xref: /linux/kernel/events/core.c (revision ac253a537da3b210fa4b65d522d5533fc68f9515)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 #include <linux/task_work.h>
58 #include <linux/percpu-rwsem.h>
59 
60 #include "internal.h"
61 
62 #include <asm/irq_regs.h>
63 
64 typedef int (*remote_function_f)(void *);
65 
66 struct remote_function_call {
67 	struct task_struct	*p;
68 	remote_function_f	func;
69 	void			*info;
70 	int			ret;
71 };
72 
remote_function(void * data)73 static void remote_function(void *data)
74 {
75 	struct remote_function_call *tfc = data;
76 	struct task_struct *p = tfc->p;
77 
78 	if (p) {
79 		/* -EAGAIN */
80 		if (task_cpu(p) != smp_processor_id())
81 			return;
82 
83 		/*
84 		 * Now that we're on right CPU with IRQs disabled, we can test
85 		 * if we hit the right task without races.
86 		 */
87 
88 		tfc->ret = -ESRCH; /* No such (running) process */
89 		if (p != current)
90 			return;
91 	}
92 
93 	tfc->ret = tfc->func(tfc->info);
94 }
95 
96 /**
97  * task_function_call - call a function on the cpu on which a task runs
98  * @p:		the task to evaluate
99  * @func:	the function to be called
100  * @info:	the function call argument
101  *
102  * Calls the function @func when the task is currently running. This might
103  * be on the current CPU, which just calls the function directly.  This will
104  * retry due to any failures in smp_call_function_single(), such as if the
105  * task_cpu() goes offline concurrently.
106  *
107  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
108  */
109 static int
task_function_call(struct task_struct * p,remote_function_f func,void * info)110 task_function_call(struct task_struct *p, remote_function_f func, void *info)
111 {
112 	struct remote_function_call data = {
113 		.p	= p,
114 		.func	= func,
115 		.info	= info,
116 		.ret	= -EAGAIN,
117 	};
118 	int ret;
119 
120 	for (;;) {
121 		ret = smp_call_function_single(task_cpu(p), remote_function,
122 					       &data, 1);
123 		if (!ret)
124 			ret = data.ret;
125 
126 		if (ret != -EAGAIN)
127 			break;
128 
129 		cond_resched();
130 	}
131 
132 	return ret;
133 }
134 
135 /**
136  * cpu_function_call - call a function on the cpu
137  * @cpu:	target cpu to queue this function
138  * @func:	the function to be called
139  * @info:	the function call argument
140  *
141  * Calls the function @func on the remote cpu.
142  *
143  * returns: @func return value or -ENXIO when the cpu is offline
144  */
cpu_function_call(int cpu,remote_function_f func,void * info)145 static int cpu_function_call(int cpu, remote_function_f func, void *info)
146 {
147 	struct remote_function_call data = {
148 		.p	= NULL,
149 		.func	= func,
150 		.info	= info,
151 		.ret	= -ENXIO, /* No such CPU */
152 	};
153 
154 	smp_call_function_single(cpu, remote_function, &data, 1);
155 
156 	return data.ret;
157 }
158 
159 enum event_type_t {
160 	EVENT_FLEXIBLE	= 0x01,
161 	EVENT_PINNED	= 0x02,
162 	EVENT_TIME	= 0x04,
163 	EVENT_FROZEN	= 0x08,
164 	/* see ctx_resched() for details */
165 	EVENT_CPU	= 0x10,
166 	EVENT_CGROUP	= 0x20,
167 
168 	/* compound helpers */
169 	EVENT_ALL         = EVENT_FLEXIBLE | EVENT_PINNED,
170 	EVENT_TIME_FROZEN = EVENT_TIME | EVENT_FROZEN,
171 };
172 
__perf_ctx_lock(struct perf_event_context * ctx)173 static inline void __perf_ctx_lock(struct perf_event_context *ctx)
174 {
175 	raw_spin_lock(&ctx->lock);
176 	WARN_ON_ONCE(ctx->is_active & EVENT_FROZEN);
177 }
178 
perf_ctx_lock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)179 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
180 			  struct perf_event_context *ctx)
181 {
182 	__perf_ctx_lock(&cpuctx->ctx);
183 	if (ctx)
184 		__perf_ctx_lock(ctx);
185 }
186 
__perf_ctx_unlock(struct perf_event_context * ctx)187 static inline void __perf_ctx_unlock(struct perf_event_context *ctx)
188 {
189 	/*
190 	 * If ctx_sched_in() didn't again set any ALL flags, clean up
191 	 * after ctx_sched_out() by clearing is_active.
192 	 */
193 	if (ctx->is_active & EVENT_FROZEN) {
194 		if (!(ctx->is_active & EVENT_ALL))
195 			ctx->is_active = 0;
196 		else
197 			ctx->is_active &= ~EVENT_FROZEN;
198 	}
199 	raw_spin_unlock(&ctx->lock);
200 }
201 
perf_ctx_unlock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)202 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
203 			    struct perf_event_context *ctx)
204 {
205 	if (ctx)
206 		__perf_ctx_unlock(ctx);
207 	__perf_ctx_unlock(&cpuctx->ctx);
208 }
209 
210 #define TASK_TOMBSTONE ((void *)-1L)
211 
is_kernel_event(struct perf_event * event)212 static bool is_kernel_event(struct perf_event *event)
213 {
214 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
215 }
216 
217 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
218 
perf_cpu_task_ctx(void)219 struct perf_event_context *perf_cpu_task_ctx(void)
220 {
221 	lockdep_assert_irqs_disabled();
222 	return this_cpu_ptr(&perf_cpu_context)->task_ctx;
223 }
224 
225 /*
226  * On task ctx scheduling...
227  *
228  * When !ctx->nr_events a task context will not be scheduled. This means
229  * we can disable the scheduler hooks (for performance) without leaving
230  * pending task ctx state.
231  *
232  * This however results in two special cases:
233  *
234  *  - removing the last event from a task ctx; this is relatively straight
235  *    forward and is done in __perf_remove_from_context.
236  *
237  *  - adding the first event to a task ctx; this is tricky because we cannot
238  *    rely on ctx->is_active and therefore cannot use event_function_call().
239  *    See perf_install_in_context().
240  *
241  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
242  */
243 
244 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
245 			struct perf_event_context *, void *);
246 
247 struct event_function_struct {
248 	struct perf_event *event;
249 	event_f func;
250 	void *data;
251 };
252 
event_function(void * info)253 static int event_function(void *info)
254 {
255 	struct event_function_struct *efs = info;
256 	struct perf_event *event = efs->event;
257 	struct perf_event_context *ctx = event->ctx;
258 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
259 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
260 	int ret = 0;
261 
262 	lockdep_assert_irqs_disabled();
263 
264 	perf_ctx_lock(cpuctx, task_ctx);
265 	/*
266 	 * Since we do the IPI call without holding ctx->lock things can have
267 	 * changed, double check we hit the task we set out to hit.
268 	 */
269 	if (ctx->task) {
270 		if (ctx->task != current) {
271 			ret = -ESRCH;
272 			goto unlock;
273 		}
274 
275 		/*
276 		 * We only use event_function_call() on established contexts,
277 		 * and event_function() is only ever called when active (or
278 		 * rather, we'll have bailed in task_function_call() or the
279 		 * above ctx->task != current test), therefore we must have
280 		 * ctx->is_active here.
281 		 */
282 		WARN_ON_ONCE(!ctx->is_active);
283 		/*
284 		 * And since we have ctx->is_active, cpuctx->task_ctx must
285 		 * match.
286 		 */
287 		WARN_ON_ONCE(task_ctx != ctx);
288 	} else {
289 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
290 	}
291 
292 	efs->func(event, cpuctx, ctx, efs->data);
293 unlock:
294 	perf_ctx_unlock(cpuctx, task_ctx);
295 
296 	return ret;
297 }
298 
event_function_call(struct perf_event * event,event_f func,void * data)299 static void event_function_call(struct perf_event *event, event_f func, void *data)
300 {
301 	struct perf_event_context *ctx = event->ctx;
302 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
303 	struct perf_cpu_context *cpuctx;
304 	struct event_function_struct efs = {
305 		.event = event,
306 		.func = func,
307 		.data = data,
308 	};
309 
310 	if (!event->parent) {
311 		/*
312 		 * If this is a !child event, we must hold ctx::mutex to
313 		 * stabilize the event->ctx relation. See
314 		 * perf_event_ctx_lock().
315 		 */
316 		lockdep_assert_held(&ctx->mutex);
317 	}
318 
319 	if (!task) {
320 		cpu_function_call(event->cpu, event_function, &efs);
321 		return;
322 	}
323 
324 	if (task == TASK_TOMBSTONE)
325 		return;
326 
327 again:
328 	if (!task_function_call(task, event_function, &efs))
329 		return;
330 
331 	local_irq_disable();
332 	cpuctx = this_cpu_ptr(&perf_cpu_context);
333 	perf_ctx_lock(cpuctx, ctx);
334 	/*
335 	 * Reload the task pointer, it might have been changed by
336 	 * a concurrent perf_event_context_sched_out().
337 	 */
338 	task = ctx->task;
339 	if (task == TASK_TOMBSTONE)
340 		goto unlock;
341 	if (ctx->is_active) {
342 		perf_ctx_unlock(cpuctx, ctx);
343 		local_irq_enable();
344 		goto again;
345 	}
346 	func(event, NULL, ctx, data);
347 unlock:
348 	perf_ctx_unlock(cpuctx, ctx);
349 	local_irq_enable();
350 }
351 
352 /*
353  * Similar to event_function_call() + event_function(), but hard assumes IRQs
354  * are already disabled and we're on the right CPU.
355  */
event_function_local(struct perf_event * event,event_f func,void * data)356 static void event_function_local(struct perf_event *event, event_f func, void *data)
357 {
358 	struct perf_event_context *ctx = event->ctx;
359 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
360 	struct task_struct *task = READ_ONCE(ctx->task);
361 	struct perf_event_context *task_ctx = NULL;
362 
363 	lockdep_assert_irqs_disabled();
364 
365 	if (task) {
366 		if (task == TASK_TOMBSTONE)
367 			return;
368 
369 		task_ctx = ctx;
370 	}
371 
372 	perf_ctx_lock(cpuctx, task_ctx);
373 
374 	task = ctx->task;
375 	if (task == TASK_TOMBSTONE)
376 		goto unlock;
377 
378 	if (task) {
379 		/*
380 		 * We must be either inactive or active and the right task,
381 		 * otherwise we're screwed, since we cannot IPI to somewhere
382 		 * else.
383 		 */
384 		if (ctx->is_active) {
385 			if (WARN_ON_ONCE(task != current))
386 				goto unlock;
387 
388 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
389 				goto unlock;
390 		}
391 	} else {
392 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
393 	}
394 
395 	func(event, cpuctx, ctx, data);
396 unlock:
397 	perf_ctx_unlock(cpuctx, task_ctx);
398 }
399 
400 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
401 		       PERF_FLAG_FD_OUTPUT  |\
402 		       PERF_FLAG_PID_CGROUP |\
403 		       PERF_FLAG_FD_CLOEXEC)
404 
405 /*
406  * branch priv levels that need permission checks
407  */
408 #define PERF_SAMPLE_BRANCH_PERM_PLM \
409 	(PERF_SAMPLE_BRANCH_KERNEL |\
410 	 PERF_SAMPLE_BRANCH_HV)
411 
412 /*
413  * perf_sched_events : >0 events exist
414  */
415 
416 static void perf_sched_delayed(struct work_struct *work);
417 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
418 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
419 static DEFINE_MUTEX(perf_sched_mutex);
420 static atomic_t perf_sched_count;
421 
422 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
423 
424 static atomic_t nr_mmap_events __read_mostly;
425 static atomic_t nr_comm_events __read_mostly;
426 static atomic_t nr_namespaces_events __read_mostly;
427 static atomic_t nr_task_events __read_mostly;
428 static atomic_t nr_freq_events __read_mostly;
429 static atomic_t nr_switch_events __read_mostly;
430 static atomic_t nr_ksymbol_events __read_mostly;
431 static atomic_t nr_bpf_events __read_mostly;
432 static atomic_t nr_cgroup_events __read_mostly;
433 static atomic_t nr_text_poke_events __read_mostly;
434 static atomic_t nr_build_id_events __read_mostly;
435 
436 static LIST_HEAD(pmus);
437 static DEFINE_MUTEX(pmus_lock);
438 static struct srcu_struct pmus_srcu;
439 static cpumask_var_t perf_online_mask;
440 static cpumask_var_t perf_online_core_mask;
441 static cpumask_var_t perf_online_die_mask;
442 static cpumask_var_t perf_online_cluster_mask;
443 static cpumask_var_t perf_online_pkg_mask;
444 static cpumask_var_t perf_online_sys_mask;
445 static struct kmem_cache *perf_event_cache;
446 
447 /*
448  * perf event paranoia level:
449  *  -1 - not paranoid at all
450  *   0 - disallow raw tracepoint access for unpriv
451  *   1 - disallow cpu events for unpriv
452  *   2 - disallow kernel profiling for unpriv
453  */
454 int sysctl_perf_event_paranoid __read_mostly = 2;
455 
456 /* Minimum for 512 kiB + 1 user control page. 'free' kiB per user. */
457 static int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024);
458 
459 /*
460  * max perf event sample rate
461  */
462 #define DEFAULT_MAX_SAMPLE_RATE		100000
463 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
464 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
465 
466 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
467 static int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
468 
469 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
470 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
471 
472 static int perf_sample_allowed_ns __read_mostly =
473 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
474 
update_perf_cpu_limits(void)475 static void update_perf_cpu_limits(void)
476 {
477 	u64 tmp = perf_sample_period_ns;
478 
479 	tmp *= sysctl_perf_cpu_time_max_percent;
480 	tmp = div_u64(tmp, 100);
481 	if (!tmp)
482 		tmp = 1;
483 
484 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
485 }
486 
487 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc);
488 
perf_event_max_sample_rate_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)489 static int perf_event_max_sample_rate_handler(const struct ctl_table *table, int write,
490 				       void *buffer, size_t *lenp, loff_t *ppos)
491 {
492 	int ret;
493 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
494 	/*
495 	 * If throttling is disabled don't allow the write:
496 	 */
497 	if (write && (perf_cpu == 100 || perf_cpu == 0))
498 		return -EINVAL;
499 
500 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
501 	if (ret || !write)
502 		return ret;
503 
504 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
505 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
506 	update_perf_cpu_limits();
507 
508 	return 0;
509 }
510 
perf_cpu_time_max_percent_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)511 static int perf_cpu_time_max_percent_handler(const struct ctl_table *table, int write,
512 		void *buffer, size_t *lenp, loff_t *ppos)
513 {
514 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
515 
516 	if (ret || !write)
517 		return ret;
518 
519 	if (sysctl_perf_cpu_time_max_percent == 100 ||
520 	    sysctl_perf_cpu_time_max_percent == 0) {
521 		printk(KERN_WARNING
522 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
523 		WRITE_ONCE(perf_sample_allowed_ns, 0);
524 	} else {
525 		update_perf_cpu_limits();
526 	}
527 
528 	return 0;
529 }
530 
531 static const struct ctl_table events_core_sysctl_table[] = {
532 	/*
533 	 * User-space relies on this file as a feature check for
534 	 * perf_events being enabled. It's an ABI, do not remove!
535 	 */
536 	{
537 		.procname	= "perf_event_paranoid",
538 		.data		= &sysctl_perf_event_paranoid,
539 		.maxlen		= sizeof(sysctl_perf_event_paranoid),
540 		.mode		= 0644,
541 		.proc_handler	= proc_dointvec,
542 	},
543 	{
544 		.procname	= "perf_event_mlock_kb",
545 		.data		= &sysctl_perf_event_mlock,
546 		.maxlen		= sizeof(sysctl_perf_event_mlock),
547 		.mode		= 0644,
548 		.proc_handler	= proc_dointvec,
549 	},
550 	{
551 		.procname	= "perf_event_max_sample_rate",
552 		.data		= &sysctl_perf_event_sample_rate,
553 		.maxlen		= sizeof(sysctl_perf_event_sample_rate),
554 		.mode		= 0644,
555 		.proc_handler	= perf_event_max_sample_rate_handler,
556 		.extra1		= SYSCTL_ONE,
557 	},
558 	{
559 		.procname	= "perf_cpu_time_max_percent",
560 		.data		= &sysctl_perf_cpu_time_max_percent,
561 		.maxlen		= sizeof(sysctl_perf_cpu_time_max_percent),
562 		.mode		= 0644,
563 		.proc_handler	= perf_cpu_time_max_percent_handler,
564 		.extra1		= SYSCTL_ZERO,
565 		.extra2		= SYSCTL_ONE_HUNDRED,
566 	},
567 };
568 
init_events_core_sysctls(void)569 static int __init init_events_core_sysctls(void)
570 {
571 	register_sysctl_init("kernel", events_core_sysctl_table);
572 	return 0;
573 }
574 core_initcall(init_events_core_sysctls);
575 
576 
577 /*
578  * perf samples are done in some very critical code paths (NMIs).
579  * If they take too much CPU time, the system can lock up and not
580  * get any real work done.  This will drop the sample rate when
581  * we detect that events are taking too long.
582  */
583 #define NR_ACCUMULATED_SAMPLES 128
584 static DEFINE_PER_CPU(u64, running_sample_length);
585 
586 static u64 __report_avg;
587 static u64 __report_allowed;
588 
perf_duration_warn(struct irq_work * w)589 static void perf_duration_warn(struct irq_work *w)
590 {
591 	printk_ratelimited(KERN_INFO
592 		"perf: interrupt took too long (%lld > %lld), lowering "
593 		"kernel.perf_event_max_sample_rate to %d\n",
594 		__report_avg, __report_allowed,
595 		sysctl_perf_event_sample_rate);
596 }
597 
598 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
599 
perf_sample_event_took(u64 sample_len_ns)600 void perf_sample_event_took(u64 sample_len_ns)
601 {
602 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
603 	u64 running_len;
604 	u64 avg_len;
605 	u32 max;
606 
607 	if (max_len == 0)
608 		return;
609 
610 	/* Decay the counter by 1 average sample. */
611 	running_len = __this_cpu_read(running_sample_length);
612 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
613 	running_len += sample_len_ns;
614 	__this_cpu_write(running_sample_length, running_len);
615 
616 	/*
617 	 * Note: this will be biased artificially low until we have
618 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
619 	 * from having to maintain a count.
620 	 */
621 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
622 	if (avg_len <= max_len)
623 		return;
624 
625 	__report_avg = avg_len;
626 	__report_allowed = max_len;
627 
628 	/*
629 	 * Compute a throttle threshold 25% below the current duration.
630 	 */
631 	avg_len += avg_len / 4;
632 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
633 	if (avg_len < max)
634 		max /= (u32)avg_len;
635 	else
636 		max = 1;
637 
638 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
639 	WRITE_ONCE(max_samples_per_tick, max);
640 
641 	sysctl_perf_event_sample_rate = max * HZ;
642 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
643 
644 	if (!irq_work_queue(&perf_duration_work)) {
645 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
646 			     "kernel.perf_event_max_sample_rate to %d\n",
647 			     __report_avg, __report_allowed,
648 			     sysctl_perf_event_sample_rate);
649 	}
650 }
651 
652 static atomic64_t perf_event_id;
653 
654 static void update_context_time(struct perf_event_context *ctx);
655 static u64 perf_event_time(struct perf_event *event);
656 
perf_event_print_debug(void)657 void __weak perf_event_print_debug(void)	{ }
658 
perf_clock(void)659 static inline u64 perf_clock(void)
660 {
661 	return local_clock();
662 }
663 
perf_event_clock(struct perf_event * event)664 static inline u64 perf_event_clock(struct perf_event *event)
665 {
666 	return event->clock();
667 }
668 
669 /*
670  * State based event timekeeping...
671  *
672  * The basic idea is to use event->state to determine which (if any) time
673  * fields to increment with the current delta. This means we only need to
674  * update timestamps when we change state or when they are explicitly requested
675  * (read).
676  *
677  * Event groups make things a little more complicated, but not terribly so. The
678  * rules for a group are that if the group leader is OFF the entire group is
679  * OFF, irrespective of what the group member states are. This results in
680  * __perf_effective_state().
681  *
682  * A further ramification is that when a group leader flips between OFF and
683  * !OFF, we need to update all group member times.
684  *
685  *
686  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
687  * need to make sure the relevant context time is updated before we try and
688  * update our timestamps.
689  */
690 
691 static __always_inline enum perf_event_state
__perf_effective_state(struct perf_event * event)692 __perf_effective_state(struct perf_event *event)
693 {
694 	struct perf_event *leader = event->group_leader;
695 
696 	if (leader->state <= PERF_EVENT_STATE_OFF)
697 		return leader->state;
698 
699 	return event->state;
700 }
701 
702 static __always_inline void
__perf_update_times(struct perf_event * event,u64 now,u64 * enabled,u64 * running)703 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
704 {
705 	enum perf_event_state state = __perf_effective_state(event);
706 	u64 delta = now - event->tstamp;
707 
708 	*enabled = event->total_time_enabled;
709 	if (state >= PERF_EVENT_STATE_INACTIVE)
710 		*enabled += delta;
711 
712 	*running = event->total_time_running;
713 	if (state >= PERF_EVENT_STATE_ACTIVE)
714 		*running += delta;
715 }
716 
perf_event_update_time(struct perf_event * event)717 static void perf_event_update_time(struct perf_event *event)
718 {
719 	u64 now = perf_event_time(event);
720 
721 	__perf_update_times(event, now, &event->total_time_enabled,
722 					&event->total_time_running);
723 	event->tstamp = now;
724 }
725 
perf_event_update_sibling_time(struct perf_event * leader)726 static void perf_event_update_sibling_time(struct perf_event *leader)
727 {
728 	struct perf_event *sibling;
729 
730 	for_each_sibling_event(sibling, leader)
731 		perf_event_update_time(sibling);
732 }
733 
734 static void
perf_event_set_state(struct perf_event * event,enum perf_event_state state)735 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
736 {
737 	if (event->state == state)
738 		return;
739 
740 	perf_event_update_time(event);
741 	/*
742 	 * If a group leader gets enabled/disabled all its siblings
743 	 * are affected too.
744 	 */
745 	if ((event->state < 0) ^ (state < 0))
746 		perf_event_update_sibling_time(event);
747 
748 	WRITE_ONCE(event->state, state);
749 }
750 
751 /*
752  * UP store-release, load-acquire
753  */
754 
755 #define __store_release(ptr, val)					\
756 do {									\
757 	barrier();							\
758 	WRITE_ONCE(*(ptr), (val));					\
759 } while (0)
760 
761 #define __load_acquire(ptr)						\
762 ({									\
763 	__unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));	\
764 	barrier();							\
765 	___p;								\
766 })
767 
768 #define for_each_epc(_epc, _ctx, _pmu, _cgroup)				\
769 	list_for_each_entry(_epc, &((_ctx)->pmu_ctx_list), pmu_ctx_entry) \
770 		if (_cgroup && !_epc->nr_cgroups)			\
771 			continue;					\
772 		else if (_pmu && _epc->pmu != _pmu)			\
773 			continue;					\
774 		else
775 
perf_ctx_disable(struct perf_event_context * ctx,bool cgroup)776 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup)
777 {
778 	struct perf_event_pmu_context *pmu_ctx;
779 
780 	for_each_epc(pmu_ctx, ctx, NULL, cgroup)
781 		perf_pmu_disable(pmu_ctx->pmu);
782 }
783 
perf_ctx_enable(struct perf_event_context * ctx,bool cgroup)784 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup)
785 {
786 	struct perf_event_pmu_context *pmu_ctx;
787 
788 	for_each_epc(pmu_ctx, ctx, NULL, cgroup)
789 		perf_pmu_enable(pmu_ctx->pmu);
790 }
791 
792 static void ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type);
793 static void ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type);
794 
795 #ifdef CONFIG_CGROUP_PERF
796 
797 static inline bool
perf_cgroup_match(struct perf_event * event)798 perf_cgroup_match(struct perf_event *event)
799 {
800 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
801 
802 	/* @event doesn't care about cgroup */
803 	if (!event->cgrp)
804 		return true;
805 
806 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
807 	if (!cpuctx->cgrp)
808 		return false;
809 
810 	/*
811 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
812 	 * also enabled for all its descendant cgroups.  If @cpuctx's
813 	 * cgroup is a descendant of @event's (the test covers identity
814 	 * case), it's a match.
815 	 */
816 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
817 				    event->cgrp->css.cgroup);
818 }
819 
perf_detach_cgroup(struct perf_event * event)820 static inline void perf_detach_cgroup(struct perf_event *event)
821 {
822 	css_put(&event->cgrp->css);
823 	event->cgrp = NULL;
824 }
825 
is_cgroup_event(struct perf_event * event)826 static inline int is_cgroup_event(struct perf_event *event)
827 {
828 	return event->cgrp != NULL;
829 }
830 
perf_cgroup_event_time(struct perf_event * event)831 static inline u64 perf_cgroup_event_time(struct perf_event *event)
832 {
833 	struct perf_cgroup_info *t;
834 
835 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
836 	return t->time;
837 }
838 
perf_cgroup_event_time_now(struct perf_event * event,u64 now)839 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
840 {
841 	struct perf_cgroup_info *t;
842 
843 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
844 	if (!__load_acquire(&t->active))
845 		return t->time;
846 	now += READ_ONCE(t->timeoffset);
847 	return now;
848 }
849 
__update_cgrp_time(struct perf_cgroup_info * info,u64 now,bool adv)850 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
851 {
852 	if (adv)
853 		info->time += now - info->timestamp;
854 	info->timestamp = now;
855 	/*
856 	 * see update_context_time()
857 	 */
858 	WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
859 }
860 
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx,bool final)861 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
862 {
863 	struct perf_cgroup *cgrp = cpuctx->cgrp;
864 	struct cgroup_subsys_state *css;
865 	struct perf_cgroup_info *info;
866 
867 	if (cgrp) {
868 		u64 now = perf_clock();
869 
870 		for (css = &cgrp->css; css; css = css->parent) {
871 			cgrp = container_of(css, struct perf_cgroup, css);
872 			info = this_cpu_ptr(cgrp->info);
873 
874 			__update_cgrp_time(info, now, true);
875 			if (final)
876 				__store_release(&info->active, 0);
877 		}
878 	}
879 }
880 
update_cgrp_time_from_event(struct perf_event * event)881 static inline void update_cgrp_time_from_event(struct perf_event *event)
882 {
883 	struct perf_cgroup_info *info;
884 
885 	/*
886 	 * ensure we access cgroup data only when needed and
887 	 * when we know the cgroup is pinned (css_get)
888 	 */
889 	if (!is_cgroup_event(event))
890 		return;
891 
892 	info = this_cpu_ptr(event->cgrp->info);
893 	/*
894 	 * Do not update time when cgroup is not active
895 	 */
896 	if (info->active)
897 		__update_cgrp_time(info, perf_clock(), true);
898 }
899 
900 static inline void
perf_cgroup_set_timestamp(struct perf_cpu_context * cpuctx)901 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
902 {
903 	struct perf_event_context *ctx = &cpuctx->ctx;
904 	struct perf_cgroup *cgrp = cpuctx->cgrp;
905 	struct perf_cgroup_info *info;
906 	struct cgroup_subsys_state *css;
907 
908 	/*
909 	 * ctx->lock held by caller
910 	 * ensure we do not access cgroup data
911 	 * unless we have the cgroup pinned (css_get)
912 	 */
913 	if (!cgrp)
914 		return;
915 
916 	WARN_ON_ONCE(!ctx->nr_cgroups);
917 
918 	for (css = &cgrp->css; css; css = css->parent) {
919 		cgrp = container_of(css, struct perf_cgroup, css);
920 		info = this_cpu_ptr(cgrp->info);
921 		__update_cgrp_time(info, ctx->timestamp, false);
922 		__store_release(&info->active, 1);
923 	}
924 }
925 
926 /*
927  * reschedule events based on the cgroup constraint of task.
