xref: /linux/kernel/events/core.c (revision d06bf78e55d5159c1b00072e606ab924ffbbad35)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Linutronix GmbH, Thomas Gleixner <tglx@kernel.org>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 #include <linux/task_work.h>
58 #include <linux/percpu-rwsem.h>
59 #include <linux/unwind_deferred.h>
60 
61 #include "internal.h"
62 
63 #include <asm/irq_regs.h>
64 
65 typedef int (*remote_function_f)(void *);
66 
67 struct remote_function_call {
68 	struct task_struct	*p;
69 	remote_function_f	func;
70 	void			*info;
71 	int			ret;
72 };
73 
74 static void remote_function(void *data)
75 {
76 	struct remote_function_call *tfc = data;
77 	struct task_struct *p = tfc->p;
78 
79 	if (p) {
80 		/* -EAGAIN */
81 		if (task_cpu(p) != smp_processor_id())
82 			return;
83 
84 		/*
85 		 * Now that we're on right CPU with IRQs disabled, we can test
86 		 * if we hit the right task without races.
87 		 */
88 
89 		tfc->ret = -ESRCH; /* No such (running) process */
90 		if (p != current)
91 			return;
92 	}
93 
94 	tfc->ret = tfc->func(tfc->info);
95 }
96 
97 /**
98  * task_function_call - call a function on the cpu on which a task runs
99  * @p:		the task to evaluate
100  * @func:	the function to be called
101  * @info:	the function call argument
102  *
103  * Calls the function @func when the task is currently running. This might
104  * be on the current CPU, which just calls the function directly.  This will
105  * retry due to any failures in smp_call_function_single(), such as if the
106  * task_cpu() goes offline concurrently.
107  *
108  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
109  */
110 static int
111 task_function_call(struct task_struct *p, remote_function_f func, void *info)
112 {
113 	struct remote_function_call data = {
114 		.p	= p,
115 		.func	= func,
116 		.info	= info,
117 		.ret	= -EAGAIN,
118 	};
119 	int ret;
120 
121 	for (;;) {
122 		ret = smp_call_function_single(task_cpu(p), remote_function,
123 					       &data, 1);
124 		if (!ret)
125 			ret = data.ret;
126 
127 		if (ret != -EAGAIN)
128 			break;
129 
130 		cond_resched();
131 	}
132 
133 	return ret;
134 }
135 
136 /**
137  * cpu_function_call - call a function on the cpu
138  * @cpu:	target cpu to queue this function
139  * @func:	the function to be called
140  * @info:	the function call argument
141  *
142  * Calls the function @func on the remote cpu.
143  *
144  * returns: @func return value or -ENXIO when the cpu is offline
145  */
146 static int cpu_function_call(int cpu, remote_function_f func, void *info)
147 {
148 	struct remote_function_call data = {
149 		.p	= NULL,
150 		.func	= func,
151 		.info	= info,
152 		.ret	= -ENXIO, /* No such CPU */
153 	};
154 
155 	smp_call_function_single(cpu, remote_function, &data, 1);
156 
157 	return data.ret;
158 }
159 
160 enum event_type_t {
161 	EVENT_FLEXIBLE	= 0x01,
162 	EVENT_PINNED	= 0x02,
163 	EVENT_TIME	= 0x04,
164 	EVENT_FROZEN	= 0x08,
165 	/* see ctx_resched() for details */
166 	EVENT_CPU	= 0x10,
167 	EVENT_CGROUP	= 0x20,
168 
169 	/* compound helpers */
170 	EVENT_ALL         = EVENT_FLEXIBLE | EVENT_PINNED,
171 	EVENT_TIME_FROZEN = EVENT_TIME | EVENT_FROZEN,
172 };
173 
174 static inline void __perf_ctx_lock(struct perf_event_context *ctx)
175 {
176 	raw_spin_lock(&ctx->lock);
177 	WARN_ON_ONCE(ctx->is_active & EVENT_FROZEN);
178 }
179 
180 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
181 			  struct perf_event_context *ctx)
182 {
183 	__perf_ctx_lock(&cpuctx->ctx);
184 	if (ctx)
185 		__perf_ctx_lock(ctx);
186 }
187 
188 static inline void __perf_ctx_unlock(struct perf_event_context *ctx)
189 {
190 	/*
191 	 * If ctx_sched_in() didn't again set any ALL flags, clean up
192 	 * after ctx_sched_out() by clearing is_active.
193 	 */
194 	if (ctx->is_active & EVENT_FROZEN) {
195 		if (!(ctx->is_active & EVENT_ALL))
196 			ctx->is_active = 0;
197 		else
198 			ctx->is_active &= ~EVENT_FROZEN;
199 	}
200 	raw_spin_unlock(&ctx->lock);
201 }
202 
203 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
204 			    struct perf_event_context *ctx)
205 {
206 	if (ctx)
207 		__perf_ctx_unlock(ctx);
208 	__perf_ctx_unlock(&cpuctx->ctx);
209 }
210 
211 typedef struct {
212 	struct perf_cpu_context *cpuctx;
213 	struct perf_event_context *ctx;
214 } class_perf_ctx_lock_t;
215 
216 static inline void class_perf_ctx_lock_destructor(class_perf_ctx_lock_t *_T)
217 { perf_ctx_unlock(_T->cpuctx, _T->ctx); }
218 
219 static inline class_perf_ctx_lock_t
220 class_perf_ctx_lock_constructor(struct perf_cpu_context *cpuctx,
221 				struct perf_event_context *ctx)
222 { perf_ctx_lock(cpuctx, ctx); return (class_perf_ctx_lock_t){ cpuctx, ctx }; }
223 
224 #define TASK_TOMBSTONE ((void *)-1L)
225 
226 static bool is_kernel_event(struct perf_event *event)
227 {
228 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
229 }
230 
231 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
232 
233 struct perf_event_context *perf_cpu_task_ctx(void)
234 {
235 	lockdep_assert_irqs_disabled();
236 	return this_cpu_ptr(&perf_cpu_context)->task_ctx;
237 }
238 
239 /*
240  * On task ctx scheduling...
241  *
242  * When !ctx->nr_events a task context will not be scheduled. This means
243  * we can disable the scheduler hooks (for performance) without leaving
244  * pending task ctx state.
245  *
246  * This however results in two special cases:
247  *
248  *  - removing the last event from a task ctx; this is relatively straight
249  *    forward and is done in __perf_remove_from_context.
250  *
251  *  - adding the first event to a task ctx; this is tricky because we cannot
252  *    rely on ctx->is_active and therefore cannot use event_function_call().
253  *    See perf_install_in_context().
254  *
255  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
256  */
257 
258 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
259 			struct perf_event_context *, void *);
260 
261 struct event_function_struct {
262 	struct perf_event *event;
263 	event_f func;
264 	void *data;
265 };
266 
267 static int event_function(void *info)
268 {
269 	struct event_function_struct *efs = info;
270 	struct perf_event *event = efs->event;
271 	struct perf_event_context *ctx = event->ctx;
272 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
273 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
274 	int ret = 0;
275 
276 	lockdep_assert_irqs_disabled();
277 
278 	perf_ctx_lock(cpuctx, task_ctx);
279 	/*
280 	 * Since we do the IPI call without holding ctx->lock things can have
281 	 * changed, double check we hit the task we set out to hit.
282 	 */
283 	if (ctx->task) {
284 		if (ctx->task != current) {
285 			ret = -ESRCH;
286 			goto unlock;
287 		}
288 
289 		/*
290 		 * We only use event_function_call() on established contexts,
291 		 * and event_function() is only ever called when active (or
292 		 * rather, we'll have bailed in task_function_call() or the
293 		 * above ctx->task != current test), therefore we must have
294 		 * ctx->is_active here.
295 		 */
296 		WARN_ON_ONCE(!ctx->is_active);
297 		/*
298 		 * And since we have ctx->is_active, cpuctx->task_ctx must
299 		 * match.
300 		 */
301 		WARN_ON_ONCE(task_ctx != ctx);
302 	} else {
303 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
304 	}
305 
306 	efs->func(event, cpuctx, ctx, efs->data);
307 unlock:
308 	perf_ctx_unlock(cpuctx, task_ctx);
309 
310 	return ret;
311 }
312 
313 static void event_function_call(struct perf_event *event, event_f func, void *data)
314 {
315 	struct perf_event_context *ctx = event->ctx;
316 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
317 	struct perf_cpu_context *cpuctx;
318 	struct event_function_struct efs = {
319 		.event = event,
320 		.func = func,
321 		.data = data,
322 	};
323 
324 	if (!event->parent) {
325 		/*
326 		 * If this is a !child event, we must hold ctx::mutex to
327 		 * stabilize the event->ctx relation. See
328 		 * perf_event_ctx_lock().
329 		 */
330 		lockdep_assert_held(&ctx->mutex);
331 	}
332 
333 	if (!task) {
334 		cpu_function_call(event->cpu, event_function, &efs);
335 		return;
336 	}
337 
338 	if (task == TASK_TOMBSTONE)
339 		return;
340 
341 again:
342 	if (!task_function_call(task, event_function, &efs))
343 		return;
344 
345 	local_irq_disable();
346 	cpuctx = this_cpu_ptr(&perf_cpu_context);
347 	perf_ctx_lock(cpuctx, ctx);
348 	/*
349 	 * Reload the task pointer, it might have been changed by
350 	 * a concurrent perf_event_context_sched_out().
351 	 */
352 	task = ctx->task;
353 	if (task == TASK_TOMBSTONE)
354 		goto unlock;
355 	if (ctx->is_active) {
356 		perf_ctx_unlock(cpuctx, ctx);
357 		local_irq_enable();
358 		goto again;
359 	}
360 	func(event, NULL, ctx, data);
361 unlock:
362 	perf_ctx_unlock(cpuctx, ctx);
363 	local_irq_enable();
364 }
365 
366 /*
367  * Similar to event_function_call() + event_function(), but hard assumes IRQs
368  * are already disabled and we're on the right CPU.
369  */
370 static void event_function_local(struct perf_event *event, event_f func, void *data)
371 {
372 	struct perf_event_context *ctx = event->ctx;
373 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
374 	struct task_struct *task = READ_ONCE(ctx->task);
375 	struct perf_event_context *task_ctx = NULL;
376 
377 	lockdep_assert_irqs_disabled();
378 
379 	if (task) {
380 		if (task == TASK_TOMBSTONE)
381 			return;
382 
383 		task_ctx = ctx;
384 	}
385 
386 	perf_ctx_lock(cpuctx, task_ctx);
387 
388 	task = ctx->task;
389 	if (task == TASK_TOMBSTONE)
390 		goto unlock;
391 
392 	if (task) {
393 		/*
394 		 * We must be either inactive or active and the right task,
395 		 * otherwise we're screwed, since we cannot IPI to somewhere
396 		 * else.
397 		 */
398 		if (ctx->is_active) {
399 			if (WARN_ON_ONCE(task != current))
400 				goto unlock;
401 
402 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
403 				goto unlock;
404 		}
405 	} else {
406 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
407 	}
408 
409 	func(event, cpuctx, ctx, data);
410 unlock:
411 	perf_ctx_unlock(cpuctx, task_ctx);
412 }
413 
414 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
415 		       PERF_FLAG_FD_OUTPUT  |\
416 		       PERF_FLAG_PID_CGROUP |\
417 		       PERF_FLAG_FD_CLOEXEC)
418 
419 /*
420  * branch priv levels that need permission checks
421  */
422 #define PERF_SAMPLE_BRANCH_PERM_PLM \
423 	(PERF_SAMPLE_BRANCH_KERNEL |\
424 	 PERF_SAMPLE_BRANCH_HV)
425 
426 /*
427  * perf_sched_events : >0 events exist
428  */
429 
430 static void perf_sched_delayed(struct work_struct *work);
431 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
432 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
433 static DEFINE_MUTEX(perf_sched_mutex);
434 static atomic_t perf_sched_count;
435 
436 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
437 
438 static atomic_t nr_mmap_events __read_mostly;
439 static atomic_t nr_comm_events __read_mostly;
440 static atomic_t nr_namespaces_events __read_mostly;
441 static atomic_t nr_task_events __read_mostly;
442 static atomic_t nr_freq_events __read_mostly;
443 static atomic_t nr_switch_events __read_mostly;
444 static atomic_t nr_ksymbol_events __read_mostly;
445 static atomic_t nr_bpf_events __read_mostly;
446 static atomic_t nr_cgroup_events __read_mostly;
447 static atomic_t nr_text_poke_events __read_mostly;
448 static atomic_t nr_build_id_events __read_mostly;
449 
450 static LIST_HEAD(pmus);
451 static DEFINE_MUTEX(pmus_lock);
452 static struct srcu_struct pmus_srcu;
453 static cpumask_var_t perf_online_mask;
454 static cpumask_var_t perf_online_core_mask;
455 static cpumask_var_t perf_online_die_mask;
456 static cpumask_var_t perf_online_cluster_mask;
457 static cpumask_var_t perf_online_pkg_mask;
458 static cpumask_var_t perf_online_sys_mask;
459 static struct kmem_cache *perf_event_cache;
460 
461 /*
462  * perf event paranoia level:
463  *  -1 - not paranoid at all
464  *   0 - disallow raw tracepoint access for unpriv
465  *   1 - disallow cpu events for unpriv
466  *   2 - disallow kernel profiling for unpriv
467  */
468 int sysctl_perf_event_paranoid __read_mostly = 2;
469 
470 /* Minimum for 512 kiB + 1 user control page. 'free' kiB per user. */
471 static int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024);
472 
473 /*
474  * max perf event sample rate
475  */
476 #define DEFAULT_MAX_SAMPLE_RATE		100000
477 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
478 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
479 
480 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
481 static int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
482 
483 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
484 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
485 
486 static int perf_sample_allowed_ns __read_mostly =
487 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
488 
489 static void update_perf_cpu_limits(void)
490 {
491 	u64 tmp = perf_sample_period_ns;
492 
493 	tmp *= sysctl_perf_cpu_time_max_percent;
494 	tmp = div_u64(tmp, 100);
495 	if (!tmp)
496 		tmp = 1;
497 
498 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
499 }
500 
501 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc);
502 
503 static int perf_event_max_sample_rate_handler(const struct ctl_table *table, int write,
504 				       void *buffer, size_t *lenp, loff_t *ppos)
505 {
506 	int ret;
507 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
508 	/*
509 	 * If throttling is disabled don't allow the write:
510 	 */
511 	if (write && (perf_cpu == 100 || perf_cpu == 0))
512 		return -EINVAL;
513 
514 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
515 	if (ret || !write)
516 		return ret;
517 
518 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
519 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
520 	update_perf_cpu_limits();
521 
522 	return 0;
523 }
524 
525 static int perf_cpu_time_max_percent_handler(const struct ctl_table *table, int write,
526 		void *buffer, size_t *lenp, loff_t *ppos)
527 {
528 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
529 
530 	if (ret || !write)
531 		return ret;
532 
533 	if (sysctl_perf_cpu_time_max_percent == 100 ||
534 	    sysctl_perf_cpu_time_max_percent == 0) {
535 		printk(KERN_WARNING
536 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
537 		WRITE_ONCE(perf_sample_allowed_ns, 0);
538 	} else {
539 		update_perf_cpu_limits();
540 	}
541 
542 	return 0;
543 }
544 
545 static const struct ctl_table events_core_sysctl_table[] = {
546 	/*
547 	 * User-space relies on this file as a feature check for
548 	 * perf_events being enabled. It's an ABI, do not remove!
549 	 */
550 	{
551 		.procname	= "perf_event_paranoid",
552 		.data		= &sysctl_perf_event_paranoid,
553 		.maxlen		= sizeof(sysctl_perf_event_paranoid),
554 		.mode		= 0644,
555 		.proc_handler	= proc_dointvec,
556 	},
557 	{
558 		.procname	= "perf_event_mlock_kb",
559 		.data		= &sysctl_perf_event_mlock,
560 		.maxlen		= sizeof(sysctl_perf_event_mlock),
561 		.mode		= 0644,
562 		.proc_handler	= proc_dointvec,
563 	},
564 	{
565 		.procname	= "perf_event_max_sample_rate",
566 		.data		= &sysctl_perf_event_sample_rate,
567 		.maxlen		= sizeof(sysctl_perf_event_sample_rate),
568 		.mode		= 0644,
569 		.proc_handler	= perf_event_max_sample_rate_handler,
570 		.extra1		= SYSCTL_ONE,
571 	},
572 	{
573 		.procname	= "perf_cpu_time_max_percent",
574 		.data		= &sysctl_perf_cpu_time_max_percent,
575 		.maxlen		= sizeof(sysctl_perf_cpu_time_max_percent),
576 		.mode		= 0644,
577 		.proc_handler	= perf_cpu_time_max_percent_handler,
578 		.extra1		= SYSCTL_ZERO,
579 		.extra2		= SYSCTL_ONE_HUNDRED,
580 	},
581 };
582 
583 static int __init init_events_core_sysctls(void)
584 {
585 	register_sysctl_init("kernel", events_core_sysctl_table);
586 	return 0;
587 }
588 core_initcall(init_events_core_sysctls);
589 
590 
591 /*
592  * perf samples are done in some very critical code paths (NMIs).
593  * If they take too much CPU time, the system can lock up and not
594  * get any real work done.  This will drop the sample rate when
595  * we detect that events are taking too long.
596  */
597 #define NR_ACCUMULATED_SAMPLES 128
598 static DEFINE_PER_CPU(u64, running_sample_length);
599 
600 static u64 __report_avg;
601 static u64 __report_allowed;
602 
603 static void perf_duration_warn(struct irq_work *w)
604 {
605 	printk_ratelimited(KERN_INFO
606 		"perf: interrupt took too long (%lld > %lld), lowering "
607 		"kernel.perf_event_max_sample_rate to %d\n",
608 		__report_avg, __report_allowed,
609 		sysctl_perf_event_sample_rate);
610 }
611 
612 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
613 
614 void perf_sample_event_took(u64 sample_len_ns)
615 {
616 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
617 	u64 running_len;
618 	u64 avg_len;
619 	u32 max;
620 
621 	if (max_len == 0)
622 		return;
623 
624 	/* Decay the counter by 1 average sample. */
625 	running_len = __this_cpu_read(running_sample_length);
626 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
627 	running_len += sample_len_ns;
628 	__this_cpu_write(running_sample_length, running_len);
629 
630 	/*
631 	 * Note: this will be biased artificially low until we have
632 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
633 	 * from having to maintain a count.
634 	 */
635 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
636 	if (avg_len <= max_len)
637 		return;
638 
639 	__report_avg = avg_len;
640 	__report_allowed = max_len;
641 
642 	/*
643 	 * Compute a throttle threshold 25% below the current duration.
644 	 */
645 	avg_len += avg_len / 4;
646 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
647 	if (avg_len < max)
648 		max /= (u32)avg_len;
649 	else
650 		max = 1;
651 
652 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
653 	WRITE_ONCE(max_samples_per_tick, max);
654 
655 	sysctl_perf_event_sample_rate = max * HZ;
656 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
657 
658 	if (!irq_work_queue(&perf_duration_work)) {
659 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
660 			     "kernel.perf_event_max_sample_rate to %d\n",
661 			     __report_avg, __report_allowed,
662 			     sysctl_perf_event_sample_rate);
663 	}
664 }
665 
666 static atomic64_t perf_event_id;
667 
668 static void update_context_time(struct perf_event_context *ctx);
669 static u64 perf_event_time(struct perf_event *event);
670 
671 void __weak perf_event_print_debug(void)	{ }
672 
673 static inline u64 perf_clock(void)
674 {
675 	return local_clock();
676 }
677 
678 static inline u64 perf_event_clock(struct perf_event *event)
679 {
680 	return event->clock();
681 }
682 
683 /*
684  * State based event timekeeping...
685  *
686  * The basic idea is to use event->state to determine which (if any) time
687  * fields to increment with the current delta. This means we only need to
688  * update timestamps when we change state or when they are explicitly requested
689  * (read).
690  *
691  * Event groups make things a little more complicated, but not terribly so. The
692  * rules for a group are that if the group leader is OFF the entire group is
693  * OFF, irrespective of what the group member states are. This results in
694  * __perf_effective_state().
695  *
696  * A further ramification is that when a group leader flips between OFF and
697  * !OFF, we need to update all group member times.
698  *
699  *
700  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
701  * need to make sure the relevant context time is updated before we try and
702  * update our timestamps.
703  */
704 
705 static __always_inline enum perf_event_state
706 __perf_effective_state(struct perf_event *event)
707 {
708 	struct perf_event *leader = event->group_leader;
709 
710 	if (leader->state <= PERF_EVENT_STATE_OFF)
711 		return leader->state;
712 
713 	return event->state;
714 }
715 
716 static __always_inline void
717 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
718 {
719 	enum perf_event_state state = __perf_effective_state(event);
720 	u64 delta = now - event->tstamp;
721 
722 	*enabled = event->total_time_enabled;
723 	if (state >= PERF_EVENT_STATE_INACTIVE)
724 		*enabled += delta;
725 
726 	*running = event->total_time_running;
727 	if (state >= PERF_EVENT_STATE_ACTIVE)
728 		*running += delta;
729 }
730 
731 static void perf_event_update_time(struct perf_event *event)
732 {
733 	u64 now = perf_event_time(event);
734 
735 	__perf_update_times(event, now, &event->total_time_enabled,
736 					&event->total_time_running);
737 	event->tstamp = now;
738 }
739 
740 static void perf_event_update_sibling_time(struct perf_event *leader)
741 {
742 	struct perf_event *sibling;
743 
744 	for_each_sibling_event(sibling, leader)
745 		perf_event_update_time(sibling);
746 }
747 
748 static void
749 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
750 {
751 	if (event->state == state)
752 		return;
753 
754 	perf_event_update_time(event);
755 	/*
756 	 * If a group leader gets enabled/disabled all its siblings
757 	 * are affected too.
758 	 */
759 	if ((event->state < 0) ^ (state < 0))
760 		perf_event_update_sibling_time(event);
761 
762 	WRITE_ONCE(event->state, state);
763 }
764 
765 /*
766  * UP store-release, load-acquire
767  */
768 
769 #define __store_release(ptr, val)					\
770 do {									\
771 	barrier();							\
772 	WRITE_ONCE(*(ptr), (val));					\
773 } while (0)
774 
775 #define __load_acquire(ptr)						\
776 ({									\
777 	__unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));	\
778 	barrier();							\
779 	___p;								\
780 })
781 
782 #define for_each_epc(_epc, _ctx, _pmu, _cgroup)				\
783 	list_for_each_entry(_epc, &((_ctx)->pmu_ctx_list), pmu_ctx_entry) \
784 		if (_cgroup && !_epc->nr_cgroups)			\
785 			continue;					\
786 		else if (_pmu && _epc->pmu != _pmu)			\
787 			continue;					\
788 		else
789 
790 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup)
791 {
792 	struct perf_event_pmu_context *pmu_ctx;
793 
794 	for_each_epc(pmu_ctx, ctx, NULL, cgroup)
795 		perf_pmu_disable(pmu_ctx->pmu);
796 }
797 
798 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup)
799 {
800 	struct perf_event_pmu_context *pmu_ctx;
801 
802 	for_each_epc(pmu_ctx, ctx, NULL, cgroup)
803 		perf_pmu_enable(pmu_ctx->pmu);
804 }
805 
806 static void ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type);
807 static void ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type);
808 
809 #ifdef CONFIG_CGROUP_PERF
810 
811 static inline bool
812 perf_cgroup_match(struct perf_event *event)
813 {
814 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
815 
816 	/* @event doesn't care about cgroup */
817 	if (!event->cgrp)
818 		return true;
819 
820 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
821 	if (!cpuctx->cgrp)
822 		return false;
823 
824 	/*
825 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
826 	 * also enabled for all its descendant cgroups.  If @cpuctx's
827 	 * cgroup is a descendant of @event's (the test covers identity
828 	 * case), it's a match.
829 	 */
830 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
831 				    event->cgrp->css.cgroup);
832 }
833 
834 static inline void perf_detach_cgroup(struct perf_event *event)
835 {
836 	css_put(&event->cgrp->css);
837 	event->cgrp = NULL;
838 }
839 
840 static inline int is_cgroup_event(struct perf_event *event)
841 {
842 	return event->cgrp != NULL;
843 }
844 
845 static inline u64 perf_cgroup_event_time(struct perf_event *event)
846 {
847 	struct perf_cgroup_info *t;
848 
849 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
850 	return t->time;
851 }
852 
853 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
854 {
855 	struct perf_cgroup_info *t;
856 
857 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
858 	if (!__load_acquire(&t->active))
859 		return t->time;
860 	now += READ_ONCE(t->timeoffset);
861 	return now;
862 }
863 
864 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
865 {
866 	if (adv)
867 		info->time += now - info->timestamp;
868 	info->timestamp = now;
869 	/*
870 	 * see update_context_time()
871 	 */
872 	WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
873 }
874 
875 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
876 {
877 	struct perf_cgroup *cgrp = cpuctx->cgrp;
878 	struct cgroup_subsys_state *css;
879 	struct perf_cgroup_info *info;
880 
881 	if (cgrp) {
882 		u64 now = perf_clock();
883 
884 		for (css = &cgrp->css; css; css = css->parent) {
885 			cgrp = container_of(css, struct perf_cgroup, css);
886 			info = this_cpu_ptr(cgrp->info);
887 
888 			__update_cgrp_time(info, now, true);
889 			if (final)
890 				__store_release(&info->active, 0);
891 		}
892 	}
893 }
894 
895 static inline void update_cgrp_time_from_event(struct perf_event *event)
896 {
897 	struct perf_cgroup_info *info;
898 
899 	/*
900 	 * ensure we access cgroup data only when needed and
901 	 * when we know the cgroup is pinned (css_get)
902 	 */
903 	if (!is_cgroup_event(event))
904 		return;
905 
906 	info = this_cpu_ptr(event->cgrp->info);
907 	/*
908 	 * Do not update time when cgroup is not active
909 	 */
910 	if (info->active)
911 		__update_cgrp_time(info, perf_clock(), true);
912 }
913 
914 static inline void
915 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
916 {
917 	struct perf_event_context *ctx = &cpuctx->ctx;
918 	struct perf_cgroup *cgrp = cpuctx->cgrp;
919 	struct perf_cgroup_info *info;
920 	struct cgroup_subsys_state *css;
921 
922 	/*
923 	 * ctx->lock held by caller
924 	 * ensure we do not access cgroup data
925 	 * unless we have the cgroup pinned (css_get)
926 	 */
927 	if (!cgrp)
928 		return;
929 
930 	WARN_ON_ONCE(!ctx->nr_cgroups);
931 
932 	for (css = &cgrp->css; css; css = css->parent) {
933 		cgrp = container_of(css, struct perf_cgroup, css);
934 		info = this_cpu_ptr(cgrp->info);
935 		__update_cgrp_time(info, ctx->timestamp, false);
936 		__store_release(&info->active, 1);
937 	}
938 }
939 
940 /*
941  * reschedule events based on the cgroup constraint of task.
942  */
943 static void perf_cgroup_switch(struct task_struct *task)
944 {
945 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
946 	struct perf_cgroup *cgrp;
947 
948 	/*
949 	 * cpuctx->cgrp is set when the first cgroup event enabled,
950 	 * and is cleared when the last cgroup event disabled.
951 	 */
952 	if (READ_ONCE(cpuctx->cgrp) == NULL)
953 		return;
954 
955 	cgrp = perf_cgroup_from_task(task, NULL);
956 	if (READ_ONCE(cpuctx->cgrp) == cgrp)
957 		return;
958 
959 	guard(perf_ctx_lock)(cpuctx, cpuctx->task_ctx);
960 	/*
961 	 * Re-check, could've raced vs perf_remove_from_context().
962 	 */
963 	if (READ_ONCE(cpuctx->cgrp) == NULL)
964 		return;
965 
966 	WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
967 
968 	perf_ctx_disable(&cpuctx->ctx, true);
969 
970 	ctx_sched_out(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP);
971 	/*
972 	 * must not be done before ctxswout due
973 	 * to update_cgrp_time_from_cpuctx() in
974 	 * ctx_sched_out()
975 	 */
976 	cpuctx->cgrp = cgrp;
977 	/*
978 	 * set cgrp before ctxsw in to allow
979 	 * perf_cgroup_set_timestamp() in ctx_sched_in()
980 	 * to not have to pass task around
981 	 */
982 	ctx_sched_in(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP);
983 
984 	perf_ctx_enable(&cpuctx->ctx, true);
985 }
986 
987 static int perf_cgroup_ensure_storage(struct perf_event *event,
988 				struct cgroup_subsys_state *css)
989 {
990 	struct perf_cpu_context *cpuctx;
991 	struct perf_event **storage;
992 	int cpu, heap_size, ret = 0;
993 
994 	/*
995 	 * Allow storage to have sufficient space for an iterator for each
996 	 * possibly nested cgroup plus an iterator for events with no cgroup.
997 	 */
998 	for (heap_size = 1; css; css = css->parent)
999 		heap_size++;
1000 
1001 	for_each_possible_cpu(cpu) {
1002 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
1003 		if (heap_size <= cpuctx->heap_size)
1004 			continue;
1005 
1006 		storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
1007 				       GFP_KERNEL, cpu_to_node(cpu));
1008 		if (!storage) {
1009 			ret = -ENOMEM;
1010 			break;
1011 		}
1012 
1013 		raw_spin_lock_irq(&cpuctx->ctx.lock);
1014 		if (cpuctx->heap_size < heap_size) {
1015 			swap(cpuctx->heap, storage);
1016 			if (storage == cpuctx->heap_default)
1017 				storage = NULL;
1018 			cpuctx->heap_size = heap_size;
1019 		}
1020 		raw_spin_unlock_irq(&cpuctx->ctx.lock);
1021 
1022 		kfree(storage);
1023 	}
1024 
1025 	return ret;
1026 }
1027 
1028 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
1029 				      struct perf_event_attr *attr,
1030 				      struct perf_event *group_leader)
1031 {
1032 	struct perf_cgroup *cgrp;
1033 	struct cgroup_subsys_state *css;
1034 	CLASS(fd, f)(fd);
1035 	int ret = 0;
1036 
1037 	if (fd_empty(f))
1038 		return -EBADF;
1039 
1040 	css = css_tryget_online_from_dir(fd_file(f)->f_path.dentry,
1041 					 &perf_event_cgrp_subsys);
1042 	if (IS_ERR(css))
1043 		return PTR_ERR(css);
1044 
1045 	ret = perf_cgroup_ensure_storage(event, css);
1046 	if (ret)
1047 		return ret;
1048 
1049 	cgrp = container_of(css, struct perf_cgroup, css);
1050 	event->cgrp = cgrp;
1051 
1052 	/*
1053 	 * all events in a group must monitor
1054 	 * the same cgroup because a task belongs
1055 	 * to only one perf cgroup at a time
1056 	 */
1057 	if (group_leader && group_leader->cgrp != cgrp) {
1058 		perf_detach_cgroup(event);
1059 		ret = -EINVAL;
1060 	}
1061 	return ret;
1062 }
1063 
1064 static inline void
1065 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1066 {
1067 	struct perf_cpu_context *cpuctx;
1068 
1069 	if (!is_cgroup_event(event))
1070 		return;
1071 
1072 	event->pmu_ctx->nr_cgroups++;
1073 
1074 	/*
1075 	 * Because cgroup events are always per-cpu events,
1076 	 * @ctx == &cpuctx->ctx.
1077 	 */
1078 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1079 
1080 	if (ctx->nr_cgroups++)
1081 		return;
1082 
1083 	cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
1084 }
1085 
1086 static inline void
1087 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1088 {
1089 	struct perf_cpu_context *cpuctx;
1090 
1091 	if (!is_cgroup_event(event))
1092 		return;
1093 
1094 	event->pmu_ctx->nr_cgroups--;
1095 
1096 	/*
1097 	 * Because cgroup events are always per-cpu events,
1098 	 * @ctx == &cpuctx->ctx.
1099 	 */
1100 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1101 
1102 	if (--ctx->nr_cgroups)
1103 		return;
1104 
1105 	cpuctx->cgrp = NULL;
1106 }
1107 
1108 #else /* !CONFIG_CGROUP_PERF */
1109 
1110 static inline bool
1111 perf_cgroup_match(struct perf_event *event)
1112 {
1113 	return true;
1114 }
1115 
1116 static inline void perf_detach_cgroup(struct perf_event *event)
1117 {}
1118 
1119 static inline int is_cgroup_event(struct perf_event *event)
1120 {
1121 	return 0;
1122 }
1123 
1124 static inline void update_cgrp_time_from_event(struct perf_event *event)
1125 {
1126 }
1127 
1128 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1129 						bool final)
1130 {
1131 }
1132 
1133 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1134 				      struct perf_event_attr *attr,
1135 				      struct perf_event *group_leader)
1136 {
1137 	return -EINVAL;
1138 }
1139 
1140 static inline void
1141 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1142 {
1143 }
1144 
1145 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1146 {
1147 	return 0;
1148 }
1149 
1150 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1151 {
1152 	return 0;
1153 }
1154 
1155 static inline void
1156 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1157 {
1158 }
1159 
1160 static inline void
1161 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1162 {
1163 }
1164 
1165 static void perf_cgroup_switch(struct task_struct *task)
1166 {
1167 }
1168 #endif
1169 
1170 /*
1171  * set default to be dependent on timer tick just
1172  * like original code
1173  */
1174 #define PERF_CPU_HRTIMER (1000 / HZ)
1175 /*
1176  * function must be called with interrupts disabled
1177  */
1178 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1179 {
1180 	struct perf_cpu_pmu_context *cpc;
1181 	bool rotations;
1182 
1183 	lockdep_assert_irqs_disabled();
1184 
1185 	cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer);
1186 	rotations = perf_rotate_context(cpc);
1187 
1188 	raw_spin_lock(&cpc->hrtimer_lock);
1189 	if (rotations)
1190 		hrtimer_forward_now(hr, cpc->hrtimer_interval);
1191 	else
1192 		cpc->hrtimer_active = 0;
1193 	raw_spin_unlock(&cpc->hrtimer_lock);
1194 
1195 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1196 }
1197 
1198 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu)
1199 {
1200 	struct hrtimer *timer = &cpc->hrtimer;
1201 	struct pmu *pmu = cpc->epc.pmu;
1202 	u64 interval;
1203 
1204 	/*
1205 	 * check default is sane, if not set then force to
1206 	 * default interval (1/tick)
1207 	 */
1208 	interval = pmu->hrtimer_interval_ms;
1209 	if (interval < 1)
1210 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1211 
1212 	cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1213 
1214 	raw_spin_lock_init(&cpc->hrtimer_lock);
1215 	hrtimer_setup(timer, perf_mux_hrtimer_handler, CLOCK_MONOTONIC,
1216 		      HRTIMER_MODE_ABS_PINNED_HARD);
1217 }
1218 
1219 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc)
1220 {
1221 	struct hrtimer *timer = &cpc->hrtimer;
1222 	unsigned long flags;
1223 
1224 	raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags);
1225 	if (!cpc->hrtimer_active) {
1226 		cpc->hrtimer_active = 1;
1227 		hrtimer_forward_now(timer, cpc->hrtimer_interval);
1228 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1229 	}
1230 	raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags);
1231 
1232 	return 0;
1233 }
1234 
1235 static int perf_mux_hrtimer_restart_ipi(void *arg)
1236 {
1237 	return perf_mux_hrtimer_restart(arg);
1238 }
1239 
1240 static __always_inline struct perf_cpu_pmu_context *this_cpc(struct pmu *pmu)
1241 {
1242 	return *this_cpu_ptr(pmu->cpu_pmu_context);
1243 }
1244 
1245 void perf_pmu_disable(struct pmu *pmu)
1246 {
1247 	int *count = &this_cpc(pmu)->pmu_disable_count;
1248 	if (!(*count)++)
1249 		pmu->pmu_disable(pmu);
1250 }
1251 
1252 void perf_pmu_enable(struct pmu *pmu)
1253 {
1254 	int *count = &this_cpc(pmu)->pmu_disable_count;
1255 	if (!--(*count))
1256 		pmu->pmu_enable(pmu);
1257 }
1258 
1259 static void perf_assert_pmu_disabled(struct pmu *pmu)
1260 {
1261 	int *count = &this_cpc(pmu)->pmu_disable_count;
1262 	WARN_ON_ONCE(*count == 0);
1263 }
1264 
1265 static inline void perf_pmu_read(struct perf_event *event)
1266 {
1267 	if (event->state == PERF_EVENT_STATE_ACTIVE)
1268 		event->pmu->read(event);
1269 }
1270 
1271 static void get_ctx(struct perf_event_context *ctx)
1272 {
1273 	refcount_inc(&ctx->refcount);
1274 }
1275 
1276 static void free_ctx(struct rcu_head *head)
1277 {
1278 	struct perf_event_context *ctx;
1279 
1280 	ctx = container_of(head, struct perf_event_context, rcu_head);
1281 	kfree(ctx);
1282 }
1283 
1284 static void put_ctx(struct perf_event_context *ctx)
1285 {
1286 	if (refcount_dec_and_test(&ctx->refcount)) {
1287 		if (ctx->parent_ctx)
1288 			put_ctx(ctx->parent_ctx);
1289 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1290 			put_task_struct(ctx->task);
1291 		call_rcu(&ctx->rcu_head, free_ctx);
1292 	} else {
1293 		smp_mb__after_atomic(); /* pairs with wait_var_event() */
1294 		if (ctx->task == TASK_TOMBSTONE)
1295 			wake_up_var(&ctx->refcount);
1296 	}
1297 }
1298 
1299 /*
1300  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1301  * perf_pmu_migrate_context() we need some magic.
1302  *
1303  * Those places that change perf_event::ctx will hold both
1304  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1305  *
1306  * Lock ordering is by mutex address. There are two other sites where
1307  * perf_event_context::mutex nests and those are:
1308  *
1309  *  - perf_event_exit_task_context()	[ child , 0 ]
1310  *      perf_event_exit_event()
1311  *        put_event()			[ parent, 1 ]
1312  *
1313  *  - perf_event_init_context()		[ parent, 0 ]
1314  *      inherit_task_group()
1315  *        inherit_group()
1316  *          inherit_event()
1317  *            perf_event_alloc()
1318  *              perf_init_event()
1319  *                perf_try_init_event()	[ child , 1 ]
1320  *
1321  * While it appears there is an obvious deadlock here -- the parent and child
1322  * nesting levels are inverted between the two. This is in fact safe because
1323  * life-time rules separate them. That is an exiting task cannot fork, and a
1324  * spawning task cannot (yet) exit.
1325  *
1326  * But remember that these are parent<->child context relations, and
1327  * migration does not affect children, therefore these two orderings should not
1328  * interact.
1329  *
1330  * The change in perf_event::ctx does not affect children (as claimed above)
1331  * because the sys_perf_event_open() case will install a new event and break
1332  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1333  * concerned with cpuctx and that doesn't have children.
1334  *
1335  * The places that change perf_event::ctx will issue:
1336  *
1337  *   perf_remove_from_context();
1338  *   synchronize_rcu();
1339  *   perf_install_in_context();
1340  *
1341  * to affect the change. The remove_from_context() + synchronize_rcu() should
1342  * quiesce the event, after which we can install it in the new location. This
1343  * means that only external vectors (perf_fops, prctl) can perturb the event
1344  * while in transit. Therefore all such accessors should also acquire
1345  * perf_event_context::mutex to serialize against this.
1346  *
1347  * However; because event->ctx can change while we're waiting to acquire
1348  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1349  * function.
1350  *
1351  * Lock order:
1352  *    exec_update_lock
1353  *	task_struct::perf_event_mutex
1354  *	  perf_event_context::mutex
1355  *	    perf_event::child_mutex;
1356  *	      perf_event_context::lock
1357  *	    mmap_lock
1358  *	      perf_event::mmap_mutex
1359  *	        perf_buffer::aux_mutex
1360  *	      perf_addr_filters_head::lock
1361  *
1362  *    cpu_hotplug_lock
1363  *      pmus_lock
1364  *	  cpuctx->mutex / perf_event_context::mutex
1365  */
1366 static struct perf_event_context *
1367 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1368 {
1369 	struct perf_event_context *ctx;
1370 
1371 again:
1372 	rcu_read_lock();
1373 	ctx = READ_ONCE(event->ctx);
1374 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1375 		rcu_read_unlock();
1376 		goto again;
1377 	}
1378 	rcu_read_unlock();
1379 
1380 	mutex_lock_nested(&ctx->mutex, nesting);
1381 	if (event->ctx != ctx) {
1382 		mutex_unlock(&ctx->mutex);
1383 		put_ctx(ctx);
1384 		goto again;
1385 	}
1386 
1387 	return ctx;
1388 }
1389 
1390 static inline struct perf_event_context *
1391 perf_event_ctx_lock(struct perf_event *event)
1392 {
1393 	return perf_event_ctx_lock_nested(event, 0);
1394 }
1395 
1396 static void perf_event_ctx_unlock(struct perf_event *event,
1397 				  struct perf_event_context *ctx)
1398 {
1399 	mutex_unlock(&ctx->mutex);
1400 	put_ctx(ctx);
1401 }
1402 
1403 /*
1404  * This must be done under the ctx->lock, such as to serialize against
1405  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1406  * calling scheduler related locks and ctx->lock nests inside those.
1407  */
1408 static __must_check struct perf_event_context *
1409 unclone_ctx(struct perf_event_context *ctx)
1410 {
1411 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1412 
1413 	lockdep_assert_held(&ctx->lock);
1414 
1415 	if (parent_ctx)
1416 		ctx->parent_ctx = NULL;
1417 	ctx->generation++;
1418 
1419 	return parent_ctx;
1420 }
1421 
1422 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1423 				enum pid_type type)
1424 {
1425 	u32 nr;
1426 	/*
1427 	 * only top level events have the pid namespace they were created in
1428 	 */
1429 	if (event->parent)
1430 		event = event->parent;
1431 
1432 	nr = __task_pid_nr_ns(p, type, event->ns);
1433 	/* avoid -1 if it is idle thread or runs in another ns */
1434 	if (!nr && !pid_alive(p))
1435 		nr = -1;
1436 	return nr;
1437 }
1438 
1439 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1440 {
1441 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1442 }
1443 
1444 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1445 {
1446 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1447 }
1448 
1449 /*
1450  * If we inherit events we want to return the parent event id
1451  * to userspace.
1452  */
1453 static u64 primary_event_id(struct perf_event *event)
1454 {
1455 	u64 id = event->id;
1456 
1457 	if (event->parent)
1458 		id = event->parent->id;
1459 
1460 	return id;
1461 }
1462 
1463 /*
1464  * Get the perf_event_context for a task and lock it.
1465  *
1466  * This has to cope with the fact that until it is locked,
1467  * the context could get moved to another task.
1468  */
1469 static struct perf_event_context *
1470 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
1471 {
1472 	struct perf_event_context *ctx;
1473 
1474 retry:
1475 	/*
1476 	 * One of the few rules of preemptible RCU is that one cannot do
1477 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1478 	 * part of the read side critical section was irqs-enabled -- see
1479 	 * rcu_read_unlock_special().
1480 	 *
1481 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1482 	 * side critical section has interrupts disabled.
1483 	 */
1484 	local_irq_save(*flags);
1485 	rcu_read_lock();
1486 	ctx = rcu_dereference(task->perf_event_ctxp);
1487 	if (ctx) {
1488 		/*
1489 		 * If this context is a clone of another, it might
1490 		 * get swapped for another underneath us by
1491 		 * perf_event_task_sched_out, though the
1492 		 * rcu_read_lock() protects us from any context
1493 		 * getting freed.  Lock the context and check if it
1494 		 * got swapped before we could get the lock, and retry
1495 		 * if so.  If we locked the right context, then it
1496 		 * can't get swapped on us any more.
1497 		 */
1498 		raw_spin_lock(&ctx->lock);
1499 		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
1500 			raw_spin_unlock(&ctx->lock);
1501 			rcu_read_unlock();
1502 			local_irq_restore(*flags);
1503 			goto retry;
1504 		}
1505 
1506 		if (ctx->task == TASK_TOMBSTONE ||
1507 		    !refcount_inc_not_zero(&ctx->refcount)) {
1508 			raw_spin_unlock(&ctx->lock);
1509 			ctx = NULL;
1510 		} else {
1511 			WARN_ON_ONCE(ctx->task != task);
1512 		}
1513 	}
1514 	rcu_read_unlock();
1515 	if (!ctx)
1516 		local_irq_restore(*flags);
1517 	return ctx;
1518 }
1519 
1520 /*
1521  * Get the context for a task and increment its pin_count so it
1522  * can't get swapped to another task.  This also increments its
1523  * reference count so that the context can't get freed.
1524  */
1525 static struct perf_event_context *
1526 perf_pin_task_context(struct task_struct *task)
1527 {
1528 	struct perf_event_context *ctx;
1529 	unsigned long flags;
1530 
1531 	ctx = perf_lock_task_context(task, &flags);
1532 	if (ctx) {
1533 		++ctx->pin_count;
1534 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1535 	}
1536 	return ctx;
1537 }
1538 
1539 static void perf_unpin_context(struct perf_event_context *ctx)
1540 {
1541 	unsigned long flags;
1542 
1543 	raw_spin_lock_irqsave(&ctx->lock, flags);
1544 	--ctx->pin_count;
1545 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1546 }
1547 
1548 /*
1549  * Update the record of the current time in a context.
1550  */
1551 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1552 {
1553 	u64 now = perf_clock();
1554 
1555 	lockdep_assert_held(&ctx->lock);
1556 
1557 	if (adv)
1558 		ctx->time += now - ctx->timestamp;
1559 	ctx->timestamp = now;
1560 
1561 	/*
1562 	 * The above: time' = time + (now - timestamp), can be re-arranged
1563 	 * into: time` = now + (time - timestamp), which gives a single value
1564 	 * offset to compute future time without locks on.
1565 	 *
1566 	 * See perf_event_time_now(), which can be used from NMI context where
1567 	 * it's (obviously) not possible to acquire ctx->lock in order to read
1568 	 * both the above values in a consistent manner.
1569 	 */
1570 	WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1571 }
1572 
1573 static void update_context_time(struct perf_event_context *ctx)
1574 {
1575 	__update_context_time(ctx, true);
1576 }
1577 
1578 static u64 perf_event_time(struct perf_event *event)
1579 {
1580 	struct perf_event_context *ctx = event->ctx;
1581 
1582 	if (unlikely(!ctx))
1583 		return 0;
1584 
1585 	if (is_cgroup_event(event))
1586 		return perf_cgroup_event_time(event);
1587 
1588 	return ctx->time;
1589 }
1590 
1591 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1592 {
1593 	struct perf_event_context *ctx = event->ctx;
1594 
1595 	if (unlikely(!ctx))
1596 		return 0;
1597 
1598 	if (is_cgroup_event(event))
1599 		return perf_cgroup_event_time_now(event, now);
1600 
1601 	if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1602 		return ctx->time;
1603 
1604 	now += READ_ONCE(ctx->timeoffset);
1605 	return now;
1606 }
1607 
1608 static enum event_type_t get_event_type(struct perf_event *event)
1609 {
1610 	struct perf_event_context *ctx = event->ctx;
1611 	enum event_type_t event_type;
1612 
1613 	lockdep_assert_held(&ctx->lock);
1614 
1615 	/*
1616 	 * It's 'group type', really, because if our group leader is
1617 	 * pinned, so are we.
1618 	 */
1619 	if (event->group_leader != event)
1620 		event = event->group_leader;
1621 
1622 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1623 	if (!ctx->task)
1624 		event_type |= EVENT_CPU;
1625 
1626 	return event_type;
1627 }
1628 
1629 /*
1630  * Helper function to initialize event group nodes.
1631  */
1632 static void init_event_group(struct perf_event *event)
1633 {
1634 	RB_CLEAR_NODE(&event->group_node);
1635 	event->group_index = 0;
1636 }
1637 
1638 /*
1639  * Extract pinned or flexible groups from the context
1640  * based on event attrs bits.
1641  */
1642 static struct perf_event_groups *
1643 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1644 {
1645 	if (event->attr.pinned)
1646 		return &ctx->pinned_groups;
1647 	else
1648 		return &ctx->flexible_groups;
1649 }
1650 
1651 /*
1652  * Helper function to initializes perf_event_group trees.
1653  */
1654 static void perf_event_groups_init(struct perf_event_groups *groups)
1655 {
1656 	groups->tree = RB_ROOT;
1657 	groups->index = 0;
1658 }
1659 
1660 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1661 {
1662 	struct cgroup *cgroup = NULL;
1663 
1664 #ifdef CONFIG_CGROUP_PERF
1665 	if (event->cgrp)
1666 		cgroup = event->cgrp->css.cgroup;
1667 #endif
1668 
1669 	return cgroup;
1670 }
1671 
1672 /*
1673  * Compare function for event groups;
1674  *
1675  * Implements complex key that first sorts by CPU and then by virtual index
1676  * which provides ordering when rotating groups for the same CPU.
1677  */
1678 static __always_inline int
1679 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu,
1680 		      const struct cgroup *left_cgroup, const u64 left_group_index,
1681 		      const struct perf_event *right)
1682 {
1683 	if (left_cpu < right->cpu)
1684 		return -1;
1685 	if (left_cpu > right->cpu)
1686 		return 1;
1687 
1688 	if (left_pmu) {
1689 		if (left_pmu < right->pmu_ctx->pmu)
1690 			return -1;
1691 		if (left_pmu > right->pmu_ctx->pmu)
1692 			return 1;
1693 	}
1694 
1695 #ifdef CONFIG_CGROUP_PERF
1696 	{
1697 		const struct cgroup *right_cgroup = event_cgroup(right);
1698 
1699 		if (left_cgroup != right_cgroup) {
1700 			if (!left_cgroup) {
1701 				/*
1702 				 * Left has no cgroup but right does, no
1703 				 * cgroups come first.
1704 				 */
1705 				return -1;
1706 			}
1707 			if (!right_cgroup) {
1708 				/*
1709 				 * Right has no cgroup but left does, no
1710 				 * cgroups come first.
1711 				 */
1712 				return 1;
1713 			}
1714 			/* Two dissimilar cgroups, order by id. */
1715 			if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1716 				return -1;
1717 
1718 			return 1;
1719 		}
1720 	}
1721 #endif
1722 
1723 	if (left_group_index < right->group_index)
1724 		return -1;
1725 	if (left_group_index > right->group_index)
1726 		return 1;
1727 
1728 	return 0;
1729 }
1730 
1731 #define __node_2_pe(node) \
1732 	rb_entry((node), struct perf_event, group_node)
1733 
1734 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1735 {
1736 	struct perf_event *e = __node_2_pe(a);
1737 	return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e),
1738 				     e->group_index, __node_2_pe(b)) < 0;
1739 }
1740 
1741 struct __group_key {
1742 	int cpu;
1743 	struct pmu *pmu;
1744 	struct cgroup *cgroup;
1745 };
1746 
1747 static inline int __group_cmp(const void *key, const struct rb_node *node)
1748 {
1749 	const struct __group_key *a = key;
1750 	const struct perf_event *b = __node_2_pe(node);
1751 
1752 	/* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */
1753 	return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b);
1754 }
1755 
1756 static inline int
1757 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node)
1758 {
1759 	const struct __group_key *a = key;
1760 	const struct perf_event *b = __node_2_pe(node);
1761 
1762 	/* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */
1763 	return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b),
1764 				     b->group_index, b);
1765 }
1766 
1767 /*
1768  * Insert @event into @groups' tree; using
1769  *   {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index}
1770  * as key. This places it last inside the {cpu,pmu,cgroup} subtree.
1771  */
1772 static void
1773 perf_event_groups_insert(struct perf_event_groups *groups,
1774 			 struct perf_event *event)
1775 {
1776 	event->group_index = ++groups->index;
1777 
1778 	rb_add(&event->group_node, &groups->tree, __group_less);
1779 }
1780 
1781 /*
1782  * Helper function to insert event into the pinned or flexible groups.
1783  */
1784 static void
1785 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1786 {
1787 	struct perf_event_groups *groups;
1788 
1789 	groups = get_event_groups(event, ctx);
1790 	perf_event_groups_insert(groups, event);
1791 }
1792 
1793 /*
1794  * Delete a group from a tree.
1795  */
1796 static void
1797 perf_event_groups_delete(struct perf_event_groups *groups,
1798 			 struct perf_event *event)
1799 {
1800 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1801 		     RB_EMPTY_ROOT(&groups->tree));
1802 
1803 	rb_erase(&event->group_node, &groups->tree);
1804 	init_event_group(event);
1805 }
1806 
1807 /*
1808  * Helper function to delete event from its groups.
1809  */
1810 static void
1811 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1812 {
1813 	struct perf_event_groups *groups;
1814 
1815 	groups = get_event_groups(event, ctx);
1816 	perf_event_groups_delete(groups, event);
1817 }
1818 
1819 /*
1820  * Get the leftmost event in the {cpu,pmu,cgroup} subtree.
1821  */
1822 static struct perf_event *
1823 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1824 			struct pmu *pmu, struct cgroup *cgrp)
1825 {
1826 	struct __group_key key = {
1827 		.cpu = cpu,
1828 		.pmu = pmu,
1829 		.cgroup = cgrp,
1830 	};
1831 	struct rb_node *node;
1832 
1833 	node = rb_find_first(&key, &groups->tree, __group_cmp);
1834 	if (node)
1835 		return __node_2_pe(node);
1836 
1837 	return NULL;
1838 }
1839 
1840 static struct perf_event *
1841 perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
1842 {
1843 	struct __group_key key = {
1844 		.cpu = event->cpu,
1845 		.pmu = pmu,
1846 		.cgroup = event_cgroup(event),
1847 	};
1848 	struct rb_node *next;
1849 
1850 	next = rb_next_match(&key, &event->group_node, __group_cmp);
1851 	if (next)
1852 		return __node_2_pe(next);
1853 
1854 	return NULL;
1855 }
1856 
1857 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu)		\
1858 	for (event = perf_event_groups_first(groups, cpu, pmu, NULL);	\
1859 	     event; event = perf_event_groups_next(event, pmu))
1860 
1861 /*
1862  * Iterate through the whole groups tree.
1863  */
1864 #define perf_event_groups_for_each(event, groups)			\
1865 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1866 				typeof(*event), group_node); event;	\
1867 		event = rb_entry_safe(rb_next(&event->group_node),	\
1868 				typeof(*event), group_node))
1869 
1870 /*
1871  * Does the event attribute request inherit with PERF_SAMPLE_READ
1872  */
1873 static inline bool has_inherit_and_sample_read(struct perf_event_attr *attr)
1874 {
1875 	return attr->inherit && (attr->sample_type & PERF_SAMPLE_READ);
1876 }
1877 
1878 /*
1879  * Add an event from the lists for its context.
1880  * Must be called with ctx->mutex and ctx->lock held.
1881  */
1882 static void
1883 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1884 {
1885 	lockdep_assert_held(&ctx->lock);
1886 
1887 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1888 	event->attach_state |= PERF_ATTACH_CONTEXT;
1889 
1890 	event->tstamp = perf_event_time(event);
1891 
1892 	/*
1893 	 * If we're a stand alone event or group leader, we go to the context
1894 	 * list, group events are kept attached to the group so that
1895 	 * perf_group_detach can, at all times, locate all siblings.
1896 	 */
1897 	if (event->group_leader == event) {
1898 		event->group_caps = event->event_caps;
1899 		add_event_to_groups(event, ctx);
1900 	}
1901 
1902 	list_add_rcu(&event->event_entry, &ctx->event_list);
1903 	ctx->nr_events++;
1904 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1905 		ctx->nr_user++;
1906 	if (event->attr.inherit_stat)
1907 		ctx->nr_stat++;
1908 	if (has_inherit_and_sample_read(&event->attr))
1909 		local_inc(&ctx->nr_no_switch_fast);
1910 
1911 	if (event->state > PERF_EVENT_STATE_OFF)
1912 		perf_cgroup_event_enable(event, ctx);
1913 
1914 	ctx->generation++;
1915 	event->pmu_ctx->nr_events++;
1916 }
1917 
1918 /*
1919  * Initialize event state based on the perf_event_attr::disabled.
1920  */
1921 static inline void perf_event__state_init(struct perf_event *event)
1922 {
1923 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1924 					      PERF_EVENT_STATE_INACTIVE;
1925 }
1926 
1927 static int __perf_event_read_size(u64 read_format, int nr_siblings)
1928 {
1929 	int entry = sizeof(u64); /* value */
1930 	int size = 0;
1931 	int nr = 1;
1932 
1933 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1934 		size += sizeof(u64);
1935 
1936 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1937 		size += sizeof(u64);
1938 
1939 	if (read_format & PERF_FORMAT_ID)
1940 		entry += sizeof(u64);
1941 
1942 	if (read_format & PERF_FORMAT_LOST)
1943 		entry += sizeof(u64);
1944 
1945 	if (read_format & PERF_FORMAT_GROUP) {
1946 		nr += nr_siblings;
1947 		size += sizeof(u64);
1948 	}
1949 
1950 	/*
1951 	 * Since perf_event_validate_size() limits this to 16k and inhibits
1952 	 * adding more siblings, this will never overflow.
1953 	 */
1954 	return size + nr * entry;
1955 }
1956 
1957 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1958 {
1959 	struct perf_sample_data *data;
1960 	u16 size = 0;
1961 
1962 	if (sample_type & PERF_SAMPLE_IP)
1963 		size += sizeof(data->ip);
1964 
1965 	if (sample_type & PERF_SAMPLE_ADDR)
1966 		size += sizeof(data->addr);
1967 
1968 	if (sample_type & PERF_SAMPLE_PERIOD)
1969 		size += sizeof(data->period);
1970 
1971 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1972 		size += sizeof(data->weight.full);
1973 
1974 	if (sample_type & PERF_SAMPLE_READ)
1975 		size += event->read_size;
1976 
1977 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1978 		size += sizeof(data->data_src.val);
1979 
1980 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1981 		size += sizeof(data->txn);
1982 
1983 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1984 		size += sizeof(data->phys_addr);
1985 
1986 	if (sample_type & PERF_SAMPLE_CGROUP)
1987 		size += sizeof(data->cgroup);
1988 
1989 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1990 		size += sizeof(data->data_page_size);
1991 
1992 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1993 		size += sizeof(data->code_page_size);
1994 
1995 	event->header_size = size;
1996 }
1997 
1998 /*
1999  * Called at perf_event creation and when events are attached/detached from a
2000  * group.
2001  */
2002 static void perf_event__header_size(struct perf_event *event)
2003 {
2004 	event->read_size =
2005 		__perf_event_read_size(event->attr.read_format,
2006 				       event->group_leader->nr_siblings);
2007 	__perf_event_header_size(event, event->attr.sample_type);
2008 }
2009 
2010 static void perf_event__id_header_size(struct perf_event *event)
2011 {
2012 	struct perf_sample_data *data;
2013 	u64 sample_type = event->attr.sample_type;
2014 	u16 size = 0;
2015 
2016 	if (sample_type & PERF_SAMPLE_TID)
2017 		size += sizeof(data->tid_entry);
2018 
2019 	if (sample_type & PERF_SAMPLE_TIME)
2020 		size += sizeof(data->time);
2021 
2022 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
2023 		size += sizeof(data->id);
2024 
2025 	if (sample_type & PERF_SAMPLE_ID)
2026 		size += sizeof(data->id);
2027 
2028 	if (sample_type & PERF_SAMPLE_STREAM_ID)
2029 		size += sizeof(data->stream_id);
2030 
2031 	if (sample_type & PERF_SAMPLE_CPU)
2032 		size += sizeof(data->cpu_entry);
2033 
2034 	event->id_header_size = size;
2035 }
2036 
2037 /*
2038  * Check that adding an event to the group does not result in anybody
2039  * overflowing the 64k event limit imposed by the output buffer.
2040  *
2041  * Specifically, check that the read_size for the event does not exceed 16k,
2042  * read_size being the one term that grows with groups size. Since read_size
2043  * depends on per-event read_format, also (re)check the existing events.
2044  *
2045  * This leaves 48k for the constant size fields and things like callchains,
2046  * branch stacks and register sets.
