytime));
751 printf(" %*s ", PRINT_TIMESTAMP_WIDTH, entrytime);
752
753 /*
754 * runtime end
755 */
756 timestamp__scnprintf_usec(sample->time,
757 exittime, sizeof(exittime));
758 printf(" %*s ", PRINT_TIMESTAMP_WIDTH, exittime);
759
760 /*
761 * cpu
762 */
763 printf(" [%0*d] ", PRINT_CPU_WIDTH, work->cpu);
764
765 /*
766 * kwork name
767 */
768 if (work->class && work->class->work_name) {
769 work->class->work_name(work, kwork_name,
770 PRINT_KWORK_NAME_WIDTH);
771 printf(" %-*s ", PRINT_KWORK_NAME_WIDTH, kwork_name);
772 } else
773 printf(" %-*s ", PRINT_KWORK_NAME_WIDTH, "");
774
775 /*
776 *runtime
777 */
778 printf(" %*.*f ",
779 PRINT_RUNTIME_WIDTH, RPINT_DECIMAL_WIDTH,
780 (double)(sample->time - atom->time) / NSEC_PER_MSEC);
781
782 /*
783 * delaytime
784 */
785 if (atom->prev != NULL)
786 printf(" %*.*f ", PRINT_LATENCY_WIDTH, RPINT_DECIMAL_WIDTH,
787 (double)(atom->time - atom->prev->time) / NSEC_PER_MSEC);
788 else
789 printf(" %*s ", PRINT_LATENCY_WIDTH, " ");
790
791 /*
792 * callchain
793 */
794 if (kwork->show_callchain) {
795 struct callchain_cursor *cursor = get_tls_callchain_cursor();
796
797 if (cursor == NULL)
798 return;
799
800 printf(" ");
801
802 sample__fprintf_sym(sample, al, 0,
803 EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
804 EVSEL__PRINT_CALLCHAIN_ARROW |
805 EVSEL__PRINT_SKIP_IGNORED,
806 cursor, symbol_conf.bt_stop_list,
807 stdout);
808 }
809
810 printf("\n");
811 }
812
timehist_raise_event(struct perf_kwork * kwork,struct kwork_class * class,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)813 static int timehist_raise_event(struct perf_kwork *kwork,
814 struct kwork_class *class,
815 struct evsel *evsel,
816 struct perf_sample *sample,
817 struct machine *machine)
818 {
819 return work_push_atom(kwork, class, KWORK_TRACE_RAISE,
820 KWORK_TRACE_MAX, evsel, sample,
821 machine, NULL, true);
822 }
823
timehist_entry_event(struct perf_kwork * kwork,struct kwork_class * class,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)824 static int timehist_entry_event(struct perf_kwork *kwork,
825 struct kwork_class *class,
826 struct evsel *evsel,
827 struct perf_sample *sample,
828 struct machine *machine)
829 {
830 int ret;
831 struct kwork_work *work = NULL;
832
833 ret = work_push_atom(kwork, class, KWORK_TRACE_ENTRY,
834 KWORK_TRACE_RAISE, evsel, sample,
835 machine, &work, true);
836 if (ret)
837 return ret;
838
839 if (work != NULL)
840 timehist_save_callchain(kwork, sample, evsel, machine);
841
842 return 0;
843 }
844
timehist_exit_event(struct perf_kwork * kwork,struct kwork_class * class,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)845 static int timehist_exit_event(struct perf_kwork *kwork,
846 struct kwork_class *class,
847 struct evsel *evsel,
848 struct perf_sample *sample,
849 struct machine *machine)
850 {
851 struct kwork_atom *atom = NULL;
852 struct kwork_work *work = NULL;
853 struct addr_location al;
854 int ret = 0;
855
856 addr_location__init(&al);
857 if (machine__resolve(machine, &al, sample) < 0) {
858 pr_debug("Problem processing event, skipping it\n");
859 ret = -1;
860 goto out;
861 }
862
863 atom = work_pop_atom(kwork, class, KWORK_TRACE_EXIT,
864 KWORK_TRACE_ENTRY, evsel, sample,
865 machine, &work);
866 if (work == NULL) {
867 ret = -1;
868 goto out;
869 }
870
871 if (atom != NULL) {
872 work->nr_atoms++;
873 timehist_print_event(kwork, work, atom, sample, &al);
874 atom_del(atom);
875 }
876
877 out:
878 addr_location__exit(&al);
879 return ret;
880 }
881
top_update_runtime(struct kwork_work * work,struct kwork_atom * atom,struct perf_sample * sample)882 static void top_update_runtime(struct kwork_work *work,
883 struct kwork_atom *atom,
884 struct perf_sample *sample)
885 {
886 u64 delta;
887 u64 exit_time = sample->time;
888 u64 entry_time = atom->time;
889
890 if ((entry_time != 0) && (exit_time >= entry_time)) {
891 delta = exit_time - entry_time;
892 work->total_runtime += delta;
893 }
894 }
895
top_entry_event(struct perf_kwork * kwork,struct kwork_class * class,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)896 static int top_entry_event(struct perf_kwork *kwork,
897 struct kwork_class *class,
898 struct evsel *evsel,
899 struct perf_sample *sample,
900 struct machine *machine)
901 {
902 return work_push_atom(kwork, class, KWORK_TRACE_ENTRY,
903 KWORK_TRACE_MAX, evsel, sample,
904 machine, NULL, true);
905 }
906
top_exit_event(struct perf_kwork * kwork,struct kwork_class * class,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)907 static int top_exit_event(struct perf_kwork *kwork,
908 struct kwork_class *class,
909 struct evsel *evsel,
910 struct perf_sample *sample,
911 struct machine *machine)
912 {
913 struct kwork_work *work, *sched_work;
914 struct kwork_class *sched_class;
915 struct kwork_atom *atom;
916
917 atom = work_pop_atom(kwork, class, KWORK_TRACE_EXIT,
918 KWORK_TRACE_ENTRY, evsel, sample,
919 machine, &work);
920 if (!work)
921 return -1;
922
923 if (atom) {
924 sched_class = get_kwork_class(kwork, KWORK_CLASS_SCHED);
925 if (sched_class) {
926 sched_work = find_work_by_id(&sched_class->work_root,
927 work->id, work->cpu);
928 if (sched_work)
929 top_update_runtime(work, atom, sample);
930 }
931 atom_del(atom);
932 }
933
934 return 0;
935 }
936
top_sched_switch_event(struct perf_kwork * kwork,struct kwork_class * class,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)937 static int top_sched_switch_event(struct perf_kwork *kwork,
938 struct kwork_class *class,
939 struct evsel *evsel,
940 struct perf_sample *sample,
941 struct machine *machine)
942 {
943 struct kwork_atom *atom;
944 struct kwork_work *work;
945
946 atom = work_pop_atom(kwork, class, KWORK_TRACE_EXIT,
947 KWORK_TRACE_ENTRY, evsel, sample,
948 machine, &work);
949 if (!work)
950 return -1;
951
952 if (atom) {
953 top_update_runtime(work, atom, sample);
954 atom_del(atom);
955 }
956
957 return top_entry_event(kwork, class, evsel, sample, machine);
958 }
959
960 static struct kwork_class kwork_irq;
process_irq_handler_entry_event(const struct perf_tool * tool,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)961 static int process_irq_handler_entry_event(const struct perf_tool *tool,
962 struct evsel *evsel,
963 struct perf_sample *sample,
964 struct machine *machine)
965 {
966 struct perf_kwork *kwork = container_of(tool, struct perf_kwork, tool);
967
968 if (kwork->tp_handler->entry_event)
969 return kwork->tp_handler->entry_event(kwork, &kwork_irq,
970 evsel, sample, machine);
971 return 0;
972 }
973
process_irq_handler_exit_event(const struct perf_tool * tool,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)974 static int process_irq_handler_exit_event(const struct perf_tool *tool,
975 struct evsel *evsel,
976 struct perf_sample *sample,
977 struct machine *machine)
978 {
979 struct perf_kwork *kwork = container_of(tool, struct perf_kwork, tool);
980
981 if (kwork->tp_handler->exit_event)
982 return kwork->tp_handler->exit_event(kwork, &kwork_irq,
983 evsel, sample, machine);
984 return 0;
985 }
986
987 const struct evsel_str_handler irq_tp_handlers[] = {
988 { "irq:irq_handler_entry", process_irq_handler_entry_event, },
