xref: /linux/include/linux/sched.h (revision 4099a71718b056d16af5ba095c91016c3b107862)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4 
5 /*
6  * Define 'struct task_struct' and provide the main scheduler
7  * APIs (schedule(), wakeup variants, etc.)
8  */
9 
10 #include <uapi/linux/sched.h>
11 
12 #include <asm/current.h>
13 #include <asm/processor.h>
14 #include <linux/thread_info.h>
15 #include <linux/preempt.h>
16 #include <linux/cpumask_types.h>
17 
18 #include <linux/cache.h>
19 #include <linux/irqflags_types.h>
20 #include <linux/smp_types.h>
21 #include <linux/pid_types.h>
22 #include <linux/sem_types.h>
23 #include <linux/shm.h>
24 #include <linux/kmsan_types.h>
25 #include <linux/mutex_types.h>
26 #include <linux/plist_types.h>
27 #include <linux/hrtimer_types.h>
28 #include <linux/timer_types.h>
29 #include <linux/seccomp_types.h>
30 #include <linux/nodemask_types.h>
31 #include <linux/refcount_types.h>
32 #include <linux/resource.h>
33 #include <linux/latencytop.h>
34 #include <linux/sched/prio.h>
35 #include <linux/sched/types.h>
36 #include <linux/signal_types.h>
37 #include <linux/syscall_user_dispatch_types.h>
38 #include <linux/mm_types_task.h>
39 #include <linux/netdevice_xmit.h>
40 #include <linux/task_io_accounting.h>
41 #include <linux/posix-timers_types.h>
42 #include <linux/restart_block.h>
43 #include <uapi/linux/rseq.h>
44 #include <linux/seqlock_types.h>
45 #include <linux/kcsan.h>
46 #include <linux/rv.h>
47 #include <linux/livepatch_sched.h>
48 #include <linux/uidgid_types.h>
49 #include <asm/kmap_size.h>
50 
51 /* task_struct member predeclarations (sorted alphabetically): */
52 struct audit_context;
53 struct bio_list;
54 struct blk_plug;
55 struct bpf_local_storage;
56 struct bpf_run_ctx;
57 struct bpf_net_context;
58 struct capture_control;
59 struct cfs_rq;
60 struct fs_struct;
61 struct futex_pi_state;
62 struct io_context;
63 struct io_uring_task;
64 struct mempolicy;
65 struct nameidata;
66 struct nsproxy;
67 struct perf_event_context;
68 struct pid_namespace;
69 struct pipe_inode_info;
70 struct rcu_node;
71 struct reclaim_state;
72 struct robust_list_head;
73 struct root_domain;
74 struct rq;
75 struct sched_attr;
76 struct sched_dl_entity;
77 struct seq_file;
78 struct sighand_struct;
79 struct signal_struct;
80 struct task_delay_info;
81 struct task_group;
82 struct task_struct;
83 struct user_event_mm;
84 
85 #include <linux/sched/ext.h>
86 
87 /*
88  * Task state bitmask. NOTE! These bits are also
89  * encoded in fs/proc/array.c: get_task_state().
90  *
91  * We have two separate sets of flags: task->__state
92  * is about runnability, while task->exit_state are
93  * about the task exiting. Confusing, but this way
94  * modifying one set can't modify the other one by
95  * mistake.
96  */
97 
98 /* Used in tsk->__state: */
99 #define TASK_RUNNING			0x00000000
100 #define TASK_INTERRUPTIBLE		0x00000001
101 #define TASK_UNINTERRUPTIBLE		0x00000002
102 #define __TASK_STOPPED			0x00000004
103 #define __TASK_TRACED			0x00000008
104 /* Used in tsk->exit_state: */
105 #define EXIT_DEAD			0x00000010
106 #define EXIT_ZOMBIE			0x00000020
107 #define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
108 /* Used in tsk->__state again: */
109 #define TASK_PARKED			0x00000040
110 #define TASK_DEAD			0x00000080
111 #define TASK_WAKEKILL			0x00000100
112 #define TASK_WAKING			0x00000200
113 #define TASK_NOLOAD			0x00000400
114 #define TASK_NEW			0x00000800
115 #define TASK_RTLOCK_WAIT		0x00001000
116 #define TASK_FREEZABLE			0x00002000
117 #define __TASK_FREEZABLE_UNSAFE	       (0x00004000 * IS_ENABLED(CONFIG_LOCKDEP))
118 #define TASK_FROZEN			0x00008000
119 #define TASK_STATE_MAX			0x00010000
120 
121 #define TASK_ANY			(TASK_STATE_MAX-1)
122 
123 /*
124  * DO NOT ADD ANY NEW USERS !
125  */
126 #define TASK_FREEZABLE_UNSAFE		(TASK_FREEZABLE | __TASK_FREEZABLE_UNSAFE)
127 
128 /* Convenience macros for the sake of set_current_state: */
129 #define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
130 #define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
131 #define TASK_TRACED			__TASK_TRACED
132 
133 #define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
134 
135 /* Convenience macros for the sake of wake_up(): */
136 #define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
137 
138 /* get_task_state(): */
139 #define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
140 					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
141 					 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
142 					 TASK_PARKED)
143 
144 #define task_is_running(task)		(READ_ONCE((task)->__state) == TASK_RUNNING)
145 
146 #define task_is_traced(task)		((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0)
147 #define task_is_stopped(task)		((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0)
148 #define task_is_stopped_or_traced(task)	((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0)
149 
150 /*
151  * Special states are those that do not use the normal wait-loop pattern. See
152  * the comment with set_special_state().
153  */
154 #define is_special_task_state(state)					\
155 	((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED |	\
156 		    TASK_DEAD | TASK_FROZEN))
157 
158 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
159 # define debug_normal_state_change(state_value)				\
160 	do {								\
161 		WARN_ON_ONCE(is_special_task_state(state_value));	\
162 		current->task_state_change = _THIS_IP_;			\
163 	} while (0)
164 
165 # define debug_special_state_change(state_value)			\
166 	do {								\
167 		WARN_ON_ONCE(!is_special_task_state(state_value));	\
168 		current->task_state_change = _THIS_IP_;			\
169 	} while (0)
170 
171 # define debug_rtlock_wait_set_state()					\
172 	do {								 \
173 		current->saved_state_change = current->task_state_change;\
174 		current->task_state_change = _THIS_IP_;			 \
175 	} while (0)
176 
177 # define debug_rtlock_wait_restore_state()				\
178 	do {								 \
179 		current->task_state_change = current->saved_state_change;\
180 	} while (0)
181 
182 #else
183 # define debug_normal_state_change(cond)	do { } while (0)
184 # define debug_special_state_change(cond)	do { } while (0)
185 # define debug_rtlock_wait_set_state()		do { } while (0)
186 # define debug_rtlock_wait_restore_state()	do { } while (0)
187 #endif
188 
189 /*
190  * set_current_state() includes a barrier so that the write of current->__state
191  * is correctly serialised wrt the caller's subsequent test of whether to
192  * actually sleep:
193  *
194  *   for (;;) {
195  *	set_current_state(TASK_UNINTERRUPTIBLE);
196  *	if (CONDITION)
197  *	   break;
198  *
199  *	schedule();
200  *   }
201  *   __set_current_state(TASK_RUNNING);
202  *
203  * If the caller does not need such serialisation (because, for instance, the
204  * CONDITION test and condition change and wakeup are under the same lock) then
205  * use __set_current_state().
206  *
207  * The above is typically ordered against the wakeup, which does:
208  *
209  *   CONDITION = 1;
210  *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
211  *
212  * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
213  * accessing p->__state.
214  *
215  * Wakeup will do: if (@state & p->__state) p->__state = TASK_RUNNING, that is,
216  * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
217  * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
218  *
219  * However, with slightly different timing the wakeup TASK_RUNNING store can
220  * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
221  * a problem either because that will result in one extra go around the loop
222  * and our @cond test will save the day.
223  *
224  * Also see the comments of try_to_wake_up().
225  */
226 #define __set_current_state(state_value)				\
227 	do {								\
228 		debug_normal_state_change((state_value));		\
229 		WRITE_ONCE(current->__state, (state_value));		\
230 	} while (0)
231 
232 #define set_current_state(state_value)					\
233 	do {								\
234 		debug_normal_state_change((state_value));		\
235 		smp_store_mb(current->__state, (state_value));		\
236 	} while (0)
237 
238 /*
239  * set_special_state() should be used for those states when the blocking task
240  * can not use the regular condition based wait-loop. In that case we must
241  * serialize against wakeups such that any possible in-flight TASK_RUNNING
242  * stores will not collide with our state change.
243  */
244 #define set_special_state(state_value)					\
245 	do {								\
246 		unsigned long flags; /* may shadow */			\
247 									\
248 		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
249 		debug_special_state_change((state_value));		\
250 		WRITE_ONCE(current->__state, (state_value));		\
251 		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
252 	} while (0)
253 
254 /*
255  * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
256  *
257  * RT's spin/rwlock substitutions are state preserving. The state of the
258  * task when blocking on the lock is saved in task_struct::saved_state and
259  * restored after the lock has been acquired.  These operations are
260  * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
261  * lock related wakeups while the task is blocked on the lock are
262  * redirected to operate on task_struct::saved_state to ensure that these
263  * are not dropped. On restore task_struct::saved_state is set to
264  * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
265  *
266  * The lock operation looks like this:
267  *
268  *	current_save_and_set_rtlock_wait_state();
269  *	for (;;) {
270  *		if (try_lock())
271  *			break;
272  *		raw_spin_unlock_irq(&lock->wait_lock);
273  *		schedule_rtlock();
274  *		raw_spin_lock_irq(&lock->wait_lock);
275  *		set_current_state(TASK_RTLOCK_WAIT);
276  *	}
277  *	current_restore_rtlock_saved_state();
278  */
279 #define current_save_and_set_rtlock_wait_state()			\
280 	do {								\
281 		lockdep_assert_irqs_disabled();				\
282 		raw_spin_lock(&current->pi_lock);			\
283 		current->saved_state = current->__state;		\
284 		debug_rtlock_wait_set_state();				\
285 		WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT);		\
286 		raw_spin_unlock(&current->pi_lock);			\
287 	} while (0);
288 
289 #define current_restore_rtlock_saved_state()				\
290 	do {								\
291 		lockdep_assert_irqs_disabled();				\
292 		raw_spin_lock(&current->pi_lock);			\
293 		debug_rtlock_wait_restore_state();			\
294 		WRITE_ONCE(current->__state, current->saved_state);	\
295 		current->saved_state = TASK_RUNNING;			\
296 		raw_spin_unlock(&current->pi_lock);			\
297 	} while (0);
298 
299 #define get_current_state()	READ_ONCE(current->__state)
300 
301 /*
302  * Define the task command name length as enum, then it can be visible to
303  * BPF programs.