2047  */
2048 static bool perf_event_validate_size(struct perf_event *event)
2049 {
2050 	struct perf_event *sibling, *group_leader = event->group_leader;
2051 
2052 	if (__perf_event_read_size(event->attr.read_format,
2053 				   group_leader->nr_siblings + 1) > 16*1024)
2054 		return false;
2055 
2056 	if (__perf_event_read_size(group_leader->attr.read_format,
2057 				   group_leader->nr_siblings + 1) > 16*1024)
2058 		return false;
2059 
2060 	/*
2061 	 * When creating a new group leader, group_leader->ctx is initialized
2062 	 * after the size has been validated, but we cannot safely use
2063 	 * for_each_sibling_event() until group_leader->ctx is set. A new group
2064 	 * leader cannot have any siblings yet, so we can safely skip checking
2065 	 * the non-existent siblings.
2066 	 */
2067 	if (event == group_leader)
2068 		return true;
2069 
2070 	for_each_sibling_event(sibling, group_leader) {
2071 		if (__perf_event_read_size(sibling->attr.read_format,
2072 					   group_leader->nr_siblings + 1) > 16*1024)
2073 			return false;
2074 	}
2075 
2076 	return true;
2077 }
2078 
2079 static void perf_group_attach(struct perf_event *event)
2080 {
2081 	struct perf_event *group_leader = event->group_leader, *pos;
2082 
2083 	lockdep_assert_held(&event->ctx->lock);
2084 
2085 	/*
2086 	 * We can have double attach due to group movement (move_group) in
2087 	 * perf_event_open().
2088 	 */
2089 	if (event->attach_state & PERF_ATTACH_GROUP)
2090 		return;
2091 
2092 	event->attach_state |= PERF_ATTACH_GROUP;
2093 
2094 	if (group_leader == event)
2095 		return;
2096 
2097 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
2098 
2099 	group_leader->group_caps &= event->event_caps;
2100 
2101 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
2102 	group_leader->nr_siblings++;
2103 	group_leader->group_generation++;
2104 
2105 	perf_event__header_size(group_leader);
2106 
2107 	for_each_sibling_event(pos, group_leader)
2108 		perf_event__header_size(pos);
2109 }
2110 
2111 /*
2112  * Remove an event from the lists for its context.
2113  * Must be called with ctx->mutex and ctx->lock held.
2114  */
2115 static void
2116 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
2117 {
2118 	WARN_ON_ONCE(event->ctx != ctx);
2119 	lockdep_assert_held(&ctx->lock);
2120 
2121 	/*
2122 	 * We can have double detach due to exit/hot-unplug + close.
2123 	 */
2124 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2125 		return;
2126 
2127 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
2128 
2129 	ctx->nr_events--;
2130 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
2131 		ctx->nr_user--;
2132 	if (event->attr.inherit_stat)
2133 		ctx->nr_stat--;
2134 	if (has_inherit_and_sample_read(&event->attr))
2135 		local_dec(&ctx->nr_no_switch_fast);
2136 
2137 	list_del_rcu(&event->event_entry);
2138 
2139 	if (event->group_leader == event)
2140 		del_event_from_groups(event, ctx);
2141 
2142 	ctx->generation++;
2143 	event->pmu_ctx->nr_events--;
2144 }
2145 
2146 static int
2147 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2148 {
2149 	if (!has_aux(aux_event))
2150 		return 0;
2151 
2152 	if (!event->pmu->aux_output_match)
2153 		return 0;
2154 
2155 	return event->pmu->aux_output_match(aux_event);
2156 }
2157 
2158 static void put_event(struct perf_event *event);
2159 static void __event_disable(struct perf_event *event,
2160 			    struct perf_event_context *ctx,
2161 			    enum perf_event_state state);
2162 
2163 static void perf_put_aux_event(struct perf_event *event)
2164 {
2165 	struct perf_event_context *ctx = event->ctx;
2166 	struct perf_event *iter;
2167 
2168 	/*
2169 	 * If event uses aux_event tear down the link
2170 	 */
2171 	if (event->aux_event) {
2172 		iter = event->aux_event;
2173 		event->aux_event = NULL;
2174 		put_event(iter);
2175 		return;
2176 	}
2177 
2178 	/*
2179 	 * If the event is an aux_event, tear down all links to
2180 	 * it from other events.
2181 	 */
2182 	for_each_sibling_event(iter, event) {
2183 		if (iter->aux_event != event)
2184 			continue;
2185 
2186 		iter->aux_event = NULL;
2187 		put_event(event);
2188 
2189 		/*
2190 		 * If it's ACTIVE, schedule it out and put it into ERROR
2191 		 * state so that we don't try to schedule it again. Note
2192 		 * that perf_event_enable() will clear the ERROR status.
2193 		 */
2194 		__event_disable(iter, ctx, PERF_EVENT_STATE_ERROR);
2195 	}
2196 }
2197 
2198 static bool perf_need_aux_event(struct perf_event *event)
2199 {
2200 	return event->attr.aux_output || has_aux_action(event);
2201 }
2202 
2203 static int perf_get_aux_event(struct perf_event *event,
2204 			      struct perf_event *group_leader)
2205 {
2206 	/*
2207 	 * Our group leader must be an aux event if we want to be
2208 	 * an aux_output. This way, the aux event will precede its
2209 	 * aux_output events in the group, and therefore will always
2210 	 * schedule first.
2211 	 */
2212 	if (!group_leader)
2213 		return 0;
2214 
2215 	/*
2216 	 * aux_output and aux_sample_size are mutually exclusive.
2217 	 */
2218 	if (event->attr.aux_output && event->attr.aux_sample_size)
2219 		return 0;
2220 
2221 	if (event->attr.aux_output &&
2222 	    !perf_aux_output_match(event, group_leader))
2223 		return 0;
2224 
2225 	if ((event->attr.aux_pause || event->attr.aux_resume) &&
2226 	    !(group_leader->pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE))
2227 		return 0;
2228 
2229 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2230 		return 0;
2231 
2232 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
2233 		return 0;
2234 
2235 	/*
2236 	 * Link aux_outputs to their aux event; this is undone in
2237 	 * perf_group_detach() by perf_put_aux_event(). When the
2238 	 * group in torn down, the aux_output events loose their
2239 	 * link to the aux_event and can't schedule any more.
2240 	 */
2241 	event->aux_event = group_leader;
2242 
2243 	return 1;
2244 }
2245 
2246 static inline struct list_head *get_event_list(struct perf_event *event)
2247 {
2248 	return event->attr.pinned ? &event->pmu_ctx->pinned_active :
2249 				    &event->pmu_ctx->flexible_active;
2250 }
2251 
2252 static void perf_group_detach(struct perf_event *event)
2253 {
2254 	struct perf_event *leader = event->group_leader;
2255 	struct perf_event *sibling, *tmp;
2256 	struct perf_event_context *ctx = event->ctx;
2257 
2258 	lockdep_assert_held(&ctx->lock);
2259 
2260 	/*
2261 	 * We can have double detach due to exit/hot-unplug + close.
2262 	 */
2263 	if (!(event->attach_state & PERF_ATTACH_GROUP))
2264 		return;
2265 
2266 	event->attach_state &= ~PERF_ATTACH_GROUP;
2267 
2268 	perf_put_aux_event(event);
2269 
2270 	/*
2271 	 * If this is a sibling, remove it from its group.
2272 	 */
2273 	if (leader != event) {
2274 		list_del_init(&event->sibling_list);
2275 		event->group_leader->nr_siblings--;
2276 		event->group_leader->group_generation++;
2277 		goto out;
2278 	}
2279 
2280 	/*
2281 	 * If this was a group event with sibling events then
2282 	 * upgrade the siblings to singleton events by adding them
2283 	 * to whatever list we are on.
2284 	 */
2285 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2286 
2287 		/*
2288 		 * Events that have PERF_EV_CAP_SIBLING require being part of
2289 		 * a group and cannot exist on their own, schedule them out
2290 		 * and move them into the ERROR state. Also see
2291 		 * _perf_event_enable(), it will not be able to recover this
2292 		 * ERROR state.
2293 		 */
2294 		if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2295 			__event_disable(sibling, ctx, PERF_EVENT_STATE_ERROR);
2296 
2297 		sibling->group_leader = sibling;
2298 		list_del_init(&sibling->sibling_list);
2299 
2300 		/* Inherit group flags from the previous leader */
2301 		sibling->group_caps = event->group_caps;
2302 
2303 		if (sibling->attach_state & PERF_ATTACH_CONTEXT) {
2304 			add_event_to_groups(sibling, event->ctx);
2305 
2306 			if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2307 				list_add_tail(&sibling->active_list, get_event_list(sibling));
2308 		}
2309 
2310 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2311 	}
2312 
2313 out:
2314 	for_each_sibling_event(tmp, leader)
2315 		perf_event__header_size(tmp);
2316 
2317 	perf_event__header_size(leader);
2318 }
2319 
2320 static void perf_child_detach(struct perf_event *event)
2321 {
2322 	struct perf_event *parent_event = event->parent;
2323 
2324 	if (!(event->attach_state & PERF_ATTACH_CHILD))
2325 		return;
2326 
2327 	event->attach_state &= ~PERF_ATTACH_CHILD;
2328 
2329 	if (WARN_ON_ONCE(!parent_event))
2330 		return;
2331 
2332 	/*
2333 	 * Can't check this from an IPI, the holder is likey another CPU.
2334 	 *
2335 	lockdep_assert_held(&parent_event->child_mutex);
2336 	 */
2337 
2338 	list_del_init(&event->child_list);
2339 }
2340 
2341 static bool is_orphaned_event(struct perf_event *event)
2342 {
2343 	return event->state == PERF_EVENT_STATE_DEAD;
2344 }
2345 
2346 static inline int
2347 event_filter_match(struct perf_event *event)
2348 {
2349 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2350 	       perf_cgroup_match(event);
2351 }
2352 
2353 static inline bool is_event_in_freq_mode(struct perf_event *event)
2354 {
2355 	return event->attr.freq && event->attr.sample_freq;
2356 }
2357 
2358 static void
2359 event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
2360 {
2361 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2362 	struct perf_cpu_pmu_context *cpc = this_cpc(epc->pmu);
2363 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2364 
2365 	// XXX cpc serialization, probably per-cpu IRQ disabled
2366 
2367 	WARN_ON_ONCE(event->ctx != ctx);
2368 	lockdep_assert_held(&ctx->lock);
2369 
2370 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2371 		return;
2372 
2373 	/*
2374 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2375 	 * we can schedule events _OUT_ individually through things like
2376 	 * __perf_remove_from_context().
2377 	 */
2378 	list_del_init(&event->active_list);
2379 
2380 	perf_pmu_disable(event->pmu);
2381 
2382 	event->pmu->del(event, 0);
2383 	event->oncpu = -1;
2384 
2385 	if (event->pending_disable) {
2386 		event->pending_disable = 0;
2387 		perf_cgroup_event_disable(event, ctx);
2388 		state = PERF_EVENT_STATE_OFF;
2389 	}
2390 
2391 	perf_event_set_state(event, state);
2392 
2393 	if (!is_software_event(event))
2394 		cpc->active_oncpu--;
2395 	if (is_event_in_freq_mode(event)) {
2396 		ctx->nr_freq--;
2397 		epc->nr_freq--;
2398 	}
2399 	if (event->attr.exclusive || !cpc->active_oncpu)
2400 		cpc->exclusive = 0;
2401 
2402 	perf_pmu_enable(event->pmu);
2403 }
2404 
2405 static void
2406 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx)
2407 {
2408 	struct perf_event *event;
2409 
2410 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2411 		return;
2412 
2413 	perf_assert_pmu_disabled(group_event->pmu_ctx->pmu);
2414 
2415 	event_sched_out(group_event, ctx);
2416 
2417 	/*
2418 	 * Schedule out siblings (if any):
2419 	 */
2420 	for_each_sibling_event(event, group_event)
2421 		event_sched_out(event, ctx);
2422 }
2423 
2424 static inline void
2425 __ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx, bool final)
2426 {
2427 	if (ctx->is_active & EVENT_TIME) {
2428 		if (ctx->is_active & EVENT_FROZEN)
2429 			return;
2430 		update_context_time(ctx);
2431 		update_cgrp_time_from_cpuctx(cpuctx, final);
2432 	}
2433 }
2434 
2435 static inline void
2436 ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx)
2437 {
2438 	__ctx_time_update(cpuctx, ctx, false);
2439 }
2440 
2441 /*
2442  * To be used inside perf_ctx_lock() / perf_ctx_unlock(). Lasts until perf_ctx_unlock().
2443  */
2444 static inline void
2445 ctx_time_freeze(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx)
2446 {
2447 	ctx_time_update(cpuctx, ctx);
2448 	if (ctx->is_active & EVENT_TIME)
2449 		ctx->is_active |= EVENT_FROZEN;
2450 }
2451 
2452 static inline void
2453 ctx_time_update_event(struct perf_event_context *ctx, struct perf_event *event)
2454 {
2455 	if (ctx->is_active & EVENT_TIME) {
2456 		if (ctx->is_active & EVENT_FROZEN)
2457 			return;
2458 		update_context_time(ctx);
2459 		update_cgrp_time_from_event(event);
2460 	}
2461 }
2462 
2463 #define DETACH_GROUP	0x01UL
2464 #define DETACH_CHILD	0x02UL
2465 #define DETACH_EXIT	0x04UL
2466 #define DETACH_REVOKE	0x08UL
2467 #define DETACH_DEAD	0x10UL
2468 
2469 /*
2470  * Cross CPU call to remove a performance event
2471  *
2472  * We disable the event on the hardware level first. After that we
2473  * remove it from the context list.
2474  */
2475 static void
2476 __perf_remove_from_context(struct perf_event *event,
2477 			   struct perf_cpu_context *cpuctx,
2478 			   struct perf_event_context *ctx,
2479 			   void *info)
2480 {
2481 	struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
2482 	enum perf_event_state state = PERF_EVENT_STATE_OFF;
2483 	unsigned long flags = (unsigned long)info;
2484 
2485 	ctx_time_update(cpuctx, ctx);
2486 
2487 	/*
2488 	 * Ensure event_sched_out() switches to OFF, at the very least
2489 	 * this avoids raising perf_pending_task() at this time.
2490 	 */
2491 	if (flags & DETACH_EXIT)
2492 		state = PERF_EVENT_STATE_EXIT;
2493 	if (flags & DETACH_REVOKE)
2494 		state = PERF_EVENT_STATE_REVOKED;
2495 	if (flags & DETACH_DEAD)
2496 		state = PERF_EVENT_STATE_DEAD;
2497 
2498 	event_sched_out(event, ctx);
2499 
2500 	if (event->state > PERF_EVENT_STATE_OFF)
2501 		perf_cgroup_event_disable(event, ctx);
2502 
2503 	perf_event_set_state(event, min(event->state, state));
2504 
2505 	if (flags & DETACH_GROUP)
2506 		perf_group_detach(event);
2507 	if (flags & DETACH_CHILD)
2508 		perf_child_detach(event);
2509 	list_del_event(event, ctx);
2510 
2511 	if (!pmu_ctx->nr_events) {
2512 		pmu_ctx->rotate_necessary = 0;
2513 
2514 		if (ctx->task && ctx->is_active) {
2515 			struct perf_cpu_pmu_context *cpc = this_cpc(pmu_ctx->pmu);
2516 
2517 			WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
2518 			cpc->task_epc = NULL;
2519 		}
2520 	}
2521 
2522 	if (!ctx->nr_events && ctx->is_active) {
2523 		if (ctx == &cpuctx->ctx)
2524 			update_cgrp_time_from_cpuctx(cpuctx, true);
2525 
2526 		ctx->is_active = 0;
2527 		if (ctx->task) {
2528 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2529 			cpuctx->task_ctx = NULL;
2530 		}
2531 	}
2532 }
2533 
2534 /*
2535  * Remove the event from a task's (or a CPU's) list of events.
2536  *
2537  * If event->ctx is a cloned context, callers must make sure that
2538  * every task struct that event->ctx->task could possibly point to
2539  * remains valid.  This is OK when called from perf_release since
2540  * that only calls us on the top-level context, which can't be a clone.
2541  * When called from perf_event_exit_task, it's OK because the
2542  * context has been detached from its task.
2543  */
2544 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2545 {
2546 	struct perf_event_context *ctx = event->ctx;
2547 
2548 	lockdep_assert_held(&ctx->mutex);
2549 
2550 	/*
2551 	 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2552 	 * to work in the face of TASK_TOMBSTONE, unlike every other
2553 	 * event_function_call() user.
2554 	 */
2555 	raw_spin_lock_irq(&ctx->lock);
2556 	if (!ctx->is_active) {
2557 		__perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context),
2558 					   ctx, (void *)flags);
2559 		raw_spin_unlock_irq(&ctx->lock);
2560 		return;
2561 	}
2562 	raw_spin_unlock_irq(&ctx->lock);
2563 
2564 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2565 }
2566 
2567 static void __event_disable(struct perf_event *event,
2568 			    struct perf_event_context *ctx,
2569 			    enum perf_event_state state)
2570 {
2571 	event_sched_out(event, ctx);
2572 	perf_cgroup_event_disable(event, ctx);
2573 	perf_event_set_state(event, state);
2574 }
2575 
2576 /*
2577  * Cross CPU call to disable a performance event
2578  */
2579 static void __perf_event_disable(struct perf_event *event,
2580 				 struct perf_cpu_context *cpuctx,
2581 				 struct perf_event_context *ctx,
2582 				 void *info)
2583 {
2584 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2585 		return;
2586 
2587 	perf_pmu_disable(event->pmu_ctx->pmu);
2588 	ctx_time_update_event(ctx, event);
2589 
2590 	/*
2591 	 * When disabling a group leader, the whole group becomes ineligible
2592 	 * to run, so schedule out the full group.
2593 	 */
2594 	if (event == event->group_leader)
2595 		group_sched_out(event, ctx);
2596 
2597 	/*
2598 	 * But only mark the leader OFF; the siblings will remain
2599 	 * INACTIVE.
2600 	 */
2601 	__event_disable(event, ctx, PERF_EVENT_STATE_OFF);
2602 
2603 	perf_pmu_enable(event->pmu_ctx->pmu);
2604 }
2605 
2606 /*
2607  * Disable an event.
2608  *
2609  * If event->ctx is a cloned context, callers must make sure that
2610  * every task struct that event->ctx->task could possibly point to
2611  * remains valid.  This condition is satisfied when called through
2612  * perf_event_for_each_child or perf_event_for_each because they
2613  * hold the top-level event's child_mutex, so any descendant that
2614  * goes to exit will block in perf_event_exit_event().
2615  *
2616  * When called from perf_pending_disable it's OK because event->ctx
2617  * is the current context on this CPU and preemption is disabled,
2618  * hence we can't get into perf_event_task_sched_out for this context.
2619  */
2620 static void _perf_event_disable(struct perf_event *event)
2621 {
2622 	struct perf_event_context *ctx = event->ctx;
2623 
2624 	raw_spin_lock_irq(&ctx->lock);
2625 	if (event->state <= PERF_EVENT_STATE_OFF) {
2626 		raw_spin_unlock_irq(&ctx->lock);
2627 		return;
2628 	}
2629 	raw_spin_unlock_irq(&ctx->lock);
2630 
2631 	event_function_call(event, __perf_event_disable, NULL);
2632 }
2633 
2634 void perf_event_disable_local(struct perf_event *event)
2635 {
2636 	event_function_local(event, __perf_event_disable, NULL);
2637 }
2638 
2639 /*
2640  * Strictly speaking kernel users cannot create groups and therefore this
2641  * interface does not need the perf_event_ctx_lock() magic.
2642  */
2643 void perf_event_disable(struct perf_event *event)
2644 {
2645 	struct perf_event_context *ctx;
2646 
2647 	ctx = perf_event_ctx_lock(event);
2648 	_perf_event_disable(event);
2649 	perf_event_ctx_unlock(event, ctx);
2650 }
2651 EXPORT_SYMBOL_GPL(perf_event_disable);
2652 
2653 void perf_event_disable_inatomic(struct perf_event *event)
2654 {
2655 	event->pending_disable = 1;
2656 	irq_work_queue(&event->pending_disable_irq);
2657 }
2658 
2659 #define MAX_INTERRUPTS (~0ULL)
2660 
2661 static void perf_log_throttle(struct perf_event *event, int enable);
2662 static void perf_log_itrace_start(struct perf_event *event);
2663 
2664 static void perf_event_unthrottle(struct perf_event *event, bool start)
2665 {
2666 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2667 		return;
2668 
2669 	event->hw.interrupts = 0;
2670 	if (start)
2671 		event->pmu->start(event, 0);
2672 	if (event == event->group_leader)
2673 		perf_log_throttle(event, 1);
2674 }
2675 
2676 static void perf_event_throttle(struct perf_event *event)
2677 {
2678 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2679 		return;
2680 
2681 	event->hw.interrupts = MAX_INTERRUPTS;
2682 	event->pmu->stop(event, 0);
2683 	if (event == event->group_leader)
2684 		perf_log_throttle(event, 0);
2685 }
2686 
2687 static void perf_event_unthrottle_group(struct perf_event *event, bool skip_start_event)
2688 {
2689 	struct perf_event *sibling, *leader = event->group_leader;
2690 
2691 	perf_event_unthrottle(leader, skip_start_event ? leader != event : true);
2692 	for_each_sibling_event(sibling, leader)
2693 		perf_event_unthrottle(sibling, skip_start_event ? sibling != event : true);
2694 }
2695 
2696 static void perf_event_throttle_group(struct perf_event *event)
2697 {
2698 	struct perf_event *sibling, *leader = event->group_leader;
2699 
2700 	perf_event_throttle(leader);
2701 	for_each_sibling_event(sibling, leader)
2702 		perf_event_throttle(sibling);
2703 }
2704 
2705 static int
2706 event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
2707 {
2708 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2709 	struct perf_cpu_pmu_context *cpc = this_cpc(epc->pmu);
2710 	int ret = 0;
2711 
2712 	WARN_ON_ONCE(event->ctx != ctx);
2713 
2714 	lockdep_assert_held(&ctx->lock);
2715 
2716 	if (event->state <= PERF_EVENT_STATE_OFF)
2717 		return 0;
2718 
2719 	WRITE_ONCE(event->oncpu, smp_processor_id());
2720 	/*
2721 	 * Order event::oncpu write to happen before the ACTIVE state is
2722 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2723 	 * ->oncpu if it sees ACTIVE.
2724 	 */
2725 	smp_wmb();
2726 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2727 
2728 	/*
2729 	 * Unthrottle events, since we scheduled we might have missed several
2730 	 * ticks already, also for a heavily scheduling task there is little
2731 	 * guarantee it'll get a tick in a timely manner.
2732 	 */
2733 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS))
2734 		perf_event_unthrottle(event, false);
2735 
2736 	perf_pmu_disable(event->pmu);
2737 
2738 	perf_log_itrace_start(event);
2739 
2740 	if (event->pmu->add(event, PERF_EF_START)) {
2741 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2742 		event->oncpu = -1;
2743 		ret = -EAGAIN;
2744 		goto out;
2745 	}
2746 
2747 	if (!is_software_event(event))
2748 		cpc->active_oncpu++;
2749 	if (is_event_in_freq_mode(event)) {
2750 		ctx->nr_freq++;
2751 		epc->nr_freq++;
2752 	}
2753 	if (event->attr.exclusive)
2754 		cpc->exclusive = 1;
2755 
2756 out:
2757 	perf_pmu_enable(event->pmu);
2758 
2759 	return ret;
2760 }
2761 
2762 static int
2763 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx)
2764 {
2765 	struct perf_event *event, *partial_group = NULL;
2766 	struct pmu *pmu = group_event->pmu_ctx->pmu;
2767 
2768 	if (group_event->state == PERF_EVENT_STATE_OFF)
2769 		return 0;
2770 
2771 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2772 
2773 	if (event_sched_in(group_event, ctx))
2774 		goto error;
2775 
2776 	/*
2777 	 * Schedule in siblings as one group (if any):
2778 	 */
2779 	for_each_sibling_event(event, group_event) {
2780 		if (event_sched_in(event, ctx)) {
2781 			partial_group = event;
2782 			goto group_error;
2783 		}
2784 	}
2785 
2786 	if (!pmu->commit_txn(pmu))
2787 		return 0;
2788 
2789 group_error:
2790 	/*
2791 	 * Groups can be scheduled in as one unit only, so undo any
2792 	 * partial group before returning:
2793 	 * The events up to the failed event are scheduled out normally.
2794 	 */
2795 	for_each_sibling_event(event, group_event) {
2796 		if (event == partial_group)
2797 			break;
2798 
2799 		event_sched_out(event, ctx);
2800 	}
2801 	event_sched_out(group_event, ctx);
2802 
2803 error:
2804 	pmu->cancel_txn(pmu);
2805 	return -EAGAIN;
2806 }
2807 
2808 /*
2809  * Work out whether we can put this event group on the CPU now.
2810  */
2811 static int group_can_go_on(struct perf_event *event, int can_add_hw)
2812 {
2813 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2814 	struct perf_cpu_pmu_context *cpc = this_cpc(epc->pmu);
2815 
2816 	/*
2817 	 * Groups consisting entirely of software events can always go on.
2818 	 */
2819 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2820 		return 1;
2821 	/*
2822 	 * If an exclusive group is already on, no other hardware
2823 	 * events can go on.
2824 	 */
2825 	if (cpc->exclusive)
2826 		return 0;
2827 	/*
2828 	 * If this group is exclusive and there are already
2829 	 * events on the CPU, it can't go on.
2830 	 */
2831 	if (event->attr.exclusive && !list_empty(get_event_list(event)))
2832 		return 0;
2833 	/*
2834 	 * Otherwise, try to add it if all previous groups were able
2835 	 * to go on.
2836 	 */
2837 	return can_add_hw;
2838 }
2839 
2840 static void add_event_to_ctx(struct perf_event *event,
2841 			       struct perf_event_context *ctx)
2842 {
2843 	list_add_event(event, ctx);
2844 	perf_group_attach(event);
2845 }
2846 
2847 static void task_ctx_sched_out(struct perf_event_context *ctx,
2848 			       struct pmu *pmu,
2849 			       enum event_type_t event_type)
2850 {
2851 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2852 
2853 	if (!cpuctx->task_ctx)
2854 		return;
2855 
2856 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2857 		return;
2858 
2859 	ctx_sched_out(ctx, pmu, event_type);
2860 }
2861 
2862 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2863 				struct perf_event_context *ctx,
2864 				struct pmu *pmu)
2865 {
2866 	ctx_sched_in(&cpuctx->ctx, pmu, EVENT_PINNED);
2867 	if (ctx)
2868 		 ctx_sched_in(ctx, pmu, EVENT_PINNED);
2869 	ctx_sched_in(&cpuctx->ctx, pmu, EVENT_FLEXIBLE);
2870 	if (ctx)
2871 		 ctx_sched_in(ctx, pmu, EVENT_FLEXIBLE);
2872 }
2873 
2874 /*
2875  * We want to maintain the following priority of scheduling:
2876  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2877  *  - task pinned (EVENT_PINNED)
2878  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2879  *  - task flexible (EVENT_FLEXIBLE).
2880  *
2881  * In order to avoid unscheduling and scheduling back in everything every
2882  * time an event is added, only do it for the groups of equal priority and
2883  * below.
2884  *
2885  * This can be called after a batch operation on task events, in which case
2886  * event_type is a bit mask of the types of events involved. For CPU events,
2887  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2888  */
2889 static void ctx_resched(struct perf_cpu_context *cpuctx,
2890 			struct perf_event_context *task_ctx,
2891 			struct pmu *pmu, enum event_type_t event_type)
2892 {
2893 	bool cpu_event = !!(event_type & EVENT_CPU);
2894 	struct perf_event_pmu_context *epc;
2895 
2896 	/*
2897 	 * If pinned groups are involved, flexible groups also need to be
2898 	 * scheduled out.
2899 	 */
2900 	if (event_type & EVENT_PINNED)
2901 		event_type |= EVENT_FLEXIBLE;
2902 
2903 	event_type &= EVENT_ALL;
2904 
2905 	for_each_epc(epc, &cpuctx->ctx, pmu, false)
2906 		perf_pmu_disable(epc->pmu);
2907 
2908 	if (task_ctx) {
2909 		for_each_epc(epc, task_ctx, pmu, false)
2910 			perf_pmu_disable(epc->pmu);
2911 
2912 		task_ctx_sched_out(task_ctx, pmu, event_type);
2913 	}
2914 
2915 	/*
2916 	 * Decide which cpu ctx groups to schedule out based on the types
2917 	 * of events that caused rescheduling:
2918 	 *  - EVENT_CPU: schedule out corresponding groups;
2919 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2920 	 *  - otherwise, do nothing more.
2921 	 */
2922 	if (cpu_event)
2923 		ctx_sched_out(&cpuctx->ctx, pmu, event_type);
2924 	else if (event_type & EVENT_PINNED)
2925 		ctx_sched_out(&cpuctx->ctx, pmu, EVENT_FLEXIBLE);
2926 
2927 	perf_event_sched_in(cpuctx, task_ctx, pmu);
2928 
2929 	for_each_epc(epc, &cpuctx->ctx, pmu, false)
2930 		perf_pmu_enable(epc->pmu);
2931 
2932 	if (task_ctx) {
2933 		for_each_epc(epc, task_ctx, pmu, false)
2934 			perf_pmu_enable(epc->pmu);
2935 	}
2936 }
2937 
2938 void perf_pmu_resched(struct pmu *pmu)
2939 {
2940 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2941 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2942 
2943 	perf_ctx_lock(cpuctx, task_ctx);
2944 	ctx_resched(cpuctx, task_ctx, pmu, EVENT_ALL|EVENT_CPU);
2945 	perf_ctx_unlock(cpuctx, task_ctx);
2946 }
2947 
2948 /*
2949  * Cross CPU call to install and enable a performance event
2950  *
2951  * Very similar to remote_function() + event_function() but cannot assume that
2952  * things like ctx->is_active and cpuctx->task_ctx are set.
2953  */
2954 static int  __perf_install_in_context(void *info)
2955 {
2956 	struct perf_event *event = info;
2957 	struct perf_event_context *ctx = event->ctx;
2958 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2959 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2960 	bool reprogram = true;
2961 	int ret = 0;
2962 
2963 	raw_spin_lock(&cpuctx->ctx.lock);
2964 	if (ctx->task) {
2965 		raw_spin_lock(&ctx->lock);
2966 		task_ctx = ctx;
2967 
2968 		reprogram = (ctx->task == current);
2969 
2970 		/*
2971 		 * If the task is running, it must be running on this CPU,
2972 		 * otherwise we cannot reprogram things.
2973 		 *
2974 		 * If its not running, we don't care, ctx->lock will
2975 		 * serialize against it becoming runnable.
2976 		 */
2977 		if (task_curr(ctx->task) && !reprogram) {
2978 			ret = -ESRCH;
2979 			goto unlock;
2980 		}
2981 
2982 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2983 	} else if (task_ctx) {
2984 		raw_spin_lock(&task_ctx->lock);
2985 	}
2986 
2987 #ifdef CONFIG_CGROUP_PERF
2988 	if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2989 		/*
2990 		 * If the current cgroup doesn't match the event's
2991 		 * cgroup, we should not try to schedule it.
2992 		 */
2993 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2994 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2995 					event->cgrp->css.cgroup);
2996 	}
2997 #endif
2998 
2999 	if (reprogram) {
3000 		ctx_time_freeze(cpuctx, ctx);
3001 		add_event_to_ctx(event, ctx);
3002 		ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu,
3003 			    get_event_type(event));
3004 	} else {
3005 		add_event_to_ctx(event, ctx);
3006 	}
3007 
3008 unlock:
3009 	perf_ctx_unlock(cpuctx, task_ctx);
3010 
3011 	return ret;
3012 }
3013 
3014 static bool exclusive_event_installable(struct perf_event *event,
3015 					struct perf_event_context *ctx);
3016 
3017 /*
3018  * Attach a performance event to a context.
3019  *
3020  * Very similar to event_function_call, see comment there.
3021  */
3022 static void
3023 perf_install_in_context(struct perf_event_context *ctx,
3024 			struct perf_event *event,
3025 			int cpu)
3026 {
3027 	struct task_struct *task = READ_ONCE(ctx->task);
3028 
3029 	lockdep_assert_held(&ctx->mutex);
3030 
3031 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
3032 
3033 	if (event->cpu != -1)
3034 		WARN_ON_ONCE(event->cpu != cpu);
3035 
3036 	/*
3037 	 * Ensures that if we can observe event->ctx, both the event and ctx
3038 	 * will be 'complete'. See perf_iterate_sb_cpu().
3039 	 */
3040 	smp_store_release(&event->ctx, ctx);
3041 
3042 	/*
3043 	 * perf_event_attr::disabled events will not run and can be initialized
3044 	 * without IPI. Except when this is the first event for the context, in
3045 	 * that case we need the magic of the IPI to set ctx->is_active.
3046 	 *
3047 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
3048 	 * event will issue the IPI and reprogram the hardware.
3049 	 */
3050 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
3051 	    ctx->nr_events && !is_cgroup_event(event)) {
3052 		raw_spin_lock_irq(&ctx->lock);
3053 		if (ctx->task == TASK_TOMBSTONE) {
3054 			raw_spin_unlock_irq(&ctx->lock);
3055 			return;
3056 		}
3057 		add_event_to_ctx(event, ctx);
3058 		raw_spin_unlock_irq(&ctx->lock);
3059 		return;
3060 	}
3061 
3062 	if (!task) {
3063 		cpu_function_call(cpu, __perf_install_in_context, event);
3064 		return;
3065 	}
3066 
3067 	/*
3068 	 * Should not happen, we validate the ctx is still alive before calling.
3069 	 */
3070 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
3071 		return;
3072 
3073 	/*
3074 	 * Installing events is tricky because we cannot rely on ctx->is_active
3075 	 * to be set in case this is the nr_events 0 -> 1 transition.
3076 	 *
3077 	 * Instead we use task_curr(), which tells us if the task is running.
3078 	 * However, since we use task_curr() outside of rq::lock, we can race
3079 	 * against the actual state. This means the result can be wrong.
3080 	 *
3081 	 * If we get a false positive, we retry, this is harmless.
3082 	 *
3083 	 * If we get a false negative, things are complicated. If we are after
3084 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
3085 	 * value must be correct. If we're before, it doesn't matter since
3086 	 * perf_event_context_sched_in() will program the counter.
3087 	 *
3088 	 * However, this hinges on the remote context switch having observed
3089 	 * our task->perf_event_ctxp[] store, such that it will in fact take
3090 	 * ctx::lock in perf_event_context_sched_in().
3091 	 *
3092 	 * We do this by task_function_call(), if the IPI fails to hit the task
3093 	 * we know any future context switch of task must see the
3094 	 * perf_event_ctpx[] store.
3095 	 */
3096 
3097 	/*
3098 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
3099 	 * task_cpu() load, such that if the IPI then does not find the task
3100 	 * running, a future context switch of that task must observe the
3101 	 * store.
3102 	 */
3103 	smp_mb();
3104 again:
3105 	if (!task_function_call(task, __perf_install_in_context, event))
3106 		return;
3107 
3108 	raw_spin_lock_irq(&ctx->lock);
3109 	task = ctx->task;
3110 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
3111 		/*
3112 		 * Cannot happen because we already checked above (which also
3113 		 * cannot happen), and we hold ctx->mutex, which serializes us
3114 		 * against perf_event_exit_task_context().
3115 		 */
3116 		raw_spin_unlock_irq(&ctx->lock);
3117 		return;
3118 	}
3119 	/*
3120 	 * If the task is not running, ctx->lock will avoid it becoming so,
3121 	 * thus we can safely install the event.
3122 	 */
3123 	if (task_curr(task)) {
3124 		raw_spin_unlock_irq(&ctx->lock);
3125 		goto again;
3126 	}
3127 	add_event_to_ctx(event, ctx);
3128 	raw_spin_unlock_irq(&ctx->lock);
3129 }
3130 
3131 /*
3132  * Cross CPU call to enable a performance event
3133  */
3134 static void __perf_event_enable(struct perf_event *event,
3135 				struct perf_cpu_context *cpuctx,
3136 				struct perf_event_context *ctx,
3137 				void *info)
3138 {
3139 	struct perf_event *leader = event->group_leader;
3140 	struct perf_event_context *task_ctx;
3141 
3142 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3143 	    event->state <= PERF_EVENT_STATE_ERROR)
3144 		return;
3145 
3146 	ctx_time_freeze(cpuctx, ctx);
3147 
3148 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3149 	perf_cgroup_event_enable(event, ctx);
3150 
3151 	if (!ctx->is_active)
3152 		return;
3153 
3154 	if (!event_filter_match(event))
3155 		return;
3156 
3157 	/*
3158 	 * If the event is in a group and isn't the group leader,
3159 	 * then don't put it on unless the group is on.
3160 	 */
3161 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
3162 		return;
3163 
3164 	task_ctx = cpuctx->task_ctx;
3165 	if (ctx->task)
3166 		WARN_ON_ONCE(task_ctx != ctx);
3167 
3168 	ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu, get_event_type(event));
3169 }
3170 
3171 /*
3172  * Enable an event.
3173  *
3174  * If event->ctx is a cloned context, callers must make sure that
3175  * every task struct that event->ctx->task could possibly point to
3176  * remains valid.  This condition is satisfied when called through
3177  * perf_event_for_each_child or perf_event_for_each as described
3178  * for perf_event_disable.
3179  */
3180 static void _perf_event_enable(struct perf_event *event)
3181 {
3182 	struct perf_event_context *ctx = event->ctx;
3183 
3184 	raw_spin_lock_irq(&ctx->lock);
3185 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3186 	    event->state <  PERF_EVENT_STATE_ERROR) {
3187 out:
3188 		raw_spin_unlock_irq(&ctx->lock);
3189 		return;
3190 	}
3191 
3192 	/*
3193 	 * If the event is in error state, clear that first.
3194 	 *
3195 	 * That way, if we see the event in error state below, we know that it
3196 	 * has gone back into error state, as distinct from the task having
3197 	 * been scheduled away before the cross-call arrived.
3198 	 */
3199 	if (event->state == PERF_EVENT_STATE_ERROR) {
3200 		/*
3201 		 * Detached SIBLING events cannot leave ERROR state.
3202 		 */
3203 		if (event->event_caps & PERF_EV_CAP_SIBLING &&
3204 		    event->group_leader == event)
3205 			goto out;
3206 
3207 		event->state = PERF_EVENT_STATE_OFF;
3208 	}
3209 	raw_spin_unlock_irq(&ctx->lock);
3210 
3211 	event_function_call(event, __perf_event_enable, NULL);
3212 }
3213 
3214 /*
3215  * See perf_event_disable();
3216  */
3217 void perf_event_enable(struct perf_event *event)
3218 {
3219 	struct perf_event_context *ctx;
3220 
3221 	ctx = perf_event_ctx_lock(event);
3222 	_perf_event_enable(event);
3223 	perf_event_ctx_unlock(event, ctx);
3224 }
3225 EXPORT_SYMBOL_GPL(perf_event_enable);
3226 
3227 struct stop_event_data {
3228 	struct perf_event	*event;
3229 	unsigned int		restart;
3230 };
3231 
3232 static int __perf_event_stop(void *info)
3233 {
3234 	struct stop_event_data *sd = info;
3235 	struct perf_event *event = sd->event;
3236 
3237 	/* if it's already INACTIVE, do nothing */
3238 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3239 		return 0;
3240 
3241 	/* matches smp_wmb() in event_sched_in() */
3242 	smp_rmb();
3243 
3244 	/*
3245 	 * There is a window with interrupts enabled before we get here,
3246 	 * so we need to check again lest we try to stop another CPU's event.
3247 	 */
3248 	if (READ_ONCE(event->oncpu) != smp_processor_id())
3249 		return -EAGAIN;
3250 
3251 	event->pmu->stop(event, PERF_EF_UPDATE);
3252 
3253 	/*
3254 	 * May race with the actual stop (through perf_pmu_output_stop()),
3255 	 * but it is only used for events with AUX ring buffer, and such
3256 	 * events will refuse to restart because of rb::aux_mmap_count==0,
3257 	 * see comments in perf_aux_output_begin().
3258 	 *
3259 	 * Since this is happening on an event-local CPU, no trace is lost
3260 	 * while restarting.
3261 	 */
3262 	if (sd->restart)
3263 		event->pmu->start(event, 0);
3264 
3265 	return 0;
3266 }
3267 
3268 static int perf_event_stop(struct perf_event *event, int restart)
3269 {
3270 	struct stop_event_data sd = {
3271 		.event		= event,
3272 		.restart	= restart,
3273 	};
3274 	int ret = 0;
3275 
3276 	do {
3277 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3278 			return 0;
3279 
3280 		/* matches smp_wmb() in event_sched_in() */
3281 		smp_rmb();
3282 
3283 		/*
3284 		 * We only want to restart ACTIVE events, so if the event goes
3285 		 * inactive here (event->oncpu==-1), there's nothing more to do;
3286 		 * fall through with ret==-ENXIO.
3287 		 */
3288 		ret = cpu_function_call(READ_ONCE(event->oncpu),
3289 					__perf_event_stop, &sd);
3290 	} while (ret == -EAGAIN);
3291 
3292 	return ret;
3293 }
3294 
3295 /*
3296  * In order to contain the amount of racy and tricky in the address filter
3297  * configuration management, it is a two part process:
3298  *
3299  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3300  *      we update the addresses of corresponding vmas in
3301  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
3302  * (p2) when an event is scheduled in (pmu::add), it calls
3303  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3304  *      if the generation has changed since the previous call.
3305  *
3306  * If (p1) happens while the event is active, we restart it to force (p2).
3307  *
3308  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3309  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3310  *     ioctl;
3311  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3312  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3313  *     for reading;
3314  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3315  *     of exec.
3316  */
3317 void perf_event_addr_filters_sync(struct perf_event *event)
3318 {
3319 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3320 
3321 	if (!has_addr_filter(event))
3322 		return;
3323 
3324 	raw_spin_lock(&ifh->lock);
3325 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3326 		event->pmu->addr_filters_sync(event);
3327 		event->hw.addr_filters_gen = event->addr_filters_gen;
3328 	}
3329 	raw_spin_unlock(&ifh->lock);
3330 }
3331 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3332 
3333 static int _perf_event_refresh(struct perf_event *event, int refresh)
3334 {
3335 	/*
3336 	 * not supported on inherited events
3337 	 */
3338 	if (event->attr.inherit || !is_sampling_event(event))
3339 		return -EINVAL;
3340 
3341 	atomic_add(refresh, &event->event_limit);
3342 	_perf_event_enable(event);
3343 
3344 	return 0;
3345 }
3346 
3347 /*
3348  * See perf_event_disable()
3349  */
3350 int perf_event_refresh(struct perf_event *event, int refresh)
3351 {
3352 	struct perf_event_context *ctx;
3353 	int ret;
3354 
3355 	ctx = perf_event_ctx_lock(event);
3356 	ret = _perf_event_refresh(event, refresh);
3357 	perf_event_ctx_unlock(event, ctx);
3358 
3359 	return ret;
3360 }
3361 EXPORT_SYMBOL_GPL(perf_event_refresh);
3362 
3363 static int perf_event_modify_breakpoint(struct perf_event *bp,
3364 					 struct perf_event_attr *attr)
3365 {
3366 	int err;
3367 
3368 	_perf_event_disable(bp);
3369 
3370 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3371 
3372 	if (!bp->attr.disabled)
3373 		_perf_event_enable(bp);
3374 
3375 	return err;
3376 }
3377 
3378 /*
3379  * Copy event-type-independent attributes that may be modified.
3380  */
3381 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3382 					const struct perf_event_attr *from)
3383 {
3384 	to->sig_data = from->sig_data;
3385 }
3386 
3387 static int perf_event_modify_attr(struct perf_event *event,
3388 				  struct perf_event_attr *attr)
3389 {
3390 	int (*func)(struct perf_event *, struct perf_event_attr *);
3391 	struct perf_event *child;
3392 	int err;
3393 
3394 	if (event->attr.type != attr->type)
3395 		return -EINVAL;
3396 
3397 	switch (event->attr.type) {
3398 	case PERF_TYPE_BREAKPOINT:
3399 		func = perf_event_modify_breakpoint;
3400 		break;
3401 	default:
3402 		/* Place holder for future additions. */
3403 		return -EOPNOTSUPP;
3404 	}
3405 
3406 	WARN_ON_ONCE(event->ctx->parent_ctx);
3407 
3408 	mutex_lock(&event->child_mutex);
3409 	/*
3410 	 * Event-type-independent attributes must be copied before event-type
3411 	 * modification, which will validate that final attributes match the
3412 	 * source attributes after all relevant attributes have been copied.
3413 	 */
3414 	perf_event_modify_copy_attr(&event->attr, attr);
3415 	err = func(event, attr);
3416 	if (err)
3417 		goto out;
3418 	list_for_each_entry(child, &event->child_list, child_list) {
3419 		perf_event_modify_copy_attr(&child->attr, attr);
3420 		err = func(child, attr);
3421 		if (err)
3422 			goto out;
3423 	}
3424 out:
3425 	mutex_unlock(&event->child_mutex);
3426 	return err;
3427 }
3428 
3429 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx,
3430 				enum event_type_t event_type)
3431 {
3432 	struct perf_event_context *ctx = pmu_ctx->ctx;
3433 	struct perf_event *event, *tmp;
3434 	struct pmu *pmu = pmu_ctx->pmu;
3435 
3436 	if (ctx->task && !(ctx->is_active & EVENT_ALL)) {
3437 		struct perf_cpu_pmu_context *cpc = this_cpc(pmu);
3438 
3439 		WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3440 		cpc->task_epc = NULL;
3441 	}
3442 
3443 	if (!(event_type & EVENT_ALL))
3444 		return;
3445 
3446 	perf_pmu_disable(pmu);
3447 	if (event_type & EVENT_PINNED) {
3448 		list_for_each_entry_safe(event, tmp,
3449 					 &pmu_ctx->pinned_active,
3450 					 active_list)
3451 			group_sched_out(event, ctx);
3452 	}
3453 
3454 	if (event_type & EVENT_FLEXIBLE) {
3455 		list_for_each_entry_safe(event, tmp,
3456 					 &pmu_ctx->flexible_active,
3457 					 active_list)
3458 			group_sched_out(event, ctx);
3459 		/*
3460 		 * Since we cleared EVENT_FLEXIBLE, also clear
3461 		 * rotate_necessary, is will be reset by
3462 		 * ctx_flexible_sched_in() when needed.
3463 		 */
3464 		pmu_ctx->rotate_necessary = 0;
3465 	}
3466 	perf_pmu_enable(pmu);
3467 }
3468 
3469 /*
3470  * Be very careful with the @pmu argument since this will change ctx state.
3471  * The @pmu argument works for ctx_resched(), because that is symmetric in
3472  * ctx_sched_out() / ctx_sched_in() usage and the ctx state ends up invariant.
3473  *
3474  * However, if you were to be asymmetrical, you could end up with messed up
3475  * state, eg. ctx->is_active cleared even though most EPCs would still actually
3476  * be active.
3477  */
3478 static void
3479 ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type)
3480 {
3481 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3482 	struct perf_event_pmu_context *pmu_ctx;
3483 	int is_active = ctx->is_active;
3484 	bool cgroup = event_type & EVENT_CGROUP;
3485 
3486 	event_type &= ~EVENT_CGROUP;
3487 
3488 	lockdep_assert_held(&ctx->lock);
3489 
3490 	if (likely(!ctx->nr_events)) {
3491 		/*
3492 		 * See __perf_remove_from_context().
3493 		 */
3494 		WARN_ON_ONCE(ctx->is_active);
3495 		if (ctx->task)
3496 			WARN_ON_ONCE(cpuctx->task_ctx);
3497 		return;
3498 	}
3499 
3500 	/*
3501 	 * Always update time if it was set; not only when it changes.
3502 	 * Otherwise we can 'forget' to update time for any but the last
3503 	 * context we sched out. For example:
3504 	 *
3505 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3506 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3507 	 *
3508 	 * would only update time for the pinned events.
3509 	 */
3510 	__ctx_time_update(cpuctx, ctx, ctx == &cpuctx->ctx);
3511 
3512 	/*
3513 	 * CPU-release for the below ->is_active store,
3514 	 * see __load_acquire() in perf_event_time_now()
3515 	 */
3516 	barrier();
3517 	ctx->is_active &= ~event_type;
3518 
3519 	if (!(ctx->is_active & EVENT_ALL)) {
3520 		/*
3521 		 * For FROZEN, preserve TIME|FROZEN such that perf_event_time_now()
3522 		 * does not observe a hole. perf_ctx_unlock() will clean up.
3523 		 */
3524 		if (ctx->is_active & EVENT_FROZEN)
3525 			ctx->is_active &= EVENT_TIME_FROZEN;
3526 		else
3527 			ctx->is_active = 0;
3528 	}
3529 
3530 	if (ctx->task) {
3531 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3532 		if (!(ctx->is_active & EVENT_ALL))
3533 			cpuctx->task_ctx = NULL;
3534 	}
3535 
3536 	is_active ^= ctx->is_active; /* changed bits */
3537 
3538 	for_each_epc(pmu_ctx, ctx, pmu, cgroup)
3539 		__pmu_ctx_sched_out(pmu_ctx, is_active);
3540 }
3541 
3542 /*
3543  * Test whether two contexts are equivalent, i.e. whether they have both been
3544  * cloned from the same version of the same context.
3545  *
3546  * Equivalence is measured using a generation number in the context that is
3547  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3548  * and list_del_event().
3549  */
3550 static int context_equiv(struct perf_event_context *ctx1,
3551 			 struct perf_event_context *ctx2)
3552 {
3553 	lockdep_assert_held(&ctx1->lock);
3554 	lockdep_assert_held(&ctx2->lock);
3555 
3556 	/* Pinning disables the swap optimization */
3557 	if (ctx1->pin_count || ctx2->pin_count)
3558 		return 0;
3559 
3560 	/* If ctx1 is the parent of ctx2 */
3561 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3562 		return 1;
3563 
3564 	/* If ctx2 is the parent of ctx1 */
3565 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3566 		return 1;
3567 
3568 	/*
3569 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3570 	 * hierarchy, see perf_event_init_context().
3571 	 */
3572 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3573 			ctx1->parent_gen == ctx2->parent_gen)
3574 		return 1;
3575 
3576 	/* Unmatched */
3577 	return 0;
3578 }
3579 
3580 static void __perf_event_sync_stat(struct perf_event *event,
3581 				     struct perf_event *next_event)
3582 {
3583 	u64 value;
3584 
3585 	if (!event->attr.inherit_stat)
3586 		return;
3587 
3588 	/*
3589 	 * Update the event value, we cannot use perf_event_read()
3590 	 * because we're in the middle of a context switch and have IRQs
3591 	 * disabled, which upsets smp_call_function_single(), however
3592 	 * we know the event must be on the current CPU, therefore we
3593 	 * don't need to use it.
3594 	 */
3595 	perf_pmu_read(event);
3596 
3597 	perf_event_update_time(event);
3598 
3599 	/*
3600 	 * In order to keep per-task stats reliable we need to flip the event
3601 	 * values when we flip the contexts.
3602 	 */
3603 	value = local64_read(&next_event->count);
3604 	value = local64_xchg(&event->count, value);
3605 	local64_set(&next_event->count, value);
3606 
3607 	swap(event->total_time_enabled, next_event->total_time_enabled);
3608 	swap(event->total_time_running, next_event->total_time_running);
3609 
3610 	/*
3611 	 * Since we swizzled the values, update the user visible data too.
3612 	 */
3613 	perf_event_update_userpage(event);
3614 	perf_event_update_userpage(next_event);
3615 }
3616 
3617 static void perf_event_sync_stat(struct perf_event_context *ctx,
3618 				   struct perf_event_context *next_ctx)
3619 {
3620 	struct perf_event *event, *next_event;
3621 
3622 	if (!ctx->nr_stat)
3623 		return;
3624 
3625 	update_context_time(ctx);
3626 
3627 	event = list_first_entry(&ctx->event_list,
3628 				   struct perf_event, event_entry);
3629 
3630 	next_event = list_first_entry(&next_ctx->event_list,
3631 					struct perf_event, event_entry);
3632 
3633 	while (&event->event_entry != &ctx->event_list &&
3634 	       &next_event->event_entry != &next_ctx->event_list) {
3635 
3636 		__perf_event_sync_stat(event, next_event);
3637 
3638 		event = list_next_entry(event, event_entry);
3639 		next_event = list_next_entry(next_event, event_entry);
3640 	}
3641 }
3642 
3643 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx,
3644 				   struct task_struct *task, bool sched_in)
3645 {
3646 	struct perf_event_pmu_context *pmu_ctx;
3647 	struct perf_cpu_pmu_context *cpc;
3648 
3649 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3650 		cpc = this_cpc(pmu_ctx->pmu);
3651 
3652 		if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task)
3653 			pmu_ctx->pmu->sched_task(pmu_ctx, task, sched_in);
3654 	}
3655 }
3656 
3657 static void
3658 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next)
3659 {
3660 	struct perf_event_context *ctx = task->perf_event_ctxp;
3661 	struct perf_event_context *next_ctx;
3662 	struct perf_event_context *parent, *next_parent;
3663 	int do_switch = 1;
3664 
3665 	if (likely(!ctx))
3666 		return;
3667 
3668 	rcu_read_lock();
3669 	next_ctx = rcu_dereference(next->perf_event_ctxp);
3670 	if (!next_ctx)
3671 		goto unlock;
3672 
3673 	parent = rcu_dereference(ctx->parent_ctx);
3674 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3675 
3676 	/* If neither context have a parent context; they cannot be clones. */
3677 	if (!parent && !next_parent)
3678 		goto unlock;
3679 
3680 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3681 		/*
3682 		 * Looks like the two contexts are clones, so we might be
3683 		 * able to optimize the context switch.  We lock both
3684 		 * contexts and check that they are clones under the
3685 		 * lock (including re-checking that neither has been
3686 		 * uncloned in the meantime).  It doesn't matter which
3687 		 * order we take the locks because no other cpu could
3688 		 * be trying to lock both of these tasks.
3689 		 */
3690 		raw_spin_lock(&ctx->lock);
3691 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3692 		if (context_equiv(ctx, next_ctx)) {
3693 
3694 			perf_ctx_disable(ctx, false);
3695 
3696 			/* PMIs are disabled; ctx->nr_no_switch_fast is stable. */
3697 			if (local_read(&ctx->nr_no_switch_fast) ||
3698 			    local_read(&next_ctx->nr_no_switch_fast)) {
3699 				/*
3700 				 * Must not swap out ctx when there's pending
3701 				 * events that rely on the ctx->task relation.
3702 				 *
3703 				 * Likewise, when a context contains inherit +
3704 				 * SAMPLE_READ events they should be switched
3705 				 * out using the slow path so that they are
3706 				 * treated as if they were distinct contexts.
3707 				 */
3708 				raw_spin_unlock(&next_ctx->lock);
3709 				rcu_read_unlock();
3710 				goto inside_switch;
3711 			}
3712 
3713 			WRITE_ONCE(ctx->task, next);
3714 			WRITE_ONCE(next_ctx->task, task);
3715 
3716 			perf_ctx_sched_task_cb(ctx, task, false);
3717 
3718 			perf_ctx_enable(ctx, false);
3719 
3720 			/*
3721 			 * RCU_INIT_POINTER here is safe because we've not
3722 			 * modified the ctx and the above modification of
3723 			 * ctx->task is immaterial since this value is
3724 			 * always verified under ctx->lock which we're now
3725 			 * holding.
3726 			 */
3727 			RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx);
3728 			RCU_INIT_POINTER(next->perf_event_ctxp, ctx);
3729 
3730 			do_switch = 0;
3731 
3732 			perf_event_sync_stat(ctx, next_ctx);
3733 		}
3734 		raw_spin_unlock(&next_ctx->lock);
3735 		raw_spin_unlock(&ctx->lock);
3736 	}
3737 unlock:
3738 	rcu_read_unlock();
3739 
3740 	if (do_switch) {
3741 		raw_spin_lock(&ctx->lock);
3742 		perf_ctx_disable(ctx, false);
3743 
3744 inside_switch:
3745 		perf_ctx_sched_task_cb(ctx, task, false);
3746 		task_ctx_sched_out(ctx, NULL, EVENT_ALL);
3747 
3748 		perf_ctx_enable(ctx, false);
3749 		raw_spin_unlock(&ctx->lock);
3750 	}
3751 }
3752 
3753 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3754 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
3755 
3756 void perf_sched_cb_dec(struct pmu *pmu)
3757 {
3758 	struct perf_cpu_pmu_context *cpc = this_cpc(pmu);
3759 
3760 	this_cpu_dec(perf_sched_cb_usages);
3761 	barrier();
3762 
3763 	if (!--cpc->sched_cb_usage)
3764 		list_del(&cpc->sched_cb_entry);
3765 }
3766 
3767 
3768 void perf_sched_cb_inc(struct pmu *pmu)
3769 {
3770 	struct perf_cpu_pmu_context *cpc = this_cpc(pmu);
3771 
3772 	if (!cpc->sched_cb_usage++)
3773 		list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3774 
3775 	barrier();
3776 	this_cpu_inc(perf_sched_cb_usages);
3777 }
3778 
3779 /*
3780  * This function provides the context switch callback to the lower code
3781  * layer. It is invoked ONLY when the context switch callback is enabled.
3782  *
3783  * This callback is relevant even to per-cpu events; for example multi event
3784  * PEBS requires this to provide PID/TID information. This requires we flush
3785  * all queued PEBS records before we context switch to a new task.
3786  */
3787 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc,
3788 				  struct task_struct *task, bool sched_in)
3789 {
3790 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3791 	struct pmu *pmu;
3792 
3793 	pmu = cpc->epc.pmu;
3794 
3795 	/* software PMUs will not have sched_task */
3796 	if (WARN_ON_ONCE(!pmu->sched_task))
3797 		return;
3798 
3799 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3800 	perf_pmu_disable(pmu);
3801 
3802 	pmu->sched_task(cpc->task_epc, task, sched_in);
3803 
3804 	perf_pmu_enable(pmu);
3805 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3806 }
3807 
3808 static void perf_pmu_sched_task(struct task_struct *prev,
3809 				struct task_struct *next,
3810 				bool sched_in)
3811 {
3812 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3813 	struct perf_cpu_pmu_context *cpc;
3814 
3815 	/* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */
3816 	if (prev == next || cpuctx->task_ctx)
3817 		return;
3818 
3819 	list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry)
3820 		__perf_pmu_sched_task(cpc, sched_in ? next : prev, sched_in);
3821 }
3822 
3823 static void perf_event_switch(struct task_struct *task,
3824 			      struct task_struct *next_prev, bool sched_in);
3825 
3826 /*
3827  * Called from scheduler to remove the events of the current task,
3828  * with interrupts disabled.
3829  *
3830  * We stop each event and update the event value in event->count.
3831  *
3832  * This does not protect us against NMI, but disable()
3833  * sets the disabled bit in the control field of event _before_
3834  * accessing the event control register. If a NMI hits, then it will
3835  * not restart the event.
3836  */
3837 void __perf_event_task_sched_out(struct task_struct *task,
3838 				 struct task_struct *next)
3839 {
3840 	if (__this_cpu_read(perf_sched_cb_usages))
3841 		perf_pmu_sched_task(task, next, false);
3842 
3843 	if (atomic_read(&nr_switch_events))
3844 		perf_event_switch(task, next, false);
3845 
3846 	perf_event_context_sched_out(task, next);
3847 
3848 	/*
3849 	 * if cgroup events exist on this CPU, then we need
3850 	 * to check if we have to switch out PMU state.