928  */
perf_cgroup_switch(struct task_struct * task)929 static void perf_cgroup_switch(struct task_struct *task)
930 {
931 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
932 	struct perf_cgroup *cgrp;
933 
934 	/*
935 	 * cpuctx->cgrp is set when the first cgroup event enabled,
936 	 * and is cleared when the last cgroup event disabled.
937 	 */
938 	if (READ_ONCE(cpuctx->cgrp) == NULL)
939 		return;
940 
941 	WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
942 
943 	cgrp = perf_cgroup_from_task(task, NULL);
944 	if (READ_ONCE(cpuctx->cgrp) == cgrp)
945 		return;
946 
947 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
948 	perf_ctx_disable(&cpuctx->ctx, true);
949 
950 	ctx_sched_out(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP);
951 	/*
952 	 * must not be done before ctxswout due
953 	 * to update_cgrp_time_from_cpuctx() in
954 	 * ctx_sched_out()
955 	 */
956 	cpuctx->cgrp = cgrp;
957 	/*
958 	 * set cgrp before ctxsw in to allow
959 	 * perf_cgroup_set_timestamp() in ctx_sched_in()
960 	 * to not have to pass task around
961 	 */
962 	ctx_sched_in(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP);
963 
964 	perf_ctx_enable(&cpuctx->ctx, true);
965 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
966 }
967 
perf_cgroup_ensure_storage(struct perf_event * event,struct cgroup_subsys_state * css)968 static int perf_cgroup_ensure_storage(struct perf_event *event,
969 				struct cgroup_subsys_state *css)
970 {
971 	struct perf_cpu_context *cpuctx;
972 	struct perf_event **storage;
973 	int cpu, heap_size, ret = 0;
974 
975 	/*
976 	 * Allow storage to have sufficient space for an iterator for each
977 	 * possibly nested cgroup plus an iterator for events with no cgroup.
978 	 */
979 	for (heap_size = 1; css; css = css->parent)
980 		heap_size++;
981 
982 	for_each_possible_cpu(cpu) {
983 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
984 		if (heap_size <= cpuctx->heap_size)
985 			continue;
986 
987 		storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
988 				       GFP_KERNEL, cpu_to_node(cpu));
989 		if (!storage) {
990 			ret = -ENOMEM;
991 			break;
992 		}
993 
994 		raw_spin_lock_irq(&cpuctx->ctx.lock);
995 		if (cpuctx->heap_size < heap_size) {
996 			swap(cpuctx->heap, storage);
997 			if (storage == cpuctx->heap_default)
998 				storage = NULL;
999 			cpuctx->heap_size = heap_size;
1000 		}
1001 		raw_spin_unlock_irq(&cpuctx->ctx.lock);
1002 
1003 		kfree(storage);
1004 	}
1005 
1006 	return ret;
1007 }
1008 
perf_cgroup_connect(int fd,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)1009 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
1010 				      struct perf_event_attr *attr,
1011 				      struct perf_event *group_leader)
1012 {
1013 	struct perf_cgroup *cgrp;
1014 	struct cgroup_subsys_state *css;
1015 	CLASS(fd, f)(fd);
1016 	int ret = 0;
1017 
1018 	if (fd_empty(f))
1019 		return -EBADF;
1020 
1021 	css = css_tryget_online_from_dir(fd_file(f)->f_path.dentry,
1022 					 &perf_event_cgrp_subsys);
1023 	if (IS_ERR(css))
1024 		return PTR_ERR(css);
1025 
1026 	ret = perf_cgroup_ensure_storage(event, css);
1027 	if (ret)
1028 		return ret;
1029 
1030 	cgrp = container_of(css, struct perf_cgroup, css);
1031 	event->cgrp = cgrp;
1032 
1033 	/*
1034 	 * all events in a group must monitor
1035 	 * the same cgroup because a task belongs
1036 	 * to only one perf cgroup at a time
1037 	 */
1038 	if (group_leader && group_leader->cgrp != cgrp) {
1039 		perf_detach_cgroup(event);
1040 		ret = -EINVAL;
1041 	}
1042 	return ret;
1043 }
1044 
1045 static inline void
perf_cgroup_event_enable(struct perf_event * event,struct perf_event_context * ctx)1046 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1047 {
1048 	struct perf_cpu_context *cpuctx;
1049 
1050 	if (!is_cgroup_event(event))
1051 		return;
1052 
1053 	event->pmu_ctx->nr_cgroups++;
1054 
1055 	/*
1056 	 * Because cgroup events are always per-cpu events,
1057 	 * @ctx == &cpuctx->ctx.
1058 	 */
1059 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1060 
1061 	if (ctx->nr_cgroups++)
1062 		return;
1063 
1064 	cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
1065 }
1066 
1067 static inline void
perf_cgroup_event_disable(struct perf_event * event,struct perf_event_context * ctx)1068 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1069 {
1070 	struct perf_cpu_context *cpuctx;
1071 
1072 	if (!is_cgroup_event(event))
1073 		return;
1074 
1075 	event->pmu_ctx->nr_cgroups--;
1076 
1077 	/*
1078 	 * Because cgroup events are always per-cpu events,
1079 	 * @ctx == &cpuctx->ctx.
1080 	 */
1081 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1082 
1083 	if (--ctx->nr_cgroups)
1084 		return;
1085 
1086 	cpuctx->cgrp = NULL;
1087 }
1088 
1089 #else /* !CONFIG_CGROUP_PERF */
1090 
1091 static inline bool
perf_cgroup_match(struct perf_event * event)1092 perf_cgroup_match(struct perf_event *event)
1093 {
1094 	return true;
1095 }
1096 
perf_detach_cgroup(struct perf_event * event)1097 static inline void perf_detach_cgroup(struct perf_event *event)
1098 {}
1099 
is_cgroup_event(struct perf_event * event)1100 static inline int is_cgroup_event(struct perf_event *event)
1101 {
1102 	return 0;
1103 }
1104 
update_cgrp_time_from_event(struct perf_event * event)1105 static inline void update_cgrp_time_from_event(struct perf_event *event)
1106 {
1107 }
1108 
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx,bool final)1109 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1110 						bool final)
1111 {
1112 }
1113 
perf_cgroup_connect(pid_t pid,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)1114 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1115 				      struct perf_event_attr *attr,
1116 				      struct perf_event *group_leader)
1117 {
1118 	return -EINVAL;
1119 }
1120 
1121 static inline void
perf_cgroup_set_timestamp(struct perf_cpu_context * cpuctx)1122 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1123 {
1124 }
1125 
perf_cgroup_event_time(struct perf_event * event)1126 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1127 {
1128 	return 0;
1129 }
1130 
perf_cgroup_event_time_now(struct perf_event * event,u64 now)1131 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1132 {
1133 	return 0;
1134 }
1135 
1136 static inline void
perf_cgroup_event_enable(struct perf_event * event,struct perf_event_context * ctx)1137 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1138 {
1139 }
1140 
1141 static inline void
perf_cgroup_event_disable(struct perf_event * event,struct perf_event_context * ctx)1142 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1143 {
1144 }
1145 
perf_cgroup_switch(struct task_struct * task)1146 static void perf_cgroup_switch(struct task_struct *task)
1147 {
1148 }
1149 #endif
1150 
1151 /*
1152  * set default to be dependent on timer tick just
1153  * like original code
1154  */
1155 #define PERF_CPU_HRTIMER (1000 / HZ)
1156 /*
1157  * function must be called with interrupts disabled
1158  */
perf_mux_hrtimer_handler(struct hrtimer * hr)1159 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1160 {
1161 	struct perf_cpu_pmu_context *cpc;
1162 	bool rotations;
1163 
1164 	lockdep_assert_irqs_disabled();
1165 
1166 	cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer);
1167 	rotations = perf_rotate_context(cpc);
1168 
1169 	raw_spin_lock(&cpc->hrtimer_lock);
1170 	if (rotations)
1171 		hrtimer_forward_now(hr, cpc->hrtimer_interval);
1172 	else
1173 		cpc->hrtimer_active = 0;
1174 	raw_spin_unlock(&cpc->hrtimer_lock);
1175 
1176 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1177 }
1178 
__perf_mux_hrtimer_init(struct perf_cpu_pmu_context * cpc,int cpu)1179 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu)
1180 {
1181 	struct hrtimer *timer = &cpc->hrtimer;
1182 	struct pmu *pmu = cpc->epc.pmu;
1183 	u64 interval;
1184 
1185 	/*
1186 	 * check default is sane, if not set then force to
1187 	 * default interval (1/tick)
1188 	 */
1189 	interval = pmu->hrtimer_interval_ms;
1190 	if (interval < 1)
1191 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1192 
1193 	cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1194 
1195 	raw_spin_lock_init(&cpc->hrtimer_lock);
1196 	hrtimer_setup(timer, perf_mux_hrtimer_handler, CLOCK_MONOTONIC,
1197 		      HRTIMER_MODE_ABS_PINNED_HARD);
1198 }
1199 
perf_mux_hrtimer_restart(struct perf_cpu_pmu_context * cpc)1200 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc)
1201 {
1202 	struct hrtimer *timer = &cpc->hrtimer;
1203 	unsigned long flags;
1204 
1205 	raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags);
1206 	if (!cpc->hrtimer_active) {
1207 		cpc->hrtimer_active = 1;
1208 		hrtimer_forward_now(timer, cpc->hrtimer_interval);
1209 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1210 	}
1211 	raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags);
1212 
1213 	return 0;
1214 }
1215 
perf_mux_hrtimer_restart_ipi(void * arg)1216 static int perf_mux_hrtimer_restart_ipi(void *arg)
1217 {
1218 	return perf_mux_hrtimer_restart(arg);
1219 }
1220 
this_cpc(struct pmu * pmu)1221 static __always_inline struct perf_cpu_pmu_context *this_cpc(struct pmu *pmu)
1222 {
1223 	return *this_cpu_ptr(pmu->cpu_pmu_context);
1224 }
1225 
perf_pmu_disable(struct pmu * pmu)1226 void perf_pmu_disable(struct pmu *pmu)
1227 {
1228 	int *count = &this_cpc(pmu)->pmu_disable_count;
1229 	if (!(*count)++)
1230 		pmu->pmu_disable(pmu);
1231 }
1232 
perf_pmu_enable(struct pmu * pmu)1233 void perf_pmu_enable(struct pmu *pmu)
1234 {
1235 	int *count = &this_cpc(pmu)->pmu_disable_count;
1236 	if (!--(*count))
1237 		pmu->pmu_enable(pmu);
1238 }
1239 
perf_assert_pmu_disabled(struct pmu * pmu)1240 static void perf_assert_pmu_disabled(struct pmu *pmu)
1241 {
1242 	int *count = &this_cpc(pmu)->pmu_disable_count;
1243 	WARN_ON_ONCE(*count == 0);
1244 }
1245 
perf_pmu_read(struct perf_event * event)1246 static inline void perf_pmu_read(struct perf_event *event)
1247 {
1248 	if (event->state == PERF_EVENT_STATE_ACTIVE)
1249 		event->pmu->read(event);
1250 }
1251 
get_ctx(struct perf_event_context * ctx)1252 static void get_ctx(struct perf_event_context *ctx)
1253 {
1254 	refcount_inc(&ctx->refcount);
1255 }
1256 
free_ctx(struct rcu_head * head)1257 static void free_ctx(struct rcu_head *head)
1258 {
1259 	struct perf_event_context *ctx;
1260 
1261 	ctx = container_of(head, struct perf_event_context, rcu_head);
1262 	kfree(ctx);
1263 }
1264 
put_ctx(struct perf_event_context * ctx)1265 static void put_ctx(struct perf_event_context *ctx)
1266 {
1267 	if (refcount_dec_and_test(&ctx->refcount)) {
1268 		if (ctx->parent_ctx)
1269 			put_ctx(ctx->parent_ctx);
1270 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1271 			put_task_struct(ctx->task);
1272 		call_rcu(&ctx->rcu_head, free_ctx);
1273 	}
1274 }
1275 
1276 /*
1277  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1278  * perf_pmu_migrate_context() we need some magic.
1279  *
1280  * Those places that change perf_event::ctx will hold both
1281  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1282  *
1283  * Lock ordering is by mutex address. There are two other sites where
1284  * perf_event_context::mutex nests and those are:
1285  *
1286  *  - perf_event_exit_task_context()	[ child , 0 ]
1287  *      perf_event_exit_event()
1288  *        put_event()			[ parent, 1 ]
1289  *
1290  *  - perf_event_init_context()		[ parent, 0 ]
1291  *      inherit_task_group()
1292  *        inherit_group()
1293  *          inherit_event()
1294  *            perf_event_alloc()
1295  *              perf_init_event()
1296  *                perf_try_init_event()	[ child , 1 ]
1297  *
1298  * While it appears there is an obvious deadlock here -- the parent and child
1299  * nesting levels are inverted between the two. This is in fact safe because
1300  * life-time rules separate them. That is an exiting task cannot fork, and a
1301  * spawning task cannot (yet) exit.
1302  *
1303  * But remember that these are parent<->child context relations, and
1304  * migration does not affect children, therefore these two orderings should not
1305  * interact.
1306  *
1307  * The change in perf_event::ctx does not affect children (as claimed above)
1308  * because the sys_perf_event_open() case will install a new event and break
1309  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1310  * concerned with cpuctx and that doesn't have children.
1311  *
1312  * The places that change perf_event::ctx will issue:
1313  *
1314  *   perf_remove_from_context();
1315  *   synchronize_rcu();
1316  *   perf_install_in_context();
1317  *
1318  * to affect the change. The remove_from_context() + synchronize_rcu() should
1319  * quiesce the event, after which we can install it in the new location. This
1320  * means that only external vectors (perf_fops, prctl) can perturb the event
1321  * while in transit. Therefore all such accessors should also acquire
1322  * perf_event_context::mutex to serialize against this.
1323  *
1324  * However; because event->ctx can change while we're waiting to acquire
1325  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1326  * function.
1327  *
1328  * Lock order:
1329  *    exec_update_lock
1330  *	task_struct::perf_event_mutex
1331  *	  perf_event_context::mutex
1332  *	    perf_event::child_mutex;
1333  *	      perf_event_context::lock
1334  *	    mmap_lock
1335  *	      perf_event::mmap_mutex
1336  *	        perf_buffer::aux_mutex
1337  *	      perf_addr_filters_head::lock
1338  *
1339  *    cpu_hotplug_lock
1340  *      pmus_lock
1341  *	  cpuctx->mutex / perf_event_context::mutex
1342  */
1343 static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event * event,int nesting)1344 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1345 {
1346 	struct perf_event_context *ctx;
1347 
1348 again:
1349 	rcu_read_lock();
1350 	ctx = READ_ONCE(event->ctx);
1351 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1352 		rcu_read_unlock();
1353 		goto again;
1354 	}
1355 	rcu_read_unlock();
1356 
1357 	mutex_lock_nested(&ctx->mutex, nesting);
1358 	if (event->ctx != ctx) {
1359 		mutex_unlock(&ctx->mutex);
1360 		put_ctx(ctx);
1361 		goto again;
1362 	}
1363 
1364 	return ctx;
1365 }
1366 
1367 static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event * event)1368 perf_event_ctx_lock(struct perf_event *event)
1369 {
1370 	return perf_event_ctx_lock_nested(event, 0);
1371 }
1372 
perf_event_ctx_unlock(struct perf_event * event,struct perf_event_context * ctx)1373 static void perf_event_ctx_unlock(struct perf_event *event,
1374 				  struct perf_event_context *ctx)
1375 {
1376 	mutex_unlock(&ctx->mutex);
1377 	put_ctx(ctx);
1378 }
1379 
1380 /*
1381  * This must be done under the ctx->lock, such as to serialize against
1382  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1383  * calling scheduler related locks and ctx->lock nests inside those.
1384  */
1385 static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context * ctx)1386 unclone_ctx(struct perf_event_context *ctx)
1387 {
1388 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1389 
1390 	lockdep_assert_held(&ctx->lock);
1391 
1392 	if (parent_ctx)
1393 		ctx->parent_ctx = NULL;
1394 	ctx->generation++;
1395 
1396 	return parent_ctx;
1397 }
1398 
perf_event_pid_type(struct perf_event * event,struct task_struct * p,enum pid_type type)1399 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1400 				enum pid_type type)
1401 {
1402 	u32 nr;
1403 	/*
1404 	 * only top level events have the pid namespace they were created in
1405 	 */
1406 	if (event->parent)
1407 		event = event->parent;
1408 
1409 	nr = __task_pid_nr_ns(p, type, event->ns);
1410 	/* avoid -1 if it is idle thread or runs in another ns */
1411 	if (!nr && !pid_alive(p))
1412 		nr = -1;
1413 	return nr;
1414 }
1415 
perf_event_pid(struct perf_event * event,struct task_struct * p)1416 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1417 {
1418 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1419 }
1420 
perf_event_tid(struct perf_event * event,struct task_struct * p)1421 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1422 {
1423 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1424 }
1425 
1426 /*
1427  * If we inherit events we want to return the parent event id
1428  * to userspace.
1429  */
primary_event_id(struct perf_event * event)1430 static u64 primary_event_id(struct perf_event *event)
1431 {
1432 	u64 id = event->id;
1433 
1434 	if (event->parent)
1435 		id = event->parent->id;
1436 
1437 	return id;
1438 }
1439 
1440 /*
1441  * Get the perf_event_context for a task and lock it.
1442  *
1443  * This has to cope with the fact that until it is locked,
1444  * the context could get moved to another task.
1445  */
1446 static struct perf_event_context *
perf_lock_task_context(struct task_struct * task,unsigned long * flags)1447 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
1448 {
1449 	struct perf_event_context *ctx;
1450 
1451 retry:
1452 	/*
1453 	 * One of the few rules of preemptible RCU is that one cannot do
1454 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1455 	 * part of the read side critical section was irqs-enabled -- see
1456 	 * rcu_read_unlock_special().
1457 	 *
1458 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1459 	 * side critical section has interrupts disabled.
1460 	 */
1461 	local_irq_save(*flags);
1462 	rcu_read_lock();
1463 	ctx = rcu_dereference(task->perf_event_ctxp);
1464 	if (ctx) {
1465 		/*
1466 		 * If this context is a clone of another, it might
1467 		 * get swapped for another underneath us by
1468 		 * perf_event_task_sched_out, though the
1469 		 * rcu_read_lock() protects us from any context
1470 		 * getting freed.  Lock the context and check if it
1471 		 * got swapped before we could get the lock, and retry
1472 		 * if so.  If we locked the right context, then it
1473 		 * can't get swapped on us any more.
1474 		 */
1475 		raw_spin_lock(&ctx->lock);
1476 		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
1477 			raw_spin_unlock(&ctx->lock);
1478 			rcu_read_unlock();
1479 			local_irq_restore(*flags);
1480 			goto retry;
1481 		}
1482 
1483 		if (ctx->task == TASK_TOMBSTONE ||
1484 		    !refcount_inc_not_zero(&ctx->refcount)) {
1485 			raw_spin_unlock(&ctx->lock);
1486 			ctx = NULL;
1487 		} else {
1488 			WARN_ON_ONCE(ctx->task != task);
1489 		}
1490 	}
1491 	rcu_read_unlock();
1492 	if (!ctx)
1493 		local_irq_restore(*flags);
1494 	return ctx;
1495 }
1496 
1497 /*
1498  * Get the context for a task and increment its pin_count so it
1499  * can't get swapped to another task.  This also increments its
1500  * reference count so that the context can't get freed.
1501  */
1502 static struct perf_event_context *
perf_pin_task_context(struct task_struct * task)1503 perf_pin_task_context(struct task_struct *task)
1504 {
1505 	struct perf_event_context *ctx;
1506 	unsigned long flags;
1507 
1508 	ctx = perf_lock_task_context(task, &flags);
1509 	if (ctx) {
1510 		++ctx->pin_count;
1511 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1512 	}
1513 	return ctx;
1514 }
1515 
perf_unpin_context(struct perf_event_context * ctx)1516 static void perf_unpin_context(struct perf_event_context *ctx)
1517 {
1518 	unsigned long flags;
1519 
1520 	raw_spin_lock_irqsave(&ctx->lock, flags);
1521 	--ctx->pin_count;
1522 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1523 }
1524 
1525 /*
1526  * Update the record of the current time in a context.
1527  */
__update_context_time(struct perf_event_context * ctx,bool adv)1528 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1529 {
1530 	u64 now = perf_clock();
1531 
1532 	lockdep_assert_held(&ctx->lock);
1533 
1534 	if (adv)
1535 		ctx->time += now - ctx->timestamp;
1536 	ctx->timestamp = now;
1537 
1538 	/*
1539 	 * The above: time' = time + (now - timestamp), can be re-arranged
1540 	 * into: time` = now + (time - timestamp), which gives a single value
1541 	 * offset to compute future time without locks on.
1542 	 *
1543 	 * See perf_event_time_now(), which can be used from NMI context where
1544 	 * it's (obviously) not possible to acquire ctx->lock in order to read
1545 	 * both the above values in a consistent manner.
1546 	 */
1547 	WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1548 }
1549 
update_context_time(struct perf_event_context * ctx)1550 static void update_context_time(struct perf_event_context *ctx)
1551 {
1552 	__update_context_time(ctx, true);
1553 }
1554 
perf_event_time(struct perf_event * event)1555 static u64 perf_event_time(struct perf_event *event)
1556 {
1557 	struct perf_event_context *ctx = event->ctx;
1558 
1559 	if (unlikely(!ctx))
1560 		return 0;
1561 
1562 	if (is_cgroup_event(event))
1563 		return perf_cgroup_event_time(event);
1564 
1565 	return ctx->time;
1566 }
1567 
perf_event_time_now(struct perf_event * event,u64 now)1568 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1569 {
1570 	struct perf_event_context *ctx = event->ctx;
1571 
1572 	if (unlikely(!ctx))
1573 		return 0;
1574 
1575 	if (is_cgroup_event(event))
1576 		return perf_cgroup_event_time_now(event, now);
1577 
1578 	if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1579 		return ctx->time;
1580 
1581 	now += READ_ONCE(ctx->timeoffset);
1582 	return now;
1583 }
1584 
get_event_type(struct perf_event * event)1585 static enum event_type_t get_event_type(struct perf_event *event)
1586 {
1587 	struct perf_event_context *ctx = event->ctx;
1588 	enum event_type_t event_type;
1589 
1590 	lockdep_assert_held(&ctx->lock);
1591 
1592 	/*
1593 	 * It's 'group type', really, because if our group leader is
1594 	 * pinned, so are we.
1595 	 */
1596 	if (event->group_leader != event)
1597 		event = event->group_leader;
1598 
1599 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1600 	if (!ctx->task)
1601 		event_type |= EVENT_CPU;
1602 
1603 	return event_type;
1604 }
1605 
1606 /*
1607  * Helper function to initialize event group nodes.
1608  */
init_event_group(struct perf_event * event)1609 static void init_event_group(struct perf_event *event)
1610 {
1611 	RB_CLEAR_NODE(&event->group_node);
1612 	event->group_index = 0;
1613 }
1614 
1615 /*
1616  * Extract pinned or flexible groups from the context
1617  * based on event attrs bits.
1618  */
1619 static struct perf_event_groups *
get_event_groups(struct perf_event * event,struct perf_event_context * ctx)1620 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1621 {
1622 	if (event->attr.pinned)
1623 		return &ctx->pinned_groups;
1624 	else
1625 		return &ctx->flexible_groups;
1626 }
1627 
1628 /*
1629  * Helper function to initializes perf_event_group trees.
1630  */
perf_event_groups_init(struct perf_event_groups * groups)1631 static void perf_event_groups_init(struct perf_event_groups *groups)
1632 {
1633 	groups->tree = RB_ROOT;
1634 	groups->index = 0;
1635 }
1636 
event_cgroup(const struct perf_event * event)1637 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1638 {
1639 	struct cgroup *cgroup = NULL;
1640 
1641 #ifdef CONFIG_CGROUP_PERF
1642 	if (event->cgrp)
1643 		cgroup = event->cgrp->css.cgroup;
1644 #endif
1645 
1646 	return cgroup;
1647 }
1648 
1649 /*
1650  * Compare function for event groups;
1651  *
1652  * Implements complex key that first sorts by CPU and then by virtual index
1653  * which provides ordering when rotating groups for the same CPU.
1654  */
1655 static __always_inline int
perf_event_groups_cmp(const int left_cpu,const struct pmu * left_pmu,const struct cgroup * left_cgroup,const u64 left_group_index,const struct perf_event * right)1656 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu,
1657 		      const struct cgroup *left_cgroup, const u64 left_group_index,
1658 		      const struct perf_event *right)
1659 {
1660 	if (left_cpu < right->cpu)
1661 		return -1;
1662 	if (left_cpu > right->cpu)
1663 		return 1;
1664 
1665 	if (left_pmu) {
1666 		if (left_pmu < right->pmu_ctx->pmu)
1667 			return -1;
1668 		if (left_pmu > right->pmu_ctx->pmu)
1669 			return 1;
1670 	}
1671 
1672 #ifdef CONFIG_CGROUP_PERF
1673 	{
1674 		const struct cgroup *right_cgroup = event_cgroup(right);
1675 
1676 		if (left_cgroup != right_cgroup) {
1677 			if (!left_cgroup) {
1678 				/*
1679 				 * Left has no cgroup but right does, no
1680 				 * cgroups come first.
1681 				 */
1682 				return -1;
1683 			}
1684 			if (!right_cgroup) {
1685 				/*
1686 				 * Right has no cgroup but left does, no
1687 				 * cgroups come first.
1688 				 */
1689 				return 1;
1690 			}
1691 			/* Two dissimilar cgroups, order by id. */
1692 			if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1693 				return -1;
1694 
1695 			return 1;
1696 		}
1697 	}
1698 #endif
1699 
1700 	if (left_group_index < right->group_index)
1701 		return -1;
1702 	if (left_group_index > right->group_index)
1703 		return 1;
1704 
1705 	return 0;
1706 }
1707 
1708 #define __node_2_pe(node) \
1709 	rb_entry((node), struct perf_event, group_node)
1710 
__group_less(struct rb_node * a,const struct rb_node * b)1711 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1712 {
1713 	struct perf_event *e = __node_2_pe(a);
1714 	return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e),
1715 				     e->group_index, __node_2_pe(b)) < 0;
1716 }
1717 
1718 struct __group_key {
1719 	int cpu;
1720 	struct pmu *pmu;
1721 	struct cgroup *cgroup;
1722 };
1723 
__group_cmp(const void * key,const struct rb_node * node)1724 static inline int __group_cmp(const void *key, const struct rb_node *node)
1725 {
1726 	const struct __group_key *a = key;
1727 	const struct perf_event *b = __node_2_pe(node);
1728 
1729 	/* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */
1730 	return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b);
1731 }
1732 
1733 static inline int
__group_cmp_ignore_cgroup(const void * key,const struct rb_node * node)1734 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node)
1735 {
1736 	const struct __group_key *a = key;
1737 	const struct perf_event *b = __node_2_pe(node);
1738 
1739 	/* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */
1740 	return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b),
1741 				     b->group_index, b);
1742 }
1743 
1744 /*
1745  * Insert @event into @groups' tree; using
1746  *   {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index}
1747  * as key. This places it last inside the {cpu,pmu,cgroup} subtree.