304  */
305 enum {
306 	TASK_COMM_LEN = 16,
307 };
308 
309 extern void sched_tick(void);
310 
311 #define	MAX_SCHEDULE_TIMEOUT		LONG_MAX
312 
313 extern long schedule_timeout(long timeout);
314 extern long schedule_timeout_interruptible(long timeout);
315 extern long schedule_timeout_killable(long timeout);
316 extern long schedule_timeout_uninterruptible(long timeout);
317 extern long schedule_timeout_idle(long timeout);
318 asmlinkage void schedule(void);
319 extern void schedule_preempt_disabled(void);
320 asmlinkage void preempt_schedule_irq(void);
321 #ifdef CONFIG_PREEMPT_RT
322  extern void schedule_rtlock(void);
323 #endif
324 
325 extern int __must_check io_schedule_prepare(void);
326 extern void io_schedule_finish(int token);
327 extern long io_schedule_timeout(long timeout);
328 extern void io_schedule(void);
329 
330 /**
331  * struct prev_cputime - snapshot of system and user cputime
332  * @utime: time spent in user mode
333  * @stime: time spent in system mode
334  * @lock: protects the above two fields
335  *
336  * Stores previous user/system time values such that we can guarantee
337  * monotonicity.
338  */
339 struct prev_cputime {
340 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
341 	u64				utime;
342 	u64				stime;
343 	raw_spinlock_t			lock;
344 #endif
345 };
346 
347 enum vtime_state {
348 	/* Task is sleeping or running in a CPU with VTIME inactive: */
349 	VTIME_INACTIVE = 0,
350 	/* Task is idle */
351 	VTIME_IDLE,
352 	/* Task runs in kernelspace in a CPU with VTIME active: */
353 	VTIME_SYS,
354 	/* Task runs in userspace in a CPU with VTIME active: */
355 	VTIME_USER,
356 	/* Task runs as guests in a CPU with VTIME active: */
357 	VTIME_GUEST,
358 };
359 
360 struct vtime {
361 	seqcount_t		seqcount;
362 	unsigned long long	starttime;
363 	enum vtime_state	state;
364 	unsigned int		cpu;
365 	u64			utime;
366 	u64			stime;
367 	u64			gtime;
368 };
369 
370 /*
371  * Utilization clamp constraints.
372  * @UCLAMP_MIN:	Minimum utilization
373  * @UCLAMP_MAX:	Maximum utilization
374  * @UCLAMP_CNT:	Utilization clamp constraints count
375  */
376 enum uclamp_id {
377 	UCLAMP_MIN = 0,
378 	UCLAMP_MAX,
379 	UCLAMP_CNT
380 };
381 
382 #ifdef CONFIG_SMP
383 extern struct root_domain def_root_domain;
384 extern struct mutex sched_domains_mutex;
385 #endif
386 
387 struct sched_param {
388 	int sched_priority;
389 };
390 
391 struct sched_info {
392 #ifdef CONFIG_SCHED_INFO
393 	/* Cumulative counters: */
394 
395 	/* # of times we have run on this CPU: */
396 	unsigned long			pcount;
397 
398 	/* Time spent waiting on a runqueue: */
399 	unsigned long long		run_delay;
400 
401 	/* Timestamps: */
402 
403 	/* When did we last run on a CPU? */
404 	unsigned long long		last_arrival;
405 
406 	/* When were we last queued to run? */
407 	unsigned long long		last_queued;
408 
409 #endif /* CONFIG_SCHED_INFO */
410 };
411 
412 /*
413  * Integer metrics need fixed point arithmetic, e.g., sched/fair
414  * has a few: load, load_avg, util_avg, freq, and capacity.
415  *
416  * We define a basic fixed point arithmetic range, and then formalize
417  * all these metrics based on that basic range.
418  */
419 # define SCHED_FIXEDPOINT_SHIFT		10
420 # define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
421 
422 /* Increase resolution of cpu_capacity calculations */
423 # define SCHED_CAPACITY_SHIFT		SCHED_FIXEDPOINT_SHIFT
424 # define SCHED_CAPACITY_SCALE		(1L << SCHED_CAPACITY_SHIFT)
425 
426 struct load_weight {
427 	unsigned long			weight;
428 	u32				inv_weight;
429 };
430 
431 /*
432  * The load/runnable/util_avg accumulates an infinite geometric series
433  * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
434  *
435  * [load_avg definition]
436  *
437  *   load_avg = runnable% * scale_load_down(load)
438  *
439  * [runnable_avg definition]
440  *
441  *   runnable_avg = runnable% * SCHED_CAPACITY_SCALE
442  *
443  * [util_avg definition]
444  *
445  *   util_avg = running% * SCHED_CAPACITY_SCALE
446  *
447  * where runnable% is the time ratio that a sched_entity is runnable and
448  * running% the time ratio that a sched_entity is running.
449  *
450  * For cfs_rq, they are the aggregated values of all runnable and blocked
451  * sched_entities.
452  *
453  * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
454  * capacity scaling. The scaling is done through the rq_clock_pelt that is used
455  * for computing those signals (see update_rq_clock_pelt())
456  *
457  * N.B., the above ratios (runnable% and running%) themselves are in the
458  * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
459  * to as large a range as necessary. This is for example reflected by
460  * util_avg's SCHED_CAPACITY_SCALE.
461  *
462  * [Overflow issue]
463  *
464  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
465  * with the highest load (=88761), always runnable on a single cfs_rq,
466  * and should not overflow as the number already hits PID_MAX_LIMIT.
467  *
468  * For all other cases (including 32-bit kernels), struct load_weight's
469  * weight will overflow first before we do, because:
470  *
471  *    Max(load_avg) <= Max(load.weight)
472  *
473  * Then it is the load_weight's responsibility to consider overflow
474  * issues.
475  */
476 struct sched_avg {
477 	u64				last_update_time;
478 	u64				load_sum;
479 	u64				runnable_sum;
480 	u32				util_sum;
481 	u32				period_contrib;
482 	unsigned long			load_avg;
483 	unsigned long			runnable_avg;
484 	unsigned long			util_avg;
485 	unsigned int			util_est;
486 } ____cacheline_aligned;
487 
488 /*
489  * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
490  * updates. When a task is dequeued, its util_est should not be updated if its
491  * util_avg has not been updated in the meantime.
492  * This information is mapped into the MSB bit of util_est at dequeue time.
493  * Since max value of util_est for a task is 1024 (PELT util_avg for a task)
494  * it is safe to use MSB.
495  */
496 #define UTIL_EST_WEIGHT_SHIFT		2
497 #define UTIL_AVG_UNCHANGED		0x80000000
498 
499 struct sched_statistics {
500 #ifdef CONFIG_SCHEDSTATS
501 	u64				wait_start;
502 	u64				wait_max;
503 	u64				wait_count;
504 	u64				wait_sum;
505 	u64				iowait_count;
506 	u64				iowait_sum;
507 
508 	u64				sleep_start;
509 	u64				sleep_max;
510 	s64				sum_sleep_runtime;
511 
512 	u64				block_start;
513 	u64				block_max;
514 	s64				sum_block_runtime;
515 
516 	s64				exec_max;
517 	u64				slice_max;
518 
519 	u64				nr_migrations_cold;
520 	u64				nr_failed_migrations_affine;
521 	u64				nr_failed_migrations_running;
522 	u64				nr_failed_migrations_hot;
523 	u64				nr_forced_migrations;
524 
525 	u64				nr_wakeups;
526 	u64				nr_wakeups_sync;
527 	u64				nr_wakeups_migrate;
528 	u64				nr_wakeups_local;
529 	u64				nr_wakeups_remote;
530 	u64				nr_wakeups_affine;
531 	u64				nr_wakeups_affine_attempts;
532 	u64				nr_wakeups_passive;
533 	u64				nr_wakeups_idle;
534 
535 #ifdef CONFIG_SCHED_CORE
536 	u64				core_forceidle_sum;
537 #endif
538 #endif /* CONFIG_SCHEDSTATS */
539 } ____cacheline_aligned;
540 
541 struct sched_entity {
542 	/* For load-balancing: */
543 	struct load_weight		load;
544 	struct rb_node			run_node;
545 	u64				deadline;
546 	u64				min_vruntime;
547 	u64				min_slice;
548 
549 	struct list_head		group_node;
550 	unsigned char			on_rq;
551 	unsigned char			sched_delayed;
552 	unsigned char			rel_deadline;
553 	unsigned char			custom_slice;
554 					/* hole */
555 
556 	u64				exec_start;
557 	u64				sum_exec_runtime;
558 	u64				prev_sum_exec_runtime;
559 	u64				vruntime;
560 	s64				vlag;
561 	u64				slice;
562 
563 	u64				nr_migrations;
564 
565 #ifdef CONFIG_FAIR_GROUP_SCHED
566 	int				depth;
567 	struct sched_entity		*parent;
568 	/* rq on which this entity is (to be) queued: */
569 	struct cfs_rq			*cfs_rq;
570 	/* rq "owned" by this entity/group: */
571 	struct cfs_rq			*my_q;
572 	/* cached value of my_q->h_nr_running */
573 	unsigned long			runnable_weight;
574 #endif
575 
576 #ifdef CONFIG_SMP
577 	/*
578 	 * Per entity load average tracking.
579 	 *
580 	 * Put into separate cache line so it does not
581 	 * collide with read-mostly values above.