3851 	 * cgroup event are system-wide mode only
3852 	 */
3853 	perf_cgroup_switch(next);
3854 }
3855 
3856 static bool perf_less_group_idx(const void *l, const void *r, void __always_unused *args)
3857 {
3858 	const struct perf_event *le = *(const struct perf_event **)l;
3859 	const struct perf_event *re = *(const struct perf_event **)r;
3860 
3861 	return le->group_index < re->group_index;
3862 }
3863 
3864 DEFINE_MIN_HEAP(struct perf_event *, perf_event_min_heap);
3865 
3866 static const struct min_heap_callbacks perf_min_heap = {
3867 	.less = perf_less_group_idx,
3868 	.swp = NULL,
3869 };
3870 
3871 static void __heap_add(struct perf_event_min_heap *heap, struct perf_event *event)
3872 {
3873 	struct perf_event **itrs = heap->data;
3874 
3875 	if (event) {
3876 		itrs[heap->nr] = event;
3877 		heap->nr++;
3878 	}
3879 }
3880 
3881 static void __link_epc(struct perf_event_pmu_context *pmu_ctx)
3882 {
3883 	struct perf_cpu_pmu_context *cpc;
3884 
3885 	if (!pmu_ctx->ctx->task)
3886 		return;
3887 
3888 	cpc = this_cpc(pmu_ctx->pmu);
3889 	WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3890 	cpc->task_epc = pmu_ctx;
3891 }
3892 
3893 static noinline int visit_groups_merge(struct perf_event_context *ctx,
3894 				struct perf_event_groups *groups, int cpu,
3895 				struct pmu *pmu,
3896 				int (*func)(struct perf_event *, void *),
3897 				void *data)
3898 {
3899 #ifdef CONFIG_CGROUP_PERF
3900 	struct cgroup_subsys_state *css = NULL;
3901 #endif
3902 	struct perf_cpu_context *cpuctx = NULL;
3903 	/* Space for per CPU and/or any CPU event iterators. */
3904 	struct perf_event *itrs[2];
3905 	struct perf_event_min_heap event_heap;
3906 	struct perf_event **evt;
3907 	int ret;
3908 
3909 	if (pmu->filter && pmu->filter(pmu, cpu))
3910 		return 0;
3911 
3912 	if (!ctx->task) {
3913 		cpuctx = this_cpu_ptr(&perf_cpu_context);
3914 		event_heap = (struct perf_event_min_heap){
3915 			.data = cpuctx->heap,
3916 			.nr = 0,
3917 			.size = cpuctx->heap_size,
3918 		};
3919 
3920 		lockdep_assert_held(&cpuctx->ctx.lock);
3921 
3922 #ifdef CONFIG_CGROUP_PERF
3923 		if (cpuctx->cgrp)
3924 			css = &cpuctx->cgrp->css;
3925 #endif
3926 	} else {
3927 		event_heap = (struct perf_event_min_heap){
3928 			.data = itrs,
3929 			.nr = 0,
3930 			.size = ARRAY_SIZE(itrs),
3931 		};
3932 		/* Events not within a CPU context may be on any CPU. */
3933 		__heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL));
3934 	}
3935 	evt = event_heap.data;
3936 
3937 	__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL));
3938 
3939 #ifdef CONFIG_CGROUP_PERF
3940 	for (; css; css = css->parent)
3941 		__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup));
3942 #endif
3943 
3944 	if (event_heap.nr) {
3945 		__link_epc((*evt)->pmu_ctx);
3946 		perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu);
3947 	}
3948 
3949 	min_heapify_all_inline(&event_heap, &perf_min_heap, NULL);
3950 
3951 	while (event_heap.nr) {
3952 		ret = func(*evt, data);
3953 		if (ret)
3954 			return ret;
3955 
3956 		*evt = perf_event_groups_next(*evt, pmu);
3957 		if (*evt)
3958 			min_heap_sift_down_inline(&event_heap, 0, &perf_min_heap, NULL);
3959 		else
3960 			min_heap_pop_inline(&event_heap, &perf_min_heap, NULL);
3961 	}
3962 
3963 	return 0;
3964 }
3965 
3966 /*
3967  * Because the userpage is strictly per-event (there is no concept of context,
3968  * so there cannot be a context indirection), every userpage must be updated
3969  * when context time starts :-(
3970  *
3971  * IOW, we must not miss EVENT_TIME edges.
3972  */
3973 static inline bool event_update_userpage(struct perf_event *event)
3974 {
3975 	if (likely(!refcount_read(&event->mmap_count)))
3976 		return false;
3977 
3978 	perf_event_update_time(event);
3979 	perf_event_update_userpage(event);
3980 
3981 	return true;
3982 }
3983 
3984 static inline void group_update_userpage(struct perf_event *group_event)
3985 {
3986 	struct perf_event *event;
3987 
3988 	if (!event_update_userpage(group_event))
3989 		return;
3990 
3991 	for_each_sibling_event(event, group_event)
3992 		event_update_userpage(event);
3993 }
3994 
3995 static int merge_sched_in(struct perf_event *event, void *data)
3996 {
3997 	struct perf_event_context *ctx = event->ctx;
3998 	int *can_add_hw = data;
3999 
4000 	if (event->state <= PERF_EVENT_STATE_OFF)
4001 		return 0;
4002 
4003 	if (!event_filter_match(event))
4004 		return 0;
4005 
4006 	if (group_can_go_on(event, *can_add_hw)) {
4007 		if (!group_sched_in(event, ctx))
4008 			list_add_tail(&event->active_list, get_event_list(event));
4009 	}
4010 
4011 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
4012 		*can_add_hw = 0;
4013 		if (event->attr.pinned) {
4014 			perf_cgroup_event_disable(event, ctx);
4015 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
4016 
4017 			if (*perf_event_fasync(event))
4018 				event->pending_kill = POLL_ERR;
4019 
4020 			perf_event_wakeup(event);
4021 		} else {
4022 			struct perf_cpu_pmu_context *cpc = this_cpc(event->pmu_ctx->pmu);
4023 
4024 			event->pmu_ctx->rotate_necessary = 1;
4025 			perf_mux_hrtimer_restart(cpc);
4026 			group_update_userpage(event);
4027 		}
4028 	}
4029 
4030 	return 0;
4031 }
4032 
4033 static void pmu_groups_sched_in(struct perf_event_context *ctx,
4034 				struct perf_event_groups *groups,
4035 				struct pmu *pmu)
4036 {
4037 	int can_add_hw = 1;
4038 	visit_groups_merge(ctx, groups, smp_processor_id(), pmu,
4039 			   merge_sched_in, &can_add_hw);
4040 }
4041 
4042 static void __pmu_ctx_sched_in(struct perf_event_pmu_context *pmu_ctx,
4043 			       enum event_type_t event_type)
4044 {
4045 	struct perf_event_context *ctx = pmu_ctx->ctx;
4046 
4047 	if (event_type & EVENT_PINNED)
4048 		pmu_groups_sched_in(ctx, &ctx->pinned_groups, pmu_ctx->pmu);
4049 	if (event_type & EVENT_FLEXIBLE)
4050 		pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu_ctx->pmu);
4051 }
4052 
4053 static void
4054 ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type)
4055 {
4056 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4057 	struct perf_event_pmu_context *pmu_ctx;
4058 	int is_active = ctx->is_active;
4059 	bool cgroup = event_type & EVENT_CGROUP;
4060 
4061 	event_type &= ~EVENT_CGROUP;
4062 
4063 	lockdep_assert_held(&ctx->lock);
4064 
4065 	if (likely(!ctx->nr_events))
4066 		return;
4067 
4068 	if (!(is_active & EVENT_TIME)) {
4069 		/* start ctx time */
4070 		__update_context_time(ctx, false);
4071 		perf_cgroup_set_timestamp(cpuctx);
4072 		/*
4073 		 * CPU-release for the below ->is_active store,
4074 		 * see __load_acquire() in perf_event_time_now()
4075 		 */
4076 		barrier();
4077 	}
4078 
4079 	ctx->is_active |= (event_type | EVENT_TIME);
4080 	if (ctx->task) {
4081 		if (!(is_active & EVENT_ALL))
4082 			cpuctx->task_ctx = ctx;
4083 		else
4084 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
4085 	}
4086 
4087 	is_active ^= ctx->is_active; /* changed bits */
4088 
4089 	/*
4090 	 * First go through the list and put on any pinned groups
4091 	 * in order to give them the best chance of going on.
4092 	 */
4093 	if (is_active & EVENT_PINNED) {
4094 		for_each_epc(pmu_ctx, ctx, pmu, cgroup)
4095 			__pmu_ctx_sched_in(pmu_ctx, EVENT_PINNED);
4096 	}
4097 
4098 	/* Then walk through the lower prio flexible groups */
4099 	if (is_active & EVENT_FLEXIBLE) {
4100 		for_each_epc(pmu_ctx, ctx, pmu, cgroup)
4101 			__pmu_ctx_sched_in(pmu_ctx, EVENT_FLEXIBLE);
4102 	}
4103 }
4104 
4105 static void perf_event_context_sched_in(struct task_struct *task)
4106 {
4107 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4108 	struct perf_event_context *ctx;
4109 
4110 	rcu_read_lock();
4111 	ctx = rcu_dereference(task->perf_event_ctxp);
4112 	if (!ctx)
4113 		goto rcu_unlock;
4114 
4115 	if (cpuctx->task_ctx == ctx) {
4116 		perf_ctx_lock(cpuctx, ctx);
4117 		perf_ctx_disable(ctx, false);
4118 
4119 		perf_ctx_sched_task_cb(ctx, task, true);
4120 
4121 		perf_ctx_enable(ctx, false);
4122 		perf_ctx_unlock(cpuctx, ctx);
4123 		goto rcu_unlock;
4124 	}
4125 
4126 	perf_ctx_lock(cpuctx, ctx);
4127 	/*
4128 	 * We must check ctx->nr_events while holding ctx->lock, such
4129 	 * that we serialize against perf_install_in_context().
4130 	 */
4131 	if (!ctx->nr_events)
4132 		goto unlock;
4133 
4134 	perf_ctx_disable(ctx, false);
4135 	/*
4136 	 * We want to keep the following priority order:
4137 	 * cpu pinned (that don't need to move), task pinned,
4138 	 * cpu flexible, task flexible.
4139 	 *
4140 	 * However, if task's ctx is not carrying any pinned
4141 	 * events, no need to flip the cpuctx's events around.
4142 	 */
4143 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) {
4144 		perf_ctx_disable(&cpuctx->ctx, false);
4145 		ctx_sched_out(&cpuctx->ctx, NULL, EVENT_FLEXIBLE);
4146 	}
4147 
4148 	perf_event_sched_in(cpuctx, ctx, NULL);
4149 
4150 	perf_ctx_sched_task_cb(cpuctx->task_ctx, task, true);
4151 
4152 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
4153 		perf_ctx_enable(&cpuctx->ctx, false);
4154 
4155 	perf_ctx_enable(ctx, false);
4156 
4157 unlock:
4158 	perf_ctx_unlock(cpuctx, ctx);
4159 rcu_unlock:
4160 	rcu_read_unlock();
4161 }
4162 
4163 /*
4164  * Called from scheduler to add the events of the current task
4165  * with interrupts disabled.
4166  *
4167  * We restore the event value and then enable it.
4168  *
4169  * This does not protect us against NMI, but enable()
4170  * sets the enabled bit in the control field of event _before_
4171  * accessing the event control register. If a NMI hits, then it will
4172  * keep the event running.
4173  */
4174 void __perf_event_task_sched_in(struct task_struct *prev,
4175 				struct task_struct *task)
4176 {
4177 	perf_event_context_sched_in(task);
4178 
4179 	if (atomic_read(&nr_switch_events))
4180 		perf_event_switch(task, prev, true);
4181 
4182 	if (__this_cpu_read(perf_sched_cb_usages))
4183 		perf_pmu_sched_task(prev, task, true);
4184 }
4185 
4186 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
4187 {
4188 	u64 frequency = event->attr.sample_freq;
4189 	u64 sec = NSEC_PER_SEC;
4190 	u64 divisor, dividend;
4191 
4192 	int count_fls, nsec_fls, frequency_fls, sec_fls;
4193 
4194 	count_fls = fls64(count);
4195 	nsec_fls = fls64(nsec);
4196 	frequency_fls = fls64(frequency);
4197 	sec_fls = 30;
4198 
4199 	/*
4200 	 * We got @count in @nsec, with a target of sample_freq HZ
4201 	 * the target period becomes:
4202 	 *
4203 	 *             @count * 10^9
4204 	 * period = -------------------
4205 	 *          @nsec * sample_freq
4206 	 *
4207 	 */
4208 
4209 	/*
4210 	 * Reduce accuracy by one bit such that @a and @b converge
4211 	 * to a similar magnitude.
4212 	 */
4213 #define REDUCE_FLS(a, b)		\
4214 do {					\
4215 	if (a##_fls > b##_fls) {	\
4216 		a >>= 1;		\
4217 		a##_fls--;		\
4218 	} else {			\
4219 		b >>= 1;		\
4220 		b##_fls--;		\
4221 	}				\
4222 } while (0)
4223 
4224 	/*
4225 	 * Reduce accuracy until either term fits in a u64, then proceed with
4226 	 * the other, so that finally we can do a u64/u64 division.
4227 	 */
4228 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4229 		REDUCE_FLS(nsec, frequency);
4230 		REDUCE_FLS(sec, count);
4231 	}
4232 
4233 	if (count_fls + sec_fls > 64) {
4234 		divisor = nsec * frequency;
4235 
4236 		while (count_fls + sec_fls > 64) {
4237 			REDUCE_FLS(count, sec);
4238 			divisor >>= 1;
4239 		}
4240 
4241 		dividend = count * sec;
4242 	} else {
4243 		dividend = count * sec;
4244 
4245 		while (nsec_fls + frequency_fls > 64) {
4246 			REDUCE_FLS(nsec, frequency);
4247 			dividend >>= 1;
4248 		}
4249 
4250 		divisor = nsec * frequency;
4251 	}
4252 
4253 	if (!divisor)
4254 		return dividend;
4255 
4256 	return div64_u64(dividend, divisor);
4257 }
4258 
4259 static DEFINE_PER_CPU(int, perf_throttled_count);
4260 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4261 
4262 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4263 {
4264 	struct hw_perf_event *hwc = &event->hw;
4265 	s64 period, sample_period;
4266 	s64 delta;
4267 
4268 	period = perf_calculate_period(event, nsec, count);
4269 
4270 	delta = (s64)(period - hwc->sample_period);
4271 	if (delta >= 0)
4272 		delta += 7;
4273 	else
4274 		delta -= 7;
4275 	delta /= 8; /* low pass filter */
4276 
4277 	sample_period = hwc->sample_period + delta;
4278 
4279 	if (!sample_period)
4280 		sample_period = 1;
4281 
4282 	hwc->sample_period = sample_period;
4283 
4284 	if (local64_read(&hwc->period_left) > 8*sample_period) {
4285 		if (disable)
4286 			event->pmu->stop(event, PERF_EF_UPDATE);
4287 
4288 		local64_set(&hwc->period_left, 0);
4289 
4290 		if (disable)
4291 			event->pmu->start(event, PERF_EF_RELOAD);
4292 	}
4293 }
4294 
4295 static void perf_adjust_freq_unthr_events(struct list_head *event_list)
4296 {
4297 	struct perf_event *event;
4298 	struct hw_perf_event *hwc;
4299 	u64 now, period = TICK_NSEC;
4300 	s64 delta;
4301 
4302 	list_for_each_entry(event, event_list, active_list) {
4303 		if (event->state != PERF_EVENT_STATE_ACTIVE)
4304 			continue;
4305 
4306 		// XXX use visit thingy to avoid the -1,cpu match
4307 		if (!event_filter_match(event))
4308 			continue;
4309 
4310 		hwc = &event->hw;
4311 
4312 		if (hwc->interrupts == MAX_INTERRUPTS)
4313 			perf_event_unthrottle_group(event, is_event_in_freq_mode(event));
4314 
4315 		if (!is_event_in_freq_mode(event))
4316 			continue;
4317 
4318 		/*
4319 		 * stop the event and update event->count
4320 		 */
4321 		event->pmu->stop(event, PERF_EF_UPDATE);
4322 
4323 		now = local64_read(&event->count);
4324 		delta = now - hwc->freq_count_stamp;
4325 		hwc->freq_count_stamp = now;
4326 
4327 		/*
4328 		 * restart the event
4329 		 * reload only if value has changed
4330 		 * we have stopped the event so tell that
4331 		 * to perf_adjust_period() to avoid stopping it
4332 		 * twice.
4333 		 */
4334 		if (delta > 0)
4335 			perf_adjust_period(event, period, delta, false);
4336 
4337 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4338 	}
4339 }
4340 
4341 /*
4342  * combine freq adjustment with unthrottling to avoid two passes over the
4343  * events. At the same time, make sure, having freq events does not change
4344  * the rate of unthrottling as that would introduce bias.
4345  */
4346 static void
4347 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
4348 {
4349 	struct perf_event_pmu_context *pmu_ctx;
4350 
4351 	/*
4352 	 * only need to iterate over all events iff:
4353 	 * - context have events in frequency mode (needs freq adjust)
4354 	 * - there are events to unthrottle on this cpu
4355 	 */
4356 	if (!(ctx->nr_freq || unthrottle))
4357 		return;
4358 
4359 	raw_spin_lock(&ctx->lock);
4360 
4361 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4362 		if (!(pmu_ctx->nr_freq || unthrottle))
4363 			continue;
4364 		if (!perf_pmu_ctx_is_active(pmu_ctx))
4365 			continue;
4366 		if (pmu_ctx->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT)
4367 			continue;
4368 
4369 		perf_pmu_disable(pmu_ctx->pmu);
4370 		perf_adjust_freq_unthr_events(&pmu_ctx->pinned_active);
4371 		perf_adjust_freq_unthr_events(&pmu_ctx->flexible_active);
4372 		perf_pmu_enable(pmu_ctx->pmu);
4373 	}
4374 
4375 	raw_spin_unlock(&ctx->lock);
4376 }
4377 
4378 /*
4379  * Move @event to the tail of the @ctx's elegible events.
4380  */
4381 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4382 {
4383 	/*
4384 	 * Rotate the first entry last of non-pinned groups. Rotation might be
4385 	 * disabled by the inheritance code.
4386 	 */
4387 	if (ctx->rotate_disable)
4388 		return;
4389 
4390 	perf_event_groups_delete(&ctx->flexible_groups, event);
4391 	perf_event_groups_insert(&ctx->flexible_groups, event);
4392 }
4393 
4394 /* pick an event from the flexible_groups to rotate */
4395 static inline struct perf_event *
4396 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx)
4397 {
4398 	struct perf_event *event;
4399 	struct rb_node *node;
4400 	struct rb_root *tree;
4401 	struct __group_key key = {
4402 		.pmu = pmu_ctx->pmu,
4403 	};
4404 
4405 	/* pick the first active flexible event */
4406 	event = list_first_entry_or_null(&pmu_ctx->flexible_active,
4407 					 struct perf_event, active_list);
4408 	if (event)
4409 		goto out;
4410 
4411 	/* if no active flexible event, pick the first event */
4412 	tree = &pmu_ctx->ctx->flexible_groups.tree;
4413 
4414 	if (!pmu_ctx->ctx->task) {
4415 		key.cpu = smp_processor_id();
4416 
4417 		node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4418 		if (node)
4419 			event = __node_2_pe(node);
4420 		goto out;
4421 	}
4422 
4423 	key.cpu = -1;
4424 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4425 	if (node) {
4426 		event = __node_2_pe(node);
4427 		goto out;
4428 	}
4429 
4430 	key.cpu = smp_processor_id();
4431 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4432 	if (node)
4433 		event = __node_2_pe(node);
4434 
4435 out:
4436 	/*
4437 	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4438 	 * finds there are unschedulable events, it will set it again.
4439 	 */
4440 	pmu_ctx->rotate_necessary = 0;
4441 
4442 	return event;
4443 }
4444 
4445 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
4446 {
4447 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4448 	struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
4449 	struct perf_event *cpu_event = NULL, *task_event = NULL;
4450 	int cpu_rotate, task_rotate;
4451 	struct pmu *pmu;
4452 
4453 	/*
4454 	 * Since we run this from IRQ context, nobody can install new
4455 	 * events, thus the event count values are stable.
4456 	 */
4457 
4458 	cpu_epc = &cpc->epc;
4459 	pmu = cpu_epc->pmu;
4460 	task_epc = cpc->task_epc;
4461 
4462 	cpu_rotate = cpu_epc->rotate_necessary;
4463 	task_rotate = task_epc ? task_epc->rotate_necessary : 0;
4464 
4465 	if (!(cpu_rotate || task_rotate))
4466 		return false;
4467 
4468 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4469 	perf_pmu_disable(pmu);
4470 
4471 	if (task_rotate)
4472 		task_event = ctx_event_to_rotate(task_epc);
4473 	if (cpu_rotate)
4474 		cpu_event = ctx_event_to_rotate(cpu_epc);
4475 
4476 	/*
4477 	 * As per the order given at ctx_resched() first 'pop' task flexible
4478 	 * and then, if needed CPU flexible.
4479 	 */
4480 	if (task_event || (task_epc && cpu_event)) {
4481 		update_context_time(task_epc->ctx);
4482 		__pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE);
4483 	}
4484 
4485 	if (cpu_event) {
4486 		update_context_time(&cpuctx->ctx);
4487 		__pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE);
4488 		rotate_ctx(&cpuctx->ctx, cpu_event);
4489 		__pmu_ctx_sched_in(cpu_epc, EVENT_FLEXIBLE);
4490 	}
4491 
4492 	if (task_event)
4493 		rotate_ctx(task_epc->ctx, task_event);
4494 
4495 	if (task_event || (task_epc && cpu_event))
4496 		__pmu_ctx_sched_in(task_epc, EVENT_FLEXIBLE);
4497 
4498 	perf_pmu_enable(pmu);
4499 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4500 
4501 	return true;
4502 }
4503 
4504 void perf_event_task_tick(void)
4505 {
4506 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4507 	struct perf_event_context *ctx;
4508 	int throttled;
4509 
4510 	lockdep_assert_irqs_disabled();
4511 
4512 	__this_cpu_inc(perf_throttled_seq);
4513 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
4514 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4515 
4516 	perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled);
4517 
4518 	rcu_read_lock();
4519 	ctx = rcu_dereference(current->perf_event_ctxp);
4520 	if (ctx)
4521 		perf_adjust_freq_unthr_context(ctx, !!throttled);
4522 	rcu_read_unlock();
4523 }
4524 
4525 static int event_enable_on_exec(struct perf_event *event,
4526 				struct perf_event_context *ctx)
4527 {
4528 	if (!event->attr.enable_on_exec)
4529 		return 0;
4530 
4531 	event->attr.enable_on_exec = 0;
4532 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
4533 		return 0;
4534 
4535 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4536 
4537 	return 1;
4538 }
4539 
4540 /*
4541  * Enable all of a task's events that have been marked enable-on-exec.
4542  * This expects task == current.
4543  */
4544 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
4545 {
4546 	struct perf_event_context *clone_ctx = NULL;
4547 	enum event_type_t event_type = 0;
4548 	struct perf_cpu_context *cpuctx;
4549 	struct perf_event *event;
4550 	unsigned long flags;
4551 	int enabled = 0;
4552 
4553 	local_irq_save(flags);
4554 	if (WARN_ON_ONCE(current->perf_event_ctxp != ctx))
4555 		goto out;
4556 
4557 	if (!ctx->nr_events)
4558 		goto out;
4559 
4560 	cpuctx = this_cpu_ptr(&perf_cpu_context);
4561 	perf_ctx_lock(cpuctx, ctx);
4562 	ctx_time_freeze(cpuctx, ctx);
4563 
4564 	list_for_each_entry(event, &ctx->event_list, event_entry) {
4565 		enabled |= event_enable_on_exec(event, ctx);
4566 		event_type |= get_event_type(event);
4567 	}
4568 
4569 	/*
4570 	 * Unclone and reschedule this context if we enabled any event.
4571 	 */
4572 	if (enabled) {
4573 		clone_ctx = unclone_ctx(ctx);
4574 		ctx_resched(cpuctx, ctx, NULL, event_type);
4575 	}
4576 	perf_ctx_unlock(cpuctx, ctx);
4577 
4578 out:
4579 	local_irq_restore(flags);
4580 
4581 	if (clone_ctx)
4582 		put_ctx(clone_ctx);
4583 }
4584 
4585 static void perf_remove_from_owner(struct perf_event *event);
4586 static void perf_event_exit_event(struct perf_event *event,
4587 				  struct perf_event_context *ctx,
4588 				  struct task_struct *task,
4589 				  bool revoke);
4590 
4591 /*
4592  * Removes all events from the current task that have been marked
4593  * remove-on-exec, and feeds their values back to parent events.
4594  */
4595 static void perf_event_remove_on_exec(struct perf_event_context *ctx)
4596 {
4597 	struct perf_event_context *clone_ctx = NULL;
4598 	struct perf_event *event, *next;
4599 	unsigned long flags;
4600 	bool modified = false;
4601 
4602 	mutex_lock(&ctx->mutex);
4603 
4604 	if (WARN_ON_ONCE(ctx->task != current))
4605 		goto unlock;
4606 
4607 	list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4608 		if (!event->attr.remove_on_exec)
4609 			continue;
4610 
4611 		if (!is_kernel_event(event))
4612 			perf_remove_from_owner(event);
4613 
4614 		modified = true;
4615 
4616 		perf_event_exit_event(event, ctx, ctx->task, false);
4617 	}
4618 
4619 	raw_spin_lock_irqsave(&ctx->lock, flags);
4620 	if (modified)
4621 		clone_ctx = unclone_ctx(ctx);
4622 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4623 
4624 unlock:
4625 	mutex_unlock(&ctx->mutex);
4626 
4627 	if (clone_ctx)
4628 		put_ctx(clone_ctx);
4629 }
4630 
4631 struct perf_read_data {
4632 	struct perf_event *event;
4633 	bool group;
4634 	int ret;
4635 };
4636 
4637 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu);
4638 
4639 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4640 {
4641 	int local_cpu = smp_processor_id();
4642 	u16 local_pkg, event_pkg;
4643 
4644 	if ((unsigned)event_cpu >= nr_cpu_ids)
4645 		return event_cpu;
4646 
4647 	if (event->group_caps & PERF_EV_CAP_READ_SCOPE) {
4648 		const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(event->pmu->scope, event_cpu);
4649 
4650 		if (cpumask && cpumask_test_cpu(local_cpu, cpumask))
4651 			return local_cpu;
4652 	}
4653 
4654 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4655 		event_pkg = topology_physical_package_id(event_cpu);
4656 		local_pkg = topology_physical_package_id(local_cpu);
4657 
4658 		if (event_pkg == local_pkg)
4659 			return local_cpu;
4660 	}
4661 
4662 	return event_cpu;
4663 }
4664 
4665 /*
4666  * Cross CPU call to read the hardware event
4667  */
4668 static void __perf_event_read(void *info)
4669 {
4670 	struct perf_read_data *data = info;
4671 	struct perf_event *sub, *event = data->event;
4672 	struct perf_event_context *ctx = event->ctx;
4673 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4674 	struct pmu *pmu = event->pmu;
4675 
4676 	/*
4677 	 * If this is a task context, we need to check whether it is
4678 	 * the current task context of this cpu.  If not it has been
4679 	 * scheduled out before the smp call arrived.  In that case
4680 	 * event->count would have been updated to a recent sample
4681 	 * when the event was scheduled out.
4682 	 */
4683 	if (ctx->task && cpuctx->task_ctx != ctx)
4684 		return;
4685 
4686 	raw_spin_lock(&ctx->lock);
4687 	ctx_time_update_event(ctx, event);
4688 
4689 	perf_event_update_time(event);
4690 	if (data->group)
4691 		perf_event_update_sibling_time(event);
4692 
4693 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4694 		goto unlock;
4695 
4696 	if (!data->group) {
4697 		pmu->read(event);
4698 		data->ret = 0;
4699 		goto unlock;
4700 	}
4701 
4702 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4703 
4704 	pmu->read(event);
4705 
4706 	for_each_sibling_event(sub, event)
4707 		perf_pmu_read(sub);
4708 
4709 	data->ret = pmu->commit_txn(pmu);
4710 
4711 unlock:
4712 	raw_spin_unlock(&ctx->lock);
4713 }
4714 
4715 static inline u64 perf_event_count(struct perf_event *event, bool self)
4716 {
4717 	if (self)
4718 		return local64_read(&event->count);
4719 
4720 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4721 }
4722 
4723 static void calc_timer_values(struct perf_event *event,
4724 				u64 *now,
4725 				u64 *enabled,
4726 				u64 *running)
4727 {
4728 	u64 ctx_time;
4729 
4730 	*now = perf_clock();
4731 	ctx_time = perf_event_time_now(event, *now);
4732 	__perf_update_times(event, ctx_time, enabled, running);
4733 }
4734 
4735 /*
4736  * NMI-safe method to read a local event, that is an event that
4737  * is:
4738  *   - either for the current task, or for this CPU
4739  *   - does not have inherit set, for inherited task events
4740  *     will not be local and we cannot read them atomically
4741  *   - must not have a pmu::count method
4742  */
4743 int perf_event_read_local(struct perf_event *event, u64 *value,
4744 			  u64 *enabled, u64 *running)
4745 {
4746 	unsigned long flags;
4747 	int event_oncpu;
4748 	int event_cpu;
4749 	int ret = 0;
4750 
4751 	/*
4752 	 * Disabling interrupts avoids all counter scheduling (context
4753 	 * switches, timer based rotation and IPIs).
4754 	 */
4755 	local_irq_save(flags);
4756 
4757 	/*
4758 	 * It must not be an event with inherit set, we cannot read
4759 	 * all child counters from atomic context.
4760 	 */
4761 	if (event->attr.inherit) {
4762 		ret = -EOPNOTSUPP;
4763 		goto out;
4764 	}
4765 
4766 	/* If this is a per-task event, it must be for current */
4767 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4768 	    event->hw.target != current) {
4769 		ret = -EINVAL;
4770 		goto out;
4771 	}
4772 
4773 	/*
4774 	 * Get the event CPU numbers, and adjust them to local if the event is
4775 	 * a per-package event that can be read locally
4776 	 */
4777 	event_oncpu = __perf_event_read_cpu(event, event->oncpu);
4778 	event_cpu = __perf_event_read_cpu(event, event->cpu);
4779 
4780 	/* If this is a per-CPU event, it must be for this CPU */
4781 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4782 	    event_cpu != smp_processor_id()) {
4783 		ret = -EINVAL;
4784 		goto out;
4785 	}
4786 
4787 	/* If this is a pinned event it must be running on this CPU */
4788 	if (event->attr.pinned && event_oncpu != smp_processor_id()) {
4789 		ret = -EBUSY;
4790 		goto out;
4791 	}
4792 
4793 	/*
4794 	 * If the event is currently on this CPU, its either a per-task event,
4795 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4796 	 * oncpu == -1).
4797 	 */
4798 	if (event_oncpu == smp_processor_id())
4799 		event->pmu->read(event);
4800 
4801 	*value = local64_read(&event->count);
4802 	if (enabled || running) {
4803 		u64 __enabled, __running, __now;
4804 
4805 		calc_timer_values(event, &__now, &__enabled, &__running);
4806 		if (enabled)
4807 			*enabled = __enabled;
4808 		if (running)
4809 			*running = __running;
4810 	}
4811 out:
4812 	local_irq_restore(flags);
4813 
4814 	return ret;
4815 }
4816 
4817 static int perf_event_read(struct perf_event *event, bool group)
4818 {
4819 	enum perf_event_state state = READ_ONCE(event->state);
4820 	int event_cpu, ret = 0;
4821 
4822 	/*
4823 	 * If event is enabled and currently active on a CPU, update the
4824 	 * value in the event structure:
4825 	 */
4826 again:
4827 	if (state == PERF_EVENT_STATE_ACTIVE) {
4828 		struct perf_read_data data;
4829 
4830 		/*
4831 		 * Orders the ->state and ->oncpu loads such that if we see
4832 		 * ACTIVE we must also see the right ->oncpu.
4833 		 *
4834 		 * Matches the smp_wmb() from event_sched_in().
4835 		 */
4836 		smp_rmb();
4837 
4838 		event_cpu = READ_ONCE(event->oncpu);
4839 		if ((unsigned)event_cpu >= nr_cpu_ids)
4840 			return 0;
4841 
4842 		data = (struct perf_read_data){
4843 			.event = event,
4844 			.group = group,
4845 			.ret = 0,
4846 		};
4847 
4848 		preempt_disable();
4849 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4850 
4851 		/*
4852 		 * Purposely ignore the smp_call_function_single() return
4853 		 * value.
4854 		 *
4855 		 * If event_cpu isn't a valid CPU it means the event got
4856 		 * scheduled out and that will have updated the event count.
4857 		 *
4858 		 * Therefore, either way, we'll have an up-to-date event count
4859 		 * after this.
4860 		 */
4861 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4862 		preempt_enable();
4863 		ret = data.ret;
4864 
4865 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4866 		struct perf_event_context *ctx = event->ctx;
4867 		unsigned long flags;
4868 
4869 		raw_spin_lock_irqsave(&ctx->lock, flags);
4870 		state = event->state;
4871 		if (state != PERF_EVENT_STATE_INACTIVE) {
4872 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4873 			goto again;
4874 		}
4875 
4876 		/*
4877 		 * May read while context is not active (e.g., thread is
4878 		 * blocked), in that case we cannot update context time
4879 		 */
4880 		ctx_time_update_event(ctx, event);
4881 
4882 		perf_event_update_time(event);
4883 		if (group)
4884 			perf_event_update_sibling_time(event);
4885 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4886 	}
4887 
4888 	return ret;
4889 }
4890 
4891 /*
4892  * Initialize the perf_event context in a task_struct:
4893  */
4894 static void __perf_event_init_context(struct perf_event_context *ctx)
4895 {
4896 	raw_spin_lock_init(&ctx->lock);
4897 	mutex_init(&ctx->mutex);
4898 	INIT_LIST_HEAD(&ctx->pmu_ctx_list);
4899 	perf_event_groups_init(&ctx->pinned_groups);
4900 	perf_event_groups_init(&ctx->flexible_groups);
4901 	INIT_LIST_HEAD(&ctx->event_list);
4902 	refcount_set(&ctx->refcount, 1);
4903 }
4904 
4905 static void
4906 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu)
4907 {
4908 	epc->pmu = pmu;
4909 	INIT_LIST_HEAD(&epc->pmu_ctx_entry);
4910 	INIT_LIST_HEAD(&epc->pinned_active);
4911 	INIT_LIST_HEAD(&epc->flexible_active);
4912 	atomic_set(&epc->refcount, 1);
4913 }
4914 
4915 static struct perf_event_context *
4916 alloc_perf_context(struct task_struct *task)
4917 {
4918 	struct perf_event_context *ctx;
4919 
4920 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4921 	if (!ctx)
4922 		return NULL;
4923 
4924 	__perf_event_init_context(ctx);
4925 	if (task)
4926 		ctx->task = get_task_struct(task);
4927 
4928 	return ctx;
4929 }
4930 
4931 static struct task_struct *
4932 find_lively_task_by_vpid(pid_t vpid)
4933 {
4934 	struct task_struct *task;
4935 
4936 	rcu_read_lock();
4937 	if (!vpid)
4938 		task = current;
4939 	else
4940 		task = find_task_by_vpid(vpid);
4941 	if (task)
4942 		get_task_struct(task);
4943 	rcu_read_unlock();
4944 
4945 	if (!task)
4946 		return ERR_PTR(-ESRCH);
4947 
4948 	return task;
4949 }
4950 
4951 /*
4952  * Returns a matching context with refcount and pincount.
4953  */
4954 static struct perf_event_context *
4955 find_get_context(struct task_struct *task, struct perf_event *event)
4956 {
4957 	struct perf_event_context *ctx, *clone_ctx = NULL;
4958 	struct perf_cpu_context *cpuctx;
4959 	unsigned long flags;
4960 	int err;
4961 
4962 	if (!task) {
4963 		/* Must be root to operate on a CPU event: */
4964 		err = perf_allow_cpu();
4965 		if (err)
4966 			return ERR_PTR(err);
4967 
4968 		cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
4969 		ctx = &cpuctx->ctx;
4970 		get_ctx(ctx);
4971 		raw_spin_lock_irqsave(&ctx->lock, flags);
4972 		++ctx->pin_count;
4973 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4974 
4975 		return ctx;
4976 	}
4977 
4978 	err = -EINVAL;
4979 retry:
4980 	ctx = perf_lock_task_context(task, &flags);
4981 	if (ctx) {
4982 		clone_ctx = unclone_ctx(ctx);
4983 		++ctx->pin_count;
4984 
4985 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4986 
4987 		if (clone_ctx)
4988 			put_ctx(clone_ctx);
4989 	} else {
4990 		ctx = alloc_perf_context(task);
4991 		err = -ENOMEM;
4992 		if (!ctx)
4993 			goto errout;
4994 
4995 		err = 0;
4996 		mutex_lock(&task->perf_event_mutex);
4997 		/*
4998 		 * If it has already passed perf_event_exit_task().
4999 		 * we must see PF_EXITING, it takes this mutex too.
5000 		 */
5001 		if (task->flags & PF_EXITING)
5002 			err = -ESRCH;
5003 		else if (task->perf_event_ctxp)
5004 			err = -EAGAIN;
5005 		else {
5006 			get_ctx(ctx);
5007 			++ctx->pin_count;
5008 			rcu_assign_pointer(task->perf_event_ctxp, ctx);
5009 		}
5010 		mutex_unlock(&task->perf_event_mutex);
5011 
5012 		if (unlikely(err)) {
5013 			put_ctx(ctx);
5014 
5015 			if (err == -EAGAIN)
5016 				goto retry;
5017 			goto errout;
5018 		}
5019 	}
5020 
5021 	return ctx;
5022 
5023 errout:
5024 	return ERR_PTR(err);
5025 }
5026 
5027 static struct perf_event_pmu_context *
5028 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx,
5029 		     struct perf_event *event)
5030 {
5031 	struct perf_event_pmu_context *new = NULL, *pos = NULL, *epc;
5032 
5033 	if (!ctx->task) {
5034 		/*
5035 		 * perf_pmu_migrate_context() / __perf_pmu_install_event()
5036 		 * relies on the fact that find_get_pmu_context() cannot fail
5037 		 * for CPU contexts.
5038 		 */
5039 		struct perf_cpu_pmu_context *cpc;
5040 
5041 		cpc = *per_cpu_ptr(pmu->cpu_pmu_context, event->cpu);
5042 		epc = &cpc->epc;
5043 		raw_spin_lock_irq(&ctx->lock);
5044 		if (!epc->ctx) {
5045 			/*
5046 			 * One extra reference for the pmu; see perf_pmu_free().
5047 			 */
5048 			atomic_set(&epc->refcount, 2);
5049 			epc->embedded = 1;
5050 			list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
5051 			epc->ctx = ctx;
5052 		} else {
5053 			WARN_ON_ONCE(epc->ctx != ctx);
5054 			atomic_inc(&epc->refcount);
5055 		}
5056 		raw_spin_unlock_irq(&ctx->lock);
5057 		return epc;
5058 	}
5059 
5060 	new = kzalloc(sizeof(*epc), GFP_KERNEL);
5061 	if (!new)
5062 		return ERR_PTR(-ENOMEM);
5063 
5064 	__perf_init_event_pmu_context(new, pmu);
5065 
5066 	/*
5067 	 * XXX
5068 	 *
5069 	 * lockdep_assert_held(&ctx->mutex);
5070 	 *
5071 	 * can't because perf_event_init_task() doesn't actually hold the
5072 	 * child_ctx->mutex.
5073 	 */
5074 
5075 	raw_spin_lock_irq(&ctx->lock);
5076 	list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) {
5077 		if (epc->pmu == pmu) {
5078 			WARN_ON_ONCE(epc->ctx != ctx);
5079 			atomic_inc(&epc->refcount);
5080 			goto found_epc;
5081 		}
5082 		/* Make sure the pmu_ctx_list is sorted by PMU type: */
5083 		if (!pos && epc->pmu->type > pmu->type)
5084 			pos = epc;
5085 	}
5086 
5087 	epc = new;
5088 	new = NULL;
5089 
5090 	if (!pos)
5091 		list_add_tail(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
5092 	else
5093 		list_add(&epc->pmu_ctx_entry, pos->pmu_ctx_entry.prev);
5094 
5095 	epc->ctx = ctx;
5096 
5097 found_epc:
5098 	raw_spin_unlock_irq(&ctx->lock);
5099 	kfree(new);
5100 
5101 	return epc;
5102 }
5103 
5104 static void get_pmu_ctx(struct perf_event_pmu_context *epc)
5105 {
5106 	WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount));
5107 }
5108 
5109 static void free_cpc_rcu(struct rcu_head *head)
5110 {
5111 	struct perf_cpu_pmu_context *cpc =
5112 		container_of(head, typeof(*cpc), epc.rcu_head);
5113 
5114 	kfree(cpc);
5115 }
5116 
5117 static void free_epc_rcu(struct rcu_head *head)
5118 {
5119 	struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head);
5120 
5121 	kfree(epc);
5122 }
5123 
5124 static void put_pmu_ctx(struct perf_event_pmu_context *epc)
5125 {
5126 	struct perf_event_context *ctx = epc->ctx;
5127 	unsigned long flags;
5128 
5129 	/*
5130 	 * XXX
5131 	 *
5132 	 * lockdep_assert_held(&ctx->mutex);
5133 	 *
5134 	 * can't because of the call-site in _free_event()/put_event()
5135 	 * which isn't always called under ctx->mutex.
5136 	 */
5137 	if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags))
5138 		return;
5139 
5140 	WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry));
5141 
5142 	list_del_init(&epc->pmu_ctx_entry);
5143 	epc->ctx = NULL;
5144 
5145 	WARN_ON_ONCE(!list_empty(&epc->pinned_active));
5146 	WARN_ON_ONCE(!list_empty(&epc->flexible_active));
5147 
5148 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5149 
5150 	if (epc->embedded) {
5151 		call_rcu(&epc->rcu_head, free_cpc_rcu);
5152 		return;
5153 	}
5154 
5155 	call_rcu(&epc->rcu_head, free_epc_rcu);
5156 }
5157 
5158 static void perf_event_free_filter(struct perf_event *event);
5159 
5160 static void free_event_rcu(struct rcu_head *head)
5161 {
5162 	struct perf_event *event = container_of(head, typeof(*event), rcu_head);
5163 
5164 	if (event->ns)
5165 		put_pid_ns(event->ns);
5166 	perf_event_free_filter(event);
5167 	kmem_cache_free(perf_event_cache, event);
5168 }
5169 
5170 static void ring_buffer_attach(struct perf_event *event,
5171 			       struct perf_buffer *rb);
5172 
5173 static void detach_sb_event(struct perf_event *event)
5174 {
5175 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
5176 
5177 	raw_spin_lock(&pel->lock);
5178 	list_del_rcu(&event->sb_list);
5179 	raw_spin_unlock(&pel->lock);
5180 }
5181 
5182 static bool is_sb_event(struct perf_event *event)
5183 {
5184 	struct perf_event_attr *attr = &event->attr;
5185 
5186 	if (event->parent)
5187 		return false;
5188 
5189 	if (event->attach_state & PERF_ATTACH_TASK)
5190 		return false;
5191 
5192 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
5193 	    attr->comm || attr->comm_exec ||
5194 	    attr->task || attr->ksymbol ||
5195 	    attr->context_switch || attr->text_poke ||
5196 	    attr->bpf_event)
5197 		return true;
5198 
5199 	return false;
5200 }
5201 
5202 static void unaccount_pmu_sb_event(struct perf_event *event)
5203 {
5204 	if (is_sb_event(event))
5205 		detach_sb_event(event);
5206 }
5207 
5208 #ifdef CONFIG_NO_HZ_FULL
5209 static DEFINE_SPINLOCK(nr_freq_lock);
5210 #endif
5211 
5212 static void unaccount_freq_event_nohz(void)
5213 {
5214 #ifdef CONFIG_NO_HZ_FULL
5215 	spin_lock(&nr_freq_lock);
5216 	if (atomic_dec_and_test(&nr_freq_events))
5217 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
5218 	spin_unlock(&nr_freq_lock);
5219 #endif
5220 }
5221 
5222 static void unaccount_freq_event(void)
5223 {
5224 	if (tick_nohz_full_enabled())
5225 		unaccount_freq_event_nohz();
5226 	else
5227 		atomic_dec(&nr_freq_events);
5228 }
5229 
5230 
5231 static struct perf_ctx_data *
5232 alloc_perf_ctx_data(struct kmem_cache *ctx_cache, bool global)
5233 {
5234 	struct perf_ctx_data *cd;
5235 
5236 	cd = kzalloc(sizeof(*cd), GFP_KERNEL);
5237 	if (!cd)
5238 		return NULL;
5239 
5240 	cd->data = kmem_cache_zalloc(ctx_cache, GFP_KERNEL);
5241 	if (!cd->data) {
5242 		kfree(cd);
5243 		return NULL;
5244 	}
5245 
5246 	cd->global = global;
5247 	cd->ctx_cache = ctx_cache;
5248 	refcount_set(&cd->refcount, 1);
5249 
5250 	return cd;
5251 }
5252 
5253 static void free_perf_ctx_data(struct perf_ctx_data *cd)
5254 {
5255 	kmem_cache_free(cd->ctx_cache, cd->data);
5256 	kfree(cd);
5257 }
5258 
5259 static void __free_perf_ctx_data_rcu(struct rcu_head *rcu_head)
5260 {
5261 	struct perf_ctx_data *cd;
5262 
5263 	cd = container_of(rcu_head, struct perf_ctx_data, rcu_head);
5264 	free_perf_ctx_data(cd);
5265 }
5266 
5267 static inline void perf_free_ctx_data_rcu(struct perf_ctx_data *cd)
5268 {
5269 	call_rcu(&cd->rcu_head, __free_perf_ctx_data_rcu);
5270 }
5271 
5272 static int
5273 attach_task_ctx_data(struct task_struct *task, struct kmem_cache *ctx_cache,
5274 		     bool global)
5275 {
5276 	struct perf_ctx_data *cd, *old = NULL;
5277 
5278 	cd = alloc_perf_ctx_data(ctx_cache, global);
5279 	if (!cd)
5280 		return -ENOMEM;
5281 
5282 	for (;;) {
5283 		if (try_cmpxchg((struct perf_ctx_data **)&task->perf_ctx_data, &old, cd)) {
5284 			if (old)
5285 				perf_free_ctx_data_rcu(old);
5286 			return 0;
5287 		}
5288 
5289 		if (!old) {
5290 			/*
5291 			 * After seeing a dead @old, we raced with
5292 			 * removal and lost, try again to install @cd.
5293 			 */
5294 			continue;
5295 		}
5296 
5297 		if (refcount_inc_not_zero(&old->refcount)) {
5298 			free_perf_ctx_data(cd); /* unused */
5299 			return 0;
5300 		}
5301 
5302 		/*
5303 		 * @old is a dead object, refcount==0 is stable, try and
5304 		 * replace it with @cd.
5305 		 */
5306 	}
5307 	return 0;
5308 }
5309 
5310 static void __detach_global_ctx_data(void);
5311 DEFINE_STATIC_PERCPU_RWSEM(global_ctx_data_rwsem);
5312 static refcount_t global_ctx_data_ref;
5313 
5314 static int
5315 attach_global_ctx_data(struct kmem_cache *ctx_cache)
5316 {
5317 	struct task_struct *g, *p;
5318 	struct perf_ctx_data *cd;
5319 	int ret;
5320 
5321 	if (refcount_inc_not_zero(&global_ctx_data_ref))
5322 		return 0;
5323 
5324 	guard(percpu_write)(&global_ctx_data_rwsem);
5325 	if (refcount_inc_not_zero(&global_ctx_data_ref))
5326 		return 0;
5327 again:
5328 	/* Allocate everything */
5329 	scoped_guard (rcu) {
5330 		for_each_process_thread(g, p) {
5331 			cd = rcu_dereference(p->perf_ctx_data);
5332 			if (cd && !cd->global) {
5333 				cd->global = 1;
5334 				if (!refcount_inc_not_zero(&cd->refcount))
5335 					cd = NULL;
5336 			}
5337 			if (!cd) {
5338 				get_task_struct(p);
5339 				goto alloc;
5340 			}
5341 		}
5342 	}
5343 
5344 	refcount_set(&global_ctx_data_ref, 1);
5345 
5346 	return 0;
5347 alloc:
5348 	ret = attach_task_ctx_data(p, ctx_cache, true);
5349 	put_task_struct(p);
5350 	if (ret) {
5351 		__detach_global_ctx_data();
5352 		return ret;
5353 	}
5354 	goto again;
5355 }
5356 
5357 static int
5358 attach_perf_ctx_data(struct perf_event *event)
5359 {
5360 	struct task_struct *task = event->hw.target;
5361 	struct kmem_cache *ctx_cache = event->pmu->task_ctx_cache;
5362 	int ret;
5363 
5364 	if (!ctx_cache)
5365 		return -ENOMEM;
5366 
5367 	if (task)
5368 		return attach_task_ctx_data(task, ctx_cache, false);
5369 
5370 	ret = attach_global_ctx_data(ctx_cache);
5371 	if (ret)
5372 		return ret;
5373 
5374 	event->attach_state |= PERF_ATTACH_GLOBAL_DATA;
5375 	return 0;
5376 }
5377 
5378 static void
5379 detach_task_ctx_data(struct task_struct *p)
5380 {
5381 	struct perf_ctx_data *cd;
5382 
5383 	scoped_guard (rcu) {
5384 		cd = rcu_dereference(p->perf_ctx_data);
5385 		if (!cd || !refcount_dec_and_test(&cd->refcount))
5386 			return;
5387 	}
5388 
5389 	/*
5390 	 * The old ctx_data may be lost because of the race.
5391 	 * Nothing is required to do for the case.
5392 	 * See attach_task_ctx_data().
5393 	 */
5394 	if (try_cmpxchg((struct perf_ctx_data **)&p->perf_ctx_data, &cd, NULL))
5395 		perf_free_ctx_data_rcu(cd);
5396 }
5397 
5398 static void __detach_global_ctx_data(void)
5399 {
5400 	struct task_struct *g, *p;
5401 	struct perf_ctx_data *cd;
5402 
5403 again:
5404 	scoped_guard (rcu) {
5405 		for_each_process_thread(g, p) {
5406 			cd = rcu_dereference(p->perf_ctx_data);
5407 			if (!cd || !cd->global)
5408 				continue;
5409 			cd->global = 0;
5410 			get_task_struct(p);
5411 			goto detach;
5412 		}
5413 	}
5414 	return;
5415 detach:
5416 	detach_task_ctx_data(p);
5417 	put_task_struct(p);
5418 	goto again;
5419 }
5420 
5421 static void detach_global_ctx_data(void)
5422 {
5423 	if (refcount_dec_not_one(&global_ctx_data_ref))
5424 		return;
5425 
5426 	guard(percpu_write)(&global_ctx_data_rwsem);
5427 	if (!refcount_dec_and_test(&global_ctx_data_ref))
5428 		return;
5429 
5430 	/* remove everything */
5431 	__detach_global_ctx_data();
5432 }
5433 
5434 static void detach_perf_ctx_data(struct perf_event *event)
5435 {
5436 	struct task_struct *task = event->hw.target;
5437 
5438 	event->attach_state &= ~PERF_ATTACH_TASK_DATA;
5439 
5440 	if (task)
5441 		return detach_task_ctx_data(task);
5442 
5443 	if (event->attach_state & PERF_ATTACH_GLOBAL_DATA) {
5444 		detach_global_ctx_data();
5445 		event->attach_state &= ~PERF_ATTACH_GLOBAL_DATA;
5446 	}
5447 }
5448 
5449 static void unaccount_event(struct perf_event *event)
5450 {
5451 	bool dec = false;
5452 
5453 	if (event->parent)
5454 		return;
5455 
5456 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
5457 		dec = true;
5458 	if (event->attr.mmap || event->attr.mmap_data)
5459 		atomic_dec(&nr_mmap_events);
5460 	if (event->attr.build_id)
5461 		atomic_dec(&nr_build_id_events);
5462 	if (event->attr.comm)
5463 		atomic_dec(&nr_comm_events);
5464 	if (event->attr.namespaces)
5465 		atomic_dec(&nr_namespaces_events);
5466 	if (event->attr.cgroup)
5467 		atomic_dec(&nr_cgroup_events);
5468 	if (event->attr.task)
5469 		atomic_dec(&nr_task_events);
5470 	if (event->attr.freq)
5471 		unaccount_freq_event();
5472 	if (event->attr.context_switch) {
5473 		dec = true;
5474 		atomic_dec(&nr_switch_events);
5475 	}
5476 	if (is_cgroup_event(event))
5477 		dec = true;
5478 	if (has_branch_stack(event))
5479 		dec = true;
5480 	if (event->attr.ksymbol)
5481 		atomic_dec(&nr_ksymbol_events);
5482 	if (event->attr.bpf_event)
5483 		atomic_dec(&nr_bpf_events);
5484 	if (event->attr.text_poke)
5485 		atomic_dec(&nr_text_poke_events);
5486 
5487 	if (dec) {
5488 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
5489 			schedule_delayed_work(&perf_sched_work, HZ);
5490 	}
5491 
5492 	unaccount_pmu_sb_event(event);
5493 }
5494 
5495 static void perf_sched_delayed(struct work_struct *work)
5496 {
5497 	mutex_lock(&perf_sched_mutex);
5498 	if (atomic_dec_and_test(&perf_sched_count))
5499 		static_branch_disable(&perf_sched_events);
5500 	mutex_unlock(&perf_sched_mutex);
5501 }
5502 
5503 /*
5504  * The following implement mutual exclusion of events on "exclusive" pmus
5505  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
5506  * at a time, so we disallow creating events that might conflict, namely:
5507  *
5508  *  1) cpu-wide events in the presence of per-task events,
5509  *  2) per-task events in the presence of cpu-wide events,
5510  *  3) two matching events on the same perf_event_context.
5511  *
5512  * The former two cases are handled in the allocation path (perf_event_alloc(),
5513  * _free_event()), the latter -- before the first perf_install_in_context().
5514  */
5515 static int exclusive_event_init(struct perf_event *event)
5516 {
5517 	struct pmu *pmu = event->pmu;
5518 
5519 	if (!is_exclusive_pmu(pmu))
5520 		return 0;
5521 
5522 	/*
5523 	 * Prevent co-existence of per-task and cpu-wide events on the
5524 	 * same exclusive pmu.
5525 	 *
5526 	 * Negative pmu::exclusive_cnt means there are cpu-wide
5527 	 * events on this "exclusive" pmu, positive means there are
5528 	 * per-task events.
5529 	 *
5530 	 * Since this is called in perf_event_alloc() path, event::ctx
5531 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5532 	 * to mean "per-task event", because unlike other attach states it
5533 	 * never gets cleared.
5534 	 */
5535 	if (event->attach_state & PERF_ATTACH_TASK) {
5536 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
5537 			return -EBUSY;
5538 	} else {
5539 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
5540 			return -EBUSY;
5541 	}
5542 
5543 	event->attach_state |= PERF_ATTACH_EXCLUSIVE;
5544 
5545 	return 0;
5546 }
5547 
5548 static void exclusive_event_destroy(struct perf_event *event)
5549 {
5550 	struct pmu *pmu = event->pmu;
5551 
5552 	/* see comment in exclusive_event_init() */
5553 	if (event->attach_state & PERF_ATTACH_TASK)
5554 		atomic_dec(&pmu->exclusive_cnt);
5555 	else
5556 		atomic_inc(&pmu->exclusive_cnt);
5557 
5558 	event->attach_state &= ~PERF_ATTACH_EXCLUSIVE;
5559 }
5560 
5561 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5562 {
5563 	if ((e1->pmu == e2->pmu) &&
5564 	    (e1->cpu == e2->cpu ||
5565 	     e1->cpu == -1 ||
5566 	     e2->cpu == -1))
5567 		return true;
5568 	return false;
5569 }
5570 
5571 static bool exclusive_event_installable(struct perf_event *event,
5572 					struct perf_event_context *ctx)
5573 {
5574 	struct perf_event *iter_event;
5575 	struct pmu *pmu = event->pmu;
5576 
5577 	lockdep_assert_held(&ctx->mutex);
5578 
5579 	if (!is_exclusive_pmu(pmu))
5580 		return true;
5581 
5582 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5583 		if (exclusive_event_match(iter_event, event))
5584 			return false;
5585 	}
5586 
5587 	return true;
5588 }
5589 
5590 static void perf_free_addr_filters(struct perf_event *event);
5591 
5592 /* vs perf_event_alloc() error */
5593 static void __free_event(struct perf_event *event)
5594 {
5595 	struct pmu *pmu = event->pmu;
5596 
5597 	if (event->attach_state & PERF_ATTACH_CALLCHAIN)
5598 		put_callchain_buffers();
5599 
5600 	kfree(event->addr_filter_ranges);
5601 
5602 	if (event->attach_state & PERF_ATTACH_EXCLUSIVE)
5603 		exclusive_event_destroy(event);
5604 
5605 	if (is_cgroup_event(event))
5606 		perf_detach_cgroup(event);
5607 
5608 	if (event->attach_state & PERF_ATTACH_TASK_DATA)
5609 		detach_perf_ctx_data(event);
5610 
5611 	if (event->destroy)
5612 		event->destroy(event);
5613 
5614 	/*
5615 	 * Must be after ->destroy(), due to uprobe_perf_close() using
5616 	 * hw.target.
5617 	 */
5618 	if (event->hw.target)
5619 		put_task_struct(event->hw.target);
5620 
5621 	if (event->pmu_ctx) {
5622 		/*
5623 		 * put_pmu_ctx() needs an event->ctx reference, because of
5624 		 * epc->ctx.
5625 		 */
5626 		WARN_ON_ONCE(!pmu);
5627 		WARN_ON_ONCE(!event->ctx);
5628 		WARN_ON_ONCE(event->pmu_ctx->ctx != event->ctx);
5629 		put_pmu_ctx(event->pmu_ctx);
5630 	}
5631 
5632 	/*
5633 	 * perf_event_free_task() relies on put_ctx() being 'last', in
5634 	 * particular all task references must be cleaned up.
5635 	 */
5636 	if (event->ctx)
5637 		put_ctx(event->ctx);
5638 
5639 	if (pmu) {
5640 		module_put(pmu->module);
5641 		scoped_guard (spinlock, &pmu->events_lock) {
5642 			list_del(&event->pmu_list);
5643 			wake_up_var(pmu);
5644 		}
5645 	}
5646 
5647 	call_rcu(&event->rcu_head, free_event_rcu);
5648 }
5649 
5650 DEFINE_FREE(__free_event, struct perf_event *, if (_T) __free_event(_T))
5651 
5652 /* vs perf_event_alloc() success */
5653 static void _free_event(struct perf_event *event)
5654 {
5655 	irq_work_sync(&event->pending_irq);
5656 	irq_work_sync(&event->pending_disable_irq);
5657 
5658 	unaccount_event(event);
5659 
5660 	security_perf_event_free(event);
5661 
5662 	if (event->rb) {
5663 		/*
5664 		 * Can happen when we close an event with re-directed output.
5665 		 *
5666 		 * Since we have a 0 refcount, perf_mmap_close() will skip
5667 		 * over us; possibly making our ring_buffer_put() the last.
5668 		 */
5669 		mutex_lock(&event->mmap_mutex);
5670 		ring_buffer_attach(event, NULL);
5671 		mutex_unlock(&event->mmap_mutex);
5672 	}
5673 
5674 	perf_event_free_bpf_prog(event);
5675 	perf_free_addr_filters(event);
5676 
5677 	__free_event(event);
5678 }
5679 
5680 /*
5681  * Used to free events which have a known refcount of 1, such as in error paths
5682  * of inherited events.
5683  */
5684 static void free_event(struct perf_event *event)
5685 {
5686 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5687 				     "unexpected event refcount: %ld; ptr=%p\n",
5688 				     atomic_long_read(&event->refcount), event)) {
5689 		/* leak to avoid use-after-free */
5690 		return;
5691 	}
5692 
5693 	_free_event(event);
5694 }
5695 
5696 /*
5697  * Remove user event from the owner task.
5698  */
5699 static void perf_remove_from_owner(struct perf_event *event)
5700 {
5701 	struct task_struct *owner;
5702 
5703 	rcu_read_lock();
5704 	/*
5705 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
5706 	 * observe !owner it means the list deletion is complete and we can
5707 	 * indeed free this event, otherwise we need to serialize on
5708 	 * owner->perf_event_mutex.
5709 	 */
5710 	owner = READ_ONCE(event->owner);
5711 	if (owner) {
5712 		/*
5713 		 * Since delayed_put_task_struct() also drops the last
5714 		 * task reference we can safely take a new reference
5715 		 * while holding the rcu_read_lock().
5716 		 */
5717 		get_task_struct(owner);
5718 	}
5719 	rcu_read_unlock();
5720 
5721 	if (owner) {
5722 		/*
5723 		 * If we're here through perf_event_exit_task() we're already
5724 		 * holding ctx->mutex which would be an inversion wrt. the
5725 		 * normal lock order.
5726 		 *
5727 		 * However we can safely take this lock because its the child
5728 		 * ctx->mutex.
5729 		 */
5730 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5731 
5732 		/*
5733 		 * We have to re-check the event->owner field, if it is cleared
5734 		 * we raced with perf_event_exit_task(), acquiring the mutex
5735 		 * ensured they're done, and we can proceed with freeing the
5736 		 * event.