1748  */
1749 static void
perf_event_groups_insert(struct perf_event_groups * groups,struct perf_event * event)1750 perf_event_groups_insert(struct perf_event_groups *groups,
1751 			 struct perf_event *event)
1752 {
1753 	event->group_index = ++groups->index;
1754 
1755 	rb_add(&event->group_node, &groups->tree, __group_less);
1756 }
1757 
1758 /*
1759  * Helper function to insert event into the pinned or flexible groups.
1760  */
1761 static void
add_event_to_groups(struct perf_event * event,struct perf_event_context * ctx)1762 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1763 {
1764 	struct perf_event_groups *groups;
1765 
1766 	groups = get_event_groups(event, ctx);
1767 	perf_event_groups_insert(groups, event);
1768 }
1769 
1770 /*
1771  * Delete a group from a tree.
1772  */
1773 static void
perf_event_groups_delete(struct perf_event_groups * groups,struct perf_event * event)1774 perf_event_groups_delete(struct perf_event_groups *groups,
1775 			 struct perf_event *event)
1776 {
1777 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1778 		     RB_EMPTY_ROOT(&groups->tree));
1779 
1780 	rb_erase(&event->group_node, &groups->tree);
1781 	init_event_group(event);
1782 }
1783 
1784 /*
1785  * Helper function to delete event from its groups.
1786  */
1787 static void
del_event_from_groups(struct perf_event * event,struct perf_event_context * ctx)1788 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1789 {
1790 	struct perf_event_groups *groups;
1791 
1792 	groups = get_event_groups(event, ctx);
1793 	perf_event_groups_delete(groups, event);
1794 }
1795 
1796 /*
1797  * Get the leftmost event in the {cpu,pmu,cgroup} subtree.
1798  */
1799 static struct perf_event *
perf_event_groups_first(struct perf_event_groups * groups,int cpu,struct pmu * pmu,struct cgroup * cgrp)1800 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1801 			struct pmu *pmu, struct cgroup *cgrp)
1802 {
1803 	struct __group_key key = {
1804 		.cpu = cpu,
1805 		.pmu = pmu,
1806 		.cgroup = cgrp,
1807 	};
1808 	struct rb_node *node;
1809 
1810 	node = rb_find_first(&key, &groups->tree, __group_cmp);
1811 	if (node)
1812 		return __node_2_pe(node);
1813 
1814 	return NULL;
1815 }
1816 
1817 static struct perf_event *
perf_event_groups_next(struct perf_event * event,struct pmu * pmu)1818 perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
1819 {
1820 	struct __group_key key = {
1821 		.cpu = event->cpu,
1822 		.pmu = pmu,
1823 		.cgroup = event_cgroup(event),
1824 	};
1825 	struct rb_node *next;
1826 
1827 	next = rb_next_match(&key, &event->group_node, __group_cmp);
1828 	if (next)
1829 		return __node_2_pe(next);
1830 
1831 	return NULL;
1832 }
1833 
1834 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu)		\
1835 	for (event = perf_event_groups_first(groups, cpu, pmu, NULL);	\
1836 	     event; event = perf_event_groups_next(event, pmu))
1837 
1838 /*
1839  * Iterate through the whole groups tree.
1840  */
1841 #define perf_event_groups_for_each(event, groups)			\
1842 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1843 				typeof(*event), group_node); event;	\
1844 		event = rb_entry_safe(rb_next(&event->group_node),	\
1845 				typeof(*event), group_node))
1846 
1847 /*
1848  * Does the event attribute request inherit with PERF_SAMPLE_READ
1849  */
has_inherit_and_sample_read(struct perf_event_attr * attr)1850 static inline bool has_inherit_and_sample_read(struct perf_event_attr *attr)
1851 {
1852 	return attr->inherit && (attr->sample_type & PERF_SAMPLE_READ);
1853 }
1854 
1855 /*
1856  * Add an event from the lists for its context.
1857  * Must be called with ctx->mutex and ctx->lock held.
1858  */
1859 static void
list_add_event(struct perf_event * event,struct perf_event_context * ctx)1860 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1861 {
1862 	lockdep_assert_held(&ctx->lock);
1863 
1864 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1865 	event->attach_state |= PERF_ATTACH_CONTEXT;
1866 
1867 	event->tstamp = perf_event_time(event);
1868 
1869 	/*
1870 	 * If we're a stand alone event or group leader, we go to the context
1871 	 * list, group events are kept attached to the group so that
1872 	 * perf_group_detach can, at all times, locate all siblings.
1873 	 */
1874 	if (event->group_leader == event) {
1875 		event->group_caps = event->event_caps;
1876 		add_event_to_groups(event, ctx);
1877 	}
1878 
1879 	list_add_rcu(&event->event_entry, &ctx->event_list);
1880 	ctx->nr_events++;
1881 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1882 		ctx->nr_user++;
1883 	if (event->attr.inherit_stat)
1884 		ctx->nr_stat++;
1885 	if (has_inherit_and_sample_read(&event->attr))
1886 		local_inc(&ctx->nr_no_switch_fast);
1887 
1888 	if (event->state > PERF_EVENT_STATE_OFF)
1889 		perf_cgroup_event_enable(event, ctx);
1890 
1891 	ctx->generation++;
1892 	event->pmu_ctx->nr_events++;
1893 }
1894 
1895 /*
1896  * Initialize event state based on the perf_event_attr::disabled.
1897  */
perf_event__state_init(struct perf_event * event)1898 static inline void perf_event__state_init(struct perf_event *event)
1899 {
1900 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1901 					      PERF_EVENT_STATE_INACTIVE;
1902 }
1903 
__perf_event_read_size(u64 read_format,int nr_siblings)1904 static int __perf_event_read_size(u64 read_format, int nr_siblings)
1905 {
1906 	int entry = sizeof(u64); /* value */
1907 	int size = 0;
1908 	int nr = 1;
1909 
1910 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1911 		size += sizeof(u64);
1912 
1913 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1914 		size += sizeof(u64);
1915 
1916 	if (read_format & PERF_FORMAT_ID)
1917 		entry += sizeof(u64);
1918 
1919 	if (read_format & PERF_FORMAT_LOST)
1920 		entry += sizeof(u64);
1921 
1922 	if (read_format & PERF_FORMAT_GROUP) {
1923 		nr += nr_siblings;
1924 		size += sizeof(u64);
1925 	}
1926 
1927 	/*
1928 	 * Since perf_event_validate_size() limits this to 16k and inhibits
1929 	 * adding more siblings, this will never overflow.
1930 	 */
1931 	return size + nr * entry;
1932 }
1933 
__perf_event_header_size(struct perf_event * event,u64 sample_type)1934 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1935 {
1936 	struct perf_sample_data *data;
1937 	u16 size = 0;
1938 
1939 	if (sample_type & PERF_SAMPLE_IP)
1940 		size += sizeof(data->ip);
1941 
1942 	if (sample_type & PERF_SAMPLE_ADDR)
1943 		size += sizeof(data->addr);
1944 
1945 	if (sample_type & PERF_SAMPLE_PERIOD)
1946 		size += sizeof(data->period);
1947 
1948 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1949 		size += sizeof(data->weight.full);
1950 
1951 	if (sample_type & PERF_SAMPLE_READ)
1952 		size += event->read_size;
1953 
1954 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1955 		size += sizeof(data->data_src.val);
1956 
1957 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1958 		size += sizeof(data->txn);
1959 
1960 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1961 		size += sizeof(data->phys_addr);
1962 
1963 	if (sample_type & PERF_SAMPLE_CGROUP)
1964 		size += sizeof(data->cgroup);
1965 
1966 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1967 		size += sizeof(data->data_page_size);
1968 
1969 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1970 		size += sizeof(data->code_page_size);
1971 
1972 	event->header_size = size;
1973 }
1974 
1975 /*
1976  * Called at perf_event creation and when events are attached/detached from a
1977  * group.
1978  */
perf_event__header_size(struct perf_event * event)1979 static void perf_event__header_size(struct perf_event *event)
1980 {
1981 	event->read_size =
1982 		__perf_event_read_size(event->attr.read_format,
1983 				       event->group_leader->nr_siblings);
1984 	__perf_event_header_size(event, event->attr.sample_type);
1985 }
1986 
perf_event__id_header_size(struct perf_event * event)1987 static void perf_event__id_header_size(struct perf_event *event)
1988 {
1989 	struct perf_sample_data *data;
1990 	u64 sample_type = event->attr.sample_type;
1991 	u16 size = 0;
1992 
1993 	if (sample_type & PERF_SAMPLE_TID)
1994 		size += sizeof(data->tid_entry);
1995 
1996 	if (sample_type & PERF_SAMPLE_TIME)
1997 		size += sizeof(data->time);
1998 
1999 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
2000 		size += sizeof(data->id);
2001 
2002 	if (sample_type & PERF_SAMPLE_ID)
2003 		size += sizeof(data->id);
2004 
2005 	if (sample_type & PERF_SAMPLE_STREAM_ID)
2006 		size += sizeof(data->stream_id);
2007 
2008 	if (sample_type & PERF_SAMPLE_CPU)
2009 		size += sizeof(data->cpu_entry);
2010 
2011 	event->id_header_size = size;
2012 }
2013 
2014 /*
2015  * Check that adding an event to the group does not result in anybody
2016  * overflowing the 64k event limit imposed by the output buffer.
2017  *
2018  * Specifically, check that the read_size for the event does not exceed 16k,
2019  * read_size being the one term that grows with groups size. Since read_size
2020  * depends on per-event read_format, also (re)check the existing events.
2021  *
2022  * This leaves 48k for the constant size fields and things like callchains,
2023  * branch stacks and register sets.
2024  */
perf_event_validate_size(struct perf_event * event)2025 static bool perf_event_validate_size(struct perf_event *event)
2026 {
2027 	struct perf_event *sibling, *group_leader = event->group_leader;
2028 
2029 	if (__perf_event_read_size(event->attr.read_format,
2030 				   group_leader->nr_siblings + 1) > 16*1024)
2031 		return false;
2032 
2033 	if (__perf_event_read_size(group_leader->attr.read_format,
2034 				   group_leader->nr_siblings + 1) > 16*1024)
2035 		return false;
2036 
2037 	/*
2038 	 * When creating a new group leader, group_leader->ctx is initialized
2039 	 * after the size has been validated, but we cannot safely use
2040 	 * for_each_sibling_event() until group_leader->ctx is set. A new group
2041 	 * leader cannot have any siblings yet, so we can safely skip checking
2042 	 * the non-existent siblings.
2043 	 */
2044 	if (event == group_leader)
2045 		return true;
2046 
2047 	for_each_sibling_event(sibling, group_leader) {
2048 		if (__perf_event_read_size(sibling->attr.read_format,
2049 					   group_leader->nr_siblings + 1) > 16*1024)
2050 			return false;
2051 	}
2052 
2053 	return true;
2054 }
2055 
perf_group_attach(struct perf_event * event)2056 static void perf_group_attach(struct perf_event *event)
2057 {
2058 	struct perf_event *group_leader = event->group_leader, *pos;
2059 
2060 	lockdep_assert_held(&event->ctx->lock);
2061 
2062 	/*
2063 	 * We can have double attach due to group movement (move_group) in
2064 	 * perf_event_open().
2065 	 */
2066 	if (event->attach_state & PERF_ATTACH_GROUP)
2067 		return;
2068 
2069 	event->attach_state |= PERF_ATTACH_GROUP;
2070 
2071 	if (group_leader == event)
2072 		return;
2073 
2074 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
2075 
2076 	group_leader->group_caps &= event->event_caps;
2077 
2078 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
2079 	group_leader->nr_siblings++;
2080 	group_leader->group_generation++;
2081 
2082 	perf_event__header_size(group_leader);
2083 
2084 	for_each_sibling_event(pos, group_leader)
2085 		perf_event__header_size(pos);
2086 }
2087 
2088 /*
2089  * Remove an event from the lists for its context.
2090  * Must be called with ctx->mutex and ctx->lock held.
2091  */
2092 static void
list_del_event(struct perf_event * event,struct perf_event_context * ctx)2093 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
2094 {
2095 	WARN_ON_ONCE(event->ctx != ctx);
2096 	lockdep_assert_held(&ctx->lock);
2097 
2098 	/*
2099 	 * We can have double detach due to exit/hot-unplug + close.
2100 	 */
2101 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2102 		return;
2103 
2104 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
2105 
2106 	ctx->nr_events--;
2107 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
2108 		ctx->nr_user--;
2109 	if (event->attr.inherit_stat)
2110 		ctx->nr_stat--;
2111 	if (has_inherit_and_sample_read(&event->attr))
2112 		local_dec(&ctx->nr_no_switch_fast);
2113 
2114 	list_del_rcu(&event->event_entry);
2115 
2116 	if (event->group_leader == event)
2117 		del_event_from_groups(event, ctx);
2118 
2119 	/*
2120 	 * If event was in error state, then keep it
2121 	 * that way, otherwise bogus counts will be
2122 	 * returned on read(). The only way to get out
2123 	 * of error state is by explicit re-enabling
2124 	 * of the event
2125 	 */
2126 	if (event->state > PERF_EVENT_STATE_OFF) {
2127 		perf_cgroup_event_disable(event, ctx);
2128 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2129 	}
2130 
2131 	ctx->generation++;
2132 	event->pmu_ctx->nr_events--;
2133 }
2134 
2135 static int
perf_aux_output_match(struct perf_event * event,struct perf_event * aux_event)2136 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2137 {
2138 	if (!has_aux(aux_event))
2139 		return 0;
2140 
2141 	if (!event->pmu->aux_output_match)
2142 		return 0;
2143 
2144 	return event->pmu->aux_output_match(aux_event);
2145 }
2146 
2147 static void put_event(struct perf_event *event);
2148 static void event_sched_out(struct perf_event *event,
2149 			    struct perf_event_context *ctx);
2150 
perf_put_aux_event(struct perf_event * event)2151 static void perf_put_aux_event(struct perf_event *event)
2152 {
2153 	struct perf_event_context *ctx = event->ctx;
2154 	struct perf_event *iter;
2155 
2156 	/*
2157 	 * If event uses aux_event tear down the link
2158 	 */
2159 	if (event->aux_event) {
2160 		iter = event->aux_event;
2161 		event->aux_event = NULL;
2162 		put_event(iter);
2163 		return;
2164 	}
2165 
2166 	/*
2167 	 * If the event is an aux_event, tear down all links to
2168 	 * it from other events.
2169 	 */
2170 	for_each_sibling_event(iter, event->group_leader) {
2171 		if (iter->aux_event != event)
2172 			continue;
2173 
2174 		iter->aux_event = NULL;
2175 		put_event(event);
2176 
2177 		/*
2178 		 * If it's ACTIVE, schedule it out and put it into ERROR
2179 		 * state so that we don't try to schedule it again. Note
2180 		 * that perf_event_enable() will clear the ERROR status.
2181 		 */
2182 		event_sched_out(iter, ctx);
2183 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2184 	}
2185 }
2186 
perf_need_aux_event(struct perf_event * event)2187 static bool perf_need_aux_event(struct perf_event *event)
2188 {
2189 	return event->attr.aux_output || has_aux_action(event);
2190 }
2191 
perf_get_aux_event(struct perf_event * event,struct perf_event * group_leader)2192 static int perf_get_aux_event(struct perf_event *event,
2193 			      struct perf_event *group_leader)
2194 {
2195 	/*
2196 	 * Our group leader must be an aux event if we want to be
2197 	 * an aux_output. This way, the aux event will precede its
2198 	 * aux_output events in the group, and therefore will always
2199 	 * schedule first.
2200 	 */
2201 	if (!group_leader)
2202 		return 0;
2203 
2204 	/*
2205 	 * aux_output and aux_sample_size are mutually exclusive.
2206 	 */
2207 	if (event->attr.aux_output && event->attr.aux_sample_size)
2208 		return 0;
2209 
2210 	if (event->attr.aux_output &&
2211 	    !perf_aux_output_match(event, group_leader))
2212 		return 0;
2213 
2214 	if ((event->attr.aux_pause || event->attr.aux_resume) &&
2215 	    !(group_leader->pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE))
2216 		return 0;
2217 
2218 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2219 		return 0;
2220 
2221 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
2222 		return 0;
2223 
2224 	/*
2225 	 * Link aux_outputs to their aux event; this is undone in
2226 	 * perf_group_detach() by perf_put_aux_event(). When the
2227 	 * group in torn down, the aux_output events loose their
2228 	 * link to the aux_event and can't schedule any more.
2229 	 */
2230 	event->aux_event = group_leader;
2231 
2232 	return 1;
2233 }
2234 
get_event_list(struct perf_event * event)2235 static inline struct list_head *get_event_list(struct perf_event *event)
2236 {
2237 	return event->attr.pinned ? &event->pmu_ctx->pinned_active :
2238 				    &event->pmu_ctx->flexible_active;
2239 }
2240 
2241 /*
2242  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2243  * cannot exist on their own, schedule them out and move them into the ERROR
2244  * state. Also see _perf_event_enable(), it will not be able to recover
2245  * this ERROR state.
2246  */
perf_remove_sibling_event(struct perf_event * event)2247 static inline void perf_remove_sibling_event(struct perf_event *event)
2248 {
2249 	event_sched_out(event, event->ctx);
2250 	perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2251 }
2252 
perf_group_detach(struct perf_event * event)2253 static void perf_group_detach(struct perf_event *event)
2254 {
2255 	struct perf_event *leader = event->group_leader;
2256 	struct perf_event *sibling, *tmp;
2257 	struct perf_event_context *ctx = event->ctx;
2258 
2259 	lockdep_assert_held(&ctx->lock);
2260 
2261 	/*
2262 	 * We can have double detach due to exit/hot-unplug + close.
2263 	 */
2264 	if (!(event->attach_state & PERF_ATTACH_GROUP))
2265 		return;
2266 
2267 	event->attach_state &= ~PERF_ATTACH_GROUP;
2268 
2269 	perf_put_aux_event(event);
2270 
2271 	/*
2272 	 * If this is a sibling, remove it from its group.
2273 	 */
2274 	if (leader != event) {
2275 		list_del_init(&event->sibling_list);
2276 		event->group_leader->nr_siblings--;
2277 		event->group_leader->group_generation++;
2278 		goto out;
2279 	}
2280 
2281 	/*
2282 	 * If this was a group event with sibling events then
2283 	 * upgrade the siblings to singleton events by adding them
2284 	 * to whatever list we are on.
2285 	 */
2286 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2287 
2288 		if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2289 			perf_remove_sibling_event(sibling);
2290 
2291 		sibling->group_leader = sibling;
2292 		list_del_init(&sibling->sibling_list);
2293 
2294 		/* Inherit group flags from the previous leader */
2295 		sibling->group_caps = event->group_caps;
2296 
2297 		if (sibling->attach_state & PERF_ATTACH_CONTEXT) {
2298 			add_event_to_groups(sibling, event->ctx);
2299 
2300 			if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2301 				list_add_tail(&sibling->active_list, get_event_list(sibling));
2302 		}
2303 
2304 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2305 	}
2306 
2307 out:
2308 	for_each_sibling_event(tmp, leader)
2309 		perf_event__header_size(tmp);
2310 
2311 	perf_event__header_size(leader);
2312 }
2313 
2314 static void sync_child_event(struct perf_event *child_event);
2315 
perf_child_detach(struct perf_event * event)2316 static void perf_child_detach(struct perf_event *event)
2317 {
2318 	struct perf_event *parent_event = event->parent;
2319 
2320 	if (!(event->attach_state & PERF_ATTACH_CHILD))
2321 		return;
2322 
2323 	event->attach_state &= ~PERF_ATTACH_CHILD;
2324 
2325 	if (WARN_ON_ONCE(!parent_event))
2326 		return;
2327 
2328 	lockdep_assert_held(&parent_event->child_mutex);
2329 
2330 	sync_child_event(event);
2331 	list_del_init(&event->child_list);
2332 }
2333 
is_orphaned_event(struct perf_event * event)2334 static bool is_orphaned_event(struct perf_event *event)
2335 {
2336 	return event->state == PERF_EVENT_STATE_DEAD;
2337 }
2338 
2339 static inline int
event_filter_match(struct perf_event * event)2340 event_filter_match(struct perf_event *event)
2341 {
2342 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2343 	       perf_cgroup_match(event);
2344 }
2345 
2346 static void
event_sched_out(struct perf_event * event,struct perf_event_context * ctx)2347 event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
2348 {
2349 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2350 	struct perf_cpu_pmu_context *cpc = this_cpc(epc->pmu);
2351 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2352 
2353 	// XXX cpc serialization, probably per-cpu IRQ disabled
2354 
2355 	WARN_ON_ONCE(event->ctx != ctx);
2356 	lockdep_assert_held(&ctx->lock);
2357 
2358 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2359 		return;
2360 
2361 	/*
2362 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2363 	 * we can schedule events _OUT_ individually through things like
2364 	 * __perf_remove_from_context().
2365 	 */
2366 	list_del_init(&event->active_list);
2367 
2368 	perf_pmu_disable(event->pmu);
2369 
2370 	event->pmu->del(event, 0);
2371 	event->oncpu = -1;
2372 
2373 	if (event->pending_disable) {
2374 		event->pending_disable = 0;
2375 		perf_cgroup_event_disable(event, ctx);
2376 		state = PERF_EVENT_STATE_OFF;
2377 	}
2378 
2379 	perf_event_set_state(event, state);
2380 
2381 	if (!is_software_event(event))
2382 		cpc->active_oncpu--;
2383 	if (event->attr.freq && event->attr.sample_freq) {
2384 		ctx->nr_freq--;
2385 		epc->nr_freq--;
2386 	}
2387 	if (event->attr.exclusive || !cpc->active_oncpu)
2388 		cpc->exclusive = 0;
2389 
2390 	perf_pmu_enable(event->pmu);
2391 }
2392 
2393 static void
group_sched_out(struct perf_event * group_event,struct perf_event_context * ctx)2394 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx)
2395 {
2396 	struct perf_event *event;
2397 
2398 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2399 		return;
2400 
2401 	perf_assert_pmu_disabled(group_event->pmu_ctx->pmu);
2402 
2403 	event_sched_out(group_event, ctx);
2404 
2405 	/*
2406 	 * Schedule out siblings (if any):
2407 	 */
2408 	for_each_sibling_event(event, group_event)
2409 		event_sched_out(event, ctx);
2410 }
2411 
2412 static inline void
__ctx_time_update(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,bool final)2413 __ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx, bool final)
2414 {
2415 	if (ctx->is_active & EVENT_TIME) {
2416 		if (ctx->is_active & EVENT_FROZEN)
2417 			return;
2418 		update_context_time(ctx);
2419 		update_cgrp_time_from_cpuctx(cpuctx, final);
2420 	}
2421 }
2422 
2423 static inline void
ctx_time_update(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2424 ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx)
2425 {
2426 	__ctx_time_update(cpuctx, ctx, false);
2427 }
2428 
2429 /*
2430  * To be used inside perf_ctx_lock() / perf_ctx_unlock(). Lasts until perf_ctx_unlock().
2431  */
2432 static inline void
ctx_time_freeze(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2433 ctx_time_freeze(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx)
2434 {
2435 	ctx_time_update(cpuctx, ctx);
2436 	if (ctx->is_active & EVENT_TIME)
2437 		ctx->is_active |= EVENT_FROZEN;
2438 }
2439 
2440 static inline void
ctx_time_update_event(struct perf_event_context * ctx,struct perf_event * event)2441 ctx_time_update_event(struct perf_event_context *ctx, struct perf_event *event)
2442 {
2443 	if (ctx->is_active & EVENT_TIME) {
2444 		if (ctx->is_active & EVENT_FROZEN)
2445 			return;
2446 		update_context_time(ctx);
2447 		update_cgrp_time_from_event(event);
2448 	}
2449 }
2450 
2451 #define DETACH_GROUP	0x01UL
2452 #define DETACH_CHILD	0x02UL
2453 #define DETACH_DEAD	0x04UL
2454 #define DETACH_EXIT	0x08UL
2455 
2456 /*
2457  * Cross CPU call to remove a performance event
2458  *
2459  * We disable the event on the hardware level first. After that we
2460  * remove it from the context list.
2461  */
2462 static void
__perf_remove_from_context(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2463 __perf_remove_from_context(struct perf_event *event,
2464 			   struct perf_cpu_context *cpuctx,
2465 			   struct perf_event_context *ctx,
2466 			   void *info)
2467 {
2468 	struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
2469 	enum perf_event_state state = PERF_EVENT_STATE_OFF;
2470 	unsigned long flags = (unsigned long)info;
2471 
2472 	ctx_time_update(cpuctx, ctx);
2473 
2474 	/*
2475 	 * Ensure event_sched_out() switches to OFF, at the very least
2476 	 * this avoids raising perf_pending_task() at this time.
2477 	 */
2478 	if (flags & DETACH_EXIT)
2479 		state = PERF_EVENT_STATE_EXIT;
2480 	if (flags & DETACH_DEAD) {
2481 		event->pending_disable = 1;
2482 		state = PERF_EVENT_STATE_DEAD;
2483 	}
2484 	event_sched_out(event, ctx);
2485 	perf_event_set_state(event, min(event->state, state));
2486 	if (flags & DETACH_GROUP)
2487 		perf_group_detach(event);
2488 	if (flags & DETACH_CHILD)
2489 		perf_child_detach(event);
2490 	list_del_event(event, ctx);
2491 
2492 	if (!pmu_ctx->nr_events) {
2493 		pmu_ctx->rotate_necessary = 0;
2494 
2495 		if (ctx->task && ctx->is_active) {
2496 			struct perf_cpu_pmu_context *cpc = this_cpc(pmu_ctx->pmu);
2497 
2498 			WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
2499 			cpc->task_epc = NULL;
2500 		}
2501 	}
2502 
2503 	if (!ctx->nr_events && ctx->is_active) {
2504 		if (ctx == &cpuctx->ctx)
2505 			update_cgrp_time_from_cpuctx(cpuctx, true);
2506 
2507 		ctx->is_active = 0;
2508 		if (ctx->task) {
2509 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2510 			cpuctx->task_ctx = NULL;
2511 		}
2512 	}
2513 }
2514 
2515 /*
2516  * Remove the event from a task's (or a CPU's) list of events.
2517  *
2518  * If event->ctx is a cloned context, callers must make sure that
2519  * every task struct that event->ctx->task could possibly point to
2520  * remains valid.  This is OK when called from perf_release since
2521  * that only calls us on the top-level context, which can't be a clone.
2522  * When called from perf_event_exit_task, it's OK because the
2523  * context has been detached from its task.
2524  */
perf_remove_from_context(struct perf_event * event,unsigned long flags)2525 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2526 {
2527 	struct perf_event_context *ctx = event->ctx;
2528 
2529 	lockdep_assert_held(&ctx->mutex);
2530 
2531 	/*
2532 	 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2533 	 * to work in the face of TASK_TOMBSTONE, unlike every other
2534 	 * event_function_call() user.