582 	 */
583 	struct sched_avg		avg;
584 #endif
585 };
586 
587 struct sched_rt_entity {
588 	struct list_head		run_list;
589 	unsigned long			timeout;
590 	unsigned long			watchdog_stamp;
591 	unsigned int			time_slice;
592 	unsigned short			on_rq;
593 	unsigned short			on_list;
594 
595 	struct sched_rt_entity		*back;
596 #ifdef CONFIG_RT_GROUP_SCHED
597 	struct sched_rt_entity		*parent;
598 	/* rq on which this entity is (to be) queued: */
599 	struct rt_rq			*rt_rq;
600 	/* rq "owned" by this entity/group: */
601 	struct rt_rq			*my_q;
602 #endif
603 } __randomize_layout;
604 
605 typedef bool (*dl_server_has_tasks_f)(struct sched_dl_entity *);
606 typedef struct task_struct *(*dl_server_pick_f)(struct sched_dl_entity *);
607 
608 struct sched_dl_entity {
609 	struct rb_node			rb_node;
610 
611 	/*
612 	 * Original scheduling parameters. Copied here from sched_attr
613 	 * during sched_setattr(), they will remain the same until
614 	 * the next sched_setattr().
615 	 */
616 	u64				dl_runtime;	/* Maximum runtime for each instance	*/
617 	u64				dl_deadline;	/* Relative deadline of each instance	*/
618 	u64				dl_period;	/* Separation of two instances (period) */
619 	u64				dl_bw;		/* dl_runtime / dl_period		*/
620 	u64				dl_density;	/* dl_runtime / dl_deadline		*/
621 
622 	/*
623 	 * Actual scheduling parameters. Initialized with the values above,
624 	 * they are continuously updated during task execution. Note that
625 	 * the remaining runtime could be < 0 in case we are in overrun.
626 	 */
627 	s64				runtime;	/* Remaining runtime for this instance	*/
628 	u64				deadline;	/* Absolute deadline for this instance	*/
629 	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
630 
631 	/*
632 	 * Some bool flags:
633 	 *
634 	 * @dl_throttled tells if we exhausted the runtime. If so, the
635 	 * task has to wait for a replenishment to be performed at the
636 	 * next firing of dl_timer.
637 	 *
638 	 * @dl_yielded tells if task gave up the CPU before consuming
639 	 * all its available runtime during the last job.
640 	 *
641 	 * @dl_non_contending tells if the task is inactive while still
642 	 * contributing to the active utilization. In other words, it
643 	 * indicates if the inactive timer has been armed and its handler
644 	 * has not been executed yet. This flag is useful to avoid race
645 	 * conditions between the inactive timer handler and the wakeup
646 	 * code.
647 	 *
648 	 * @dl_overrun tells if the task asked to be informed about runtime
649 	 * overruns.
650 	 *
651 	 * @dl_server tells if this is a server entity.
652 	 *
653 	 * @dl_defer tells if this is a deferred or regular server. For
654 	 * now only defer server exists.
655 	 *
656 	 * @dl_defer_armed tells if the deferrable server is waiting
657 	 * for the replenishment timer to activate it.
658 	 *
659 	 * @dl_server_active tells if the dlserver is active(started).
660 	 * dlserver is started on first cfs enqueue on an idle runqueue
661 	 * and is stopped when a dequeue results in 0 cfs tasks on the
662 	 * runqueue. In other words, dlserver is active only when cpu's
663 	 * runqueue has atleast one cfs task.
664 	 *
665 	 * @dl_defer_running tells if the deferrable server is actually
666 	 * running, skipping the defer phase.
667 	 */
668 	unsigned int			dl_throttled      : 1;
669 	unsigned int			dl_yielded        : 1;
670 	unsigned int			dl_non_contending : 1;
671 	unsigned int			dl_overrun	  : 1;
672 	unsigned int			dl_server         : 1;
673 	unsigned int			dl_server_active  : 1;
674 	unsigned int			dl_defer	  : 1;
675 	unsigned int			dl_defer_armed	  : 1;
676 	unsigned int			dl_defer_running  : 1;
677 
678 	/*
679 	 * Bandwidth enforcement timer. Each -deadline task has its
680 	 * own bandwidth to be enforced, thus we need one timer per task.
681 	 */
682 	struct hrtimer			dl_timer;
683 
684 	/*
685 	 * Inactive timer, responsible for decreasing the active utilization
686 	 * at the "0-lag time". When a -deadline task blocks, it contributes
687 	 * to GRUB's active utilization until the "0-lag time", hence a
688 	 * timer is needed to decrease the active utilization at the correct
689 	 * time.
690 	 */
691 	struct hrtimer			inactive_timer;
692 
693 	/*
694 	 * Bits for DL-server functionality. Also see the comment near
695 	 * dl_server_update().
696 	 *
697 	 * @rq the runqueue this server is for
698 	 *
699 	 * @server_has_tasks() returns true if @server_pick return a
700 	 * runnable task.
701 	 */
702 	struct rq			*rq;
703 	dl_server_has_tasks_f		server_has_tasks;
704 	dl_server_pick_f		server_pick_task;
705 
706 #ifdef CONFIG_RT_MUTEXES
707 	/*
708 	 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
709 	 * pi_se points to the donor, otherwise points to the dl_se it belongs
710 	 * to (the original one/itself).
711 	 */
712 	struct sched_dl_entity *pi_se;
713 #endif
714 };
715 
716 #ifdef CONFIG_UCLAMP_TASK
717 /* Number of utilization clamp buckets (shorter alias) */
718 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
719 
720 /*
721  * Utilization clamp for a scheduling entity
722  * @value:		clamp value "assigned" to a se
723  * @bucket_id:		bucket index corresponding to the "assigned" value
724  * @active:		the se is currently refcounted in a rq's bucket
725  * @user_defined:	the requested clamp value comes from user-space
726  *
727  * The bucket_id is the index of the clamp bucket matching the clamp value
728  * which is pre-computed and stored to avoid expensive integer divisions from
729  * the fast path.
730  *
731  * The active bit is set whenever a task has got an "effective" value assigned,
732  * which can be different from the clamp value "requested" from user-space.
733  * This allows to know a task is refcounted in the rq's bucket corresponding
734  * to the "effective" bucket_id.
735  *
736  * The user_defined bit is set whenever a task has got a task-specific clamp
737  * value requested from userspace, i.e. the system defaults apply to this task
738  * just as a restriction. This allows to relax default clamps when a less
739  * restrictive task-specific value has been requested, thus allowing to
740  * implement a "nice" semantic. For example, a task running with a 20%
741  * default boost can still drop its own boosting to 0%.
742  */
743 struct uclamp_se {
744 	unsigned int value		: bits_per(SCHED_CAPACITY_SCALE);
745 	unsigned int bucket_id		: bits_per(UCLAMP_BUCKETS);
746 	unsigned int active		: 1;
747 	unsigned int user_defined	: 1;
748 };
749 #endif /* CONFIG_UCLAMP_TASK */
750 
751 union rcu_special {
752 	struct {
753 		u8			blocked;
754 		u8			need_qs;
755 		u8			exp_hint; /* Hint for performance. */
756 		u8			need_mb; /* Readers need smp_mb(). */
757 	} b; /* Bits. */
758 	u32 s; /* Set of bits. */
759 };
760 
761 enum perf_event_task_context {
762 	perf_invalid_context = -1,
763 	perf_hw_context = 0,
764 	perf_sw_context,
765 	perf_nr_task_contexts,
766 };
767 
768 /*
769  * Number of contexts where an event can trigger:
770  *      task, softirq, hardirq, nmi.
771  */
772 #define PERF_NR_CONTEXTS	4
773 
774 struct wake_q_node {
775 	struct wake_q_node *next;
776 };
777 
778 struct kmap_ctrl {
779 #ifdef CONFIG_KMAP_LOCAL
780 	int				idx;
781 	pte_t				pteval[KM_MAX_IDX];
782 #endif
783 };
784 
785 struct task_struct {
786 #ifdef CONFIG_THREAD_INFO_IN_TASK
787 	/*
788 	 * For reasons of header soup (see current_thread_info()), this
789 	 * must be the first element of task_struct.
790 	 */
791 	struct thread_info		thread_info;
792 #endif
793 	unsigned int			__state;
794 
795 	/* saved state for "spinlock sleepers" */
796 	unsigned int			saved_state;
797 
798 	/*
799 	 * This begins the randomizable portion of task_struct. Only
800 	 * scheduling-critical items should be added above here.
801 	 */
802 	randomized_struct_fields_start
803 
804 	void				*stack;
805 	refcount_t			usage;
806 	/* Per task flags (PF_*), defined further below: */
807 	unsigned int			flags;
808 	unsigned int			ptrace;
809 
810 #ifdef CONFIG_MEM_ALLOC_PROFILING
811 	struct alloc_tag		*alloc_tag;
812 #endif
813 
814 #ifdef CONFIG_SMP
815 	int				on_cpu;
816 	struct __call_single_node	wake_entry;
817 	unsigned int			wakee_flips;
818 	unsigned long			wakee_flip_decay_ts;
819 	struct task_struct		*last_wakee;
820 
821 	/*
822 	 * recent_used_cpu is initially set as the last CPU used by a task
823 	 * that wakes affine another task. Waker/wakee relationships can
824 	 * push tasks around a CPU where each wakeup moves to the next one.
825 	 * Tracking a recently used CPU allows a quick search for a recently
826 	 * used CPU that may be idle.
827 	 */
828 	int				recent_used_cpu;
829 	int				wake_cpu;
830 #endif
831 	int				on_rq;
832 
833 	int				prio;
834 	int				static_prio;
835 	int				normal_prio;
836 	unsigned int			rt_priority;
837 
838 	struct sched_entity		se;
839 	struct sched_rt_entity		rt;
840 	struct sched_dl_entity		dl;
841 	struct sched_dl_entity		*dl_server;
842 #ifdef CONFIG_SCHED_CLASS_EXT
843 	struct sched_ext_entity		scx;
844 #endif
845 	const struct sched_class	*sched_class;
846 
847 #ifdef CONFIG_SCHED_CORE
848 	struct rb_node			core_node;
849 	unsigned long			core_cookie;
850 	unsigned int			core_occupation;
851 #endif
852 
853 #ifdef CONFIG_CGROUP_SCHED
854 	struct task_group		*sched_task_group;
855 #endif
856 
857 
858 #ifdef CONFIG_UCLAMP_TASK
859 	/*
860 	 * Clamp values requested for a scheduling entity.
861 	 * Must be updated with task_rq_lock() held.
862 	 */
863 	struct uclamp_se		uclamp_req[UCLAMP_CNT];
864 	/*
865 	 * Effective clamp values used for a scheduling entity.
866 	 * Must be updated with task_rq_lock() held.