5737 		 */
5738 		if (event->owner) {
5739 			list_del_init(&event->owner_entry);
5740 			smp_store_release(&event->owner, NULL);
5741 		}
5742 		mutex_unlock(&owner->perf_event_mutex);
5743 		put_task_struct(owner);
5744 	}
5745 }
5746 
5747 static void put_event(struct perf_event *event)
5748 {
5749 	struct perf_event *parent;
5750 
5751 	if (!atomic_long_dec_and_test(&event->refcount))
5752 		return;
5753 
5754 	parent = event->parent;
5755 	_free_event(event);
5756 
5757 	/* Matches the refcount bump in inherit_event() */
5758 	if (parent)
5759 		put_event(parent);
5760 }
5761 
5762 /*
5763  * Kill an event dead; while event:refcount will preserve the event
5764  * object, it will not preserve its functionality. Once the last 'user'
5765  * gives up the object, we'll destroy the thing.
5766  */
5767 int perf_event_release_kernel(struct perf_event *event)
5768 {
5769 	struct perf_event_context *ctx = event->ctx;
5770 	struct perf_event *child, *tmp;
5771 
5772 	/*
5773 	 * If we got here through err_alloc: free_event(event); we will not
5774 	 * have attached to a context yet.
5775 	 */
5776 	if (!ctx) {
5777 		WARN_ON_ONCE(event->attach_state &
5778 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5779 		goto no_ctx;
5780 	}
5781 
5782 	if (!is_kernel_event(event))
5783 		perf_remove_from_owner(event);
5784 
5785 	ctx = perf_event_ctx_lock(event);
5786 	WARN_ON_ONCE(ctx->parent_ctx);
5787 
5788 	/*
5789 	 * Mark this event as STATE_DEAD, there is no external reference to it
5790 	 * anymore.
5791 	 *
5792 	 * Anybody acquiring event->child_mutex after the below loop _must_
5793 	 * also see this, most importantly inherit_event() which will avoid
5794 	 * placing more children on the list.
5795 	 *
5796 	 * Thus this guarantees that we will in fact observe and kill _ALL_
5797 	 * child events.
5798 	 */
5799 	if (event->state > PERF_EVENT_STATE_REVOKED) {
5800 		perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
5801 	} else {
5802 		event->state = PERF_EVENT_STATE_DEAD;
5803 	}
5804 
5805 	perf_event_ctx_unlock(event, ctx);
5806 
5807 again:
5808 	mutex_lock(&event->child_mutex);
5809 	list_for_each_entry(child, &event->child_list, child_list) {
5810 		/*
5811 		 * Cannot change, child events are not migrated, see the
5812 		 * comment with perf_event_ctx_lock_nested().
5813 		 */
5814 		ctx = READ_ONCE(child->ctx);
5815 		/*
5816 		 * Since child_mutex nests inside ctx::mutex, we must jump
5817 		 * through hoops. We start by grabbing a reference on the ctx.
5818 		 *
5819 		 * Since the event cannot get freed while we hold the
5820 		 * child_mutex, the context must also exist and have a !0
5821 		 * reference count.
5822 		 */
5823 		get_ctx(ctx);
5824 
5825 		/*
5826 		 * Now that we have a ctx ref, we can drop child_mutex, and
5827 		 * acquire ctx::mutex without fear of it going away. Then we
5828 		 * can re-acquire child_mutex.
5829 		 */
5830 		mutex_unlock(&event->child_mutex);
5831 		mutex_lock(&ctx->mutex);
5832 		mutex_lock(&event->child_mutex);
5833 
5834 		/*
5835 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
5836 		 * state, if child is still the first entry, it didn't get freed
5837 		 * and we can continue doing so.
5838 		 */
5839 		tmp = list_first_entry_or_null(&event->child_list,
5840 					       struct perf_event, child_list);
5841 		if (tmp == child) {
5842 			perf_remove_from_context(child, DETACH_GROUP | DETACH_CHILD);
5843 		} else {
5844 			child = NULL;
5845 		}
5846 
5847 		mutex_unlock(&event->child_mutex);
5848 		mutex_unlock(&ctx->mutex);
5849 
5850 		if (child) {
5851 			/* Last reference unless ->pending_task work is pending */
5852 			put_event(child);
5853 		}
5854 		put_ctx(ctx);
5855 
5856 		goto again;
5857 	}
5858 	mutex_unlock(&event->child_mutex);
5859 
5860 no_ctx:
5861 	/*
5862 	 * Last reference unless ->pending_task work is pending on this event
5863 	 * or any of its children.
5864 	 */
5865 	put_event(event);
5866 	return 0;
5867 }
5868 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5869 
5870 /*
5871  * Called when the last reference to the file is gone.
5872  */
5873 static int perf_release(struct inode *inode, struct file *file)
5874 {
5875 	perf_event_release_kernel(file->private_data);
5876 	return 0;
5877 }
5878 
5879 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5880 {
5881 	struct perf_event *child;
5882 	u64 total = 0;
5883 
5884 	*enabled = 0;
5885 	*running = 0;
5886 
5887 	mutex_lock(&event->child_mutex);
5888 
5889 	(void)perf_event_read(event, false);
5890 	total += perf_event_count(event, false);
5891 
5892 	*enabled += event->total_time_enabled +
5893 			atomic64_read(&event->child_total_time_enabled);
5894 	*running += event->total_time_running +
5895 			atomic64_read(&event->child_total_time_running);
5896 
5897 	list_for_each_entry(child, &event->child_list, child_list) {
5898 		(void)perf_event_read(child, false);
5899 		total += perf_event_count(child, false);
5900 		*enabled += child->total_time_enabled;
5901 		*running += child->total_time_running;
5902 	}
5903 	mutex_unlock(&event->child_mutex);
5904 
5905 	return total;
5906 }
5907 
5908 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5909 {
5910 	struct perf_event_context *ctx;
5911 	u64 count;
5912 
5913 	ctx = perf_event_ctx_lock(event);
5914 	count = __perf_event_read_value(event, enabled, running);
5915 	perf_event_ctx_unlock(event, ctx);
5916 
5917 	return count;
5918 }
5919 EXPORT_SYMBOL_GPL(perf_event_read_value);
5920 
5921 static int __perf_read_group_add(struct perf_event *leader,
5922 					u64 read_format, u64 *values)
5923 {
5924 	struct perf_event_context *ctx = leader->ctx;
5925 	struct perf_event *sub, *parent;
5926 	unsigned long flags;
5927 	int n = 1; /* skip @nr */
5928 	int ret;
5929 
5930 	ret = perf_event_read(leader, true);
5931 	if (ret)
5932 		return ret;
5933 
5934 	raw_spin_lock_irqsave(&ctx->lock, flags);
5935 	/*
5936 	 * Verify the grouping between the parent and child (inherited)
5937 	 * events is still in tact.
5938 	 *
5939 	 * Specifically:
5940 	 *  - leader->ctx->lock pins leader->sibling_list
5941 	 *  - parent->child_mutex pins parent->child_list
5942 	 *  - parent->ctx->mutex pins parent->sibling_list
5943 	 *
5944 	 * Because parent->ctx != leader->ctx (and child_list nests inside
5945 	 * ctx->mutex), group destruction is not atomic between children, also
5946 	 * see perf_event_release_kernel(). Additionally, parent can grow the
5947 	 * group.
5948 	 *
5949 	 * Therefore it is possible to have parent and child groups in a
5950 	 * different configuration and summing over such a beast makes no sense
5951 	 * what so ever.
5952 	 *
5953 	 * Reject this.
5954 	 */
5955 	parent = leader->parent;
5956 	if (parent &&
5957 	    (parent->group_generation != leader->group_generation ||
5958 	     parent->nr_siblings != leader->nr_siblings)) {
5959 		ret = -ECHILD;
5960 		goto unlock;
5961 	}
5962 
5963 	/*
5964 	 * Since we co-schedule groups, {enabled,running} times of siblings
5965 	 * will be identical to those of the leader, so we only publish one
5966 	 * set.
5967 	 */
5968 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5969 		values[n++] += leader->total_time_enabled +
5970 			atomic64_read(&leader->child_total_time_enabled);
5971 	}
5972 
5973 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5974 		values[n++] += leader->total_time_running +
5975 			atomic64_read(&leader->child_total_time_running);
5976 	}
5977 
5978 	/*
5979 	 * Write {count,id} tuples for every sibling.
5980 	 */
5981 	values[n++] += perf_event_count(leader, false);
5982 	if (read_format & PERF_FORMAT_ID)
5983 		values[n++] = primary_event_id(leader);
5984 	if (read_format & PERF_FORMAT_LOST)
5985 		values[n++] = atomic64_read(&leader->lost_samples);
5986 
5987 	for_each_sibling_event(sub, leader) {
5988 		values[n++] += perf_event_count(sub, false);
5989 		if (read_format & PERF_FORMAT_ID)
5990 			values[n++] = primary_event_id(sub);
5991 		if (read_format & PERF_FORMAT_LOST)
5992 			values[n++] = atomic64_read(&sub->lost_samples);
5993 	}
5994 
5995 unlock:
5996 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5997 	return ret;
5998 }
5999 
6000 static int perf_read_group(struct perf_event *event,
6001 				   u64 read_format, char __user *buf)
6002 {
6003 	struct perf_event *leader = event->group_leader, *child;
6004 	struct perf_event_context *ctx = leader->ctx;
6005 	int ret;
6006 	u64 *values;
6007 
6008 	lockdep_assert_held(&ctx->mutex);
6009 
6010 	values = kzalloc(event->read_size, GFP_KERNEL);
6011 	if (!values)
6012 		return -ENOMEM;
6013 
6014 	values[0] = 1 + leader->nr_siblings;
6015 
6016 	mutex_lock(&leader->child_mutex);
6017 
6018 	ret = __perf_read_group_add(leader, read_format, values);
6019 	if (ret)
6020 		goto unlock;
6021 
6022 	list_for_each_entry(child, &leader->child_list, child_list) {
6023 		ret = __perf_read_group_add(child, read_format, values);
6024 		if (ret)
6025 			goto unlock;
6026 	}
6027 
6028 	mutex_unlock(&leader->child_mutex);
6029 
6030 	ret = event->read_size;
6031 	if (copy_to_user(buf, values, event->read_size))
6032 		ret = -EFAULT;
6033 	goto out;
6034 
6035 unlock:
6036 	mutex_unlock(&leader->child_mutex);
6037 out:
6038 	kfree(values);
6039 	return ret;
6040 }
6041 
6042 static int perf_read_one(struct perf_event *event,
6043 				 u64 read_format, char __user *buf)
6044 {
6045 	u64 enabled, running;
6046 	u64 values[5];
6047 	int n = 0;
6048 
6049 	values[n++] = __perf_event_read_value(event, &enabled, &running);
6050 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6051 		values[n++] = enabled;
6052 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6053 		values[n++] = running;
6054 	if (read_format & PERF_FORMAT_ID)
6055 		values[n++] = primary_event_id(event);
6056 	if (read_format & PERF_FORMAT_LOST)
6057 		values[n++] = atomic64_read(&event->lost_samples);
6058 
6059 	if (copy_to_user(buf, values, n * sizeof(u64)))
6060 		return -EFAULT;
6061 
6062 	return n * sizeof(u64);
6063 }
6064 
6065 static bool is_event_hup(struct perf_event *event)
6066 {
6067 	bool no_children;
6068 
6069 	if (event->state > PERF_EVENT_STATE_EXIT)
6070 		return false;
6071 
6072 	mutex_lock(&event->child_mutex);
6073 	no_children = list_empty(&event->child_list);
6074 	mutex_unlock(&event->child_mutex);
6075 	return no_children;
6076 }
6077 
6078 /*
6079  * Read the performance event - simple non blocking version for now
6080  */
6081 static ssize_t
6082 __perf_read(struct perf_event *event, char __user *buf, size_t count)
6083 {
6084 	u64 read_format = event->attr.read_format;
6085 	int ret;
6086 
6087 	/*
6088 	 * Return end-of-file for a read on an event that is in
6089 	 * error state (i.e. because it was pinned but it couldn't be
6090 	 * scheduled on to the CPU at some point).
6091 	 */
6092 	if (event->state == PERF_EVENT_STATE_ERROR)
6093 		return 0;
6094 
6095 	if (count < event->read_size)
6096 		return -ENOSPC;
6097 
6098 	WARN_ON_ONCE(event->ctx->parent_ctx);
6099 	if (read_format & PERF_FORMAT_GROUP)
6100 		ret = perf_read_group(event, read_format, buf);
6101 	else
6102 		ret = perf_read_one(event, read_format, buf);
6103 
6104 	return ret;
6105 }
6106 
6107 static ssize_t
6108 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
6109 {
6110 	struct perf_event *event = file->private_data;
6111 	struct perf_event_context *ctx;
6112 	int ret;
6113 
6114 	ret = security_perf_event_read(event);
6115 	if (ret)
6116 		return ret;
6117 
6118 	ctx = perf_event_ctx_lock(event);
6119 	ret = __perf_read(event, buf, count);
6120 	perf_event_ctx_unlock(event, ctx);
6121 
6122 	return ret;
6123 }
6124 
6125 static __poll_t perf_poll(struct file *file, poll_table *wait)
6126 {
6127 	struct perf_event *event = file->private_data;
6128 	struct perf_buffer *rb;
6129 	__poll_t events = EPOLLHUP;
6130 
6131 	if (event->state <= PERF_EVENT_STATE_REVOKED)
6132 		return EPOLLERR;
6133 
6134 	poll_wait(file, &event->waitq, wait);
6135 
6136 	if (event->state <= PERF_EVENT_STATE_REVOKED)
6137 		return EPOLLERR;
6138 
6139 	if (is_event_hup(event))
6140 		return events;
6141 
6142 	if (unlikely(READ_ONCE(event->state) == PERF_EVENT_STATE_ERROR &&
6143 		     event->attr.pinned))
6144 		return EPOLLERR;
6145 
6146 	/*
6147 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
6148 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
6149 	 */
6150 	mutex_lock(&event->mmap_mutex);
6151 	rb = event->rb;
6152 	if (rb)
6153 		events = atomic_xchg(&rb->poll, 0);
6154 	mutex_unlock(&event->mmap_mutex);
6155 	return events;
6156 }
6157 
6158 static void _perf_event_reset(struct perf_event *event)
6159 {
6160 	(void)perf_event_read(event, false);
6161 	local64_set(&event->count, 0);
6162 	perf_event_update_userpage(event);
6163 }
6164 
6165 /* Assume it's not an event with inherit set. */
6166 u64 perf_event_pause(struct perf_event *event, bool reset)
6167 {
6168 	struct perf_event_context *ctx;
6169 	u64 count;
6170 
6171 	ctx = perf_event_ctx_lock(event);
6172 	WARN_ON_ONCE(event->attr.inherit);
6173 	_perf_event_disable(event);
6174 	count = local64_read(&event->count);
6175 	if (reset)
6176 		local64_set(&event->count, 0);
6177 	perf_event_ctx_unlock(event, ctx);
6178 
6179 	return count;
6180 }
6181 EXPORT_SYMBOL_GPL(perf_event_pause);
6182 
6183 /*
6184  * Holding the top-level event's child_mutex means that any
6185  * descendant process that has inherited this event will block
6186  * in perf_event_exit_event() if it goes to exit, thus satisfying the
6187  * task existence requirements of perf_event_enable/disable.
6188  */
6189 static void perf_event_for_each_child(struct perf_event *event,
6190 					void (*func)(struct perf_event *))
6191 {
6192 	struct perf_event *child;
6193 
6194 	WARN_ON_ONCE(event->ctx->parent_ctx);
6195 
6196 	mutex_lock(&event->child_mutex);
6197 	func(event);
6198 	list_for_each_entry(child, &event->child_list, child_list)
6199 		func(child);
6200 	mutex_unlock(&event->child_mutex);
6201 }
6202 
6203 static void perf_event_for_each(struct perf_event *event,
6204 				  void (*func)(struct perf_event *))
6205 {
6206 	struct perf_event_context *ctx = event->ctx;
6207 	struct perf_event *sibling;
6208 
6209 	lockdep_assert_held(&ctx->mutex);
6210 
6211 	event = event->group_leader;
6212 
6213 	perf_event_for_each_child(event, func);
6214 	for_each_sibling_event(sibling, event)
6215 		perf_event_for_each_child(sibling, func);
6216 }
6217 
6218 static void __perf_event_period(struct perf_event *event,
6219 				struct perf_cpu_context *cpuctx,
6220 				struct perf_event_context *ctx,
6221 				void *info)
6222 {
6223 	u64 value = *((u64 *)info);
6224 	bool active;
6225 
6226 	if (event->attr.freq) {
6227 		event->attr.sample_freq = value;
6228 	} else {
6229 		event->attr.sample_period = value;
6230 		event->hw.sample_period = value;
6231 	}
6232 
6233 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
6234 	if (active) {
6235 		perf_pmu_disable(event->pmu);
6236 		event->pmu->stop(event, PERF_EF_UPDATE);
6237 	}
6238 
6239 	local64_set(&event->hw.period_left, 0);
6240 
6241 	if (active) {
6242 		event->pmu->start(event, PERF_EF_RELOAD);
6243 		/*
6244 		 * Once the period is force-reset, the event starts immediately.
6245 		 * But the event/group could be throttled. Unthrottle the
6246 		 * event/group now to avoid the next tick trying to unthrottle
6247 		 * while we already re-started the event/group.
6248 		 */
6249 		if (event->hw.interrupts == MAX_INTERRUPTS)
6250 			perf_event_unthrottle_group(event, true);
6251 		perf_pmu_enable(event->pmu);
6252 	}
6253 }
6254 
6255 static int perf_event_check_period(struct perf_event *event, u64 value)
6256 {
6257 	return event->pmu->check_period(event, value);
6258 }
6259 
6260 static int _perf_event_period(struct perf_event *event, u64 value)
6261 {
6262 	if (!is_sampling_event(event))
6263 		return -EINVAL;
6264 
6265 	if (!value)
6266 		return -EINVAL;
6267 
6268 	if (event->attr.freq) {
6269 		if (value > sysctl_perf_event_sample_rate)
6270 			return -EINVAL;
6271 	} else {
6272 		if (perf_event_check_period(event, value))
6273 			return -EINVAL;
6274 		if (value & (1ULL << 63))
6275 			return -EINVAL;
6276 	}
6277 
6278 	event_function_call(event, __perf_event_period, &value);
6279 
6280 	return 0;
6281 }
6282 
6283 int perf_event_period(struct perf_event *event, u64 value)
6284 {
6285 	struct perf_event_context *ctx;
6286 	int ret;
6287 
6288 	ctx = perf_event_ctx_lock(event);
6289 	ret = _perf_event_period(event, value);
6290 	perf_event_ctx_unlock(event, ctx);
6291 
6292 	return ret;
6293 }
6294 EXPORT_SYMBOL_GPL(perf_event_period);
6295 
6296 static const struct file_operations perf_fops;
6297 
6298 static inline bool is_perf_file(struct fd f)
6299 {
6300 	return !fd_empty(f) && fd_file(f)->f_op == &perf_fops;
6301 }
6302 
6303 static int perf_event_set_output(struct perf_event *event,
6304 				 struct perf_event *output_event);
6305 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
6306 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6307 			  struct perf_event_attr *attr);
6308 static int __perf_event_set_bpf_prog(struct perf_event *event,
6309 				     struct bpf_prog *prog,
6310 				     u64 bpf_cookie);
6311 
6312 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
6313 {
6314 	void (*func)(struct perf_event *);
6315 	u32 flags = arg;
6316 
6317 	if (event->state <= PERF_EVENT_STATE_REVOKED)
6318 		return -ENODEV;
6319 
6320 	switch (cmd) {
6321 	case PERF_EVENT_IOC_ENABLE:
6322 		func = _perf_event_enable;
6323 		break;
6324 	case PERF_EVENT_IOC_DISABLE:
6325 		func = _perf_event_disable;
6326 		break;
6327 	case PERF_EVENT_IOC_RESET:
6328 		func = _perf_event_reset;
6329 		break;
6330 
6331 	case PERF_EVENT_IOC_REFRESH:
6332 		return _perf_event_refresh(event, arg);
6333 
6334 	case PERF_EVENT_IOC_PERIOD:
6335 	{
6336 		u64 value;
6337 
6338 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
6339 			return -EFAULT;
6340 
6341 		return _perf_event_period(event, value);
6342 	}
6343 	case PERF_EVENT_IOC_ID:
6344 	{
6345 		u64 id = primary_event_id(event);
6346 
6347 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
6348 			return -EFAULT;
6349 		return 0;
6350 	}
6351 
6352 	case PERF_EVENT_IOC_SET_OUTPUT:
6353 	{
6354 		CLASS(fd, output)(arg);	     // arg == -1 => empty
6355 		struct perf_event *output_event = NULL;
6356 		if (arg != -1) {
6357 			if (!is_perf_file(output))
6358 				return -EBADF;
6359 			output_event = fd_file(output)->private_data;
6360 		}
6361 		return perf_event_set_output(event, output_event);
6362 	}
6363 
6364 	case PERF_EVENT_IOC_SET_FILTER:
6365 		return perf_event_set_filter(event, (void __user *)arg);
6366 
6367 	case PERF_EVENT_IOC_SET_BPF:
6368 	{
6369 		struct bpf_prog *prog;
6370 		int err;
6371 
6372 		prog = bpf_prog_get(arg);
6373 		if (IS_ERR(prog))
6374 			return PTR_ERR(prog);
6375 
6376 		err = __perf_event_set_bpf_prog(event, prog, 0);
6377 		if (err) {
6378 			bpf_prog_put(prog);
6379 			return err;
6380 		}
6381 
6382 		return 0;
6383 	}
6384 
6385 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
6386 		struct perf_buffer *rb;
6387 
6388 		rcu_read_lock();
6389 		rb = rcu_dereference(event->rb);
6390 		if (!rb || !rb->nr_pages) {
6391 			rcu_read_unlock();
6392 			return -EINVAL;
6393 		}
6394 		rb_toggle_paused(rb, !!arg);
6395 		rcu_read_unlock();
6396 		return 0;
6397 	}
6398 
6399 	case PERF_EVENT_IOC_QUERY_BPF:
6400 		return perf_event_query_prog_array(event, (void __user *)arg);
6401 
6402 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
6403 		struct perf_event_attr new_attr;
6404 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
6405 					 &new_attr);
6406 
6407 		if (err)
6408 			return err;
6409 
6410 		return perf_event_modify_attr(event,  &new_attr);
6411 	}
6412 	default:
6413 		return -ENOTTY;
6414 	}
6415 
6416 	if (flags & PERF_IOC_FLAG_GROUP)
6417 		perf_event_for_each(event, func);
6418 	else
6419 		perf_event_for_each_child(event, func);
6420 
6421 	return 0;
6422 }
6423 
6424 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
6425 {
6426 	struct perf_event *event = file->private_data;
6427 	struct perf_event_context *ctx;
6428 	long ret;
6429 
6430 	/* Treat ioctl like writes as it is likely a mutating operation. */
6431 	ret = security_perf_event_write(event);
6432 	if (ret)
6433 		return ret;
6434 
6435 	ctx = perf_event_ctx_lock(event);
6436 	ret = _perf_ioctl(event, cmd, arg);
6437 	perf_event_ctx_unlock(event, ctx);
6438 
6439 	return ret;
6440 }
6441 
6442 #ifdef CONFIG_COMPAT
6443 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
6444 				unsigned long arg)
6445 {
6446 	switch (_IOC_NR(cmd)) {
6447 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
6448 	case _IOC_NR(PERF_EVENT_IOC_ID):
6449 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
6450 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
6451 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
6452 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
6453 			cmd &= ~IOCSIZE_MASK;
6454 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
6455 		}
6456 		break;
6457 	}
6458 	return perf_ioctl(file, cmd, arg);
6459 }
6460 #else
6461 # define perf_compat_ioctl NULL
6462 #endif
6463 
6464 int perf_event_task_enable(void)
6465 {
6466 	struct perf_event_context *ctx;
6467 	struct perf_event *event;
6468 
6469 	mutex_lock(&current->perf_event_mutex);
6470 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6471 		ctx = perf_event_ctx_lock(event);
6472 		perf_event_for_each_child(event, _perf_event_enable);
6473 		perf_event_ctx_unlock(event, ctx);
6474 	}
6475 	mutex_unlock(&current->perf_event_mutex);
6476 
6477 	return 0;
6478 }
6479 
6480 int perf_event_task_disable(void)
6481 {
6482 	struct perf_event_context *ctx;
6483 	struct perf_event *event;
6484 
6485 	mutex_lock(&current->perf_event_mutex);
6486 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6487 		ctx = perf_event_ctx_lock(event);
6488 		perf_event_for_each_child(event, _perf_event_disable);
6489 		perf_event_ctx_unlock(event, ctx);
6490 	}
6491 	mutex_unlock(&current->perf_event_mutex);
6492 
6493 	return 0;
6494 }
6495 
6496 static int perf_event_index(struct perf_event *event)
6497 {
6498 	if (event->hw.state & PERF_HES_STOPPED)
6499 		return 0;
6500 
6501 	if (event->state != PERF_EVENT_STATE_ACTIVE)
6502 		return 0;
6503 
6504 	return event->pmu->event_idx(event);
6505 }
6506 
6507 static void perf_event_init_userpage(struct perf_event *event)
6508 {
6509 	struct perf_event_mmap_page *userpg;
6510 	struct perf_buffer *rb;
6511 
6512 	rcu_read_lock();
6513 	rb = rcu_dereference(event->rb);
6514 	if (!rb)
6515 		goto unlock;
6516 
6517 	userpg = rb->user_page;
6518 
6519 	/* Allow new userspace to detect that bit 0 is deprecated */
6520 	userpg->cap_bit0_is_deprecated = 1;
6521 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
6522 	userpg->data_offset = PAGE_SIZE;
6523 	userpg->data_size = perf_data_size(rb);
6524 
6525 unlock:
6526 	rcu_read_unlock();
6527 }
6528 
6529 void __weak arch_perf_update_userpage(
6530 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
6531 {
6532 }
6533 
6534 /*
6535  * Callers need to ensure there can be no nesting of this function, otherwise
6536  * the seqlock logic goes bad. We can not serialize this because the arch
6537  * code calls this from NMI context.
6538  */
6539 void perf_event_update_userpage(struct perf_event *event)
6540 {
6541 	struct perf_event_mmap_page *userpg;
6542 	struct perf_buffer *rb;
6543 	u64 enabled, running, now;
6544 
6545 	rcu_read_lock();
6546 	rb = rcu_dereference(event->rb);
6547 	if (!rb)
6548 		goto unlock;
6549 
6550 	/*
6551 	 * compute total_time_enabled, total_time_running
6552 	 * based on snapshot values taken when the event
6553 	 * was last scheduled in.
6554 	 *
6555 	 * we cannot simply called update_context_time()
6556 	 * because of locking issue as we can be called in
6557 	 * NMI context
6558 	 */
6559 	calc_timer_values(event, &now, &enabled, &running);
6560 
6561 	userpg = rb->user_page;
6562 	/*
6563 	 * Disable preemption to guarantee consistent time stamps are stored to
6564 	 * the user page.
6565 	 */
6566 	preempt_disable();
6567 	++userpg->lock;
6568 	barrier();
6569 	userpg->index = perf_event_index(event);
6570 	userpg->offset = perf_event_count(event, false);
6571 	if (userpg->index)
6572 		userpg->offset -= local64_read(&event->hw.prev_count);
6573 
6574 	userpg->time_enabled = enabled +
6575 			atomic64_read(&event->child_total_time_enabled);
6576 
6577 	userpg->time_running = running +
6578 			atomic64_read(&event->child_total_time_running);
6579 
6580 	arch_perf_update_userpage(event, userpg, now);
6581 
6582 	barrier();
6583 	++userpg->lock;
6584 	preempt_enable();
6585 unlock:
6586 	rcu_read_unlock();
6587 }
6588 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
6589 
6590 static void ring_buffer_attach(struct perf_event *event,
6591 			       struct perf_buffer *rb)
6592 {
6593 	struct perf_buffer *old_rb = NULL;
6594 	unsigned long flags;
6595 
6596 	WARN_ON_ONCE(event->parent);
6597 
6598 	if (event->rb) {
6599 		/*
6600 		 * Should be impossible, we set this when removing
6601 		 * event->rb_entry and wait/clear when adding event->rb_entry.
6602 		 */
6603 		WARN_ON_ONCE(event->rcu_pending);
6604 
6605 		old_rb = event->rb;
6606 		spin_lock_irqsave(&old_rb->event_lock, flags);
6607 		list_del_rcu(&event->rb_entry);
6608 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
6609 
6610 		event->rcu_batches = get_state_synchronize_rcu();
6611 		event->rcu_pending = 1;
6612 	}
6613 
6614 	if (rb) {
6615 		if (event->rcu_pending) {
6616 			cond_synchronize_rcu(event->rcu_batches);
6617 			event->rcu_pending = 0;
6618 		}
6619 
6620 		spin_lock_irqsave(&rb->event_lock, flags);
6621 		list_add_rcu(&event->rb_entry, &rb->event_list);
6622 		spin_unlock_irqrestore(&rb->event_lock, flags);
6623 	}
6624 
6625 	/*
6626 	 * Avoid racing with perf_mmap_close(AUX): stop the event
6627 	 * before swizzling the event::rb pointer; if it's getting
6628 	 * unmapped, its aux_mmap_count will be 0 and it won't
6629 	 * restart. See the comment in __perf_pmu_output_stop().
6630 	 *
6631 	 * Data will inevitably be lost when set_output is done in
6632 	 * mid-air, but then again, whoever does it like this is
6633 	 * not in for the data anyway.
6634 	 */
6635 	if (has_aux(event))
6636 		perf_event_stop(event, 0);
6637 
6638 	rcu_assign_pointer(event->rb, rb);
6639 
6640 	if (old_rb) {
6641 		ring_buffer_put(old_rb);
6642 		/*
6643 		 * Since we detached before setting the new rb, so that we
6644 		 * could attach the new rb, we could have missed a wakeup.
6645 		 * Provide it now.
6646 		 */
6647 		wake_up_all(&event->waitq);
6648 	}
6649 }
6650 
6651 static void ring_buffer_wakeup(struct perf_event *event)
6652 {
6653 	struct perf_buffer *rb;
6654 
6655 	if (event->parent)
6656 		event = event->parent;
6657 
6658 	rcu_read_lock();
6659 	rb = rcu_dereference(event->rb);
6660 	if (rb) {
6661 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6662 			wake_up_all(&event->waitq);
6663 	}
6664 	rcu_read_unlock();
6665 }
6666 
6667 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6668 {
6669 	struct perf_buffer *rb;
6670 
6671 	if (event->parent)
6672 		event = event->parent;
6673 
6674 	rcu_read_lock();
6675 	rb = rcu_dereference(event->rb);
6676 	if (rb) {
6677 		if (!refcount_inc_not_zero(&rb->refcount))
6678 			rb = NULL;
6679 	}
6680 	rcu_read_unlock();
6681 
6682 	return rb;
6683 }
6684 
6685 void ring_buffer_put(struct perf_buffer *rb)
6686 {
6687 	if (!refcount_dec_and_test(&rb->refcount))
6688 		return;
6689 
6690 	WARN_ON_ONCE(!list_empty(&rb->event_list));
6691 
6692 	call_rcu(&rb->rcu_head, rb_free_rcu);
6693 }
6694 
6695 typedef void (*mapped_f)(struct perf_event *event, struct mm_struct *mm);
6696 
6697 #define get_mapped(event, func)			\
6698 ({	struct pmu *pmu;			\
6699 	mapped_f f = NULL;			\
6700 	guard(rcu)();				\
6701 	pmu = READ_ONCE(event->pmu);		\
6702 	if (pmu)				\
6703 		f = pmu->func;			\
6704 	f;					\
6705 })
6706 
6707 static void perf_mmap_open(struct vm_area_struct *vma)
6708 {
6709 	struct perf_event *event = vma->vm_file->private_data;
6710 	mapped_f mapped = get_mapped(event, event_mapped);
6711 
6712 	refcount_inc(&event->mmap_count);
6713 	refcount_inc(&event->rb->mmap_count);
6714 
6715 	if (vma->vm_pgoff)
6716 		refcount_inc(&event->rb->aux_mmap_count);
6717 
6718 	if (mapped)
6719 		mapped(event, vma->vm_mm);
6720 }
6721 
6722 static void perf_pmu_output_stop(struct perf_event *event);
6723 
6724 /*
6725  * A buffer can be mmap()ed multiple times; either directly through the same
6726  * event, or through other events by use of perf_event_set_output().
6727  *
6728  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6729  * the buffer here, where we still have a VM context. This means we need
6730  * to detach all events redirecting to us.
6731  */
6732 static void perf_mmap_close(struct vm_area_struct *vma)
6733 {
6734 	struct perf_event *event = vma->vm_file->private_data;
6735 	mapped_f unmapped = get_mapped(event, event_unmapped);
6736 	struct perf_buffer *rb = ring_buffer_get(event);
6737 	struct user_struct *mmap_user = rb->mmap_user;
6738 	int mmap_locked = rb->mmap_locked;
6739 	unsigned long size = perf_data_size(rb);
6740 	bool detach_rest = false;
6741 
6742 	/* FIXIES vs perf_pmu_unregister() */
6743 	if (unmapped)
6744 		unmapped(event, vma->vm_mm);
6745 
6746 	/*
6747 	 * The AUX buffer is strictly a sub-buffer, serialize using aux_mutex
6748 	 * to avoid complications.
6749 	 */
6750 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6751 	    refcount_dec_and_mutex_lock(&rb->aux_mmap_count, &rb->aux_mutex)) {
6752 		/*
6753 		 * Stop all AUX events that are writing to this buffer,
6754 		 * so that we can free its AUX pages and corresponding PMU
6755 		 * data. Note that after rb::aux_mmap_count dropped to zero,
6756 		 * they won't start any more (see perf_aux_output_begin()).
6757 		 */
6758 		perf_pmu_output_stop(event);
6759 
6760 		/* now it's safe to free the pages */
6761 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6762 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6763 
6764 		/* this has to be the last one */
6765 		rb_free_aux(rb);
6766 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6767 
6768 		mutex_unlock(&rb->aux_mutex);
6769 	}
6770 
6771 	if (refcount_dec_and_test(&rb->mmap_count))
6772 		detach_rest = true;
6773 
6774 	if (!refcount_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6775 		goto out_put;
6776 
6777 	ring_buffer_attach(event, NULL);
6778 	mutex_unlock(&event->mmap_mutex);
6779 
6780 	/* If there's still other mmap()s of this buffer, we're done. */
6781 	if (!detach_rest)
6782 		goto out_put;
6783 
6784 	/*
6785 	 * No other mmap()s, detach from all other events that might redirect
6786 	 * into the now unreachable buffer. Somewhat complicated by the
6787 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6788 	 */
6789 again:
6790 	rcu_read_lock();
6791 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6792 		if (!atomic_long_inc_not_zero(&event->refcount)) {
6793 			/*
6794 			 * This event is en-route to free_event() which will
6795 			 * detach it and remove it from the list.
6796 			 */
6797 			continue;
6798 		}
6799 		rcu_read_unlock();
6800 
6801 		mutex_lock(&event->mmap_mutex);
6802 		/*
6803 		 * Check we didn't race with perf_event_set_output() which can
6804 		 * swizzle the rb from under us while we were waiting to
6805 		 * acquire mmap_mutex.
6806 		 *
6807 		 * If we find a different rb; ignore this event, a next
6808 		 * iteration will no longer find it on the list. We have to
6809 		 * still restart the iteration to make sure we're not now
6810 		 * iterating the wrong list.
6811 		 */
6812 		if (event->rb == rb)
6813 			ring_buffer_attach(event, NULL);
6814 
6815 		mutex_unlock(&event->mmap_mutex);
6816 		put_event(event);
6817 
6818 		/*
6819 		 * Restart the iteration; either we're on the wrong list or
6820 		 * destroyed its integrity by doing a deletion.
6821 		 */
6822 		goto again;
6823 	}
6824 	rcu_read_unlock();
6825 
6826 	/*
6827 	 * It could be there's still a few 0-ref events on the list; they'll
6828 	 * get cleaned up by free_event() -- they'll also still have their
6829 	 * ref on the rb and will free it whenever they are done with it.
6830 	 *
6831 	 * Aside from that, this buffer is 'fully' detached and unmapped,
6832 	 * undo the VM accounting.
6833 	 */
6834 
6835 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6836 			&mmap_user->locked_vm);
6837 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6838 	free_uid(mmap_user);
6839 
6840 out_put:
6841 	ring_buffer_put(rb); /* could be last */
6842 }
6843 
6844 static vm_fault_t perf_mmap_pfn_mkwrite(struct vm_fault *vmf)
6845 {
6846 	/* The first page is the user control page, others are read-only. */
6847 	return vmf->pgoff == 0 ? 0 : VM_FAULT_SIGBUS;
6848 }
6849 
6850 static int perf_mmap_may_split(struct vm_area_struct *vma, unsigned long addr)
6851 {
6852 	/*
6853 	 * Forbid splitting perf mappings to prevent refcount leaks due to
6854 	 * the resulting non-matching offsets and sizes. See open()/close().
6855 	 */
6856 	return -EINVAL;
6857 }
6858 
6859 static const struct vm_operations_struct perf_mmap_vmops = {
6860 	.open		= perf_mmap_open,
6861 	.close		= perf_mmap_close, /* non mergeable */
6862 	.pfn_mkwrite	= perf_mmap_pfn_mkwrite,
6863 	.may_split	= perf_mmap_may_split,
6864 };
6865 
6866 static int map_range(struct perf_buffer *rb, struct vm_area_struct *vma)
6867 {
6868 	unsigned long nr_pages = vma_pages(vma);
6869 	int err = 0;
6870 	unsigned long pagenum;
6871 
6872 	/*
6873 	 * We map this as a VM_PFNMAP VMA.
6874 	 *
6875 	 * This is not ideal as this is designed broadly for mappings of PFNs
6876 	 * referencing memory-mapped I/O ranges or non-system RAM i.e. for which
6877 	 * !pfn_valid(pfn).
6878 	 *
6879 	 * We are mapping kernel-allocated memory (memory we manage ourselves)
6880 	 * which would more ideally be mapped using vm_insert_page() or a
6881 	 * similar mechanism, that is as a VM_MIXEDMAP mapping.
6882 	 *
6883 	 * However this won't work here, because:
6884 	 *
6885 	 * 1. It uses vma->vm_page_prot, but this field has not been completely
6886 	 *    setup at the point of the f_op->mmp() hook, so we are unable to
6887 	 *    indicate that this should be mapped CoW in order that the
6888 	 *    mkwrite() hook can be invoked to make the first page R/W and the
6889 	 *    rest R/O as desired.
6890 	 *
6891 	 * 2. Anything other than a VM_PFNMAP of valid PFNs will result in
6892 	 *    vm_normal_page() returning a struct page * pointer, which means
6893 	 *    vm_ops->page_mkwrite() will be invoked rather than
6894 	 *    vm_ops->pfn_mkwrite(), and this means we have to set page->mapping
6895 	 *    to work around retry logic in the fault handler, however this
6896 	 *    field is no longer allowed to be used within struct page.
6897 	 *
6898 	 * 3. Having a struct page * made available in the fault logic also
6899 	 *    means that the page gets put on the rmap and becomes
6900 	 *    inappropriately accessible and subject to map and ref counting.
6901 	 *
6902 	 * Ideally we would have a mechanism that could explicitly express our
6903 	 * desires, but this is not currently the case, so we instead use
6904 	 * VM_PFNMAP.
6905 	 *
6906 	 * We manage the lifetime of these mappings with internal refcounts (see
6907 	 * perf_mmap_open() and perf_mmap_close()) so we ensure the lifetime of
6908 	 * this mapping is maintained correctly.
6909 	 */
6910 	for (pagenum = 0; pagenum < nr_pages; pagenum++) {
6911 		unsigned long va = vma->vm_start + PAGE_SIZE * pagenum;
6912 		struct page *page = perf_mmap_to_page(rb, vma->vm_pgoff + pagenum);
6913 
6914 		if (page == NULL) {
6915 			err = -EINVAL;
6916 			break;
6917 		}
6918 
6919 		/* Map readonly, perf_mmap_pfn_mkwrite() called on write fault. */
6920 		err = remap_pfn_range(vma, va, page_to_pfn(page), PAGE_SIZE,
6921 				      vm_get_page_prot(vma->vm_flags & ~VM_SHARED));
6922 		if (err)
6923 			break;
6924 	}
6925 
6926 #ifdef CONFIG_MMU
6927 	/* Clear any partial mappings on error. */
6928 	if (err)
6929 		zap_page_range_single(vma, vma->vm_start, nr_pages * PAGE_SIZE, NULL);
6930 #endif
6931 
6932 	return err;
6933 }
6934 
6935 static bool perf_mmap_calc_limits(struct vm_area_struct *vma, long *user_extra, long *extra)
6936 {
6937 	unsigned long user_locked, user_lock_limit, locked, lock_limit;
6938 	struct user_struct *user = current_user();
6939 
6940 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6941 	/* Increase the limit linearly with more CPUs */
6942 	user_lock_limit *= num_online_cpus();
6943 
6944 	user_locked = atomic_long_read(&user->locked_vm);
6945 
6946 	/*
6947 	 * sysctl_perf_event_mlock may have changed, so that
6948 	 *     user->locked_vm > user_lock_limit
6949 	 */
6950 	if (user_locked > user_lock_limit)
6951 		user_locked = user_lock_limit;
6952 	user_locked += *user_extra;
6953 
6954 	if (user_locked > user_lock_limit) {
6955 		/*
6956 		 * charge locked_vm until it hits user_lock_limit;
6957 		 * charge the rest from pinned_vm
6958 		 */
6959 		*extra = user_locked - user_lock_limit;
6960 		*user_extra -= *extra;
6961 	}
6962 
6963 	lock_limit = rlimit(RLIMIT_MEMLOCK);
6964 	lock_limit >>= PAGE_SHIFT;
6965 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + *extra;
6966 
6967 	return locked <= lock_limit || !perf_is_paranoid() || capable(CAP_IPC_LOCK);
6968 }
6969 
6970 static void perf_mmap_account(struct vm_area_struct *vma, long user_extra, long extra)
6971 {
6972 	struct user_struct *user = current_user();
6973 
6974 	atomic_long_add(user_extra, &user->locked_vm);
6975 	atomic64_add(extra, &vma->vm_mm->pinned_vm);
6976 }
6977 
6978 static int perf_mmap_rb(struct vm_area_struct *vma, struct perf_event *event,
6979 			unsigned long nr_pages)
6980 {
6981 	long extra = 0, user_extra = nr_pages;
6982 	struct perf_buffer *rb;
6983 	int rb_flags = 0;
6984 
6985 	nr_pages -= 1;
6986 
6987 	/*
6988 	 * If we have rb pages ensure they're a power-of-two number, so we
6989 	 * can do bitmasks instead of modulo.
6990 	 */
6991 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
6992 		return -EINVAL;
6993 
6994 	WARN_ON_ONCE(event->ctx->parent_ctx);
6995 
6996 	if (event->rb) {
6997 		if (data_page_nr(event->rb) != nr_pages)
6998 			return -EINVAL;
6999 
7000 		/*
7001 		 * If this event doesn't have mmap_count, we're attempting to
7002 		 * create an alias of another event's mmap(); this would mean
7003 		 * both events will end up scribbling the same user_page;
7004 		 * which makes no sense.
7005 		 */
7006 		if (!refcount_read(&event->mmap_count))
7007 			return -EBUSY;
7008 
7009 		if (refcount_inc_not_zero(&event->rb->mmap_count)) {
7010 			/*
7011 			 * Success -- managed to mmap() the same buffer
7012 			 * multiple times.
7013 			 */
7014 			perf_mmap_account(vma, user_extra, extra);
7015 			refcount_inc(&event->mmap_count);
7016 			return 0;
7017 		}
7018 
7019 		/*
7020 		 * Raced against perf_mmap_close()'s
7021 		 * refcount_dec_and_mutex_lock() remove the
7022 		 * event and continue as if !event->rb
7023 		 */
7024 		ring_buffer_attach(event, NULL);
7025 	}
7026 
7027 	if (!perf_mmap_calc_limits(vma, &user_extra, &extra))
7028 		return -EPERM;
7029 
7030 	if (vma->vm_flags & VM_WRITE)
7031 		rb_flags |= RING_BUFFER_WRITABLE;
7032 
7033 	rb = rb_alloc(nr_pages,
7034 		      event->attr.watermark ? event->attr.wakeup_watermark : 0,
7035 		      event->cpu, rb_flags);
7036 
7037 	if (!rb)
7038 		return -ENOMEM;
7039 
7040 	refcount_set(&rb->mmap_count, 1);
7041 	rb->mmap_user = get_current_user();
7042 	rb->mmap_locked = extra;
7043 
7044 	ring_buffer_attach(event, rb);
7045 
7046 	perf_event_update_time(event);
7047 	perf_event_init_userpage(event);
7048 	perf_event_update_userpage(event);
7049 
7050 	perf_mmap_account(vma, user_extra, extra);
7051 	refcount_set(&event->mmap_count, 1);
7052 
7053 	return 0;
7054 }
7055 
7056 static int perf_mmap_aux(struct vm_area_struct *vma, struct perf_event *event,
7057 			 unsigned long nr_pages)
7058 {
7059 	long extra = 0, user_extra = nr_pages;
7060 	u64 aux_offset, aux_size;
7061 	struct perf_buffer *rb;
7062 	int ret, rb_flags = 0;
7063 
7064 	rb = event->rb;
7065 	if (!rb)
7066 		return -EINVAL;
7067 
7068 	guard(mutex)(&rb->aux_mutex);
7069 
7070 	/*
7071 	 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
7072 	 * mapped, all subsequent mappings should have the same size
7073 	 * and offset. Must be above the normal perf buffer.
7074 	 */
7075 	aux_offset = READ_ONCE(rb->user_page->aux_offset);
7076 	aux_size = READ_ONCE(rb->user_page->aux_size);
7077 
7078 	if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
7079 		return -EINVAL;
7080 
7081 	if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
7082 		return -EINVAL;
7083 
7084 	/* already mapped with a different offset */
7085 	if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
7086 		return -EINVAL;
7087 
7088 	if (aux_size != nr_pages * PAGE_SIZE)
7089 		return -EINVAL;
7090 
7091 	/* already mapped with a different size */
7092 	if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
7093 		return -EINVAL;
7094 
7095 	if (!is_power_of_2(nr_pages))
7096 		return -EINVAL;
7097 
7098 	if (!refcount_inc_not_zero(&rb->mmap_count))
7099 		return -EINVAL;
7100 
7101 	if (rb_has_aux(rb)) {
7102 		refcount_inc(&rb->aux_mmap_count);
7103 
7104 	} else {
7105 		if (!perf_mmap_calc_limits(vma, &user_extra, &extra)) {
7106 			refcount_dec(&rb->mmap_count);
7107 			return -EPERM;
7108 		}
7109 
7110 		WARN_ON(!rb && event->rb);
7111 
7112 		if (vma->vm_flags & VM_WRITE)
7113 			rb_flags |= RING_BUFFER_WRITABLE;
7114 
7115 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
7116 				   event->attr.aux_watermark, rb_flags);
7117 		if (ret) {
7118 			refcount_dec(&rb->mmap_count);
7119 			return ret;
7120 		}
7121 
7122 		refcount_set(&rb->aux_mmap_count, 1);
7123 		rb->aux_mmap_locked = extra;
7124 	}
7125 
7126 	perf_mmap_account(vma, user_extra, extra);
7127 	refcount_inc(&event->mmap_count);
7128 
7129 	return 0;
7130 }
7131 
7132 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
7133 {
7134 	struct perf_event *event = file->private_data;
7135 	unsigned long vma_size, nr_pages;
7136 	mapped_f mapped;
7137 	int ret;
7138 
7139 	/*
7140 	 * Don't allow mmap() of inherited per-task counters. This would
7141 	 * create a performance issue due to all children writing to the
7142 	 * same rb.
7143 	 */
7144 	if (event->cpu == -1 && event->attr.inherit)
7145 		return -EINVAL;
7146 
7147 	if (!(vma->vm_flags & VM_SHARED))
7148 		return -EINVAL;
7149 
7150 	ret = security_perf_event_read(event);
7151 	if (ret)
7152 		return ret;
7153 
7154 	vma_size = vma->vm_end - vma->vm_start;
7155 	nr_pages = vma_size / PAGE_SIZE;
7156 
7157 	if (nr_pages > INT_MAX)
7158 		return -ENOMEM;
7159 
7160 	if (vma_size != PAGE_SIZE * nr_pages)
7161 		return -EINVAL;
7162 
7163 	scoped_guard (mutex, &event->mmap_mutex) {
7164 		/*
7165 		 * This relies on __pmu_detach_event() taking mmap_mutex after marking
7166 		 * the event REVOKED. Either we observe the state, or __pmu_detach_event()
7167 		 * will detach the rb created here.
7168 		 */
7169 		if (event->state <= PERF_EVENT_STATE_REVOKED)
7170 			return -ENODEV;
7171 
7172 		if (vma->vm_pgoff == 0)
7173 			ret = perf_mmap_rb(vma, event, nr_pages);
7174 		else
7175 			ret = perf_mmap_aux(vma, event, nr_pages);
7176 		if (ret)
7177 			return ret;
7178 	}
7179 
7180 	/*
7181 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
7182 	 * vma.
7183 	 */
7184 	vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP);
7185 	vma->vm_ops = &perf_mmap_vmops;
7186 
7187 	mapped = get_mapped(event, event_mapped);
7188 	if (mapped)
7189 		mapped(event, vma->vm_mm);
7190 
7191 	/*
7192 	 * Try to map it into the page table. On fail, invoke
7193 	 * perf_mmap_close() to undo the above, as the callsite expects
7194 	 * full cleanup in this case and therefore does not invoke
7195 	 * vmops::close().
7196 	 */
7197 	ret = map_range(event->rb, vma);
7198 	if (ret)
7199 		perf_mmap_close(vma);
7200 
7201 	return ret;
7202 }
7203 
7204 static int perf_fasync(int fd, struct file *filp, int on)
7205 {
7206 	struct inode *inode = file_inode(filp);
7207 	struct perf_event *event = filp->private_data;
7208 	int retval;
7209 
7210 	if (event->state <= PERF_EVENT_STATE_REVOKED)
7211 		return -ENODEV;
7212 
7213 	inode_lock(inode);
7214 	retval = fasync_helper(fd, filp, on, &event->fasync);
7215 	inode_unlock(inode);
7216 
7217 	if (retval < 0)
7218 		return retval;
7219 
7220 	return 0;
7221 }
7222 
7223 static const struct file_operations perf_fops = {
7224 	.release		= perf_release,
7225 	.read			= perf_read,
7226 	.poll			= perf_poll,
7227 	.unlocked_ioctl		= perf_ioctl,
7228 	.compat_ioctl		= perf_compat_ioctl,
7229 	.mmap			= perf_mmap,
7230 	.fasync			= perf_fasync,
7231 };
7232 
7233 /*
7234  * Perf event wakeup
7235  *
7236  * If there's data, ensure we set the poll() state and publish everything
7237  * to user-space before waking everybody up.
7238  */
7239 
7240 void perf_event_wakeup(struct perf_event *event)
7241 {
7242 	ring_buffer_wakeup(event);
7243 
7244 	if (event->pending_kill) {
7245 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
7246 		event->pending_kill = 0;
7247 	}
7248 }
7249 
7250 static void perf_sigtrap(struct perf_event *event)
7251 {
7252 	/*
7253 	 * Both perf_pending_task() and perf_pending_irq() can race with the
7254 	 * task exiting.
7255 	 */
7256 	if (current->flags & PF_EXITING)
7257 		return;
7258 
7259 	/*
7260 	 * We'd expect this to only occur if the irq_work is delayed and either
7261 	 * ctx->task or current has changed in the meantime. This can be the
7262 	 * case on architectures that do not implement arch_irq_work_raise().
7263 	 */
7264 	if (WARN_ON_ONCE(event->ctx->task != current))
7265 		return;
7266 
7267 	send_sig_perf((void __user *)event->pending_addr,
7268 		      event->orig_type, event->attr.sig_data);
7269 }
7270 
7271 /*
7272  * Deliver the pending work in-event-context or follow the context.
7273  */
7274 static void __perf_pending_disable(struct perf_event *event)
7275 {
7276 	int cpu = READ_ONCE(event->oncpu);
7277 
7278 	/*
7279 	 * If the event isn't running; we done. event_sched_out() will have
7280 	 * taken care of things.
7281 	 */
7282 	if (cpu < 0)
7283 		return;
7284 
7285 	/*
7286 	 * Yay, we hit home and are in the context of the event.
7287 	 */
7288 	if (cpu == smp_processor_id()) {
7289 		if (event->pending_disable) {
7290 			event->pending_disable = 0;
7291 			perf_event_disable_local(event);
7292 		}
7293 		return;
7294 	}
7295 
7296 	/*
7297 	 *  CPU-A			CPU-B
7298 	 *
7299 	 *  perf_event_disable_inatomic()
7300 	 *    @pending_disable = 1;
7301 	 *    irq_work_queue();
7302 	 *
7303 	 *  sched-out
7304 	 *    @pending_disable = 0;
7305 	 *
7306 	 *				sched-in
7307 	 *				perf_event_disable_inatomic()
7308 	 *				  @pending_disable = 1;
7309 	 *				  irq_work_queue(); // FAILS
7310 	 *
7311 	 *  irq_work_run()
7312 	 *    perf_pending_disable()
7313 	 *
7314 	 * But the event runs on CPU-B and wants disabling there.
7315 	 */
7316 	irq_work_queue_on(&event->pending_disable_irq, cpu);
7317 }
7318 
7319 static void perf_pending_disable(struct irq_work *entry)
7320 {
7321 	struct perf_event *event = container_of(entry, struct perf_event, pending_disable_irq);
7322 	int rctx;
7323 
7324 	/*
7325 	 * If we 'fail' here, that's OK, it means recursion is already disabled
7326 	 * and we won't recurse 'further'.
7327 	 */
7328 	rctx = perf_swevent_get_recursion_context();
7329 	__perf_pending_disable(event);
7330 	if (rctx >= 0)
7331 		perf_swevent_put_recursion_context(rctx);
7332 }
7333 
7334 static void perf_pending_irq(struct irq_work *entry)
7335 {
7336 	struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
7337 	int rctx;
7338 
7339 	/*
7340 	 * If we 'fail' here, that's OK, it means recursion is already disabled
7341 	 * and we won't recurse 'further'.
7342 	 */
7343 	rctx = perf_swevent_get_recursion_context();
7344 
7345 	/*
7346 	 * The wakeup isn't bound to the context of the event -- it can happen
7347 	 * irrespective of where the event is.
7348 	 */
7349 	if (event->pending_wakeup) {
7350 		event->pending_wakeup = 0;
7351 		perf_event_wakeup(event);
7352 	}
7353 
7354 	if (rctx >= 0)
7355 		perf_swevent_put_recursion_context(rctx);
7356 }
7357 
7358 static void perf_pending_task(struct callback_head *head)
7359 {
7360 	struct perf_event *event = container_of(head, struct perf_event, pending_task);
7361 	int rctx;
7362 
7363 	/*
7364 	 * If we 'fail' here, that's OK, it means recursion is already disabled
7365 	 * and we won't recurse 'further'.
7366 	 */
7367 	rctx = perf_swevent_get_recursion_context();
7368 
7369 	if (event->pending_work) {
7370 		event->pending_work = 0;
7371 		perf_sigtrap(event);
7372 		local_dec(&event->ctx->nr_no_switch_fast);
7373 	}
7374 	put_event(event);
7375 
7376 	if (rctx >= 0)
7377 		perf_swevent_put_recursion_context(rctx);
7378 }
7379 
7380 #ifdef CONFIG_GUEST_PERF_EVENTS
7381 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
7382 
7383 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
7384 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
7385 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
7386 
7387 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
7388 {
7389 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
7390 		return;
7391 
7392 	rcu_assign_pointer(perf_guest_cbs, cbs);
7393 	static_call_update(__perf_guest_state, cbs->state);
7394 	static_call_update(__perf_guest_get_ip, cbs->get_ip);
7395 
7396 	/* Implementing ->handle_intel_pt_intr is optional. */
7397 	if (cbs->handle_intel_pt_intr)
7398 		static_call_update(__perf_guest_handle_intel_pt_intr,
7399 				   cbs->handle_intel_pt_intr);
7400 }
7401 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
7402 
7403 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
7404 {
7405 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
7406 		return;
7407 
7408 	rcu_assign_pointer(perf_guest_cbs, NULL);
7409 	static_call_update(__perf_guest_state, (void *)&__static_call_return0);
7410 	static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
7411 	static_call_update(__perf_guest_handle_intel_pt_intr,
7412 			   (void *)&__static_call_return0);
7413 	synchronize_rcu();
7414 }
7415 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
7416 #endif
7417 
7418 static bool should_sample_guest(struct perf_event *event)
7419 {
7420 	return !event->attr.exclude_guest && perf_guest_state();
7421 }
7422 
7423 unsigned long perf_misc_flags(struct perf_event *event,
7424 			      struct pt_regs *regs)
7425 {
7426 	if (should_sample_guest(event))
7427 		return perf_arch_guest_misc_flags(regs);
7428 
7429 	return perf_arch_misc_flags(regs);
7430 }
7431 
7432 unsigned long perf_instruction_pointer(struct perf_event *event,
7433 				       struct pt_regs *regs)
7434 {
7435 	if (should_sample_guest(event))
7436 		return perf_guest_get_ip();
7437 
7438 	return perf_arch_instruction_pointer(regs);
7439 }
7440 
7441 static void
7442 perf_output_sample_regs(struct perf_output_handle *handle,
7443 			struct pt_regs *regs, u64 mask)
7444 {
7445 	int bit;
7446 	DECLARE_BITMAP(_mask, 64);
7447 
7448 	bitmap_from_u64(_mask, mask);
7449 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
7450 		u64 val;
7451 
7452 		val = perf_reg_value(regs, bit);
7453 		perf_output_put(handle, val);
7454 	}
7455 }
7456 
7457 static void perf_sample_regs_user(struct perf_regs *regs_user,
7458 				  struct pt_regs *regs)
7459 {
7460 	if (user_mode(regs)) {
7461 		regs_user->abi = perf_reg_abi(current);
7462 		regs_user->regs = regs;
7463 	} else if (!(current->flags & (PF_KTHREAD | PF_USER_WORKER))) {
7464 		perf_get_regs_user(regs_user, regs);
7465 	} else {
7466 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
7467 		regs_user->regs = NULL;
7468 	}
7469 }
7470 
7471 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
7472 				  struct pt_regs *regs)
7473 {
7474 	regs_intr->regs = regs;
7475 	regs_intr->abi  = perf_reg_abi(current);
7476 }
7477 
7478 
7479 /*
7480  * Get remaining task size from user stack pointer.
7481  *
7482  * It'd be better to take stack vma map and limit this more
7483  * precisely, but there's no way to get it safely under interrupt,
7484  * so using TASK_SIZE as limit.
7485  */
7486 static u64 perf_ustack_task_size(struct pt_regs *regs)
7487 {
7488 	unsigned long addr = perf_user_stack_pointer(regs);
7489 
7490 	if (!addr || addr >= TASK_SIZE)
7491 		return 0;
7492 
7493 	return TASK_SIZE - addr;
7494 }
7495 
7496 static u16
7497 perf_sample_ustack_size(u16 stack_size, u16 header_size,
7498 			struct pt_regs *regs)
7499 {
7500 	u64 task_size;
7501 
7502 	/* No regs, no stack pointer, no dump. */
7503 	if (!regs)
7504 		return 0;
7505 
7506 	/* No mm, no stack, no dump. */
7507 	if (!current->mm)
7508 		return 0;
7509 
7510 	/*
7511 	 * Check if we fit in with the requested stack size into the:
7512 	 * - TASK_SIZE
7513 	 *   If we don't, we limit the size to the TASK_SIZE.
7514 	 *
7515 	 * - remaining sample size
7516 	 *   If we don't, we customize the stack size to
7517 	 *   fit in to the remaining sample size.