989 { "irq:irq_handler_exit", process_irq_handler_exit_event, },
990 };
991
irq_class_init(struct kwork_class * class,struct perf_session * session)992 static int irq_class_init(struct kwork_class *class,
993 struct perf_session *session)
994 {
995 if (perf_session__set_tracepoints_handlers(session, irq_tp_handlers)) {
996 pr_err("Failed to set irq tracepoints handlers\n");
997 return -1;
998 }
999
1000 class->work_root = RB_ROOT_CACHED;
1001 return 0;
1002 }
1003
irq_work_init(struct perf_kwork * kwork,struct kwork_class * class,struct kwork_work * work,enum kwork_trace_type src_type __maybe_unused,struct evsel * evsel,struct perf_sample * sample,struct machine * machine __maybe_unused)1004 static void irq_work_init(struct perf_kwork *kwork,
1005 struct kwork_class *class,
1006 struct kwork_work *work,
1007 enum kwork_trace_type src_type __maybe_unused,
1008 struct evsel *evsel,
1009 struct perf_sample *sample,
1010 struct machine *machine __maybe_unused)
1011 {
1012 work->class = class;
1013 work->cpu = sample->cpu;
1014
1015 if (kwork->report == KWORK_REPORT_TOP) {
1016 work->id = evsel__intval_common(evsel, sample, "common_pid");
1017 work->name = NULL;
1018 } else {
1019 work->id = evsel__intval(evsel, sample, "irq");
1020 work->name = evsel__strval(evsel, sample, "name");
1021 }
1022 }
1023
irq_work_name(struct kwork_work * work,char * buf,int len)1024 static void irq_work_name(struct kwork_work *work, char *buf, int len)
1025 {
1026 snprintf(buf, len, "%s:%" PRIu64 "", work->name, work->id);
1027 }
1028
1029 static struct kwork_class kwork_irq = {
1030 .name = "irq",
1031 .type = KWORK_CLASS_IRQ,
1032 .nr_tracepoints = 2,
1033 .tp_handlers = irq_tp_handlers,
1034 .class_init = irq_class_init,
1035 .work_init = irq_work_init,
1036 .work_name = irq_work_name,
1037 };
1038
1039 static struct kwork_class kwork_softirq;
process_softirq_raise_event(const struct perf_tool * tool,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1040 static int process_softirq_raise_event(const struct perf_tool *tool,
1041 struct evsel *evsel,
1042 struct perf_sample *sample,
1043 struct machine *machine)
1044 {
1045 struct perf_kwork *kwork = container_of(tool, struct perf_kwork, tool);
1046
1047 if (kwork->tp_handler->raise_event)
1048 return kwork->tp_handler->raise_event(kwork, &kwork_softirq,
1049 evsel, sample, machine);
1050
1051 return 0;
1052 }
1053
process_softirq_entry_event(const struct perf_tool * tool,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1054 static int process_softirq_entry_event(const struct perf_tool *tool,
1055 struct evsel *evsel,
1056 struct perf_sample *sample,
1057 struct machine *machine)
1058 {
1059 struct perf_kwork *kwork = container_of(tool, struct perf_kwork, tool);
1060
1061 if (kwork->tp_handler->entry_event)
1062 return kwork->tp_handler->entry_event(kwork, &kwork_softirq,
1063 evsel, sample, machine);
1064
1065 return 0;
1066 }
1067
process_softirq_exit_event(const struct perf_tool * tool,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1068 static int process_softirq_exit_event(const struct perf_tool *tool,
1069 struct evsel *evsel,
1070 struct perf_sample *sample,
1071 struct machine *machine)
1072 {
1073 struct perf_kwork *kwork = container_of(tool, struct perf_kwork, tool);
1074
1075 if (kwork->tp_handler->exit_event)
1076 return kwork->tp_handler->exit_event(kwork, &kwork_softirq,
1077 evsel, sample, machine);
1078
1079 return 0;
1080 }
1081
1082 const struct evsel_str_handler softirq_tp_handlers[] = {
1083 { "irq:softirq_raise", process_softirq_raise_event, },
1084 { "irq:softirq_entry", process_softirq_entry_event, },
1085 { "irq:softirq_exit", process_softirq_exit_event, },
1086 };
1087
softirq_class_init(struct kwork_class * class,struct perf_session * session)1088 static int softirq_class_init(struct kwork_class *class,
1089 struct perf_session *session)
1090 {
1091 if (perf_session__set_tracepoints_handlers(session,
1092 softirq_tp_handlers)) {
1093 pr_err("Failed to set softirq tracepoints handlers\n");
1094 return -1;
1095 }
1096
1097 class->work_root = RB_ROOT_CACHED;
1098 return 0;
1099 }
1100
evsel__softirq_name(struct evsel * evsel,u64 num)1101 static char *evsel__softirq_name(struct evsel *evsel, u64 num)
1102 {
1103 char *name = NULL;
1104 bool found = false;
1105 struct tep_print_flag_sym *sym = NULL;
1106 struct tep_print_arg *args = evsel->tp_format->print_fmt.args;
1107
1108 if ((args == NULL) || (args->next == NULL))
1109 return NULL;
1110
1111 /* skip softirq field: "REC->vec" */
1112 for (sym = args->next->symbol.symbols; sym != NULL; sym = sym->next) {
1113 if ((eval_flag(sym->value) == (unsigned long long)num) &&
1114 (strlen(sym->str) != 0)) {
1115 found = true;
1116 break;
1117 }
1118 }
1119
1120 if (!found)
1121 return NULL;
1122
1123 name = strdup(sym->str);
1124 if (name == NULL) {
1125 pr_err("Failed to copy symbol name\n");
1126 return NULL;
1127 }
1128 return name;
1129 }
1130
softirq_work_init(struct perf_kwork * kwork,struct kwork_class * class,struct kwork_work * work,enum kwork_trace_type src_type __maybe_unused,struct evsel * evsel,struct perf_sample * sample,struct machine * machine __maybe_unused)1131 static void softirq_work_init(struct perf_kwork *kwork,
1132 struct kwork_class *class,
1133 struct kwork_work *work,
1134 enum kwork_trace_type src_type __maybe_unused,
1135 struct evsel *evsel,
1136 struct perf_sample *sample,
1137 struct machine *machine __maybe_unused)
1138 {
1139 u64 num;
1140
1141 work->class = class;
1142 work->cpu = sample->cpu;
1143
1144 if (kwork->report == KWORK_REPORT_TOP) {
1145 work->id = evsel__intval_common(evsel, sample, "common_pid");
1146 work->name = NULL;
1147 } else {
1148 num = evsel__intval(evsel, sample, "vec");
1149 work->id = num;
1150 work->name = evsel__softirq_name(evsel, num);
1151 }
1152 }
1153
softirq_work_name(struct kwork_work * work,char * buf,int len)1154 static void softirq_work_name(struct kwork_work *work, char *buf, int len)
1155 {
1156 snprintf(buf, len, "(s)%s:%" PRIu64 "", work->name, work->id);
1157 }
1158
1159 static struct kwork_class kwork_softirq = {
1160 .name = "softirq",
1161 .type = KWORK_CLASS_SOFTIRQ,
1162 .nr_tracepoints = 3,
1163 .tp_handlers = softirq_tp_handlers,
1164 .class_init = softirq_class_init,
1165 .work_init = softirq_work_init,
1166 .work_name = softirq_work_name,
1167 };
1168
1169 static struct kwork_class kwork_workqueue;
process_workqueue_activate_work_event(const struct perf_tool * tool,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1170 static int process_workqueue_activate_work_event(const struct perf_tool *tool,
1171 struct evsel *evsel,
1172 struct perf_sample *sample,
1173 struct machine *machine)
1174 {
1175 struct perf_kwork *kwork = container_of(tool, struct perf_kwork, tool);
1176
1177 if (kwork->tp_handler->raise_event)
1178 return kwork->tp_handler->raise_event(kwork, &kwork_workqueue,
1179 evsel, sample, machine);
1180
1181 return 0;
1182 }
1183
process_workqueue_execute_start_event(const struct perf_tool * tool,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1184 static int process_workqueue_execute_start_event(const struct perf_tool *tool,
1185 struct evsel *evsel,
1186 struct perf_sample *sample,