867 	 */
868 	struct uclamp_se		uclamp[UCLAMP_CNT];
869 #endif
870 
871 	struct sched_statistics         stats;
872 
873 #ifdef CONFIG_PREEMPT_NOTIFIERS
874 	/* List of struct preempt_notifier: */
875 	struct hlist_head		preempt_notifiers;
876 #endif
877 
878 #ifdef CONFIG_BLK_DEV_IO_TRACE
879 	unsigned int			btrace_seq;
880 #endif
881 
882 	unsigned int			policy;
883 	unsigned long			max_allowed_capacity;
884 	int				nr_cpus_allowed;
885 	const cpumask_t			*cpus_ptr;
886 	cpumask_t			*user_cpus_ptr;
887 	cpumask_t			cpus_mask;
888 	void				*migration_pending;
889 #ifdef CONFIG_SMP
890 	unsigned short			migration_disabled;
891 #endif
892 	unsigned short			migration_flags;
893 
894 #ifdef CONFIG_PREEMPT_RCU
895 	int				rcu_read_lock_nesting;
896 	union rcu_special		rcu_read_unlock_special;
897 	struct list_head		rcu_node_entry;
898 	struct rcu_node			*rcu_blocked_node;
899 #endif /* #ifdef CONFIG_PREEMPT_RCU */
900 
901 #ifdef CONFIG_TASKS_RCU
902 	unsigned long			rcu_tasks_nvcsw;
903 	u8				rcu_tasks_holdout;
904 	u8				rcu_tasks_idx;
905 	int				rcu_tasks_idle_cpu;
906 	struct list_head		rcu_tasks_holdout_list;
907 	int				rcu_tasks_exit_cpu;
908 	struct list_head		rcu_tasks_exit_list;
909 #endif /* #ifdef CONFIG_TASKS_RCU */
910 
911 #ifdef CONFIG_TASKS_TRACE_RCU
912 	int				trc_reader_nesting;
913 	int				trc_ipi_to_cpu;
914 	union rcu_special		trc_reader_special;
915 	struct list_head		trc_holdout_list;
916 	struct list_head		trc_blkd_node;
917 	int				trc_blkd_cpu;
918 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
919 
920 	struct sched_info		sched_info;
921 
922 	struct list_head		tasks;
923 #ifdef CONFIG_SMP
924 	struct plist_node		pushable_tasks;
925 	struct rb_node			pushable_dl_tasks;
926 #endif
927 
928 	struct mm_struct		*mm;
929 	struct mm_struct		*active_mm;
930 	struct address_space		*faults_disabled_mapping;
931 
932 	int				exit_state;
933 	int				exit_code;
934 	int				exit_signal;
935 	/* The signal sent when the parent dies: */
936 	int				pdeath_signal;
937 	/* JOBCTL_*, siglock protected: */
938 	unsigned long			jobctl;
939 
940 	/* Used for emulating ABI behavior of previous Linux versions: */
941 	unsigned int			personality;
942 
943 	/* Scheduler bits, serialized by scheduler locks: */
944 	unsigned			sched_reset_on_fork:1;
945 	unsigned			sched_contributes_to_load:1;
946 	unsigned			sched_migrated:1;
947 
948 	/* Force alignment to the next boundary: */
949 	unsigned			:0;
950 
951 	/* Unserialized, strictly 'current' */
952 
953 	/*
954 	 * This field must not be in the scheduler word above due to wakelist
955 	 * queueing no longer being serialized by p->on_cpu. However:
956 	 *
957 	 * p->XXX = X;			ttwu()
958 	 * schedule()			  if (p->on_rq && ..) // false
959 	 *   smp_mb__after_spinlock();	  if (smp_load_acquire(&p->on_cpu) && //true
960 	 *   deactivate_task()		      ttwu_queue_wakelist())
961 	 *     p->on_rq = 0;			p->sched_remote_wakeup = Y;
962 	 *
963 	 * guarantees all stores of 'current' are visible before
964 	 * ->sched_remote_wakeup gets used, so it can be in this word.
965 	 */
966 	unsigned			sched_remote_wakeup:1;
967 #ifdef CONFIG_RT_MUTEXES
968 	unsigned			sched_rt_mutex:1;
969 #endif
970 
971 	/* Bit to tell TOMOYO we're in execve(): */
972 	unsigned			in_execve:1;
973 	unsigned			in_iowait:1;
974 #ifndef TIF_RESTORE_SIGMASK
975 	unsigned			restore_sigmask:1;
976 #endif
977 #ifdef CONFIG_MEMCG_V1
978 	unsigned			in_user_fault:1;
979 #endif
980 #ifdef CONFIG_LRU_GEN
981 	/* whether the LRU algorithm may apply to this access */
982 	unsigned			in_lru_fault:1;
983 #endif
984 #ifdef CONFIG_COMPAT_BRK
985 	unsigned			brk_randomized:1;
986 #endif
987 #ifdef CONFIG_CGROUPS
988 	/* disallow userland-initiated cgroup migration */
989 	unsigned			no_cgroup_migration:1;
990 	/* task is frozen/stopped (used by the cgroup freezer) */
991 	unsigned			frozen:1;
992 #endif
993 #ifdef CONFIG_BLK_CGROUP
994 	unsigned			use_memdelay:1;
995 #endif
996 #ifdef CONFIG_PSI
997 	/* Stalled due to lack of memory */
998 	unsigned			in_memstall:1;
999 #endif
1000 #ifdef CONFIG_PAGE_OWNER
1001 	/* Used by page_owner=on to detect recursion in page tracking. */
1002 	unsigned			in_page_owner:1;
1003 #endif
1004 #ifdef CONFIG_EVENTFD
1005 	/* Recursion prevention for eventfd_signal() */
1006 	unsigned			in_eventfd:1;
1007 #endif
1008 #ifdef CONFIG_ARCH_HAS_CPU_PASID
1009 	unsigned			pasid_activated:1;
1010 #endif
1011 #ifdef CONFIG_X86_BUS_LOCK_DETECT
1012 	unsigned			reported_split_lock:1;
1013 #endif
1014 #ifdef CONFIG_TASK_DELAY_ACCT
1015 	/* delay due to memory thrashing */
1016 	unsigned                        in_thrashing:1;
1017 #endif
1018 #ifdef CONFIG_PREEMPT_RT
1019 	struct netdev_xmit		net_xmit;
1020 #endif
1021 	unsigned long			atomic_flags; /* Flags requiring atomic access. */
1022 
1023 	struct restart_block		restart_block;
1024 
1025 	pid_t				pid;
1026 	pid_t				tgid;
1027 
1028 #ifdef CONFIG_STACKPROTECTOR
1029 	/* Canary value for the -fstack-protector GCC feature: */
1030 	unsigned long			stack_canary;
1031 #endif
1032 	/*
1033 	 * Pointers to the (original) parent process, youngest child, younger sibling,
1034 	 * older sibling, respectively.  (p->father can be replaced with
1035 	 * p->real_parent->pid)
1036 	 */
1037 
1038 	/* Real parent process: */
1039 	struct task_struct __rcu	*real_parent;
1040 
1041 	/* Recipient of SIGCHLD, wait4() reports: */
1042 	struct task_struct __rcu	*parent;
1043 
1044 	/*
1045 	 * Children/sibling form the list of natural children:
1046 	 */
1047 	struct list_head		children;
1048 	struct list_head		sibling;
1049 	struct task_struct		*group_leader;
1050 
1051 	/*
1052 	 * 'ptraced' is the list of tasks this task is using ptrace() on.
1053 	 *
1054 	 * This includes both natural children and PTRACE_ATTACH targets.
1055 	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
1056 	 */
1057 	struct list_head		ptraced;
1058 	struct list_head		ptrace_entry;
1059 
1060 	/* PID/PID hash table linkage. */
1061 	struct pid			*thread_pid;
1062 	struct hlist_node		pid_links[PIDTYPE_MAX];
1063 	struct list_head		thread_node;
1064 
1065 	struct completion		*vfork_done;
1066 
1067 	/* CLONE_CHILD_SETTID: */
1068 	int __user			*set_child_tid;
1069 
1070 	/* CLONE_CHILD_CLEARTID: */
1071 	int __user			*clear_child_tid;
1072 
1073 	/* PF_KTHREAD | PF_IO_WORKER */
1074 	void				*worker_private;
1075 
1076 	u64				utime;
1077 	u64				stime;
1078 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1079 	u64				utimescaled;
1080 	u64				stimescaled;
1081 #endif
1082 	u64				gtime;
1083 	struct prev_cputime		prev_cputime;
1084 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1085 	struct vtime			vtime;
1086 #endif
1087 
1088 #ifdef CONFIG_NO_HZ_FULL
1089 	atomic_t			tick_dep_mask;
1090 #endif
1091 	/* Context switch counts: */
1092 	unsigned long			nvcsw;
1093 	unsigned long			nivcsw;
1094 
1095 	/* Monotonic time in nsecs: */
1096 	u64				start_time;
1097 
1098 	/* Boot based time in nsecs: */
1099 	u64				start_boottime;
1100 
1101 	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1102 	unsigned long			min_flt;
1103 	unsigned long			maj_flt;
1104 
1105 	/* Empty if CONFIG_POSIX_CPUTIMERS=n */
1106 	struct posix_cputimers		posix_cputimers;
1107 
1108 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1109 	struct posix_cputimers_work	posix_cputimers_work;
1110 #endif
1111 
1112 	/* Process credentials: */
1113 
1114 	/* Tracer's credentials at attach: */
1115 	const struct cred __rcu		*ptracer_cred;
1116 
1117 	/* Objective and real subjective task credentials (COW): */
1118 	const struct cred __rcu		*real_cred;
1119 
1120 	/* Effective (overridable) subjective task credentials (COW): */
1121 	const struct cred __rcu		*cred;
1122 
1123 #ifdef CONFIG_KEYS
1124 	/* Cached requested key. */
1125 	struct key			*cached_requested_key;
1126 #endif
1127 
1128 	/*
1129 	 * executable name, excluding path.
1130 	 *
1131 	 * - normally initialized begin_new_exec()
1132 	 * - set it with set_task_comm()
1133 	 *   - strscpy_pad() to ensure it is always NUL-terminated and
1134 	 *     zero-padded
1135 	 *   - task_lock() to ensure the operation is atomic and the name is
1136 	 *     fully updated.