7518 	 */
7519 
7520 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
7521 	stack_size = min(stack_size, (u16) task_size);
7522 
7523 	/* Current header size plus static size and dynamic size. */
7524 	header_size += 2 * sizeof(u64);
7525 
7526 	/* Do we fit in with the current stack dump size? */
7527 	if ((u16) (header_size + stack_size) < header_size) {
7528 		/*
7529 		 * If we overflow the maximum size for the sample,
7530 		 * we customize the stack dump size to fit in.
7531 		 */
7532 		stack_size = USHRT_MAX - header_size - sizeof(u64);
7533 		stack_size = round_up(stack_size, sizeof(u64));
7534 	}
7535 
7536 	return stack_size;
7537 }
7538 
7539 static void
7540 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
7541 			  struct pt_regs *regs)
7542 {
7543 	/* Case of a kernel thread, nothing to dump */
7544 	if (!regs) {
7545 		u64 size = 0;
7546 		perf_output_put(handle, size);
7547 	} else {
7548 		unsigned long sp;
7549 		unsigned int rem;
7550 		u64 dyn_size;
7551 
7552 		/*
7553 		 * We dump:
7554 		 * static size
7555 		 *   - the size requested by user or the best one we can fit
7556 		 *     in to the sample max size
7557 		 * data
7558 		 *   - user stack dump data
7559 		 * dynamic size
7560 		 *   - the actual dumped size
7561 		 */
7562 
7563 		/* Static size. */
7564 		perf_output_put(handle, dump_size);
7565 
7566 		/* Data. */
7567 		sp = perf_user_stack_pointer(regs);
7568 		rem = __output_copy_user(handle, (void *) sp, dump_size);
7569 		dyn_size = dump_size - rem;
7570 
7571 		perf_output_skip(handle, rem);
7572 
7573 		/* Dynamic size. */
7574 		perf_output_put(handle, dyn_size);
7575 	}
7576 }
7577 
7578 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
7579 					  struct perf_sample_data *data,
7580 					  size_t size)
7581 {
7582 	struct perf_event *sampler = event->aux_event;
7583 	struct perf_buffer *rb;
7584 
7585 	data->aux_size = 0;
7586 
7587 	if (!sampler)
7588 		goto out;
7589 
7590 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
7591 		goto out;
7592 
7593 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
7594 		goto out;
7595 
7596 	rb = ring_buffer_get(sampler);
7597 	if (!rb)
7598 		goto out;
7599 
7600 	/*
7601 	 * If this is an NMI hit inside sampling code, don't take
7602 	 * the sample. See also perf_aux_sample_output().
7603 	 */
7604 	if (READ_ONCE(rb->aux_in_sampling)) {
7605 		data->aux_size = 0;
7606 	} else {
7607 		size = min_t(size_t, size, perf_aux_size(rb));
7608 		data->aux_size = ALIGN(size, sizeof(u64));
7609 	}
7610 	ring_buffer_put(rb);
7611 
7612 out:
7613 	return data->aux_size;
7614 }
7615 
7616 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
7617                                  struct perf_event *event,
7618                                  struct perf_output_handle *handle,
7619                                  unsigned long size)
7620 {
7621 	unsigned long flags;
7622 	long ret;
7623 
7624 	/*
7625 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
7626 	 * paths. If we start calling them in NMI context, they may race with
7627 	 * the IRQ ones, that is, for example, re-starting an event that's just
7628 	 * been stopped, which is why we're using a separate callback that
7629 	 * doesn't change the event state.
7630 	 *
7631 	 * IRQs need to be disabled to prevent IPIs from racing with us.
7632 	 */
7633 	local_irq_save(flags);
7634 	/*
7635 	 * Guard against NMI hits inside the critical section;
7636 	 * see also perf_prepare_sample_aux().
7637 	 */
7638 	WRITE_ONCE(rb->aux_in_sampling, 1);
7639 	barrier();
7640 
7641 	ret = event->pmu->snapshot_aux(event, handle, size);
7642 
7643 	barrier();
7644 	WRITE_ONCE(rb->aux_in_sampling, 0);
7645 	local_irq_restore(flags);
7646 
7647 	return ret;
7648 }
7649 
7650 static void perf_aux_sample_output(struct perf_event *event,
7651 				   struct perf_output_handle *handle,
7652 				   struct perf_sample_data *data)
7653 {
7654 	struct perf_event *sampler = event->aux_event;
7655 	struct perf_buffer *rb;
7656 	unsigned long pad;
7657 	long size;
7658 
7659 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
7660 		return;
7661 
7662 	rb = ring_buffer_get(sampler);
7663 	if (!rb)
7664 		return;
7665 
7666 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
7667 
7668 	/*
7669 	 * An error here means that perf_output_copy() failed (returned a
7670 	 * non-zero surplus that it didn't copy), which in its current
7671 	 * enlightened implementation is not possible. If that changes, we'd
7672 	 * like to know.
7673 	 */
7674 	if (WARN_ON_ONCE(size < 0))
7675 		goto out_put;
7676 
7677 	/*
7678 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
7679 	 * perf_prepare_sample_aux(), so should not be more than that.
7680 	 */
7681 	pad = data->aux_size - size;
7682 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
7683 		pad = 8;
7684 
7685 	if (pad) {
7686 		u64 zero = 0;
7687 		perf_output_copy(handle, &zero, pad);
7688 	}
7689 
7690 out_put:
7691 	ring_buffer_put(rb);
7692 }
7693 
7694 /*
7695  * A set of common sample data types saved even for non-sample records
7696  * when event->attr.sample_id_all is set.
7697  */
7698 #define PERF_SAMPLE_ID_ALL  (PERF_SAMPLE_TID | PERF_SAMPLE_TIME |	\
7699 			     PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID |	\
7700 			     PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER)
7701 
7702 static void __perf_event_header__init_id(struct perf_sample_data *data,
7703 					 struct perf_event *event,
7704 					 u64 sample_type)
7705 {
7706 	data->type = event->attr.sample_type;
7707 	data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL;
7708 
7709 	if (sample_type & PERF_SAMPLE_TID) {
7710 		/* namespace issues */
7711 		data->tid_entry.pid = perf_event_pid(event, current);
7712 		data->tid_entry.tid = perf_event_tid(event, current);
7713 	}
7714 
7715 	if (sample_type & PERF_SAMPLE_TIME)
7716 		data->time = perf_event_clock(event);
7717 
7718 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
7719 		data->id = primary_event_id(event);
7720 
7721 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7722 		data->stream_id = event->id;
7723 
7724 	if (sample_type & PERF_SAMPLE_CPU) {
7725 		data->cpu_entry.cpu	 = raw_smp_processor_id();
7726 		data->cpu_entry.reserved = 0;
7727 	}
7728 }
7729 
7730 void perf_event_header__init_id(struct perf_event_header *header,
7731 				struct perf_sample_data *data,
7732 				struct perf_event *event)
7733 {
7734 	if (event->attr.sample_id_all) {
7735 		header->size += event->id_header_size;
7736 		__perf_event_header__init_id(data, event, event->attr.sample_type);
7737 	}
7738 }
7739 
7740 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
7741 					   struct perf_sample_data *data)
7742 {
7743 	u64 sample_type = data->type;
7744 
7745 	if (sample_type & PERF_SAMPLE_TID)
7746 		perf_output_put(handle, data->tid_entry);
7747 
7748 	if (sample_type & PERF_SAMPLE_TIME)
7749 		perf_output_put(handle, data->time);
7750 
7751 	if (sample_type & PERF_SAMPLE_ID)
7752 		perf_output_put(handle, data->id);
7753 
7754 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7755 		perf_output_put(handle, data->stream_id);
7756 
7757 	if (sample_type & PERF_SAMPLE_CPU)
7758 		perf_output_put(handle, data->cpu_entry);
7759 
7760 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7761 		perf_output_put(handle, data->id);
7762 }
7763 
7764 void perf_event__output_id_sample(struct perf_event *event,
7765 				  struct perf_output_handle *handle,
7766 				  struct perf_sample_data *sample)
7767 {
7768 	if (event->attr.sample_id_all)
7769 		__perf_event__output_id_sample(handle, sample);
7770 }
7771 
7772 static void perf_output_read_one(struct perf_output_handle *handle,
7773 				 struct perf_event *event,
7774 				 u64 enabled, u64 running)
7775 {
7776 	u64 read_format = event->attr.read_format;
7777 	u64 values[5];
7778 	int n = 0;
7779 
7780 	values[n++] = perf_event_count(event, has_inherit_and_sample_read(&event->attr));
7781 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
7782 		values[n++] = enabled +
7783 			atomic64_read(&event->child_total_time_enabled);
7784 	}
7785 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
7786 		values[n++] = running +
7787 			atomic64_read(&event->child_total_time_running);
7788 	}
7789 	if (read_format & PERF_FORMAT_ID)
7790 		values[n++] = primary_event_id(event);
7791 	if (read_format & PERF_FORMAT_LOST)
7792 		values[n++] = atomic64_read(&event->lost_samples);
7793 
7794 	__output_copy(handle, values, n * sizeof(u64));
7795 }
7796 
7797 static void perf_output_read_group(struct perf_output_handle *handle,
7798 				   struct perf_event *event,
7799 				   u64 enabled, u64 running)
7800 {
7801 	struct perf_event *leader = event->group_leader, *sub;
7802 	u64 read_format = event->attr.read_format;
7803 	unsigned long flags;
7804 	u64 values[6];
7805 	int n = 0;
7806 	bool self = has_inherit_and_sample_read(&event->attr);
7807 
7808 	/*
7809 	 * Disabling interrupts avoids all counter scheduling
7810 	 * (context switches, timer based rotation and IPIs).
7811 	 */
7812 	local_irq_save(flags);
7813 
7814 	values[n++] = 1 + leader->nr_siblings;
7815 
7816 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
7817 		values[n++] = enabled;
7818 
7819 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
7820 		values[n++] = running;
7821 
7822 	if ((leader != event) && !handle->skip_read)
7823 		perf_pmu_read(leader);
7824 
7825 	values[n++] = perf_event_count(leader, self);
7826 	if (read_format & PERF_FORMAT_ID)
7827 		values[n++] = primary_event_id(leader);
7828 	if (read_format & PERF_FORMAT_LOST)
7829 		values[n++] = atomic64_read(&leader->lost_samples);
7830 
7831 	__output_copy(handle, values, n * sizeof(u64));
7832 
7833 	for_each_sibling_event(sub, leader) {
7834 		n = 0;
7835 
7836 		if ((sub != event) && !handle->skip_read)
7837 			perf_pmu_read(sub);
7838 
7839 		values[n++] = perf_event_count(sub, self);
7840 		if (read_format & PERF_FORMAT_ID)
7841 			values[n++] = primary_event_id(sub);
7842 		if (read_format & PERF_FORMAT_LOST)
7843 			values[n++] = atomic64_read(&sub->lost_samples);
7844 
7845 		__output_copy(handle, values, n * sizeof(u64));
7846 	}
7847 
7848 	local_irq_restore(flags);
7849 }
7850 
7851 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7852 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
7853 
7854 /*
7855  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7856  *
7857  * The problem is that its both hard and excessively expensive to iterate the
7858  * child list, not to mention that its impossible to IPI the children running
7859  * on another CPU, from interrupt/NMI context.
7860  *
7861  * Instead the combination of PERF_SAMPLE_READ and inherit will track per-thread
7862  * counts rather than attempting to accumulate some value across all children on
7863  * all cores.
7864  */
7865 static void perf_output_read(struct perf_output_handle *handle,
7866 			     struct perf_event *event)
7867 {
7868 	u64 enabled = 0, running = 0, now;
7869 	u64 read_format = event->attr.read_format;
7870 
7871 	/*
7872 	 * compute total_time_enabled, total_time_running
7873 	 * based on snapshot values taken when the event
7874 	 * was last scheduled in.
7875 	 *
7876 	 * we cannot simply called update_context_time()
7877 	 * because of locking issue as we are called in
7878 	 * NMI context
7879 	 */
7880 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
7881 		calc_timer_values(event, &now, &enabled, &running);
7882 
7883 	if (event->attr.read_format & PERF_FORMAT_GROUP)
7884 		perf_output_read_group(handle, event, enabled, running);
7885 	else
7886 		perf_output_read_one(handle, event, enabled, running);
7887 }
7888 
7889 void perf_output_sample(struct perf_output_handle *handle,
7890 			struct perf_event_header *header,
7891 			struct perf_sample_data *data,
7892 			struct perf_event *event)
7893 {
7894 	u64 sample_type = data->type;
7895 
7896 	if (data->sample_flags & PERF_SAMPLE_READ)
7897 		handle->skip_read = 1;
7898 
7899 	perf_output_put(handle, *header);
7900 
7901 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7902 		perf_output_put(handle, data->id);
7903 
7904 	if (sample_type & PERF_SAMPLE_IP)
7905 		perf_output_put(handle, data->ip);
7906 
7907 	if (sample_type & PERF_SAMPLE_TID)
7908 		perf_output_put(handle, data->tid_entry);
7909 
7910 	if (sample_type & PERF_SAMPLE_TIME)
7911 		perf_output_put(handle, data->time);
7912 
7913 	if (sample_type & PERF_SAMPLE_ADDR)
7914 		perf_output_put(handle, data->addr);
7915 
7916 	if (sample_type & PERF_SAMPLE_ID)
7917 		perf_output_put(handle, data->id);
7918 
7919 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7920 		perf_output_put(handle, data->stream_id);
7921 
7922 	if (sample_type & PERF_SAMPLE_CPU)
7923 		perf_output_put(handle, data->cpu_entry);
7924 
7925 	if (sample_type & PERF_SAMPLE_PERIOD)
7926 		perf_output_put(handle, data->period);
7927 
7928 	if (sample_type & PERF_SAMPLE_READ)
7929 		perf_output_read(handle, event);
7930 
7931 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7932 		int size = 1;
7933 
7934 		size += data->callchain->nr;
7935 		size *= sizeof(u64);
7936 		__output_copy(handle, data->callchain, size);
7937 	}
7938 
7939 	if (sample_type & PERF_SAMPLE_RAW) {
7940 		struct perf_raw_record *raw = data->raw;
7941 
7942 		if (raw) {
7943 			struct perf_raw_frag *frag = &raw->frag;
7944 
7945 			perf_output_put(handle, raw->size);
7946 			do {
7947 				if (frag->copy) {
7948 					__output_custom(handle, frag->copy,
7949 							frag->data, frag->size);
7950 				} else {
7951 					__output_copy(handle, frag->data,
7952 						      frag->size);
7953 				}
7954 				if (perf_raw_frag_last(frag))
7955 					break;
7956 				frag = frag->next;
7957 			} while (1);
7958 			if (frag->pad)
7959 				__output_skip(handle, NULL, frag->pad);
7960 		} else {
7961 			struct {
7962 				u32	size;
7963 				u32	data;
7964 			} raw = {
7965 				.size = sizeof(u32),
7966 				.data = 0,
7967 			};
7968 			perf_output_put(handle, raw);
7969 		}
7970 	}
7971 
7972 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7973 		if (data->br_stack) {
7974 			size_t size;
7975 
7976 			size = data->br_stack->nr
7977 			     * sizeof(struct perf_branch_entry);
7978 
7979 			perf_output_put(handle, data->br_stack->nr);
7980 			if (branch_sample_hw_index(event))
7981 				perf_output_put(handle, data->br_stack->hw_idx);
7982 			perf_output_copy(handle, data->br_stack->entries, size);
7983 			/*
7984 			 * Add the extension space which is appended
7985 			 * right after the struct perf_branch_stack.
7986 			 */
7987 			if (data->br_stack_cntr) {
7988 				size = data->br_stack->nr * sizeof(u64);
7989 				perf_output_copy(handle, data->br_stack_cntr, size);
7990 			}
7991 		} else {
7992 			/*
7993 			 * we always store at least the value of nr
7994 			 */
7995 			u64 nr = 0;
7996 			perf_output_put(handle, nr);
7997 		}
7998 	}
7999 
8000 	if (sample_type & PERF_SAMPLE_REGS_USER) {
8001 		u64 abi = data->regs_user.abi;
8002 
8003 		/*
8004 		 * If there are no regs to dump, notice it through
8005 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
8006 		 */
8007 		perf_output_put(handle, abi);
8008 
8009 		if (abi) {
8010 			u64 mask = event->attr.sample_regs_user;
8011 			perf_output_sample_regs(handle,
8012 						data->regs_user.regs,
8013 						mask);
8014 		}
8015 	}
8016 
8017 	if (sample_type & PERF_SAMPLE_STACK_USER) {
8018 		perf_output_sample_ustack(handle,
8019 					  data->stack_user_size,
8020 					  data->regs_user.regs);
8021 	}
8022 
8023 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
8024 		perf_output_put(handle, data->weight.full);
8025 
8026 	if (sample_type & PERF_SAMPLE_DATA_SRC)
8027 		perf_output_put(handle, data->data_src.val);
8028 
8029 	if (sample_type & PERF_SAMPLE_TRANSACTION)
8030 		perf_output_put(handle, data->txn);
8031 
8032 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
8033 		u64 abi = data->regs_intr.abi;
8034 		/*
8035 		 * If there are no regs to dump, notice it through
8036 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
8037 		 */
8038 		perf_output_put(handle, abi);
8039 
8040 		if (abi) {
8041 			u64 mask = event->attr.sample_regs_intr;
8042 
8043 			perf_output_sample_regs(handle,
8044 						data->regs_intr.regs,
8045 						mask);
8046 		}
8047 	}
8048 
8049 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
8050 		perf_output_put(handle, data->phys_addr);
8051 
8052 	if (sample_type & PERF_SAMPLE_CGROUP)
8053 		perf_output_put(handle, data->cgroup);
8054 
8055 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
8056 		perf_output_put(handle, data->data_page_size);
8057 
8058 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
8059 		perf_output_put(handle, data->code_page_size);
8060 
8061 	if (sample_type & PERF_SAMPLE_AUX) {
8062 		perf_output_put(handle, data->aux_size);
8063 
8064 		if (data->aux_size)
8065 			perf_aux_sample_output(event, handle, data);
8066 	}
8067 
8068 	if (!event->attr.watermark) {
8069 		int wakeup_events = event->attr.wakeup_events;
8070 
8071 		if (wakeup_events) {
8072 			struct perf_buffer *rb = handle->rb;
8073 			int events = local_inc_return(&rb->events);
8074 
8075 			if (events >= wakeup_events) {
8076 				local_sub(wakeup_events, &rb->events);
8077 				local_inc(&rb->wakeup);
8078 			}
8079 		}
8080 	}
8081 }
8082 
8083 static u64 perf_virt_to_phys(u64 virt)
8084 {
8085 	u64 phys_addr = 0;
8086 
8087 	if (!virt)
8088 		return 0;
8089 
8090 	if (virt >= TASK_SIZE) {
8091 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
8092 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
8093 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
8094 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
8095 	} else {
8096 		/*
8097 		 * Walking the pages tables for user address.
8098 		 * Interrupts are disabled, so it prevents any tear down
8099 		 * of the page tables.
8100 		 * Try IRQ-safe get_user_page_fast_only first.
8101 		 * If failed, leave phys_addr as 0.
8102 		 */
8103 		if (!(current->flags & (PF_KTHREAD | PF_USER_WORKER))) {
8104 			struct page *p;
8105 
8106 			pagefault_disable();
8107 			if (get_user_page_fast_only(virt, 0, &p)) {
8108 				phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
8109 				put_page(p);
8110 			}
8111 			pagefault_enable();
8112 		}
8113 	}
8114 
8115 	return phys_addr;
8116 }
8117 
8118 /*
8119  * Return the pagetable size of a given virtual address.
8120  */
8121 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
8122 {
8123 	u64 size = 0;
8124 
8125 #ifdef CONFIG_HAVE_GUP_FAST
8126 	pgd_t *pgdp, pgd;
8127 	p4d_t *p4dp, p4d;
8128 	pud_t *pudp, pud;
8129 	pmd_t *pmdp, pmd;
8130 	pte_t *ptep, pte;
8131 
8132 	pgdp = pgd_offset(mm, addr);
8133 	pgd = READ_ONCE(*pgdp);
8134 	if (pgd_none(pgd))
8135 		return 0;
8136 
8137 	if (pgd_leaf(pgd))
8138 		return pgd_leaf_size(pgd);
8139 
8140 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
8141 	p4d = READ_ONCE(*p4dp);
8142 	if (!p4d_present(p4d))
8143 		return 0;
8144 
8145 	if (p4d_leaf(p4d))
8146 		return p4d_leaf_size(p4d);
8147 
8148 	pudp = pud_offset_lockless(p4dp, p4d, addr);
8149 	pud = READ_ONCE(*pudp);
8150 	if (!pud_present(pud))
8151 		return 0;
8152 
8153 	if (pud_leaf(pud))
8154 		return pud_leaf_size(pud);
8155 
8156 	pmdp = pmd_offset_lockless(pudp, pud, addr);
8157 again:
8158 	pmd = pmdp_get_lockless(pmdp);
8159 	if (!pmd_present(pmd))
8160 		return 0;
8161 
8162 	if (pmd_leaf(pmd))
8163 		return pmd_leaf_size(pmd);
8164 
8165 	ptep = pte_offset_map(&pmd, addr);
8166 	if (!ptep)
8167 		goto again;
8168 
8169 	pte = ptep_get_lockless(ptep);
8170 	if (pte_present(pte))
8171 		size = __pte_leaf_size(pmd, pte);
8172 	pte_unmap(ptep);
8173 #endif /* CONFIG_HAVE_GUP_FAST */
8174 
8175 	return size;
8176 }
8177 
8178 static u64 perf_get_page_size(unsigned long addr)
8179 {
8180 	struct mm_struct *mm;
8181 	unsigned long flags;
8182 	u64 size;
8183 
8184 	if (!addr)
8185 		return 0;
8186 
8187 	/*
8188 	 * Software page-table walkers must disable IRQs,
8189 	 * which prevents any tear down of the page tables.
8190 	 */
8191 	local_irq_save(flags);
8192 
8193 	mm = current->mm;
8194 	if (!mm) {
8195 		/*
8196 		 * For kernel threads and the like, use init_mm so that
8197 		 * we can find kernel memory.
8198 		 */
8199 		mm = &init_mm;
8200 	}
8201 
8202 	size = perf_get_pgtable_size(mm, addr);
8203 
8204 	local_irq_restore(flags);
8205 
8206 	return size;
8207 }
8208 
8209 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
8210 
8211 static struct unwind_work perf_unwind_work;
8212 
8213 struct perf_callchain_entry *
8214 perf_callchain(struct perf_event *event, struct pt_regs *regs)
8215 {
8216 	bool kernel = !event->attr.exclude_callchain_kernel;
8217 	bool user   = !event->attr.exclude_callchain_user &&
8218 		!(current->flags & (PF_KTHREAD | PF_USER_WORKER));
8219 	/* Disallow cross-task user callchains. */
8220 	bool crosstask = event->ctx->task && event->ctx->task != current;
8221 	bool defer_user = IS_ENABLED(CONFIG_UNWIND_USER) && user &&
8222 			  event->attr.defer_callchain;
8223 	const u32 max_stack = event->attr.sample_max_stack;
8224 	struct perf_callchain_entry *callchain;
8225 	u64 defer_cookie;
8226 
8227 	if (!current->mm)
8228 		user = false;
8229 
8230 	if (!kernel && !user)
8231 		return &__empty_callchain;
8232 
8233 	if (!(user && defer_user && !crosstask &&
8234 	      unwind_deferred_request(&perf_unwind_work, &defer_cookie) >= 0))
8235 		defer_cookie = 0;
8236 
8237 	callchain = get_perf_callchain(regs, kernel, user, max_stack,
8238 				       crosstask, true, defer_cookie);
8239 
8240 	return callchain ?: &__empty_callchain;
8241 }
8242 
8243 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d)
8244 {
8245 	return d * !!(flags & s);
8246 }
8247 
8248 void perf_prepare_sample(struct perf_sample_data *data,
8249 			 struct perf_event *event,
8250 			 struct pt_regs *regs)
8251 {
8252 	u64 sample_type = event->attr.sample_type;
8253 	u64 filtered_sample_type;
8254 
8255 	/*
8256 	 * Add the sample flags that are dependent to others.  And clear the
8257 	 * sample flags that have already been done by the PMU driver.
8258 	 */
8259 	filtered_sample_type = sample_type;
8260 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE,
8261 					   PERF_SAMPLE_IP);
8262 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE |
8263 					   PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR);
8264 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER,
8265 					   PERF_SAMPLE_REGS_USER);
8266 	filtered_sample_type &= ~data->sample_flags;
8267 
8268 	if (filtered_sample_type == 0) {
8269 		/* Make sure it has the correct data->type for output */
8270 		data->type = event->attr.sample_type;
8271 		return;
8272 	}
8273 
8274 	__perf_event_header__init_id(data, event, filtered_sample_type);
8275 
8276 	if (filtered_sample_type & PERF_SAMPLE_IP) {
8277 		data->ip = perf_instruction_pointer(event, regs);
8278 		data->sample_flags |= PERF_SAMPLE_IP;
8279 	}
8280 
8281 	if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
8282 		perf_sample_save_callchain(data, event, regs);
8283 
8284 	if (filtered_sample_type & PERF_SAMPLE_RAW) {
8285 		data->raw = NULL;
8286 		data->dyn_size += sizeof(u64);
8287 		data->sample_flags |= PERF_SAMPLE_RAW;
8288 	}
8289 
8290 	if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) {
8291 		data->br_stack = NULL;
8292 		data->dyn_size += sizeof(u64);
8293 		data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
8294 	}
8295 
8296 	if (filtered_sample_type & PERF_SAMPLE_REGS_USER)
8297 		perf_sample_regs_user(&data->regs_user, regs);
8298 
8299 	/*
8300 	 * It cannot use the filtered_sample_type here as REGS_USER can be set
8301 	 * by STACK_USER (using __cond_set() above) and we don't want to update
8302 	 * the dyn_size if it's not requested by users.
8303 	 */
8304 	if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) {
8305 		/* regs dump ABI info */
8306 		int size = sizeof(u64);
8307 
8308 		if (data->regs_user.regs) {
8309 			u64 mask = event->attr.sample_regs_user;
8310 			size += hweight64(mask) * sizeof(u64);
8311 		}
8312 
8313 		data->dyn_size += size;
8314 		data->sample_flags |= PERF_SAMPLE_REGS_USER;
8315 	}
8316 
8317 	if (filtered_sample_type & PERF_SAMPLE_STACK_USER) {
8318 		/*
8319 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
8320 		 * processed as the last one or have additional check added
8321 		 * in case new sample type is added, because we could eat
8322 		 * up the rest of the sample size.
8323 		 */
8324 		u16 stack_size = event->attr.sample_stack_user;
8325 		u16 header_size = perf_sample_data_size(data, event);
8326 		u16 size = sizeof(u64);
8327 
8328 		stack_size = perf_sample_ustack_size(stack_size, header_size,
8329 						     data->regs_user.regs);
8330 
8331 		/*
8332 		 * If there is something to dump, add space for the dump
8333 		 * itself and for the field that tells the dynamic size,
8334 		 * which is how many have been actually dumped.
8335 		 */
8336 		if (stack_size)
8337 			size += sizeof(u64) + stack_size;
8338 
8339 		data->stack_user_size = stack_size;
8340 		data->dyn_size += size;
8341 		data->sample_flags |= PERF_SAMPLE_STACK_USER;
8342 	}
8343 
8344 	if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
8345 		data->weight.full = 0;
8346 		data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
8347 	}
8348 
8349 	if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) {
8350 		data->data_src.val = PERF_MEM_NA;
8351 		data->sample_flags |= PERF_SAMPLE_DATA_SRC;
8352 	}
8353 
8354 	if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) {
8355 		data->txn = 0;
8356 		data->sample_flags |= PERF_SAMPLE_TRANSACTION;
8357 	}
8358 
8359 	if (filtered_sample_type & PERF_SAMPLE_ADDR) {
8360 		data->addr = 0;
8361 		data->sample_flags |= PERF_SAMPLE_ADDR;
8362 	}
8363 
8364 	if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) {
8365 		/* regs dump ABI info */
8366 		int size = sizeof(u64);
8367 
8368 		perf_sample_regs_intr(&data->regs_intr, regs);
8369 
8370 		if (data->regs_intr.regs) {
8371 			u64 mask = event->attr.sample_regs_intr;
8372 
8373 			size += hweight64(mask) * sizeof(u64);
8374 		}
8375 
8376 		data->dyn_size += size;
8377 		data->sample_flags |= PERF_SAMPLE_REGS_INTR;
8378 	}
8379 
8380 	if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) {
8381 		data->phys_addr = perf_virt_to_phys(data->addr);
8382 		data->sample_flags |= PERF_SAMPLE_PHYS_ADDR;
8383 	}
8384 
8385 #ifdef CONFIG_CGROUP_PERF
8386 	if (filtered_sample_type & PERF_SAMPLE_CGROUP) {
8387 		struct cgroup *cgrp;
8388 
8389 		/* protected by RCU */
8390 		cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
8391 		data->cgroup = cgroup_id(cgrp);
8392 		data->sample_flags |= PERF_SAMPLE_CGROUP;
8393 	}
8394 #endif
8395 
8396 	/*
8397 	 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
8398 	 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
8399 	 * but the value will not dump to the userspace.
8400 	 */
8401 	if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) {
8402 		data->data_page_size = perf_get_page_size(data->addr);
8403 		data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE;
8404 	}
8405 
8406 	if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) {
8407 		data->code_page_size = perf_get_page_size(data->ip);
8408 		data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE;
8409 	}
8410 
8411 	if (filtered_sample_type & PERF_SAMPLE_AUX) {
8412 		u64 size;
8413 		u16 header_size = perf_sample_data_size(data, event);
8414 
8415 		header_size += sizeof(u64); /* size */
8416 
8417 		/*
8418 		 * Given the 16bit nature of header::size, an AUX sample can
8419 		 * easily overflow it, what with all the preceding sample bits.
8420 		 * Make sure this doesn't happen by using up to U16_MAX bytes
8421 		 * per sample in total (rounded down to 8 byte boundary).
8422 		 */
8423 		size = min_t(size_t, U16_MAX - header_size,
8424 			     event->attr.aux_sample_size);
8425 		size = rounddown(size, 8);
8426 		size = perf_prepare_sample_aux(event, data, size);
8427 
8428 		WARN_ON_ONCE(size + header_size > U16_MAX);
8429 		data->dyn_size += size + sizeof(u64); /* size above */
8430 		data->sample_flags |= PERF_SAMPLE_AUX;
8431 	}
8432 }
8433 
8434 void perf_prepare_header(struct perf_event_header *header,
8435 			 struct perf_sample_data *data,
8436 			 struct perf_event *event,
8437 			 struct pt_regs *regs)
8438 {
8439 	header->type = PERF_RECORD_SAMPLE;
8440 	header->size = perf_sample_data_size(data, event);
8441 	header->misc = perf_misc_flags(event, regs);
8442 
8443 	/*
8444 	 * If you're adding more sample types here, you likely need to do
8445 	 * something about the overflowing header::size, like repurpose the
8446 	 * lowest 3 bits of size, which should be always zero at the moment.
8447 	 * This raises a more important question, do we really need 512k sized
8448 	 * samples and why, so good argumentation is in order for whatever you
8449 	 * do here next.
8450 	 */
8451 	WARN_ON_ONCE(header->size & 7);
8452 }
8453 
8454 static void __perf_event_aux_pause(struct perf_event *event, bool pause)
8455 {
8456 	if (pause) {
8457 		if (!event->hw.aux_paused) {
8458 			event->hw.aux_paused = 1;
8459 			event->pmu->stop(event, PERF_EF_PAUSE);
8460 		}
8461 	} else {
8462 		if (event->hw.aux_paused) {
8463 			event->hw.aux_paused = 0;
8464 			event->pmu->start(event, PERF_EF_RESUME);
8465 		}
8466 	}
8467 }
8468 
8469 static void perf_event_aux_pause(struct perf_event *event, bool pause)
8470 {
8471 	struct perf_buffer *rb;
8472 
8473 	if (WARN_ON_ONCE(!event))
8474 		return;
8475 
8476 	rb = ring_buffer_get(event);
8477 	if (!rb)
8478 		return;
8479 
8480 	scoped_guard (irqsave) {
8481 		/*
8482 		 * Guard against self-recursion here. Another event could trip
8483 		 * this same from NMI context.
8484 		 */
8485 		if (READ_ONCE(rb->aux_in_pause_resume))
8486 			break;
8487 
8488 		WRITE_ONCE(rb->aux_in_pause_resume, 1);
8489 		barrier();
8490 		__perf_event_aux_pause(event, pause);
8491 		barrier();
8492 		WRITE_ONCE(rb->aux_in_pause_resume, 0);
8493 	}
8494 	ring_buffer_put(rb);
8495 }
8496 
8497 static __always_inline int
8498 __perf_event_output(struct perf_event *event,
8499 		    struct perf_sample_data *data,
8500 		    struct pt_regs *regs,
8501 		    int (*output_begin)(struct perf_output_handle *,
8502 					struct perf_sample_data *,
8503 					struct perf_event *,
8504 					unsigned int))
8505 {
8506 	struct perf_output_handle handle;
8507 	struct perf_event_header header;
8508 	int err;
8509 
8510 	/* protect the callchain buffers */
8511 	rcu_read_lock();
8512 
8513 	perf_prepare_sample(data, event, regs);
8514 	perf_prepare_header(&header, data, event, regs);
8515 
8516 	err = output_begin(&handle, data, event, header.size);
8517 	if (err)
8518 		goto exit;
8519 
8520 	perf_output_sample(&handle, &header, data, event);
8521 
8522 	perf_output_end(&handle);
8523 
8524 exit:
8525 	rcu_read_unlock();
8526 	return err;
8527 }
8528 
8529 void
8530 perf_event_output_forward(struct perf_event *event,
8531 			 struct perf_sample_data *data,
8532 			 struct pt_regs *regs)
8533 {
8534 	__perf_event_output(event, data, regs, perf_output_begin_forward);
8535 }
8536 
8537 void
8538 perf_event_output_backward(struct perf_event *event,
8539 			   struct perf_sample_data *data,
8540 			   struct pt_regs *regs)
8541 {
8542 	__perf_event_output(event, data, regs, perf_output_begin_backward);
8543 }
8544 
8545 int
8546 perf_event_output(struct perf_event *event,
8547 		  struct perf_sample_data *data,
8548 		  struct pt_regs *regs)
8549 {
8550 	return __perf_event_output(event, data, regs, perf_output_begin);
8551 }
8552 
8553 /*
8554  * read event_id
8555  */
8556 
8557 struct perf_read_event {
8558 	struct perf_event_header	header;
8559 
8560 	u32				pid;
8561 	u32				tid;
8562 };
8563 
8564 static void
8565 perf_event_read_event(struct perf_event *event,
8566 			struct task_struct *task)
8567 {
8568 	struct perf_output_handle handle;
8569 	struct perf_sample_data sample;
8570 	struct perf_read_event read_event = {
8571 		.header = {
8572 			.type = PERF_RECORD_READ,
8573 			.misc = 0,
8574 			.size = sizeof(read_event) + event->read_size,
8575 		},
8576 		.pid = perf_event_pid(event, task),
8577 		.tid = perf_event_tid(event, task),
8578 	};
8579 	int ret;
8580 
8581 	perf_event_header__init_id(&read_event.header, &sample, event);
8582 	ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
8583 	if (ret)
8584 		return;
8585 
8586 	perf_output_put(&handle, read_event);
8587 	perf_output_read(&handle, event);
8588 	perf_event__output_id_sample(event, &handle, &sample);
8589 
8590 	perf_output_end(&handle);
8591 }
8592 
8593 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
8594 
8595 static void
8596 perf_iterate_ctx(struct perf_event_context *ctx,
8597 		   perf_iterate_f output,
8598 		   void *data, bool all)
8599 {
8600 	struct perf_event *event;
8601 
8602 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8603 		if (!all) {
8604 			if (event->state < PERF_EVENT_STATE_INACTIVE)
8605 				continue;
8606 			if (!event_filter_match(event))
8607 				continue;
8608 		}
8609 
8610 		output(event, data);
8611 	}
8612 }
8613 
8614 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
8615 {
8616 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
8617 	struct perf_event *event;
8618 
8619 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
8620 		/*
8621 		 * Skip events that are not fully formed yet; ensure that
8622 		 * if we observe event->ctx, both event and ctx will be
8623 		 * complete enough. See perf_install_in_context().
8624 		 */
8625 		if (!smp_load_acquire(&event->ctx))
8626 			continue;
8627 
8628 		if (event->state < PERF_EVENT_STATE_INACTIVE)
8629 			continue;
8630 		if (!event_filter_match(event))
8631 			continue;
8632 		output(event, data);
8633 	}
8634 }
8635 
8636 /*
8637  * Iterate all events that need to receive side-band events.
8638  *
8639  * For new callers; ensure that account_pmu_sb_event() includes
8640  * your event, otherwise it might not get delivered.
8641  */
8642 static void
8643 perf_iterate_sb(perf_iterate_f output, void *data,
8644 	       struct perf_event_context *task_ctx)
8645 {
8646 	struct perf_event_context *ctx;
8647 
8648 	rcu_read_lock();
8649 	preempt_disable();
8650 
8651 	/*
8652 	 * If we have task_ctx != NULL we only notify the task context itself.
8653 	 * The task_ctx is set only for EXIT events before releasing task
8654 	 * context.
8655 	 */
8656 	if (task_ctx) {
8657 		perf_iterate_ctx(task_ctx, output, data, false);
8658 		goto done;
8659 	}
8660 
8661 	perf_iterate_sb_cpu(output, data);
8662 
8663 	ctx = rcu_dereference(current->perf_event_ctxp);
8664 	if (ctx)
8665 		perf_iterate_ctx(ctx, output, data, false);
8666 done:
8667 	preempt_enable();
8668 	rcu_read_unlock();
8669 }
8670 
8671 /*
8672  * Clear all file-based filters at exec, they'll have to be
8673  * re-instated when/if these objects are mmapped again.
8674  */
8675 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
8676 {
8677 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8678 	struct perf_addr_filter *filter;
8679 	unsigned int restart = 0, count = 0;
8680 	unsigned long flags;
8681 
8682 	if (!has_addr_filter(event))
8683 		return;
8684 
8685 	raw_spin_lock_irqsave(&ifh->lock, flags);
8686 	list_for_each_entry(filter, &ifh->list, entry) {
8687 		if (filter->path.dentry) {
8688 			event->addr_filter_ranges[count].start = 0;
8689 			event->addr_filter_ranges[count].size = 0;
8690 			restart++;
8691 		}
8692 
8693 		count++;
8694 	}
8695 
8696 	if (restart)
8697 		event->addr_filters_gen++;
8698 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8699 
8700 	if (restart)
8701 		perf_event_stop(event, 1);
8702 }
8703 
8704 void perf_event_exec(void)
8705 {
8706 	struct perf_event_context *ctx;
8707 
8708 	ctx = perf_pin_task_context(current);
8709 	if (!ctx)
8710 		return;
8711 
8712 	perf_event_enable_on_exec(ctx);
8713 	perf_event_remove_on_exec(ctx);
8714 	scoped_guard(rcu)
8715 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true);
8716 
8717 	perf_unpin_context(ctx);
8718 	put_ctx(ctx);
8719 }
8720 
8721 struct remote_output {
8722 	struct perf_buffer	*rb;
8723 	int			err;
8724 };
8725 
8726 static void __perf_event_output_stop(struct perf_event *event, void *data)
8727 {
8728 	struct perf_event *parent = event->parent;
8729 	struct remote_output *ro = data;
8730 	struct perf_buffer *rb = ro->rb;
8731 	struct stop_event_data sd = {
8732 		.event	= event,
8733 	};
8734 
8735 	if (!has_aux(event))
8736 		return;
8737 
8738 	if (!parent)
8739 		parent = event;
8740 
8741 	/*
8742 	 * In case of inheritance, it will be the parent that links to the
8743 	 * ring-buffer, but it will be the child that's actually using it.
8744 	 *
8745 	 * We are using event::rb to determine if the event should be stopped,
8746 	 * however this may race with ring_buffer_attach() (through set_output),
8747 	 * which will make us skip the event that actually needs to be stopped.
8748 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
8749 	 * its rb pointer.
8750 	 */
8751 	if (rcu_dereference(parent->rb) == rb)
8752 		ro->err = __perf_event_stop(&sd);
8753 }
8754 
8755 static int __perf_pmu_output_stop(void *info)
8756 {
8757 	struct perf_event *event = info;
8758 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
8759 	struct remote_output ro = {
8760 		.rb	= event->rb,
8761 	};
8762 
8763 	rcu_read_lock();
8764 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
8765 	if (cpuctx->task_ctx)
8766 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
8767 				   &ro, false);
8768 	rcu_read_unlock();
8769 
8770 	return ro.err;
8771 }
8772 
8773 static void perf_pmu_output_stop(struct perf_event *event)
8774 {
8775 	struct perf_event *iter;
8776 	int err, cpu;
8777 
8778 restart:
8779 	rcu_read_lock();
8780 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
8781 		/*
8782 		 * For per-CPU events, we need to make sure that neither they
8783 		 * nor their children are running; for cpu==-1 events it's
8784 		 * sufficient to stop the event itself if it's active, since
8785 		 * it can't have children.
8786 		 */
8787 		cpu = iter->cpu;
8788 		if (cpu == -1)
8789 			cpu = READ_ONCE(iter->oncpu);
8790 
8791 		if (cpu == -1)
8792 			continue;
8793 
8794 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
8795 		if (err == -EAGAIN) {
8796 			rcu_read_unlock();
8797 			goto restart;
8798 		}
8799 	}
8800 	rcu_read_unlock();
8801 }
8802 
8803 /*
8804  * task tracking -- fork/exit
8805  *
8806  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
8807  */
8808 
8809 struct perf_task_event {
8810 	struct task_struct		*task;
8811 	struct perf_event_context	*task_ctx;
8812 
8813 	struct {
8814 		struct perf_event_header	header;
8815 
8816 		u32				pid;
8817 		u32				ppid;
8818 		u32				tid;
8819 		u32				ptid;
8820 		u64				time;
8821 	} event_id;
8822 };
8823 
8824 static int perf_event_task_match(struct perf_event *event)
8825 {
8826 	return event->attr.comm  || event->attr.mmap ||
8827 	       event->attr.mmap2 || event->attr.mmap_data ||
8828 	       event->attr.task;
8829 }
8830 
8831 static void perf_event_task_output(struct perf_event *event,
8832 				   void *data)
8833 {
8834 	struct perf_task_event *task_event = data;
8835 	struct perf_output_handle handle;
8836 	struct perf_sample_data	sample;
8837 	struct task_struct *task = task_event->task;
8838 	int ret, size = task_event->event_id.header.size;
8839 
8840 	if (!perf_event_task_match(event))
8841 		return;
8842 
8843 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
8844 
8845 	ret = perf_output_begin(&handle, &sample, event,
8846 				task_event->event_id.header.size);
8847 	if (ret)
8848 		goto out;
8849 
8850 	task_event->event_id.pid = perf_event_pid(event, task);
8851 	task_event->event_id.tid = perf_event_tid(event, task);
8852 
8853 	if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
8854 		task_event->event_id.ppid = perf_event_pid(event,
8855 							task->real_parent);
8856 		task_event->event_id.ptid = perf_event_pid(event,
8857 							task->real_parent);
8858 	} else {  /* PERF_RECORD_FORK */
8859 		task_event->event_id.ppid = perf_event_pid(event, current);
8860 		task_event->event_id.ptid = perf_event_tid(event, current);
8861 	}
8862 
8863 	task_event->event_id.time = perf_event_clock(event);
8864 
8865 	perf_output_put(&handle, task_event->event_id);
8866 
8867 	perf_event__output_id_sample(event, &handle, &sample);
8868 
8869 	perf_output_end(&handle);
8870 out:
8871 	task_event->event_id.header.size = size;
8872 }
8873 
8874 static void perf_event_task(struct task_struct *task,
8875 			      struct perf_event_context *task_ctx,
8876 			      int new)
8877 {
8878 	struct perf_task_event task_event;
8879 
8880 	if (!atomic_read(&nr_comm_events) &&
8881 	    !atomic_read(&nr_mmap_events) &&
8882 	    !atomic_read(&nr_task_events))
8883 		return;
8884 
8885 	task_event = (struct perf_task_event){
8886 		.task	  = task,
8887 		.task_ctx = task_ctx,
8888 		.event_id    = {
8889 			.header = {
8890 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
8891 				.misc = 0,
8892 				.size = sizeof(task_event.event_id),
8893 			},
8894 			/* .pid  */
8895 			/* .ppid */
8896 			/* .tid  */
8897 			/* .ptid */
8898 			/* .time */
8899 		},
8900 	};
8901 
8902 	perf_iterate_sb(perf_event_task_output,
8903 		       &task_event,
8904 		       task_ctx);
8905 }
8906 
8907 /*
8908  * Allocate data for a new task when profiling system-wide
8909  * events which require PMU specific data
8910  */
8911 static void
8912 perf_event_alloc_task_data(struct task_struct *child,
8913 			   struct task_struct *parent)
8914 {
8915 	struct kmem_cache *ctx_cache = NULL;
8916 	struct perf_ctx_data *cd;
8917 
8918 	if (!refcount_read(&global_ctx_data_ref))
8919 		return;
8920 
8921 	scoped_guard (rcu) {
8922 		cd = rcu_dereference(parent->perf_ctx_data);
8923 		if (cd)
8924 			ctx_cache = cd->ctx_cache;
8925 	}
8926 
8927 	if (!ctx_cache)
8928 		return;
8929 
8930 	guard(percpu_read)(&global_ctx_data_rwsem);
8931 	scoped_guard (rcu) {
8932 		cd = rcu_dereference(child->perf_ctx_data);
8933 		if (!cd) {
8934 			/*
8935 			 * A system-wide event may be unaccount,
8936 			 * when attaching the perf_ctx_data.
8937 			 */
8938 			if (!refcount_read(&global_ctx_data_ref))
8939 				return;
8940 			goto attach;
8941 		}
8942 
8943 		if (!cd->global) {
8944 			cd->global = 1;
8945 			refcount_inc(&cd->refcount);
8946 		}
8947 	}
8948 
8949 	return;
8950 attach:
8951 	attach_task_ctx_data(child, ctx_cache, true);
8952 }
8953 
8954 void perf_event_fork(struct task_struct *task)
8955 {
8956 	perf_event_task(task, NULL, 1);
8957 	perf_event_namespaces(task);
8958 	perf_event_alloc_task_data(task, current);
8959 }
8960 
8961 /*
8962  * comm tracking
8963  */
8964 
8965 struct perf_comm_event {
8966 	struct task_struct	*task;
8967 	char			*comm;
8968 	int			comm_size;
8969 
8970 	struct {
8971 		struct perf_event_header	header;
8972 
8973 		u32				pid;
8974 		u32				tid;
8975 	} event_id;
8976 };
8977 
8978 static int perf_event_comm_match(struct perf_event *event)
8979 {
8980 	return event->attr.comm;
8981 }
8982 
8983 static void perf_event_comm_output(struct perf_event *event,
8984 				   void *data)
8985 {
8986 	struct perf_comm_event *comm_event = data;
8987 	struct perf_output_handle handle;
8988 	struct perf_sample_data sample;
8989 	int size = comm_event->event_id.header.size;
8990 	int ret;
8991 
8992 	if (!perf_event_comm_match(event))
8993 		return;
8994 
8995 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8996 	ret = perf_output_begin(&handle, &sample, event,
8997 				comm_event->event_id.header.size);
8998 
8999 	if (ret)
9000 		goto out;
9001 
9002 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
9003 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
9004 
9005 	perf_output_put(&handle, comm_event->event_id);
9006 	__output_copy(&handle, comm_event->comm,
9007 				   comm_event->comm_size);
9008 
9009 	perf_event__output_id_sample(event, &handle, &sample);
9010 
9011 	perf_output_end(&handle);
9012 out:
9013 	comm_event->event_id.header.size = size;
9014 }
9015 
9016 static void perf_event_comm_event(struct perf_comm_event *comm_event)
9017 {
9018 	char comm[TASK_COMM_LEN];
9019 	unsigned int size;
9020 
9021 	memset(comm, 0, sizeof(comm));
9022 	strscpy(comm, comm_event->task->comm);
9023 	size = ALIGN(strlen(comm)+1, sizeof(u64));
9024 
9025 	comm_event->comm = comm;
9026 	comm_event->comm_size = size;
9027 
9028 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
9029 
9030 	perf_iterate_sb(perf_event_comm_output,
9031 		       comm_event,
9032 		       NULL);
9033 }
9034 
9035 void perf_event_comm(struct task_struct *task, bool exec)
9036 {
9037 	struct perf_comm_event comm_event;
9038 
9039 	if (!atomic_read(&nr_comm_events))
9040 		return;
9041 
9042 	comm_event = (struct perf_comm_event){
9043 		.task	= task,
9044 		/* .comm      */
9045 		/* .comm_size */
9046 		.event_id  = {
9047 			.header = {
9048 				.type = PERF_RECORD_COMM,
9049 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
9050 				/* .size */
9051 			},
9052 			/* .pid */
9053 			/* .tid */
9054 		},
9055 	};
9056 
9057 	perf_event_comm_event(&comm_event);
9058 }
9059 
9060 /*
9061  * namespaces tracking
9062  */
9063 
9064 struct perf_namespaces_event {
9065 	struct task_struct		*task;
9066 
9067 	struct {
9068 		struct perf_event_header	header;
9069 
9070 		u32				pid;
9071 		u32				tid;
9072 		u64				nr_namespaces;
9073 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
9074 	} event_id;
9075 };
9076 
9077 static int perf_event_namespaces_match(struct perf_event *event)
9078 {
9079 	return event->attr.namespaces;
9080 }
9081 
9082 static void perf_event_namespaces_output(struct perf_event *event,
9083 					 void *data)
9084 {
9085 	struct perf_namespaces_event *namespaces_event = data;
9086 	struct perf_output_handle handle;
9087 	struct perf_sample_data sample;
9088 	u16 header_size = namespaces_event->event_id.header.size;
9089 	int ret;
9090 
9091 	if (!perf_event_namespaces_match(event))
9092 		return;
9093 
9094 	perf_event_header__init_id(&namespaces_event->event_id.header,
9095 				   &sample, event);
9096 	ret = perf_output_begin(&handle, &sample, event,
9097 				namespaces_event->event_id.header.size);
9098 	if (ret)
9099 		goto out;
9100 
9101 	namespaces_event->event_id.pid = perf_event_pid(event,
9102 							namespaces_event->task);
9103 	namespaces_event->event_id.tid = perf_event_tid(event,
9104 							namespaces_event->task);
9105 
9106 	perf_output_put(&handle, namespaces_event->event_id);
9107 
9108 	perf_event__output_id_sample(event, &handle, &sample);
9109 
9110 	perf_output_end(&handle);
9111 out:
9112 	namespaces_event->event_id.header.size = header_size;
9113 }
9114 
9115 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
9116 				   struct task_struct *task,
9117 				   const struct proc_ns_operations *ns_ops)
9118 {
9119 	struct path ns_path;
9120 	struct inode *ns_inode;
9121 	int error;
9122 
9123 	error = ns_get_path(&ns_path, task, ns_ops);
9124 	if (!error) {
9125 		ns_inode = ns_path.dentry->d_inode;
9126 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
9127 		ns_link_info->ino = ns_inode->i_ino;
9128 		path_put(&ns_path);
9129 	}
9130 }
9131 
9132 void perf_event_namespaces(struct task_struct *task)
9133 {
9134 	struct perf_namespaces_event namespaces_event;
9135 	struct perf_ns_link_info *ns_link_info;
9136 
9137 	if (!atomic_read(&nr_namespaces_events))
9138 		return;
9139 
9140 	namespaces_event = (struct perf_namespaces_event){
9141 		.task	= task,
9142 		.event_id  = {
9143 			.header = {
9144 				.type = PERF_RECORD_NAMESPACES,
9145 				.misc = 0,
9146 				.size = sizeof(namespaces_event.event_id),
9147 			},
9148 			/* .pid */
9149 			/* .tid */
9150 			.nr_namespaces = NR_NAMESPACES,
9151 			/* .link_info[NR_NAMESPACES] */
9152 		},
9153 	};
9154 
9155 	ns_link_info = namespaces_event.event_id.link_info;
9156 
9157 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
9158 			       task, &mntns_operations);
9159 
9160 #ifdef CONFIG_USER_NS
9161 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
9162 			       task, &userns_operations);
9163 #endif
9164 #ifdef CONFIG_NET_NS
9165 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
9166 			       task, &netns_operations);
9167 #endif
9168 #ifdef CONFIG_UTS_NS
9169 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
9170 			       task, &utsns_operations);
9171 #endif
9172 #ifdef CONFIG_IPC_NS
9173 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
9174 			       task, &ipcns_operations);
9175 #endif
9176 #ifdef CONFIG_PID_NS
9177 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
9178 			       task, &pidns_operations);
9179 #endif
9180 #ifdef CONFIG_CGROUPS
9181 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
9182 			       task, &cgroupns_operations);
9183 #endif
9184 
9185 	perf_iterate_sb(perf_event_namespaces_output,
9186 			&namespaces_event,
9187 			NULL);
9188 }
9189 
9190 /*
9191  * cgroup tracking
9192  */
9193 #ifdef CONFIG_CGROUP_PERF
9194 
9195 struct perf_cgroup_event {
9196 	char				*path;
9197 	int				path_size;
9198 	struct {
9199 		struct perf_event_header	header;
9200 		u64				id;
9201 		char				path[];
9202 	} event_id;
9203 };
9204 
9205 static int perf_event_cgroup_match(struct perf_event *event)
9206 {
9207 	return event->attr.cgroup;
9208 }
9209 
9210 static void perf_event_cgroup_output(struct perf_event *event, void *data)
9211 {
9212 	struct perf_cgroup_event *cgroup_event = data;
9213 	struct perf_output_handle handle;
9214 	struct perf_sample_data sample;
9215 	u16 header_size = cgroup_event->event_id.header.size;
9216 	int ret;
9217 
9218 	if (!perf_event_cgroup_match(event))
9219 		return;
9220 
9221 	perf_event_header__init_id(&cgroup_event->event_id.header,
9222 				   &sample, event);
9223 	ret = perf_output_begin(&handle, &sample, event,
9224 				cgroup_event->event_id.header.size);
9225 	if (ret)
9226 		goto out;
9227 
9228 	perf_output_put(&handle, cgroup_event->event_id);
9229 	__output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
9230 
9231 	perf_event__output_id_sample(event, &handle, &sample);
9232 
9233 	perf_output_end(&handle);
9234 out:
9235 	cgroup_event->event_id.header.size = header_size;
9236 }
9237 
9238 static void perf_event_cgroup(struct cgroup *cgrp)
9239 {
9240 	struct perf_cgroup_event cgroup_event;
9241 	char path_enomem[16] = "//enomem";
9242 	char *pathname;
9243 	size_t size;
9244 
9245 	if (!atomic_read(&nr_cgroup_events))
9246 		return;
9247 
9248 	cgroup_event = (struct perf_cgroup_event){
9249 		.event_id  = {
9250 			.header = {
9251 				.type = PERF_RECORD_CGROUP,
9252 				.misc = 0,
9253 				.size = sizeof(cgroup_event.event_id),
9254 			},
9255 			.id = cgroup_id(cgrp),
9256 		},
9257 	};
9258 
9259 	pathname = kmalloc(PATH_MAX, GFP_KERNEL);
9260 	if (pathname == NULL) {
9261 		cgroup_event.path = path_enomem;
9262 	} else {
9263 		/* just to be sure to have enough space for alignment */
9264 		cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
9265 		cgroup_event.path = pathname;
9266 	}
9267 
9268 	/*
9269 	 * Since our buffer works in 8 byte units we need to align our string
9270 	 * size to a multiple of 8. However, we must guarantee the tail end is
9271 	 * zero'd out to avoid leaking random bits to userspace.
9272 	 */
9273 	size = strlen(cgroup_event.path) + 1;
9274 	while (!IS_ALIGNED(size, sizeof(u64)))
9275 		cgroup_event.path[size++] = '\0';
9276 
9277 	cgroup_event.event_id.header.size += size;
9278 	cgroup_event.path_size = size;
9279 
9280 	perf_iterate_sb(perf_event_cgroup_output,
9281 			&cgroup_event,
9282 			NULL);
9283 
9284 	kfree(pathname);
9285 }
9286 
9287 #endif
9288 
9289 /*
9290  * mmap tracking
9291  */
9292 
9293 struct perf_mmap_event {
9294 	struct vm_area_struct	*vma;
9295 
9296 	const char		*file_name;
9297 	int			file_size;
9298 	int			maj, min;
9299 	u64			ino;
9300 	u64			ino_generation;
9301 	u32			prot, flags;
9302 	u8			build_id[BUILD_ID_SIZE_MAX];
9303 	u32			build_id_size;
9304 
9305 	struct {
9306 		struct perf_event_header	header;
9307 
9308 		u32				pid;
9309 		u32				tid;
9310 		u64				start;
9311 		u64				len;
9312 		u64				pgoff;
9313 	} event_id;
9314 };
9315 
9316 static int perf_event_mmap_match(struct perf_event *event,
9317 				 void *data)
9318 {
9319 	struct perf_mmap_event *mmap_event = data;
9320 	struct vm_area_struct *vma = mmap_event->vma;
9321 	int executable = vma->vm_flags & VM_EXEC;
9322 
9323 	return (!executable && event->attr.mmap_data) ||
9324 	       (executable && (event->attr.mmap || event->attr.mmap2));
9325 }
9326 
9327 static void perf_event_mmap_output(struct perf_event *event,
9328 				   void *data)
9329 {
9330 	struct perf_mmap_event *mmap_event = data;
9331 	struct perf_output_handle handle;
9332 	struct perf_sample_data sample;
9333 	int size = mmap_event->event_id.header.size;
9334 	u32 type = mmap_event->event_id.header.type;
9335 	bool use_build_id;
9336 	int ret;
9337 
9338 	if (!perf_event_mmap_match(event, data))
9339 		return;
9340 
9341 	if (event->attr.mmap2) {
9342 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
9343 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
9344 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
9345 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
9346 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
9347 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
9348 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
9349 	}
9350 
9351 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
9352 	ret = perf_output_begin(&handle, &sample, event,
9353 				mmap_event->event_id.header.size);
9354 	if (ret)
9355 		goto out;
9356 
9357 	mmap_event->event_id.pid = perf_event_pid(event, current);
9358 	mmap_event->event_id.tid = perf_event_tid(event, current);
9359 
9360 	use_build_id = event->attr.build_id && mmap_event->build_id_size;
9361 
9362 	if (event->attr.mmap2 && use_build_id)
9363 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
9364 
9365 	perf_output_put(&handle, mmap_event->event_id);
9366 
9367 	if (event->attr.mmap2) {
9368 		if (use_build_id) {
9369 			u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
9370 
9371 			__output_copy(&handle, size, 4);
9372 			__output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
9373 		} else {
9374 			perf_output_put(&handle, mmap_event->maj);
9375 			perf_output_put(&handle, mmap_event->min);
9376 			perf_output_put(&handle, mmap_event->ino);
9377 			perf_output_put(&handle, mmap_event->ino_generation);
9378 		}
9379 		perf_output_put(&handle, mmap_event->prot);
9380 		perf_output_put(&handle, mmap_event->flags);
9381 	}
9382 
9383 	__output_copy(&handle, mmap_event->file_name,
9384 				   mmap_event->file_size);
9385 
9386 	perf_event__output_id_sample(event, &handle, &sample);
9387 
9388 	perf_output_end(&handle);
9389 out:
9390 	mmap_event->event_id.header.size = size;
9391 	mmap_event->event_id.header.type = type;
9392 }
9393 
9394 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
9395 {
9396 	struct vm_area_struct *vma = mmap_event->vma;
9397 	struct file *file = vma->vm_file;
9398 	int maj = 0, min = 0;
9399 	u64 ino = 0, gen = 0;
9400 	u32 prot = 0, flags = 0;
9401 	unsigned int size;
9402 	char tmp[16];
9403 	char *buf = NULL;
9404 	char *name = NULL;
9405 
9406 	if (vma->vm_flags & VM_READ)
9407 		prot |= PROT_READ;
9408 	if (vma->vm_flags & VM_WRITE)
9409 		prot |= PROT_WRITE;
9410 	if (vma->vm_flags & VM_EXEC)
9411 		prot |= PROT_EXEC;
9412 
9413 	if (vma->vm_flags & VM_MAYSHARE)
9414 		flags = MAP_SHARED;
9415 	else
9416 		flags = MAP_PRIVATE;
9417 
9418 	if (vma->vm_flags & VM_LOCKED)
9419 		flags |= MAP_LOCKED;
9420 	if (is_vm_hugetlb_page(vma))
9421 		flags |= MAP_HUGETLB;
9422 
9423 	if (file) {
9424 		const struct inode *inode;
9425 		dev_t dev;
9426 
9427 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
9428 		if (!buf) {
9429 			name = "//enomem";
9430 			goto cpy_name;
9431 		}
9432 		/*
9433 		 * d_path() works from the end of the rb backwards, so we
9434 		 * need to add enough zero bytes after the string to handle
9435 		 * the 64bit alignment we do later.