1187 struct machine *machine)
1188 {
1189 struct perf_kwork *kwork = container_of(tool, struct perf_kwork, tool);
1190
1191 if (kwork->tp_handler->entry_event)
1192 return kwork->tp_handler->entry_event(kwork, &kwork_workqueue,
1193 evsel, sample, machine);
1194
1195 return 0;
1196 }
1197
process_workqueue_execute_end_event(const struct perf_tool * tool,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1198 static int process_workqueue_execute_end_event(const struct perf_tool *tool,
1199 struct evsel *evsel,
1200 struct perf_sample *sample,
1201 struct machine *machine)
1202 {
1203 struct perf_kwork *kwork = container_of(tool, struct perf_kwork, tool);
1204
1205 if (kwork->tp_handler->exit_event)
1206 return kwork->tp_handler->exit_event(kwork, &kwork_workqueue,
1207 evsel, sample, machine);
1208
1209 return 0;
1210 }
1211
1212 const struct evsel_str_handler workqueue_tp_handlers[] = {
1213 { "workqueue:workqueue_activate_work", process_workqueue_activate_work_event, },
1214 { "workqueue:workqueue_execute_start", process_workqueue_execute_start_event, },
1215 { "workqueue:workqueue_execute_end", process_workqueue_execute_end_event, },
1216 };
1217
workqueue_class_init(struct kwork_class * class,struct perf_session * session)1218 static int workqueue_class_init(struct kwork_class *class,
1219 struct perf_session *session)
1220 {
1221 if (perf_session__set_tracepoints_handlers(session,
1222 workqueue_tp_handlers)) {
1223 pr_err("Failed to set workqueue tracepoints handlers\n");
1224 return -1;
1225 }
1226
1227 class->work_root = RB_ROOT_CACHED;
1228 return 0;
1229 }
1230
workqueue_work_init(struct perf_kwork * kwork __maybe_unused,struct kwork_class * class,struct kwork_work * work,enum kwork_trace_type src_type __maybe_unused,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1231 static void workqueue_work_init(struct perf_kwork *kwork __maybe_unused,
1232 struct kwork_class *class,
1233 struct kwork_work *work,
1234 enum kwork_trace_type src_type __maybe_unused,
1235 struct evsel *evsel,
1236 struct perf_sample *sample,
1237 struct machine *machine)
1238 {
1239 char *modp = NULL;
1240 unsigned long long function_addr = evsel__intval(evsel,
1241 sample, "function");
1242
1243 work->class = class;
1244 work->cpu = sample->cpu;
1245 work->id = evsel__intval(evsel, sample, "work");
1246 work->name = function_addr == 0 ? NULL :
1247 machine__resolve_kernel_addr(machine, &function_addr, &modp);
1248 }
1249
workqueue_work_name(struct kwork_work * work,char * buf,int len)1250 static void workqueue_work_name(struct kwork_work *work, char *buf, int len)
1251 {
1252 if (work->name != NULL)
1253 snprintf(buf, len, "(w)%s", work->name);
1254 else
1255 snprintf(buf, len, "(w)0x%" PRIx64, work->id);
1256 }
1257
1258 static struct kwork_class kwork_workqueue = {
1259 .name = "workqueue",
1260 .type = KWORK_CLASS_WORKQUEUE,
1261 .nr_tracepoints = 3,
1262 .tp_handlers = workqueue_tp_handlers,
1263 .class_init = workqueue_class_init,
1264 .work_init = workqueue_work_init,
1265 .work_name = workqueue_work_name,
1266 };
1267
1268 static struct kwork_class kwork_sched;
process_sched_switch_event(const struct perf_tool * tool,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1269 static int process_sched_switch_event(const struct perf_tool *tool,
1270 struct evsel *evsel,
1271 struct perf_sample *sample,
1272 struct machine *machine)
1273 {
1274 struct perf_kwork *kwork = container_of(tool, struct perf_kwork, tool);
1275
1276 if (kwork->tp_handler->sched_switch_event)
1277 return kwork->tp_handler->sched_switch_event(kwork, &kwork_sched,
1278 evsel, sample, machine);
1279 return 0;
1280 }
1281
1282 const struct evsel_str_handler sched_tp_handlers[] = {
1283 { "sched:sched_switch", process_sched_switch_event, },
1284 };
1285
sched_class_init(struct kwork_class * class,struct perf_session * session)1286 static int sched_class_init(struct kwork_class *class,
1287 struct perf_session *session)
1288 {
1289 if (perf_session__set_tracepoints_handlers(session,
1290 sched_tp_handlers)) {
1291 pr_err("Failed to set sched tracepoints handlers\n");
1292 return -1;
1293 }
1294
1295 class->work_root = RB_ROOT_CACHED;
1296 return 0;
1297 }
1298
sched_work_init(struct perf_kwork * kwork __maybe_unused,struct kwork_class * class,struct kwork_work * work,enum kwork_trace_type src_type,struct evsel * evsel,struct perf_sample * sample,struct machine * machine __maybe_unused)1299 static void sched_work_init(struct perf_kwork *kwork __maybe_unused,
1300 struct kwork_class *class,
1301 struct kwork_work *work,
1302 enum kwork_trace_type src_type,
1303 struct evsel *evsel,
1304 struct perf_sample *sample,
1305 struct machine *machine __maybe_unused)
1306 {
1307 work->class = class;
1308 work->cpu = sample->cpu;
1309
1310 if (src_type == KWORK_TRACE_EXIT) {
1311 work->id = evsel__intval(evsel, sample, "prev_pid");
1312 work->name = strdup(evsel__strval(evsel, sample, "prev_comm"));
1313 } else if (src_type == KWORK_TRACE_ENTRY) {
1314 work->id = evsel__intval(evsel, sample, "next_pid");
1315 work->name = strdup(evsel__strval(evsel, sample, "next_comm"));
1316 }
1317 }
1318
sched_work_name(struct kwork_work * work,char * buf,int len)1319 static void sched_work_name(struct kwork_work *work, char *buf, int len)
1320 {
1321 snprintf(buf, len, "%s", work->name);
1322 }
1323
1324 static struct kwork_class kwork_sched = {
1325 .name = "sched",
1326 .type = KWORK_CLASS_SCHED,
1327 .nr_tracepoints = ARRAY_SIZE(sched_tp_handlers),
1328 .tp_handlers = sched_tp_handlers,
1329 .class_init = sched_class_init,
1330 .work_init = sched_work_init,
1331 .work_name = sched_work_name,
1332 };
1333
1334 static struct kwork_class *kwork_class_supported_list[KWORK_CLASS_MAX] = {
1335 [KWORK_CLASS_IRQ] = &kwork_irq,
1336 [KWORK_CLASS_SOFTIRQ] = &kwork_softirq,
1337 [KWORK_CLASS_WORKQUEUE] = &kwork_workqueue,
1338 [KWORK_CLASS_SCHED] = &kwork_sched,
1339 };
1340
print_separator(int len)1341 static void print_separator(int len)
1342 {
1343 printf(" %.*s\n", len, graph_dotted_line);
1344 }
1345
report_print_work(struct perf_kwork * kwork,struct kwork_work * work)1346 static int report_print_work(struct perf_kwork *kwork, struct kwork_work *work)
1347 {
1348 int ret = 0;
1349 char kwork_name[PRINT_KWORK_NAME_WIDTH];
1350 char max_runtime_start[32], max_runtime_end[32];
1351 char max_latency_start[32], max_latency_end[32];
1352
1353 printf(" ");
1354
1355 /*
1356 * kwork name
1357 */
1358 if (work->class && work->class->work_name) {
1359 work->class->work_name(work, kwork_name,
1360 PRINT_KWORK_NAME_WIDTH);
1361 ret += printf(" %-*s |", PRINT_KWORK_NAME_WIDTH, kwork_name);
1362 } else {
1363 ret += printf(" %-*s |", PRINT_KWORK_NAME_WIDTH, "");
1364 }
1365
1366 /*
1367 * cpu
1368 */
1369 ret += printf(" %0*d |", PRINT_CPU_WIDTH, work->cpu);
1370
1371 /*
1372 * total runtime
1373 */
1374 if (kwork->report == KWORK_REPORT_RUNTIME) {
1375 ret += printf(" %*.*f ms |",
1376 PRINT_RUNTIME_WIDTH, RPINT_DECIMAL_WIDTH,
1377 (double)work->total_runtime / NSEC_PER_MSEC);
1378 } else if (kwork->report == KWORK_REPORT_LATENCY) { // avg delay
1379 ret += printf(" %*.*f ms |",
1380 PRINT_LATENCY_WIDTH, RPINT_DECIMAL_WIDTH,