1137 	 */
1138 	char				comm[TASK_COMM_LEN];
1139 
1140 	struct nameidata		*nameidata;
1141 
1142 #ifdef CONFIG_SYSVIPC
1143 	struct sysv_sem			sysvsem;
1144 	struct sysv_shm			sysvshm;
1145 #endif
1146 #ifdef CONFIG_DETECT_HUNG_TASK
1147 	unsigned long			last_switch_count;
1148 	unsigned long			last_switch_time;
1149 #endif
1150 	/* Filesystem information: */
1151 	struct fs_struct		*fs;
1152 
1153 	/* Open file information: */
1154 	struct files_struct		*files;
1155 
1156 #ifdef CONFIG_IO_URING
1157 	struct io_uring_task		*io_uring;
1158 #endif
1159 
1160 	/* Namespaces: */
1161 	struct nsproxy			*nsproxy;
1162 
1163 	/* Signal handlers: */
1164 	struct signal_struct		*signal;
1165 	struct sighand_struct __rcu		*sighand;
1166 	sigset_t			blocked;
1167 	sigset_t			real_blocked;
1168 	/* Restored if set_restore_sigmask() was used: */
1169 	sigset_t			saved_sigmask;
1170 	struct sigpending		pending;
1171 	unsigned long			sas_ss_sp;
1172 	size_t				sas_ss_size;
1173 	unsigned int			sas_ss_flags;
1174 
1175 	struct callback_head		*task_works;
1176 
1177 #ifdef CONFIG_AUDIT
1178 #ifdef CONFIG_AUDITSYSCALL
1179 	struct audit_context		*audit_context;
1180 #endif
1181 	kuid_t				loginuid;
1182 	unsigned int			sessionid;
1183 #endif
1184 	struct seccomp			seccomp;
1185 	struct syscall_user_dispatch	syscall_dispatch;
1186 
1187 	/* Thread group tracking: */
1188 	u64				parent_exec_id;
1189 	u64				self_exec_id;
1190 
1191 	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1192 	spinlock_t			alloc_lock;
1193 
1194 	/* Protection of the PI data structures: */
1195 	raw_spinlock_t			pi_lock;
1196 
1197 	struct wake_q_node		wake_q;
1198 
1199 #ifdef CONFIG_RT_MUTEXES
1200 	/* PI waiters blocked on a rt_mutex held by this task: */
1201 	struct rb_root_cached		pi_waiters;
1202 	/* Updated under owner's pi_lock and rq lock */
1203 	struct task_struct		*pi_top_task;
1204 	/* Deadlock detection and priority inheritance handling: */
1205 	struct rt_mutex_waiter		*pi_blocked_on;
1206 #endif
1207 
1208 #ifdef CONFIG_DEBUG_MUTEXES
1209 	/* Mutex deadlock detection: */
1210 	struct mutex_waiter		*blocked_on;
1211 #endif
1212 
1213 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1214 	int				non_block_count;
1215 #endif
1216 
1217 #ifdef CONFIG_TRACE_IRQFLAGS
1218 	struct irqtrace_events		irqtrace;
1219 	unsigned int			hardirq_threaded;
1220 	u64				hardirq_chain_key;
1221 	int				softirqs_enabled;
1222 	int				softirq_context;
1223 	int				irq_config;
1224 #endif
1225 #ifdef CONFIG_PREEMPT_RT
1226 	int				softirq_disable_cnt;
1227 #endif
1228 
1229 #ifdef CONFIG_LOCKDEP
1230 # define MAX_LOCK_DEPTH			48UL
1231 	u64				curr_chain_key;
1232 	int				lockdep_depth;
1233 	unsigned int			lockdep_recursion;
1234 	struct held_lock		held_locks[MAX_LOCK_DEPTH];
1235 #endif
1236 
1237 #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1238 	unsigned int			in_ubsan;
1239 #endif
1240 
1241 	/* Journalling filesystem info: */
1242 	void				*journal_info;
1243 
1244 	/* Stacked block device info: */
1245 	struct bio_list			*bio_list;
1246 
1247 	/* Stack plugging: */
1248 	struct blk_plug			*plug;
1249 
1250 	/* VM state: */
1251 	struct reclaim_state		*reclaim_state;
1252 
1253 	struct io_context		*io_context;
1254 
1255 #ifdef CONFIG_COMPACTION
1256 	struct capture_control		*capture_control;
1257 #endif
1258 	/* Ptrace state: */
1259 	unsigned long			ptrace_message;
1260 	kernel_siginfo_t		*last_siginfo;
1261 
1262 	struct task_io_accounting	ioac;
1263 #ifdef CONFIG_PSI
1264 	/* Pressure stall state */
1265 	unsigned int			psi_flags;
1266 #endif
1267 #ifdef CONFIG_TASK_XACCT
1268 	/* Accumulated RSS usage: */
1269 	u64				acct_rss_mem1;
1270 	/* Accumulated virtual memory usage: */
1271 	u64				acct_vm_mem1;
1272 	/* stime + utime since last update: */
1273 	u64				acct_timexpd;
1274 #endif
1275 #ifdef CONFIG_CPUSETS
1276 	/* Protected by ->alloc_lock: */
1277 	nodemask_t			mems_allowed;
1278 	/* Sequence number to catch updates: */
1279 	seqcount_spinlock_t		mems_allowed_seq;
1280 	int				cpuset_mem_spread_rotor;
1281 #endif
1282 #ifdef CONFIG_CGROUPS
1283 	/* Control Group info protected by css_set_lock: */
1284 	struct css_set __rcu		*cgroups;
1285 	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
1286 	struct list_head		cg_list;
1287 #endif
1288 #ifdef CONFIG_X86_CPU_RESCTRL
1289 	u32				closid;
1290 	u32				rmid;
1291 #endif
1292 #ifdef CONFIG_FUTEX
1293 	struct robust_list_head __user	*robust_list;
1294 #ifdef CONFIG_COMPAT
1295 	struct compat_robust_list_head __user *compat_robust_list;
1296 #endif
1297 	struct list_head		pi_state_list;
1298 	struct futex_pi_state		*pi_state_cache;
1299 	struct mutex			futex_exit_mutex;
1300 	unsigned int			futex_state;
1301 #endif
1302 #ifdef CONFIG_PERF_EVENTS
1303 	u8				perf_recursion[PERF_NR_CONTEXTS];
1304 	struct perf_event_context	*perf_event_ctxp;
1305 	struct mutex			perf_event_mutex;
1306 	struct list_head		perf_event_list;
1307 #endif
1308 #ifdef CONFIG_DEBUG_PREEMPT
1309 	unsigned long			preempt_disable_ip;
1310 #endif
1311 #ifdef CONFIG_NUMA
1312 	/* Protected by alloc_lock: */
1313 	struct mempolicy		*mempolicy;
1314 	short				il_prev;
1315 	u8				il_weight;
1316 	short				pref_node_fork;
1317 #endif
1318 #ifdef CONFIG_NUMA_BALANCING
1319 	int				numa_scan_seq;
1320 	unsigned int			numa_scan_period;
1321 	unsigned int			numa_scan_period_max;
1322 	int				numa_preferred_nid;
1323 	unsigned long			numa_migrate_retry;
1324 	/* Migration stamp: */
1325 	u64				node_stamp;
1326 	u64				last_task_numa_placement;
1327 	u64				last_sum_exec_runtime;
1328 	struct callback_head		numa_work;
1329 
1330 	/*
1331 	 * This pointer is only modified for current in syscall and
1332 	 * pagefault context (and for tasks being destroyed), so it can be read
1333 	 * from any of the following contexts:
1334 	 *  - RCU read-side critical section
1335 	 *  - current->numa_group from everywhere
1336 	 *  - task's runqueue locked, task not running
1337 	 */
1338 	struct numa_group __rcu		*numa_group;
1339 
1340 	/*
1341 	 * numa_faults is an array split into four regions:
1342 	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1343 	 * in this precise order.
1344 	 *
1345 	 * faults_memory: Exponential decaying average of faults on a per-node
1346 	 * basis. Scheduling placement decisions are made based on these
1347 	 * counts. The values remain static for the duration of a PTE scan.
1348 	 * faults_cpu: Track the nodes the process was running on when a NUMA
1349 	 * hinting fault was incurred.
1350 	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1351 	 * during the current scan window. When the scan completes, the counts
1352 	 * in faults_memory and faults_cpu decay and these values are copied.
1353 	 */
1354 	unsigned long			*numa_faults;
1355 	unsigned long			total_numa_faults;
1356 
1357 	/*
1358 	 * numa_faults_locality tracks if faults recorded during the last
1359 	 * scan window were remote/local or failed to migrate. The task scan
1360 	 * period is adapted based on the locality of the faults with different
1361 	 * weights depending on whether they were shared or private faults
1362 	 */
1363 	unsigned long			numa_faults_locality[3];
1364 
1365 	unsigned long			numa_pages_migrated;
1366 #endif /* CONFIG_NUMA_BALANCING */
1367 
1368 #ifdef CONFIG_RSEQ
1369 	struct rseq __user *rseq;
1370 	u32 rseq_len;
1371 	u32 rseq_sig;
1372 	/*
1373 	 * RmW on rseq_event_mask must be performed atomically
1374 	 * with respect to preemption.
1375 	 */
1376 	unsigned long rseq_event_mask;
1377 #endif
1378 
1379 #ifdef CONFIG_SCHED_MM_CID
1380 	int				mm_cid;		/* Current cid in mm */
1381 	int				last_mm_cid;	/* Most recent cid in mm */
1382 	int				migrate_from_cpu;
1383 	int				mm_cid_active;	/* Whether cid bitmap is active */
1384 	struct callback_head		cid_work;
1385 #endif
1386 
1387 	struct tlbflush_unmap_batch	tlb_ubc;
1388 
1389 	/* Cache last used pipe for splice(): */
1390 	struct pipe_inode_info		*splice_pipe;
1391 
1392 	struct page_frag		task_frag;
1393 
1394 #ifdef CONFIG_TASK_DELAY_ACCT
1395 	struct task_delay_info		*delays;
1396 #endif
1397 
1398 #ifdef CONFIG_FAULT_INJECTION
1399 	int				make_it_fail;
1400 	unsigned int			fail_nth;
1401 #endif
1402 	/*
1403 	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1404 	 * balance_dirty_pages() for a dirty throttling pause:
1405 	 */
1406 	int				nr_dirtied;
1407 	int				nr_dirtied_pause;
1408 	/* Start of a write-and-pause period: */
1409 	unsigned long			dirty_paused_when;
1410 
1411 #ifdef CONFIG_LATENCYTOP
1412 	int				latency_record_count;
1413 	struct latency_record		latency_record[LT_SAVECOUNT];
1414 #endif
1415 	/*
1416 	 * Time slack values; these are used to round up poll() and
1417 	 * select() etc timeout values. These are in nanoseconds.