9436 		 */
9437 		name = d_path(file_user_path(file), buf, PATH_MAX - sizeof(u64));
9438 		if (IS_ERR(name)) {
9439 			name = "//toolong";
9440 			goto cpy_name;
9441 		}
9442 		inode = file_user_inode(vma->vm_file);
9443 		dev = inode->i_sb->s_dev;
9444 		ino = inode->i_ino;
9445 		gen = inode->i_generation;
9446 		maj = MAJOR(dev);
9447 		min = MINOR(dev);
9448 
9449 		goto got_name;
9450 	} else {
9451 		if (vma->vm_ops && vma->vm_ops->name)
9452 			name = (char *) vma->vm_ops->name(vma);
9453 		if (!name)
9454 			name = (char *)arch_vma_name(vma);
9455 		if (!name) {
9456 			if (vma_is_initial_heap(vma))
9457 				name = "[heap]";
9458 			else if (vma_is_initial_stack(vma))
9459 				name = "[stack]";
9460 			else
9461 				name = "//anon";
9462 		}
9463 	}
9464 
9465 cpy_name:
9466 	strscpy(tmp, name);
9467 	name = tmp;
9468 got_name:
9469 	/*
9470 	 * Since our buffer works in 8 byte units we need to align our string
9471 	 * size to a multiple of 8. However, we must guarantee the tail end is
9472 	 * zero'd out to avoid leaking random bits to userspace.
9473 	 */
9474 	size = strlen(name)+1;
9475 	while (!IS_ALIGNED(size, sizeof(u64)))
9476 		name[size++] = '\0';
9477 
9478 	mmap_event->file_name = name;
9479 	mmap_event->file_size = size;
9480 	mmap_event->maj = maj;
9481 	mmap_event->min = min;
9482 	mmap_event->ino = ino;
9483 	mmap_event->ino_generation = gen;
9484 	mmap_event->prot = prot;
9485 	mmap_event->flags = flags;
9486 
9487 	if (!(vma->vm_flags & VM_EXEC))
9488 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
9489 
9490 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
9491 
9492 	if (atomic_read(&nr_build_id_events))
9493 		build_id_parse_nofault(vma, mmap_event->build_id, &mmap_event->build_id_size);
9494 
9495 	perf_iterate_sb(perf_event_mmap_output,
9496 		       mmap_event,
9497 		       NULL);
9498 
9499 	kfree(buf);
9500 }
9501 
9502 /*
9503  * Check whether inode and address range match filter criteria.
9504  */
9505 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
9506 				     struct file *file, unsigned long offset,
9507 				     unsigned long size)
9508 {
9509 	/* d_inode(NULL) won't be equal to any mapped user-space file */
9510 	if (!filter->path.dentry)
9511 		return false;
9512 
9513 	if (d_inode(filter->path.dentry) != file_user_inode(file))
9514 		return false;
9515 
9516 	if (filter->offset > offset + size)
9517 		return false;
9518 
9519 	if (filter->offset + filter->size < offset)
9520 		return false;
9521 
9522 	return true;
9523 }
9524 
9525 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
9526 					struct vm_area_struct *vma,
9527 					struct perf_addr_filter_range *fr)
9528 {
9529 	unsigned long vma_size = vma->vm_end - vma->vm_start;
9530 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
9531 	struct file *file = vma->vm_file;
9532 
9533 	if (!perf_addr_filter_match(filter, file, off, vma_size))
9534 		return false;
9535 
9536 	if (filter->offset < off) {
9537 		fr->start = vma->vm_start;
9538 		fr->size = min(vma_size, filter->size - (off - filter->offset));
9539 	} else {
9540 		fr->start = vma->vm_start + filter->offset - off;
9541 		fr->size = min(vma->vm_end - fr->start, filter->size);
9542 	}
9543 
9544 	return true;
9545 }
9546 
9547 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
9548 {
9549 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9550 	struct vm_area_struct *vma = data;
9551 	struct perf_addr_filter *filter;
9552 	unsigned int restart = 0, count = 0;
9553 	unsigned long flags;
9554 
9555 	if (!has_addr_filter(event))
9556 		return;
9557 
9558 	if (!vma->vm_file)
9559 		return;
9560 
9561 	raw_spin_lock_irqsave(&ifh->lock, flags);
9562 	list_for_each_entry(filter, &ifh->list, entry) {
9563 		if (perf_addr_filter_vma_adjust(filter, vma,
9564 						&event->addr_filter_ranges[count]))
9565 			restart++;
9566 
9567 		count++;
9568 	}
9569 
9570 	if (restart)
9571 		event->addr_filters_gen++;
9572 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
9573 
9574 	if (restart)
9575 		perf_event_stop(event, 1);
9576 }
9577 
9578 /*
9579  * Adjust all task's events' filters to the new vma
9580  */
9581 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
9582 {
9583 	struct perf_event_context *ctx;
9584 
9585 	/*
9586 	 * Data tracing isn't supported yet and as such there is no need
9587 	 * to keep track of anything that isn't related to executable code:
9588 	 */
9589 	if (!(vma->vm_flags & VM_EXEC))
9590 		return;
9591 
9592 	rcu_read_lock();
9593 	ctx = rcu_dereference(current->perf_event_ctxp);
9594 	if (ctx)
9595 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
9596 	rcu_read_unlock();
9597 }
9598 
9599 void perf_event_mmap(struct vm_area_struct *vma)
9600 {
9601 	struct perf_mmap_event mmap_event;
9602 
9603 	if (!atomic_read(&nr_mmap_events))
9604 		return;
9605 
9606 	mmap_event = (struct perf_mmap_event){
9607 		.vma	= vma,
9608 		/* .file_name */
9609 		/* .file_size */
9610 		.event_id  = {
9611 			.header = {
9612 				.type = PERF_RECORD_MMAP,
9613 				.misc = PERF_RECORD_MISC_USER,
9614 				/* .size */
9615 			},
9616 			/* .pid */
9617 			/* .tid */
9618 			.start  = vma->vm_start,
9619 			.len    = vma->vm_end - vma->vm_start,
9620 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
9621 		},
9622 		/* .maj (attr_mmap2 only) */
9623 		/* .min (attr_mmap2 only) */
9624 		/* .ino (attr_mmap2 only) */
9625 		/* .ino_generation (attr_mmap2 only) */
9626 		/* .prot (attr_mmap2 only) */
9627 		/* .flags (attr_mmap2 only) */
9628 	};
9629 
9630 	perf_addr_filters_adjust(vma);
9631 	perf_event_mmap_event(&mmap_event);
9632 }
9633 
9634 void perf_event_aux_event(struct perf_event *event, unsigned long head,
9635 			  unsigned long size, u64 flags)
9636 {
9637 	struct perf_output_handle handle;
9638 	struct perf_sample_data sample;
9639 	struct perf_aux_event {
9640 		struct perf_event_header	header;
9641 		u64				offset;
9642 		u64				size;
9643 		u64				flags;
9644 	} rec = {
9645 		.header = {
9646 			.type = PERF_RECORD_AUX,
9647 			.misc = 0,
9648 			.size = sizeof(rec),
9649 		},
9650 		.offset		= head,
9651 		.size		= size,
9652 		.flags		= flags,
9653 	};
9654 	int ret;
9655 
9656 	perf_event_header__init_id(&rec.header, &sample, event);
9657 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9658 
9659 	if (ret)
9660 		return;
9661 
9662 	perf_output_put(&handle, rec);
9663 	perf_event__output_id_sample(event, &handle, &sample);
9664 
9665 	perf_output_end(&handle);
9666 }
9667 
9668 /*
9669  * Lost/dropped samples logging
9670  */
9671 void perf_log_lost_samples(struct perf_event *event, u64 lost)
9672 {
9673 	struct perf_output_handle handle;
9674 	struct perf_sample_data sample;
9675 	int ret;
9676 
9677 	struct {
9678 		struct perf_event_header	header;
9679 		u64				lost;
9680 	} lost_samples_event = {
9681 		.header = {
9682 			.type = PERF_RECORD_LOST_SAMPLES,
9683 			.misc = 0,
9684 			.size = sizeof(lost_samples_event),
9685 		},
9686 		.lost		= lost,
9687 	};
9688 
9689 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
9690 
9691 	ret = perf_output_begin(&handle, &sample, event,
9692 				lost_samples_event.header.size);
9693 	if (ret)
9694 		return;
9695 
9696 	perf_output_put(&handle, lost_samples_event);
9697 	perf_event__output_id_sample(event, &handle, &sample);
9698 	perf_output_end(&handle);
9699 }
9700 
9701 /*
9702  * context_switch tracking
9703  */
9704 
9705 struct perf_switch_event {
9706 	struct task_struct	*task;
9707 	struct task_struct	*next_prev;
9708 
9709 	struct {
9710 		struct perf_event_header	header;
9711 		u32				next_prev_pid;
9712 		u32				next_prev_tid;
9713 	} event_id;
9714 };
9715 
9716 static int perf_event_switch_match(struct perf_event *event)
9717 {
9718 	return event->attr.context_switch;
9719 }
9720 
9721 static void perf_event_switch_output(struct perf_event *event, void *data)
9722 {
9723 	struct perf_switch_event *se = data;
9724 	struct perf_output_handle handle;
9725 	struct perf_sample_data sample;
9726 	int ret;
9727 
9728 	if (!perf_event_switch_match(event))
9729 		return;
9730 
9731 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
9732 	if (event->ctx->task) {
9733 		se->event_id.header.type = PERF_RECORD_SWITCH;
9734 		se->event_id.header.size = sizeof(se->event_id.header);
9735 	} else {
9736 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
9737 		se->event_id.header.size = sizeof(se->event_id);
9738 		se->event_id.next_prev_pid =
9739 					perf_event_pid(event, se->next_prev);
9740 		se->event_id.next_prev_tid =
9741 					perf_event_tid(event, se->next_prev);
9742 	}
9743 
9744 	perf_event_header__init_id(&se->event_id.header, &sample, event);
9745 
9746 	ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
9747 	if (ret)
9748 		return;
9749 
9750 	if (event->ctx->task)
9751 		perf_output_put(&handle, se->event_id.header);
9752 	else
9753 		perf_output_put(&handle, se->event_id);
9754 
9755 	perf_event__output_id_sample(event, &handle, &sample);
9756 
9757 	perf_output_end(&handle);
9758 }
9759 
9760 static void perf_event_switch(struct task_struct *task,
9761 			      struct task_struct *next_prev, bool sched_in)
9762 {
9763 	struct perf_switch_event switch_event;
9764 
9765 	/* N.B. caller checks nr_switch_events != 0 */
9766 
9767 	switch_event = (struct perf_switch_event){
9768 		.task		= task,
9769 		.next_prev	= next_prev,
9770 		.event_id	= {
9771 			.header = {
9772 				/* .type */
9773 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
9774 				/* .size */
9775 			},
9776 			/* .next_prev_pid */
9777 			/* .next_prev_tid */
9778 		},
9779 	};
9780 
9781 	if (!sched_in && task_is_runnable(task)) {
9782 		switch_event.event_id.header.misc |=
9783 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
9784 	}
9785 
9786 	perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
9787 }
9788 
9789 /*
9790  * IRQ throttle logging
9791  */
9792 
9793 static void perf_log_throttle(struct perf_event *event, int enable)
9794 {
9795 	struct perf_output_handle handle;
9796 	struct perf_sample_data sample;
9797 	int ret;
9798 
9799 	struct {
9800 		struct perf_event_header	header;
9801 		u64				time;
9802 		u64				id;
9803 		u64				stream_id;
9804 	} throttle_event = {
9805 		.header = {
9806 			.type = PERF_RECORD_THROTTLE,
9807 			.misc = 0,
9808 			.size = sizeof(throttle_event),
9809 		},
9810 		.time		= perf_event_clock(event),
9811 		.id		= primary_event_id(event),
9812 		.stream_id	= event->id,
9813 	};
9814 
9815 	if (enable)
9816 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
9817 
9818 	perf_event_header__init_id(&throttle_event.header, &sample, event);
9819 
9820 	ret = perf_output_begin(&handle, &sample, event,
9821 				throttle_event.header.size);
9822 	if (ret)
9823 		return;
9824 
9825 	perf_output_put(&handle, throttle_event);
9826 	perf_event__output_id_sample(event, &handle, &sample);
9827 	perf_output_end(&handle);
9828 }
9829 
9830 /*
9831  * ksymbol register/unregister tracking
9832  */
9833 
9834 struct perf_ksymbol_event {
9835 	const char	*name;
9836 	int		name_len;
9837 	struct {
9838 		struct perf_event_header        header;
9839 		u64				addr;
9840 		u32				len;
9841 		u16				ksym_type;
9842 		u16				flags;
9843 	} event_id;
9844 };
9845 
9846 static int perf_event_ksymbol_match(struct perf_event *event)
9847 {
9848 	return event->attr.ksymbol;
9849 }
9850 
9851 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
9852 {
9853 	struct perf_ksymbol_event *ksymbol_event = data;
9854 	struct perf_output_handle handle;
9855 	struct perf_sample_data sample;
9856 	int ret;
9857 
9858 	if (!perf_event_ksymbol_match(event))
9859 		return;
9860 
9861 	perf_event_header__init_id(&ksymbol_event->event_id.header,
9862 				   &sample, event);
9863 	ret = perf_output_begin(&handle, &sample, event,
9864 				ksymbol_event->event_id.header.size);
9865 	if (ret)
9866 		return;
9867 
9868 	perf_output_put(&handle, ksymbol_event->event_id);
9869 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
9870 	perf_event__output_id_sample(event, &handle, &sample);
9871 
9872 	perf_output_end(&handle);
9873 }
9874 
9875 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
9876 			const char *sym)
9877 {
9878 	struct perf_ksymbol_event ksymbol_event;
9879 	char name[KSYM_NAME_LEN];
9880 	u16 flags = 0;
9881 	int name_len;
9882 
9883 	if (!atomic_read(&nr_ksymbol_events))
9884 		return;
9885 
9886 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
9887 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
9888 		goto err;
9889 
9890 	strscpy(name, sym);
9891 	name_len = strlen(name) + 1;
9892 	while (!IS_ALIGNED(name_len, sizeof(u64)))
9893 		name[name_len++] = '\0';
9894 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
9895 
9896 	if (unregister)
9897 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
9898 
9899 	ksymbol_event = (struct perf_ksymbol_event){
9900 		.name = name,
9901 		.name_len = name_len,
9902 		.event_id = {
9903 			.header = {
9904 				.type = PERF_RECORD_KSYMBOL,
9905 				.size = sizeof(ksymbol_event.event_id) +
9906 					name_len,
9907 			},
9908 			.addr = addr,
9909 			.len = len,
9910 			.ksym_type = ksym_type,
9911 			.flags = flags,
9912 		},
9913 	};
9914 
9915 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
9916 	return;
9917 err:
9918 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
9919 }
9920 
9921 /*
9922  * bpf program load/unload tracking
9923  */
9924 
9925 struct perf_bpf_event {
9926 	struct bpf_prog	*prog;
9927 	struct {
9928 		struct perf_event_header        header;
9929 		u16				type;
9930 		u16				flags;
9931 		u32				id;
9932 		u8				tag[BPF_TAG_SIZE];
9933 	} event_id;
9934 };
9935 
9936 static int perf_event_bpf_match(struct perf_event *event)
9937 {
9938 	return event->attr.bpf_event;
9939 }
9940 
9941 static void perf_event_bpf_output(struct perf_event *event, void *data)
9942 {
9943 	struct perf_bpf_event *bpf_event = data;
9944 	struct perf_output_handle handle;
9945 	struct perf_sample_data sample;
9946 	int ret;
9947 
9948 	if (!perf_event_bpf_match(event))
9949 		return;
9950 
9951 	perf_event_header__init_id(&bpf_event->event_id.header,
9952 				   &sample, event);
9953 	ret = perf_output_begin(&handle, &sample, event,
9954 				bpf_event->event_id.header.size);
9955 	if (ret)
9956 		return;
9957 
9958 	perf_output_put(&handle, bpf_event->event_id);
9959 	perf_event__output_id_sample(event, &handle, &sample);
9960 
9961 	perf_output_end(&handle);
9962 }
9963 
9964 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9965 					 enum perf_bpf_event_type type)
9966 {
9967 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9968 	int i;
9969 
9970 	perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9971 			   (u64)(unsigned long)prog->bpf_func,
9972 			   prog->jited_len, unregister,
9973 			   prog->aux->ksym.name);
9974 
9975 	for (i = 1; i < prog->aux->func_cnt; i++) {
9976 		struct bpf_prog *subprog = prog->aux->func[i];
9977 
9978 		perf_event_ksymbol(
9979 			PERF_RECORD_KSYMBOL_TYPE_BPF,
9980 			(u64)(unsigned long)subprog->bpf_func,
9981 			subprog->jited_len, unregister,
9982 			subprog->aux->ksym.name);
9983 	}
9984 }
9985 
9986 void perf_event_bpf_event(struct bpf_prog *prog,
9987 			  enum perf_bpf_event_type type,
9988 			  u16 flags)
9989 {
9990 	struct perf_bpf_event bpf_event;
9991 
9992 	switch (type) {
9993 	case PERF_BPF_EVENT_PROG_LOAD:
9994 	case PERF_BPF_EVENT_PROG_UNLOAD:
9995 		if (atomic_read(&nr_ksymbol_events))
9996 			perf_event_bpf_emit_ksymbols(prog, type);
9997 		break;
9998 	default:
9999 		return;
10000 	}
10001 
10002 	if (!atomic_read(&nr_bpf_events))
10003 		return;
10004 
10005 	bpf_event = (struct perf_bpf_event){
10006 		.prog = prog,
10007 		.event_id = {
10008 			.header = {
10009 				.type = PERF_RECORD_BPF_EVENT,
10010 				.size = sizeof(bpf_event.event_id),
10011 			},
10012 			.type = type,
10013 			.flags = flags,
10014 			.id = prog->aux->id,
10015 		},
10016 	};
10017 
10018 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
10019 
10020 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
10021 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
10022 }
10023 
10024 struct perf_callchain_deferred_event {
10025 	struct unwind_stacktrace *trace;
10026 	struct {
10027 		struct perf_event_header	header;
10028 		u64				cookie;
10029 		u64				nr;
10030 		u64				ips[];
10031 	} event;
10032 };
10033 
10034 static void perf_callchain_deferred_output(struct perf_event *event, void *data)
10035 {
10036 	struct perf_callchain_deferred_event *deferred_event = data;
10037 	struct perf_output_handle handle;
10038 	struct perf_sample_data sample;
10039 	int ret, size = deferred_event->event.header.size;
10040 
10041 	if (!event->attr.defer_output)
10042 		return;
10043 
10044 	/* XXX do we really need sample_id_all for this ??? */
10045 	perf_event_header__init_id(&deferred_event->event.header, &sample, event);
10046 
10047 	ret = perf_output_begin(&handle, &sample, event,
10048 				deferred_event->event.header.size);
10049 	if (ret)
10050 		goto out;
10051 
10052 	perf_output_put(&handle, deferred_event->event);
10053 	for (int i = 0; i < deferred_event->trace->nr; i++) {
10054 		u64 entry = deferred_event->trace->entries[i];
10055 		perf_output_put(&handle, entry);
10056 	}
10057 	perf_event__output_id_sample(event, &handle, &sample);
10058 
10059 	perf_output_end(&handle);
10060 out:
10061 	deferred_event->event.header.size = size;
10062 }
10063 
10064 static void perf_unwind_deferred_callback(struct unwind_work *work,
10065 					 struct unwind_stacktrace *trace, u64 cookie)
10066 {
10067 	struct perf_callchain_deferred_event deferred_event = {
10068 		.trace = trace,
10069 		.event = {
10070 			.header = {
10071 				.type = PERF_RECORD_CALLCHAIN_DEFERRED,
10072 				.misc = PERF_RECORD_MISC_USER,
10073 				.size = sizeof(deferred_event.event) +
10074 					(trace->nr * sizeof(u64)),
10075 			},
10076 			.cookie = cookie,
10077 			.nr = trace->nr,
10078 		},
10079 	};
10080 
10081 	perf_iterate_sb(perf_callchain_deferred_output, &deferred_event, NULL);
10082 }
10083 
10084 struct perf_text_poke_event {
10085 	const void		*old_bytes;
10086 	const void		*new_bytes;
10087 	size_t			pad;
10088 	u16			old_len;
10089 	u16			new_len;
10090 
10091 	struct {
10092 		struct perf_event_header	header;
10093 
10094 		u64				addr;
10095 	} event_id;
10096 };
10097 
10098 static int perf_event_text_poke_match(struct perf_event *event)
10099 {
10100 	return event->attr.text_poke;
10101 }
10102 
10103 static void perf_event_text_poke_output(struct perf_event *event, void *data)
10104 {
10105 	struct perf_text_poke_event *text_poke_event = data;
10106 	struct perf_output_handle handle;
10107 	struct perf_sample_data sample;
10108 	u64 padding = 0;
10109 	int ret;
10110 
10111 	if (!perf_event_text_poke_match(event))
10112 		return;
10113 
10114 	perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
10115 
10116 	ret = perf_output_begin(&handle, &sample, event,
10117 				text_poke_event->event_id.header.size);
10118 	if (ret)
10119 		return;
10120 
10121 	perf_output_put(&handle, text_poke_event->event_id);
10122 	perf_output_put(&handle, text_poke_event->old_len);
10123 	perf_output_put(&handle, text_poke_event->new_len);
10124 
10125 	__output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
10126 	__output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
10127 
10128 	if (text_poke_event->pad)
10129 		__output_copy(&handle, &padding, text_poke_event->pad);
10130 
10131 	perf_event__output_id_sample(event, &handle, &sample);
10132 
10133 	perf_output_end(&handle);
10134 }
10135 
10136 void perf_event_text_poke(const void *addr, const void *old_bytes,
10137 			  size_t old_len, const void *new_bytes, size_t new_len)
10138 {
10139 	struct perf_text_poke_event text_poke_event;
10140 	size_t tot, pad;
10141 
10142 	if (!atomic_read(&nr_text_poke_events))
10143 		return;
10144 
10145 	tot  = sizeof(text_poke_event.old_len) + old_len;
10146 	tot += sizeof(text_poke_event.new_len) + new_len;
10147 	pad  = ALIGN(tot, sizeof(u64)) - tot;
10148 
10149 	text_poke_event = (struct perf_text_poke_event){
10150 		.old_bytes    = old_bytes,
10151 		.new_bytes    = new_bytes,
10152 		.pad          = pad,
10153 		.old_len      = old_len,
10154 		.new_len      = new_len,
10155 		.event_id  = {
10156 			.header = {
10157 				.type = PERF_RECORD_TEXT_POKE,
10158 				.misc = PERF_RECORD_MISC_KERNEL,
10159 				.size = sizeof(text_poke_event.event_id) + tot + pad,
10160 			},
10161 			.addr = (unsigned long)addr,
10162 		},
10163 	};
10164 
10165 	perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
10166 }
10167 
10168 void perf_event_itrace_started(struct perf_event *event)
10169 {
10170 	WRITE_ONCE(event->attach_state, event->attach_state | PERF_ATTACH_ITRACE);
10171 }
10172 
10173 static void perf_log_itrace_start(struct perf_event *event)
10174 {
10175 	struct perf_output_handle handle;
10176 	struct perf_sample_data sample;
10177 	struct perf_aux_event {
10178 		struct perf_event_header        header;
10179 		u32				pid;
10180 		u32				tid;
10181 	} rec;
10182 	int ret;
10183 
10184 	if (event->parent)
10185 		event = event->parent;
10186 
10187 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
10188 	    event->attach_state & PERF_ATTACH_ITRACE)
10189 		return;
10190 
10191 	rec.header.type	= PERF_RECORD_ITRACE_START;
10192 	rec.header.misc	= 0;
10193 	rec.header.size	= sizeof(rec);
10194 	rec.pid	= perf_event_pid(event, current);
10195 	rec.tid	= perf_event_tid(event, current);
10196 
10197 	perf_event_header__init_id(&rec.header, &sample, event);
10198 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
10199 
10200 	if (ret)
10201 		return;
10202 
10203 	perf_output_put(&handle, rec);
10204 	perf_event__output_id_sample(event, &handle, &sample);
10205 
10206 	perf_output_end(&handle);
10207 }
10208 
10209 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
10210 {
10211 	struct perf_output_handle handle;
10212 	struct perf_sample_data sample;
10213 	struct perf_aux_event {
10214 		struct perf_event_header        header;
10215 		u64				hw_id;
10216 	} rec;
10217 	int ret;
10218 
10219 	if (event->parent)
10220 		event = event->parent;
10221 
10222 	rec.header.type	= PERF_RECORD_AUX_OUTPUT_HW_ID;
10223 	rec.header.misc	= 0;
10224 	rec.header.size	= sizeof(rec);
10225 	rec.hw_id	= hw_id;
10226 
10227 	perf_event_header__init_id(&rec.header, &sample, event);
10228 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
10229 
10230 	if (ret)
10231 		return;
10232 
10233 	perf_output_put(&handle, rec);
10234 	perf_event__output_id_sample(event, &handle, &sample);
10235 
10236 	perf_output_end(&handle);
10237 }
10238 EXPORT_SYMBOL_GPL(perf_report_aux_output_id);
10239 
10240 static int
10241 __perf_event_account_interrupt(struct perf_event *event, int throttle)
10242 {
10243 	struct hw_perf_event *hwc = &event->hw;
10244 	int ret = 0;
10245 	u64 seq;
10246 
10247 	seq = __this_cpu_read(perf_throttled_seq);
10248 	if (seq != hwc->interrupts_seq) {
10249 		hwc->interrupts_seq = seq;
10250 		hwc->interrupts = 1;
10251 	} else {
10252 		hwc->interrupts++;
10253 	}
10254 
10255 	if (unlikely(throttle && hwc->interrupts >= max_samples_per_tick)) {
10256 		__this_cpu_inc(perf_throttled_count);
10257 		tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
10258 		perf_event_throttle_group(event);
10259 		ret = 1;
10260 	}
10261 
10262 	if (event->attr.freq) {
10263 		u64 now = perf_clock();
10264 		s64 delta = now - hwc->freq_time_stamp;
10265 
10266 		hwc->freq_time_stamp = now;
10267 
10268 		if (delta > 0 && delta < 2*TICK_NSEC)
10269 			perf_adjust_period(event, delta, hwc->last_period, true);
10270 	}
10271 
10272 	return ret;
10273 }
10274 
10275 int perf_event_account_interrupt(struct perf_event *event)
10276 {
10277 	return __perf_event_account_interrupt(event, 1);
10278 }
10279 
10280 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
10281 {
10282 	/*
10283 	 * Due to interrupt latency (AKA "skid"), we may enter the
10284 	 * kernel before taking an overflow, even if the PMU is only
10285 	 * counting user events.
10286 	 */
10287 	if (event->attr.exclude_kernel && !user_mode(regs))
10288 		return false;
10289 
10290 	return true;
10291 }
10292 
10293 #ifdef CONFIG_BPF_SYSCALL
10294 static int bpf_overflow_handler(struct perf_event *event,
10295 				struct perf_sample_data *data,
10296 				struct pt_regs *regs)
10297 {
10298 	struct bpf_perf_event_data_kern ctx = {
10299 		.data = data,
10300 		.event = event,
10301 	};
10302 	struct bpf_prog *prog;
10303 	int ret = 0;
10304 
10305 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
10306 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
10307 		goto out;
10308 	rcu_read_lock();
10309 	prog = READ_ONCE(event->prog);
10310 	if (prog) {
10311 		perf_prepare_sample(data, event, regs);
10312 		ret = bpf_prog_run(prog, &ctx);
10313 	}
10314 	rcu_read_unlock();
10315 out:
10316 	__this_cpu_dec(bpf_prog_active);
10317 
10318 	return ret;
10319 }
10320 
10321 static inline int perf_event_set_bpf_handler(struct perf_event *event,
10322 					     struct bpf_prog *prog,
10323 					     u64 bpf_cookie)
10324 {
10325 	if (event->overflow_handler_context)
10326 		/* hw breakpoint or kernel counter */
10327 		return -EINVAL;
10328 
10329 	if (event->prog)
10330 		return -EEXIST;
10331 
10332 	if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10333 		return -EINVAL;
10334 
10335 	if (event->attr.precise_ip &&
10336 	    prog->call_get_stack &&
10337 	    (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
10338 	     event->attr.exclude_callchain_kernel ||
10339 	     event->attr.exclude_callchain_user)) {
10340 		/*
10341 		 * On perf_event with precise_ip, calling bpf_get_stack()
10342 		 * may trigger unwinder warnings and occasional crashes.
10343 		 * bpf_get_[stack|stackid] works around this issue by using
10344 		 * callchain attached to perf_sample_data. If the
10345 		 * perf_event does not full (kernel and user) callchain
10346 		 * attached to perf_sample_data, do not allow attaching BPF
10347 		 * program that calls bpf_get_[stack|stackid].
10348 		 */
10349 		return -EPROTO;
10350 	}
10351 
10352 	event->prog = prog;
10353 	event->bpf_cookie = bpf_cookie;
10354 	return 0;
10355 }
10356 
10357 static inline void perf_event_free_bpf_handler(struct perf_event *event)
10358 {
10359 	struct bpf_prog *prog = event->prog;
10360 
10361 	if (!prog)
10362 		return;
10363 
10364 	event->prog = NULL;
10365 	bpf_prog_put(prog);
10366 }
10367 #else
10368 static inline int bpf_overflow_handler(struct perf_event *event,
10369 				       struct perf_sample_data *data,
10370 				       struct pt_regs *regs)
10371 {
10372 	return 1;
10373 }
10374 
10375 static inline int perf_event_set_bpf_handler(struct perf_event *event,
10376 					     struct bpf_prog *prog,
10377 					     u64 bpf_cookie)
10378 {
10379 	return -EOPNOTSUPP;
10380 }
10381 
10382 static inline void perf_event_free_bpf_handler(struct perf_event *event)
10383 {
10384 }
10385 #endif
10386 
10387 /*
10388  * Generic event overflow handling, sampling.
10389  */
10390 
10391 static int __perf_event_overflow(struct perf_event *event,
10392 				 int throttle, struct perf_sample_data *data,
10393 				 struct pt_regs *regs)
10394 {
10395 	int events = atomic_read(&event->event_limit);
10396 	int ret = 0;
10397 
10398 	/*
10399 	 * Non-sampling counters might still use the PMI to fold short
10400 	 * hardware counters, ignore those.
10401 	 */
10402 	if (unlikely(!is_sampling_event(event)))
10403 		return 0;
10404 
10405 	ret = __perf_event_account_interrupt(event, throttle);
10406 
10407 	if (event->attr.aux_pause)
10408 		perf_event_aux_pause(event->aux_event, true);
10409 
10410 	if (event->prog && event->prog->type == BPF_PROG_TYPE_PERF_EVENT &&
10411 	    !bpf_overflow_handler(event, data, regs))
10412 		goto out;
10413 
10414 	/*
10415 	 * XXX event_limit might not quite work as expected on inherited
10416 	 * events
10417 	 */
10418 
10419 	event->pending_kill = POLL_IN;
10420 	if (events && atomic_dec_and_test(&event->event_limit)) {
10421 		ret = 1;
10422 		event->pending_kill = POLL_HUP;
10423 		perf_event_disable_inatomic(event);
10424 		event->pmu->stop(event, 0);
10425 	}
10426 
10427 	if (event->attr.sigtrap) {
10428 		/*
10429 		 * The desired behaviour of sigtrap vs invalid samples is a bit
10430 		 * tricky; on the one hand, one should not loose the SIGTRAP if
10431 		 * it is the first event, on the other hand, we should also not
10432 		 * trigger the WARN or override the data address.
10433 		 */
10434 		bool valid_sample = sample_is_allowed(event, regs);
10435 		unsigned int pending_id = 1;
10436 		enum task_work_notify_mode notify_mode;
10437 
10438 		if (regs)
10439 			pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
10440 
10441 		notify_mode = in_nmi() ? TWA_NMI_CURRENT : TWA_RESUME;
10442 
10443 		if (!event->pending_work &&
10444 		    !task_work_add(current, &event->pending_task, notify_mode)) {
10445 			event->pending_work = pending_id;
10446 			local_inc(&event->ctx->nr_no_switch_fast);
10447 			WARN_ON_ONCE(!atomic_long_inc_not_zero(&event->refcount));
10448 
10449 			event->pending_addr = 0;
10450 			if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR))
10451 				event->pending_addr = data->addr;
10452 
10453 		} else if (event->attr.exclude_kernel && valid_sample) {
10454 			/*
10455 			 * Should not be able to return to user space without
10456 			 * consuming pending_work; with exceptions:
10457 			 *
10458 			 *  1. Where !exclude_kernel, events can overflow again
10459 			 *     in the kernel without returning to user space.
10460 			 *
10461 			 *  2. Events that can overflow again before the IRQ-
10462 			 *     work without user space progress (e.g. hrtimer).
10463 			 *     To approximate progress (with false negatives),
10464 			 *     check 32-bit hash of the current IP.
10465 			 */
10466 			WARN_ON_ONCE(event->pending_work != pending_id);
10467 		}
10468 	}
10469 
10470 	READ_ONCE(event->overflow_handler)(event, data, regs);
10471 
10472 	if (*perf_event_fasync(event) && event->pending_kill) {
10473 		event->pending_wakeup = 1;
10474 		irq_work_queue(&event->pending_irq);
10475 	}
10476 out:
10477 	if (event->attr.aux_resume)
10478 		perf_event_aux_pause(event->aux_event, false);
10479 
10480 	return ret;
10481 }
10482 
10483 int perf_event_overflow(struct perf_event *event,
10484 			struct perf_sample_data *data,
10485 			struct pt_regs *regs)
10486 {
10487 	return __perf_event_overflow(event, 1, data, regs);
10488 }
10489 
10490 /*
10491  * Generic software event infrastructure
10492  */
10493 
10494 struct swevent_htable {
10495 	struct swevent_hlist		*swevent_hlist;
10496 	struct mutex			hlist_mutex;
10497 	int				hlist_refcount;
10498 };
10499 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
10500 
10501 /*
10502  * We directly increment event->count and keep a second value in
10503  * event->hw.period_left to count intervals. This period event
10504  * is kept in the range [-sample_period, 0] so that we can use the
10505  * sign as trigger.
10506  */
10507 
10508 u64 perf_swevent_set_period(struct perf_event *event)
10509 {
10510 	struct hw_perf_event *hwc = &event->hw;
10511 	u64 period = hwc->last_period;
10512 	u64 nr, offset;
10513 	s64 old, val;
10514 
10515 	hwc->last_period = hwc->sample_period;
10516 
10517 	old = local64_read(&hwc->period_left);
10518 	do {
10519 		val = old;
10520 		if (val < 0)
10521 			return 0;
10522 
10523 		nr = div64_u64(period + val, period);
10524 		offset = nr * period;
10525 		val -= offset;
10526 	} while (!local64_try_cmpxchg(&hwc->period_left, &old, val));
10527 
10528 	return nr;
10529 }
10530 
10531 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
10532 				    struct perf_sample_data *data,
10533 				    struct pt_regs *regs)
10534 {
10535 	struct hw_perf_event *hwc = &event->hw;
10536 	int throttle = 0;
10537 
10538 	if (!overflow)
10539 		overflow = perf_swevent_set_period(event);
10540 
10541 	if (hwc->interrupts == MAX_INTERRUPTS)
10542 		return;
10543 
10544 	for (; overflow; overflow--) {
10545 		if (__perf_event_overflow(event, throttle,
10546 					    data, regs)) {
10547 			/*
10548 			 * We inhibit the overflow from happening when
10549 			 * hwc->interrupts == MAX_INTERRUPTS.
10550 			 */
10551 			break;
10552 		}
10553 		throttle = 1;
10554 	}
10555 }
10556 
10557 static void perf_swevent_event(struct perf_event *event, u64 nr,
10558 			       struct perf_sample_data *data,
10559 			       struct pt_regs *regs)
10560 {
10561 	struct hw_perf_event *hwc = &event->hw;
10562 
10563 	local64_add(nr, &event->count);
10564 
10565 	if (!regs)
10566 		return;
10567 
10568 	if (!is_sampling_event(event))
10569 		return;
10570 
10571 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
10572 		data->period = nr;
10573 		return perf_swevent_overflow(event, 1, data, regs);
10574 	} else
10575 		data->period = event->hw.last_period;
10576 
10577 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
10578 		return perf_swevent_overflow(event, 1, data, regs);
10579 
10580 	if (local64_add_negative(nr, &hwc->period_left))
10581 		return;
10582 
10583 	perf_swevent_overflow(event, 0, data, regs);
10584 }
10585 
10586 int perf_exclude_event(struct perf_event *event, struct pt_regs *regs)
10587 {
10588 	if (event->hw.state & PERF_HES_STOPPED)
10589 		return 1;
10590 
10591 	if (regs) {
10592 		if (event->attr.exclude_user && user_mode(regs))
10593 			return 1;
10594 
10595 		if (event->attr.exclude_kernel && !user_mode(regs))
10596 			return 1;
10597 	}
10598 
10599 	return 0;
10600 }
10601 
10602 static int perf_swevent_match(struct perf_event *event,
10603 				enum perf_type_id type,
10604 				u32 event_id,
10605 				struct perf_sample_data *data,
10606 				struct pt_regs *regs)
10607 {
10608 	if (event->attr.type != type)
10609 		return 0;
10610 
10611 	if (event->attr.config != event_id)
10612 		return 0;
10613 
10614 	if (perf_exclude_event(event, regs))
10615 		return 0;
10616 
10617 	return 1;
10618 }
10619 
10620 static inline u64 swevent_hash(u64 type, u32 event_id)
10621 {
10622 	u64 val = event_id | (type << 32);
10623 
10624 	return hash_64(val, SWEVENT_HLIST_BITS);
10625 }
10626 
10627 static inline struct hlist_head *
10628 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
10629 {
10630 	u64 hash = swevent_hash(type, event_id);
10631 
10632 	return &hlist->heads[hash];
10633 }
10634 
10635 /* For the read side: events when they trigger */
10636 static inline struct hlist_head *
10637 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
10638 {
10639 	struct swevent_hlist *hlist;
10640 
10641 	hlist = rcu_dereference(swhash->swevent_hlist);
10642 	if (!hlist)
10643 		return NULL;
10644 
10645 	return __find_swevent_head(hlist, type, event_id);
10646 }
10647 
10648 /* For the event head insertion and removal in the hlist */
10649 static inline struct hlist_head *
10650 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
10651 {
10652 	struct swevent_hlist *hlist;
10653 	u32 event_id = event->attr.config;
10654 	u64 type = event->attr.type;
10655 
10656 	/*
10657 	 * Event scheduling is always serialized against hlist allocation
10658 	 * and release. Which makes the protected version suitable here.
10659 	 * The context lock guarantees that.
10660 	 */
10661 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
10662 					  lockdep_is_held(&event->ctx->lock));
10663 	if (!hlist)
10664 		return NULL;
10665 
10666 	return __find_swevent_head(hlist, type, event_id);
10667 }
10668 
10669 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
10670 				    u64 nr,
10671 				    struct perf_sample_data *data,
10672 				    struct pt_regs *regs)
10673 {
10674 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
10675 	struct perf_event *event;
10676 	struct hlist_head *head;
10677 
10678 	rcu_read_lock();
10679 	head = find_swevent_head_rcu(swhash, type, event_id);
10680 	if (!head)
10681 		goto end;
10682 
10683 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
10684 		if (perf_swevent_match(event, type, event_id, data, regs))
10685 			perf_swevent_event(event, nr, data, regs);
10686 	}
10687 end:
10688 	rcu_read_unlock();
10689 }
10690 
10691 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
10692 
10693 int perf_swevent_get_recursion_context(void)
10694 {
10695 	return get_recursion_context(current->perf_recursion);
10696 }
10697 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
10698 
10699 void perf_swevent_put_recursion_context(int rctx)
10700 {
10701 	put_recursion_context(current->perf_recursion, rctx);
10702 }
10703 
10704 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
10705 {
10706 	struct perf_sample_data data;
10707 
10708 	if (WARN_ON_ONCE(!regs))
10709 		return;
10710 
10711 	perf_sample_data_init(&data, addr, 0);
10712 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
10713 }
10714 
10715 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
10716 {
10717 	int rctx;
10718 
10719 	preempt_disable_notrace();
10720 	rctx = perf_swevent_get_recursion_context();
10721 	if (unlikely(rctx < 0))
10722 		goto fail;
10723 
10724 	___perf_sw_event(event_id, nr, regs, addr);
10725 
10726 	perf_swevent_put_recursion_context(rctx);
10727 fail:
10728 	preempt_enable_notrace();
10729 }
10730 
10731 static void perf_swevent_read(struct perf_event *event)
10732 {
10733 }
10734 
10735 static int perf_swevent_add(struct perf_event *event, int flags)
10736 {
10737 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
10738 	struct hw_perf_event *hwc = &event->hw;
10739 	struct hlist_head *head;
10740 
10741 	if (is_sampling_event(event)) {
10742 		hwc->last_period = hwc->sample_period;
10743 		perf_swevent_set_period(event);
10744 	}
10745 
10746 	hwc->state = !(flags & PERF_EF_START);
10747 
10748 	head = find_swevent_head(swhash, event);
10749 	if (WARN_ON_ONCE(!head))
10750 		return -EINVAL;
10751 
10752 	hlist_add_head_rcu(&event->hlist_entry, head);
10753 	perf_event_update_userpage(event);
10754 
10755 	return 0;
10756 }
10757 
10758 static void perf_swevent_del(struct perf_event *event, int flags)
10759 {
10760 	hlist_del_rcu(&event->hlist_entry);
10761 }
10762 
10763 static void perf_swevent_start(struct perf_event *event, int flags)
10764 {
10765 	event->hw.state = 0;
10766 }
10767 
10768 static void perf_swevent_stop(struct perf_event *event, int flags)
10769 {
10770 	event->hw.state = PERF_HES_STOPPED;
10771 }
10772 
10773 /* Deref the hlist from the update side */
10774 static inline struct swevent_hlist *
10775 swevent_hlist_deref(struct swevent_htable *swhash)
10776 {
10777 	return rcu_dereference_protected(swhash->swevent_hlist,
10778 					 lockdep_is_held(&swhash->hlist_mutex));
10779 }
10780 
10781 static void swevent_hlist_release(struct swevent_htable *swhash)
10782 {
10783 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
10784 
10785 	if (!hlist)
10786 		return;
10787 
10788 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
10789 	kfree_rcu(hlist, rcu_head);
10790 }
10791 
10792 static void swevent_hlist_put_cpu(int cpu)
10793 {
10794 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10795 
10796 	mutex_lock(&swhash->hlist_mutex);
10797 
10798 	if (!--swhash->hlist_refcount)
10799 		swevent_hlist_release(swhash);
10800 
10801 	mutex_unlock(&swhash->hlist_mutex);
10802 }
10803 
10804 static void swevent_hlist_put(void)
10805 {
10806 	int cpu;
10807 
10808 	for_each_possible_cpu(cpu)
10809 		swevent_hlist_put_cpu(cpu);
10810 }
10811 
10812 static int swevent_hlist_get_cpu(int cpu)
10813 {
10814 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10815 	int err = 0;
10816 
10817 	mutex_lock(&swhash->hlist_mutex);
10818 	if (!swevent_hlist_deref(swhash) &&
10819 	    cpumask_test_cpu(cpu, perf_online_mask)) {
10820 		struct swevent_hlist *hlist;
10821 
10822 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
10823 		if (!hlist) {
10824 			err = -ENOMEM;
10825 			goto exit;
10826 		}
10827 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
10828 	}
10829 	swhash->hlist_refcount++;
10830 exit:
10831 	mutex_unlock(&swhash->hlist_mutex);
10832 
10833 	return err;
10834 }
10835 
10836 static int swevent_hlist_get(void)
10837 {
10838 	int err, cpu, failed_cpu;
10839 
10840 	mutex_lock(&pmus_lock);
10841 	for_each_possible_cpu(cpu) {
10842 		err = swevent_hlist_get_cpu(cpu);
10843 		if (err) {
10844 			failed_cpu = cpu;
10845 			goto fail;
10846 		}
10847 	}
10848 	mutex_unlock(&pmus_lock);
10849 	return 0;
10850 fail:
10851 	for_each_possible_cpu(cpu) {
10852 		if (cpu == failed_cpu)
10853 			break;
10854 		swevent_hlist_put_cpu(cpu);
10855 	}
10856 	mutex_unlock(&pmus_lock);
10857 	return err;
10858 }
10859 
10860 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
10861 
10862 static void sw_perf_event_destroy(struct perf_event *event)
10863 {
10864 	u64 event_id = event->attr.config;
10865 
10866 	WARN_ON(event->parent);
10867 
10868 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
10869 	swevent_hlist_put();
10870 }
10871 
10872 static struct pmu perf_cpu_clock; /* fwd declaration */
10873 static struct pmu perf_task_clock;
10874 
10875 static int perf_swevent_init(struct perf_event *event)
10876 {
10877 	u64 event_id = event->attr.config;
10878 
10879 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10880 		return -ENOENT;
10881 
10882 	/*
10883 	 * no branch sampling for software events
10884 	 */
10885 	if (has_branch_stack(event))
10886 		return -EOPNOTSUPP;
10887 
10888 	switch (event_id) {
10889 	case PERF_COUNT_SW_CPU_CLOCK:
10890 		event->attr.type = perf_cpu_clock.type;
10891 		return -ENOENT;
10892 	case PERF_COUNT_SW_TASK_CLOCK:
10893 		event->attr.type = perf_task_clock.type;
10894 		return -ENOENT;
10895 
10896 	default:
10897 		break;
10898 	}
10899 
10900 	if (event_id >= PERF_COUNT_SW_MAX)
10901 		return -ENOENT;
10902 
10903 	if (!event->parent) {
10904 		int err;
10905 
10906 		err = swevent_hlist_get();
10907 		if (err)
10908 			return err;
10909 
10910 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
10911 		event->destroy = sw_perf_event_destroy;
10912 	}
10913 
10914 	return 0;
10915 }
10916 
10917 static struct pmu perf_swevent = {
10918 	.task_ctx_nr	= perf_sw_context,
10919 
10920 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10921 
10922 	.event_init	= perf_swevent_init,
10923 	.add		= perf_swevent_add,
10924 	.del		= perf_swevent_del,
10925 	.start		= perf_swevent_start,
10926 	.stop		= perf_swevent_stop,
10927 	.read		= perf_swevent_read,
10928 };
10929 
10930 #ifdef CONFIG_EVENT_TRACING
10931 
10932 static void tp_perf_event_destroy(struct perf_event *event)
10933 {
10934 	perf_trace_destroy(event);
10935 }
10936 
10937 static int perf_tp_event_init(struct perf_event *event)
10938 {
10939 	int err;
10940 
10941 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
10942 		return -ENOENT;
10943 
10944 	/*
10945 	 * no branch sampling for tracepoint events
10946 	 */
10947 	if (has_branch_stack(event))
10948 		return -EOPNOTSUPP;
10949 
10950 	err = perf_trace_init(event);
10951 	if (err)
10952 		return err;
10953 
10954 	event->destroy = tp_perf_event_destroy;
10955 
10956 	return 0;
10957 }
10958 
10959 static struct pmu perf_tracepoint = {
10960 	.task_ctx_nr	= perf_sw_context,
10961 
10962 	.event_init	= perf_tp_event_init,
10963 	.add		= perf_trace_add,
10964 	.del		= perf_trace_del,
10965 	.start		= perf_swevent_start,
10966 	.stop		= perf_swevent_stop,
10967 	.read		= perf_swevent_read,
10968 };
10969 
10970 static int perf_tp_filter_match(struct perf_event *event,
10971 				struct perf_raw_record *raw)
10972 {
10973 	void *record = raw->frag.data;
10974 
10975 	/* only top level events have filters set */
10976 	if (event->parent)
10977 		event = event->parent;
10978 
10979 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
10980 		return 1;
10981 	return 0;
10982 }
10983 
10984 static int perf_tp_event_match(struct perf_event *event,
10985 				struct perf_raw_record *raw,
10986 				struct pt_regs *regs)
10987 {
10988 	if (event->hw.state & PERF_HES_STOPPED)
10989 		return 0;
10990 	/*
10991 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
10992 	 */
10993 	if (event->attr.exclude_kernel && !user_mode(regs))
10994 		return 0;
10995 
10996 	if (!perf_tp_filter_match(event, raw))
10997 		return 0;
10998 
10999 	return 1;
11000 }
11001 
11002 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
11003 			       struct trace_event_call *call, u64 count,
11004 			       struct pt_regs *regs, struct hlist_head *head,
11005 			       struct task_struct *task)
11006 {
11007 	if (bpf_prog_array_valid(call)) {
11008 		*(struct pt_regs **)raw_data = regs;
11009 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
11010 			perf_swevent_put_recursion_context(rctx);
11011 			return;
11012 		}
11013 	}
11014 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
11015 		      rctx, task);
11016 }
11017 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
11018 
11019 static void __perf_tp_event_target_task(u64 count, void *record,
11020 					struct pt_regs *regs,
11021 					struct perf_sample_data *data,
11022 					struct perf_raw_record *raw,
11023 					struct perf_event *event)
11024 {
11025 	struct trace_entry *entry = record;
11026 
11027 	if (event->attr.config != entry->type)
11028 		return;
11029 	/* Cannot deliver synchronous signal to other task. */
11030 	if (event->attr.sigtrap)
11031 		return;
11032 	if (perf_tp_event_match(event, raw, regs)) {
11033 		perf_sample_data_init(data, 0, 0);
11034 		perf_sample_save_raw_data(data, event, raw);
11035 		perf_swevent_event(event, count, data, regs);
11036 	}
11037 }
11038 
11039 static void perf_tp_event_target_task(u64 count, void *record,
11040 				      struct pt_regs *regs,
11041 				      struct perf_sample_data *data,
11042 				      struct perf_raw_record *raw,
11043 				      struct perf_event_context *ctx)
11044 {
11045 	unsigned int cpu = smp_processor_id();
11046 	struct pmu *pmu = &perf_tracepoint;
11047 	struct perf_event *event, *sibling;
11048 
11049 	perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) {
11050 		__perf_tp_event_target_task(count, record, regs, data, raw, event);
11051 		for_each_sibling_event(sibling, event)
11052 			__perf_tp_event_target_task(count, record, regs, data, raw, sibling);
11053 	}
11054 
11055 	perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) {
11056 		__perf_tp_event_target_task(count, record, regs, data, raw, event);
11057 		for_each_sibling_event(sibling, event)
11058 			__perf_tp_event_target_task(count, record, regs, data, raw, sibling);
11059 	}
11060 }
11061 
11062 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
11063 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
11064 		   struct task_struct *task)
11065 {
11066 	struct perf_sample_data data;
11067 	struct perf_event *event;
11068 
11069 	struct perf_raw_record raw = {
11070 		.frag = {
11071 			.size = entry_size,
11072 			.data = record,
11073 		},
11074 	};
11075 
11076 	perf_trace_buf_update(record, event_type);
11077 
11078 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
11079 		if (perf_tp_event_match(event, &raw, regs)) {
11080 			/*
11081 			 * Here use the same on-stack perf_sample_data,
11082 			 * some members in data are event-specific and
11083 			 * need to be re-computed for different sweveents.
11084 			 * Re-initialize data->sample_flags safely to avoid
11085 			 * the problem that next event skips preparing data
11086 			 * because data->sample_flags is set.
11087 			 */
11088 			perf_sample_data_init(&data, 0, 0);
11089 			perf_sample_save_raw_data(&data, event, &raw);
11090 			perf_swevent_event(event, count, &data, regs);
11091 		}
11092 	}
11093 
11094 	/*
11095 	 * If we got specified a target task, also iterate its context and
11096 	 * deliver this event there too.
11097 	 */
11098 	if (task && task != current) {
11099 		struct perf_event_context *ctx;
11100 
11101 		rcu_read_lock();
11102 		ctx = rcu_dereference(task->perf_event_ctxp);
11103 		if (!ctx)
11104 			goto unlock;
11105 
11106 		raw_spin_lock(&ctx->lock);
11107 		perf_tp_event_target_task(count, record, regs, &data, &raw, ctx);
11108 		raw_spin_unlock(&ctx->lock);
11109 unlock:
11110 		rcu_read_unlock();
11111 	}
11112 
11113 	perf_swevent_put_recursion_context(rctx);
11114 }
11115 EXPORT_SYMBOL_GPL(perf_tp_event);
11116 
11117 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
11118 /*
11119  * Flags in config, used by dynamic PMU kprobe and uprobe
11120  * The flags should match following PMU_FORMAT_ATTR().
11121  *
11122  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
11123  *                               if not set, create kprobe/uprobe
11124  *
11125  * The following values specify a reference counter (or semaphore in the
11126  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
11127  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
11128  *
11129  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
11130  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
11131  */
11132 enum perf_probe_config {
11133 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
11134 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
11135 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
11136 };
11137 
11138 PMU_FORMAT_ATTR(retprobe, "config:0");
11139 #endif
11140 
11141 #ifdef CONFIG_KPROBE_EVENTS
11142 static struct attribute *kprobe_attrs[] = {
11143 	&format_attr_retprobe.attr,
11144 	NULL,
11145 };
11146 
11147 static struct attribute_group kprobe_format_group = {
11148 	.name = "format",
11149 	.attrs = kprobe_attrs,
11150 };
11151 
11152 static const struct attribute_group *kprobe_attr_groups[] = {
11153 	&kprobe_format_group,
11154 	NULL,
11155 };
11156 
11157 static int perf_kprobe_event_init(struct perf_event *event);
11158 static struct pmu perf_kprobe = {
11159 	.task_ctx_nr	= perf_sw_context,
11160 	.event_init	= perf_kprobe_event_init,
11161 	.add		= perf_trace_add,
11162 	.del		= perf_trace_del,
11163 	.start		= perf_swevent_start,
11164 	.stop		= perf_swevent_stop,
11165 	.read		= perf_swevent_read,
11166 	.attr_groups	= kprobe_attr_groups,
11167 };
11168 
11169 static int perf_kprobe_event_init(struct perf_event *event)
11170 {
11171 	int err;
11172 	bool is_retprobe;
11173 
11174 	if (event->attr.type != perf_kprobe.type)
11175 		return -ENOENT;
11176 
11177 	if (!perfmon_capable())
11178 		return -EACCES;
11179 
11180 	/*
11181 	 * no branch sampling for probe events
11182 	 */
11183 	if (has_branch_stack(event))
11184 		return -EOPNOTSUPP;
11185 
11186 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
11187 	err = perf_kprobe_init(event, is_retprobe);
11188 	if (err)
11189 		return err;
11190 
11191 	event->destroy = perf_kprobe_destroy;
11192 
11193 	return 0;
11194 }
11195 #endif /* CONFIG_KPROBE_EVENTS */
11196 
11197 #ifdef CONFIG_UPROBE_EVENTS
11198 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
11199 
11200 static struct attribute *uprobe_attrs[] = {
11201 	&format_attr_retprobe.attr,
11202 	&format_attr_ref_ctr_offset.attr,
11203 	NULL,
11204 };
11205 
11206 static struct attribute_group uprobe_format_group = {
11207 	.name = "format",
11208 	.attrs = uprobe_attrs,
11209 };
11210 
11211 static const struct attribute_group *uprobe_attr_groups[] = {
11212 	&uprobe_format_group,
11213 	NULL,
11214 };
11215 
11216 static int perf_uprobe_event_init(struct perf_event *event);
11217 static struct pmu perf_uprobe = {
11218 	.task_ctx_nr	= perf_sw_context,
11219 	.event_init	= perf_uprobe_event_init,
11220 	.add		= perf_trace_add,
11221 	.del		= perf_trace_del,
11222 	.start		= perf_swevent_start,
11223 	.stop		= perf_swevent_stop,
11224 	.read		= perf_swevent_read,
11225 	.attr_groups	= uprobe_attr_groups,
11226 };
11227 
11228 static int perf_uprobe_event_init(struct perf_event *event)
11229 {
11230 	int err;
11231 	unsigned long ref_ctr_offset;
11232 	bool is_retprobe;
11233 
11234 	if (event->attr.type != perf_uprobe.type)
11235 		return -ENOENT;
11236 
11237 	if (!capable(CAP_SYS_ADMIN))
11238 		return -EACCES;
11239 
11240 	/*
11241 	 * no branch sampling for probe events
11242 	 */
11243 	if (has_branch_stack(event))
11244 		return -EOPNOTSUPP;
11245 
11246 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
11247 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
11248 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
11249 	if (err)
11250 		return err;
11251 
11252 	event->destroy = perf_uprobe_destroy;
11253 
11254 	return 0;
11255 }
11256 #endif /* CONFIG_UPROBE_EVENTS */
11257 
11258 static inline void perf_tp_register(void)
11259 {
11260 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
11261 #ifdef CONFIG_KPROBE_EVENTS
11262 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
11263 #endif
11264 #ifdef CONFIG_UPROBE_EVENTS
11265 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
11266 #endif
11267 }
11268 
11269 static void perf_event_free_filter(struct perf_event *event)
11270 {
11271 	ftrace_profile_free_filter(event);
11272 }
11273 
11274 /*
11275  * returns true if the event is a tracepoint, or a kprobe/upprobe created
11276  * with perf_event_open()
11277  */
11278 static inline bool perf_event_is_tracing(struct perf_event *event)
11279 {
11280 	if (event->pmu == &perf_tracepoint)
11281 		return true;
11282 #ifdef CONFIG_KPROBE_EVENTS
11283 	if (event->pmu == &perf_kprobe)
11284 		return true;
11285 #endif
11286 #ifdef CONFIG_UPROBE_EVENTS
11287 	if (event->pmu == &perf_uprobe)
11288 		return true;
11289 #endif
11290 	return false;
11291 }
11292 
11293 static int __perf_event_set_bpf_prog(struct perf_event *event,
11294 				     struct bpf_prog *prog,
11295 				     u64 bpf_cookie)
11296 {
11297 	bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
11298 
11299 	if (event->state <= PERF_EVENT_STATE_REVOKED)
11300 		return -ENODEV;
11301 
11302 	if (!perf_event_is_tracing(event))
11303 		return perf_event_set_bpf_handler(event, prog, bpf_cookie);
11304 
11305 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
11306 	is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
11307 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
11308 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
11309 	if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
11310 		/* bpf programs can only be attached to u/kprobe or tracepoint */
11311 		return -EINVAL;
11312 
11313 	if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
11314 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
11315 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
11316 		return -EINVAL;
11317 
11318 	if (prog->type == BPF_PROG_TYPE_KPROBE && prog->sleepable && !is_uprobe)
11319 		/* only uprobe programs are allowed to be sleepable */
11320 		return -EINVAL;
11321 
11322 	/* Kprobe override only works for kprobes, not uprobes. */
11323 	if (prog->kprobe_override && !is_kprobe)
11324 		return -EINVAL;
11325 
11326 	/* Writing to context allowed only for uprobes. */
11327 	if (prog->aux->kprobe_write_ctx && !is_uprobe)
11328 		return -EINVAL;
11329 
11330 	if (is_tracepoint || is_syscall_tp) {
11331 		int off = trace_event_get_offsets(event->tp_event);
11332 
11333 		if (prog->aux->max_ctx_offset > off)
11334 			return -EACCES;
11335 	}
11336 
11337 	return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
11338 }
11339 
11340 int perf_event_set_bpf_prog(struct perf_event *event,
11341 			    struct bpf_prog *prog,
11342 			    u64 bpf_cookie)
11343 {
11344 	struct perf_event_context *ctx;
11345 	int ret;
11346 
11347 	ctx = perf_event_ctx_lock(event);
11348 	ret = __perf_event_set_bpf_prog(event, prog, bpf_cookie);
11349 	perf_event_ctx_unlock(event, ctx);
11350 
11351 	return ret;
11352 }
11353 
11354 void perf_event_free_bpf_prog(struct perf_event *event)
11355 {
11356 	if (!event->prog)
11357 		return;
11358 
11359 	if (!perf_event_is_tracing(event)) {
11360 		perf_event_free_bpf_handler(event);
11361 		return;
11362 	}
11363 	perf_event_detach_bpf_prog(event);
11364 }
11365 
11366 #else
11367 
11368 static inline void perf_tp_register(void)
11369 {
11370 }
11371 
11372 static void perf_event_free_filter(struct perf_event *event)
11373 {
11374 }
11375 
11376 static int __perf_event_set_bpf_prog(struct perf_event *event,
11377 				     struct bpf_prog *prog,
11378 				     u64 bpf_cookie)
11379 {
11380 	return -ENOENT;
11381 }
11382 
11383 int perf_event_set_bpf_prog(struct perf_event *event,
11384 			    struct bpf_prog *prog,
11385 			    u64 bpf_cookie)
11386 {
11387 	return -ENOENT;
11388 }
11389 
11390 void perf_event_free_bpf_prog(struct perf_event *event)
11391 {
11392 }
11393 #endif /* CONFIG_EVENT_TRACING */
11394 
11395 #ifdef CONFIG_HAVE_HW_BREAKPOINT
11396 void perf_bp_event(struct perf_event *bp, void *data)
11397 {
11398 	struct perf_sample_data sample;
11399 	struct pt_regs *regs = data;
11400 
11401 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
11402 
11403 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
11404 		perf_swevent_event(bp, 1, &sample, regs);
11405 }
11406 #endif
11407 
11408 /*
11409  * Allocate a new address filter
11410  */
11411 static struct perf_addr_filter *
11412 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
11413 {
11414 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
11415 	struct perf_addr_filter *filter;
11416 
11417 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
11418 	if (!filter)
11419 		return NULL;
11420 
11421 	INIT_LIST_HEAD(&filter->entry);
11422 	list_add_tail(&filter->entry, filters);
11423 
11424 	return filter;
11425 }
11426 
11427 static void free_filters_list(struct list_head *filters)
11428 {
11429 	struct perf_addr_filter *filter, *iter;
11430 
11431 	list_for_each_entry_safe(filter, iter, filters, entry) {
11432 		path_put(&filter->path);
11433 		list_del(&filter->entry);
11434 		kfree(filter);
11435 	}
11436 }
11437 
11438 /*
11439  * Free existing address filters and optionally install new ones
11440  */
11441 static void perf_addr_filters_splice(struct perf_event *event,
11442 				     struct list_head *head)
11443 {
11444 	unsigned long flags;
11445 	LIST_HEAD(list);
11446 
11447 	if (!has_addr_filter(event))
11448 		return;
11449 
11450 	/* don't bother with children, they don't have their own filters */
11451 	if (event->parent)
11452 		return;
11453 
11454 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
11455 
11456 	list_splice_init(&event->addr_filters.list, &list);
11457 	if (head)
11458 		list_splice(head, &event->addr_filters.list);
11459 
11460 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
11461 
11462 	free_filters_list(&list);
11463 }
11464 
11465 static void perf_free_addr_filters(struct perf_event *event)
11466 {
11467 	/*
11468 	 * Used during free paths, there is no concurrency.