2535 	 */
2536 	raw_spin_lock_irq(&ctx->lock);
2537 	if (!ctx->is_active) {
2538 		__perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context),
2539 					   ctx, (void *)flags);
2540 		raw_spin_unlock_irq(&ctx->lock);
2541 		return;
2542 	}
2543 	raw_spin_unlock_irq(&ctx->lock);
2544 
2545 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2546 }
2547 
2548 /*
2549  * Cross CPU call to disable a performance event
2550  */
__perf_event_disable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2551 static void __perf_event_disable(struct perf_event *event,
2552 				 struct perf_cpu_context *cpuctx,
2553 				 struct perf_event_context *ctx,
2554 				 void *info)
2555 {
2556 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2557 		return;
2558 
2559 	perf_pmu_disable(event->pmu_ctx->pmu);
2560 	ctx_time_update_event(ctx, event);
2561 
2562 	if (event == event->group_leader)
2563 		group_sched_out(event, ctx);
2564 	else
2565 		event_sched_out(event, ctx);
2566 
2567 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2568 	perf_cgroup_event_disable(event, ctx);
2569 
2570 	perf_pmu_enable(event->pmu_ctx->pmu);
2571 }
2572 
2573 /*
2574  * Disable an event.
2575  *
2576  * If event->ctx is a cloned context, callers must make sure that
2577  * every task struct that event->ctx->task could possibly point to
2578  * remains valid.  This condition is satisfied when called through
2579  * perf_event_for_each_child or perf_event_for_each because they
2580  * hold the top-level event's child_mutex, so any descendant that
2581  * goes to exit will block in perf_event_exit_event().
2582  *
2583  * When called from perf_pending_disable it's OK because event->ctx
2584  * is the current context on this CPU and preemption is disabled,
2585  * hence we can't get into perf_event_task_sched_out for this context.
2586  */
_perf_event_disable(struct perf_event * event)2587 static void _perf_event_disable(struct perf_event *event)
2588 {
2589 	struct perf_event_context *ctx = event->ctx;
2590 
2591 	raw_spin_lock_irq(&ctx->lock);
2592 	if (event->state <= PERF_EVENT_STATE_OFF) {
2593 		raw_spin_unlock_irq(&ctx->lock);
2594 		return;
2595 	}
2596 	raw_spin_unlock_irq(&ctx->lock);
2597 
2598 	event_function_call(event, __perf_event_disable, NULL);
2599 }
2600 
perf_event_disable_local(struct perf_event * event)2601 void perf_event_disable_local(struct perf_event *event)
2602 {
2603 	event_function_local(event, __perf_event_disable, NULL);
2604 }
2605 
2606 /*
2607  * Strictly speaking kernel users cannot create groups and therefore this
2608  * interface does not need the perf_event_ctx_lock() magic.
2609  */
perf_event_disable(struct perf_event * event)2610 void perf_event_disable(struct perf_event *event)
2611 {
2612 	struct perf_event_context *ctx;
2613 
2614 	ctx = perf_event_ctx_lock(event);
2615 	_perf_event_disable(event);
2616 	perf_event_ctx_unlock(event, ctx);
2617 }
2618 EXPORT_SYMBOL_GPL(perf_event_disable);
2619 
perf_event_disable_inatomic(struct perf_event * event)2620 void perf_event_disable_inatomic(struct perf_event *event)
2621 {
2622 	event->pending_disable = 1;
2623 	irq_work_queue(&event->pending_disable_irq);
2624 }
2625 
2626 #define MAX_INTERRUPTS (~0ULL)
2627 
2628 static void perf_log_throttle(struct perf_event *event, int enable);
2629 static void perf_log_itrace_start(struct perf_event *event);
2630 
2631 static int
event_sched_in(struct perf_event * event,struct perf_event_context * ctx)2632 event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
2633 {
2634 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2635 	struct perf_cpu_pmu_context *cpc = this_cpc(epc->pmu);
2636 	int ret = 0;
2637 
2638 	WARN_ON_ONCE(event->ctx != ctx);
2639 
2640 	lockdep_assert_held(&ctx->lock);
2641 
2642 	if (event->state <= PERF_EVENT_STATE_OFF)
2643 		return 0;
2644 
2645 	WRITE_ONCE(event->oncpu, smp_processor_id());
2646 	/*
2647 	 * Order event::oncpu write to happen before the ACTIVE state is
2648 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2649 	 * ->oncpu if it sees ACTIVE.
2650 	 */
2651 	smp_wmb();
2652 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2653 
2654 	/*
2655 	 * Unthrottle events, since we scheduled we might have missed several
2656 	 * ticks already, also for a heavily scheduling task there is little
2657 	 * guarantee it'll get a tick in a timely manner.
2658 	 */
2659 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2660 		perf_log_throttle(event, 1);
2661 		event->hw.interrupts = 0;
2662 	}
2663 
2664 	perf_pmu_disable(event->pmu);
2665 
2666 	perf_log_itrace_start(event);
2667 
2668 	if (event->pmu->add(event, PERF_EF_START)) {
2669 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2670 		event->oncpu = -1;
2671 		ret = -EAGAIN;
2672 		goto out;
2673 	}
2674 
2675 	if (!is_software_event(event))
2676 		cpc->active_oncpu++;
2677 	if (event->attr.freq && event->attr.sample_freq) {
2678 		ctx->nr_freq++;
2679 		epc->nr_freq++;
2680 	}
2681 	if (event->attr.exclusive)
2682 		cpc->exclusive = 1;
2683 
2684 out:
2685 	perf_pmu_enable(event->pmu);
2686 
2687 	return ret;
2688 }
2689 
2690 static int
group_sched_in(struct perf_event * group_event,struct perf_event_context * ctx)2691 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx)
2692 {
2693 	struct perf_event *event, *partial_group = NULL;
2694 	struct pmu *pmu = group_event->pmu_ctx->pmu;
2695 
2696 	if (group_event->state == PERF_EVENT_STATE_OFF)
2697 		return 0;
2698 
2699 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2700 
2701 	if (event_sched_in(group_event, ctx))
2702 		goto error;
2703 
2704 	/*
2705 	 * Schedule in siblings as one group (if any):
2706 	 */
2707 	for_each_sibling_event(event, group_event) {
2708 		if (event_sched_in(event, ctx)) {
2709 			partial_group = event;
2710 			goto group_error;
2711 		}
2712 	}
2713 
2714 	if (!pmu->commit_txn(pmu))
2715 		return 0;
2716 
2717 group_error:
2718 	/*
2719 	 * Groups can be scheduled in as one unit only, so undo any
2720 	 * partial group before returning:
2721 	 * The events up to the failed event are scheduled out normally.
2722 	 */
2723 	for_each_sibling_event(event, group_event) {
2724 		if (event == partial_group)
2725 			break;
2726 
2727 		event_sched_out(event, ctx);
2728 	}
2729 	event_sched_out(group_event, ctx);
2730 
2731 error:
2732 	pmu->cancel_txn(pmu);
2733 	return -EAGAIN;
2734 }
2735 
2736 /*
2737  * Work out whether we can put this event group on the CPU now.
2738  */
group_can_go_on(struct perf_event * event,int can_add_hw)2739 static int group_can_go_on(struct perf_event *event, int can_add_hw)
2740 {
2741 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2742 	struct perf_cpu_pmu_context *cpc = this_cpc(epc->pmu);
2743 
2744 	/*
2745 	 * Groups consisting entirely of software events can always go on.
2746 	 */
2747 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2748 		return 1;
2749 	/*
2750 	 * If an exclusive group is already on, no other hardware
2751 	 * events can go on.
2752 	 */
2753 	if (cpc->exclusive)
2754 		return 0;
2755 	/*
2756 	 * If this group is exclusive and there are already
2757 	 * events on the CPU, it can't go on.
2758 	 */
2759 	if (event->attr.exclusive && !list_empty(get_event_list(event)))
2760 		return 0;
2761 	/*
2762 	 * Otherwise, try to add it if all previous groups were able
2763 	 * to go on.
2764 	 */
2765 	return can_add_hw;
2766 }
2767 
add_event_to_ctx(struct perf_event * event,struct perf_event_context * ctx)2768 static void add_event_to_ctx(struct perf_event *event,
2769 			       struct perf_event_context *ctx)
2770 {
2771 	list_add_event(event, ctx);
2772 	perf_group_attach(event);
2773 }
2774 
task_ctx_sched_out(struct perf_event_context * ctx,struct pmu * pmu,enum event_type_t event_type)2775 static void task_ctx_sched_out(struct perf_event_context *ctx,
2776 			       struct pmu *pmu,
2777 			       enum event_type_t event_type)
2778 {
2779 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2780 
2781 	if (!cpuctx->task_ctx)
2782 		return;
2783 
2784 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2785 		return;
2786 
2787 	ctx_sched_out(ctx, pmu, event_type);
2788 }
2789 
perf_event_sched_in(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,struct pmu * pmu)2790 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2791 				struct perf_event_context *ctx,
2792 				struct pmu *pmu)
2793 {
2794 	ctx_sched_in(&cpuctx->ctx, pmu, EVENT_PINNED);
2795 	if (ctx)
2796 		 ctx_sched_in(ctx, pmu, EVENT_PINNED);
2797 	ctx_sched_in(&cpuctx->ctx, pmu, EVENT_FLEXIBLE);
2798 	if (ctx)
2799 		 ctx_sched_in(ctx, pmu, EVENT_FLEXIBLE);
2800 }
2801 
2802 /*
2803  * We want to maintain the following priority of scheduling:
2804  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2805  *  - task pinned (EVENT_PINNED)
2806  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2807  *  - task flexible (EVENT_FLEXIBLE).
2808  *
2809  * In order to avoid unscheduling and scheduling back in everything every
2810  * time an event is added, only do it for the groups of equal priority and
2811  * below.
2812  *
2813  * This can be called after a batch operation on task events, in which case
2814  * event_type is a bit mask of the types of events involved. For CPU events,
2815  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2816  */
ctx_resched(struct perf_cpu_context * cpuctx,struct perf_event_context * task_ctx,struct pmu * pmu,enum event_type_t event_type)2817 static void ctx_resched(struct perf_cpu_context *cpuctx,
2818 			struct perf_event_context *task_ctx,
2819 			struct pmu *pmu, enum event_type_t event_type)
2820 {
2821 	bool cpu_event = !!(event_type & EVENT_CPU);
2822 	struct perf_event_pmu_context *epc;
2823 
2824 	/*
2825 	 * If pinned groups are involved, flexible groups also need to be
2826 	 * scheduled out.
2827 	 */
2828 	if (event_type & EVENT_PINNED)
2829 		event_type |= EVENT_FLEXIBLE;
2830 
2831 	event_type &= EVENT_ALL;
2832 
2833 	for_each_epc(epc, &cpuctx->ctx, pmu, false)
2834 		perf_pmu_disable(epc->pmu);
2835 
2836 	if (task_ctx) {
2837 		for_each_epc(epc, task_ctx, pmu, false)
2838 			perf_pmu_disable(epc->pmu);
2839 
2840 		task_ctx_sched_out(task_ctx, pmu, event_type);
2841 	}
2842 
2843 	/*
2844 	 * Decide which cpu ctx groups to schedule out based on the types
2845 	 * of events that caused rescheduling:
2846 	 *  - EVENT_CPU: schedule out corresponding groups;
2847 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2848 	 *  - otherwise, do nothing more.
2849 	 */
2850 	if (cpu_event)
2851 		ctx_sched_out(&cpuctx->ctx, pmu, event_type);
2852 	else if (event_type & EVENT_PINNED)
2853 		ctx_sched_out(&cpuctx->ctx, pmu, EVENT_FLEXIBLE);
2854 
2855 	perf_event_sched_in(cpuctx, task_ctx, pmu);
2856 
2857 	for_each_epc(epc, &cpuctx->ctx, pmu, false)
2858 		perf_pmu_enable(epc->pmu);
2859 
2860 	if (task_ctx) {
2861 		for_each_epc(epc, task_ctx, pmu, false)
2862 			perf_pmu_enable(epc->pmu);
2863 	}
2864 }
2865 
perf_pmu_resched(struct pmu * pmu)2866 void perf_pmu_resched(struct pmu *pmu)
2867 {
2868 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2869 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2870 
2871 	perf_ctx_lock(cpuctx, task_ctx);
2872 	ctx_resched(cpuctx, task_ctx, pmu, EVENT_ALL|EVENT_CPU);
2873 	perf_ctx_unlock(cpuctx, task_ctx);
2874 }
2875 
2876 /*
2877  * Cross CPU call to install and enable a performance event
2878  *
2879  * Very similar to remote_function() + event_function() but cannot assume that
2880  * things like ctx->is_active and cpuctx->task_ctx are set.
2881  */
__perf_install_in_context(void * info)2882 static int  __perf_install_in_context(void *info)
2883 {
2884 	struct perf_event *event = info;
2885 	struct perf_event_context *ctx = event->ctx;
2886 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2887 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2888 	bool reprogram = true;
2889 	int ret = 0;
2890 
2891 	raw_spin_lock(&cpuctx->ctx.lock);
2892 	if (ctx->task) {
2893 		raw_spin_lock(&ctx->lock);
2894 		task_ctx = ctx;
2895 
2896 		reprogram = (ctx->task == current);
2897 
2898 		/*
2899 		 * If the task is running, it must be running on this CPU,
2900 		 * otherwise we cannot reprogram things.
2901 		 *
2902 		 * If its not running, we don't care, ctx->lock will
2903 		 * serialize against it becoming runnable.
2904 		 */
2905 		if (task_curr(ctx->task) && !reprogram) {
2906 			ret = -ESRCH;
2907 			goto unlock;
2908 		}
2909 
2910 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2911 	} else if (task_ctx) {
2912 		raw_spin_lock(&task_ctx->lock);
2913 	}
2914 
2915 #ifdef CONFIG_CGROUP_PERF
2916 	if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2917 		/*
2918 		 * If the current cgroup doesn't match the event's
2919 		 * cgroup, we should not try to schedule it.
2920 		 */
2921 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2922 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2923 					event->cgrp->css.cgroup);
2924 	}
2925 #endif
2926 
2927 	if (reprogram) {
2928 		ctx_time_freeze(cpuctx, ctx);
2929 		add_event_to_ctx(event, ctx);
2930 		ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu,
2931 			    get_event_type(event));
2932 	} else {
2933 		add_event_to_ctx(event, ctx);
2934 	}
2935 
2936 unlock:
2937 	perf_ctx_unlock(cpuctx, task_ctx);
2938 
2939 	return ret;
2940 }
2941 
2942 static bool exclusive_event_installable(struct perf_event *event,
2943 					struct perf_event_context *ctx);
2944 
2945 /*
2946  * Attach a performance event to a context.
2947  *
2948  * Very similar to event_function_call, see comment there.
2949  */
2950 static void
perf_install_in_context(struct perf_event_context * ctx,struct perf_event * event,int cpu)2951 perf_install_in_context(struct perf_event_context *ctx,
2952 			struct perf_event *event,
2953 			int cpu)
2954 {
2955 	struct task_struct *task = READ_ONCE(ctx->task);
2956 
2957 	lockdep_assert_held(&ctx->mutex);
2958 
2959 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2960 
2961 	if (event->cpu != -1)
2962 		WARN_ON_ONCE(event->cpu != cpu);
2963 
2964 	/*
2965 	 * Ensures that if we can observe event->ctx, both the event and ctx
2966 	 * will be 'complete'. See perf_iterate_sb_cpu().
2967 	 */
2968 	smp_store_release(&event->ctx, ctx);
2969 
2970 	/*
2971 	 * perf_event_attr::disabled events will not run and can be initialized
2972 	 * without IPI. Except when this is the first event for the context, in
2973 	 * that case we need the magic of the IPI to set ctx->is_active.
2974 	 *
2975 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
2976 	 * event will issue the IPI and reprogram the hardware.
2977 	 */
2978 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2979 	    ctx->nr_events && !is_cgroup_event(event)) {
2980 		raw_spin_lock_irq(&ctx->lock);
2981 		if (ctx->task == TASK_TOMBSTONE) {
2982 			raw_spin_unlock_irq(&ctx->lock);
2983 			return;
2984 		}
2985 		add_event_to_ctx(event, ctx);
2986 		raw_spin_unlock_irq(&ctx->lock);
2987 		return;
2988 	}
2989 
2990 	if (!task) {
2991 		cpu_function_call(cpu, __perf_install_in_context, event);
2992 		return;
2993 	}
2994 
2995 	/*
2996 	 * Should not happen, we validate the ctx is still alive before calling.
2997 	 */
2998 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2999 		return;
3000 
3001 	/*
3002 	 * Installing events is tricky because we cannot rely on ctx->is_active
3003 	 * to be set in case this is the nr_events 0 -> 1 transition.
3004 	 *
3005 	 * Instead we use task_curr(), which tells us if the task is running.
3006 	 * However, since we use task_curr() outside of rq::lock, we can race
3007 	 * against the actual state. This means the result can be wrong.
3008 	 *
3009 	 * If we get a false positive, we retry, this is harmless.
3010 	 *
3011 	 * If we get a false negative, things are complicated. If we are after
3012 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
3013 	 * value must be correct. If we're before, it doesn't matter since
3014 	 * perf_event_context_sched_in() will program the counter.
3015 	 *
3016 	 * However, this hinges on the remote context switch having observed
3017 	 * our task->perf_event_ctxp[] store, such that it will in fact take
3018 	 * ctx::lock in perf_event_context_sched_in().
3019 	 *
3020 	 * We do this by task_function_call(), if the IPI fails to hit the task
3021 	 * we know any future context switch of task must see the
3022 	 * perf_event_ctpx[] store.
3023 	 */
3024 
3025 	/*
3026 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
3027 	 * task_cpu() load, such that if the IPI then does not find the task
3028 	 * running, a future context switch of that task must observe the
3029 	 * store.
3030 	 */
3031 	smp_mb();
3032 again:
3033 	if (!task_function_call(task, __perf_install_in_context, event))
3034 		return;
3035 
3036 	raw_spin_lock_irq(&ctx->lock);
3037 	task = ctx->task;
3038 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
3039 		/*
3040 		 * Cannot happen because we already checked above (which also
3041 		 * cannot happen), and we hold ctx->mutex, which serializes us
3042 		 * against perf_event_exit_task_context().
3043 		 */
3044 		raw_spin_unlock_irq(&ctx->lock);
3045 		return;
3046 	}
3047 	/*
3048 	 * If the task is not running, ctx->lock will avoid it becoming so,
3049 	 * thus we can safely install the event.
3050 	 */
3051 	if (task_curr(task)) {
3052 		raw_spin_unlock_irq(&ctx->lock);
3053 		goto again;
3054 	}
3055 	add_event_to_ctx(event, ctx);
3056 	raw_spin_unlock_irq(&ctx->lock);
3057 }
3058 
3059 /*
3060  * Cross CPU call to enable a performance event
3061  */
__perf_event_enable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)3062 static void __perf_event_enable(struct perf_event *event,
3063 				struct perf_cpu_context *cpuctx,
3064 				struct perf_event_context *ctx,
3065 				void *info)
3066 {
3067 	struct perf_event *leader = event->group_leader;
3068 	struct perf_event_context *task_ctx;
3069 
3070 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3071 	    event->state <= PERF_EVENT_STATE_ERROR)
3072 		return;
3073 
3074 	ctx_time_freeze(cpuctx, ctx);
3075 
3076 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3077 	perf_cgroup_event_enable(event, ctx);
3078 
3079 	if (!ctx->is_active)
3080 		return;
3081 
3082 	if (!event_filter_match(event))
3083 		return;
3084 
3085 	/*
3086 	 * If the event is in a group and isn't the group leader,
3087 	 * then don't put it on unless the group is on.
3088 	 */
3089 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
3090 		return;
3091 
3092 	task_ctx = cpuctx->task_ctx;
3093 	if (ctx->task)
3094 		WARN_ON_ONCE(task_ctx != ctx);
3095 
3096 	ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu, get_event_type(event));
3097 }
3098 
3099 /*
3100  * Enable an event.
3101  *
3102  * If event->ctx is a cloned context, callers must make sure that
3103  * every task struct that event->ctx->task could possibly point to
3104  * remains valid.  This condition is satisfied when called through
3105  * perf_event_for_each_child or perf_event_for_each as described
3106  * for perf_event_disable.
3107  */
_perf_event_enable(struct perf_event * event)3108 static void _perf_event_enable(struct perf_event *event)
3109 {
3110 	struct perf_event_context *ctx = event->ctx;
3111 
3112 	raw_spin_lock_irq(&ctx->lock);
3113 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3114 	    event->state <  PERF_EVENT_STATE_ERROR) {
3115 out:
3116 		raw_spin_unlock_irq(&ctx->lock);
3117 		return;
3118 	}
3119 
3120 	/*
3121 	 * If the event is in error state, clear that first.
3122 	 *
3123 	 * That way, if we see the event in error state below, we know that it
3124 	 * has gone back into error state, as distinct from the task having
3125 	 * been scheduled away before the cross-call arrived.
3126 	 */
3127 	if (event->state == PERF_EVENT_STATE_ERROR) {
3128 		/*
3129 		 * Detached SIBLING events cannot leave ERROR state.
3130 		 */
3131 		if (event->event_caps & PERF_EV_CAP_SIBLING &&
3132 		    event->group_leader == event)
3133 			goto out;
3134 
3135 		event->state = PERF_EVENT_STATE_OFF;
3136 	}
3137 	raw_spin_unlock_irq(&ctx->lock);
3138 
3139 	event_function_call(event, __perf_event_enable, NULL);
3140 }
3141 
3142 /*
3143  * See perf_event_disable();
3144  */
perf_event_enable(struct perf_event * event)3145 void perf_event_enable(struct perf_event *event)
3146 {
3147 	struct perf_event_context *ctx;
3148 
3149 	ctx = perf_event_ctx_lock(event);
3150 	_perf_event_enable(event);
3151 	perf_event_ctx_unlock(event, ctx);
3152 }
3153 EXPORT_SYMBOL_GPL(perf_event_enable);
3154 
3155 struct stop_event_data {
3156 	struct perf_event	*event;
3157 	unsigned int		restart;
3158 };
3159 
__perf_event_stop(void * info)3160 static int __perf_event_stop(void *info)
3161 {
3162 	struct stop_event_data *sd = info;
3163 	struct perf_event *event = sd->event;
3164 
3165 	/* if it's already INACTIVE, do nothing */
3166 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3167 		return 0;
3168 
3169 	/* matches smp_wmb() in event_sched_in() */
3170 	smp_rmb();
3171 
3172 	/*
3173 	 * There is a window with interrupts enabled before we get here,
3174 	 * so we need to check again lest we try to stop another CPU's event.
3175 	 */
3176 	if (READ_ONCE(event->oncpu) != smp_processor_id())
3177 		return -EAGAIN;
3178 
3179 	event->pmu->stop(event, PERF_EF_UPDATE);
3180 
3181 	/*
3182 	 * May race with the actual stop (through perf_pmu_output_stop()),
3183 	 * but it is only used for events with AUX ring buffer, and such
3184 	 * events will refuse to restart because of rb::aux_mmap_count==0,
3185 	 * see comments in perf_aux_output_begin().
3186 	 *
3187 	 * Since this is happening on an event-local CPU, no trace is lost
3188 	 * while restarting.
3189 	 */
3190 	if (sd->restart)
3191 		event->pmu->start(event, 0);
3192 
3193 	return 0;
3194 }
3195 
perf_event_stop(struct perf_event * event,int restart)3196 static int perf_event_stop(struct perf_event *event, int restart)
3197 {
3198 	struct stop_event_data sd = {
3199 		.event		= event,
3200 		.restart	= restart,
3201 	};
3202 	int ret = 0;
3203 
3204 	do {
3205 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3206 			return 0;
3207 
3208 		/* matches smp_wmb() in event_sched_in() */
3209 		smp_rmb();
3210 
3211 		/*
3212 		 * We only want to restart ACTIVE events, so if the event goes
3213 		 * inactive here (event->oncpu==-1), there's nothing more to do;
3214 		 * fall through with ret==-ENXIO.
3215 		 */
3216 		ret = cpu_function_call(READ_ONCE(event->oncpu),
3217 					__perf_event_stop, &sd);
3218 	} while (ret == -EAGAIN);
3219 
3220 	return ret;
3221 }
3222 
3223 /*
3224  * In order to contain the amount of racy and tricky in the address filter
3225  * configuration management, it is a two part process:
3226  *
3227  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3228  *      we update the addresses of corresponding vmas in
3229  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
3230  * (p2) when an event is scheduled in (pmu::add), it calls
3231  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3232  *      if the generation has changed since the previous call.
3233  *
3234  * If (p1) happens while the event is active, we restart it to force (p2).
3235  *
3236  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3237  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3238  *     ioctl;
3239  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3240  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3241  *     for reading;
3242  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3243  *     of exec.
3244  */
perf_event_addr_filters_sync(struct perf_event * event)3245 void perf_event_addr_filters_sync(struct perf_event *event)
3246 {
3247 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3248 
3249 	if (!has_addr_filter(event))
3250 		return;
3251 
3252 	raw_spin_lock(&ifh->lock);
3253 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3254 		event->pmu->addr_filters_sync(event);
3255 		event->hw.addr_filters_gen = event->addr_filters_gen;
3256 	}
3257 	raw_spin_unlock(&ifh->lock);
3258 }
3259 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3260 
_perf_event_refresh(struct perf_event * event,int refresh)3261 static int _perf_event_refresh(struct perf_event *event, int refresh)
3262 {
3263 	/*
3264 	 * not supported on inherited events
3265 	 */
3266 	if (event->attr.inherit || !is_sampling_event(event))
3267 		return -EINVAL;
3268 
3269 	atomic_add(refresh, &event->event_limit);
3270 	_perf_event_enable(event);
3271 
3272 	return 0;
3273 }
3274 
3275 /*
3276  * See perf_event_disable()
3277  */
perf_event_refresh(struct perf_event * event,int refresh)3278 int perf_event_refresh(struct perf_event *event, int refresh)
3279 {
3280 	struct perf_event_context *ctx;
3281 	int ret;
3282 
3283 	ctx = perf_event_ctx_lock(event);
3284 	ret = _perf_event_refresh(event, refresh);
3285 	perf_event_ctx_unlock(event, ctx);
3286 
3287 	return ret;
3288 }
3289 EXPORT_SYMBOL_GPL(perf_event_refresh);
3290 
perf_event_modify_breakpoint(struct perf_event * bp,struct perf_event_attr * attr)3291 static int perf_event_modify_breakpoint(struct perf_event *bp,
3292 					 struct perf_event_attr *attr)
3293 {
3294 	int err;
3295 
3296 	_perf_event_disable(bp);
3297 
3298 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3299 
3300 	if (!bp->attr.disabled)
3301 		_perf_event_enable(bp);
3302 
3303 	return err;
3304 }
3305 
3306 /*
3307  * Copy event-type-independent attributes that may be modified.