1418 	 */
1419 	u64				timer_slack_ns;
1420 	u64				default_timer_slack_ns;
1421 
1422 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1423 	unsigned int			kasan_depth;
1424 #endif
1425 
1426 #ifdef CONFIG_KCSAN
1427 	struct kcsan_ctx		kcsan_ctx;
1428 #ifdef CONFIG_TRACE_IRQFLAGS
1429 	struct irqtrace_events		kcsan_save_irqtrace;
1430 #endif
1431 #ifdef CONFIG_KCSAN_WEAK_MEMORY
1432 	int				kcsan_stack_depth;
1433 #endif
1434 #endif
1435 
1436 #ifdef CONFIG_KMSAN
1437 	struct kmsan_ctx		kmsan_ctx;
1438 #endif
1439 
1440 #if IS_ENABLED(CONFIG_KUNIT)
1441 	struct kunit			*kunit_test;
1442 #endif
1443 
1444 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1445 	/* Index of current stored address in ret_stack: */
1446 	int				curr_ret_stack;
1447 	int				curr_ret_depth;
1448 
1449 	/* Stack of return addresses for return function tracing: */
1450 	unsigned long			*ret_stack;
1451 
1452 	/* Timestamp for last schedule: */
1453 	unsigned long long		ftrace_timestamp;
1454 	unsigned long long		ftrace_sleeptime;
1455 
1456 	/*
1457 	 * Number of functions that haven't been traced
1458 	 * because of depth overrun:
1459 	 */
1460 	atomic_t			trace_overrun;
1461 
1462 	/* Pause tracing: */
1463 	atomic_t			tracing_graph_pause;
1464 #endif
1465 
1466 #ifdef CONFIG_TRACING
1467 	/* Bitmask and counter of trace recursion: */
1468 	unsigned long			trace_recursion;
1469 #endif /* CONFIG_TRACING */
1470 
1471 #ifdef CONFIG_KCOV
1472 	/* See kernel/kcov.c for more details. */
1473 
1474 	/* Coverage collection mode enabled for this task (0 if disabled): */
1475 	unsigned int			kcov_mode;
1476 
1477 	/* Size of the kcov_area: */
1478 	unsigned int			kcov_size;
1479 
1480 	/* Buffer for coverage collection: */
1481 	void				*kcov_area;
1482 
1483 	/* KCOV descriptor wired with this task or NULL: */
1484 	struct kcov			*kcov;
1485 
1486 	/* KCOV common handle for remote coverage collection: */
1487 	u64				kcov_handle;
1488 
1489 	/* KCOV sequence number: */
1490 	int				kcov_sequence;
1491 
1492 	/* Collect coverage from softirq context: */
1493 	unsigned int			kcov_softirq;
1494 #endif
1495 
1496 #ifdef CONFIG_MEMCG_V1
1497 	struct mem_cgroup		*memcg_in_oom;
1498 #endif
1499 
1500 #ifdef CONFIG_MEMCG
1501 	/* Number of pages to reclaim on returning to userland: */
1502 	unsigned int			memcg_nr_pages_over_high;
1503 
1504 	/* Used by memcontrol for targeted memcg charge: */
1505 	struct mem_cgroup		*active_memcg;
1506 
1507 	/* Cache for current->cgroups->memcg->objcg lookups: */
1508 	struct obj_cgroup		*objcg;
1509 #endif
1510 
1511 #ifdef CONFIG_BLK_CGROUP
1512 	struct gendisk			*throttle_disk;
1513 #endif
1514 
1515 #ifdef CONFIG_UPROBES
1516 	struct uprobe_task		*utask;
1517 #endif
1518 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1519 	unsigned int			sequential_io;
1520 	unsigned int			sequential_io_avg;
1521 #endif
1522 	struct kmap_ctrl		kmap_ctrl;
1523 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1524 	unsigned long			task_state_change;
1525 # ifdef CONFIG_PREEMPT_RT
1526 	unsigned long			saved_state_change;
1527 # endif
1528 #endif
1529 	struct rcu_head			rcu;
1530 	refcount_t			rcu_users;
1531 	int				pagefault_disabled;
1532 #ifdef CONFIG_MMU
1533 	struct task_struct		*oom_reaper_list;
1534 	struct timer_list		oom_reaper_timer;
1535 #endif
1536 #ifdef CONFIG_VMAP_STACK
1537 	struct vm_struct		*stack_vm_area;
1538 #endif
1539 #ifdef CONFIG_THREAD_INFO_IN_TASK
1540 	/* A live task holds one reference: */
1541 	refcount_t			stack_refcount;
1542 #endif
1543 #ifdef CONFIG_LIVEPATCH
1544 	int patch_state;
1545 #endif
1546 #ifdef CONFIG_SECURITY
1547 	/* Used by LSM modules for access restriction: */
1548 	void				*security;
1549 #endif
1550 #ifdef CONFIG_BPF_SYSCALL
1551 	/* Used by BPF task local storage */
1552 	struct bpf_local_storage __rcu	*bpf_storage;
1553 	/* Used for BPF run context */
1554 	struct bpf_run_ctx		*bpf_ctx;
1555 #endif
1556 	/* Used by BPF for per-TASK xdp storage */
1557 	struct bpf_net_context		*bpf_net_context;
1558 
1559 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1560 	unsigned long			lowest_stack;
1561 	unsigned long			prev_lowest_stack;
1562 #endif
1563 
1564 #ifdef CONFIG_X86_MCE
1565 	void __user			*mce_vaddr;
1566 	__u64				mce_kflags;
1567 	u64				mce_addr;
1568 	__u64				mce_ripv : 1,
1569 					mce_whole_page : 1,
1570 					__mce_reserved : 62;
1571 	struct callback_head		mce_kill_me;
1572 	int				mce_count;
1573 #endif
1574 
1575 #ifdef CONFIG_KRETPROBES
1576 	struct llist_head               kretprobe_instances;
1577 #endif
1578 #ifdef CONFIG_RETHOOK
1579 	struct llist_head               rethooks;
1580 #endif
1581 
1582 #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1583 	/*
1584 	 * If L1D flush is supported on mm context switch
1585 	 * then we use this callback head to queue kill work
1586 	 * to kill tasks that are not running on SMT disabled
1587 	 * cores
1588 	 */
1589 	struct callback_head		l1d_flush_kill;
1590 #endif
1591 
1592 #ifdef CONFIG_RV
1593 	/*
1594 	 * Per-task RV monitor. Nowadays fixed in RV_PER_TASK_MONITORS.
1595 	 * If we find justification for more monitors, we can think
1596 	 * about adding more or developing a dynamic method. So far,
1597 	 * none of these are justified.
1598 	 */
1599 	union rv_task_monitor		rv[RV_PER_TASK_MONITORS];
1600 #endif
1601 
1602 #ifdef CONFIG_USER_EVENTS
1603 	struct user_event_mm		*user_event_mm;
1604 #endif
1605 
1606 	/*
1607 	 * New fields for task_struct should be added above here, so that
1608 	 * they are included in the randomized portion of task_struct.
1609 	 */
1610 	randomized_struct_fields_end
1611 
1612 	/* CPU-specific state of this task: */
1613 	struct thread_struct		thread;
1614 
1615 	/*
1616 	 * WARNING: on x86, 'thread_struct' contains a variable-sized
1617 	 * structure.  It *MUST* be at the end of 'task_struct'.
1618 	 *
1619 	 * Do not put anything below here!
1620 	 */
1621 };
1622 
1623 #define TASK_REPORT_IDLE	(TASK_REPORT + 1)
1624 #define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1)
1625 
__task_state_index(unsigned int tsk_state,unsigned int tsk_exit_state)1626 static inline unsigned int __task_state_index(unsigned int tsk_state,
1627 					      unsigned int tsk_exit_state)
1628 {
1629 	unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT;
1630 
1631 	BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1632 
1633 	if ((tsk_state & TASK_IDLE) == TASK_IDLE)
1634 		state = TASK_REPORT_IDLE;
1635 
1636 	/*
1637 	 * We're lying here, but rather than expose a completely new task state
1638 	 * to userspace, we can make this appear as if the task has gone through
1639 	 * a regular rt_mutex_lock() call.
1640 	 * Report frozen tasks as uninterruptible.
1641 	 */
1642 	if ((tsk_state & TASK_RTLOCK_WAIT) || (tsk_state & TASK_FROZEN))
1643 		state = TASK_UNINTERRUPTIBLE;
1644 
1645 	return fls(state);
1646 }
1647 
task_state_index(struct task_struct * tsk)1648 static inline unsigned int task_state_index(struct task_struct *tsk)
1649 {
1650 	return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state);
1651 }
1652 
task_index_to_char(unsigned int state)1653 static inline char task_index_to_char(unsigned int state)
1654 {
1655 	static const char state_char[] = "RSDTtXZPI";
1656 
1657 	BUILD_BUG_ON(TASK_REPORT_MAX * 2 != 1 << (sizeof(state_char) - 1));
1658 
1659 	return state_char[state];
1660 }
1661 
task_state_to_char(struct task_struct * tsk)1662 static inline char task_state_to_char(struct task_struct *tsk)
1663 {
1664 	return task_index_to_char(task_state_index(tsk));
1665 }
1666 
1667 extern struct pid *cad_pid;
1668 
1669 /*
1670  * Per process flags
1671  */
1672 #define PF_VCPU			0x00000001	/* I'm a virtual CPU */
1673 #define PF_IDLE			0x00000002	/* I am an IDLE thread */
1674 #define PF_EXITING		0x00000004	/* Getting shut down */
1675 #define PF_POSTCOREDUMP		0x00000008	/* Coredumps should ignore this task */
1676 #define PF_IO_WORKER		0x00000010	/* Task is an IO worker */
1677 #define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
1678 #define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
1679 #define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
1680 #define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
1681 #define PF_DUMPCORE		0x00000200	/* Dumped core */
1682 #define PF_SIGNALED		0x00000400	/* Killed by a signal */
1683 #define PF_MEMALLOC		0x00000800	/* Allocating memory to free memory. See memalloc_noreclaim_save() */
1684 #define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
1685 #define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
1686 #define PF_USER_WORKER		0x00004000	/* Kernel thread cloned from userspace thread */
1687 #define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
1688 #define PF__HOLE__00010000	0x00010000
1689 #define PF_KSWAPD		0x00020000	/* I am kswapd */
1690 #define PF_MEMALLOC_NOFS	0x00040000	/* All allocations inherit GFP_NOFS. See memalloc_nfs_save() */
1691 #define PF_MEMALLOC_NOIO	0x00080000	/* All allocations inherit GFP_NOIO. See memalloc_noio_save() */
1692 #define PF_LOCAL_THROTTLE	0x00100000	/* Throttle writes only against the bdi I write to,
1693 						 * I am cleaning dirty pages from some other bdi. */
1694 #define PF_KTHREAD		0x00200000	/* I am a kernel thread */
1695 #define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
1696 #define PF__HOLE__00800000	0x00800000
1697 #define PF__HOLE__01000000	0x01000000
1698 #define PF__HOLE__02000000	0x02000000
1699 #define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_mask */
1700 #define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
1701 #define PF_MEMALLOC_PIN		0x10000000	/* Allocations constrained to zones which allow long term pinning.