11469 	 */
11470 	if (list_empty(&event->addr_filters.list))
11471 		return;
11472 
11473 	perf_addr_filters_splice(event, NULL);
11474 }
11475 
11476 /*
11477  * Scan through mm's vmas and see if one of them matches the
11478  * @filter; if so, adjust filter's address range.
11479  * Called with mm::mmap_lock down for reading.
11480  */
11481 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
11482 				   struct mm_struct *mm,
11483 				   struct perf_addr_filter_range *fr)
11484 {
11485 	struct vm_area_struct *vma;
11486 	VMA_ITERATOR(vmi, mm, 0);
11487 
11488 	for_each_vma(vmi, vma) {
11489 		if (!vma->vm_file)
11490 			continue;
11491 
11492 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
11493 			return;
11494 	}
11495 }
11496 
11497 /*
11498  * Update event's address range filters based on the
11499  * task's existing mappings, if any.
11500  */
11501 static void perf_event_addr_filters_apply(struct perf_event *event)
11502 {
11503 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11504 	struct task_struct *task = READ_ONCE(event->ctx->task);
11505 	struct perf_addr_filter *filter;
11506 	struct mm_struct *mm = NULL;
11507 	unsigned int count = 0;
11508 	unsigned long flags;
11509 
11510 	/*
11511 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
11512 	 * will stop on the parent's child_mutex that our caller is also holding
11513 	 */
11514 	if (task == TASK_TOMBSTONE)
11515 		return;
11516 
11517 	if (ifh->nr_file_filters) {
11518 		mm = get_task_mm(task);
11519 		if (!mm)
11520 			goto restart;
11521 
11522 		mmap_read_lock(mm);
11523 	}
11524 
11525 	raw_spin_lock_irqsave(&ifh->lock, flags);
11526 	list_for_each_entry(filter, &ifh->list, entry) {
11527 		if (filter->path.dentry) {
11528 			/*
11529 			 * Adjust base offset if the filter is associated to a
11530 			 * binary that needs to be mapped:
11531 			 */
11532 			event->addr_filter_ranges[count].start = 0;
11533 			event->addr_filter_ranges[count].size = 0;
11534 
11535 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
11536 		} else {
11537 			event->addr_filter_ranges[count].start = filter->offset;
11538 			event->addr_filter_ranges[count].size  = filter->size;
11539 		}
11540 
11541 		count++;
11542 	}
11543 
11544 	event->addr_filters_gen++;
11545 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
11546 
11547 	if (ifh->nr_file_filters) {
11548 		mmap_read_unlock(mm);
11549 
11550 		mmput(mm);
11551 	}
11552 
11553 restart:
11554 	perf_event_stop(event, 1);
11555 }
11556 
11557 /*
11558  * Address range filtering: limiting the data to certain
11559  * instruction address ranges. Filters are ioctl()ed to us from
11560  * userspace as ascii strings.
11561  *
11562  * Filter string format:
11563  *
11564  * ACTION RANGE_SPEC
11565  * where ACTION is one of the
11566  *  * "filter": limit the trace to this region
11567  *  * "start": start tracing from this address
11568  *  * "stop": stop tracing at this address/region;
11569  * RANGE_SPEC is
11570  *  * for kernel addresses: <start address>[/<size>]
11571  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
11572  *
11573  * if <size> is not specified or is zero, the range is treated as a single
11574  * address; not valid for ACTION=="filter".
11575  */
11576 enum {
11577 	IF_ACT_NONE = -1,
11578 	IF_ACT_FILTER,
11579 	IF_ACT_START,
11580 	IF_ACT_STOP,
11581 	IF_SRC_FILE,
11582 	IF_SRC_KERNEL,
11583 	IF_SRC_FILEADDR,
11584 	IF_SRC_KERNELADDR,
11585 };
11586 
11587 enum {
11588 	IF_STATE_ACTION = 0,
11589 	IF_STATE_SOURCE,
11590 	IF_STATE_END,
11591 };
11592 
11593 static const match_table_t if_tokens = {
11594 	{ IF_ACT_FILTER,	"filter" },
11595 	{ IF_ACT_START,		"start" },
11596 	{ IF_ACT_STOP,		"stop" },
11597 	{ IF_SRC_FILE,		"%u/%u@%s" },
11598 	{ IF_SRC_KERNEL,	"%u/%u" },
11599 	{ IF_SRC_FILEADDR,	"%u@%s" },
11600 	{ IF_SRC_KERNELADDR,	"%u" },
11601 	{ IF_ACT_NONE,		NULL },
11602 };
11603 
11604 /*
11605  * Address filter string parser
11606  */
11607 static int
11608 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
11609 			     struct list_head *filters)
11610 {
11611 	struct perf_addr_filter *filter = NULL;
11612 	char *start, *orig, *filename = NULL;
11613 	substring_t args[MAX_OPT_ARGS];
11614 	int state = IF_STATE_ACTION, token;
11615 	unsigned int kernel = 0;
11616 	int ret = -EINVAL;
11617 
11618 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
11619 	if (!fstr)
11620 		return -ENOMEM;
11621 
11622 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
11623 		static const enum perf_addr_filter_action_t actions[] = {
11624 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
11625 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
11626 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
11627 		};
11628 		ret = -EINVAL;
11629 
11630 		if (!*start)
11631 			continue;
11632 
11633 		/* filter definition begins */
11634 		if (state == IF_STATE_ACTION) {
11635 			filter = perf_addr_filter_new(event, filters);
11636 			if (!filter)
11637 				goto fail;
11638 		}
11639 
11640 		token = match_token(start, if_tokens, args);
11641 		switch (token) {
11642 		case IF_ACT_FILTER:
11643 		case IF_ACT_START:
11644 		case IF_ACT_STOP:
11645 			if (state != IF_STATE_ACTION)
11646 				goto fail;
11647 
11648 			filter->action = actions[token];
11649 			state = IF_STATE_SOURCE;
11650 			break;
11651 
11652 		case IF_SRC_KERNELADDR:
11653 		case IF_SRC_KERNEL:
11654 			kernel = 1;
11655 			fallthrough;
11656 
11657 		case IF_SRC_FILEADDR:
11658 		case IF_SRC_FILE:
11659 			if (state != IF_STATE_SOURCE)
11660 				goto fail;
11661 
11662 			*args[0].to = 0;
11663 			ret = kstrtoul(args[0].from, 0, &filter->offset);
11664 			if (ret)
11665 				goto fail;
11666 
11667 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
11668 				*args[1].to = 0;
11669 				ret = kstrtoul(args[1].from, 0, &filter->size);
11670 				if (ret)
11671 					goto fail;
11672 			}
11673 
11674 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
11675 				int fpos = token == IF_SRC_FILE ? 2 : 1;
11676 
11677 				kfree(filename);
11678 				filename = match_strdup(&args[fpos]);
11679 				if (!filename) {
11680 					ret = -ENOMEM;
11681 					goto fail;
11682 				}
11683 			}
11684 
11685 			state = IF_STATE_END;
11686 			break;
11687 
11688 		default:
11689 			goto fail;
11690 		}
11691 
11692 		/*
11693 		 * Filter definition is fully parsed, validate and install it.
11694 		 * Make sure that it doesn't contradict itself or the event's
11695 		 * attribute.
11696 		 */
11697 		if (state == IF_STATE_END) {
11698 			ret = -EINVAL;
11699 
11700 			/*
11701 			 * ACTION "filter" must have a non-zero length region
11702 			 * specified.
11703 			 */
11704 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
11705 			    !filter->size)
11706 				goto fail;
11707 
11708 			if (!kernel) {
11709 				if (!filename)
11710 					goto fail;
11711 
11712 				/*
11713 				 * For now, we only support file-based filters
11714 				 * in per-task events; doing so for CPU-wide
11715 				 * events requires additional context switching
11716 				 * trickery, since same object code will be
11717 				 * mapped at different virtual addresses in
11718 				 * different processes.
11719 				 */
11720 				ret = -EOPNOTSUPP;
11721 				if (!event->ctx->task)
11722 					goto fail;
11723 
11724 				/* look up the path and grab its inode */
11725 				ret = kern_path(filename, LOOKUP_FOLLOW,
11726 						&filter->path);
11727 				if (ret)
11728 					goto fail;
11729 
11730 				ret = -EINVAL;
11731 				if (!filter->path.dentry ||
11732 				    !S_ISREG(d_inode(filter->path.dentry)
11733 					     ->i_mode))
11734 					goto fail;
11735 
11736 				event->addr_filters.nr_file_filters++;
11737 			}
11738 
11739 			/* ready to consume more filters */
11740 			kfree(filename);
11741 			filename = NULL;
11742 			state = IF_STATE_ACTION;
11743 			filter = NULL;
11744 			kernel = 0;
11745 		}
11746 	}
11747 
11748 	if (state != IF_STATE_ACTION)
11749 		goto fail;
11750 
11751 	kfree(filename);
11752 	kfree(orig);
11753 
11754 	return 0;
11755 
11756 fail:
11757 	kfree(filename);
11758 	free_filters_list(filters);
11759 	kfree(orig);
11760 
11761 	return ret;
11762 }
11763 
11764 static int
11765 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
11766 {
11767 	LIST_HEAD(filters);
11768 	int ret;
11769 
11770 	/*
11771 	 * Since this is called in perf_ioctl() path, we're already holding
11772 	 * ctx::mutex.
11773 	 */
11774 	lockdep_assert_held(&event->ctx->mutex);
11775 
11776 	if (WARN_ON_ONCE(event->parent))
11777 		return -EINVAL;
11778 
11779 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
11780 	if (ret)
11781 		goto fail_clear_files;
11782 
11783 	ret = event->pmu->addr_filters_validate(&filters);
11784 	if (ret)
11785 		goto fail_free_filters;
11786 
11787 	/* remove existing filters, if any */
11788 	perf_addr_filters_splice(event, &filters);
11789 
11790 	/* install new filters */
11791 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
11792 
11793 	return ret;
11794 
11795 fail_free_filters:
11796 	free_filters_list(&filters);
11797 
11798 fail_clear_files:
11799 	event->addr_filters.nr_file_filters = 0;
11800 
11801 	return ret;
11802 }
11803 
11804 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
11805 {
11806 	int ret = -EINVAL;
11807 	char *filter_str;
11808 
11809 	filter_str = strndup_user(arg, PAGE_SIZE);
11810 	if (IS_ERR(filter_str))
11811 		return PTR_ERR(filter_str);
11812 
11813 #ifdef CONFIG_EVENT_TRACING
11814 	if (perf_event_is_tracing(event)) {
11815 		struct perf_event_context *ctx = event->ctx;
11816 
11817 		/*
11818 		 * Beware, here be dragons!!
11819 		 *
11820 		 * the tracepoint muck will deadlock against ctx->mutex, but
11821 		 * the tracepoint stuff does not actually need it. So
11822 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
11823 		 * already have a reference on ctx.
11824 		 *
11825 		 * This can result in event getting moved to a different ctx,
11826 		 * but that does not affect the tracepoint state.
11827 		 */
11828 		mutex_unlock(&ctx->mutex);
11829 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
11830 		mutex_lock(&ctx->mutex);
11831 	} else
11832 #endif
11833 	if (has_addr_filter(event))
11834 		ret = perf_event_set_addr_filter(event, filter_str);
11835 
11836 	kfree(filter_str);
11837 	return ret;
11838 }
11839 
11840 /*
11841  * hrtimer based swevent callback
11842  */
11843 
11844 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
11845 {
11846 	enum hrtimer_restart ret = HRTIMER_RESTART;
11847 	struct perf_sample_data data;
11848 	struct pt_regs *regs;
11849 	struct perf_event *event;
11850 	u64 period;
11851 
11852 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
11853 
11854 	if (event->state != PERF_EVENT_STATE_ACTIVE ||
11855 	    event->hw.state & PERF_HES_STOPPED)
11856 		return HRTIMER_NORESTART;
11857 
11858 	event->pmu->read(event);
11859 
11860 	perf_sample_data_init(&data, 0, event->hw.last_period);
11861 	regs = get_irq_regs();
11862 
11863 	if (regs && !perf_exclude_event(event, regs)) {
11864 		if (!(event->attr.exclude_idle && is_idle_task(current)))
11865 			if (__perf_event_overflow(event, 1, &data, regs))
11866 				ret = HRTIMER_NORESTART;
11867 	}
11868 
11869 	period = max_t(u64, 10000, event->hw.sample_period);
11870 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
11871 
11872 	return ret;
11873 }
11874 
11875 static void perf_swevent_start_hrtimer(struct perf_event *event)
11876 {
11877 	struct hw_perf_event *hwc = &event->hw;
11878 	s64 period;
11879 
11880 	if (!is_sampling_event(event))
11881 		return;
11882 
11883 	period = local64_read(&hwc->period_left);
11884 	if (period) {
11885 		if (period < 0)
11886 			period = 10000;
11887 
11888 		local64_set(&hwc->period_left, 0);
11889 	} else {
11890 		period = max_t(u64, 10000, hwc->sample_period);
11891 	}
11892 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
11893 		      HRTIMER_MODE_REL_PINNED_HARD);
11894 }
11895 
11896 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
11897 {
11898 	struct hw_perf_event *hwc = &event->hw;
11899 
11900 	/*
11901 	 * Careful: this function can be triggered in the hrtimer handler,
11902 	 * for cpu-clock events, so hrtimer_cancel() would cause a
11903 	 * deadlock.
11904 	 *
11905 	 * So use hrtimer_try_to_cancel() to try to stop the hrtimer,
11906 	 * and the cpu-clock handler also sets the PERF_HES_STOPPED flag,
11907 	 * which guarantees that perf_swevent_hrtimer() will stop the
11908 	 * hrtimer once it sees the PERF_HES_STOPPED flag.
11909 	 */
11910 	if (is_sampling_event(event) && (hwc->interrupts != MAX_INTERRUPTS)) {
11911 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
11912 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
11913 
11914 		hrtimer_try_to_cancel(&hwc->hrtimer);
11915 	}
11916 }
11917 
11918 static void perf_swevent_destroy_hrtimer(struct perf_event *event)
11919 {
11920 	hrtimer_cancel(&event->hw.hrtimer);
11921 }
11922 
11923 static void perf_swevent_init_hrtimer(struct perf_event *event)
11924 {
11925 	struct hw_perf_event *hwc = &event->hw;
11926 
11927 	if (!is_sampling_event(event))
11928 		return;
11929 
11930 	hrtimer_setup(&hwc->hrtimer, perf_swevent_hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
11931 	event->destroy = perf_swevent_destroy_hrtimer;
11932 
11933 	/*
11934 	 * Since hrtimers have a fixed rate, we can do a static freq->period
11935 	 * mapping and avoid the whole period adjust feedback stuff.
11936 	 */
11937 	if (event->attr.freq) {
11938 		long freq = event->attr.sample_freq;
11939 
11940 		event->attr.sample_period = NSEC_PER_SEC / freq;
11941 		hwc->sample_period = event->attr.sample_period;
11942 		local64_set(&hwc->period_left, hwc->sample_period);
11943 		hwc->last_period = hwc->sample_period;
11944 		event->attr.freq = 0;
11945 	}
11946 }
11947 
11948 /*
11949  * Software event: cpu wall time clock
11950  */
11951 
11952 static void cpu_clock_event_update(struct perf_event *event)
11953 {
11954 	s64 prev;
11955 	u64 now;
11956 
11957 	now = local_clock();
11958 	prev = local64_xchg(&event->hw.prev_count, now);
11959 	local64_add(now - prev, &event->count);
11960 }
11961 
11962 static void cpu_clock_event_start(struct perf_event *event, int flags)
11963 {
11964 	event->hw.state = 0;
11965 	local64_set(&event->hw.prev_count, local_clock());
11966 	perf_swevent_start_hrtimer(event);
11967 }
11968 
11969 static void cpu_clock_event_stop(struct perf_event *event, int flags)
11970 {
11971 	event->hw.state = PERF_HES_STOPPED;
11972 	perf_swevent_cancel_hrtimer(event);
11973 	if (flags & PERF_EF_UPDATE)
11974 		cpu_clock_event_update(event);
11975 }
11976 
11977 static int cpu_clock_event_add(struct perf_event *event, int flags)
11978 {
11979 	if (flags & PERF_EF_START)
11980 		cpu_clock_event_start(event, flags);
11981 	perf_event_update_userpage(event);
11982 
11983 	return 0;
11984 }
11985 
11986 static void cpu_clock_event_del(struct perf_event *event, int flags)
11987 {
11988 	cpu_clock_event_stop(event, PERF_EF_UPDATE);
11989 }
11990 
11991 static void cpu_clock_event_read(struct perf_event *event)
11992 {
11993 	cpu_clock_event_update(event);
11994 }
11995 
11996 static int cpu_clock_event_init(struct perf_event *event)
11997 {
11998 	if (event->attr.type != perf_cpu_clock.type)
11999 		return -ENOENT;
12000 
12001 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
12002 		return -ENOENT;
12003 
12004 	/*
12005 	 * no branch sampling for software events
12006 	 */
12007 	if (has_branch_stack(event))
12008 		return -EOPNOTSUPP;
12009 
12010 	perf_swevent_init_hrtimer(event);
12011 
12012 	return 0;
12013 }
12014 
12015 static struct pmu perf_cpu_clock = {
12016 	.task_ctx_nr	= perf_sw_context,
12017 
12018 	.capabilities	= PERF_PMU_CAP_NO_NMI,
12019 	.dev		= PMU_NULL_DEV,
12020 
12021 	.event_init	= cpu_clock_event_init,
12022 	.add		= cpu_clock_event_add,
12023 	.del		= cpu_clock_event_del,
12024 	.start		= cpu_clock_event_start,
12025 	.stop		= cpu_clock_event_stop,
12026 	.read		= cpu_clock_event_read,
12027 };
12028 
12029 /*
12030  * Software event: task time clock
12031  */
12032 
12033 static void task_clock_event_update(struct perf_event *event, u64 now)
12034 {
12035 	u64 prev;
12036 	s64 delta;
12037 
12038 	prev = local64_xchg(&event->hw.prev_count, now);
12039 	delta = now - prev;
12040 	local64_add(delta, &event->count);
12041 }
12042 
12043 static void task_clock_event_start(struct perf_event *event, int flags)
12044 {
12045 	event->hw.state = 0;
12046 	local64_set(&event->hw.prev_count, event->ctx->time);
12047 	perf_swevent_start_hrtimer(event);
12048 }
12049 
12050 static void task_clock_event_stop(struct perf_event *event, int flags)
12051 {
12052 	event->hw.state = PERF_HES_STOPPED;
12053 	perf_swevent_cancel_hrtimer(event);
12054 	if (flags & PERF_EF_UPDATE)
12055 		task_clock_event_update(event, event->ctx->time);
12056 }
12057 
12058 static int task_clock_event_add(struct perf_event *event, int flags)
12059 {
12060 	if (flags & PERF_EF_START)
12061 		task_clock_event_start(event, flags);
12062 	perf_event_update_userpage(event);
12063 
12064 	return 0;
12065 }
12066 
12067 static void task_clock_event_del(struct perf_event *event, int flags)
12068 {
12069 	task_clock_event_stop(event, PERF_EF_UPDATE);
12070 }
12071 
12072 static void task_clock_event_read(struct perf_event *event)
12073 {
12074 	u64 now = perf_clock();
12075 	u64 delta = now - event->ctx->timestamp;
12076 	u64 time = event->ctx->time + delta;
12077 
12078 	task_clock_event_update(event, time);
12079 }
12080 
12081 static int task_clock_event_init(struct perf_event *event)
12082 {
12083 	if (event->attr.type != perf_task_clock.type)
12084 		return -ENOENT;
12085 
12086 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
12087 		return -ENOENT;
12088 
12089 	/*
12090 	 * no branch sampling for software events
12091 	 */
12092 	if (has_branch_stack(event))
12093 		return -EOPNOTSUPP;
12094 
12095 	perf_swevent_init_hrtimer(event);
12096 
12097 	return 0;
12098 }
12099 
12100 static struct pmu perf_task_clock = {
12101 	.task_ctx_nr	= perf_sw_context,
12102 
12103 	.capabilities	= PERF_PMU_CAP_NO_NMI,
12104 	.dev		= PMU_NULL_DEV,
12105 
12106 	.event_init	= task_clock_event_init,
12107 	.add		= task_clock_event_add,
12108 	.del		= task_clock_event_del,
12109 	.start		= task_clock_event_start,
12110 	.stop		= task_clock_event_stop,
12111 	.read		= task_clock_event_read,
12112 };
12113 
12114 static void perf_pmu_nop_void(struct pmu *pmu)
12115 {
12116 }
12117 
12118 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
12119 {
12120 }
12121 
12122 static int perf_pmu_nop_int(struct pmu *pmu)
12123 {
12124 	return 0;
12125 }
12126 
12127 static int perf_event_nop_int(struct perf_event *event, u64 value)
12128 {
12129 	return 0;
12130 }
12131 
12132 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
12133 
12134 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
12135 {
12136 	__this_cpu_write(nop_txn_flags, flags);
12137 
12138 	if (flags & ~PERF_PMU_TXN_ADD)
12139 		return;
12140 
12141 	perf_pmu_disable(pmu);
12142 }
12143 
12144 static int perf_pmu_commit_txn(struct pmu *pmu)
12145 {
12146 	unsigned int flags = __this_cpu_read(nop_txn_flags);
12147 
12148 	__this_cpu_write(nop_txn_flags, 0);
12149 
12150 	if (flags & ~PERF_PMU_TXN_ADD)
12151 		return 0;
12152 
12153 	perf_pmu_enable(pmu);
12154 	return 0;
12155 }
12156 
12157 static void perf_pmu_cancel_txn(struct pmu *pmu)
12158 {
12159 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
12160 
12161 	__this_cpu_write(nop_txn_flags, 0);
12162 
12163 	if (flags & ~PERF_PMU_TXN_ADD)
12164 		return;
12165 
12166 	perf_pmu_enable(pmu);
12167 }
12168 
12169 static int perf_event_idx_default(struct perf_event *event)
12170 {
12171 	return 0;
12172 }
12173 
12174 /*
12175  * Let userspace know that this PMU supports address range filtering:
12176  */
12177 static ssize_t nr_addr_filters_show(struct device *dev,
12178 				    struct device_attribute *attr,
12179 				    char *page)
12180 {
12181 	struct pmu *pmu = dev_get_drvdata(dev);
12182 
12183 	return sysfs_emit(page, "%d\n", pmu->nr_addr_filters);
12184 }
12185 DEVICE_ATTR_RO(nr_addr_filters);
12186 
12187 static struct idr pmu_idr;
12188 
12189 static ssize_t
12190 type_show(struct device *dev, struct device_attribute *attr, char *page)
12191 {
12192 	struct pmu *pmu = dev_get_drvdata(dev);
12193 
12194 	return sysfs_emit(page, "%d\n", pmu->type);
12195 }
12196 static DEVICE_ATTR_RO(type);
12197 
12198 static ssize_t
12199 perf_event_mux_interval_ms_show(struct device *dev,
12200 				struct device_attribute *attr,
12201 				char *page)
12202 {
12203 	struct pmu *pmu = dev_get_drvdata(dev);
12204 
12205 	return sysfs_emit(page, "%d\n", pmu->hrtimer_interval_ms);
12206 }
12207 
12208 static DEFINE_MUTEX(mux_interval_mutex);
12209 
12210 static ssize_t
12211 perf_event_mux_interval_ms_store(struct device *dev,
12212 				 struct device_attribute *attr,
12213 				 const char *buf, size_t count)
12214 {
12215 	struct pmu *pmu = dev_get_drvdata(dev);
12216 	int timer, cpu, ret;
12217 
12218 	ret = kstrtoint(buf, 0, &timer);
12219 	if (ret)
12220 		return ret;
12221 
12222 	if (timer < 1)
12223 		return -EINVAL;
12224 
12225 	/* same value, noting to do */
12226 	if (timer == pmu->hrtimer_interval_ms)
12227 		return count;
12228 
12229 	mutex_lock(&mux_interval_mutex);
12230 	pmu->hrtimer_interval_ms = timer;
12231 
12232 	/* update all cpuctx for this PMU */
12233 	cpus_read_lock();
12234 	for_each_online_cpu(cpu) {
12235 		struct perf_cpu_pmu_context *cpc;
12236 		cpc = *per_cpu_ptr(pmu->cpu_pmu_context, cpu);
12237 		cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
12238 
12239 		cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc);
12240 	}
12241 	cpus_read_unlock();
12242 	mutex_unlock(&mux_interval_mutex);
12243 
12244 	return count;
12245 }
12246 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
12247 
12248 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu)
12249 {
12250 	switch (scope) {
12251 	case PERF_PMU_SCOPE_CORE:
12252 		return topology_sibling_cpumask(cpu);
12253 	case PERF_PMU_SCOPE_DIE:
12254 		return topology_die_cpumask(cpu);
12255 	case PERF_PMU_SCOPE_CLUSTER:
12256 		return topology_cluster_cpumask(cpu);
12257 	case PERF_PMU_SCOPE_PKG:
12258 		return topology_core_cpumask(cpu);
12259 	case PERF_PMU_SCOPE_SYS_WIDE:
12260 		return cpu_online_mask;
12261 	}
12262 
12263 	return NULL;
12264 }
12265 
12266 static inline struct cpumask *perf_scope_cpumask(unsigned int scope)
12267 {
12268 	switch (scope) {
12269 	case PERF_PMU_SCOPE_CORE:
12270 		return perf_online_core_mask;
12271 	case PERF_PMU_SCOPE_DIE:
12272 		return perf_online_die_mask;
12273 	case PERF_PMU_SCOPE_CLUSTER:
12274 		return perf_online_cluster_mask;
12275 	case PERF_PMU_SCOPE_PKG:
12276 		return perf_online_pkg_mask;
12277 	case PERF_PMU_SCOPE_SYS_WIDE:
12278 		return perf_online_sys_mask;
12279 	}
12280 
12281 	return NULL;
12282 }
12283 
12284 static ssize_t cpumask_show(struct device *dev, struct device_attribute *attr,
12285 			    char *buf)
12286 {
12287 	struct pmu *pmu = dev_get_drvdata(dev);
12288 	struct cpumask *mask = perf_scope_cpumask(pmu->scope);
12289 
12290 	if (mask)
12291 		return cpumap_print_to_pagebuf(true, buf, mask);
12292 	return 0;
12293 }
12294 
12295 static DEVICE_ATTR_RO(cpumask);
12296 
12297 static struct attribute *pmu_dev_attrs[] = {
12298 	&dev_attr_type.attr,
12299 	&dev_attr_perf_event_mux_interval_ms.attr,
12300 	&dev_attr_nr_addr_filters.attr,
12301 	&dev_attr_cpumask.attr,
12302 	NULL,
12303 };
12304 
12305 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n)
12306 {
12307 	struct device *dev = kobj_to_dev(kobj);
12308 	struct pmu *pmu = dev_get_drvdata(dev);
12309 
12310 	if (n == 2 && !pmu->nr_addr_filters)
12311 		return 0;
12312 
12313 	/* cpumask */
12314 	if (n == 3 && pmu->scope == PERF_PMU_SCOPE_NONE)
12315 		return 0;
12316 
12317 	return a->mode;
12318 }
12319 
12320 static struct attribute_group pmu_dev_attr_group = {
12321 	.is_visible = pmu_dev_is_visible,
12322 	.attrs = pmu_dev_attrs,
12323 };
12324 
12325 static const struct attribute_group *pmu_dev_groups[] = {
12326 	&pmu_dev_attr_group,
12327 	NULL,
12328 };
12329 
12330 static int pmu_bus_running;
12331 static const struct bus_type pmu_bus = {
12332 	.name		= "event_source",
12333 	.dev_groups	= pmu_dev_groups,
12334 };
12335 
12336 static void pmu_dev_release(struct device *dev)
12337 {
12338 	kfree(dev);
12339 }
12340 
12341 static int pmu_dev_alloc(struct pmu *pmu)
12342 {
12343 	int ret = -ENOMEM;
12344 
12345 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
12346 	if (!pmu->dev)
12347 		goto out;
12348 
12349 	pmu->dev->groups = pmu->attr_groups;
12350 	device_initialize(pmu->dev);
12351 
12352 	dev_set_drvdata(pmu->dev, pmu);
12353 	pmu->dev->bus = &pmu_bus;
12354 	pmu->dev->parent = pmu->parent;
12355 	pmu->dev->release = pmu_dev_release;
12356 
12357 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
12358 	if (ret)
12359 		goto free_dev;
12360 
12361 	ret = device_add(pmu->dev);
12362 	if (ret)
12363 		goto free_dev;
12364 
12365 	if (pmu->attr_update) {
12366 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
12367 		if (ret)
12368 			goto del_dev;
12369 	}
12370 
12371 out:
12372 	return ret;
12373 
12374 del_dev:
12375 	device_del(pmu->dev);
12376 
12377 free_dev:
12378 	put_device(pmu->dev);
12379 	pmu->dev = NULL;
12380 	goto out;
12381 }
12382 
12383 static struct lock_class_key cpuctx_mutex;
12384 static struct lock_class_key cpuctx_lock;
12385 
12386 static bool idr_cmpxchg(struct idr *idr, unsigned long id, void *old, void *new)
12387 {
12388 	void *tmp, *val = idr_find(idr, id);
12389 
12390 	if (val != old)
12391 		return false;
12392 
12393 	tmp = idr_replace(idr, new, id);
12394 	if (IS_ERR(tmp))
12395 		return false;
12396 
12397 	WARN_ON_ONCE(tmp != val);
12398 	return true;
12399 }
12400 
12401 static void perf_pmu_free(struct pmu *pmu)
12402 {
12403 	if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) {
12404 		if (pmu->nr_addr_filters)
12405 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
12406 		device_del(pmu->dev);
12407 		put_device(pmu->dev);
12408 	}
12409 
12410 	if (pmu->cpu_pmu_context) {
12411 		int cpu;
12412 
12413 		for_each_possible_cpu(cpu) {
12414 			struct perf_cpu_pmu_context *cpc;
12415 
12416 			cpc = *per_cpu_ptr(pmu->cpu_pmu_context, cpu);
12417 			if (!cpc)
12418 				continue;
12419 			if (cpc->epc.embedded) {
12420 				/* refcount managed */
12421 				put_pmu_ctx(&cpc->epc);
12422 				continue;
12423 			}
12424 			kfree(cpc);
12425 		}
12426 		free_percpu(pmu->cpu_pmu_context);
12427 	}
12428 }
12429 
12430 DEFINE_FREE(pmu_unregister, struct pmu *, if (_T) perf_pmu_free(_T))
12431 
12432 int perf_pmu_register(struct pmu *_pmu, const char *name, int type)
12433 {
12434 	int cpu, max = PERF_TYPE_MAX;
12435 
12436 	struct pmu *pmu __free(pmu_unregister) = _pmu;
12437 	guard(mutex)(&pmus_lock);
12438 
12439 	if (WARN_ONCE(!name, "Can not register anonymous pmu.\n"))
12440 		return -EINVAL;
12441 
12442 	if (WARN_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE,
12443 		      "Can not register a pmu with an invalid scope.\n"))
12444 		return -EINVAL;
12445 
12446 	pmu->name = name;
12447 
12448 	if (type >= 0)
12449 		max = type;
12450 
12451 	CLASS(idr_alloc, pmu_type)(&pmu_idr, NULL, max, 0, GFP_KERNEL);
12452 	if (pmu_type.id < 0)
12453 		return pmu_type.id;
12454 
12455 	WARN_ON(type >= 0 && pmu_type.id != type);
12456 
12457 	pmu->type = pmu_type.id;
12458 	atomic_set(&pmu->exclusive_cnt, 0);
12459 
12460 	if (pmu_bus_running && !pmu->dev) {
12461 		int ret = pmu_dev_alloc(pmu);
12462 		if (ret)
12463 			return ret;
12464 	}
12465 
12466 	pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context *);
12467 	if (!pmu->cpu_pmu_context)
12468 		return -ENOMEM;
12469 
12470 	for_each_possible_cpu(cpu) {
12471 		struct perf_cpu_pmu_context *cpc =
12472 			kmalloc_node(sizeof(struct perf_cpu_pmu_context),
12473 				     GFP_KERNEL | __GFP_ZERO,
12474 				     cpu_to_node(cpu));
12475 
12476 		if (!cpc)
12477 			return -ENOMEM;
12478 
12479 		*per_cpu_ptr(pmu->cpu_pmu_context, cpu) = cpc;
12480 		__perf_init_event_pmu_context(&cpc->epc, pmu);
12481 		__perf_mux_hrtimer_init(cpc, cpu);
12482 	}
12483 
12484 	if (!pmu->start_txn) {
12485 		if (pmu->pmu_enable) {
12486 			/*
12487 			 * If we have pmu_enable/pmu_disable calls, install
12488 			 * transaction stubs that use that to try and batch
12489 			 * hardware accesses.
12490 			 */
12491 			pmu->start_txn  = perf_pmu_start_txn;
12492 			pmu->commit_txn = perf_pmu_commit_txn;
12493 			pmu->cancel_txn = perf_pmu_cancel_txn;
12494 		} else {
12495 			pmu->start_txn  = perf_pmu_nop_txn;
12496 			pmu->commit_txn = perf_pmu_nop_int;
12497 			pmu->cancel_txn = perf_pmu_nop_void;
12498 		}
12499 	}
12500 
12501 	if (!pmu->pmu_enable) {
12502 		pmu->pmu_enable  = perf_pmu_nop_void;
12503 		pmu->pmu_disable = perf_pmu_nop_void;
12504 	}
12505 
12506 	if (!pmu->check_period)
12507 		pmu->check_period = perf_event_nop_int;
12508 
12509 	if (!pmu->event_idx)
12510 		pmu->event_idx = perf_event_idx_default;
12511 
12512 	INIT_LIST_HEAD(&pmu->events);
12513 	spin_lock_init(&pmu->events_lock);
12514 
12515 	/*
12516 	 * Now that the PMU is complete, make it visible to perf_try_init_event().
12517 	 */
12518 	if (!idr_cmpxchg(&pmu_idr, pmu->type, NULL, pmu))
12519 		return -EINVAL;
12520 	list_add_rcu(&pmu->entry, &pmus);
12521 
12522 	take_idr_id(pmu_type);
12523 	_pmu = no_free_ptr(pmu); // let it rip
12524 	return 0;
12525 }
12526 EXPORT_SYMBOL_GPL(perf_pmu_register);
12527 
12528 static void __pmu_detach_event(struct pmu *pmu, struct perf_event *event,
12529 			       struct perf_event_context *ctx)
12530 {
12531 	/*
12532 	 * De-schedule the event and mark it REVOKED.
12533 	 */
12534 	perf_event_exit_event(event, ctx, ctx->task, true);
12535 
12536 	/*
12537 	 * All _free_event() bits that rely on event->pmu:
12538 	 *
12539 	 * Notably, perf_mmap() relies on the ordering here.
12540 	 */
12541 	scoped_guard (mutex, &event->mmap_mutex) {
12542 		WARN_ON_ONCE(pmu->event_unmapped);
12543 		/*
12544 		 * Mostly an empty lock sequence, such that perf_mmap(), which
12545 		 * relies on mmap_mutex, is sure to observe the state change.
12546 		 */
12547 	}
12548 
12549 	perf_event_free_bpf_prog(event);
12550 	perf_free_addr_filters(event);
12551 
12552 	if (event->destroy) {
12553 		event->destroy(event);
12554 		event->destroy = NULL;
12555 	}
12556 
12557 	if (event->pmu_ctx) {
12558 		put_pmu_ctx(event->pmu_ctx);
12559 		event->pmu_ctx = NULL;
12560 	}
12561 
12562 	exclusive_event_destroy(event);
12563 	module_put(pmu->module);
12564 
12565 	event->pmu = NULL; /* force fault instead of UAF */
12566 }
12567 
12568 static void pmu_detach_event(struct pmu *pmu, struct perf_event *event)
12569 {
12570 	struct perf_event_context *ctx;
12571 
12572 	ctx = perf_event_ctx_lock(event);
12573 	__pmu_detach_event(pmu, event, ctx);
12574 	perf_event_ctx_unlock(event, ctx);
12575 
12576 	scoped_guard (spinlock, &pmu->events_lock)
12577 		list_del(&event->pmu_list);
12578 }
12579 
12580 static struct perf_event *pmu_get_event(struct pmu *pmu)
12581 {
12582 	struct perf_event *event;
12583 
12584 	guard(spinlock)(&pmu->events_lock);
12585 	list_for_each_entry(event, &pmu->events, pmu_list) {
12586 		if (atomic_long_inc_not_zero(&event->refcount))
12587 			return event;
12588 	}
12589 
12590 	return NULL;
12591 }
12592 
12593 static bool pmu_empty(struct pmu *pmu)
12594 {
12595 	guard(spinlock)(&pmu->events_lock);
12596 	return list_empty(&pmu->events);
12597 }
12598 
12599 static void pmu_detach_events(struct pmu *pmu)
12600 {
12601 	struct perf_event *event;
12602 
12603 	for (;;) {
12604 		event = pmu_get_event(pmu);
12605 		if (!event)
12606 			break;
12607 
12608 		pmu_detach_event(pmu, event);
12609 		put_event(event);
12610 	}
12611 
12612 	/*
12613 	 * wait for pending _free_event()s
12614 	 */
12615 	wait_var_event(pmu, pmu_empty(pmu));
12616 }
12617 
12618 int perf_pmu_unregister(struct pmu *pmu)
12619 {
12620 	scoped_guard (mutex, &pmus_lock) {
12621 		if (!idr_cmpxchg(&pmu_idr, pmu->type, pmu, NULL))
12622 			return -EINVAL;
12623 
12624 		list_del_rcu(&pmu->entry);
12625 	}
12626 
12627 	/*
12628 	 * We dereference the pmu list under both SRCU and regular RCU, so
12629 	 * synchronize against both of those.
12630 	 *
12631 	 * Notably, the entirety of event creation, from perf_init_event()
12632 	 * (which will now fail, because of the above) until
12633 	 * perf_install_in_context() should be under SRCU such that
12634 	 * this synchronizes against event creation. This avoids trying to
12635 	 * detach events that are not fully formed.
12636 	 */
12637 	synchronize_srcu(&pmus_srcu);
12638 	synchronize_rcu();
12639 
12640 	if (pmu->event_unmapped && !pmu_empty(pmu)) {
12641 		/*
12642 		 * Can't force remove events when pmu::event_unmapped()
12643 		 * is used in perf_mmap_close().
12644 		 */
12645 		guard(mutex)(&pmus_lock);
12646 		idr_cmpxchg(&pmu_idr, pmu->type, NULL, pmu);
12647 		list_add_rcu(&pmu->entry, &pmus);
12648 		return -EBUSY;
12649 	}
12650 
12651 	scoped_guard (mutex, &pmus_lock)
12652 		idr_remove(&pmu_idr, pmu->type);
12653 
12654 	/*
12655 	 * PMU is removed from the pmus list, so no new events will
12656 	 * be created, now take care of the existing ones.
12657 	 */
12658 	pmu_detach_events(pmu);
12659 
12660 	/*
12661 	 * PMU is unused, make it go away.
12662 	 */
12663 	perf_pmu_free(pmu);
12664 	return 0;
12665 }
12666 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
12667 
12668 static inline bool has_extended_regs(struct perf_event *event)
12669 {
12670 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
12671 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
12672 }
12673 
12674 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
12675 {
12676 	struct perf_event_context *ctx = NULL;
12677 	int ret;
12678 
12679 	if (!try_module_get(pmu->module))
12680 		return -ENODEV;
12681 
12682 	/*
12683 	 * A number of pmu->event_init() methods iterate the sibling_list to,
12684 	 * for example, validate if the group fits on the PMU. Therefore,
12685 	 * if this is a sibling event, acquire the ctx->mutex to protect
12686 	 * the sibling_list.
12687 	 */
12688 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
12689 		/*
12690 		 * This ctx->mutex can nest when we're called through
12691 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
12692 		 */
12693 		ctx = perf_event_ctx_lock_nested(event->group_leader,
12694 						 SINGLE_DEPTH_NESTING);
12695 		BUG_ON(!ctx);
12696 	}
12697 
12698 	event->pmu = pmu;
12699 	ret = pmu->event_init(event);
12700 
12701 	if (ctx)
12702 		perf_event_ctx_unlock(event->group_leader, ctx);
12703 
12704 	if (ret)
12705 		goto err_pmu;
12706 
12707 	if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
12708 	    has_extended_regs(event)) {
12709 		ret = -EOPNOTSUPP;
12710 		goto err_destroy;
12711 	}
12712 
12713 	if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
12714 	    event_has_any_exclude_flag(event)) {
12715 		ret = -EINVAL;
12716 		goto err_destroy;
12717 	}
12718 
12719 	if (pmu->scope != PERF_PMU_SCOPE_NONE && event->cpu >= 0) {
12720 		const struct cpumask *cpumask;
12721 		struct cpumask *pmu_cpumask;
12722 		int cpu;
12723 
12724 		cpumask = perf_scope_cpu_topology_cpumask(pmu->scope, event->cpu);
12725 		pmu_cpumask = perf_scope_cpumask(pmu->scope);
12726 
12727 		ret = -ENODEV;
12728 		if (!pmu_cpumask || !cpumask)
12729 			goto err_destroy;
12730 
12731 		cpu = cpumask_any_and(pmu_cpumask, cpumask);
12732 		if (cpu >= nr_cpu_ids)
12733 			goto err_destroy;
12734 
12735 		event->event_caps |= PERF_EV_CAP_READ_SCOPE;
12736 	}
12737 
12738 	return 0;
12739 
12740 err_destroy:
12741 	if (event->destroy) {
12742 		event->destroy(event);
12743 		event->destroy = NULL;
12744 	}
12745 
12746 err_pmu:
12747 	event->pmu = NULL;
12748 	module_put(pmu->module);
12749 	return ret;
12750 }
12751 
12752 static struct pmu *perf_init_event(struct perf_event *event)
12753 {
12754 	bool extended_type = false;
12755 	struct pmu *pmu;
12756 	int type, ret;
12757 
12758 	guard(srcu)(&pmus_srcu); /* pmu idr/list access */
12759 
12760 	/*
12761 	 * Save original type before calling pmu->event_init() since certain
12762 	 * pmus overwrites event->attr.type to forward event to another pmu.
12763 	 */
12764 	event->orig_type = event->attr.type;
12765 
12766 	/* Try parent's PMU first: */
12767 	if (event->parent && event->parent->pmu) {
12768 		pmu = event->parent->pmu;
12769 		ret = perf_try_init_event(pmu, event);
12770 		if (!ret)
12771 			return pmu;
12772 	}
12773 
12774 	/*
12775 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
12776 	 * are often aliases for PERF_TYPE_RAW.
12777 	 */
12778 	type = event->attr.type;
12779 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
12780 		type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
12781 		if (!type) {
12782 			type = PERF_TYPE_RAW;
12783 		} else {
12784 			extended_type = true;
12785 			event->attr.config &= PERF_HW_EVENT_MASK;
12786 		}
12787 	}
12788 
12789 again:
12790 	scoped_guard (rcu)
12791 		pmu = idr_find(&pmu_idr, type);
12792 	if (pmu) {
12793 		if (event->attr.type != type && type != PERF_TYPE_RAW &&
12794 		    !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
12795 			return ERR_PTR(-ENOENT);
12796 
12797 		ret = perf_try_init_event(pmu, event);
12798 		if (ret == -ENOENT && event->attr.type != type && !extended_type) {
12799 			type = event->attr.type;
12800 			goto again;
12801 		}
12802 
12803 		if (ret)
12804 			return ERR_PTR(ret);
12805 
12806 		return pmu;
12807 	}
12808 
12809 	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
12810 		ret = perf_try_init_event(pmu, event);
12811 		if (!ret)
12812 			return pmu;
12813 
12814 		if (ret != -ENOENT)
12815 			return ERR_PTR(ret);
12816 	}
12817 
12818 	return ERR_PTR(-ENOENT);
12819 }
12820 
12821 static void attach_sb_event(struct perf_event *event)
12822 {
12823 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
12824 
12825 	raw_spin_lock(&pel->lock);
12826 	list_add_rcu(&event->sb_list, &pel->list);
12827 	raw_spin_unlock(&pel->lock);
12828 }
12829 
12830 /*
12831  * We keep a list of all !task (and therefore per-cpu) events
12832  * that need to receive side-band records.
12833  *
12834  * This avoids having to scan all the various PMU per-cpu contexts
12835  * looking for them.
12836  */
12837 static void account_pmu_sb_event(struct perf_event *event)
12838 {
12839 	if (is_sb_event(event))
12840 		attach_sb_event(event);
12841 }
12842 
12843 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
12844 static void account_freq_event_nohz(void)
12845 {
12846 #ifdef CONFIG_NO_HZ_FULL
12847 	/* Lock so we don't race with concurrent unaccount */
12848 	spin_lock(&nr_freq_lock);
12849 	if (atomic_inc_return(&nr_freq_events) == 1)
12850 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
12851 	spin_unlock(&nr_freq_lock);
12852 #endif
12853 }
12854 
12855 static void account_freq_event(void)
12856 {
12857 	if (tick_nohz_full_enabled())
12858 		account_freq_event_nohz();
12859 	else
12860 		atomic_inc(&nr_freq_events);
12861 }
12862 
12863 
12864 static void account_event(struct perf_event *event)
12865 {
12866 	bool inc = false;
12867 
12868 	if (event->parent)
12869 		return;
12870 
12871 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
12872 		inc = true;
12873 	if (event->attr.mmap || event->attr.mmap_data)
12874 		atomic_inc(&nr_mmap_events);
12875 	if (event->attr.build_id)
12876 		atomic_inc(&nr_build_id_events);
12877 	if (event->attr.comm)
12878 		atomic_inc(&nr_comm_events);
12879 	if (event->attr.namespaces)
12880 		atomic_inc(&nr_namespaces_events);
12881 	if (event->attr.cgroup)
12882 		atomic_inc(&nr_cgroup_events);
12883 	if (event->attr.task)
12884 		atomic_inc(&nr_task_events);
12885 	if (event->attr.freq)
12886 		account_freq_event();
12887 	if (event->attr.context_switch) {
12888 		atomic_inc(&nr_switch_events);
12889 		inc = true;
12890 	}
12891 	if (has_branch_stack(event))
12892 		inc = true;
12893 	if (is_cgroup_event(event))
12894 		inc = true;
12895 	if (event->attr.ksymbol)
12896 		atomic_inc(&nr_ksymbol_events);
12897 	if (event->attr.bpf_event)
12898 		atomic_inc(&nr_bpf_events);
12899 	if (event->attr.text_poke)
12900 		atomic_inc(&nr_text_poke_events);
12901 
12902 	if (inc) {
12903 		/*
12904 		 * We need the mutex here because static_branch_enable()
12905 		 * must complete *before* the perf_sched_count increment
12906 		 * becomes visible.
12907 		 */
12908 		if (atomic_inc_not_zero(&perf_sched_count))
12909 			goto enabled;
12910 
12911 		mutex_lock(&perf_sched_mutex);
12912 		if (!atomic_read(&perf_sched_count)) {
12913 			static_branch_enable(&perf_sched_events);
12914 			/*
12915 			 * Guarantee that all CPUs observe they key change and
12916 			 * call the perf scheduling hooks before proceeding to
12917 			 * install events that need them.
12918 			 */
12919 			synchronize_rcu();
12920 		}
12921 		/*
12922 		 * Now that we have waited for the sync_sched(), allow further
12923 		 * increments to by-pass the mutex.
12924 		 */
12925 		atomic_inc(&perf_sched_count);
12926 		mutex_unlock(&perf_sched_mutex);
12927 	}
12928 enabled:
12929 
12930 	account_pmu_sb_event(event);
12931 }
12932 
12933 /*
12934  * Allocate and initialize an event structure
12935  */
12936 static struct perf_event *
12937 perf_event_alloc(struct perf_event_attr *attr, int cpu,
12938 		 struct task_struct *task,
12939 		 struct perf_event *group_leader,
12940 		 struct perf_event *parent_event,
12941 		 perf_overflow_handler_t overflow_handler,
12942 		 void *context, int cgroup_fd)
12943 {
12944 	struct pmu *pmu;
12945 	struct hw_perf_event *hwc;
12946 	long err = -EINVAL;
12947 	int node;
12948 
12949 	if ((unsigned)cpu >= nr_cpu_ids) {
12950 		if (!task || cpu != -1)
12951 			return ERR_PTR(-EINVAL);
12952 	}
12953 	if (attr->sigtrap && !task) {
12954 		/* Requires a task: avoid signalling random tasks. */
12955 		return ERR_PTR(-EINVAL);
12956 	}
12957 
12958 	node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
12959 	struct perf_event *event __free(__free_event) =
12960 		kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO, node);
12961 	if (!event)
12962 		return ERR_PTR(-ENOMEM);
12963 
12964 	/*
12965 	 * Single events are their own group leaders, with an
12966 	 * empty sibling list:
12967 	 */
12968 	if (!group_leader)
12969 		group_leader = event;
12970 
12971 	mutex_init(&event->child_mutex);
12972 	INIT_LIST_HEAD(&event->child_list);
12973 
12974 	INIT_LIST_HEAD(&event->event_entry);
12975 	INIT_LIST_HEAD(&event->sibling_list);
12976 	INIT_LIST_HEAD(&event->active_list);
12977 	init_event_group(event);
12978 	INIT_LIST_HEAD(&event->rb_entry);
12979 	INIT_LIST_HEAD(&event->active_entry);
12980 	INIT_LIST_HEAD(&event->addr_filters.list);
12981 	INIT_HLIST_NODE(&event->hlist_entry);
12982 	INIT_LIST_HEAD(&event->pmu_list);
12983 
12984 
12985 	init_waitqueue_head(&event->waitq);
12986 	init_irq_work(&event->pending_irq, perf_pending_irq);
12987 	event->pending_disable_irq = IRQ_WORK_INIT_HARD(perf_pending_disable);
12988 	init_task_work(&event->pending_task, perf_pending_task);
12989 
12990 	mutex_init(&event->mmap_mutex);
12991 	raw_spin_lock_init(&event->addr_filters.lock);
12992 
12993 	atomic_long_set(&event->refcount, 1);
12994 	event->cpu		= cpu;
12995 	event->attr		= *attr;
12996 	event->group_leader	= group_leader;
12997 	event->pmu		= NULL;
12998 	event->oncpu		= -1;
12999 
13000 	event->parent		= parent_event;
13001 
13002 	event->ns		= get_pid_ns(task_active_pid_ns(current));
13003 	event->id		= atomic64_inc_return(&perf_event_id);
13004 
13005 	event->state		= PERF_EVENT_STATE_INACTIVE;
13006 
13007 	if (parent_event)
13008 		event->event_caps = parent_event->event_caps;
13009 
13010 	if (task) {
13011 		event->attach_state = PERF_ATTACH_TASK;
13012 		/*
13013 		 * XXX pmu::event_init needs to know what task to account to
13014 		 * and we cannot use the ctx information because we need the
13015 		 * pmu before we get a ctx.
13016 		 */
13017 		event->hw.target = get_task_struct(task);
13018 	}
13019 
13020 	event->clock = &local_clock;
13021 	if (parent_event)
13022 		event->clock = parent_event->clock;
13023 
13024 	if (!overflow_handler && parent_event) {
13025 		overflow_handler = parent_event->overflow_handler;
13026 		context = parent_event->overflow_handler_context;
13027 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
13028 		if (parent_event->prog) {
13029 			struct bpf_prog *prog = parent_event->prog;
13030 
13031 			bpf_prog_inc(prog);
13032 			event->prog = prog;
13033 		}
13034 #endif
13035 	}
13036 
13037 	if (overflow_handler) {
13038 		event->overflow_handler	= overflow_handler;
13039 		event->overflow_handler_context = context;
13040 	} else if (is_write_backward(event)){
13041 		event->overflow_handler = perf_event_output_backward;
13042 		event->overflow_handler_context = NULL;
13043 	} else {
13044 		event->overflow_handler = perf_event_output_forward;
13045 		event->overflow_handler_context = NULL;
13046 	}
13047 
13048 	perf_event__state_init(event);
13049 
13050 	pmu = NULL;
13051 
13052 	hwc = &event->hw;
13053 	hwc->sample_period = attr->sample_period;
13054 	if (is_event_in_freq_mode(event))
13055 		hwc->sample_period = 1;
13056 	hwc->last_period = hwc->sample_period;
13057 
13058 	local64_set(&hwc->period_left, hwc->sample_period);
13059 
13060 	/*
13061 	 * We do not support PERF_SAMPLE_READ on inherited events unless
13062 	 * PERF_SAMPLE_TID is also selected, which allows inherited events to
13063 	 * collect per-thread samples.
13064 	 * See perf_output_read().
13065 	 */
13066 	if (has_inherit_and_sample_read(attr) && !(attr->sample_type & PERF_SAMPLE_TID))
13067 		return ERR_PTR(-EINVAL);
13068 
13069 	if (!has_branch_stack(event))
13070 		event->attr.branch_sample_type = 0;
13071 
13072 	pmu = perf_init_event(event);
13073 	if (IS_ERR(pmu))
13074 		return (void*)pmu;
13075 
13076 	/*
13077 	 * The PERF_ATTACH_TASK_DATA is set in the event_init()->hw_config().
13078 	 * The attach should be right after the perf_init_event().
13079 	 * Otherwise, the __free_event() would mistakenly detach the non-exist
13080 	 * perf_ctx_data because of the other errors between them.
13081 	 */
13082 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
13083 		err = attach_perf_ctx_data(event);
13084 		if (err)
13085 			return ERR_PTR(err);
13086 	}
13087 
13088 	/*
13089 	 * Disallow uncore-task events. Similarly, disallow uncore-cgroup
13090 	 * events (they don't make sense as the cgroup will be different
13091 	 * on other CPUs in the uncore mask).
13092 	 */
13093 	if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1))
13094 		return ERR_PTR(-EINVAL);
13095 
13096 	if (event->attr.aux_output &&
13097 	    (!(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT) ||
13098 	     event->attr.aux_pause || event->attr.aux_resume))
13099 		return ERR_PTR(-EOPNOTSUPP);
13100 
13101 	if (event->attr.aux_pause && event->attr.aux_resume)
13102 		return ERR_PTR(-EINVAL);
13103 
13104 	if (event->attr.aux_start_paused) {
13105 		if (!(pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE))
13106 			return ERR_PTR(-EOPNOTSUPP);
13107 		event->hw.aux_paused = 1;
13108 	}
13109 
13110 	if (cgroup_fd != -1) {
13111 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
13112 		if (err)
13113 			return ERR_PTR(err);
13114 	}
13115 
13116 	err = exclusive_event_init(event);
13117 	if (err)
13118 		return ERR_PTR(err);
13119 
13120 	if (has_addr_filter(event)) {
13121 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
13122 						    sizeof(struct perf_addr_filter_range),
13123 						    GFP_KERNEL);
13124 		if (!event->addr_filter_ranges)
13125 			return ERR_PTR(-ENOMEM);
13126 
13127 		/*
13128 		 * Clone the parent's vma offsets: they are valid until exec()
13129 		 * even if the mm is not shared with the parent.
13130 		 */
13131 		if (event->parent) {
13132 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
13133 
13134 			raw_spin_lock_irq(&ifh->lock);
13135 			memcpy(event->addr_filter_ranges,
13136 			       event->parent->addr_filter_ranges,
13137 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
13138 			raw_spin_unlock_irq(&ifh->lock);
13139 		}
13140 
13141 		/* force hw sync on the address filters */
13142 		event->addr_filters_gen = 1;
13143 	}
13144 
13145 	if (!event->parent) {
13146 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
13147 			err = get_callchain_buffers(attr->sample_max_stack);
13148 			if (err)
13149 				return ERR_PTR(err);
13150 			event->attach_state |= PERF_ATTACH_CALLCHAIN;
13151 		}
13152 	}
13153 
13154 	err = security_perf_event_alloc(event);
13155 	if (err)
13156 		return ERR_PTR(err);
13157 
13158 	/* symmetric to unaccount_event() in _free_event() */
13159 	account_event(event);
13160 
13161 	/*
13162 	 * Event creation should be under SRCU, see perf_pmu_unregister().