1381 (double)work->total_latency /
1382 work->nr_atoms / NSEC_PER_MSEC);
1383 }
1384
1385 /*
1386 * count
1387 */
1388 ret += printf(" %*" PRIu64 " |", PRINT_COUNT_WIDTH, work->nr_atoms);
1389
1390 /*
1391 * max runtime, max runtime start, max runtime end
1392 */
1393 if (kwork->report == KWORK_REPORT_RUNTIME) {
1394 timestamp__scnprintf_usec(work->max_runtime_start,
1395 max_runtime_start,
1396 sizeof(max_runtime_start));
1397 timestamp__scnprintf_usec(work->max_runtime_end,
1398 max_runtime_end,
1399 sizeof(max_runtime_end));
1400 ret += printf(" %*.*f ms | %*s s | %*s s |",
1401 PRINT_RUNTIME_WIDTH, RPINT_DECIMAL_WIDTH,
1402 (double)work->max_runtime / NSEC_PER_MSEC,
1403 PRINT_TIMESTAMP_WIDTH, max_runtime_start,
1404 PRINT_TIMESTAMP_WIDTH, max_runtime_end);
1405 }
1406 /*
1407 * max delay, max delay start, max delay end
1408 */
1409 else if (kwork->report == KWORK_REPORT_LATENCY) {
1410 timestamp__scnprintf_usec(work->max_latency_start,
1411 max_latency_start,
1412 sizeof(max_latency_start));
1413 timestamp__scnprintf_usec(work->max_latency_end,
1414 max_latency_end,
1415 sizeof(max_latency_end));
1416 ret += printf(" %*.*f ms | %*s s | %*s s |",
1417 PRINT_LATENCY_WIDTH, RPINT_DECIMAL_WIDTH,
1418 (double)work->max_latency / NSEC_PER_MSEC,
1419 PRINT_TIMESTAMP_WIDTH, max_latency_start,
1420 PRINT_TIMESTAMP_WIDTH, max_latency_end);
1421 }
1422
1423 printf("\n");
1424 return ret;
1425 }
1426
report_print_header(struct perf_kwork * kwork)1427 static int report_print_header(struct perf_kwork *kwork)
1428 {
1429 int ret;
1430
1431 printf("\n ");
1432 ret = printf(" %-*s | %-*s |",
1433 PRINT_KWORK_NAME_WIDTH, "Kwork Name",
1434 PRINT_CPU_WIDTH, "Cpu");
1435
1436 if (kwork->report == KWORK_REPORT_RUNTIME) {
1437 ret += printf(" %-*s |",
1438 PRINT_RUNTIME_HEADER_WIDTH, "Total Runtime");
1439 } else if (kwork->report == KWORK_REPORT_LATENCY) {
1440 ret += printf(" %-*s |",
1441 PRINT_LATENCY_HEADER_WIDTH, "Avg delay");
1442 }
1443
1444 ret += printf(" %-*s |", PRINT_COUNT_WIDTH, "Count");
1445
1446 if (kwork->report == KWORK_REPORT_RUNTIME) {
1447 ret += printf(" %-*s | %-*s | %-*s |",
1448 PRINT_RUNTIME_HEADER_WIDTH, "Max runtime",
1449 PRINT_TIMESTAMP_HEADER_WIDTH, "Max runtime start",
1450 PRINT_TIMESTAMP_HEADER_WIDTH, "Max runtime end");
1451 } else if (kwork->report == KWORK_REPORT_LATENCY) {
1452 ret += printf(" %-*s | %-*s | %-*s |",
1453 PRINT_LATENCY_HEADER_WIDTH, "Max delay",
1454 PRINT_TIMESTAMP_HEADER_WIDTH, "Max delay start",
1455 PRINT_TIMESTAMP_HEADER_WIDTH, "Max delay end");
1456 }
1457
1458 printf("\n");
1459 print_separator(ret);
1460 return ret;
1461 }
1462
timehist_print_header(void)1463 static void timehist_print_header(void)
1464 {
1465 /*
1466 * header row
1467 */
1468 printf(" %-*s %-*s %-*s %-*s %-*s %-*s\n",
1469 PRINT_TIMESTAMP_WIDTH, "Runtime start",
1470 PRINT_TIMESTAMP_WIDTH, "Runtime end",
1471 PRINT_TIMEHIST_CPU_WIDTH, "Cpu",
1472 PRINT_KWORK_NAME_WIDTH, "Kwork name",
1473 PRINT_RUNTIME_WIDTH, "Runtime",
1474 PRINT_RUNTIME_WIDTH, "Delaytime");
1475
1476 /*
1477 * units row
1478 */
1479 printf(" %-*s %-*s %-*s %-*s %-*s %-*s\n",
1480 PRINT_TIMESTAMP_WIDTH, "",
1481 PRINT_TIMESTAMP_WIDTH, "",
1482 PRINT_TIMEHIST_CPU_WIDTH, "",
1483 PRINT_KWORK_NAME_WIDTH, "(TYPE)NAME:NUM",
1484 PRINT_RUNTIME_WIDTH, "(msec)",
1485 PRINT_RUNTIME_WIDTH, "(msec)");
1486
1487 /*
1488 * separator
1489 */
1490 printf(" %.*s %.*s %.*s %.*s %.*s %.*s\n",
1491 PRINT_TIMESTAMP_WIDTH, graph_dotted_line,
1492 PRINT_TIMESTAMP_WIDTH, graph_dotted_line,
1493 PRINT_TIMEHIST_CPU_WIDTH, graph_dotted_line,
1494 PRINT_KWORK_NAME_WIDTH, graph_dotted_line,
1495 PRINT_RUNTIME_WIDTH, graph_dotted_line,
1496 PRINT_RUNTIME_WIDTH, graph_dotted_line);
1497 }
1498
print_summary(struct perf_kwork * kwork)1499 static void print_summary(struct perf_kwork *kwork)
1500 {
1501 u64 time = kwork->timeend - kwork->timestart;
1502
1503 printf(" Total count : %9" PRIu64 "\n", kwork->all_count);
1504 printf(" Total runtime (msec) : %9.3f (%.3f%% load average)\n",
1505 (double)kwork->all_runtime / NSEC_PER_MSEC,
1506 time == 0 ? 0 : (double)kwork->all_runtime / time);
1507 printf(" Total time span (msec) : %9.3f\n",
1508 (double)time / NSEC_PER_MSEC);
1509 }
1510
nr_list_entry(struct list_head * head)1511 static unsigned long long nr_list_entry(struct list_head *head)
1512 {
1513 struct list_head *pos;
1514 unsigned long long n = 0;
1515
1516 list_for_each(pos, head)
1517 n++;
1518
1519 return n;
1520 }
1521
print_skipped_events(struct perf_kwork * kwork)1522 static void print_skipped_events(struct perf_kwork *kwork)
1523 {
1524 int i;
1525 const char *const kwork_event_str[] = {
1526 [KWORK_TRACE_RAISE] = "raise",
1527 [KWORK_TRACE_ENTRY] = "entry",
1528 [KWORK_TRACE_EXIT] = "exit",
1529 };
1530
1531 if ((kwork->nr_skipped_events[KWORK_TRACE_MAX] != 0) &&
1532 (kwork->nr_events != 0)) {
1533 printf(" INFO: %.3f%% skipped events (%" PRIu64 " including ",
1534 (double)kwork->nr_skipped_events[KWORK_TRACE_MAX] /
1535 (double)kwork->nr_events * 100.0,
1536 kwork->nr_skipped_events[KWORK_TRACE_MAX]);
1537
1538 for (i = 0; i < KWORK_TRACE_MAX; i++) {
1539 printf("%" PRIu64 " %s%s",
1540 kwork->nr_skipped_events[i],
1541 kwork_event_str[i],
1542 (i == KWORK_TRACE_MAX - 1) ? ")\n" : ", ");
1543 }
1544 }
1545
1546 if (verbose > 0)
1547 printf(" INFO: use %lld atom pages\n",
1548 nr_list_entry(&kwork->atom_page_list));
1549 }
1550
print_bad_events(struct perf_kwork * kwork)1551 static void print_bad_events(struct perf_kwork *kwork)
1552 {
1553 if ((kwork->nr_lost_events != 0) && (kwork->nr_events != 0)) {
1554 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1555 (double)kwork->nr_lost_events /
1556 (double)kwork->nr_events * 100.0,
1557 kwork->nr_lost_events, kwork->nr_events,
1558 kwork->nr_lost_chunks);
1559 }
1560 }
1561
1562 const char *graph_load = "||||||||||||||||||||||||||||||||||||||||||||||||";
1563 const char *graph_idle = " ";
top_print_per_cpu_load(struct perf_kwork * kwork)1564 static void top_print_per_cpu_load(struct perf_kwork *kwork)
1565 {
1566 int i, load_width;
1567 u64 total, load, load_ratio;
1568 struct kwork_top_stat *stat = &kwork->top_stat;
1569
1570 for (i = 0; i < MAX_NR_CPUS; i++) {
1571 total = stat->cpus_runtime[i].total;
1572 load = stat->cpus_runtime[i].load;
1573 if (test_bit(i, stat->all_cpus_bitmap) && total) {
1574 load_ratio = load * 10000 / total;
1575 load_width = PRINT_CPU_USAGE_HIST_WIDTH *
1576 load_ratio / 10000;
1577
1578 printf("%%Cpu%-*d[%.*s%.*s %*.*f%%]\n",
1579 PRINT_CPU_WIDTH, i,
1580 load_width, graph_load,
1581 PRINT_CPU_USAGE_HIST_WIDTH - load_width,
1582 graph_idle,
1583 PRINT_CPU_USAGE_WIDTH,
1584 PRINT_CPU_USAGE_DECIMAL_WIDTH,
1585 (double)load_ratio / 100);
1586 }
1587 }
1588 }
1589
top_print_cpu_usage(struct perf_kwork * kwork)1590 static void top_print_cpu_usage(struct perf_kwork *kwork)
1591 {
1592 struct kwork_top_stat *stat = &kwork->top_stat;
1593 u64 idle_time = stat->cpus_runtime[MAX_NR_CPUS].idle;
1594 u64 hardirq_time = stat->cpus_runtime[MAX_NR_CPUS].irq;
1595 u64 softirq_time = stat->cpus_runtime[MAX_NR_CPUS].softirq;
1596 int cpus_nr = bitmap_weight(stat->all_cpus_bitmap, MAX_NR_CPUS);