1702 						 * See memalloc_pin_save() */
1703 #define PF_BLOCK_TS		0x20000000	/* plug has ts that needs updating */
1704 #define PF__HOLE__40000000	0x40000000
1705 #define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
1706 
1707 /*
1708  * Only the _current_ task can read/write to tsk->flags, but other
1709  * tasks can access tsk->flags in readonly mode for example
1710  * with tsk_used_math (like during threaded core dumping).
1711  * There is however an exception to this rule during ptrace
1712  * or during fork: the ptracer task is allowed to write to the
1713  * child->flags of its traced child (same goes for fork, the parent
1714  * can write to the child->flags), because we're guaranteed the
1715  * child is not running and in turn not changing child->flags
1716  * at the same time the parent does it.
1717  */
1718 #define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
1719 #define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
1720 #define clear_used_math()			clear_stopped_child_used_math(current)
1721 #define set_used_math()				set_stopped_child_used_math(current)
1722 
1723 #define conditional_stopped_child_used_math(condition, child) \
1724 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1725 
1726 #define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)
1727 
1728 #define copy_to_stopped_child_used_math(child) \
1729 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1730 
1731 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1732 #define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
1733 #define used_math()				tsk_used_math(current)
1734 
is_percpu_thread(void)1735 static __always_inline bool is_percpu_thread(void)
1736 {
1737 #ifdef CONFIG_SMP
1738 	return (current->flags & PF_NO_SETAFFINITY) &&
1739 		(current->nr_cpus_allowed  == 1);
1740 #else
1741 	return true;
1742 #endif
1743 }
1744 
1745 /* Per-process atomic flags. */
1746 #define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
1747 #define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
1748 #define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1749 #define PFA_SPEC_SSB_DISABLE		3	/* Speculative Store Bypass disabled */
1750 #define PFA_SPEC_SSB_FORCE_DISABLE	4	/* Speculative Store Bypass force disabled*/
1751 #define PFA_SPEC_IB_DISABLE		5	/* Indirect branch speculation restricted */
1752 #define PFA_SPEC_IB_FORCE_DISABLE	6	/* Indirect branch speculation permanently restricted */
1753 #define PFA_SPEC_SSB_NOEXEC		7	/* Speculative Store Bypass clear on execve() */
1754 
1755 #define TASK_PFA_TEST(name, func)					\
1756 	static inline bool task_##func(struct task_struct *p)		\
1757 	{ return test_bit(PFA_##name, &p->atomic_flags); }
1758 
1759 #define TASK_PFA_SET(name, func)					\
1760 	static inline void task_set_##func(struct task_struct *p)	\
1761 	{ set_bit(PFA_##name, &p->atomic_flags); }
1762 
1763 #define TASK_PFA_CLEAR(name, func)					\
1764 	static inline void task_clear_##func(struct task_struct *p)	\
1765 	{ clear_bit(PFA_##name, &p->atomic_flags); }
1766 
TASK_PFA_TEST(NO_NEW_PRIVS,no_new_privs)1767 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1768 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1769 
1770 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1771 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1772 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1773 
1774 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1775 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1776 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1777 
1778 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1779 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1780 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1781 
1782 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1783 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1784 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1785 
1786 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1787 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1788 
1789 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1790 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1791 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1792 
1793 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1794 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1795 
1796 static inline void
1797 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1798 {
1799 	current->flags &= ~flags;
1800 	current->flags |= orig_flags & flags;
1801 }
1802 
1803 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1804 extern int task_can_attach(struct task_struct *p);
1805 extern int dl_bw_alloc(int cpu, u64 dl_bw);
1806 extern void dl_bw_free(int cpu, u64 dl_bw);
1807 #ifdef CONFIG_SMP
1808 
1809 /* do_set_cpus_allowed() - consider using set_cpus_allowed_ptr() instead */
1810 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1811 
1812 /**
1813  * set_cpus_allowed_ptr - set CPU affinity mask of a task
1814  * @p: the task
1815  * @new_mask: CPU affinity mask
1816  *
1817  * Return: zero if successful, or a negative error code
1818  */
1819 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1820 extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1821 extern void release_user_cpus_ptr(struct task_struct *p);
1822 extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
1823 extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1824 extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1825 #else
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)1826 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1827 {
1828 }
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)1829 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1830 {
1831 	/* Opencoded cpumask_test_cpu(0, new_mask) to avoid dependency on cpumask.h */
1832 	if ((*cpumask_bits(new_mask) & 1) == 0)
1833 		return -EINVAL;
1834 	return 0;
1835 }
dup_user_cpus_ptr(struct task_struct * dst,struct task_struct * src,int node)1836 static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
1837 {
1838 	if (src->user_cpus_ptr)
1839 		return -EINVAL;
1840 	return 0;
1841 }
release_user_cpus_ptr(struct task_struct * p)1842 static inline void release_user_cpus_ptr(struct task_struct *p)
1843 {
1844 	WARN_ON(p->user_cpus_ptr);
1845 }
1846 
dl_task_check_affinity(struct task_struct * p,const struct cpumask * mask)1847 static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1848 {
1849 	return 0;
1850 }
1851 #endif
1852 
1853 extern int yield_to(struct task_struct *p, bool preempt);
1854 extern void set_user_nice(struct task_struct *p, long nice);
1855 extern int task_prio(const struct task_struct *p);
1856 
1857 /**
1858  * task_nice - return the nice value of a given task.
1859  * @p: the task in question.
1860  *
1861  * Return: The nice value [ -20 ... 0 ... 19 ].
1862  */
task_nice(const struct task_struct * p)1863 static inline int task_nice(const struct task_struct *p)
1864 {
1865 	return PRIO_TO_NICE((p)->static_prio);
1866 }
1867 
1868 extern int can_nice(const struct task_struct *p, const int nice);
1869 extern int task_curr(const struct task_struct *p);
1870 extern int idle_cpu(int cpu);
1871 extern int available_idle_cpu(int cpu);
1872 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1873 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1874 extern void sched_set_fifo(struct task_struct *p);
1875 extern void sched_set_fifo_low(struct task_struct *p);
1876 extern void sched_set_normal(struct task_struct *p, int nice);
1877 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1878 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1879 extern struct task_struct *idle_task(int cpu);
1880 
1881 /**
1882  * is_idle_task - is the specified task an idle task?
1883  * @p: the task in question.
1884  *
1885  * Return: 1 if @p is an idle task. 0 otherwise.
1886  */
is_idle_task(const struct task_struct * p)1887 static __always_inline bool is_idle_task(const struct task_struct *p)
1888 {
1889 	return !!(p->flags & PF_IDLE);
1890 }
1891 
1892 extern struct task_struct *curr_task(int cpu);
1893 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1894 
1895 void yield(void);
1896 
1897 union thread_union {
1898 	struct task_struct task;
1899 #ifndef CONFIG_THREAD_INFO_IN_TASK
1900 	struct thread_info thread_info;
1901 #endif
1902 	unsigned long stack[THREAD_SIZE/sizeof(long)];
1903 };
1904 
1905 #ifndef CONFIG_THREAD_INFO_IN_TASK
1906 extern struct thread_info init_thread_info;
1907 #endif
1908 
1909 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1910 
1911 #ifdef CONFIG_THREAD_INFO_IN_TASK
1912 # define task_thread_info(task)	(&(task)->thread_info)
1913 #else
1914 # define task_thread_info(task)	((struct thread_info *)(task)->stack)
1915 #endif
1916 
1917 /*
1918  * find a task by one of its numerical ids
1919  *
1920  * find_task_by_pid_ns():
1921  *      finds a task by its pid in the specified namespace
1922  * find_task_by_vpid():
1923  *      finds a task by its virtual pid
1924  *
1925  * see also find_vpid() etc in include/linux/pid.h
1926  */
1927 
1928 extern struct task_struct *find_task_by_vpid(pid_t nr);
1929 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1930 
1931 /*
1932  * find a task by its virtual pid and get the task struct
1933  */
1934 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1935 
1936 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1937 extern int wake_up_process(struct task_struct *tsk);
1938 extern void wake_up_new_task(struct task_struct *tsk);
1939 
1940 #ifdef CONFIG_SMP
1941 extern void kick_process(struct task_struct *tsk);
1942 #else
kick_process(struct task_struct * tsk)1943 static inline void kick_process(struct task_struct *tsk) { }
1944 #endif
1945 
1946 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1947 
set_task_comm(struct task_struct * tsk,const char * from)1948 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1949 {
1950 	__set_task_comm(tsk, from, false);
1951 }
1952 
1953 /*
1954  * - Why not use task_lock()?
1955  *   User space can randomly change their names anyway, so locking for readers
1956  *   doesn't make sense. For writers, locking is probably necessary, as a race
1957  *   condition could lead to long-term mixed results.
1958  *   The strscpy_pad() in __set_task_comm() can ensure that the task comm is
1959  *   always NUL-terminated and zero-padded. Therefore the race condition between
1960  *   reader and writer is not an issue.