3308  */
perf_event_modify_copy_attr(struct perf_event_attr * to,const struct perf_event_attr * from)3309 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3310 					const struct perf_event_attr *from)
3311 {
3312 	to->sig_data = from->sig_data;
3313 }
3314 
perf_event_modify_attr(struct perf_event * event,struct perf_event_attr * attr)3315 static int perf_event_modify_attr(struct perf_event *event,
3316 				  struct perf_event_attr *attr)
3317 {
3318 	int (*func)(struct perf_event *, struct perf_event_attr *);
3319 	struct perf_event *child;
3320 	int err;
3321 
3322 	if (event->attr.type != attr->type)
3323 		return -EINVAL;
3324 
3325 	switch (event->attr.type) {
3326 	case PERF_TYPE_BREAKPOINT:
3327 		func = perf_event_modify_breakpoint;
3328 		break;
3329 	default:
3330 		/* Place holder for future additions. */
3331 		return -EOPNOTSUPP;
3332 	}
3333 
3334 	WARN_ON_ONCE(event->ctx->parent_ctx);
3335 
3336 	mutex_lock(&event->child_mutex);
3337 	/*
3338 	 * Event-type-independent attributes must be copied before event-type
3339 	 * modification, which will validate that final attributes match the
3340 	 * source attributes after all relevant attributes have been copied.
3341 	 */
3342 	perf_event_modify_copy_attr(&event->attr, attr);
3343 	err = func(event, attr);
3344 	if (err)
3345 		goto out;
3346 	list_for_each_entry(child, &event->child_list, child_list) {
3347 		perf_event_modify_copy_attr(&child->attr, attr);
3348 		err = func(child, attr);
3349 		if (err)
3350 			goto out;
3351 	}
3352 out:
3353 	mutex_unlock(&event->child_mutex);
3354 	return err;
3355 }
3356 
__pmu_ctx_sched_out(struct perf_event_pmu_context * pmu_ctx,enum event_type_t event_type)3357 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx,
3358 				enum event_type_t event_type)
3359 {
3360 	struct perf_event_context *ctx = pmu_ctx->ctx;
3361 	struct perf_event *event, *tmp;
3362 	struct pmu *pmu = pmu_ctx->pmu;
3363 
3364 	if (ctx->task && !(ctx->is_active & EVENT_ALL)) {
3365 		struct perf_cpu_pmu_context *cpc = this_cpc(pmu);
3366 
3367 		WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3368 		cpc->task_epc = NULL;
3369 	}
3370 
3371 	if (!(event_type & EVENT_ALL))
3372 		return;
3373 
3374 	perf_pmu_disable(pmu);
3375 	if (event_type & EVENT_PINNED) {
3376 		list_for_each_entry_safe(event, tmp,
3377 					 &pmu_ctx->pinned_active,
3378 					 active_list)
3379 			group_sched_out(event, ctx);
3380 	}
3381 
3382 	if (event_type & EVENT_FLEXIBLE) {
3383 		list_for_each_entry_safe(event, tmp,
3384 					 &pmu_ctx->flexible_active,
3385 					 active_list)
3386 			group_sched_out(event, ctx);
3387 		/*
3388 		 * Since we cleared EVENT_FLEXIBLE, also clear
3389 		 * rotate_necessary, is will be reset by
3390 		 * ctx_flexible_sched_in() when needed.
3391 		 */
3392 		pmu_ctx->rotate_necessary = 0;
3393 	}
3394 	perf_pmu_enable(pmu);
3395 }
3396 
3397 /*
3398  * Be very careful with the @pmu argument since this will change ctx state.
3399  * The @pmu argument works for ctx_resched(), because that is symmetric in
3400  * ctx_sched_out() / ctx_sched_in() usage and the ctx state ends up invariant.
3401  *
3402  * However, if you were to be asymmetrical, you could end up with messed up
3403  * state, eg. ctx->is_active cleared even though most EPCs would still actually
3404  * be active.
3405  */
3406 static void
ctx_sched_out(struct perf_event_context * ctx,struct pmu * pmu,enum event_type_t event_type)3407 ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type)
3408 {
3409 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3410 	struct perf_event_pmu_context *pmu_ctx;
3411 	int is_active = ctx->is_active;
3412 	bool cgroup = event_type & EVENT_CGROUP;
3413 
3414 	event_type &= ~EVENT_CGROUP;
3415 
3416 	lockdep_assert_held(&ctx->lock);
3417 
3418 	if (likely(!ctx->nr_events)) {
3419 		/*
3420 		 * See __perf_remove_from_context().
3421 		 */
3422 		WARN_ON_ONCE(ctx->is_active);
3423 		if (ctx->task)
3424 			WARN_ON_ONCE(cpuctx->task_ctx);
3425 		return;
3426 	}
3427 
3428 	/*
3429 	 * Always update time if it was set; not only when it changes.
3430 	 * Otherwise we can 'forget' to update time for any but the last
3431 	 * context we sched out. For example:
3432 	 *
3433 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3434 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3435 	 *
3436 	 * would only update time for the pinned events.
3437 	 */
3438 	__ctx_time_update(cpuctx, ctx, ctx == &cpuctx->ctx);
3439 
3440 	/*
3441 	 * CPU-release for the below ->is_active store,
3442 	 * see __load_acquire() in perf_event_time_now()
3443 	 */
3444 	barrier();
3445 	ctx->is_active &= ~event_type;
3446 
3447 	if (!(ctx->is_active & EVENT_ALL)) {
3448 		/*
3449 		 * For FROZEN, preserve TIME|FROZEN such that perf_event_time_now()
3450 		 * does not observe a hole. perf_ctx_unlock() will clean up.
3451 		 */
3452 		if (ctx->is_active & EVENT_FROZEN)
3453 			ctx->is_active &= EVENT_TIME_FROZEN;
3454 		else
3455 			ctx->is_active = 0;
3456 	}
3457 
3458 	if (ctx->task) {
3459 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3460 		if (!(ctx->is_active & EVENT_ALL))
3461 			cpuctx->task_ctx = NULL;
3462 	}
3463 
3464 	is_active ^= ctx->is_active; /* changed bits */
3465 
3466 	for_each_epc(pmu_ctx, ctx, pmu, cgroup)
3467 		__pmu_ctx_sched_out(pmu_ctx, is_active);
3468 }
3469 
3470 /*
3471  * Test whether two contexts are equivalent, i.e. whether they have both been
3472  * cloned from the same version of the same context.
3473  *
3474  * Equivalence is measured using a generation number in the context that is
3475  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3476  * and list_del_event().
3477  */
context_equiv(struct perf_event_context * ctx1,struct perf_event_context * ctx2)3478 static int context_equiv(struct perf_event_context *ctx1,
3479 			 struct perf_event_context *ctx2)
3480 {
3481 	lockdep_assert_held(&ctx1->lock);
3482 	lockdep_assert_held(&ctx2->lock);
3483 
3484 	/* Pinning disables the swap optimization */
3485 	if (ctx1->pin_count || ctx2->pin_count)
3486 		return 0;
3487 
3488 	/* If ctx1 is the parent of ctx2 */
3489 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3490 		return 1;
3491 
3492 	/* If ctx2 is the parent of ctx1 */
3493 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3494 		return 1;
3495 
3496 	/*
3497 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3498 	 * hierarchy, see perf_event_init_context().
3499 	 */
3500 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3501 			ctx1->parent_gen == ctx2->parent_gen)
3502 		return 1;
3503 
3504 	/* Unmatched */
3505 	return 0;
3506 }
3507 
__perf_event_sync_stat(struct perf_event * event,struct perf_event * next_event)3508 static void __perf_event_sync_stat(struct perf_event *event,
3509 				     struct perf_event *next_event)
3510 {
3511 	u64 value;
3512 
3513 	if (!event->attr.inherit_stat)
3514 		return;
3515 
3516 	/*
3517 	 * Update the event value, we cannot use perf_event_read()
3518 	 * because we're in the middle of a context switch and have IRQs
3519 	 * disabled, which upsets smp_call_function_single(), however
3520 	 * we know the event must be on the current CPU, therefore we
3521 	 * don't need to use it.
3522 	 */
3523 	perf_pmu_read(event);
3524 
3525 	perf_event_update_time(event);
3526 
3527 	/*
3528 	 * In order to keep per-task stats reliable we need to flip the event
3529 	 * values when we flip the contexts.
3530 	 */
3531 	value = local64_read(&next_event->count);
3532 	value = local64_xchg(&event->count, value);
3533 	local64_set(&next_event->count, value);
3534 
3535 	swap(event->total_time_enabled, next_event->total_time_enabled);
3536 	swap(event->total_time_running, next_event->total_time_running);
3537 
3538 	/*
3539 	 * Since we swizzled the values, update the user visible data too.
3540 	 */
3541 	perf_event_update_userpage(event);
3542 	perf_event_update_userpage(next_event);
3543 }
3544 
perf_event_sync_stat(struct perf_event_context * ctx,struct perf_event_context * next_ctx)3545 static void perf_event_sync_stat(struct perf_event_context *ctx,
3546 				   struct perf_event_context *next_ctx)
3547 {
3548 	struct perf_event *event, *next_event;
3549 
3550 	if (!ctx->nr_stat)
3551 		return;
3552 
3553 	update_context_time(ctx);
3554 
3555 	event = list_first_entry(&ctx->event_list,
3556 				   struct perf_event, event_entry);
3557 
3558 	next_event = list_first_entry(&next_ctx->event_list,
3559 					struct perf_event, event_entry);
3560 
3561 	while (&event->event_entry != &ctx->event_list &&
3562 	       &next_event->event_entry != &next_ctx->event_list) {
3563 
3564 		__perf_event_sync_stat(event, next_event);
3565 
3566 		event = list_next_entry(event, event_entry);
3567 		next_event = list_next_entry(next_event, event_entry);
3568 	}
3569 }
3570 
perf_ctx_sched_task_cb(struct perf_event_context * ctx,struct task_struct * task,bool sched_in)3571 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx,
3572 				   struct task_struct *task, bool sched_in)
3573 {
3574 	struct perf_event_pmu_context *pmu_ctx;
3575 	struct perf_cpu_pmu_context *cpc;
3576 
3577 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3578 		cpc = this_cpc(pmu_ctx->pmu);
3579 
3580 		if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task)
3581 			pmu_ctx->pmu->sched_task(pmu_ctx, task, sched_in);
3582 	}
3583 }
3584 
3585 static void
perf_event_context_sched_out(struct task_struct * task,struct task_struct * next)3586 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next)
3587 {
3588 	struct perf_event_context *ctx = task->perf_event_ctxp;
3589 	struct perf_event_context *next_ctx;
3590 	struct perf_event_context *parent, *next_parent;
3591 	int do_switch = 1;
3592 
3593 	if (likely(!ctx))
3594 		return;
3595 
3596 	rcu_read_lock();
3597 	next_ctx = rcu_dereference(next->perf_event_ctxp);
3598 	if (!next_ctx)
3599 		goto unlock;
3600 
3601 	parent = rcu_dereference(ctx->parent_ctx);
3602 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3603 
3604 	/* If neither context have a parent context; they cannot be clones. */
3605 	if (!parent && !next_parent)
3606 		goto unlock;
3607 
3608 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3609 		/*
3610 		 * Looks like the two contexts are clones, so we might be
3611 		 * able to optimize the context switch.  We lock both
3612 		 * contexts and check that they are clones under the
3613 		 * lock (including re-checking that neither has been
3614 		 * uncloned in the meantime).  It doesn't matter which
3615 		 * order we take the locks because no other cpu could
3616 		 * be trying to lock both of these tasks.
3617 		 */
3618 		raw_spin_lock(&ctx->lock);
3619 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3620 		if (context_equiv(ctx, next_ctx)) {
3621 
3622 			perf_ctx_disable(ctx, false);
3623 
3624 			/* PMIs are disabled; ctx->nr_no_switch_fast is stable. */
3625 			if (local_read(&ctx->nr_no_switch_fast) ||
3626 			    local_read(&next_ctx->nr_no_switch_fast)) {
3627 				/*
3628 				 * Must not swap out ctx when there's pending
3629 				 * events that rely on the ctx->task relation.
3630 				 *
3631 				 * Likewise, when a context contains inherit +
3632 				 * SAMPLE_READ events they should be switched
3633 				 * out using the slow path so that they are
3634 				 * treated as if they were distinct contexts.
3635 				 */
3636 				raw_spin_unlock(&next_ctx->lock);
3637 				rcu_read_unlock();
3638 				goto inside_switch;
3639 			}
3640 
3641 			WRITE_ONCE(ctx->task, next);
3642 			WRITE_ONCE(next_ctx->task, task);
3643 
3644 			perf_ctx_sched_task_cb(ctx, task, false);
3645 
3646 			perf_ctx_enable(ctx, false);
3647 
3648 			/*
3649 			 * RCU_INIT_POINTER here is safe because we've not
3650 			 * modified the ctx and the above modification of
3651 			 * ctx->task is immaterial since this value is
3652 			 * always verified under ctx->lock which we're now
3653 			 * holding.
3654 			 */
3655 			RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx);
3656 			RCU_INIT_POINTER(next->perf_event_ctxp, ctx);
3657 
3658 			do_switch = 0;
3659 
3660 			perf_event_sync_stat(ctx, next_ctx);
3661 		}
3662 		raw_spin_unlock(&next_ctx->lock);
3663 		raw_spin_unlock(&ctx->lock);
3664 	}
3665 unlock:
3666 	rcu_read_unlock();
3667 
3668 	if (do_switch) {
3669 		raw_spin_lock(&ctx->lock);
3670 		perf_ctx_disable(ctx, false);
3671 
3672 inside_switch:
3673 		perf_ctx_sched_task_cb(ctx, task, false);
3674 		task_ctx_sched_out(ctx, NULL, EVENT_ALL);
3675 
3676 		perf_ctx_enable(ctx, false);
3677 		raw_spin_unlock(&ctx->lock);
3678 	}
3679 }
3680 
3681 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3682 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
3683 
perf_sched_cb_dec(struct pmu * pmu)3684 void perf_sched_cb_dec(struct pmu *pmu)
3685 {
3686 	struct perf_cpu_pmu_context *cpc = this_cpc(pmu);
3687 
3688 	this_cpu_dec(perf_sched_cb_usages);
3689 	barrier();
3690 
3691 	if (!--cpc->sched_cb_usage)
3692 		list_del(&cpc->sched_cb_entry);
3693 }
3694 
3695 
perf_sched_cb_inc(struct pmu * pmu)3696 void perf_sched_cb_inc(struct pmu *pmu)
3697 {
3698 	struct perf_cpu_pmu_context *cpc = this_cpc(pmu);
3699 
3700 	if (!cpc->sched_cb_usage++)
3701 		list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3702 
3703 	barrier();
3704 	this_cpu_inc(perf_sched_cb_usages);
3705 }
3706 
3707 /*
3708  * This function provides the context switch callback to the lower code
3709  * layer. It is invoked ONLY when the context switch callback is enabled.
3710  *
3711  * This callback is relevant even to per-cpu events; for example multi event
3712  * PEBS requires this to provide PID/TID information. This requires we flush
3713  * all queued PEBS records before we context switch to a new task.
3714  */
__perf_pmu_sched_task(struct perf_cpu_pmu_context * cpc,struct task_struct * task,bool sched_in)3715 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc,
3716 				  struct task_struct *task, bool sched_in)
3717 {
3718 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3719 	struct pmu *pmu;
3720 
3721 	pmu = cpc->epc.pmu;
3722 
3723 	/* software PMUs will not have sched_task */
3724 	if (WARN_ON_ONCE(!pmu->sched_task))
3725 		return;
3726 
3727 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3728 	perf_pmu_disable(pmu);
3729 
3730 	pmu->sched_task(cpc->task_epc, task, sched_in);
3731 
3732 	perf_pmu_enable(pmu);
3733 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3734 }
3735 
perf_pmu_sched_task(struct task_struct * prev,struct task_struct * next,bool sched_in)3736 static void perf_pmu_sched_task(struct task_struct *prev,
3737 				struct task_struct *next,
3738 				bool sched_in)
3739 {
3740 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3741 	struct perf_cpu_pmu_context *cpc;
3742 
3743 	/* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */
3744 	if (prev == next || cpuctx->task_ctx)
3745 		return;
3746 
3747 	list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry)
3748 		__perf_pmu_sched_task(cpc, sched_in ? next : prev, sched_in);
3749 }
3750 
3751 static void perf_event_switch(struct task_struct *task,
3752 			      struct task_struct *next_prev, bool sched_in);
3753 
3754 /*
3755  * Called from scheduler to remove the events of the current task,
3756  * with interrupts disabled.
3757  *
3758  * We stop each event and update the event value in event->count.
3759  *
3760  * This does not protect us against NMI, but disable()
3761  * sets the disabled bit in the control field of event _before_
3762  * accessing the event control register. If a NMI hits, then it will
3763  * not restart the event.
3764  */
__perf_event_task_sched_out(struct task_struct * task,struct task_struct * next)3765 void __perf_event_task_sched_out(struct task_struct *task,
3766 				 struct task_struct *next)
3767 {
3768 	if (__this_cpu_read(perf_sched_cb_usages))
3769 		perf_pmu_sched_task(task, next, false);
3770 
3771 	if (atomic_read(&nr_switch_events))
3772 		perf_event_switch(task, next, false);
3773 
3774 	perf_event_context_sched_out(task, next);
3775 
3776 	/*
3777 	 * if cgroup events exist on this CPU, then we need
3778 	 * to check if we have to switch out PMU state.
3779 	 * cgroup event are system-wide mode only
3780 	 */
3781 	perf_cgroup_switch(next);
3782 }
3783 
perf_less_group_idx(const void * l,const void * r,void __always_unused * args)3784 static bool perf_less_group_idx(const void *l, const void *r, void __always_unused *args)
3785 {
3786 	const struct perf_event *le = *(const struct perf_event **)l;
3787 	const struct perf_event *re = *(const struct perf_event **)r;
3788 
3789 	return le->group_index < re->group_index;
3790 }
3791 
3792 DEFINE_MIN_HEAP(struct perf_event *, perf_event_min_heap);
3793 
3794 static const struct min_heap_callbacks perf_min_heap = {
3795 	.less = perf_less_group_idx,
3796 	.swp = NULL,
3797 };
3798 
__heap_add(struct perf_event_min_heap * heap,struct perf_event * event)3799 static void __heap_add(struct perf_event_min_heap *heap, struct perf_event *event)
3800 {
3801 	struct perf_event **itrs = heap->data;
3802 
3803 	if (event) {
3804 		itrs[heap->nr] = event;
3805 		heap->nr++;
3806 	}
3807 }
3808 
__link_epc(struct perf_event_pmu_context * pmu_ctx)3809 static void __link_epc(struct perf_event_pmu_context *pmu_ctx)
3810 {
3811 	struct perf_cpu_pmu_context *cpc;
3812 
3813 	if (!pmu_ctx->ctx->task)
3814 		return;
3815 
3816 	cpc = this_cpc(pmu_ctx->pmu);
3817 	WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3818 	cpc->task_epc = pmu_ctx;
3819 }
3820 
visit_groups_merge(struct perf_event_context * ctx,struct perf_event_groups * groups,int cpu,struct pmu * pmu,int (* func)(struct perf_event *,void *),void * data)3821 static noinline int visit_groups_merge(struct perf_event_context *ctx,
3822 				struct perf_event_groups *groups, int cpu,
3823 				struct pmu *pmu,
3824 				int (*func)(struct perf_event *, void *),
3825 				void *data)
3826 {
3827 #ifdef CONFIG_CGROUP_PERF
3828 	struct cgroup_subsys_state *css = NULL;
3829 #endif
3830 	struct perf_cpu_context *cpuctx = NULL;
3831 	/* Space for per CPU and/or any CPU event iterators. */
3832 	struct perf_event *itrs[2];
3833 	struct perf_event_min_heap event_heap;
3834 	struct perf_event **evt;
3835 	int ret;
3836 
3837 	if (pmu->filter && pmu->filter(pmu, cpu))
3838 		return 0;
3839 
3840 	if (!ctx->task) {
3841 		cpuctx = this_cpu_ptr(&perf_cpu_context);
3842 		event_heap = (struct perf_event_min_heap){
3843 			.data = cpuctx->heap,
3844 			.nr = 0,
3845 			.size = cpuctx->heap_size,
3846 		};
3847 
3848 		lockdep_assert_held(&cpuctx->ctx.lock);
3849 
3850 #ifdef CONFIG_CGROUP_PERF
3851 		if (cpuctx->cgrp)
3852 			css = &cpuctx->cgrp->css;
3853 #endif
3854 	} else {
3855 		event_heap = (struct perf_event_min_heap){
3856 			.data = itrs,
3857 			.nr = 0,
3858 			.size = ARRAY_SIZE(itrs),
3859 		};
3860 		/* Events not within a CPU context may be on any CPU. */
3861 		__heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL));
3862 	}
3863 	evt = event_heap.data;
3864 
3865 	__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL));
3866 
3867 #ifdef CONFIG_CGROUP_PERF
3868 	for (; css; css = css->parent)
3869 		__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup));
3870 #endif
3871 
3872 	if (event_heap.nr) {
3873 		__link_epc((*evt)->pmu_ctx);
3874 		perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu);
3875 	}
3876 
3877 	min_heapify_all_inline(&event_heap, &perf_min_heap, NULL);
3878 
3879 	while (event_heap.nr) {
3880 		ret = func(*evt, data);
3881 		if (ret)
3882 			return ret;
3883 
3884 		*evt = perf_event_groups_next(*evt, pmu);
3885 		if (*evt)
3886 			min_heap_sift_down_inline(&event_heap, 0, &perf_min_heap, NULL);
3887 		else
3888 			min_heap_pop_inline(&event_heap, &perf_min_heap, NULL);
3889 	}
3890 
3891 	return 0;
3892 }
3893 
3894 /*
3895  * Because the userpage is strictly per-event (there is no concept of context,
3896  * so there cannot be a context indirection), every userpage must be updated
3897  * when context time starts :-(
3898  *
3899  * IOW, we must not miss EVENT_TIME edges.
3900  */
event_update_userpage(struct perf_event * event)3901 static inline bool event_update_userpage(struct perf_event *event)
3902 {
3903 	if (likely(!atomic_read(&event->mmap_count)))
3904 		return false;
3905 
3906 	perf_event_update_time(event);
3907 	perf_event_update_userpage(event);
3908 
3909 	return true;
3910 }
3911 
group_update_userpage(struct perf_event * group_event)3912 static inline void group_update_userpage(struct perf_event *group_event)
3913 {
3914 	struct perf_event *event;
3915 
3916 	if (!event_update_userpage(group_event))
3917 		return;
3918 
3919 	for_each_sibling_event(event, group_event)
3920 		event_update_userpage(event);
3921 }
3922 
merge_sched_in(struct perf_event * event,void * data)3923 static int merge_sched_in(struct perf_event *event, void *data)
3924 {
3925 	struct perf_event_context *ctx = event->ctx;
3926 	int *can_add_hw = data;
3927 
3928 	if (event->state <= PERF_EVENT_STATE_OFF)
3929 		return 0;
3930 
3931 	if (!event_filter_match(event))
3932 		return 0;
3933 
3934 	if (group_can_go_on(event, *can_add_hw)) {
3935 		if (!group_sched_in(event, ctx))
3936 			list_add_tail(&event->active_list, get_event_list(event));
3937 	}
3938 
3939 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
3940 		*can_add_hw = 0;
3941 		if (event->attr.pinned) {
3942 			perf_cgroup_event_disable(event, ctx);
3943 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3944 
3945 			if (*perf_event_fasync(event))
3946 				event->pending_kill = POLL_HUP;
3947 
3948 			perf_event_wakeup(event);
3949 		} else {
3950 			struct perf_cpu_pmu_context *cpc = this_cpc(event->pmu_ctx->pmu);
3951 
3952 			event->pmu_ctx->rotate_necessary = 1;
3953 			perf_mux_hrtimer_restart(cpc);
3954 			group_update_userpage(event);
3955 		}
3956 	}
3957 
3958 	return 0;
3959 }
3960 
pmu_groups_sched_in(struct perf_event_context * ctx,struct perf_event_groups * groups,struct pmu * pmu)3961 static void pmu_groups_sched_in(struct perf_event_context *ctx,
3962 				struct perf_event_groups *groups,
3963 				struct pmu *pmu)
3964 {
3965 	int can_add_hw = 1;
3966 	visit_groups_merge(ctx, groups, smp_processor_id(), pmu,
3967 			   merge_sched_in, &can_add_hw);
3968 }
3969 
__pmu_ctx_sched_in(struct perf_event_pmu_context * pmu_ctx,enum event_type_t event_type)3970 static void __pmu_ctx_sched_in(struct perf_event_pmu_context *pmu_ctx,
3971 			       enum event_type_t event_type)
3972 {
3973 	struct perf_event_context *ctx = pmu_ctx->ctx;
3974 
3975 	if (event_type & EVENT_PINNED)
3976 		pmu_groups_sched_in(ctx, &ctx->pinned_groups, pmu_ctx->pmu);
3977 	if (event_type & EVENT_FLEXIBLE)
3978 		pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu_ctx->pmu);
3979 }
3980 
3981 static void
ctx_sched_in(struct perf_event_context * ctx,struct pmu * pmu,enum event_type_t event_type)3982 ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type)
3983 {
3984 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3985 	struct perf_event_pmu_context *pmu_ctx;
3986 	int is_active = ctx->is_active;
3987 	bool cgroup = event_type & EVENT_CGROUP;
3988 
3989 	event_type &= ~EVENT_CGROUP;
3990 
3991 	lockdep_assert_held(&ctx->lock);
3992 
3993 	if (likely(!ctx->nr_events))
3994 		return;
3995 
3996 	if (!(is_active & EVENT_TIME)) {
3997 		/* start ctx time */
3998 		__update_context_time(ctx, false);
3999 		perf_cgroup_set_timestamp(cpuctx);
4000 		/*
4001 		 * CPU-release for the below ->is_active store,
4002 		 * see __load_acquire() in perf_event_time_now()
4003 		 */
4004 		barrier();
4005 	}
4006 
4007 	ctx->is_active |= (event_type | EVENT_TIME);
4008 	if (ctx->task) {
4009 		if (!(is_active & EVENT_ALL))
4010 			cpuctx->task_ctx = ctx;
4011 		else
4012 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
4013 	}
4014 
4015 	is_active ^= ctx->is_active; /* changed bits */
4016 
4017 	/*
4018 	 * First go through the list and put on any pinned groups
4019 	 * in order to give them the best chance of going on.
4020 	 */
4021 	if (is_active & EVENT_PINNED) {
4022 		for_each_epc(pmu_ctx, ctx, pmu, cgroup)
4023 			__pmu_ctx_sched_in(pmu_ctx, EVENT_PINNED);
4024 	}
4025 
4026 	/* Then walk through the lower prio flexible groups */
4027 	if (is_active & EVENT_FLEXIBLE) {
4028 		for_each_epc(pmu_ctx, ctx, pmu, cgroup)
4029 			__pmu_ctx_sched_in(pmu_ctx, EVENT_FLEXIBLE);
4030 	}
4031 }
4032 
perf_event_context_sched_in(struct task_struct * task)4033 static void perf_event_context_sched_in(struct task_struct *task)
4034 {
4035 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4036 	struct perf_event_context *ctx;
4037 
4038 	rcu_read_lock();
4039 	ctx = rcu_dereference(task->perf_event_ctxp);
4040 	if (!ctx)
4041 		goto rcu_unlock;
4042 
4043 	if (cpuctx->task_ctx == ctx) {
4044 		perf_ctx_lock(cpuctx, ctx);
4045 		perf_ctx_disable(ctx, false);
4046 
4047 		perf_ctx_sched_task_cb(ctx, task, true);
4048 
4049 		perf_ctx_enable(ctx, false);
4050 		perf_ctx_unlock(cpuctx, ctx);
4051 		goto rcu_unlock;
4052 	}
4053 
4054 	perf_ctx_lock(cpuctx, ctx);
4055 	/*
4056 	 * We must check ctx->nr_events while holding ctx->lock, such
4057 	 * that we serialize against perf_install_in_context().