1597 u64 cpus_total_time = stat->cpus_runtime[MAX_NR_CPUS].total;
1598
1599 printf("Total : %*.*f ms, %d cpus\n",
1600 PRINT_RUNTIME_WIDTH, RPINT_DECIMAL_WIDTH,
1601 (double)cpus_total_time / NSEC_PER_MSEC,
1602 cpus_nr);
1603
1604 printf("%%Cpu(s): %*.*f%% id, %*.*f%% hi, %*.*f%% si\n",
1605 PRINT_CPU_USAGE_WIDTH, PRINT_CPU_USAGE_DECIMAL_WIDTH,
1606 cpus_total_time ? (double)idle_time * 100 / cpus_total_time : 0,
1607
1608 PRINT_CPU_USAGE_WIDTH, PRINT_CPU_USAGE_DECIMAL_WIDTH,
1609 cpus_total_time ? (double)hardirq_time * 100 / cpus_total_time : 0,
1610
1611 PRINT_CPU_USAGE_WIDTH, PRINT_CPU_USAGE_DECIMAL_WIDTH,
1612 cpus_total_time ? (double)softirq_time * 100 / cpus_total_time : 0);
1613
1614 top_print_per_cpu_load(kwork);
1615 }
1616
top_print_header(struct perf_kwork * kwork __maybe_unused)1617 static void top_print_header(struct perf_kwork *kwork __maybe_unused)
1618 {
1619 int ret;
1620
1621 printf("\n ");
1622 ret = printf(" %*s %s%*s%s %*s %*s %-*s",
1623 PRINT_PID_WIDTH, "PID",
1624
1625 kwork->use_bpf ? " " : "",
1626 kwork->use_bpf ? PRINT_PID_WIDTH : 0,
1627 kwork->use_bpf ? "SPID" : "",
1628 kwork->use_bpf ? " " : "",
1629
1630 PRINT_CPU_USAGE_WIDTH, "%CPU",
1631 PRINT_RUNTIME_HEADER_WIDTH + RPINT_DECIMAL_WIDTH, "RUNTIME",
1632 PRINT_TASK_NAME_WIDTH, "COMMAND");
1633 printf("\n ");
1634 print_separator(ret);
1635 }
1636
top_print_work(struct perf_kwork * kwork __maybe_unused,struct kwork_work * work)1637 static int top_print_work(struct perf_kwork *kwork __maybe_unused, struct kwork_work *work)
1638 {
1639 int ret = 0;
1640
1641 printf(" ");
1642
1643 /*
1644 * pid
1645 */
1646 ret += printf(" %*" PRIu64 " ", PRINT_PID_WIDTH, work->id);
1647
1648 /*
1649 * tgid
1650 */
1651 if (kwork->use_bpf)
1652 ret += printf(" %*d ", PRINT_PID_WIDTH, work->tgid);
1653
1654 /*
1655 * cpu usage
1656 */
1657 ret += printf(" %*.*f ",
1658 PRINT_CPU_USAGE_WIDTH, PRINT_CPU_USAGE_DECIMAL_WIDTH,
1659 (double)work->cpu_usage / 100);
1660
1661 /*
1662 * total runtime
1663 */
1664 ret += printf(" %*.*f ms ",
1665 PRINT_RUNTIME_WIDTH + RPINT_DECIMAL_WIDTH, RPINT_DECIMAL_WIDTH,
1666 (double)work->total_runtime / NSEC_PER_MSEC);
1667
1668 /*
1669 * command
1670 */
1671 if (kwork->use_bpf)
1672 ret += printf(" %s%s%s",
1673 work->is_kthread ? "[" : "",
1674 work->name,
1675 work->is_kthread ? "]" : "");
1676 else
1677 ret += printf(" %-*s", PRINT_TASK_NAME_WIDTH, work->name);
1678
1679 printf("\n");
1680 return ret;
1681 }
1682
work_sort(struct perf_kwork * kwork,struct kwork_class * class,struct rb_root_cached * root)1683 static void work_sort(struct perf_kwork *kwork,
1684 struct kwork_class *class, struct rb_root_cached *root)
1685 {
1686 struct rb_node *node;
1687 struct kwork_work *data;
1688
1689 pr_debug("Sorting %s ...\n", class->name);
1690 for (;;) {
1691 node = rb_first_cached(root);
1692 if (!node)
1693 break;
1694
1695 rb_erase_cached(node, root);
1696 data = rb_entry(node, struct kwork_work, node);
1697 work_insert(&kwork->sorted_work_root,
1698 data, &kwork->sort_list);
1699 }
1700 }
1701
perf_kwork__sort(struct perf_kwork * kwork)1702 static void perf_kwork__sort(struct perf_kwork *kwork)
1703 {
1704 struct kwork_class *class;
1705
1706 list_for_each_entry(class, &kwork->class_list, list)
1707 work_sort(kwork, class, &class->work_root);
1708 }
1709
perf_kwork__check_config(struct perf_kwork * kwork,struct perf_session * session)1710 static int perf_kwork__check_config(struct perf_kwork *kwork,
1711 struct perf_session *session)
1712 {
1713 int ret;
1714 struct evsel *evsel;
1715 struct kwork_class *class;
1716
1717 static struct trace_kwork_handler report_ops = {
1718 .entry_event = report_entry_event,
1719 .exit_event = report_exit_event,
1720 };
1721 static struct trace_kwork_handler latency_ops = {
1722 .raise_event = latency_raise_event,
1723 .entry_event = latency_entry_event,
1724 };
1725 static struct trace_kwork_handler timehist_ops = {
1726 .raise_event = timehist_raise_event,
1727 .entry_event = timehist_entry_event,
1728 .exit_event = timehist_exit_event,
1729 };
1730 static struct trace_kwork_handler top_ops = {
1731 .entry_event = timehist_entry_event,
1732 .exit_event = top_exit_event,
1733 .sched_switch_event = top_sched_switch_event,
1734 };
1735
1736 switch (kwork->report) {
1737 case KWORK_REPORT_RUNTIME:
1738 kwork->tp_handler = &report_ops;
1739 break;
1740 case KWORK_REPORT_LATENCY:
1741 kwork->tp_handler = &latency_ops;
1742 break;
1743 case KWORK_REPORT_TIMEHIST:
1744 kwork->tp_handler = &timehist_ops;
1745 break;
1746 case KWORK_REPORT_TOP:
1747 kwork->tp_handler = &top_ops;
1748 break;
1749 default:
1750 pr_debug("Invalid report type %d\n", kwork->report);
1751 return -1;
1752 }
1753
1754 list_for_each_entry(class, &kwork->class_list, list)
1755 if ((class->class_init != NULL) &&
1756 (class->class_init(class, session) != 0))
1757 return -1;
1758
1759 if (kwork->cpu_list != NULL) {
1760 ret = perf_session__cpu_bitmap(session,
1761 kwork->cpu_list,
1762 kwork->cpu_bitmap);
1763 if (ret < 0) {
1764 pr_err("Invalid cpu bitmap\n");
1765 return -1;
1766 }
1767 }
1768
1769 if (kwork->time_str != NULL) {
1770 ret = perf_time__parse_str(&kwork->ptime, kwork->time_str);
1771 if (ret != 0) {
1772 pr_err("Invalid time span\n");
1773 return -1;
1774 }
1775 }
1776
1777 list_for_each_entry(evsel, &session->evlist->core.entries, core.node) {
1778 if (kwork->show_callchain && !evsel__has_callchain(evsel)) {
1779 pr_debug("Samples do not have callchains\n");
1780 kwork->show_callchain = 0;
1781 symbol_conf.use_callchain = 0;
1782 }
1783 }
1784
1785 return 0;
1786 }
1787
perf_kwork__read_events(struct perf_kwork * kwork)1788 static int perf_kwork__read_events(struct perf_kwork *kwork)
1789 {
1790 int ret = -1;
1791 struct perf_session *session = NULL;
1792
1793 struct perf_data data = {
1794 .path = input_name,
1795 .mode = PERF_DATA_MODE_READ,
1796 .force = kwork->force,
1797 };
1798
1799 session = perf_session__new(&data, &kwork->tool);
1800 if (IS_ERR(session)) {
1801 pr_debug("Error creating perf session\n");
1802 return PTR_ERR(session);
1803 }
1804
1805 symbol__init(&session->header.env);
1806
1807 if (perf_kwork__check_config(kwork, session) != 0)
1808 goto out_delete;
1809
1810 if (session->tevent.pevent &&
1811 tep_set_function_resolver(session->tevent.pevent,
1812 machine__resolve_kernel_addr,
1813 &session->machines.host) < 0) {
1814 pr_err("Failed to set libtraceevent function resolver\n");
1815 goto out_delete;
1816 }
1817
1818 if (kwork->report == KWORK_REPORT_TIMEHIST)
1819 timehist_print_header();
1820
1821 ret = perf_session__process_events(session);
1822 if (ret) {
1823 pr_debug("Failed to process events, error %d\n", ret);
1824 goto out_delete;
1825 }
1826
1827 kwork->nr_events = session->evlist->stats.nr_events[0];
1828 kwork->nr_lost_events = session->evlist->stats.total_lost;
1829 kwork->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1830
1831 out_delete:
1832 perf_session__delete(session);
1833 return ret;
1834 }
1835
process_skipped_events(struct perf_kwork * kwork,struct kwork_work * work)1836 static void process_skipped_events(struct perf_kwork *kwork,
1837 struct kwork_work *work)
1838 {
1839 int i;
1840 unsigned long long count;
1841