1961  *
1962  * - BUILD_BUG_ON() can help prevent the buf from being truncated.
1963  *   Since the callers don't perform any return value checks, this safeguard is
1964  *   necessary.
1965  */
1966 #define get_task_comm(buf, tsk) ({			\
1967 	BUILD_BUG_ON(sizeof(buf) < TASK_COMM_LEN);	\
1968 	strscpy_pad(buf, (tsk)->comm);			\
1969 	buf;						\
1970 })
1971 
1972 #ifdef CONFIG_SMP
scheduler_ipi(void)1973 static __always_inline void scheduler_ipi(void)
1974 {
1975 	/*
1976 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1977 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1978 	 * this IPI.
1979 	 */
1980 	preempt_fold_need_resched();
1981 }
1982 #else
scheduler_ipi(void)1983 static inline void scheduler_ipi(void) { }
1984 #endif
1985 
1986 extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
1987 
1988 /*
1989  * Set thread flags in other task's structures.
1990  * See asm/thread_info.h for TIF_xxxx flags available:
1991  */
set_tsk_thread_flag(struct task_struct * tsk,int flag)1992 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1993 {
1994 	set_ti_thread_flag(task_thread_info(tsk), flag);
1995 }
1996 
clear_tsk_thread_flag(struct task_struct * tsk,int flag)1997 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1998 {
1999 	clear_ti_thread_flag(task_thread_info(tsk), flag);
2000 }
2001 
update_tsk_thread_flag(struct task_struct * tsk,int flag,bool value)2002 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
2003 					  bool value)
2004 {
2005 	update_ti_thread_flag(task_thread_info(tsk), flag, value);
2006 }
2007 
test_and_set_tsk_thread_flag(struct task_struct * tsk,int flag)2008 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2009 {
2010 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2011 }
2012 
test_and_clear_tsk_thread_flag(struct task_struct * tsk,int flag)2013 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2014 {
2015 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2016 }
2017 
test_tsk_thread_flag(struct task_struct * tsk,int flag)2018 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2019 {
2020 	return test_ti_thread_flag(task_thread_info(tsk), flag);
2021 }
2022 
set_tsk_need_resched(struct task_struct * tsk)2023 static inline void set_tsk_need_resched(struct task_struct *tsk)
2024 {
2025 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2026 }
2027 
clear_tsk_need_resched(struct task_struct * tsk)2028 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2029 {
2030 	atomic_long_andnot(_TIF_NEED_RESCHED | _TIF_NEED_RESCHED_LAZY,
2031 			   (atomic_long_t *)&task_thread_info(tsk)->flags);
2032 }
2033 
test_tsk_need_resched(struct task_struct * tsk)2034 static inline int test_tsk_need_resched(struct task_struct *tsk)
2035 {
2036 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2037 }
2038 
2039 /*
2040  * cond_resched() and cond_resched_lock(): latency reduction via
2041  * explicit rescheduling in places that are safe. The return
2042  * value indicates whether a reschedule was done in fact.
2043  * cond_resched_lock() will drop the spinlock before scheduling,
2044  */
2045 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2046 extern int __cond_resched(void);
2047 
2048 #if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
2049 
2050 void sched_dynamic_klp_enable(void);
2051 void sched_dynamic_klp_disable(void);
2052 
2053 DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2054 
_cond_resched(void)2055 static __always_inline int _cond_resched(void)
2056 {
2057 	return static_call_mod(cond_resched)();
2058 }
2059 
2060 #elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
2061 
2062 extern int dynamic_cond_resched(void);
2063 
_cond_resched(void)2064 static __always_inline int _cond_resched(void)
2065 {
2066 	return dynamic_cond_resched();
2067 }
2068 
2069 #else /* !CONFIG_PREEMPTION */
2070 
_cond_resched(void)2071 static inline int _cond_resched(void)
2072 {
2073 	klp_sched_try_switch();
2074 	return __cond_resched();
2075 }
2076 
2077 #endif /* PREEMPT_DYNAMIC && CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
2078 
2079 #else /* CONFIG_PREEMPTION && !CONFIG_PREEMPT_DYNAMIC */
2080 
_cond_resched(void)2081 static inline int _cond_resched(void)
2082 {
2083 	klp_sched_try_switch();
2084 	return 0;
2085 }
2086 
2087 #endif /* !CONFIG_PREEMPTION || CONFIG_PREEMPT_DYNAMIC */
2088 
2089 #define cond_resched() ({			\
2090 	__might_resched(__FILE__, __LINE__, 0);	\
2091 	_cond_resched();			\
2092 })
2093 
2094 extern int __cond_resched_lock(spinlock_t *lock);
2095 extern int __cond_resched_rwlock_read(rwlock_t *lock);
2096 extern int __cond_resched_rwlock_write(rwlock_t *lock);
2097 
2098 #define MIGHT_RESCHED_RCU_SHIFT		8
2099 #define MIGHT_RESCHED_PREEMPT_MASK	((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2100 
2101 #ifndef CONFIG_PREEMPT_RT
2102 /*
2103  * Non RT kernels have an elevated preempt count due to the held lock,
2104  * but are not allowed to be inside a RCU read side critical section
2105  */
2106 # define PREEMPT_LOCK_RESCHED_OFFSETS	PREEMPT_LOCK_OFFSET
2107 #else
2108 /*
2109  * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2110  * cond_resched*lock() has to take that into account because it checks for
2111  * preempt_count() and rcu_preempt_depth().
2112  */
2113 # define PREEMPT_LOCK_RESCHED_OFFSETS	\
2114 	(PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2115 #endif
2116 
2117 #define cond_resched_lock(lock) ({						\
2118 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2119 	__cond_resched_lock(lock);						\
2120 })
2121 
2122 #define cond_resched_rwlock_read(lock) ({					\
2123 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2124 	__cond_resched_rwlock_read(lock);					\
2125 })
2126 
2127 #define cond_resched_rwlock_write(lock) ({					\
2128 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2129 	__cond_resched_rwlock_write(lock);					\
2130 })
2131 
need_resched(void)2132 static __always_inline bool need_resched(void)
2133 {
2134 	return unlikely(tif_need_resched());
2135 }
2136 
2137 /*
2138  * Wrappers for p->thread_info->cpu access. No-op on UP.
2139  */
2140 #ifdef CONFIG_SMP
2141 
task_cpu(const struct task_struct * p)2142 static inline unsigned int task_cpu(const struct task_struct *p)
2143 {
2144 	return READ_ONCE(task_thread_info(p)->cpu);
2145 }
2146 
2147 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2148 
2149 #else
2150 
task_cpu(const struct task_struct * p)2151 static inline unsigned int task_cpu(const struct task_struct *p)
2152 {
2153 	return 0;
2154 }
2155 
set_task_cpu(struct task_struct * p,unsigned int cpu)2156 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2157 {
2158 }
2159 
2160 #endif /* CONFIG_SMP */
2161 
task_is_runnable(struct task_struct * p)2162 static inline bool task_is_runnable(struct task_struct *p)
2163 {
2164 	return p->on_rq && !p->se.sched_delayed;
2165 }
2166 
2167 extern bool sched_task_on_rq(struct task_struct *p);
2168 extern unsigned long get_wchan(struct task_struct *p);
2169 extern struct task_struct *cpu_curr_snapshot(int cpu);
2170 
2171 #include <linux/spinlock.h>
2172 
2173 /*
2174  * In order to reduce various lock holder preemption latencies provide an
2175  * interface to see if a vCPU is currently running or not.
2176  *
2177  * This allows us to terminate optimistic spin loops and block, analogous to
2178  * the native optimistic spin heuristic of testing if the lock owner task is
2179  * running or not.
2180  */
2181 #ifndef vcpu_is_preempted
vcpu_is_preempted(int cpu)2182 static inline bool vcpu_is_preempted(int cpu)
2183 {
2184 	return false;
2185 }
2186 #endif
2187 
2188 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2189 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2190 
2191 #ifndef TASK_SIZE_OF
2192 #define TASK_SIZE_OF(tsk)	TASK_SIZE
2193 #endif
2194 
2195 #ifdef CONFIG_SMP
owner_on_cpu(struct task_struct * owner)2196 static inline bool owner_on_cpu(struct task_struct *owner)
2197 {
2198 	/*
2199 	 * As lock holder preemption issue, we both skip spinning if
2200 	 * task is not on cpu or its cpu is preempted
2201 	 */
2202 	return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
2203 }
2204 
2205 /* Returns effective CPU energy utilization, as seen by the scheduler */
2206 unsigned long sched_cpu_util(int cpu);
2207 #endif /* CONFIG_SMP */
2208 
2209 #ifdef CONFIG_SCHED_CORE
2210 extern void sched_core_free(struct task_struct *tsk);
2211 extern void sched_core_fork(struct task_struct *p);
2212 extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2213 				unsigned long uaddr);
2214 extern int sched_core_idle_cpu(int cpu);
2215 #else
sched_core_free(struct task_struct * tsk)2216 static inline void sched_core_free(struct task_struct *tsk) { }
sched_core_fork(struct task_struct * p)2217 static inline void sched_core_fork(struct task_struct *p) { }
sched_core_idle_cpu(int cpu)2218 static inline int sched_core_idle_cpu(int cpu) { return idle_cpu(cpu); }
2219 #endif
2220 
2221 extern void sched_set_stop_task(int cpu, struct task_struct *stop);
2222 
2223 #ifdef CONFIG_MEM_ALLOC_PROFILING
alloc_tag_save(struct alloc_tag * tag)2224 static __always_inline struct alloc_tag *alloc_tag_save(struct alloc_tag *tag)
2225 {
2226 	swap(current->alloc_tag, tag);
2227 	return tag;
2228 }
2229 
alloc_tag_restore(struct alloc_tag * tag,struct alloc_tag * old)2230 static __always_inline void alloc_tag_restore(struct alloc_tag *tag, struct alloc_tag *old)
2231 {
2232 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
2233 	WARN(current->alloc_tag != tag, "current->alloc_tag was changed:\n");
2234 #endif
2235 	current->alloc_tag = old;
2236 }
2237 #else
2238 #define alloc_tag_save(_tag)			NULL
2239 #define alloc_tag_restore(_tag, _old)		do {} while (0)
2240 #endif
2241 
2242 #endif
2243