4058 	 */
4059 	if (!ctx->nr_events)
4060 		goto unlock;
4061 
4062 	perf_ctx_disable(ctx, false);
4063 	/*
4064 	 * We want to keep the following priority order:
4065 	 * cpu pinned (that don't need to move), task pinned,
4066 	 * cpu flexible, task flexible.
4067 	 *
4068 	 * However, if task's ctx is not carrying any pinned
4069 	 * events, no need to flip the cpuctx's events around.
4070 	 */
4071 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) {
4072 		perf_ctx_disable(&cpuctx->ctx, false);
4073 		ctx_sched_out(&cpuctx->ctx, NULL, EVENT_FLEXIBLE);
4074 	}
4075 
4076 	perf_event_sched_in(cpuctx, ctx, NULL);
4077 
4078 	perf_ctx_sched_task_cb(cpuctx->task_ctx, task, true);
4079 
4080 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
4081 		perf_ctx_enable(&cpuctx->ctx, false);
4082 
4083 	perf_ctx_enable(ctx, false);
4084 
4085 unlock:
4086 	perf_ctx_unlock(cpuctx, ctx);
4087 rcu_unlock:
4088 	rcu_read_unlock();
4089 }
4090 
4091 /*
4092  * Called from scheduler to add the events of the current task
4093  * with interrupts disabled.
4094  *
4095  * We restore the event value and then enable it.
4096  *
4097  * This does not protect us against NMI, but enable()
4098  * sets the enabled bit in the control field of event _before_
4099  * accessing the event control register. If a NMI hits, then it will
4100  * keep the event running.
4101  */
__perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)4102 void __perf_event_task_sched_in(struct task_struct *prev,
4103 				struct task_struct *task)
4104 {
4105 	perf_event_context_sched_in(task);
4106 
4107 	if (atomic_read(&nr_switch_events))
4108 		perf_event_switch(task, prev, true);
4109 
4110 	if (__this_cpu_read(perf_sched_cb_usages))
4111 		perf_pmu_sched_task(prev, task, true);
4112 }
4113 
perf_calculate_period(struct perf_event * event,u64 nsec,u64 count)4114 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
4115 {
4116 	u64 frequency = event->attr.sample_freq;
4117 	u64 sec = NSEC_PER_SEC;
4118 	u64 divisor, dividend;
4119 
4120 	int count_fls, nsec_fls, frequency_fls, sec_fls;
4121 
4122 	count_fls = fls64(count);
4123 	nsec_fls = fls64(nsec);
4124 	frequency_fls = fls64(frequency);
4125 	sec_fls = 30;
4126 
4127 	/*
4128 	 * We got @count in @nsec, with a target of sample_freq HZ
4129 	 * the target period becomes:
4130 	 *
4131 	 *             @count * 10^9
4132 	 * period = -------------------
4133 	 *          @nsec * sample_freq
4134 	 *
4135 	 */
4136 
4137 	/*
4138 	 * Reduce accuracy by one bit such that @a and @b converge
4139 	 * to a similar magnitude.
4140 	 */
4141 #define REDUCE_FLS(a, b)		\
4142 do {					\
4143 	if (a##_fls > b##_fls) {	\
4144 		a >>= 1;		\
4145 		a##_fls--;		\
4146 	} else {			\
4147 		b >>= 1;		\
4148 		b##_fls--;		\
4149 	}				\
4150 } while (0)
4151 
4152 	/*
4153 	 * Reduce accuracy until either term fits in a u64, then proceed with
4154 	 * the other, so that finally we can do a u64/u64 division.
4155 	 */
4156 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4157 		REDUCE_FLS(nsec, frequency);
4158 		REDUCE_FLS(sec, count);
4159 	}
4160 
4161 	if (count_fls + sec_fls > 64) {
4162 		divisor = nsec * frequency;
4163 
4164 		while (count_fls + sec_fls > 64) {
4165 			REDUCE_FLS(count, sec);
4166 			divisor >>= 1;
4167 		}
4168 
4169 		dividend = count * sec;
4170 	} else {
4171 		dividend = count * sec;
4172 
4173 		while (nsec_fls + frequency_fls > 64) {
4174 			REDUCE_FLS(nsec, frequency);
4175 			dividend >>= 1;
4176 		}
4177 
4178 		divisor = nsec * frequency;
4179 	}
4180 
4181 	if (!divisor)
4182 		return dividend;
4183 
4184 	return div64_u64(dividend, divisor);
4185 }
4186 
4187 static DEFINE_PER_CPU(int, perf_throttled_count);
4188 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4189 
perf_adjust_period(struct perf_event * event,u64 nsec,u64 count,bool disable)4190 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4191 {
4192 	struct hw_perf_event *hwc = &event->hw;
4193 	s64 period, sample_period;
4194 	s64 delta;
4195 
4196 	period = perf_calculate_period(event, nsec, count);
4197 
4198 	delta = (s64)(period - hwc->sample_period);
4199 	if (delta >= 0)
4200 		delta += 7;
4201 	else
4202 		delta -= 7;
4203 	delta /= 8; /* low pass filter */
4204 
4205 	sample_period = hwc->sample_period + delta;
4206 
4207 	if (!sample_period)
4208 		sample_period = 1;
4209 
4210 	hwc->sample_period = sample_period;
4211 
4212 	if (local64_read(&hwc->period_left) > 8*sample_period) {
4213 		if (disable)
4214 			event->pmu->stop(event, PERF_EF_UPDATE);
4215 
4216 		local64_set(&hwc->period_left, 0);
4217 
4218 		if (disable)
4219 			event->pmu->start(event, PERF_EF_RELOAD);
4220 	}
4221 }
4222 
perf_adjust_freq_unthr_events(struct list_head * event_list)4223 static void perf_adjust_freq_unthr_events(struct list_head *event_list)
4224 {
4225 	struct perf_event *event;
4226 	struct hw_perf_event *hwc;
4227 	u64 now, period = TICK_NSEC;
4228 	s64 delta;
4229 
4230 	list_for_each_entry(event, event_list, active_list) {
4231 		if (event->state != PERF_EVENT_STATE_ACTIVE)
4232 			continue;
4233 
4234 		// XXX use visit thingy to avoid the -1,cpu match
4235 		if (!event_filter_match(event))
4236 			continue;
4237 
4238 		hwc = &event->hw;
4239 
4240 		if (hwc->interrupts == MAX_INTERRUPTS) {
4241 			hwc->interrupts = 0;
4242 			perf_log_throttle(event, 1);
4243 			if (!event->attr.freq || !event->attr.sample_freq)
4244 				event->pmu->start(event, 0);
4245 		}
4246 
4247 		if (!event->attr.freq || !event->attr.sample_freq)
4248 			continue;
4249 
4250 		/*
4251 		 * stop the event and update event->count
4252 		 */
4253 		event->pmu->stop(event, PERF_EF_UPDATE);
4254 
4255 		now = local64_read(&event->count);
4256 		delta = now - hwc->freq_count_stamp;
4257 		hwc->freq_count_stamp = now;
4258 
4259 		/*
4260 		 * restart the event
4261 		 * reload only if value has changed
4262 		 * we have stopped the event so tell that
4263 		 * to perf_adjust_period() to avoid stopping it
4264 		 * twice.
4265 		 */
4266 		if (delta > 0)
4267 			perf_adjust_period(event, period, delta, false);
4268 
4269 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4270 	}
4271 }
4272 
4273 /*
4274  * combine freq adjustment with unthrottling to avoid two passes over the
4275  * events. At the same time, make sure, having freq events does not change
4276  * the rate of unthrottling as that would introduce bias.
4277  */
4278 static void
perf_adjust_freq_unthr_context(struct perf_event_context * ctx,bool unthrottle)4279 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
4280 {
4281 	struct perf_event_pmu_context *pmu_ctx;
4282 
4283 	/*
4284 	 * only need to iterate over all events iff:
4285 	 * - context have events in frequency mode (needs freq adjust)
4286 	 * - there are events to unthrottle on this cpu
4287 	 */
4288 	if (!(ctx->nr_freq || unthrottle))
4289 		return;
4290 
4291 	raw_spin_lock(&ctx->lock);
4292 
4293 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4294 		if (!(pmu_ctx->nr_freq || unthrottle))
4295 			continue;
4296 		if (!perf_pmu_ctx_is_active(pmu_ctx))
4297 			continue;
4298 		if (pmu_ctx->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT)
4299 			continue;
4300 
4301 		perf_pmu_disable(pmu_ctx->pmu);
4302 		perf_adjust_freq_unthr_events(&pmu_ctx->pinned_active);
4303 		perf_adjust_freq_unthr_events(&pmu_ctx->flexible_active);
4304 		perf_pmu_enable(pmu_ctx->pmu);
4305 	}
4306 
4307 	raw_spin_unlock(&ctx->lock);
4308 }
4309 
4310 /*
4311  * Move @event to the tail of the @ctx's elegible events.
4312  */
rotate_ctx(struct perf_event_context * ctx,struct perf_event * event)4313 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4314 {
4315 	/*
4316 	 * Rotate the first entry last of non-pinned groups. Rotation might be
4317 	 * disabled by the inheritance code.
4318 	 */
4319 	if (ctx->rotate_disable)
4320 		return;
4321 
4322 	perf_event_groups_delete(&ctx->flexible_groups, event);
4323 	perf_event_groups_insert(&ctx->flexible_groups, event);
4324 }
4325 
4326 /* pick an event from the flexible_groups to rotate */
4327 static inline struct perf_event *
ctx_event_to_rotate(struct perf_event_pmu_context * pmu_ctx)4328 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx)
4329 {
4330 	struct perf_event *event;
4331 	struct rb_node *node;
4332 	struct rb_root *tree;
4333 	struct __group_key key = {
4334 		.pmu = pmu_ctx->pmu,
4335 	};
4336 
4337 	/* pick the first active flexible event */
4338 	event = list_first_entry_or_null(&pmu_ctx->flexible_active,
4339 					 struct perf_event, active_list);
4340 	if (event)
4341 		goto out;
4342 
4343 	/* if no active flexible event, pick the first event */
4344 	tree = &pmu_ctx->ctx->flexible_groups.tree;
4345 
4346 	if (!pmu_ctx->ctx->task) {
4347 		key.cpu = smp_processor_id();
4348 
4349 		node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4350 		if (node)
4351 			event = __node_2_pe(node);
4352 		goto out;
4353 	}
4354 
4355 	key.cpu = -1;
4356 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4357 	if (node) {
4358 		event = __node_2_pe(node);
4359 		goto out;
4360 	}
4361 
4362 	key.cpu = smp_processor_id();
4363 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4364 	if (node)
4365 		event = __node_2_pe(node);
4366 
4367 out:
4368 	/*
4369 	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4370 	 * finds there are unschedulable events, it will set it again.
4371 	 */
4372 	pmu_ctx->rotate_necessary = 0;
4373 
4374 	return event;
4375 }
4376 
perf_rotate_context(struct perf_cpu_pmu_context * cpc)4377 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
4378 {
4379 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4380 	struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
4381 	struct perf_event *cpu_event = NULL, *task_event = NULL;
4382 	int cpu_rotate, task_rotate;
4383 	struct pmu *pmu;
4384 
4385 	/*
4386 	 * Since we run this from IRQ context, nobody can install new
4387 	 * events, thus the event count values are stable.
4388 	 */
4389 
4390 	cpu_epc = &cpc->epc;
4391 	pmu = cpu_epc->pmu;
4392 	task_epc = cpc->task_epc;
4393 
4394 	cpu_rotate = cpu_epc->rotate_necessary;
4395 	task_rotate = task_epc ? task_epc->rotate_necessary : 0;
4396 
4397 	if (!(cpu_rotate || task_rotate))
4398 		return false;
4399 
4400 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4401 	perf_pmu_disable(pmu);
4402 
4403 	if (task_rotate)
4404 		task_event = ctx_event_to_rotate(task_epc);
4405 	if (cpu_rotate)
4406 		cpu_event = ctx_event_to_rotate(cpu_epc);
4407 
4408 	/*
4409 	 * As per the order given at ctx_resched() first 'pop' task flexible
4410 	 * and then, if needed CPU flexible.
4411 	 */
4412 	if (task_event || (task_epc && cpu_event)) {
4413 		update_context_time(task_epc->ctx);
4414 		__pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE);
4415 	}
4416 
4417 	if (cpu_event) {
4418 		update_context_time(&cpuctx->ctx);
4419 		__pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE);
4420 		rotate_ctx(&cpuctx->ctx, cpu_event);
4421 		__pmu_ctx_sched_in(cpu_epc, EVENT_FLEXIBLE);
4422 	}
4423 
4424 	if (task_event)
4425 		rotate_ctx(task_epc->ctx, task_event);
4426 
4427 	if (task_event || (task_epc && cpu_event))
4428 		__pmu_ctx_sched_in(task_epc, EVENT_FLEXIBLE);
4429 
4430 	perf_pmu_enable(pmu);
4431 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4432 
4433 	return true;
4434 }
4435 
perf_event_task_tick(void)4436 void perf_event_task_tick(void)
4437 {
4438 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4439 	struct perf_event_context *ctx;
4440 	int throttled;
4441 
4442 	lockdep_assert_irqs_disabled();
4443 
4444 	__this_cpu_inc(perf_throttled_seq);
4445 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
4446 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4447 
4448 	perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled);
4449 
4450 	rcu_read_lock();
4451 	ctx = rcu_dereference(current->perf_event_ctxp);
4452 	if (ctx)
4453 		perf_adjust_freq_unthr_context(ctx, !!throttled);
4454 	rcu_read_unlock();
4455 }
4456 
event_enable_on_exec(struct perf_event * event,struct perf_event_context * ctx)4457 static int event_enable_on_exec(struct perf_event *event,
4458 				struct perf_event_context *ctx)
4459 {
4460 	if (!event->attr.enable_on_exec)
4461 		return 0;
4462 
4463 	event->attr.enable_on_exec = 0;
4464 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
4465 		return 0;
4466 
4467 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4468 
4469 	return 1;
4470 }
4471 
4472 /*
4473  * Enable all of a task's events that have been marked enable-on-exec.
4474  * This expects task == current.
4475  */
perf_event_enable_on_exec(struct perf_event_context * ctx)4476 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
4477 {
4478 	struct perf_event_context *clone_ctx = NULL;
4479 	enum event_type_t event_type = 0;
4480 	struct perf_cpu_context *cpuctx;
4481 	struct perf_event *event;
4482 	unsigned long flags;
4483 	int enabled = 0;
4484 
4485 	local_irq_save(flags);
4486 	if (WARN_ON_ONCE(current->perf_event_ctxp != ctx))
4487 		goto out;
4488 
4489 	if (!ctx->nr_events)
4490 		goto out;
4491 
4492 	cpuctx = this_cpu_ptr(&perf_cpu_context);
4493 	perf_ctx_lock(cpuctx, ctx);
4494 	ctx_time_freeze(cpuctx, ctx);
4495 
4496 	list_for_each_entry(event, &ctx->event_list, event_entry) {
4497 		enabled |= event_enable_on_exec(event, ctx);
4498 		event_type |= get_event_type(event);
4499 	}
4500 
4501 	/*
4502 	 * Unclone and reschedule this context if we enabled any event.
4503 	 */
4504 	if (enabled) {
4505 		clone_ctx = unclone_ctx(ctx);
4506 		ctx_resched(cpuctx, ctx, NULL, event_type);
4507 	}
4508 	perf_ctx_unlock(cpuctx, ctx);
4509 
4510 out:
4511 	local_irq_restore(flags);
4512 
4513 	if (clone_ctx)
4514 		put_ctx(clone_ctx);
4515 }
4516 
4517 static void perf_remove_from_owner(struct perf_event *event);
4518 static void perf_event_exit_event(struct perf_event *event,
4519 				  struct perf_event_context *ctx);
4520 
4521 /*
4522  * Removes all events from the current task that have been marked
4523  * remove-on-exec, and feeds their values back to parent events.
4524  */
perf_event_remove_on_exec(struct perf_event_context * ctx)4525 static void perf_event_remove_on_exec(struct perf_event_context *ctx)
4526 {
4527 	struct perf_event_context *clone_ctx = NULL;
4528 	struct perf_event *event, *next;
4529 	unsigned long flags;
4530 	bool modified = false;
4531 
4532 	mutex_lock(&ctx->mutex);
4533 
4534 	if (WARN_ON_ONCE(ctx->task != current))
4535 		goto unlock;
4536 
4537 	list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4538 		if (!event->attr.remove_on_exec)
4539 			continue;
4540 
4541 		if (!is_kernel_event(event))
4542 			perf_remove_from_owner(event);
4543 
4544 		modified = true;
4545 
4546 		perf_event_exit_event(event, ctx);
4547 	}
4548 
4549 	raw_spin_lock_irqsave(&ctx->lock, flags);
4550 	if (modified)
4551 		clone_ctx = unclone_ctx(ctx);
4552 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4553 
4554 unlock:
4555 	mutex_unlock(&ctx->mutex);
4556 
4557 	if (clone_ctx)
4558 		put_ctx(clone_ctx);
4559 }
4560 
4561 struct perf_read_data {
4562 	struct perf_event *event;
4563 	bool group;
4564 	int ret;
4565 };
4566 
4567 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu);
4568 
__perf_event_read_cpu(struct perf_event * event,int event_cpu)4569 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4570 {
4571 	int local_cpu = smp_processor_id();
4572 	u16 local_pkg, event_pkg;
4573 
4574 	if ((unsigned)event_cpu >= nr_cpu_ids)
4575 		return event_cpu;
4576 
4577 	if (event->group_caps & PERF_EV_CAP_READ_SCOPE) {
4578 		const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(event->pmu->scope, event_cpu);
4579 
4580 		if (cpumask && cpumask_test_cpu(local_cpu, cpumask))
4581 			return local_cpu;
4582 	}
4583 
4584 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4585 		event_pkg = topology_physical_package_id(event_cpu);
4586 		local_pkg = topology_physical_package_id(local_cpu);
4587 
4588 		if (event_pkg == local_pkg)
4589 			return local_cpu;
4590 	}
4591 
4592 	return event_cpu;
4593 }
4594 
4595 /*
4596  * Cross CPU call to read the hardware event
4597  */
__perf_event_read(void * info)4598 static void __perf_event_read(void *info)
4599 {
4600 	struct perf_read_data *data = info;
4601 	struct perf_event *sub, *event = data->event;
4602 	struct perf_event_context *ctx = event->ctx;
4603 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4604 	struct pmu *pmu = event->pmu;
4605 
4606 	/*
4607 	 * If this is a task context, we need to check whether it is
4608 	 * the current task context of this cpu.  If not it has been
4609 	 * scheduled out before the smp call arrived.  In that case
4610 	 * event->count would have been updated to a recent sample
4611 	 * when the event was scheduled out.
4612 	 */
4613 	if (ctx->task && cpuctx->task_ctx != ctx)
4614 		return;
4615 
4616 	raw_spin_lock(&ctx->lock);
4617 	ctx_time_update_event(ctx, event);
4618 
4619 	perf_event_update_time(event);
4620 	if (data->group)
4621 		perf_event_update_sibling_time(event);
4622 
4623 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4624 		goto unlock;
4625 
4626 	if (!data->group) {
4627 		pmu->read(event);
4628 		data->ret = 0;
4629 		goto unlock;
4630 	}
4631 
4632 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4633 
4634 	pmu->read(event);
4635 
4636 	for_each_sibling_event(sub, event)
4637 		perf_pmu_read(sub);
4638 
4639 	data->ret = pmu->commit_txn(pmu);
4640 
4641 unlock:
4642 	raw_spin_unlock(&ctx->lock);
4643 }
4644 
perf_event_count(struct perf_event * event,bool self)4645 static inline u64 perf_event_count(struct perf_event *event, bool self)
4646 {
4647 	if (self)
4648 		return local64_read(&event->count);
4649 
4650 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4651 }
4652 
calc_timer_values(struct perf_event * event,u64 * now,u64 * enabled,u64 * running)4653 static void calc_timer_values(struct perf_event *event,
4654 				u64 *now,
4655 				u64 *enabled,
4656 				u64 *running)
4657 {
4658 	u64 ctx_time;
4659 
4660 	*now = perf_clock();
4661 	ctx_time = perf_event_time_now(event, *now);
4662 	__perf_update_times(event, ctx_time, enabled, running);
4663 }
4664 
4665 /*
4666  * NMI-safe method to read a local event, that is an event that
4667  * is:
4668  *   - either for the current task, or for this CPU
4669  *   - does not have inherit set, for inherited task events
4670  *     will not be local and we cannot read them atomically
4671  *   - must not have a pmu::count method
4672  */
perf_event_read_local(struct perf_event * event,u64 * value,u64 * enabled,u64 * running)4673 int perf_event_read_local(struct perf_event *event, u64 *value,
4674 			  u64 *enabled, u64 *running)
4675 {
4676 	unsigned long flags;
4677 	int event_oncpu;
4678 	int event_cpu;
4679 	int ret = 0;
4680 
4681 	/*
4682 	 * Disabling interrupts avoids all counter scheduling (context
4683 	 * switches, timer based rotation and IPIs).
4684 	 */
4685 	local_irq_save(flags);
4686 
4687 	/*
4688 	 * It must not be an event with inherit set, we cannot read
4689 	 * all child counters from atomic context.
4690 	 */
4691 	if (event->attr.inherit) {
4692 		ret = -EOPNOTSUPP;
4693 		goto out;
4694 	}
4695 
4696 	/* If this is a per-task event, it must be for current */
4697 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4698 	    event->hw.target != current) {
4699 		ret = -EINVAL;
4700 		goto out;
4701 	}
4702 
4703 	/*
4704 	 * Get the event CPU numbers, and adjust them to local if the event is
4705 	 * a per-package event that can be read locally
4706 	 */
4707 	event_oncpu = __perf_event_read_cpu(event, event->oncpu);
4708 	event_cpu = __perf_event_read_cpu(event, event->cpu);
4709 
4710 	/* If this is a per-CPU event, it must be for this CPU */
4711 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4712 	    event_cpu != smp_processor_id()) {
4713 		ret = -EINVAL;
4714 		goto out;
4715 	}
4716 
4717 	/* If this is a pinned event it must be running on this CPU */
4718 	if (event->attr.pinned && event_oncpu != smp_processor_id()) {
4719 		ret = -EBUSY;
4720 		goto out;
4721 	}
4722 
4723 	/*
4724 	 * If the event is currently on this CPU, its either a per-task event,
4725 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4726 	 * oncpu == -1).
4727 	 */
4728 	if (event_oncpu == smp_processor_id())
4729 		event->pmu->read(event);
4730 
4731 	*value = local64_read(&event->count);
4732 	if (enabled || running) {
4733 		u64 __enabled, __running, __now;
4734 
4735 		calc_timer_values(event, &__now, &__enabled, &__running);
4736 		if (enabled)
4737 			*enabled = __enabled;
4738 		if (running)
4739 			*running = __running;
4740 	}
4741 out:
4742 	local_irq_restore(flags);
4743 
4744 	return ret;
4745 }
4746 
perf_event_read(struct perf_event * event,bool group)4747 static int perf_event_read(struct perf_event *event, bool group)
4748 {
4749 	enum perf_event_state state = READ_ONCE(event->state);
4750 	int event_cpu, ret = 0;
4751 
4752 	/*
4753 	 * If event is enabled and currently active on a CPU, update the
4754 	 * value in the event structure:
4755 	 */
4756 again:
4757 	if (state == PERF_EVENT_STATE_ACTIVE) {
4758 		struct perf_read_data data;
4759 
4760 		/*
4761 		 * Orders the ->state and ->oncpu loads such that if we see
4762 		 * ACTIVE we must also see the right ->oncpu.
4763 		 *
4764 		 * Matches the smp_wmb() from event_sched_in().
4765 		 */
4766 		smp_rmb();
4767 
4768 		event_cpu = READ_ONCE(event->oncpu);
4769 		if ((unsigned)event_cpu >= nr_cpu_ids)
4770 			return 0;
4771 
4772 		data = (struct perf_read_data){
4773 			.event = event,
4774 			.group = group,
4775 			.ret = 0,
4776 		};
4777 
4778 		preempt_disable();
4779 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4780 
4781 		/*
4782 		 * Purposely ignore the smp_call_function_single() return
4783 		 * value.
4784 		 *
4785 		 * If event_cpu isn't a valid CPU it means the event got
4786 		 * scheduled out and that will have updated the event count.
4787 		 *
4788 		 * Therefore, either way, we'll have an up-to-date event count
4789 		 * after this.
4790 		 */
4791 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4792 		preempt_enable();
4793 		ret = data.ret;
4794 
4795 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4796 		struct perf_event_context *ctx = event->ctx;
4797 		unsigned long flags;
4798 
4799 		raw_spin_lock_irqsave(&ctx->lock, flags);
4800 		state = event->state;
4801 		if (state != PERF_EVENT_STATE_INACTIVE) {
4802 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4803 			goto again;
4804 		}
4805 
4806 		/*
4807 		 * May read while context is not active (e.g., thread is
4808 		 * blocked), in that case we cannot update context time
4809 		 */
4810 		ctx_time_update_event(ctx, event);
4811 
4812 		perf_event_update_time(event);
4813 		if (group)
4814 			perf_event_update_sibling_time(event);
4815 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4816 	}
4817 
4818 	return ret;
4819 }
4820 
4821 /*
4822  * Initialize the perf_event context in a task_struct:
4823  */
__perf_event_init_context(struct perf_event_context * ctx)4824 static void __perf_event_init_context(struct perf_event_context *ctx)
4825 {
4826 	raw_spin_lock_init(&ctx->lock);
4827 	mutex_init(&ctx->mutex);
4828 	INIT_LIST_HEAD(&ctx->pmu_ctx_list);
4829 	perf_event_groups_init(&ctx->pinned_groups);
4830 	perf_event_groups_init(&ctx->flexible_groups);
4831 	INIT_LIST_HEAD(&ctx->event_list);
4832 	refcount_set(&ctx->refcount, 1);
4833 }
4834 
4835 static void
__perf_init_event_pmu_context(struct perf_event_pmu_context * epc,struct pmu * pmu)4836 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu)
4837 {
4838 	epc->pmu = pmu;
4839 	INIT_LIST_HEAD(&epc->pmu_ctx_entry);
4840 	INIT_LIST_HEAD(&epc->pinned_active);
4841 	INIT_LIST_HEAD(&epc->flexible_active);
4842 	atomic_set(&epc->refcount, 1);
4843 }
4844 
4845 static struct perf_event_context *
alloc_perf_context(struct task_struct * task)4846 alloc_perf_context(struct task_struct *task)
4847 {
4848 	struct perf_event_context *ctx;
4849 
4850 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4851 	if (!ctx)
4852 		return NULL;
4853 
4854 	__perf_event_init_context(ctx);
4855 	if (task)
4856 		ctx->task = get_task_struct(task);
4857 
4858 	return ctx;
4859 }
4860 
4861 static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)4862 find_lively_task_by_vpid(pid_t vpid)
4863 {
4864 	struct task_struct *task;
4865 
4866 	rcu_read_lock();
4867 	if (!vpid)
4868 		task = current;
4869 	else
4870 		task = find_task_by_vpid(vpid);
4871 	if (task)
4872 		get_task_struct(task);
4873 	rcu_read_unlock();
4874 
4875 	if (!task)
4876 		return ERR_PTR(-ESRCH);
4877 
4878 	return task;
4879 }
4880 
4881 /*
4882  * Returns a matching context with refcount and pincount.