1842 for (i = 0; i < KWORK_TRACE_MAX; i++) {
1843 count = nr_list_entry(&work->atom_list[i]);
1844 kwork->nr_skipped_events[i] += count;
1845 kwork->nr_skipped_events[KWORK_TRACE_MAX] += count;
1846 }
1847 }
1848
perf_kwork_add_work(struct perf_kwork * kwork,struct kwork_class * class,struct kwork_work * key)1849 struct kwork_work *perf_kwork_add_work(struct perf_kwork *kwork,
1850 struct kwork_class *class,
1851 struct kwork_work *key)
1852 {
1853 struct kwork_work *work = NULL;
1854
1855 work = work_new(key);
1856 if (work == NULL)
1857 return NULL;
1858
1859 work_insert(&class->work_root, work, &kwork->cmp_id);
1860 return work;
1861 }
1862
sig_handler(int sig)1863 static void sig_handler(int sig)
1864 {
1865 /*
1866 * Simply capture termination signal so that
1867 * the program can continue after pause returns
1868 */
1869 pr_debug("Capture signal %d\n", sig);
1870 }
1871
perf_kwork__report_bpf(struct perf_kwork * kwork)1872 static int perf_kwork__report_bpf(struct perf_kwork *kwork)
1873 {
1874 int ret;
1875
1876 signal(SIGINT, sig_handler);
1877 signal(SIGTERM, sig_handler);
1878
1879 ret = perf_kwork__trace_prepare_bpf(kwork);
1880 if (ret)
1881 return -1;
1882
1883 printf("Starting trace, Hit <Ctrl+C> to stop and report\n");
1884
1885 perf_kwork__trace_start();
1886
1887 /*
1888 * a simple pause, wait here for stop signal
1889 */
1890 pause();
1891
1892 perf_kwork__trace_finish();
1893
1894 perf_kwork__report_read_bpf(kwork);
1895
1896 perf_kwork__report_cleanup_bpf();
1897
1898 return 0;
1899 }
1900
perf_kwork__report(struct perf_kwork * kwork)1901 static int perf_kwork__report(struct perf_kwork *kwork)
1902 {
1903 int ret;
1904 struct rb_node *next;
1905 struct kwork_work *work;
1906
1907 if (kwork->use_bpf)
1908 ret = perf_kwork__report_bpf(kwork);
1909 else
1910 ret = perf_kwork__read_events(kwork);
1911
1912 if (ret != 0)
1913 return -1;
1914
1915 perf_kwork__sort(kwork);
1916
1917 setup_pager();
1918
1919 ret = report_print_header(kwork);
1920 next = rb_first_cached(&kwork->sorted_work_root);
1921 while (next) {
1922 work = rb_entry(next, struct kwork_work, node);
1923 process_skipped_events(kwork, work);
1924
1925 if (work->nr_atoms != 0) {
1926 report_print_work(kwork, work);
1927 if (kwork->summary) {
1928 kwork->all_runtime += work->total_runtime;
1929 kwork->all_count += work->nr_atoms;
1930 }
1931 }
1932 next = rb_next(next);
1933 }
1934 print_separator(ret);
1935
1936 if (kwork->summary) {
1937 print_summary(kwork);
1938 print_separator(ret);
1939 }
1940
1941 print_bad_events(kwork);
1942 print_skipped_events(kwork);
1943 printf("\n");
1944
1945 return 0;
1946 }
1947
1948 typedef int (*tracepoint_handler)(const struct perf_tool *tool,
1949 struct evsel *evsel,
1950 struct perf_sample *sample,
1951 struct machine *machine);
1952
perf_kwork__process_tracepoint_sample(const struct perf_tool * tool,union perf_event * event __maybe_unused,struct perf_sample * sample,struct evsel * evsel,struct machine * machine)1953 static int perf_kwork__process_tracepoint_sample(const struct perf_tool *tool,
1954 union perf_event *event __maybe_unused,
1955 struct perf_sample *sample,
1956 struct evsel *evsel,
1957 struct machine *machine)
1958 {
1959 int err = 0;
1960
1961 if (evsel->handler != NULL) {
1962 tracepoint_handler f = evsel->handler;
1963
1964 err = f(tool, evsel, sample, machine);
1965 }
1966
1967 return err;
1968 }
1969
perf_kwork__timehist(struct perf_kwork * kwork)1970 static int perf_kwork__timehist(struct perf_kwork *kwork)
1971 {
1972 /*
1973 * event handlers for timehist option
1974 */
1975 kwork->tool.comm = perf_event__process_comm;
1976 kwork->tool.exit = perf_event__process_exit;
1977 kwork->tool.fork = perf_event__process_fork;
1978 kwork->tool.attr = perf_event__process_attr;
1979 kwork->tool.tracing_data = perf_event__process_tracing_data;
1980 kwork->tool.build_id = perf_event__process_build_id;
1981 kwork->tool.ordered_events = true;
1982 kwork->tool.ordering_requires_timestamps = true;
1983 symbol_conf.use_callchain = kwork->show_callchain;
1984
1985 if (symbol__validate_sym_arguments()) {
1986 pr_err("Failed to validate sym arguments\n");
1987 return -1;
1988 }
1989
1990 setup_pager();
1991
1992 return perf_kwork__read_events(kwork);
1993 }
1994
top_calc_total_runtime(struct perf_kwork * kwork)1995 static void top_calc_total_runtime(struct perf_kwork *kwork)
1996 {
1997 struct kwork_class *class;
1998 struct kwork_work *work;
1999 struct rb_node *next;
2000 struct kwork_top_stat *stat = &kwork->top_stat;
2001
2002 class = get_kwork_class(kwork, KWORK_CLASS_SCHED);
2003 if (!class)
2004 return;
2005
2006 next = rb_first_cached(&class->work_root);
2007 while (next) {
2008 work = rb_entry(next, struct kwork_work, node);
2009 BUG_ON(work->cpu >= MAX_NR_CPUS);
2010 stat->cpus_runtime[work->cpu].total += work->total_runtime;
2011 stat->cpus_runtime[MAX_NR_CPUS].total += work->total_runtime;
2012 next = rb_next(next);
2013 }
2014 }
2015
top_calc_idle_time(struct perf_kwork * kwork,struct kwork_work * work)2016 static void top_calc_idle_time(struct perf_kwork *kwork,
2017 struct kwork_work *work)
2018 {
2019 struct kwork_top_stat *stat = &kwork->top_stat;
2020
2021 if (work->id == 0) {
2022 stat->cpus_runtime[work->cpu].idle += work->total_runtime;
2023 stat->cpus_runtime[MAX_NR_CPUS].idle += work->total_runtime;
2024 }
2025 }
2026
top_calc_irq_runtime(struct perf_kwork * kwork,enum kwork_class_type type,struct kwork_work * work)2027 static void top_calc_irq_runtime(struct perf_kwork *kwork,
2028 enum kwork_class_type type,
2029 struct kwork_work *work)
2030 {
2031 struct kwork_top_stat *stat = &kwork->top_stat;
2032
2033 if (type == KWORK_CLASS_IRQ) {
2034 stat->cpus_runtime[work->cpu].irq += work->total_runtime;
2035 stat->cpus_runtime[MAX_NR_CPUS].irq += work->total_runtime;
2036 } else if (type == KWORK_CLASS_SOFTIRQ) {
2037 stat->cpus_runtime[work->cpu].softirq += work->total_runtime;
2038 stat->cpus_runtime[MAX_NR_CPUS].softirq += work->total_runtime;
2039 }
2040 }
2041
top_subtract_irq_runtime(struct perf_kwork * kwork,struct kwork_work * work)2042 static void top_subtract_irq_runtime(struct perf_kwork *kwork,
2043 struct kwork_work *work)
2044 {
2045 struct kwork_class *class;
2046 struct kwork_work *data;
2047 unsigned int i;
2048 int irq_class_list[] = {KWORK_CLASS_IRQ, KWORK_CLASS_SOFTIRQ};
2049
2050 for (i = 0; i < ARRAY_SIZE(irq_class_list); i++) {
2051 class = get_kwork_class(kwork, irq_class_list[i]);
2052 if (!class)
2053 continue;
2054
2055 data = find_work_by_id(&class->work_root,
2056 work->id, work->cpu);
2057 if (!data)
2058 continue;
2059
2060 if (work->total_runtime > data->total_runtime) {
2061 work->total_runtime -= data->total_runtime;
2062 top_calc_irq_runtime(kwork, irq_class_list[i], data);
2063 }
2064 }
2065 }
2066
top_calc_cpu_usage(struct perf_kwork * kwork)2067 static void top_calc_cpu_usage(struct perf_kwork *kwork)
2068 {
2069 struct kwork_class *class;
2070 struct kwork_work *work;
2071 struct rb_node *next;
2072 struct kwork_top_stat *stat = &kwork->top_stat;
2073
2074 class = get_kwork_class(kwork, KWORK_CLASS_SCHED);
2075 if (!class)
2076 return;
2077
2078 next = rb_first_cached(&class->work_root);