13163 	 */
13164 	lockdep_assert_held(&pmus_srcu);
13165 	scoped_guard (spinlock, &pmu->events_lock)
13166 		list_add(&event->pmu_list, &pmu->events);
13167 
13168 	return_ptr(event);
13169 }
13170 
13171 static int perf_copy_attr(struct perf_event_attr __user *uattr,
13172 			  struct perf_event_attr *attr)
13173 {
13174 	u32 size;
13175 	int ret;
13176 
13177 	/* Zero the full structure, so that a short copy will be nice. */
13178 	memset(attr, 0, sizeof(*attr));
13179 
13180 	ret = get_user(size, &uattr->size);
13181 	if (ret)
13182 		return ret;
13183 
13184 	/* ABI compatibility quirk: */
13185 	if (!size)
13186 		size = PERF_ATTR_SIZE_VER0;
13187 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
13188 		goto err_size;
13189 
13190 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
13191 	if (ret) {
13192 		if (ret == -E2BIG)
13193 			goto err_size;
13194 		return ret;
13195 	}
13196 
13197 	attr->size = size;
13198 
13199 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
13200 		return -EINVAL;
13201 
13202 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
13203 		return -EINVAL;
13204 
13205 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
13206 		return -EINVAL;
13207 
13208 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
13209 		u64 mask = attr->branch_sample_type;
13210 
13211 		/* only using defined bits */
13212 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
13213 			return -EINVAL;
13214 
13215 		/* at least one branch bit must be set */
13216 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
13217 			return -EINVAL;
13218 
13219 		/* propagate priv level, when not set for branch */
13220 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
13221 
13222 			/* exclude_kernel checked on syscall entry */
13223 			if (!attr->exclude_kernel)
13224 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
13225 
13226 			if (!attr->exclude_user)
13227 				mask |= PERF_SAMPLE_BRANCH_USER;
13228 
13229 			if (!attr->exclude_hv)
13230 				mask |= PERF_SAMPLE_BRANCH_HV;
13231 			/*
13232 			 * adjust user setting (for HW filter setup)
13233 			 */
13234 			attr->branch_sample_type = mask;
13235 		}
13236 		/* privileged levels capture (kernel, hv): check permissions */
13237 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
13238 			ret = perf_allow_kernel();
13239 			if (ret)
13240 				return ret;
13241 		}
13242 	}
13243 
13244 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
13245 		ret = perf_reg_validate(attr->sample_regs_user);
13246 		if (ret)
13247 			return ret;
13248 	}
13249 
13250 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
13251 		if (!arch_perf_have_user_stack_dump())
13252 			return -ENOSYS;
13253 
13254 		/*
13255 		 * We have __u32 type for the size, but so far
13256 		 * we can only use __u16 as maximum due to the
13257 		 * __u16 sample size limit.
13258 		 */
13259 		if (attr->sample_stack_user >= USHRT_MAX)
13260 			return -EINVAL;
13261 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
13262 			return -EINVAL;
13263 	}
13264 
13265 	if (!attr->sample_max_stack)
13266 		attr->sample_max_stack = sysctl_perf_event_max_stack;
13267 
13268 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
13269 		ret = perf_reg_validate(attr->sample_regs_intr);
13270 
13271 #ifndef CONFIG_CGROUP_PERF
13272 	if (attr->sample_type & PERF_SAMPLE_CGROUP)
13273 		return -EINVAL;
13274 #endif
13275 	if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
13276 	    (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
13277 		return -EINVAL;
13278 
13279 	if (!attr->inherit && attr->inherit_thread)
13280 		return -EINVAL;
13281 
13282 	if (attr->remove_on_exec && attr->enable_on_exec)
13283 		return -EINVAL;
13284 
13285 	if (attr->sigtrap && !attr->remove_on_exec)
13286 		return -EINVAL;
13287 
13288 out:
13289 	return ret;
13290 
13291 err_size:
13292 	put_user(sizeof(*attr), &uattr->size);
13293 	ret = -E2BIG;
13294 	goto out;
13295 }
13296 
13297 static void mutex_lock_double(struct mutex *a, struct mutex *b)
13298 {
13299 	if (b < a)
13300 		swap(a, b);
13301 
13302 	mutex_lock(a);
13303 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
13304 }
13305 
13306 static int
13307 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
13308 {
13309 	struct perf_buffer *rb = NULL;
13310 	int ret = -EINVAL;
13311 
13312 	if (!output_event) {
13313 		mutex_lock(&event->mmap_mutex);
13314 		goto set;
13315 	}
13316 
13317 	/* don't allow circular references */
13318 	if (event == output_event)
13319 		goto out;
13320 
13321 	/*
13322 	 * Don't allow cross-cpu buffers
13323 	 */
13324 	if (output_event->cpu != event->cpu)
13325 		goto out;
13326 
13327 	/*
13328 	 * If its not a per-cpu rb, it must be the same task.
13329 	 */
13330 	if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
13331 		goto out;
13332 
13333 	/*
13334 	 * Mixing clocks in the same buffer is trouble you don't need.
13335 	 */
13336 	if (output_event->clock != event->clock)
13337 		goto out;
13338 
13339 	/*
13340 	 * Either writing ring buffer from beginning or from end.
13341 	 * Mixing is not allowed.
13342 	 */
13343 	if (is_write_backward(output_event) != is_write_backward(event))
13344 		goto out;
13345 
13346 	/*
13347 	 * If both events generate aux data, they must be on the same PMU
13348 	 */
13349 	if (has_aux(event) && has_aux(output_event) &&
13350 	    event->pmu != output_event->pmu)
13351 		goto out;
13352 
13353 	/*
13354 	 * Hold both mmap_mutex to serialize against perf_mmap_close().  Since
13355 	 * output_event is already on rb->event_list, and the list iteration
13356 	 * restarts after every removal, it is guaranteed this new event is
13357 	 * observed *OR* if output_event is already removed, it's guaranteed we
13358 	 * observe !rb->mmap_count.
13359 	 */
13360 	mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
13361 set:
13362 	/* Can't redirect output if we've got an active mmap() */
13363 	if (refcount_read(&event->mmap_count))
13364 		goto unlock;
13365 
13366 	if (output_event) {
13367 		if (output_event->state <= PERF_EVENT_STATE_REVOKED)
13368 			goto unlock;
13369 
13370 		/* get the rb we want to redirect to */
13371 		rb = ring_buffer_get(output_event);
13372 		if (!rb)
13373 			goto unlock;
13374 
13375 		/* did we race against perf_mmap_close() */
13376 		if (!refcount_read(&rb->mmap_count)) {
13377 			ring_buffer_put(rb);
13378 			goto unlock;
13379 		}
13380 	}
13381 
13382 	ring_buffer_attach(event, rb);
13383 
13384 	ret = 0;
13385 unlock:
13386 	mutex_unlock(&event->mmap_mutex);
13387 	if (output_event)
13388 		mutex_unlock(&output_event->mmap_mutex);
13389 
13390 out:
13391 	return ret;
13392 }
13393 
13394 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
13395 {
13396 	bool nmi_safe = false;
13397 
13398 	switch (clk_id) {
13399 	case CLOCK_MONOTONIC:
13400 		event->clock = &ktime_get_mono_fast_ns;
13401 		nmi_safe = true;
13402 		break;
13403 
13404 	case CLOCK_MONOTONIC_RAW:
13405 		event->clock = &ktime_get_raw_fast_ns;
13406 		nmi_safe = true;
13407 		break;
13408 
13409 	case CLOCK_REALTIME:
13410 		event->clock = &ktime_get_real_ns;
13411 		break;
13412 
13413 	case CLOCK_BOOTTIME:
13414 		event->clock = &ktime_get_boottime_ns;
13415 		break;
13416 
13417 	case CLOCK_TAI:
13418 		event->clock = &ktime_get_clocktai_ns;
13419 		break;
13420 
13421 	default:
13422 		return -EINVAL;
13423 	}
13424 
13425 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
13426 		return -EINVAL;
13427 
13428 	return 0;
13429 }
13430 
13431 static bool
13432 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
13433 {
13434 	unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
13435 	bool is_capable = perfmon_capable();
13436 
13437 	if (attr->sigtrap) {
13438 		/*
13439 		 * perf_event_attr::sigtrap sends signals to the other task.
13440 		 * Require the current task to also have CAP_KILL.
13441 		 */
13442 		rcu_read_lock();
13443 		is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
13444 		rcu_read_unlock();
13445 
13446 		/*
13447 		 * If the required capabilities aren't available, checks for
13448 		 * ptrace permissions: upgrade to ATTACH, since sending signals
13449 		 * can effectively change the target task.
13450 		 */
13451 		ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
13452 	}
13453 
13454 	/*
13455 	 * Preserve ptrace permission check for backwards compatibility. The
13456 	 * ptrace check also includes checks that the current task and other
13457 	 * task have matching uids, and is therefore not done here explicitly.
13458 	 */
13459 	return is_capable || ptrace_may_access(task, ptrace_mode);
13460 }
13461 
13462 /**
13463  * sys_perf_event_open - open a performance event, associate it to a task/cpu
13464  *
13465  * @attr_uptr:	event_id type attributes for monitoring/sampling
13466  * @pid:		target pid
13467  * @cpu:		target cpu
13468  * @group_fd:		group leader event fd
13469  * @flags:		perf event open flags
13470  */
13471 SYSCALL_DEFINE5(perf_event_open,
13472 		struct perf_event_attr __user *, attr_uptr,
13473 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
13474 {
13475 	struct perf_event *group_leader = NULL, *output_event = NULL;
13476 	struct perf_event_pmu_context *pmu_ctx;
13477 	struct perf_event *event, *sibling;
13478 	struct perf_event_attr attr;
13479 	struct perf_event_context *ctx;
13480 	struct file *event_file = NULL;
13481 	struct task_struct *task = NULL;
13482 	struct pmu *pmu;
13483 	int event_fd;
13484 	int move_group = 0;
13485 	int err;
13486 	int f_flags = O_RDWR;
13487 	int cgroup_fd = -1;
13488 
13489 	/* for future expandability... */
13490 	if (flags & ~PERF_FLAG_ALL)
13491 		return -EINVAL;
13492 
13493 	err = perf_copy_attr(attr_uptr, &attr);
13494 	if (err)
13495 		return err;
13496 
13497 	/* Do we allow access to perf_event_open(2) ? */
13498 	err = security_perf_event_open(PERF_SECURITY_OPEN);
13499 	if (err)
13500 		return err;
13501 
13502 	if (!attr.exclude_kernel) {
13503 		err = perf_allow_kernel();
13504 		if (err)
13505 			return err;
13506 	}
13507 
13508 	if (attr.namespaces) {
13509 		if (!perfmon_capable())
13510 			return -EACCES;
13511 	}
13512 
13513 	if (attr.freq) {
13514 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
13515 			return -EINVAL;
13516 	} else {
13517 		if (attr.sample_period & (1ULL << 63))
13518 			return -EINVAL;
13519 	}
13520 
13521 	/* Only privileged users can get physical addresses */
13522 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
13523 		err = perf_allow_kernel();
13524 		if (err)
13525 			return err;
13526 	}
13527 
13528 	/* REGS_INTR can leak data, lockdown must prevent this */
13529 	if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
13530 		err = security_locked_down(LOCKDOWN_PERF);
13531 		if (err)
13532 			return err;
13533 	}
13534 
13535 	/*
13536 	 * In cgroup mode, the pid argument is used to pass the fd
13537 	 * opened to the cgroup directory in cgroupfs. The cpu argument
13538 	 * designates the cpu on which to monitor threads from that
13539 	 * cgroup.
13540 	 */
13541 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
13542 		return -EINVAL;
13543 
13544 	if (flags & PERF_FLAG_FD_CLOEXEC)
13545 		f_flags |= O_CLOEXEC;
13546 
13547 	event_fd = get_unused_fd_flags(f_flags);
13548 	if (event_fd < 0)
13549 		return event_fd;
13550 
13551 	/*
13552 	 * Event creation should be under SRCU, see perf_pmu_unregister().
13553 	 */
13554 	guard(srcu)(&pmus_srcu);
13555 
13556 	CLASS(fd, group)(group_fd);     // group_fd == -1 => empty
13557 	if (group_fd != -1) {
13558 		if (!is_perf_file(group)) {
13559 			err = -EBADF;
13560 			goto err_fd;
13561 		}
13562 		group_leader = fd_file(group)->private_data;
13563 		if (group_leader->state <= PERF_EVENT_STATE_REVOKED) {
13564 			err = -ENODEV;
13565 			goto err_fd;
13566 		}
13567 		if (flags & PERF_FLAG_FD_OUTPUT)
13568 			output_event = group_leader;
13569 		if (flags & PERF_FLAG_FD_NO_GROUP)
13570 			group_leader = NULL;
13571 	}
13572 
13573 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
13574 		task = find_lively_task_by_vpid(pid);
13575 		if (IS_ERR(task)) {
13576 			err = PTR_ERR(task);
13577 			goto err_fd;
13578 		}
13579 	}
13580 
13581 	if (task && group_leader &&
13582 	    group_leader->attr.inherit != attr.inherit) {
13583 		err = -EINVAL;
13584 		goto err_task;
13585 	}
13586 
13587 	if (flags & PERF_FLAG_PID_CGROUP)
13588 		cgroup_fd = pid;
13589 
13590 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
13591 				 NULL, NULL, cgroup_fd);
13592 	if (IS_ERR(event)) {
13593 		err = PTR_ERR(event);
13594 		goto err_task;
13595 	}
13596 
13597 	if (is_sampling_event(event)) {
13598 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
13599 			err = -EOPNOTSUPP;
13600 			goto err_alloc;
13601 		}
13602 	}
13603 
13604 	/*
13605 	 * Special case software events and allow them to be part of
13606 	 * any hardware group.
13607 	 */
13608 	pmu = event->pmu;
13609 
13610 	if (attr.use_clockid) {
13611 		err = perf_event_set_clock(event, attr.clockid);
13612 		if (err)
13613 			goto err_alloc;
13614 	}
13615 
13616 	if (pmu->task_ctx_nr == perf_sw_context)
13617 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
13618 
13619 	if (task) {
13620 		err = down_read_interruptible(&task->signal->exec_update_lock);
13621 		if (err)
13622 			goto err_alloc;
13623 
13624 		/*
13625 		 * We must hold exec_update_lock across this and any potential
13626 		 * perf_install_in_context() call for this new event to
13627 		 * serialize against exec() altering our credentials (and the
13628 		 * perf_event_exit_task() that could imply).
13629 		 */
13630 		err = -EACCES;
13631 		if (!perf_check_permission(&attr, task))
13632 			goto err_cred;
13633 	}
13634 
13635 	/*
13636 	 * Get the target context (task or percpu):
13637 	 */
13638 	ctx = find_get_context(task, event);
13639 	if (IS_ERR(ctx)) {
13640 		err = PTR_ERR(ctx);
13641 		goto err_cred;
13642 	}
13643 
13644 	mutex_lock(&ctx->mutex);
13645 
13646 	if (ctx->task == TASK_TOMBSTONE) {
13647 		err = -ESRCH;
13648 		goto err_locked;
13649 	}
13650 
13651 	if (!task) {
13652 		/*
13653 		 * Check if the @cpu we're creating an event for is online.
13654 		 *
13655 		 * We use the perf_cpu_context::ctx::mutex to serialize against
13656 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
13657 		 */
13658 		struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
13659 
13660 		if (!cpuctx->online) {
13661 			err = -ENODEV;
13662 			goto err_locked;
13663 		}
13664 	}
13665 
13666 	if (group_leader) {
13667 		err = -EINVAL;
13668 
13669 		/*
13670 		 * Do not allow a recursive hierarchy (this new sibling
13671 		 * becoming part of another group-sibling):
13672 		 */
13673 		if (group_leader->group_leader != group_leader)
13674 			goto err_locked;
13675 
13676 		/* All events in a group should have the same clock */
13677 		if (group_leader->clock != event->clock)
13678 			goto err_locked;
13679 
13680 		/*
13681 		 * Make sure we're both events for the same CPU;
13682 		 * grouping events for different CPUs is broken; since
13683 		 * you can never concurrently schedule them anyhow.
13684 		 */
13685 		if (group_leader->cpu != event->cpu)
13686 			goto err_locked;
13687 
13688 		/*
13689 		 * Make sure we're both on the same context; either task or cpu.
13690 		 */
13691 		if (group_leader->ctx != ctx)
13692 			goto err_locked;
13693 
13694 		/*
13695 		 * Only a group leader can be exclusive or pinned
13696 		 */
13697 		if (attr.exclusive || attr.pinned)
13698 			goto err_locked;
13699 
13700 		if (is_software_event(event) &&
13701 		    !in_software_context(group_leader)) {
13702 			/*
13703 			 * If the event is a sw event, but the group_leader
13704 			 * is on hw context.
13705 			 *
13706 			 * Allow the addition of software events to hw
13707 			 * groups, this is safe because software events
13708 			 * never fail to schedule.
13709 			 *
13710 			 * Note the comment that goes with struct
13711 			 * perf_event_pmu_context.
13712 			 */
13713 			pmu = group_leader->pmu_ctx->pmu;
13714 		} else if (!is_software_event(event)) {
13715 			if (is_software_event(group_leader) &&
13716 			    (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
13717 				/*
13718 				 * In case the group is a pure software group, and we
13719 				 * try to add a hardware event, move the whole group to
13720 				 * the hardware context.
13721 				 */
13722 				move_group = 1;
13723 			}
13724 
13725 			/* Don't allow group of multiple hw events from different pmus */
13726 			if (!in_software_context(group_leader) &&
13727 			    group_leader->pmu_ctx->pmu != pmu)
13728 				goto err_locked;
13729 		}
13730 	}
13731 
13732 	/*
13733 	 * Now that we're certain of the pmu; find the pmu_ctx.
13734 	 */
13735 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
13736 	if (IS_ERR(pmu_ctx)) {
13737 		err = PTR_ERR(pmu_ctx);
13738 		goto err_locked;
13739 	}
13740 	event->pmu_ctx = pmu_ctx;
13741 
13742 	if (output_event) {
13743 		err = perf_event_set_output(event, output_event);
13744 		if (err)
13745 			goto err_context;
13746 	}
13747 
13748 	if (!perf_event_validate_size(event)) {
13749 		err = -E2BIG;
13750 		goto err_context;
13751 	}
13752 
13753 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
13754 		err = -EINVAL;
13755 		goto err_context;
13756 	}
13757 
13758 	/*
13759 	 * Must be under the same ctx::mutex as perf_install_in_context(),
13760 	 * because we need to serialize with concurrent event creation.
13761 	 */
13762 	if (!exclusive_event_installable(event, ctx)) {
13763 		err = -EBUSY;
13764 		goto err_context;
13765 	}
13766 
13767 	WARN_ON_ONCE(ctx->parent_ctx);
13768 
13769 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags);
13770 	if (IS_ERR(event_file)) {
13771 		err = PTR_ERR(event_file);
13772 		event_file = NULL;
13773 		goto err_context;
13774 	}
13775 
13776 	/*
13777 	 * This is the point on no return; we cannot fail hereafter. This is
13778 	 * where we start modifying current state.
13779 	 */
13780 
13781 	if (move_group) {
13782 		perf_remove_from_context(group_leader, 0);
13783 		put_pmu_ctx(group_leader->pmu_ctx);
13784 
13785 		for_each_sibling_event(sibling, group_leader) {
13786 			perf_remove_from_context(sibling, 0);
13787 			put_pmu_ctx(sibling->pmu_ctx);
13788 		}
13789 
13790 		/*
13791 		 * Install the group siblings before the group leader.
13792 		 *
13793 		 * Because a group leader will try and install the entire group
13794 		 * (through the sibling list, which is still in-tact), we can
13795 		 * end up with siblings installed in the wrong context.
13796 		 *
13797 		 * By installing siblings first we NO-OP because they're not
13798 		 * reachable through the group lists.
13799 		 */
13800 		for_each_sibling_event(sibling, group_leader) {
13801 			sibling->pmu_ctx = pmu_ctx;
13802 			get_pmu_ctx(pmu_ctx);
13803 			perf_event__state_init(sibling);
13804 			perf_install_in_context(ctx, sibling, sibling->cpu);
13805 		}
13806 
13807 		/*
13808 		 * Removing from the context ends up with disabled
13809 		 * event. What we want here is event in the initial
13810 		 * startup state, ready to be add into new context.
13811 		 */
13812 		group_leader->pmu_ctx = pmu_ctx;
13813 		get_pmu_ctx(pmu_ctx);
13814 		perf_event__state_init(group_leader);
13815 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
13816 	}
13817 
13818 	/*
13819 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
13820 	 * that we're serialized against further additions and before
13821 	 * perf_install_in_context() which is the point the event is active and
13822 	 * can use these values.
13823 	 */
13824 	perf_event__header_size(event);
13825 	perf_event__id_header_size(event);
13826 
13827 	event->owner = current;
13828 
13829 	perf_install_in_context(ctx, event, event->cpu);
13830 	perf_unpin_context(ctx);
13831 
13832 	mutex_unlock(&ctx->mutex);
13833 
13834 	if (task) {
13835 		up_read(&task->signal->exec_update_lock);
13836 		put_task_struct(task);
13837 	}
13838 
13839 	mutex_lock(&current->perf_event_mutex);
13840 	list_add_tail(&event->owner_entry, &current->perf_event_list);
13841 	mutex_unlock(&current->perf_event_mutex);
13842 
13843 	/*
13844 	 * File reference in group guarantees that group_leader has been
13845 	 * kept alive until we place the new event on the sibling_list.
13846 	 * This ensures destruction of the group leader will find
13847 	 * the pointer to itself in perf_group_detach().
13848 	 */
13849 	fd_install(event_fd, event_file);
13850 	return event_fd;
13851 
13852 err_context:
13853 	put_pmu_ctx(event->pmu_ctx);
13854 	event->pmu_ctx = NULL; /* _free_event() */
13855 err_locked:
13856 	mutex_unlock(&ctx->mutex);
13857 	perf_unpin_context(ctx);
13858 	put_ctx(ctx);
13859 err_cred:
13860 	if (task)
13861 		up_read(&task->signal->exec_update_lock);
13862 err_alloc:
13863 	put_event(event);
13864 err_task:
13865 	if (task)
13866 		put_task_struct(task);
13867 err_fd:
13868 	put_unused_fd(event_fd);
13869 	return err;
13870 }
13871 
13872 /**
13873  * perf_event_create_kernel_counter
13874  *
13875  * @attr: attributes of the counter to create
13876  * @cpu: cpu in which the counter is bound
13877  * @task: task to profile (NULL for percpu)
13878  * @overflow_handler: callback to trigger when we hit the event
13879  * @context: context data could be used in overflow_handler callback
13880  */
13881 struct perf_event *
13882 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
13883 				 struct task_struct *task,
13884 				 perf_overflow_handler_t overflow_handler,
13885 				 void *context)
13886 {
13887 	struct perf_event_pmu_context *pmu_ctx;
13888 	struct perf_event_context *ctx;
13889 	struct perf_event *event;
13890 	struct pmu *pmu;
13891 	int err;
13892 
13893 	/*
13894 	 * Grouping is not supported for kernel events, neither is 'AUX',
13895 	 * make sure the caller's intentions are adjusted.
13896 	 */
13897 	if (attr->aux_output || attr->aux_action)
13898 		return ERR_PTR(-EINVAL);
13899 
13900 	/*
13901 	 * Event creation should be under SRCU, see perf_pmu_unregister().
13902 	 */
13903 	guard(srcu)(&pmus_srcu);
13904 
13905 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
13906 				 overflow_handler, context, -1);
13907 	if (IS_ERR(event)) {
13908 		err = PTR_ERR(event);
13909 		goto err;
13910 	}
13911 
13912 	/* Mark owner so we could distinguish it from user events. */
13913 	event->owner = TASK_TOMBSTONE;
13914 	pmu = event->pmu;
13915 
13916 	if (pmu->task_ctx_nr == perf_sw_context)
13917 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
13918 
13919 	/*
13920 	 * Get the target context (task or percpu):
13921 	 */
13922 	ctx = find_get_context(task, event);
13923 	if (IS_ERR(ctx)) {
13924 		err = PTR_ERR(ctx);
13925 		goto err_alloc;
13926 	}
13927 
13928 	WARN_ON_ONCE(ctx->parent_ctx);
13929 	mutex_lock(&ctx->mutex);
13930 	if (ctx->task == TASK_TOMBSTONE) {
13931 		err = -ESRCH;
13932 		goto err_unlock;
13933 	}
13934 
13935 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
13936 	if (IS_ERR(pmu_ctx)) {
13937 		err = PTR_ERR(pmu_ctx);
13938 		goto err_unlock;
13939 	}
13940 	event->pmu_ctx = pmu_ctx;
13941 
13942 	if (!task) {
13943 		/*
13944 		 * Check if the @cpu we're creating an event for is online.
13945 		 *
13946 		 * We use the perf_cpu_context::ctx::mutex to serialize against
13947 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
13948 		 */
13949 		struct perf_cpu_context *cpuctx =
13950 			container_of(ctx, struct perf_cpu_context, ctx);
13951 		if (!cpuctx->online) {
13952 			err = -ENODEV;
13953 			goto err_pmu_ctx;
13954 		}
13955 	}
13956 
13957 	if (!exclusive_event_installable(event, ctx)) {
13958 		err = -EBUSY;
13959 		goto err_pmu_ctx;
13960 	}
13961 
13962 	perf_install_in_context(ctx, event, event->cpu);
13963 	perf_unpin_context(ctx);
13964 	mutex_unlock(&ctx->mutex);
13965 
13966 	return event;
13967 
13968 err_pmu_ctx:
13969 	put_pmu_ctx(pmu_ctx);
13970 	event->pmu_ctx = NULL; /* _free_event() */
13971 err_unlock:
13972 	mutex_unlock(&ctx->mutex);
13973 	perf_unpin_context(ctx);
13974 	put_ctx(ctx);
13975 err_alloc:
13976 	put_event(event);
13977 err:
13978 	return ERR_PTR(err);
13979 }
13980 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
13981 
13982 static void __perf_pmu_remove(struct perf_event_context *ctx,
13983 			      int cpu, struct pmu *pmu,
13984 			      struct perf_event_groups *groups,
13985 			      struct list_head *events)
13986 {
13987 	struct perf_event *event, *sibling;
13988 
13989 	perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) {
13990 		perf_remove_from_context(event, 0);
13991 		put_pmu_ctx(event->pmu_ctx);
13992 		list_add(&event->migrate_entry, events);
13993 
13994 		for_each_sibling_event(sibling, event) {
13995 			perf_remove_from_context(sibling, 0);
13996 			put_pmu_ctx(sibling->pmu_ctx);
13997 			list_add(&sibling->migrate_entry, events);
13998 		}
13999 	}
14000 }
14001 
14002 static void __perf_pmu_install_event(struct pmu *pmu,
14003 				     struct perf_event_context *ctx,
14004 				     int cpu, struct perf_event *event)
14005 {
14006 	struct perf_event_pmu_context *epc;
14007 	struct perf_event_context *old_ctx = event->ctx;
14008 
14009 	get_ctx(ctx); /* normally find_get_context() */
14010 
14011 	event->cpu = cpu;
14012 	epc = find_get_pmu_context(pmu, ctx, event);
14013 	event->pmu_ctx = epc;
14014 
14015 	if (event->state >= PERF_EVENT_STATE_OFF)
14016 		event->state = PERF_EVENT_STATE_INACTIVE;
14017 	perf_install_in_context(ctx, event, cpu);
14018 
14019 	/*
14020 	 * Now that event->ctx is updated and visible, put the old ctx.
14021 	 */
14022 	put_ctx(old_ctx);
14023 }
14024 
14025 static void __perf_pmu_install(struct perf_event_context *ctx,
14026 			       int cpu, struct pmu *pmu, struct list_head *events)
14027 {
14028 	struct perf_event *event, *tmp;
14029 
14030 	/*
14031 	 * Re-instate events in 2 passes.
14032 	 *
14033 	 * Skip over group leaders and only install siblings on this first
14034 	 * pass, siblings will not get enabled without a leader, however a
14035 	 * leader will enable its siblings, even if those are still on the old
14036 	 * context.
14037 	 */
14038 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
14039 		if (event->group_leader == event)
14040 			continue;
14041 
14042 		list_del(&event->migrate_entry);
14043 		__perf_pmu_install_event(pmu, ctx, cpu, event);
14044 	}
14045 
14046 	/*
14047 	 * Once all the siblings are setup properly, install the group leaders
14048 	 * to make it go.
14049 	 */
14050 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
14051 		list_del(&event->migrate_entry);
14052 		__perf_pmu_install_event(pmu, ctx, cpu, event);
14053 	}
14054 }
14055 
14056 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
14057 {
14058 	struct perf_event_context *src_ctx, *dst_ctx;
14059 	LIST_HEAD(events);
14060 
14061 	/*
14062 	 * Since per-cpu context is persistent, no need to grab an extra
14063 	 * reference.
14064 	 */
14065 	src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx;
14066 	dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx;
14067 
14068 	/*
14069 	 * See perf_event_ctx_lock() for comments on the details
14070 	 * of swizzling perf_event::ctx.
14071 	 */
14072 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
14073 
14074 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events);
14075 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events);
14076 
14077 	if (!list_empty(&events)) {
14078 		/*
14079 		 * Wait for the events to quiesce before re-instating them.
14080 		 */
14081 		synchronize_rcu();
14082 
14083 		__perf_pmu_install(dst_ctx, dst_cpu, pmu, &events);
14084 	}
14085 
14086 	mutex_unlock(&dst_ctx->mutex);
14087 	mutex_unlock(&src_ctx->mutex);
14088 }
14089 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
14090 
14091 static void sync_child_event(struct perf_event *child_event,
14092 			     struct task_struct *task)
14093 {
14094 	struct perf_event *parent_event = child_event->parent;
14095 	u64 child_val;
14096 
14097 	if (child_event->attr.inherit_stat) {
14098 		if (task && task != TASK_TOMBSTONE)
14099 			perf_event_read_event(child_event, task);
14100 	}
14101 
14102 	child_val = perf_event_count(child_event, false);
14103 
14104 	/*
14105 	 * Add back the child's count to the parent's count:
14106 	 */
14107 	atomic64_add(child_val, &parent_event->child_count);
14108 	atomic64_add(child_event->total_time_enabled,
14109 		     &parent_event->child_total_time_enabled);
14110 	atomic64_add(child_event->total_time_running,
14111 		     &parent_event->child_total_time_running);
14112 }
14113 
14114 static void
14115 perf_event_exit_event(struct perf_event *event,
14116 		      struct perf_event_context *ctx,
14117 		      struct task_struct *task,
14118 		      bool revoke)
14119 {
14120 	struct perf_event *parent_event = event->parent;
14121 	unsigned long detach_flags = DETACH_EXIT;
14122 	unsigned int attach_state;
14123 
14124 	if (parent_event) {
14125 		/*
14126 		 * Do not destroy the 'original' grouping; because of the
14127 		 * context switch optimization the original events could've
14128 		 * ended up in a random child task.
14129 		 *
14130 		 * If we were to destroy the original group, all group related
14131 		 * operations would cease to function properly after this
14132 		 * random child dies.
14133 		 *
14134 		 * Do destroy all inherited groups, we don't care about those
14135 		 * and being thorough is better.
14136 		 */
14137 		detach_flags |= DETACH_GROUP | DETACH_CHILD;
14138 		mutex_lock(&parent_event->child_mutex);
14139 		/* PERF_ATTACH_ITRACE might be set concurrently */
14140 		attach_state = READ_ONCE(event->attach_state);
14141 
14142 		if (attach_state & PERF_ATTACH_CHILD)
14143 			sync_child_event(event, task);
14144 	}
14145 
14146 	if (revoke)
14147 		detach_flags |= DETACH_GROUP | DETACH_REVOKE;
14148 
14149 	perf_remove_from_context(event, detach_flags);
14150 	/*
14151 	 * Child events can be freed.
14152 	 */
14153 	if (parent_event) {
14154 		mutex_unlock(&parent_event->child_mutex);
14155 
14156 		/*
14157 		 * Match the refcount initialization. Make sure it doesn't happen
14158 		 * twice if pmu_detach_event() calls it on an already exited task.
14159 		 */
14160 		if (attach_state & PERF_ATTACH_CHILD) {
14161 			/*
14162 			 * Kick perf_poll() for is_event_hup();
14163 			 */
14164 			perf_event_wakeup(parent_event);
14165 			/*
14166 			 * pmu_detach_event() will have an extra refcount.
14167 			 * perf_pending_task() might have one too.
14168 			 */
14169 			put_event(event);
14170 		}
14171 
14172 		return;
14173 	}
14174 
14175 	/*
14176 	 * Parent events are governed by their filedesc, retain them.
14177 	 */
14178 	perf_event_wakeup(event);
14179 }
14180 
14181 static void perf_event_exit_task_context(struct task_struct *task, bool exit)
14182 {
14183 	struct perf_event_context *ctx, *clone_ctx = NULL;
14184 	struct perf_event *child_event, *next;
14185 
14186 	ctx = perf_pin_task_context(task);
14187 	if (!ctx)
14188 		return;
14189 
14190 	/*
14191 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
14192 	 * ctx::mutex over the entire thing. This serializes against almost
14193 	 * everything that wants to access the ctx.
14194 	 *
14195 	 * The exception is sys_perf_event_open() /
14196 	 * perf_event_create_kernel_count() which does find_get_context()
14197 	 * without ctx::mutex (it cannot because of the move_group double mutex
14198 	 * lock thing). See the comments in perf_install_in_context().
14199 	 */
14200 	mutex_lock(&ctx->mutex);
14201 
14202 	/*
14203 	 * In a single ctx::lock section, de-schedule the events and detach the
14204 	 * context from the task such that we cannot ever get it scheduled back
14205 	 * in.
14206 	 */
14207 	raw_spin_lock_irq(&ctx->lock);
14208 	if (exit)
14209 		task_ctx_sched_out(ctx, NULL, EVENT_ALL);
14210 
14211 	/*
14212 	 * Now that the context is inactive, destroy the task <-> ctx relation
14213 	 * and mark the context dead.
14214 	 */
14215 	RCU_INIT_POINTER(task->perf_event_ctxp, NULL);
14216 	put_ctx(ctx); /* cannot be last */
14217 	WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
14218 	put_task_struct(task); /* cannot be last */
14219 
14220 	clone_ctx = unclone_ctx(ctx);
14221 	raw_spin_unlock_irq(&ctx->lock);
14222 
14223 	if (clone_ctx)
14224 		put_ctx(clone_ctx);
14225 
14226 	/*
14227 	 * Report the task dead after unscheduling the events so that we
14228 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
14229 	 * get a few PERF_RECORD_READ events.
14230 	 */
14231 	if (exit)
14232 		perf_event_task(task, ctx, 0);
14233 
14234 	list_for_each_entry_safe(child_event, next, &ctx->event_list, event_entry)
14235 		perf_event_exit_event(child_event, ctx, exit ? task : NULL, false);
14236 
14237 	mutex_unlock(&ctx->mutex);
14238 
14239 	if (!exit) {
14240 		/*
14241 		 * perf_event_release_kernel() could still have a reference on
14242 		 * this context. In that case we must wait for these events to
14243 		 * have been freed (in particular all their references to this
14244 		 * task must've been dropped).
14245 		 *
14246 		 * Without this copy_process() will unconditionally free this
14247 		 * task (irrespective of its reference count) and
14248 		 * _free_event()'s put_task_struct(event->hw.target) will be a
14249 		 * use-after-free.
14250 		 *
14251 		 * Wait for all events to drop their context reference.
14252 		 */
14253 		wait_var_event(&ctx->refcount,
14254 			       refcount_read(&ctx->refcount) == 1);
14255 	}
14256 	put_ctx(ctx);
14257 }
14258 
14259 /*
14260  * When a task exits, feed back event values to parent events.
14261  *
14262  * Can be called with exec_update_lock held when called from
14263  * setup_new_exec().
14264  */
14265 void perf_event_exit_task(struct task_struct *task)
14266 {
14267 	struct perf_event *event, *tmp;
14268 
14269 	WARN_ON_ONCE(task != current);
14270 
14271 	mutex_lock(&task->perf_event_mutex);
14272 	list_for_each_entry_safe(event, tmp, &task->perf_event_list,
14273 				 owner_entry) {
14274 		list_del_init(&event->owner_entry);
14275 
14276 		/*
14277 		 * Ensure the list deletion is visible before we clear
14278 		 * the owner, closes a race against perf_release() where
14279 		 * we need to serialize on the owner->perf_event_mutex.
14280 		 */
14281 		smp_store_release(&event->owner, NULL);
14282 	}
14283 	mutex_unlock(&task->perf_event_mutex);
14284 
14285 	perf_event_exit_task_context(task, true);
14286 
14287 	/*
14288 	 * The perf_event_exit_task_context calls perf_event_task
14289 	 * with task's task_ctx, which generates EXIT events for
14290 	 * task contexts and sets task->perf_event_ctxp[] to NULL.
14291 	 * At this point we need to send EXIT events to cpu contexts.
14292 	 */
14293 	perf_event_task(task, NULL, 0);
14294 
14295 	/*
14296 	 * Detach the perf_ctx_data for the system-wide event.
14297 	 */
14298 	guard(percpu_read)(&global_ctx_data_rwsem);
14299 	detach_task_ctx_data(task);
14300 }
14301 
14302 /*
14303  * Free a context as created by inheritance by perf_event_init_task() below,
14304  * used by fork() in case of fail.
14305  *
14306  * Even though the task has never lived, the context and events have been
14307  * exposed through the child_list, so we must take care tearing it all down.
14308  */
14309 void perf_event_free_task(struct task_struct *task)
14310 {
14311 	perf_event_exit_task_context(task, false);
14312 }
14313 
14314 void perf_event_delayed_put(struct task_struct *task)
14315 {
14316 	WARN_ON_ONCE(task->perf_event_ctxp);
14317 }
14318 
14319 struct file *perf_event_get(unsigned int fd)
14320 {
14321 	struct file *file = fget(fd);
14322 	if (!file)
14323 		return ERR_PTR(-EBADF);
14324 
14325 	if (file->f_op != &perf_fops) {
14326 		fput(file);
14327 		return ERR_PTR(-EBADF);
14328 	}
14329 
14330 	return file;
14331 }
14332 
14333 const struct perf_event *perf_get_event(struct file *file)
14334 {
14335 	if (file->f_op != &perf_fops)
14336 		return ERR_PTR(-EINVAL);
14337 
14338 	return file->private_data;
14339 }
14340 
14341 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
14342 {
14343 	if (!event)
14344 		return ERR_PTR(-EINVAL);
14345 
14346 	return &event->attr;
14347 }
14348 
14349 int perf_allow_kernel(void)
14350 {
14351 	if (sysctl_perf_event_paranoid > 1 && !perfmon_capable())
14352 		return -EACCES;
14353 
14354 	return security_perf_event_open(PERF_SECURITY_KERNEL);
14355 }
14356 EXPORT_SYMBOL_GPL(perf_allow_kernel);
14357 
14358 /*
14359  * Inherit an event from parent task to child task.
14360  *
14361  * Returns:
14362  *  - valid pointer on success
14363  *  - NULL for orphaned events
14364  *  - IS_ERR() on error
14365  */
14366 static struct perf_event *
14367 inherit_event(struct perf_event *parent_event,
14368 	      struct task_struct *parent,
14369 	      struct perf_event_context *parent_ctx,
14370 	      struct task_struct *child,
14371 	      struct perf_event *group_leader,
14372 	      struct perf_event_context *child_ctx)
14373 {
14374 	enum perf_event_state parent_state = parent_event->state;
14375 	struct perf_event_pmu_context *pmu_ctx;
14376 	struct perf_event *child_event;
14377 	unsigned long flags;
14378 
14379 	/*
14380 	 * Instead of creating recursive hierarchies of events,
14381 	 * we link inherited events back to the original parent,
14382 	 * which has a filp for sure, which we use as the reference
14383 	 * count:
14384 	 */
14385 	if (parent_event->parent)
14386 		parent_event = parent_event->parent;
14387 
14388 	if (parent_event->state <= PERF_EVENT_STATE_REVOKED)
14389 		return NULL;
14390 
14391 	/*
14392 	 * Event creation should be under SRCU, see perf_pmu_unregister().
14393 	 */
14394 	guard(srcu)(&pmus_srcu);
14395 
14396 	child_event = perf_event_alloc(&parent_event->attr,
14397 					   parent_event->cpu,
14398 					   child,
14399 					   group_leader, parent_event,
14400 					   NULL, NULL, -1);
14401 	if (IS_ERR(child_event))
14402 		return child_event;
14403 
14404 	get_ctx(child_ctx);
14405 	child_event->ctx = child_ctx;
14406 
14407 	pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event);
14408 	if (IS_ERR(pmu_ctx)) {
14409 		free_event(child_event);
14410 		return ERR_CAST(pmu_ctx);
14411 	}
14412 	child_event->pmu_ctx = pmu_ctx;
14413 
14414 	/*
14415 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
14416 	 * must be under the same lock in order to serialize against
14417 	 * perf_event_release_kernel(), such that either we must observe
14418 	 * is_orphaned_event() or they will observe us on the child_list.
14419 	 */
14420 	mutex_lock(&parent_event->child_mutex);
14421 	if (is_orphaned_event(parent_event) ||
14422 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
14423 		mutex_unlock(&parent_event->child_mutex);
14424 		free_event(child_event);
14425 		return NULL;
14426 	}
14427 
14428 	/*
14429 	 * Make the child state follow the state of the parent event,
14430 	 * not its attr.disabled bit.  We hold the parent's mutex,
14431 	 * so we won't race with perf_event_{en, dis}able_family.
14432 	 */
14433 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
14434 		child_event->state = PERF_EVENT_STATE_INACTIVE;
14435 	else
14436 		child_event->state = PERF_EVENT_STATE_OFF;
14437 
14438 	if (parent_event->attr.freq) {
14439 		u64 sample_period = parent_event->hw.sample_period;
14440 		struct hw_perf_event *hwc = &child_event->hw;
14441 
14442 		hwc->sample_period = sample_period;
14443 		hwc->last_period   = sample_period;
14444 
14445 		local64_set(&hwc->period_left, sample_period);
14446 	}
14447 
14448 	child_event->overflow_handler = parent_event->overflow_handler;
14449 	child_event->overflow_handler_context
14450 		= parent_event->overflow_handler_context;
14451 
14452 	/*
14453 	 * Precalculate sample_data sizes
14454 	 */
14455 	perf_event__header_size(child_event);
14456 	perf_event__id_header_size(child_event);
14457 
14458 	/*
14459 	 * Link it up in the child's context:
14460 	 */
14461 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
14462 	add_event_to_ctx(child_event, child_ctx);
14463 	child_event->attach_state |= PERF_ATTACH_CHILD;
14464 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
14465 
14466 	/*
14467 	 * Link this into the parent event's child list
14468 	 */
14469 	list_add_tail(&child_event->child_list, &parent_event->child_list);
14470 	mutex_unlock(&parent_event->child_mutex);
14471 
14472 	return child_event;
14473 }
14474 
14475 /*
14476  * Inherits an event group.
14477  *
14478  * This will quietly suppress orphaned events; !inherit_event() is not an error.
14479  * This matches with perf_event_release_kernel() removing all child events.
14480  *
14481  * Returns:
14482  *  - 0 on success
14483  *  - <0 on error
14484  */
14485 static int inherit_group(struct perf_event *parent_event,
14486 	      struct task_struct *parent,
14487 	      struct perf_event_context *parent_ctx,
14488 	      struct task_struct *child,
14489 	      struct perf_event_context *child_ctx)
14490 {
14491 	struct perf_event *leader;
14492 	struct perf_event *sub;
14493 	struct perf_event *child_ctr;
14494 
14495 	leader = inherit_event(parent_event, parent, parent_ctx,
14496 				 child, NULL, child_ctx);
14497 	if (IS_ERR(leader))
14498 		return PTR_ERR(leader);
14499 	/*
14500 	 * @leader can be NULL here because of is_orphaned_event(). In this
14501 	 * case inherit_event() will create individual events, similar to what
14502 	 * perf_group_detach() would do anyway.
14503 	 */
14504 	for_each_sibling_event(sub, parent_event) {
14505 		child_ctr = inherit_event(sub, parent, parent_ctx,
14506 					    child, leader, child_ctx);
14507 		if (IS_ERR(child_ctr))
14508 			return PTR_ERR(child_ctr);
14509 
14510 		if (sub->aux_event == parent_event && child_ctr &&
14511 		    !perf_get_aux_event(child_ctr, leader))
14512 			return -EINVAL;
14513 	}
14514 	if (leader)
14515 		leader->group_generation = parent_event->group_generation;
14516 	return 0;
14517 }
14518 
14519 /*
14520  * Creates the child task context and tries to inherit the event-group.
14521  *
14522  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
14523  * inherited_all set when we 'fail' to inherit an orphaned event; this is
14524  * consistent with perf_event_release_kernel() removing all child events.
14525  *
14526  * Returns:
14527  *  - 0 on success
14528  *  - <0 on error
14529  */
14530 static int
14531 inherit_task_group(struct perf_event *event, struct task_struct *parent,
14532 		   struct perf_event_context *parent_ctx,
14533 		   struct task_struct *child,
14534 		   u64 clone_flags, int *inherited_all)
14535 {
14536 	struct perf_event_context *child_ctx;
14537 	int ret;
14538 
14539 	if (!event->attr.inherit ||
14540 	    (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
14541 	    /* Do not inherit if sigtrap and signal handlers were cleared. */
14542 	    (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
14543 		*inherited_all = 0;
14544 		return 0;
14545 	}
14546 
14547 	child_ctx = child->perf_event_ctxp;
14548 	if (!child_ctx) {
14549 		/*
14550 		 * This is executed from the parent task context, so
14551 		 * inherit events that have been marked for cloning.
14552 		 * First allocate and initialize a context for the
14553 		 * child.
14554 		 */
14555 		child_ctx = alloc_perf_context(child);
14556 		if (!child_ctx)
14557 			return -ENOMEM;
14558 
14559 		child->perf_event_ctxp = child_ctx;
14560 	}
14561 
14562 	ret = inherit_group(event, parent, parent_ctx, child, child_ctx);
14563 	if (ret)
14564 		*inherited_all = 0;
14565 
14566 	return ret;
14567 }
14568 
14569 /*
14570  * Initialize the perf_event context in task_struct
14571  */
14572 static int perf_event_init_context(struct task_struct *child, u64 clone_flags)
14573 {
14574 	struct perf_event_context *child_ctx, *parent_ctx;
14575 	struct perf_event_context *cloned_ctx;
14576 	struct perf_event *event;
14577 	struct task_struct *parent = current;
14578 	int inherited_all = 1;
14579 	unsigned long flags;
14580 	int ret = 0;
14581 
14582 	if (likely(!parent->perf_event_ctxp))
14583 		return 0;
14584 
14585 	/*
14586 	 * If the parent's context is a clone, pin it so it won't get
14587 	 * swapped under us.
14588 	 */
14589 	parent_ctx = perf_pin_task_context(parent);
14590 	if (!parent_ctx)
14591 		return 0;
14592 
14593 	/*
14594 	 * No need to check if parent_ctx != NULL here; since we saw
14595 	 * it non-NULL earlier, the only reason for it to become NULL
14596 	 * is if we exit, and since we're currently in the middle of
14597 	 * a fork we can't be exiting at the same time.
14598 	 */
14599 
14600 	/*
14601 	 * Lock the parent list. No need to lock the child - not PID
14602 	 * hashed yet and not running, so nobody can access it.
14603 	 */
14604 	mutex_lock(&parent_ctx->mutex);
14605 
14606 	/*
14607 	 * We dont have to disable NMIs - we are only looking at
14608 	 * the list, not manipulating it:
14609 	 */
14610 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
14611 		ret = inherit_task_group(event, parent, parent_ctx,
14612 					 child, clone_flags, &inherited_all);
14613 		if (ret)
14614 			goto out_unlock;
14615 	}
14616 
14617 	/*
14618 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
14619 	 * to allocations, but we need to prevent rotation because
14620 	 * rotate_ctx() will change the list from interrupt context.
14621 	 */
14622 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
14623 	parent_ctx->rotate_disable = 1;
14624 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
14625 
14626 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
14627 		ret = inherit_task_group(event, parent, parent_ctx,
14628 					 child, clone_flags, &inherited_all);
14629 		if (ret)
14630 			goto out_unlock;
14631 	}
14632 
14633 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
14634 	parent_ctx->rotate_disable = 0;
14635 
14636 	child_ctx = child->perf_event_ctxp;
14637 
14638 	if (child_ctx && inherited_all) {
14639 		/*
14640 		 * Mark the child context as a clone of the parent
14641 		 * context, or of whatever the parent is a clone of.
14642 		 *
14643 		 * Note that if the parent is a clone, the holding of
14644 		 * parent_ctx->lock avoids it from being uncloned.
14645 		 */
14646 		cloned_ctx = parent_ctx->parent_ctx;
14647 		if (cloned_ctx) {
14648 			child_ctx->parent_ctx = cloned_ctx;
14649 			child_ctx->parent_gen = parent_ctx->parent_gen;
14650 		} else {
14651 			child_ctx->parent_ctx = parent_ctx;
14652 			child_ctx->parent_gen = parent_ctx->generation;
14653 		}
14654 		get_ctx(child_ctx->parent_ctx);
14655 	}
14656 
14657 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
14658 out_unlock:
14659 	mutex_unlock(&parent_ctx->mutex);
14660 
14661 	perf_unpin_context(parent_ctx);
14662 	put_ctx(parent_ctx);
14663 
14664 	return ret;
14665 }
14666 
14667 /*
14668  * Initialize the perf_event context in task_struct
14669  */
14670 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
14671 {
14672 	int ret;
14673 
14674 	memset(child->perf_recursion, 0, sizeof(child->perf_recursion));
14675 	child->perf_event_ctxp = NULL;
14676 	mutex_init(&child->perf_event_mutex);
14677 	INIT_LIST_HEAD(&child->perf_event_list);
14678 	child->perf_ctx_data = NULL;
14679 
14680 	ret = perf_event_init_context(child, clone_flags);
14681 	if (ret) {
14682 		perf_event_free_task(child);
14683 		return ret;
14684 	}
14685 
14686 	return 0;
14687 }
14688 
14689 static void __init perf_event_init_all_cpus(void)
14690 {
14691 	struct swevent_htable *swhash;
14692 	struct perf_cpu_context *cpuctx;
14693 	int cpu;
14694 
14695 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
14696 	zalloc_cpumask_var(&perf_online_core_mask, GFP_KERNEL);
14697 	zalloc_cpumask_var(&perf_online_die_mask, GFP_KERNEL);
14698 	zalloc_cpumask_var(&perf_online_cluster_mask, GFP_KERNEL);
14699 	zalloc_cpumask_var(&perf_online_pkg_mask, GFP_KERNEL);
14700 	zalloc_cpumask_var(&perf_online_sys_mask, GFP_KERNEL);
14701 
14702 
14703 	for_each_possible_cpu(cpu) {
14704 		swhash = &per_cpu(swevent_htable, cpu);
14705 		mutex_init(&swhash->hlist_mutex);
14706 
14707 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
14708 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
14709 
14710 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
14711 
14712 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
14713 		__perf_event_init_context(&cpuctx->ctx);
14714 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
14715 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
14716 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
14717 		cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
14718 		cpuctx->heap = cpuctx->heap_default;
14719 	}
14720 }
14721 
14722 static void perf_swevent_init_cpu(unsigned int cpu)
14723 {
14724 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
14725 
14726 	mutex_lock(&swhash->hlist_mutex);
14727 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
14728 		struct swevent_hlist *hlist;
14729 
14730 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
14731 		WARN_ON(!hlist);
14732 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
14733 	}
14734 	mutex_unlock(&swhash->hlist_mutex);
14735 }
14736 
14737 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
14738 static void __perf_event_exit_context(void *__info)
14739 {
14740 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
14741 	struct perf_event_context *ctx = __info;
14742 	struct perf_event *event;
14743 
14744 	raw_spin_lock(&ctx->lock);
14745 	ctx_sched_out(ctx, NULL, EVENT_TIME);
14746 	list_for_each_entry(event, &ctx->event_list, event_entry)
14747 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
14748 	raw_spin_unlock(&ctx->lock);
14749 }
14750 
14751 static void perf_event_clear_cpumask(unsigned int cpu)
14752 {
14753 	int target[PERF_PMU_MAX_SCOPE];
14754 	unsigned int scope;
14755 	struct pmu *pmu;
14756 
14757 	cpumask_clear_cpu(cpu, perf_online_mask);
14758 
14759 	for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14760 		const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu);
14761 		struct cpumask *pmu_cpumask = perf_scope_cpumask(scope);
14762 
14763 		target[scope] = -1;
14764 		if (WARN_ON_ONCE(!pmu_cpumask || !cpumask))
14765 			continue;
14766 
14767 		if (!cpumask_test_and_clear_cpu(cpu, pmu_cpumask))
14768 			continue;
14769 		target[scope] = cpumask_any_but(cpumask, cpu);
14770 		if (target[scope] < nr_cpu_ids)
14771 			cpumask_set_cpu(target[scope], pmu_cpumask);
14772 	}
14773 
14774 	/* migrate */
14775 	list_for_each_entry(pmu, &pmus, entry) {
14776 		if (pmu->scope == PERF_PMU_SCOPE_NONE ||
14777 		    WARN_ON_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE))
14778 			continue;
14779 
14780 		if (target[pmu->scope] >= 0 && target[pmu->scope] < nr_cpu_ids)
14781 			perf_pmu_migrate_context(pmu, cpu, target[pmu->scope]);
14782 	}
14783 }
14784 
14785 static void perf_event_exit_cpu_context(int cpu)
14786 {
14787 	struct perf_cpu_context *cpuctx;
14788 	struct perf_event_context *ctx;
14789 
14790 	// XXX simplify cpuctx->online
14791 	mutex_lock(&pmus_lock);
14792 	/*
14793 	 * Clear the cpumasks, and migrate to other CPUs if possible.
14794 	 * Must be invoked before the __perf_event_exit_context.
14795 	 */
14796 	perf_event_clear_cpumask(cpu);
14797 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
14798 	ctx = &cpuctx->ctx;
14799 
14800 	mutex_lock(&ctx->mutex);
14801 	smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
14802 	cpuctx->online = 0;
14803 	mutex_unlock(&ctx->mutex);
14804 	mutex_unlock(&pmus_lock);
14805 }
14806 #else
14807 
14808 static void perf_event_exit_cpu_context(int cpu) { }
14809 
14810 #endif
14811 
14812 static void perf_event_setup_cpumask(unsigned int cpu)
14813 {
14814 	struct cpumask *pmu_cpumask;
14815 	unsigned int scope;
14816 
14817 	/*
14818 	 * Early boot stage, the cpumask hasn't been set yet.
14819 	 * The perf_online_<domain>_masks includes the first CPU of each domain.
14820 	 * Always unconditionally set the boot CPU for the perf_online_<domain>_masks.
14821 	 */
14822 	if (cpumask_empty(perf_online_mask)) {
14823 		for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14824 			pmu_cpumask = perf_scope_cpumask(scope);
14825 			if (WARN_ON_ONCE(!pmu_cpumask))
14826 				continue;
14827 			cpumask_set_cpu(cpu, pmu_cpumask);
14828 		}
14829 		goto end;
14830 	}
14831 
14832 	for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14833 		const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu);
14834 
14835 		pmu_cpumask = perf_scope_cpumask(scope);
14836 
14837 		if (WARN_ON_ONCE(!pmu_cpumask || !cpumask))
14838 			continue;
14839 
14840 		if (!cpumask_empty(cpumask) &&
14841 		    cpumask_any_and(pmu_cpumask, cpumask) >= nr_cpu_ids)
14842 			cpumask_set_cpu(cpu, pmu_cpumask);
14843 	}
14844 end:
14845 	cpumask_set_cpu(cpu, perf_online_mask);
14846 }
14847 
14848 int perf_event_init_cpu(unsigned int cpu)
14849 {
14850 	struct perf_cpu_context *cpuctx;
14851 	struct perf_event_context *ctx;
14852 
14853 	perf_swevent_init_cpu(cpu);
14854 
14855 	mutex_lock(&pmus_lock);
14856 	perf_event_setup_cpumask(cpu);
14857 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
14858 	ctx = &cpuctx->ctx;
14859 
14860 	mutex_lock(&ctx->mutex);
14861 	cpuctx->online = 1;
14862 	mutex_unlock(&ctx->mutex);
14863 	mutex_unlock(&pmus_lock);
14864 
14865 	return 0;
14866 }
14867 
14868 int perf_event_exit_cpu(unsigned int cpu)
14869 {
14870 	perf_event_exit_cpu_context(cpu);
14871 	return 0;
14872 }
14873 
14874 static int
14875 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
14876 {
14877 	int cpu;
14878 
14879 	for_each_online_cpu(cpu)
14880 		perf_event_exit_cpu(cpu);
14881 
14882 	return NOTIFY_OK;
14883 }
14884 
14885 /*
14886  * Run the perf reboot notifier at the very last possible moment so that
14887  * the generic watchdog code runs as long as possible.
14888  */
14889 static struct notifier_block perf_reboot_notifier = {
14890 	.notifier_call = perf_reboot,
14891 	.priority = INT_MIN,
14892 };
14893 
14894 void __init perf_event_init(void)
14895 {
14896 	int ret;
14897 
14898 	idr_init(&pmu_idr);
14899 
14900 	unwind_deferred_init(&perf_unwind_work,
14901 			     perf_unwind_deferred_callback);
14902 
14903 	perf_event_init_all_cpus();
14904 	init_srcu_struct(&pmus_srcu);
14905 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
14906 	perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1);
14907 	perf_pmu_register(&perf_task_clock, "task_clock", -1);
14908 	perf_tp_register();
14909 	perf_event_init_cpu(smp_processor_id());
14910 	register_reboot_notifier(&perf_reboot_notifier);
14911 
14912 	ret = init_hw_breakpoint();
14913 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
14914 
14915 	perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
14916 
14917 	/*
14918 	 * Build time assertion that we keep the data_head at the intended
14919 	 * location.  IOW, validation we got the __reserved[] size right.
14920 	 */
14921 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
14922 		     != 1024);
14923 }
14924 
14925 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
14926 			      char *page)
14927 {
14928 	struct perf_pmu_events_attr *pmu_attr =
14929 		container_of(attr, struct perf_pmu_events_attr, attr);
14930 
14931 	if (pmu_attr->event_str)
14932 		return sprintf(page, "%s\n", pmu_attr->event_str);
14933 
14934 	return 0;
14935 }
14936 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
14937 
14938 static int __init perf_event_sysfs_init(void)
14939 {
14940 	struct pmu *pmu;
14941 	int ret;
14942 
14943 	mutex_lock(&pmus_lock);
14944 
14945 	ret = bus_register(&pmu_bus);
14946 	if (ret)
14947 		goto unlock;
14948 
14949 	list_for_each_entry(pmu, &pmus, entry) {
14950 		if (pmu->dev)
14951 			continue;
14952 
14953 		ret = pmu_dev_alloc(pmu);
14954 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
14955 	}
14956 	pmu_bus_running = 1;
14957 	ret = 0;
14958 
14959 unlock:
14960 	mutex_unlock(&pmus_lock);
14961 
14962 	return ret;
14963 }
14964 device_initcall(perf_event_sysfs_init);
14965 
14966 #ifdef CONFIG_CGROUP_PERF
14967 static struct cgroup_subsys_state *
14968 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
14969 {
14970 	struct perf_cgroup *jc;
14971 
14972 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
14973 	if (!jc)
14974 		return ERR_PTR(-ENOMEM);
14975 
14976 	jc->info = alloc_percpu(struct perf_cgroup_info);
14977 	if (!jc->info) {
14978 		kfree(jc);
14979 		return ERR_PTR(-ENOMEM);
14980 	}
14981 
14982 	return &jc->css;
14983 }
14984 
14985 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
14986 {
14987 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
14988 
14989 	free_percpu(jc->info);
14990 	kfree(jc);
14991 }
14992 
14993 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
14994 {
14995 	perf_event_cgroup(css->cgroup);
14996 	return 0;
14997 }
14998 
14999 static int __perf_cgroup_move(void *info)
15000 {
15001 	struct task_struct *task = info;
15002 
15003 	preempt_disable();
15004 	perf_cgroup_switch(task);
15005 	preempt_enable();
15006 
15007 	return 0;
15008 }
15009 
15010 static void perf_cgroup_attach(struct cgroup_taskset *tset)
15011 {
15012 	struct task_struct *task;
15013 	struct cgroup_subsys_state *css;
15014 
15015 	cgroup_taskset_for_each(task, css, tset)
15016 		task_function_call(task, __perf_cgroup_move, task);
15017 }
15018 
15019 struct cgroup_subsys perf_event_cgrp_subsys = {
15020 	.css_alloc	= perf_cgroup_css_alloc,
15021 	.css_free	= perf_cgroup_css_free,
15022 	.css_online	= perf_cgroup_css_online,
15023 	.attach		= perf_cgroup_attach,
15024 	/*
15025 	 * Implicitly enable on dfl hierarchy so that perf events can
15026 	 * always be filtered by cgroup2 path as long as perf_event
15027 	 * controller is not mounted on a legacy hierarchy.
15028 	 */
15029 	.implicit_on_dfl = true,
15030 	.threaded	= true,
15031 };
15032 #endif /* CONFIG_CGROUP_PERF */
15033 
15034 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
15035