4883  */
4884 static struct perf_event_context *
find_get_context(struct task_struct * task,struct perf_event * event)4885 find_get_context(struct task_struct *task, struct perf_event *event)
4886 {
4887 	struct perf_event_context *ctx, *clone_ctx = NULL;
4888 	struct perf_cpu_context *cpuctx;
4889 	unsigned long flags;
4890 	int err;
4891 
4892 	if (!task) {
4893 		/* Must be root to operate on a CPU event: */
4894 		err = perf_allow_cpu();
4895 		if (err)
4896 			return ERR_PTR(err);
4897 
4898 		cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
4899 		ctx = &cpuctx->ctx;
4900 		get_ctx(ctx);
4901 		raw_spin_lock_irqsave(&ctx->lock, flags);
4902 		++ctx->pin_count;
4903 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4904 
4905 		return ctx;
4906 	}
4907 
4908 	err = -EINVAL;
4909 retry:
4910 	ctx = perf_lock_task_context(task, &flags);
4911 	if (ctx) {
4912 		clone_ctx = unclone_ctx(ctx);
4913 		++ctx->pin_count;
4914 
4915 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4916 
4917 		if (clone_ctx)
4918 			put_ctx(clone_ctx);
4919 	} else {
4920 		ctx = alloc_perf_context(task);
4921 		err = -ENOMEM;
4922 		if (!ctx)
4923 			goto errout;
4924 
4925 		err = 0;
4926 		mutex_lock(&task->perf_event_mutex);
4927 		/*
4928 		 * If it has already passed perf_event_exit_task().
4929 		 * we must see PF_EXITING, it takes this mutex too.
4930 		 */
4931 		if (task->flags & PF_EXITING)
4932 			err = -ESRCH;
4933 		else if (task->perf_event_ctxp)
4934 			err = -EAGAIN;
4935 		else {
4936 			get_ctx(ctx);
4937 			++ctx->pin_count;
4938 			rcu_assign_pointer(task->perf_event_ctxp, ctx);
4939 		}
4940 		mutex_unlock(&task->perf_event_mutex);
4941 
4942 		if (unlikely(err)) {
4943 			put_ctx(ctx);
4944 
4945 			if (err == -EAGAIN)
4946 				goto retry;
4947 			goto errout;
4948 		}
4949 	}
4950 
4951 	return ctx;
4952 
4953 errout:
4954 	return ERR_PTR(err);
4955 }
4956 
4957 static struct perf_event_pmu_context *
find_get_pmu_context(struct pmu * pmu,struct perf_event_context * ctx,struct perf_event * event)4958 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx,
4959 		     struct perf_event *event)
4960 {
4961 	struct perf_event_pmu_context *new = NULL, *pos = NULL, *epc;
4962 
4963 	if (!ctx->task) {
4964 		/*
4965 		 * perf_pmu_migrate_context() / __perf_pmu_install_event()
4966 		 * relies on the fact that find_get_pmu_context() cannot fail
4967 		 * for CPU contexts.
4968 		 */
4969 		struct perf_cpu_pmu_context *cpc;
4970 
4971 		cpc = *per_cpu_ptr(pmu->cpu_pmu_context, event->cpu);
4972 		epc = &cpc->epc;
4973 		raw_spin_lock_irq(&ctx->lock);
4974 		if (!epc->ctx) {
4975 			/*
4976 			 * One extra reference for the pmu; see perf_pmu_free().
4977 			 */
4978 			atomic_set(&epc->refcount, 2);
4979 			epc->embedded = 1;
4980 			list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4981 			epc->ctx = ctx;
4982 		} else {
4983 			WARN_ON_ONCE(epc->ctx != ctx);
4984 			atomic_inc(&epc->refcount);
4985 		}
4986 		raw_spin_unlock_irq(&ctx->lock);
4987 		return epc;
4988 	}
4989 
4990 	new = kzalloc(sizeof(*epc), GFP_KERNEL);
4991 	if (!new)
4992 		return ERR_PTR(-ENOMEM);
4993 
4994 	__perf_init_event_pmu_context(new, pmu);
4995 
4996 	/*
4997 	 * XXX
4998 	 *
4999 	 * lockdep_assert_held(&ctx->mutex);
5000 	 *
5001 	 * can't because perf_event_init_task() doesn't actually hold the
5002 	 * child_ctx->mutex.
5003 	 */
5004 
5005 	raw_spin_lock_irq(&ctx->lock);
5006 	list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) {
5007 		if (epc->pmu == pmu) {
5008 			WARN_ON_ONCE(epc->ctx != ctx);
5009 			atomic_inc(&epc->refcount);
5010 			goto found_epc;
5011 		}
5012 		/* Make sure the pmu_ctx_list is sorted by PMU type: */
5013 		if (!pos && epc->pmu->type > pmu->type)
5014 			pos = epc;
5015 	}
5016 
5017 	epc = new;
5018 	new = NULL;
5019 
5020 	if (!pos)
5021 		list_add_tail(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
5022 	else
5023 		list_add(&epc->pmu_ctx_entry, pos->pmu_ctx_entry.prev);
5024 
5025 	epc->ctx = ctx;
5026 
5027 found_epc:
5028 	raw_spin_unlock_irq(&ctx->lock);
5029 	kfree(new);
5030 
5031 	return epc;
5032 }
5033 
get_pmu_ctx(struct perf_event_pmu_context * epc)5034 static void get_pmu_ctx(struct perf_event_pmu_context *epc)
5035 {
5036 	WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount));
5037 }
5038 
free_cpc_rcu(struct rcu_head * head)5039 static void free_cpc_rcu(struct rcu_head *head)
5040 {
5041 	struct perf_cpu_pmu_context *cpc =
5042 		container_of(head, typeof(*cpc), epc.rcu_head);
5043 
5044 	kfree(cpc);
5045 }
5046 
free_epc_rcu(struct rcu_head * head)5047 static void free_epc_rcu(struct rcu_head *head)
5048 {
5049 	struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head);
5050 
5051 	kfree(epc);
5052 }
5053 
put_pmu_ctx(struct perf_event_pmu_context * epc)5054 static void put_pmu_ctx(struct perf_event_pmu_context *epc)
5055 {
5056 	struct perf_event_context *ctx = epc->ctx;
5057 	unsigned long flags;
5058 
5059 	/*
5060 	 * XXX
5061 	 *
5062 	 * lockdep_assert_held(&ctx->mutex);
5063 	 *
5064 	 * can't because of the call-site in _free_event()/put_event()
5065 	 * which isn't always called under ctx->mutex.
5066 	 */
5067 	if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags))
5068 		return;
5069 
5070 	WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry));
5071 
5072 	list_del_init(&epc->pmu_ctx_entry);
5073 	epc->ctx = NULL;
5074 
5075 	WARN_ON_ONCE(!list_empty(&epc->pinned_active));
5076 	WARN_ON_ONCE(!list_empty(&epc->flexible_active));
5077 
5078 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5079 
5080 	if (epc->embedded) {
5081 		call_rcu(&epc->rcu_head, free_cpc_rcu);
5082 		return;
5083 	}
5084 
5085 	call_rcu(&epc->rcu_head, free_epc_rcu);
5086 }
5087 
5088 static void perf_event_free_filter(struct perf_event *event);
5089 
free_event_rcu(struct rcu_head * head)5090 static void free_event_rcu(struct rcu_head *head)
5091 {
5092 	struct perf_event *event = container_of(head, typeof(*event), rcu_head);
5093 
5094 	if (event->ns)
5095 		put_pid_ns(event->ns);
5096 	perf_event_free_filter(event);
5097 	kmem_cache_free(perf_event_cache, event);
5098 }
5099 
5100 static void ring_buffer_attach(struct perf_event *event,
5101 			       struct perf_buffer *rb);
5102 
detach_sb_event(struct perf_event * event)5103 static void detach_sb_event(struct perf_event *event)
5104 {
5105 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
5106 
5107 	raw_spin_lock(&pel->lock);
5108 	list_del_rcu(&event->sb_list);
5109 	raw_spin_unlock(&pel->lock);
5110 }
5111 
is_sb_event(struct perf_event * event)5112 static bool is_sb_event(struct perf_event *event)
5113 {
5114 	struct perf_event_attr *attr = &event->attr;
5115 
5116 	if (event->parent)
5117 		return false;
5118 
5119 	if (event->attach_state & PERF_ATTACH_TASK)
5120 		return false;
5121 
5122 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
5123 	    attr->comm || attr->comm_exec ||
5124 	    attr->task || attr->ksymbol ||
5125 	    attr->context_switch || attr->text_poke ||
5126 	    attr->bpf_event)
5127 		return true;
5128 	return false;
5129 }
5130 
unaccount_pmu_sb_event(struct perf_event * event)5131 static void unaccount_pmu_sb_event(struct perf_event *event)
5132 {
5133 	if (is_sb_event(event))
5134 		detach_sb_event(event);
5135 }
5136 
5137 #ifdef CONFIG_NO_HZ_FULL
5138 static DEFINE_SPINLOCK(nr_freq_lock);
5139 #endif
5140 
unaccount_freq_event_nohz(void)5141 static void unaccount_freq_event_nohz(void)
5142 {
5143 #ifdef CONFIG_NO_HZ_FULL
5144 	spin_lock(&nr_freq_lock);
5145 	if (atomic_dec_and_test(&nr_freq_events))
5146 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
5147 	spin_unlock(&nr_freq_lock);
5148 #endif
5149 }
5150 
unaccount_freq_event(void)5151 static void unaccount_freq_event(void)
5152 {
5153 	if (tick_nohz_full_enabled())
5154 		unaccount_freq_event_nohz();
5155 	else
5156 		atomic_dec(&nr_freq_events);
5157 }
5158 
5159 
5160 static struct perf_ctx_data *
alloc_perf_ctx_data(struct kmem_cache * ctx_cache,bool global)5161 alloc_perf_ctx_data(struct kmem_cache *ctx_cache, bool global)
5162 {
5163 	struct perf_ctx_data *cd;
5164 
5165 	cd = kzalloc(sizeof(*cd), GFP_KERNEL);
5166 	if (!cd)
5167 		return NULL;
5168 
5169 	cd->data = kmem_cache_zalloc(ctx_cache, GFP_KERNEL);
5170 	if (!cd->data) {
5171 		kfree(cd);
5172 		return NULL;
5173 	}
5174 
5175 	cd->global = global;
5176 	cd->ctx_cache = ctx_cache;
5177 	refcount_set(&cd->refcount, 1);
5178 
5179 	return cd;
5180 }
5181 
free_perf_ctx_data(struct perf_ctx_data * cd)5182 static void free_perf_ctx_data(struct perf_ctx_data *cd)
5183 {
5184 	kmem_cache_free(cd->ctx_cache, cd->data);
5185 	kfree(cd);
5186 }
5187 
__free_perf_ctx_data_rcu(struct rcu_head * rcu_head)5188 static void __free_perf_ctx_data_rcu(struct rcu_head *rcu_head)
5189 {
5190 	struct perf_ctx_data *cd;
5191 
5192 	cd = container_of(rcu_head, struct perf_ctx_data, rcu_head);
5193 	free_perf_ctx_data(cd);
5194 }
5195 
perf_free_ctx_data_rcu(struct perf_ctx_data * cd)5196 static inline void perf_free_ctx_data_rcu(struct perf_ctx_data *cd)
5197 {
5198 	call_rcu(&cd->rcu_head, __free_perf_ctx_data_rcu);
5199 }
5200 
5201 static int
attach_task_ctx_data(struct task_struct * task,struct kmem_cache * ctx_cache,bool global)5202 attach_task_ctx_data(struct task_struct *task, struct kmem_cache *ctx_cache,
5203 		     bool global)
5204 {
5205 	struct perf_ctx_data *cd, *old = NULL;
5206 
5207 	cd = alloc_perf_ctx_data(ctx_cache, global);
5208 	if (!cd)
5209 		return -ENOMEM;
5210 
5211 	for (;;) {
5212 		if (try_cmpxchg((struct perf_ctx_data **)&task->perf_ctx_data, &old, cd)) {
5213 			if (old)
5214 				perf_free_ctx_data_rcu(old);
5215 			return 0;
5216 		}
5217 
5218 		if (!old) {
5219 			/*
5220 			 * After seeing a dead @old, we raced with
5221 			 * removal and lost, try again to install @cd.
5222 			 */
5223 			continue;
5224 		}
5225 
5226 		if (refcount_inc_not_zero(&old->refcount)) {
5227 			free_perf_ctx_data(cd); /* unused */
5228 			return 0;
5229 		}
5230 
5231 		/*
5232 		 * @old is a dead object, refcount==0 is stable, try and
5233 		 * replace it with @cd.
5234 		 */
5235 	}
5236 	return 0;
5237 }
5238 
5239 static void __detach_global_ctx_data(void);
5240 DEFINE_STATIC_PERCPU_RWSEM(global_ctx_data_rwsem);
5241 static refcount_t global_ctx_data_ref;
5242 
5243 static int
attach_global_ctx_data(struct kmem_cache * ctx_cache)5244 attach_global_ctx_data(struct kmem_cache *ctx_cache)
5245 {
5246 	struct task_struct *g, *p;
5247 	struct perf_ctx_data *cd;
5248 	int ret;
5249 
5250 	if (refcount_inc_not_zero(&global_ctx_data_ref))
5251 		return 0;
5252 
5253 	guard(percpu_write)(&global_ctx_data_rwsem);
5254 	if (refcount_inc_not_zero(&global_ctx_data_ref))
5255 		return 0;
5256 again:
5257 	/* Allocate everything */
5258 	scoped_guard (rcu) {
5259 		for_each_process_thread(g, p) {
5260 			cd = rcu_dereference(p->perf_ctx_data);
5261 			if (cd && !cd->global) {
5262 				cd->global = 1;
5263 				if (!refcount_inc_not_zero(&cd->refcount))
5264 					cd = NULL;
5265 			}
5266 			if (!cd) {
5267 				get_task_struct(p);
5268 				goto alloc;
5269 			}
5270 		}
5271 	}
5272 
5273 	refcount_set(&global_ctx_data_ref, 1);
5274 
5275 	return 0;
5276 alloc:
5277 	ret = attach_task_ctx_data(p, ctx_cache, true);
5278 	put_task_struct(p);
5279 	if (ret) {
5280 		__detach_global_ctx_data();
5281 		return ret;
5282 	}
5283 	goto again;
5284 }
5285 
5286 static int
attach_perf_ctx_data(struct perf_event * event)5287 attach_perf_ctx_data(struct perf_event *event)
5288 {
5289 	struct task_struct *task = event->hw.target;
5290 	struct kmem_cache *ctx_cache = event->pmu->task_ctx_cache;
5291 	int ret;
5292 
5293 	if (!ctx_cache)
5294 		return -ENOMEM;
5295 
5296 	if (task)
5297 		return attach_task_ctx_data(task, ctx_cache, false);
5298 
5299 	ret = attach_global_ctx_data(ctx_cache);
5300 	if (ret)
5301 		return ret;
5302 
5303 	event->attach_state |= PERF_ATTACH_GLOBAL_DATA;
5304 	return 0;
5305 }
5306 
5307 static void
detach_task_ctx_data(struct task_struct * p)5308 detach_task_ctx_data(struct task_struct *p)
5309 {
5310 	struct perf_ctx_data *cd;
5311 
5312 	scoped_guard (rcu) {
5313 		cd = rcu_dereference(p->perf_ctx_data);
5314 		if (!cd || !refcount_dec_and_test(&cd->refcount))
5315 			return;
5316 	}
5317 
5318 	/*
5319 	 * The old ctx_data may be lost because of the race.
5320 	 * Nothing is required to do for the case.
5321 	 * See attach_task_ctx_data().
5322 	 */
5323 	if (try_cmpxchg((struct perf_ctx_data **)&p->perf_ctx_data, &cd, NULL))
5324 		perf_free_ctx_data_rcu(cd);
5325 }
5326 
__detach_global_ctx_data(void)5327 static void __detach_global_ctx_data(void)
5328 {
5329 	struct task_struct *g, *p;
5330 	struct perf_ctx_data *cd;
5331 
5332 again:
5333 	scoped_guard (rcu) {
5334 		for_each_process_thread(g, p) {
5335 			cd = rcu_dereference(p->perf_ctx_data);
5336 			if (!cd || !cd->global)
5337 				continue;
5338 			cd->global = 0;
5339 			get_task_struct(p);
5340 			goto detach;
5341 		}
5342 	}
5343 	return;
5344 detach:
5345 	detach_task_ctx_data(p);
5346 	put_task_struct(p);
5347 	goto again;
5348 }
5349 
detach_global_ctx_data(void)5350 static void detach_global_ctx_data(void)
5351 {
5352 	if (refcount_dec_not_one(&global_ctx_data_ref))
5353 		return;
5354 
5355 	guard(percpu_write)(&global_ctx_data_rwsem);
5356 	if (!refcount_dec_and_test(&global_ctx_data_ref))
5357 		return;
5358 
5359 	/* remove everything */
5360 	__detach_global_ctx_data();
5361 }
5362 
detach_perf_ctx_data(struct perf_event * event)5363 static void detach_perf_ctx_data(struct perf_event *event)
5364 {
5365 	struct task_struct *task = event->hw.target;
5366 
5367 	event->attach_state &= ~PERF_ATTACH_TASK_DATA;
5368 
5369 	if (task)
5370 		return detach_task_ctx_data(task);
5371 
5372 	if (event->attach_state & PERF_ATTACH_GLOBAL_DATA) {
5373 		detach_global_ctx_data();
5374 		event->attach_state &= ~PERF_ATTACH_GLOBAL_DATA;
5375 	}
5376 }
5377 
unaccount_event(struct perf_event * event)5378 static void unaccount_event(struct perf_event *event)
5379 {
5380 	bool dec = false;
5381 
5382 	if (event->parent)
5383 		return;
5384 
5385 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
5386 		dec = true;
5387 	if (event->attr.mmap || event->attr.mmap_data)
5388 		atomic_dec(&nr_mmap_events);
5389 	if (event->attr.build_id)
5390 		atomic_dec(&nr_build_id_events);
5391 	if (event->attr.comm)
5392 		atomic_dec(&nr_comm_events);
5393 	if (event->attr.namespaces)
5394 		atomic_dec(&nr_namespaces_events);
5395 	if (event->attr.cgroup)
5396 		atomic_dec(&nr_cgroup_events);
5397 	if (event->attr.task)
5398 		atomic_dec(&nr_task_events);
5399 	if (event->attr.freq)
5400 		unaccount_freq_event();
5401 	if (event->attr.context_switch) {
5402 		dec = true;
5403 		atomic_dec(&nr_switch_events);
5404 	}
5405 	if (is_cgroup_event(event))
5406 		dec = true;
5407 	if (has_branch_stack(event))
5408 		dec = true;
5409 	if (event->attr.ksymbol)
5410 		atomic_dec(&nr_ksymbol_events);
5411 	if (event->attr.bpf_event)
5412 		atomic_dec(&nr_bpf_events);
5413 	if (event->attr.text_poke)
5414 		atomic_dec(&nr_text_poke_events);
5415 
5416 	if (dec) {
5417 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
5418 			schedule_delayed_work(&perf_sched_work, HZ);
5419 	}
5420 
5421 	unaccount_pmu_sb_event(event);
5422 }
5423 
perf_sched_delayed(struct work_struct * work)5424 static void perf_sched_delayed(struct work_struct *work)
5425 {
5426 	mutex_lock(&perf_sched_mutex);
5427 	if (atomic_dec_and_test(&perf_sched_count))
5428 		static_branch_disable(&perf_sched_events);
5429 	mutex_unlock(&perf_sched_mutex);
5430 }
5431 
5432 /*
5433  * The following implement mutual exclusion of events on "exclusive" pmus
5434  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
5435  * at a time, so we disallow creating events that might conflict, namely:
5436  *
5437  *  1) cpu-wide events in the presence of per-task events,
5438  *  2) per-task events in the presence of cpu-wide events,
5439  *  3) two matching events on the same perf_event_context.
5440  *
5441  * The former two cases are handled in the allocation path (perf_event_alloc(),
5442  * _free_event()), the latter -- before the first perf_install_in_context().
5443  */
exclusive_event_init(struct perf_event * event)5444 static int exclusive_event_init(struct perf_event *event)
5445 {
5446 	struct pmu *pmu = event->pmu;
5447 
5448 	if (!is_exclusive_pmu(pmu))
5449 		return 0;
5450 
5451 	/*
5452 	 * Prevent co-existence of per-task and cpu-wide events on the
5453 	 * same exclusive pmu.
5454 	 *
5455 	 * Negative pmu::exclusive_cnt means there are cpu-wide
5456 	 * events on this "exclusive" pmu, positive means there are
5457 	 * per-task events.
5458 	 *
5459 	 * Since this is called in perf_event_alloc() path, event::ctx
5460 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5461 	 * to mean "per-task event", because unlike other attach states it
5462 	 * never gets cleared.
5463 	 */
5464 	if (event->attach_state & PERF_ATTACH_TASK) {
5465 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
5466 			return -EBUSY;
5467 	} else {
5468 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
5469 			return -EBUSY;
5470 	}
5471 
5472 	event->attach_state |= PERF_ATTACH_EXCLUSIVE;
5473 
5474 	return 0;
5475 }
5476 
exclusive_event_destroy(struct perf_event * event)5477 static void exclusive_event_destroy(struct perf_event *event)
5478 {
5479 	struct pmu *pmu = event->pmu;
5480 
5481 	/* see comment in exclusive_event_init() */
5482 	if (event->attach_state & PERF_ATTACH_TASK)
5483 		atomic_dec(&pmu->exclusive_cnt);
5484 	else
5485 		atomic_inc(&pmu->exclusive_cnt);
5486 
5487 	event->attach_state &= ~PERF_ATTACH_EXCLUSIVE;
5488 }
5489 
exclusive_event_match(struct perf_event * e1,struct perf_event * e2)5490 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5491 {
5492 	if ((e1->pmu == e2->pmu) &&
5493 	    (e1->cpu == e2->cpu ||
5494 	     e1->cpu == -1 ||
5495 	     e2->cpu == -1))
5496 		return true;
5497 	return false;
5498 }
5499 
exclusive_event_installable(struct perf_event * event,struct perf_event_context * ctx)5500 static bool exclusive_event_installable(struct perf_event *event,
5501 					struct perf_event_context *ctx)
5502 {
5503 	struct perf_event *iter_event;
5504 	struct pmu *pmu = event->pmu;
5505 
5506 	lockdep_assert_held(&ctx->mutex);
5507 
5508 	if (!is_exclusive_pmu(pmu))
5509 		return true;
5510 
5511 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5512 		if (exclusive_event_match(iter_event, event))
5513 			return false;
5514 	}
5515 
5516 	return true;
5517 }
5518 
5519 static void perf_free_addr_filters(struct perf_event *event);
5520 
5521 /* vs perf_event_alloc() error */
__free_event(struct perf_event * event)5522 static void __free_event(struct perf_event *event)
5523 {
5524 	if (event->attach_state & PERF_ATTACH_CALLCHAIN)
5525 		put_callchain_buffers();
5526 
5527 	kfree(event->addr_filter_ranges);
5528 
5529 	if (event->attach_state & PERF_ATTACH_EXCLUSIVE)
5530 		exclusive_event_destroy(event);
5531 
5532 	if (is_cgroup_event(event))
5533 		perf_detach_cgroup(event);
5534 
5535 	if (event->attach_state & PERF_ATTACH_TASK_DATA)
5536 		detach_perf_ctx_data(event);
5537 
5538 	if (event->destroy)
5539 		event->destroy(event);
5540 
5541 	/*
5542 	 * Must be after ->destroy(), due to uprobe_perf_close() using
5543 	 * hw.target.
5544 	 */
5545 	if (event->hw.target)
5546 		put_task_struct(event->hw.target);
5547 
5548 	if (event->pmu_ctx) {
5549 		/*
5550 		 * put_pmu_ctx() needs an event->ctx reference, because of
5551 		 * epc->ctx.
5552 		 */
5553 		WARN_ON_ONCE(!event->ctx);
5554 		WARN_ON_ONCE(event->pmu_ctx->ctx != event->ctx);
5555 		put_pmu_ctx(event->pmu_ctx);
5556 	}
5557 
5558 	/*
5559 	 * perf_event_free_task() relies on put_ctx() being 'last', in
5560 	 * particular all task references must be cleaned up.
5561 	 */
5562 	if (event->ctx)
5563 		put_ctx(event->ctx);
5564 
5565 	if (event->pmu)
5566 		module_put(event->pmu->module);
5567 
5568 	call_rcu(&event->rcu_head, free_event_rcu);
5569 }
5570 
DEFINE_FREE(__free_event,struct perf_event *,if (_T)__free_event (_T))5571 DEFINE_FREE(__free_event, struct perf_event *, if (_T) __free_event(_T))
5572 
5573 /* vs perf_event_alloc() success */
5574 static void _free_event(struct perf_event *event)
5575 {
5576 	irq_work_sync(&event->pending_irq);
5577 	irq_work_sync(&event->pending_disable_irq);
5578 
5579 	unaccount_event(event);
5580 
5581 	security_perf_event_free(event);
5582 
5583 	if (event->rb) {
5584 		/*
5585 		 * Can happen when we close an event with re-directed output.
5586 		 *
5587 		 * Since we have a 0 refcount, perf_mmap_close() will skip
5588 		 * over us; possibly making our ring_buffer_put() the last.
5589 		 */
5590 		mutex_lock(&event->mmap_mutex);
5591 		ring_buffer_attach(event, NULL);
5592 		mutex_unlock(&event->mmap_mutex);
5593 	}
5594 
5595 	perf_event_free_bpf_prog(event);
5596 	perf_free_addr_filters(event);
5597 
5598 	__free_event(event);
5599 }
5600 
5601 /*
5602  * Used to free events which have a known refcount of 1, such as in error paths
5603  * where the event isn't exposed yet and inherited events.
5604  */
free_event(struct perf_event * event)5605 static void free_event(struct perf_event *event)
5606 {
5607 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5608 				"unexpected event refcount: %ld; ptr=%p\n",
5609 				atomic_long_read(&event->refcount), event)) {
5610 		/* leak to avoid use-after-free */
5611 		return;
5612 	}
5613 
5614 	_free_event(event);
5615 }
5616 
5617 /*
5618  * Remove user event from the owner task.
5619  */
perf_remove_from_owner(struct perf_event * event)5620 static void perf_remove_from_owner(struct perf_event *event)
5621 {
5622 	struct task_struct *owner;
5623 
5624 	rcu_read_lock();
5625 	/*
5626 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
5627 	 * observe !owner it means the list deletion is complete and we can
5628 	 * indeed free this event, otherwise we need to serialize on
5629 	 * owner->perf_event_mutex.