2079 while (next) {
2080 work = rb_entry(next, struct kwork_work, node);
2081
2082 if (work->total_runtime == 0)
2083 goto next;
2084
2085 __set_bit(work->cpu, stat->all_cpus_bitmap);
2086
2087 top_subtract_irq_runtime(kwork, work);
2088
2089 work->cpu_usage = work->total_runtime * 10000 /
2090 stat->cpus_runtime[work->cpu].total;
2091
2092 top_calc_idle_time(kwork, work);
2093 next:
2094 next = rb_next(next);
2095 }
2096 }
2097
top_calc_load_runtime(struct perf_kwork * kwork,struct kwork_work * work)2098 static void top_calc_load_runtime(struct perf_kwork *kwork,
2099 struct kwork_work *work)
2100 {
2101 struct kwork_top_stat *stat = &kwork->top_stat;
2102
2103 if (work->id != 0) {
2104 stat->cpus_runtime[work->cpu].load += work->total_runtime;
2105 stat->cpus_runtime[MAX_NR_CPUS].load += work->total_runtime;
2106 }
2107 }
2108
top_merge_tasks(struct perf_kwork * kwork)2109 static void top_merge_tasks(struct perf_kwork *kwork)
2110 {
2111 struct kwork_work *merged_work, *data;
2112 struct kwork_class *class;
2113 struct rb_node *node;
2114 int cpu;
2115 struct rb_root_cached merged_root = RB_ROOT_CACHED;
2116
2117 class = get_kwork_class(kwork, KWORK_CLASS_SCHED);
2118 if (!class)
2119 return;
2120
2121 for (;;) {
2122 node = rb_first_cached(&class->work_root);
2123 if (!node)
2124 break;
2125
2126 rb_erase_cached(node, &class->work_root);
2127 data = rb_entry(node, struct kwork_work, node);
2128
2129 if (!profile_name_match(kwork, data))
2130 continue;
2131
2132 cpu = data->cpu;
2133 merged_work = find_work_by_id(&merged_root, data->id,
2134 data->id == 0 ? cpu : -1);
2135 if (!merged_work) {
2136 work_insert(&merged_root, data, &kwork->cmp_id);
2137 } else {
2138 merged_work->total_runtime += data->total_runtime;
2139 merged_work->cpu_usage += data->cpu_usage;
2140 }
2141
2142 top_calc_load_runtime(kwork, data);
2143 }
2144
2145 work_sort(kwork, class, &merged_root);
2146 }
2147
perf_kwork__top_report(struct perf_kwork * kwork)2148 static void perf_kwork__top_report(struct perf_kwork *kwork)
2149 {
2150 struct kwork_work *work;
2151 struct rb_node *next;
2152
2153 printf("\n");
2154
2155 top_print_cpu_usage(kwork);
2156 top_print_header(kwork);
2157 next = rb_first_cached(&kwork->sorted_work_root);
2158 while (next) {
2159 work = rb_entry(next, struct kwork_work, node);
2160 process_skipped_events(kwork, work);
2161
2162 if (work->total_runtime == 0)
2163 goto next;
2164
2165 top_print_work(kwork, work);
2166
2167 next:
2168 next = rb_next(next);
2169 }
2170
2171 printf("\n");
2172 }
2173
perf_kwork__top_bpf(struct perf_kwork * kwork)2174 static int perf_kwork__top_bpf(struct perf_kwork *kwork)
2175 {
2176 int ret;
2177
2178 signal(SIGINT, sig_handler);
2179 signal(SIGTERM, sig_handler);
2180
2181 ret = perf_kwork__top_prepare_bpf(kwork);
2182 if (ret)
2183 return -1;
2184
2185 printf("Starting trace, Hit <Ctrl+C> to stop and report\n");
2186
2187 perf_kwork__top_start();
2188
2189 /*
2190 * a simple pause, wait here for stop signal
2191 */
2192 pause();
2193
2194 perf_kwork__top_finish();
2195
2196 perf_kwork__top_read_bpf(kwork);
2197
2198 perf_kwork__top_cleanup_bpf();
2199
2200 return 0;
2201
2202 }
2203
perf_kwork__top(struct perf_kwork * kwork)2204 static int perf_kwork__top(struct perf_kwork *kwork)
2205 {
2206 struct __top_cpus_runtime *cpus_runtime;
2207 int ret = 0;
2208
2209 cpus_runtime = zalloc(sizeof(struct __top_cpus_runtime) * (MAX_NR_CPUS + 1));
2210 if (!cpus_runtime)
2211 return -1;
2212
2213 kwork->top_stat.cpus_runtime = cpus_runtime;
2214 bitmap_zero(kwork->top_stat.all_cpus_bitmap, MAX_NR_CPUS);
2215
2216 if (kwork->use_bpf)
2217 ret = perf_kwork__top_bpf(kwork);
2218 else
2219 ret = perf_kwork__read_events(kwork);
2220
2221 if (ret)
2222 goto out;
2223
2224 top_calc_total_runtime(kwork);
2225 top_calc_cpu_usage(kwork);
2226 top_merge_tasks(kwork);
2227
2228 setup_pager();
2229
2230 perf_kwork__top_report(kwork);
2231
2232 out:
2233 zfree(&kwork->top_stat.cpus_runtime);
2234 return ret;
2235 }
2236
setup_event_list(struct perf_kwork * kwork,const struct option * options,const char * const usage_msg[])2237 static void setup_event_list(struct perf_kwork *kwork,
2238 const struct option *options,
2239 const char * const usage_msg[])
2240 {
2241 int i;
2242 struct kwork_class *class;
2243 char *tmp, *tok, *str;
2244
2245 /*
2246 * set default events list if not specified
2247 */
2248 if (kwork->event_list_str == NULL)
2249 kwork->event_list_str = "irq, softirq, workqueue";
2250
2251 str = strdup(kwork->event_list_str);
2252 for (tok = strtok_r(str, ", ", &tmp);
2253 tok; tok = strtok_r(NULL, ", ", &tmp)) {
2254 for (i = 0; i < KWORK_CLASS_MAX; i++) {
2255 class = kwork_class_supported_list[i];
2256 if (strcmp(tok, class->name) == 0) {
2257 list_add_tail(&class->list, &kwork->class_list);
2258 break;
2259 }
2260 }
2261 if (i == KWORK_CLASS_MAX) {
2262 usage_with_options_msg(usage_msg, options,
2263 "Unknown --event key: `%s'", tok);
2264 }
2265 }
2266 free(str);
2267
2268 pr_debug("Config event list:");
2269 list_for_each_entry(class, &kwork->class_list, list)
2270 pr_debug(" %s", class->name);
2271 pr_debug("\n");
2272 }
2273
perf_kwork__record(struct perf_kwork * kwork,int argc,const char ** argv)2274 static int perf_kwork__record(struct perf_kwork *kwork,
2275 int argc, const char **argv)
2276 {
2277 const char **rec_argv;
2278 unsigned int rec_argc, i, j;
2279 struct kwork_class *class;
2280
2281 const char *const record_args[] = {
2282 "record",
2283 "-a",
2284 "-R",
2285 "-m", "1024",
2286 "-c", "1",
2287 };
2288
2289 rec_argc = ARRAY_SIZE(record_args) + argc - 1;
2290
2291 list_for_each_entry(class, &kwork->class_list, list)
2292 rec_argc += 2 * class->nr_tracepoints;
2293
2294 rec_argv = calloc(rec_argc + 1, sizeof(char *));
2295 if (rec_argv == NULL)
2296 return -ENOMEM;
2297
2298 for (i = 0; i < ARRAY_SIZE(record_args); i++)
2299 rec_argv[i] = strdup(record_args[i]);
2300
2301 list_for_each_entry(class, &kwork->class_list, list) {
2302 for (j = 0; j < class->nr_tracepoints; j++) {
2303 rec_argv[i++] = strdup("-e");
2304 rec_argv[i++] = strdup(class->tp_handlers[j].name);
2305 }
2306 }
2307
2308 for (j = 1; j < (unsigned int)argc; j++, i++)
2309 rec_argv[i] = argv[j];
2310
2311 BUG_ON(i != rec_argc);
2312
2313 pr_debug("record comm: ");
2314 for (j = 0; j < rec_argc; j++)
2315 pr_debug("%s ", rec_argv[j]);
2316 pr_debug("\n");
2317
2318 return cmd_record(i, rec_argv);
2319 }
2320
cmd_kwork(int argc,const char ** argv)2321 int cmd_kwork(int argc, const char **argv)
2322 {
2323 static struct perf_kwork kwork = {
2324 .class_list = LIST_HEAD_INIT(kwork.class_list),
2325 .atom_page_list = LIST_HEAD_INIT(kwork.atom_page_list),
2326 .sort_list = LIST_HEAD_INIT(kwork.sort_list),
2327 .cmp_id = LIST_HEAD_INIT(kwork.cmp_id),
2328 .sorted_work_root = RB_ROOT_CACHED,
2329 .tp_handler = NULL,
2330 .profile_name = NULL,
2331 .cpu_list = NULL,
2332 .time_str = NULL,
2333 .force = false,
2334 .event_list_str = NULL,
2335 .summary = false,
2336 .sort_order = NULL,
2337 .show_callchain = false,
2338 .max_stack = 5,
2339 .timestart = 0,
2340 .timeend = 0,
2341 .nr_events = 0,
2342 .nr_lost_chunks = 0,
2343 .nr_lost_events = 0,
2344 .all_runtime = 0,
2345 .all_count = 0,
2346 .nr_skipped_events = { 0 },
2347 };
2348 static const char default_report_sort_order[] = "runtime, max, count";
2349 static const char default_latency_sort_order[] = "avg, max, count";
2350 static const char default_top_sort_order[] = "rate, runtime";
2351 const struct option kwork_options[] = {
2352 OPT_INCR('v', "verbose", &verbose,
2353 "be more verbose (show symbol address, etc)"),
2354 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
2355 "dump raw trace in ASCII"),
2356 OPT_STRING('k', "kwork", &kwork.event_list_str, "kwork",
2357 "list of kwork to profile (irq, softirq, workqueue, sched, etc)"),
2358 OPT_BOOLEAN('f', "force", &kwork.force, "don't complain, do it"),
2359 OPT_END()
2360 };
2361 const struct option report_options[] = {
2362 OPT_STRING('s', "sort", &kwork.sort_order, "key[,key2...]",
2363 "sort by key(s): runtime, max, count"),
2364 OPT_STRING('C', "cpu", &kwork.cpu_list, "cpu",
2365 "list of cpus to profile"),
2366 OPT_STRING('n', "name", &kwork.profile_name, "name",
2367 "event name to profile"),
2368 OPT_STRING(0, "time", &kwork.time_str, "str",
2369 "Time span for analysis (start,stop)"),
2370 OPT_STRING('i', "input", &input_name, "file",
2371 "input file name"),
2372 OPT_BOOLEAN('S', "with-summary", &kwork.summary,
2373 "Show summary with statistics"),
2374 #ifdef HAVE_BPF_SKEL
2375 OPT_BOOLEAN('b', "use-bpf", &kwork.use_bpf,
2376 "Use BPF to measure kwork runtime"),
2377 #endif
2378 OPT_PARENT(kwork_options)
2379 };
2380 const struct option latency_options[] = {
2381 OPT_STRING('s', "sort", &kwork.sort_order, "key[,key2...]",
2382 "sort by key(s): avg, max, count"),
2383 OPT_STRING('C', "cpu", &kwork.cpu_list, "cpu",
2384 "list of cpus to profile"),
2385 OPT_STRING('n', "name", &kwork.profile_name, "name",
2386 "event name to profile"),
2387 OPT_STRING(0, "time", &kwork.time_str, "str",
2388 "Time span for analysis (start,stop)"),
2389 OPT_STRING('i', "input", &input_name, "file",
2390 "input file name"),
2391 #ifdef HAVE_BPF_SKEL
2392 OPT_BOOLEAN('b', "use-bpf", &kwork.use_bpf,
2393 "Use BPF to measure kwork latency"),
2394 #endif
2395 OPT_PARENT(kwork_options)
2396 };
2397 const struct option timehist_options[] = {
2398 OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
2399 "file", "vmlinux pathname"),
2400 OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
2401 "file", "kallsyms pathname"),
2402 OPT_BOOLEAN('g', "call-graph", &kwork.show_callchain,
2403 "Display call chains if present"),
2404 OPT_UINTEGER(0, "max-stack", &kwork.max_stack,
2405 "Maximum number of functions to display backtrace."),
2406 OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
2407 "Look for files with symbols relative to this directory"),
2408 OPT_STRING(0, "time", &kwork.time_str, "str",
2409 "Time span for analysis (start,stop)"),
2410 OPT_STRING('C', "cpu", &kwork.cpu_list, "cpu",
2411 "list of cpus to profile"),
2412 OPT_STRING('n', "name", &kwork.profile_name, "name",
2413 "event name to profile"),
2414 OPT_STRING('i', "input", &input_name, "file",
2415 "input file name"),
2416 OPT_PARENT(kwork_options)
2417 };
2418 const struct option top_options[] = {
2419 OPT_STRING('s', "sort", &kwork.sort_order, "key[,key2...]",
2420 "sort by key(s): rate, runtime, tid"),
2421 OPT_STRING('C', "cpu", &kwork.cpu_list, "cpu",
2422 "list of cpus to profile"),
2423 OPT_STRING('n', "name", &kwork.profile_name, "name",
2424 "event name to profile"),
2425 OPT_STRING(0, "time", &kwork.time_str, "str",
2426 "Time span for analysis (start,stop)"),
2427 OPT_STRING('i', "input", &input_name, "file",
2428 "input file name"),
2429 #ifdef HAVE_BPF_SKEL
2430 OPT_BOOLEAN('b', "use-bpf", &kwork.use_bpf,
2431 "Use BPF to measure task cpu usage"),
2432 #endif
2433 OPT_PARENT(kwork_options)
2434 };
2435 const char *kwork_usage[] = {
2436 NULL,
2437 NULL
2438 };
2439 const char * const report_usage[] = {
2440 "perf kwork report [<options>]",
2441 NULL
2442 };
2443 const char * const latency_usage[] = {
2444 "perf kwork latency [<options>]",
2445 NULL
2446 };
2447 const char * const timehist_usage[] = {
2448 "perf kwork timehist [<options>]",
2449 NULL
2450 };
2451 const char * const top_usage[] = {
2452 "perf kwork top [<options>]",
2453 NULL
2454 };
2455 const char *const kwork_subcommands[] = {
2456 "record", "report", "latency", "timehist", "top", NULL
2457 };
2458
2459 perf_tool__init(&kwork.tool, /*ordered_events=*/true);
2460 kwork.tool.mmap = perf_event__process_mmap;
2461 kwork.tool.mmap2 = perf_event__process_mmap2;
2462 kwork.tool.sample = perf_kwork__process_tracepoint_sample;
2463
2464 argc = parse_options_subcommand(argc, argv, kwork_options,
2465 kwork_subcommands, kwork_usage,
2466 PARSE_OPT_STOP_AT_NON_OPTION);
2467 if (!argc)
2468 usage_with_options(kwork_usage, kwork_options);
2469
2470 sort_dimension__add(&kwork, "id", &kwork.cmp_id);
2471
2472 if (strlen(argv[0]) > 2 && strstarts("record", argv[0])) {
2473 setup_event_list(&kwork, kwork_options, kwork_usage);
2474 return perf_kwork__record(&kwork, argc, argv);
2475 } else if (strlen(argv[0]) > 2 && strstarts("report", argv[0])) {
2476 kwork.sort_order = default_report_sort_order;
2477 if (argc > 1) {
2478 argc = parse_options(argc, argv, report_options, report_usage, 0);
2479 if (argc)
2480 usage_with_options(report_usage, report_options);
2481 }
2482 kwork.report = KWORK_REPORT_RUNTIME;
2483 setup_sorting(&kwork, report_options, report_usage);
2484 setup_event_list(&kwork, kwork_options, kwork_usage);
2485 return perf_kwork__report(&kwork);
2486 } else if (strlen(argv[0]) > 2 && strstarts("latency", argv[0])) {
2487 kwork.sort_order = default_latency_sort_order;
2488 if (argc > 1) {
2489 argc = parse_options(argc, argv, latency_options, latency_usage, 0);
2490 if (argc)
2491 usage_with_options(latency_usage, latency_options);
2492 }
2493 kwork.report = KWORK_REPORT_LATENCY;
2494 setup_sorting(&kwork, latency_options, latency_usage);
2495 setup_event_list(&kwork, kwork_options, kwork_usage);
2496 return perf_kwork__report(&kwork);
2497 } else if (strlen(argv[0]) > 2 && strstarts("timehist", argv[0])) {
2498 if (argc > 1) {
2499 argc = parse_options(argc, argv, timehist_options, timehist_usage, 0);
2500 if (argc)
2501 usage_with_options(timehist_usage, timehist_options);
2502 }
2503 kwork.report = KWORK_REPORT_TIMEHIST;
2504 setup_event_list(&kwork, kwork_options, kwork_usage);
2505 return perf_kwork__timehist(&kwork);
2506 } else if (strlen(argv[0]) > 2 && strstarts("top", argv[0])) {
2507 kwork.sort_order = default_top_sort_order;
2508 if (argc > 1) {
2509 argc = parse_options(argc, argv, top_options, top_usage, 0);
2510 if (argc)
2511 usage_with_options(top_usage, top_options);
2512 }
2513 kwork.report = KWORK_REPORT_TOP;
2514 if (!kwork.event_list_str)
2515 kwork.event_list_str = "sched, irq, softirq";
2516 setup_event_list(&kwork, kwork_options, kwork_usage);
2517 setup_sorting(&kwork, top_options, top_usage);
2518 return perf_kwork__top(&kwork);
2519 } else
2520 usage_with_options(kwork_usage, kwork_options);
2521
2522 /* free usage string allocated by parse_options_subcommand */
2523 free((void *)kwork_usage[0]);
2524
2525 return 0;
2526 }
2527