5630 	 */
5631 	owner = READ_ONCE(event->owner);
5632 	if (owner) {
5633 		/*
5634 		 * Since delayed_put_task_struct() also drops the last
5635 		 * task reference we can safely take a new reference
5636 		 * while holding the rcu_read_lock().
5637 		 */
5638 		get_task_struct(owner);
5639 	}
5640 	rcu_read_unlock();
5641 
5642 	if (owner) {
5643 		/*
5644 		 * If we're here through perf_event_exit_task() we're already
5645 		 * holding ctx->mutex which would be an inversion wrt. the
5646 		 * normal lock order.
5647 		 *
5648 		 * However we can safely take this lock because its the child
5649 		 * ctx->mutex.
5650 		 */
5651 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5652 
5653 		/*
5654 		 * We have to re-check the event->owner field, if it is cleared
5655 		 * we raced with perf_event_exit_task(), acquiring the mutex
5656 		 * ensured they're done, and we can proceed with freeing the
5657 		 * event.
5658 		 */
5659 		if (event->owner) {
5660 			list_del_init(&event->owner_entry);
5661 			smp_store_release(&event->owner, NULL);
5662 		}
5663 		mutex_unlock(&owner->perf_event_mutex);
5664 		put_task_struct(owner);
5665 	}
5666 }
5667 
put_event(struct perf_event * event)5668 static void put_event(struct perf_event *event)
5669 {
5670 	struct perf_event *parent;
5671 
5672 	if (!atomic_long_dec_and_test(&event->refcount))
5673 		return;
5674 
5675 	parent = event->parent;
5676 	_free_event(event);
5677 
5678 	/* Matches the refcount bump in inherit_event() */
5679 	if (parent)
5680 		put_event(parent);
5681 }
5682 
5683 /*
5684  * Kill an event dead; while event:refcount will preserve the event
5685  * object, it will not preserve its functionality. Once the last 'user'
5686  * gives up the object, we'll destroy the thing.
5687  */
perf_event_release_kernel(struct perf_event * event)5688 int perf_event_release_kernel(struct perf_event *event)
5689 {
5690 	struct perf_event_context *ctx = event->ctx;
5691 	struct perf_event *child, *tmp;
5692 	LIST_HEAD(free_list);
5693 
5694 	/*
5695 	 * If we got here through err_alloc: free_event(event); we will not
5696 	 * have attached to a context yet.
5697 	 */
5698 	if (!ctx) {
5699 		WARN_ON_ONCE(event->attach_state &
5700 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5701 		goto no_ctx;
5702 	}
5703 
5704 	if (!is_kernel_event(event))
5705 		perf_remove_from_owner(event);
5706 
5707 	ctx = perf_event_ctx_lock(event);
5708 	WARN_ON_ONCE(ctx->parent_ctx);
5709 
5710 	/*
5711 	 * Mark this event as STATE_DEAD, there is no external reference to it
5712 	 * anymore.
5713 	 *
5714 	 * Anybody acquiring event->child_mutex after the below loop _must_
5715 	 * also see this, most importantly inherit_event() which will avoid
5716 	 * placing more children on the list.
5717 	 *
5718 	 * Thus this guarantees that we will in fact observe and kill _ALL_
5719 	 * child events.
5720 	 */
5721 	perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
5722 
5723 	perf_event_ctx_unlock(event, ctx);
5724 
5725 again:
5726 	mutex_lock(&event->child_mutex);
5727 	list_for_each_entry(child, &event->child_list, child_list) {
5728 		void *var = NULL;
5729 
5730 		/*
5731 		 * Cannot change, child events are not migrated, see the
5732 		 * comment with perf_event_ctx_lock_nested().
5733 		 */
5734 		ctx = READ_ONCE(child->ctx);
5735 		/*
5736 		 * Since child_mutex nests inside ctx::mutex, we must jump
5737 		 * through hoops. We start by grabbing a reference on the ctx.
5738 		 *
5739 		 * Since the event cannot get freed while we hold the
5740 		 * child_mutex, the context must also exist and have a !0
5741 		 * reference count.
5742 		 */
5743 		get_ctx(ctx);
5744 
5745 		/*
5746 		 * Now that we have a ctx ref, we can drop child_mutex, and
5747 		 * acquire ctx::mutex without fear of it going away. Then we
5748 		 * can re-acquire child_mutex.
5749 		 */
5750 		mutex_unlock(&event->child_mutex);
5751 		mutex_lock(&ctx->mutex);
5752 		mutex_lock(&event->child_mutex);
5753 
5754 		/*
5755 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
5756 		 * state, if child is still the first entry, it didn't get freed
5757 		 * and we can continue doing so.
5758 		 */
5759 		tmp = list_first_entry_or_null(&event->child_list,
5760 					       struct perf_event, child_list);
5761 		if (tmp == child) {
5762 			perf_remove_from_context(child, DETACH_GROUP);
5763 			list_move(&child->child_list, &free_list);
5764 		} else {
5765 			var = &ctx->refcount;
5766 		}
5767 
5768 		mutex_unlock(&event->child_mutex);
5769 		mutex_unlock(&ctx->mutex);
5770 		put_ctx(ctx);
5771 
5772 		if (var) {
5773 			/*
5774 			 * If perf_event_free_task() has deleted all events from the
5775 			 * ctx while the child_mutex got released above, make sure to
5776 			 * notify about the preceding put_ctx().
5777 			 */
5778 			smp_mb(); /* pairs with wait_var_event() */
5779 			wake_up_var(var);
5780 		}
5781 		goto again;
5782 	}
5783 	mutex_unlock(&event->child_mutex);
5784 
5785 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5786 		void *var = &child->ctx->refcount;
5787 
5788 		list_del(&child->child_list);
5789 		/* Last reference unless ->pending_task work is pending */
5790 		put_event(child);
5791 
5792 		/*
5793 		 * Wake any perf_event_free_task() waiting for this event to be
5794 		 * freed.
5795 		 */
5796 		smp_mb(); /* pairs with wait_var_event() */
5797 		wake_up_var(var);
5798 	}
5799 
5800 no_ctx:
5801 	/*
5802 	 * Last reference unless ->pending_task work is pending on this event
5803 	 * or any of its children.
5804 	 */
5805 	put_event(event);
5806 	return 0;
5807 }
5808 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5809 
5810 /*
5811  * Called when the last reference to the file is gone.
5812  */
perf_release(struct inode * inode,struct file * file)5813 static int perf_release(struct inode *inode, struct file *file)
5814 {
5815 	perf_event_release_kernel(file->private_data);
5816 	return 0;
5817 }
5818 
__perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)5819 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5820 {
5821 	struct perf_event *child;
5822 	u64 total = 0;
5823 
5824 	*enabled = 0;
5825 	*running = 0;
5826 
5827 	mutex_lock(&event->child_mutex);
5828 
5829 	(void)perf_event_read(event, false);
5830 	total += perf_event_count(event, false);
5831 
5832 	*enabled += event->total_time_enabled +
5833 			atomic64_read(&event->child_total_time_enabled);
5834 	*running += event->total_time_running +
5835 			atomic64_read(&event->child_total_time_running);
5836 
5837 	list_for_each_entry(child, &event->child_list, child_list) {
5838 		(void)perf_event_read(child, false);
5839 		total += perf_event_count(child, false);
5840 		*enabled += child->total_time_enabled;
5841 		*running += child->total_time_running;
5842 	}
5843 	mutex_unlock(&event->child_mutex);
5844 
5845 	return total;
5846 }
5847 
perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)5848 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5849 {
5850 	struct perf_event_context *ctx;
5851 	u64 count;
5852 
5853 	ctx = perf_event_ctx_lock(event);
5854 	count = __perf_event_read_value(event, enabled, running);
5855 	perf_event_ctx_unlock(event, ctx);
5856 
5857 	return count;
5858 }
5859 EXPORT_SYMBOL_GPL(perf_event_read_value);
5860 
__perf_read_group_add(struct perf_event * leader,u64 read_format,u64 * values)5861 static int __perf_read_group_add(struct perf_event *leader,
5862 					u64 read_format, u64 *values)
5863 {
5864 	struct perf_event_context *ctx = leader->ctx;
5865 	struct perf_event *sub, *parent;
5866 	unsigned long flags;
5867 	int n = 1; /* skip @nr */
5868 	int ret;
5869 
5870 	ret = perf_event_read(leader, true);
5871 	if (ret)
5872 		return ret;
5873 
5874 	raw_spin_lock_irqsave(&ctx->lock, flags);
5875 	/*
5876 	 * Verify the grouping between the parent and child (inherited)
5877 	 * events is still in tact.
5878 	 *
5879 	 * Specifically:
5880 	 *  - leader->ctx->lock pins leader->sibling_list
5881 	 *  - parent->child_mutex pins parent->child_list
5882 	 *  - parent->ctx->mutex pins parent->sibling_list
5883 	 *
5884 	 * Because parent->ctx != leader->ctx (and child_list nests inside
5885 	 * ctx->mutex), group destruction is not atomic between children, also
5886 	 * see perf_event_release_kernel(). Additionally, parent can grow the
5887 	 * group.
5888 	 *
5889 	 * Therefore it is possible to have parent and child groups in a
5890 	 * different configuration and summing over such a beast makes no sense
5891 	 * what so ever.
5892 	 *
5893 	 * Reject this.
5894 	 */
5895 	parent = leader->parent;
5896 	if (parent &&
5897 	    (parent->group_generation != leader->group_generation ||
5898 	     parent->nr_siblings != leader->nr_siblings)) {
5899 		ret = -ECHILD;
5900 		goto unlock;
5901 	}
5902 
5903 	/*
5904 	 * Since we co-schedule groups, {enabled,running} times of siblings
5905 	 * will be identical to those of the leader, so we only publish one
5906 	 * set.
5907 	 */
5908 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5909 		values[n++] += leader->total_time_enabled +
5910 			atomic64_read(&leader->child_total_time_enabled);
5911 	}
5912 
5913 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5914 		values[n++] += leader->total_time_running +
5915 			atomic64_read(&leader->child_total_time_running);
5916 	}
5917 
5918 	/*
5919 	 * Write {count,id} tuples for every sibling.
5920 	 */
5921 	values[n++] += perf_event_count(leader, false);
5922 	if (read_format & PERF_FORMAT_ID)
5923 		values[n++] = primary_event_id(leader);
5924 	if (read_format & PERF_FORMAT_LOST)
5925 		values[n++] = atomic64_read(&leader->lost_samples);
5926 
5927 	for_each_sibling_event(sub, leader) {
5928 		values[n++] += perf_event_count(sub, false);
5929 		if (read_format & PERF_FORMAT_ID)
5930 			values[n++] = primary_event_id(sub);
5931 		if (read_format & PERF_FORMAT_LOST)
5932 			values[n++] = atomic64_read(&sub->lost_samples);
5933 	}
5934 
5935 unlock:
5936 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5937 	return ret;
5938 }
5939 
perf_read_group(struct perf_event * event,u64 read_format,char __user * buf)5940 static int perf_read_group(struct perf_event *event,
5941 				   u64 read_format, char __user *buf)
5942 {
5943 	struct perf_event *leader = event->group_leader, *child;
5944 	struct perf_event_context *ctx = leader->ctx;
5945 	int ret;
5946 	u64 *values;
5947 
5948 	lockdep_assert_held(&ctx->mutex);
5949 
5950 	values = kzalloc(event->read_size, GFP_KERNEL);
5951 	if (!values)
5952 		return -ENOMEM;
5953 
5954 	values[0] = 1 + leader->nr_siblings;
5955 
5956 	mutex_lock(&leader->child_mutex);
5957 
5958 	ret = __perf_read_group_add(leader, read_format, values);
5959 	if (ret)
5960 		goto unlock;
5961 
5962 	list_for_each_entry(child, &leader->child_list, child_list) {
5963 		ret = __perf_read_group_add(child, read_format, values);
5964 		if (ret)
5965 			goto unlock;
5966 	}
5967 
5968 	mutex_unlock(&leader->child_mutex);
5969 
5970 	ret = event->read_size;
5971 	if (copy_to_user(buf, values, event->read_size))
5972 		ret = -EFAULT;
5973 	goto out;
5974 
5975 unlock:
5976 	mutex_unlock(&leader->child_mutex);
5977 out:
5978 	kfree(values);
5979 	return ret;
5980 }
5981 
perf_read_one(struct perf_event * event,u64 read_format,char __user * buf)5982 static int perf_read_one(struct perf_event *event,
5983 				 u64 read_format, char __user *buf)
5984 {
5985 	u64 enabled, running;
5986 	u64 values[5];
5987 	int n = 0;
5988 
5989 	values[n++] = __perf_event_read_value(event, &enabled, &running);
5990 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5991 		values[n++] = enabled;
5992 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5993 		values[n++] = running;
5994 	if (read_format & PERF_FORMAT_ID)
5995 		values[n++] = primary_event_id(event);
5996 	if (read_format & PERF_FORMAT_LOST)
5997 		values[n++] = atomic64_read(&event->lost_samples);
5998 
5999 	if (copy_to_user(buf, values, n * sizeof(u64)))
6000 		return -EFAULT;
6001 
6002 	return n * sizeof(u64);
6003 }
6004 
is_event_hup(struct perf_event * event)6005 static bool is_event_hup(struct perf_event *event)
6006 {
6007 	bool no_children;
6008 
6009 	if (event->state > PERF_EVENT_STATE_EXIT)
6010 		return false;
6011 
6012 	mutex_lock(&event->child_mutex);
6013 	no_children = list_empty(&event->child_list);
6014 	mutex_unlock(&event->child_mutex);
6015 	return no_children;
6016 }
6017 
6018 /*
6019  * Read the performance event - simple non blocking version for now
6020  */
6021 static ssize_t
__perf_read(struct perf_event * event,char __user * buf,size_t count)6022 __perf_read(struct perf_event *event, char __user *buf, size_t count)
6023 {
6024 	u64 read_format = event->attr.read_format;
6025 	int ret;
6026 
6027 	/*
6028 	 * Return end-of-file for a read on an event that is in
6029 	 * error state (i.e. because it was pinned but it couldn't be
6030 	 * scheduled on to the CPU at some point).
6031 	 */
6032 	if (event->state == PERF_EVENT_STATE_ERROR)
6033 		return 0;
6034 
6035 	if (count < event->read_size)
6036 		return -ENOSPC;
6037 
6038 	WARN_ON_ONCE(event->ctx->parent_ctx);
6039 	if (read_format & PERF_FORMAT_GROUP)
6040 		ret = perf_read_group(event, read_format, buf);
6041 	else
6042 		ret = perf_read_one(event, read_format, buf);
6043 
6044 	return ret;
6045 }
6046 
6047 static ssize_t
perf_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)6048 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
6049 {
6050 	struct perf_event *event = file->private_data;
6051 	struct perf_event_context *ctx;
6052 	int ret;
6053 
6054 	ret = security_perf_event_read(event);
6055 	if (ret)
6056 		return ret;
6057 
6058 	ctx = perf_event_ctx_lock(event);
6059 	ret = __perf_read(event, buf, count);
6060 	perf_event_ctx_unlock(event, ctx);
6061 
6062 	return ret;
6063 }
6064 
perf_poll(struct file * file,poll_table * wait)6065 static __poll_t perf_poll(struct file *file, poll_table *wait)
6066 {
6067 	struct perf_event *event = file->private_data;
6068 	struct perf_buffer *rb;
6069 	__poll_t events = EPOLLHUP;
6070 
6071 	poll_wait(file, &event->waitq, wait);
6072 
6073 	if (is_event_hup(event))
6074 		return events;
6075 
6076 	if (unlikely(READ_ONCE(event->state) == PERF_EVENT_STATE_ERROR &&
6077 		     event->attr.pinned))
6078 		return events;
6079 
6080 	/*
6081 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
6082 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
6083 	 */
6084 	mutex_lock(&event->mmap_mutex);
6085 	rb = event->rb;
6086 	if (rb)
6087 		events = atomic_xchg(&rb->poll, 0);
6088 	mutex_unlock(&event->mmap_mutex);
6089 	return events;
6090 }
6091 
_perf_event_reset(struct perf_event * event)6092 static void _perf_event_reset(struct perf_event *event)
6093 {
6094 	(void)perf_event_read(event, false);
6095 	local64_set(&event->count, 0);
6096 	perf_event_update_userpage(event);
6097 }
6098 
6099 /* Assume it's not an event with inherit set. */
perf_event_pause(struct perf_event * event,bool reset)6100 u64 perf_event_pause(struct perf_event *event, bool reset)
6101 {
6102 	struct perf_event_context *ctx;
6103 	u64 count;
6104 
6105 	ctx = perf_event_ctx_lock(event);
6106 	WARN_ON_ONCE(event->attr.inherit);
6107 	_perf_event_disable(event);
6108 	count = local64_read(&event->count);
6109 	if (reset)
6110 		local64_set(&event->count, 0);
6111 	perf_event_ctx_unlock(event, ctx);
6112 
6113 	return count;
6114 }
6115 EXPORT_SYMBOL_GPL(perf_event_pause);
6116 
6117 /*
6118  * Holding the top-level event's child_mutex means that any
6119  * descendant process that has inherited this event will block
6120  * in perf_event_exit_event() if it goes to exit, thus satisfying the
6121  * task existence requirements of perf_event_enable/disable.
6122  */
perf_event_for_each_child(struct perf_event * event,void (* func)(struct perf_event *))6123 static void perf_event_for_each_child(struct perf_event *event,
6124 					void (*func)(struct perf_event *))
6125 {
6126 	struct perf_event *child;
6127 
6128 	WARN_ON_ONCE(event->ctx->parent_ctx);
6129 
6130 	mutex_lock(&event->child_mutex);
6131 	func(event);
6132 	list_for_each_entry(child, &event->child_list, child_list)
6133 		func(child);
6134 	mutex_unlock(&event->child_mutex);
6135 }
6136 
perf_event_for_each(struct perf_event * event,void (* func)(struct perf_event *))6137 static void perf_event_for_each(struct perf_event *event,
6138 				  void (*func)(struct perf_event *))
6139 {
6140 	struct perf_event_context *ctx = event->ctx;
6141 	struct perf_event *sibling;
6142 
6143 	lockdep_assert_held(&ctx->mutex);
6144 
6145 	event = event->group_leader;
6146 
6147 	perf_event_for_each_child(event, func);
6148 	for_each_sibling_event(sibling, event)
6149 		perf_event_for_each_child(sibling, func);
6150 }
6151 
__perf_event_period(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)6152 static void __perf_event_period(struct perf_event *event,
6153 				struct perf_cpu_context *cpuctx,
6154 				struct perf_event_context *ctx,
6155 				void *info)
6156 {
6157 	u64 value = *((u64 *)info);
6158 	bool active;
6159 
6160 	if (event->attr.freq) {
6161 		event->attr.sample_freq = value;
6162 	} else {
6163 		event->attr.sample_period = value;
6164 		event->hw.sample_period = value;
6165 	}
6166 
6167 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
6168 	if (active) {
6169 		perf_pmu_disable(event->pmu);
6170 		/*
6171 		 * We could be throttled; unthrottle now to avoid the tick
6172 		 * trying to unthrottle while we already re-started the event.
6173 		 */
6174 		if (event->hw.interrupts == MAX_INTERRUPTS) {
6175 			event->hw.interrupts = 0;
6176 			perf_log_throttle(event, 1);
6177 		}
6178 		event->pmu->stop(event, PERF_EF_UPDATE);
6179 	}
6180 
6181 	local64_set(&event->hw.period_left, 0);
6182 
6183 	if (active) {
6184 		event->pmu->start(event, PERF_EF_RELOAD);
6185 		perf_pmu_enable(event->pmu);
6186 	}
6187 }
6188 
perf_event_check_period(struct perf_event * event,u64 value)6189 static int perf_event_check_period(struct perf_event *event, u64 value)
6190 {
6191 	return event->pmu->check_period(event, value);
6192 }
6193 
_perf_event_period(struct perf_event * event,u64 value)6194 static int _perf_event_period(struct perf_event *event, u64 value)
6195 {
6196 	if (!is_sampling_event(event))
6197 		return -EINVAL;
6198 
6199 	if (!value)
6200 		return -EINVAL;
6201 
6202 	if (event->attr.freq) {
6203 		if (value > sysctl_perf_event_sample_rate)
6204 			return -EINVAL;
6205 	} else {
6206 		if (perf_event_check_period(event, value))
6207 			return -EINVAL;
6208 		if (value & (1ULL << 63))
6209 			return -EINVAL;
6210 	}
6211 
6212 	event_function_call(event, __perf_event_period, &value);
6213 
6214 	return 0;
6215 }
6216 
perf_event_period(struct perf_event * event,u64 value)6217 int perf_event_period(struct perf_event *event, u64 value)
6218 {
6219 	struct perf_event_context *ctx;
6220 	int ret;
6221 
6222 	ctx = perf_event_ctx_lock(event);
6223 	ret = _perf_event_period(event, value);
6224 	perf_event_ctx_unlock(event, ctx);
6225 
6226 	return ret;
6227 }
6228 EXPORT_SYMBOL_GPL(perf_event_period);
6229 
6230 static const struct file_operations perf_fops;
6231 
is_perf_file(struct fd f)6232 static inline bool is_perf_file(struct fd f)
6233 {
6234 	return !fd_empty(f) && fd_file(f)->f_op == &perf_fops;
6235 }
6236 
6237 static int perf_event_set_output(struct perf_event *event,
6238 				 struct perf_event *output_event);
6239 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
6240 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6241 			  struct perf_event_attr *attr);
6242 
_perf_ioctl(struct perf_event * event,unsigned int cmd,unsigned long arg)6243 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
6244 {
6245 	void (*func)(struct perf_event *);
6246 	u32 flags = arg;
6247 
6248 	switch (cmd) {
6249 	case PERF_EVENT_IOC_ENABLE:
6250 		func = _perf_event_enable;
6251 		break;
6252 	case PERF_EVENT_IOC_DISABLE:
6253 		func = _perf_event_disable;
6254 		break;
6255 	case PERF_EVENT_IOC_RESET:
6256 		func = _perf_event_reset;
6257 		break;
6258 
6259 	case PERF_EVENT_IOC_REFRESH:
6260 		return _perf_event_refresh(event, arg);
6261 
6262 	case PERF_EVENT_IOC_PERIOD:
6263 	{
6264 		u64 value;
6265 
6266 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
6267 			return -EFAULT;
6268 
6269 		return _perf_event_period(event, value);
6270 	}
6271 	case PERF_EVENT_IOC_ID:
6272 	{
6273 		u64 id = primary_event_id(event);
6274 
6275 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
6276 			return -EFAULT;
6277 		return 0;
6278 	}
6279 
6280 	case PERF_EVENT_IOC_SET_OUTPUT:
6281 	{
6282 		CLASS(fd, output)(arg);	     // arg == -1 => empty
6283 		struct perf_event *output_event = NULL;
6284 		if (arg != -1) {
6285 			if (!is_perf_file(output))
6286 				return -EBADF;
6287 			output_event = fd_file(output)->private_data;
6288 		}
6289 		return perf_event_set_output(event, output_event);
6290 	}
6291 
6292 	case PERF_EVENT_IOC_SET_FILTER:
6293 		return perf_event_set_filter(event, (void __user *)arg);
6294 
6295 	case PERF_EVENT_IOC_SET_BPF:
6296 	{
6297 		struct bpf_prog *prog;
6298 		int err;
6299 
6300 		prog = bpf_prog_get(arg);
6301 		if (IS_ERR(prog))
6302 			return PTR_ERR(prog);
6303 
6304 		err = perf_event_set_bpf_prog(event, prog, 0);
6305 		if (err) {
6306 			bpf_prog_put(prog);
6307 			return err;
6308 		}
6309 
6310 		return 0;
6311 	}
6312 
6313 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
6314 		struct perf_buffer *rb;
6315 
6316 		rcu_read_lock();
6317 		rb = rcu_dereference(event->rb);
6318 		if (!rb || !rb->nr_pages) {
6319 			rcu_read_unlock();
6320 			return -EINVAL;
6321 		}
6322 		rb_toggle_paused(rb, !!arg);
6323 		rcu_read_unlock();
6324 		return 0;
6325 	}
6326 
6327 	case PERF_EVENT_IOC_QUERY_BPF:
6328 		return perf_event_query_prog_array(event, (void __user *)arg);
6329 
6330 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
6331 		struct perf_event_attr new_attr;
6332 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
6333 					 &new_attr);
6334 
6335 		if (err)
6336 			return err;
6337 
6338 		return perf_event_modify_attr(event,  &new_attr);
6339 	}
6340 	default:
6341 		return -ENOTTY;
6342 	}
6343 
6344 	if (flags & PERF_IOC_FLAG_GROUP)
6345 		perf_event_for_each(event, func);
6346 	else
6347 		perf_event_for_each_child(event, func);
6348 
6349 	return 0;
6350 }
6351 
perf_ioctl(struct file * file,unsigned int cmd,unsigned long arg)6352 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
6353 {
6354 	struct perf_event *event = file->private_data;
6355 	struct perf_event_context *ctx;
6356 	long ret;
6357 
6358 	/* Treat ioctl like writes as it is likely a mutating operation. */
6359 	ret = security_perf_event_write(event);
6360 	if (ret)
6361 		return ret;
6362 
6363 	ctx = perf_event_ctx_lock(event);
6364 	ret = _perf_ioctl(event, cmd, arg);
6365 	perf_event_ctx_unlock(event, ctx);
6366 
6367 	return ret;
6368 }
6369 
6370 #ifdef CONFIG_COMPAT
perf_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)6371 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
6372 				unsigned long arg)
6373 {
6374 	switch (_IOC_NR(cmd)) {
6375 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
6376 	case _IOC_NR(PERF_EVENT_IOC_ID):
6377 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
6378 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
6379 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
6380 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
6381 			cmd &= ~IOCSIZE_MASK;
6382 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
6383 		}
6384 		break;
6385 	}
6386 	return perf_ioctl(file, cmd, arg);
6387 }
6388 #else
6389 # define perf_compat_ioctl NULL
6390 #endif
6391 
perf_event_task_enable(void)6392 int perf_event_task_enable(void)
6393 {
6394 	struct perf_event_context *ctx;
6395 	struct perf_event *event;
6396 
6397 	mutex_lock(&current->perf_event_mutex);
6398 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6399 		ctx = perf_event_ctx_lock(event);
6400 		perf_event_for_each_child(event, _perf_event_enable);
6401 		perf_event_ctx_unlock(event, ctx);
6402 	}
6403 	mutex_unlock(&current->perf_event_mutex);
6404 
6405 	return 0;
6406 }
6407 
perf_event_task_disable(void)6408 int perf_event_task_disable(void)
6409 {
6410 	struct perf_event_context *ctx;
6411 	struct perf_event *event;
6412 
6413 	mutex_lock(&current->perf_event_mutex);
6414 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6415 		ctx = perf_event_ctx_lock(event);
6416 		perf_event_for_each_child(event, _perf_event_disable);
6417 		perf_event_ctx_unlock(event, ctx);
6418 	}
6419 	mutex_unlock(&current->perf_event_mutex);
6420 
6421 	return 0;
6422 }
6423 
perf_event_index(struct perf_event * event)6424 static int perf_event_index(struct perf_event *event)
6425 {
6426 	if (event->hw.state & PERF_HES_STOPPED)
6427 		return 0;
6428 
6429 	if (event->state != PERF_EVENT_STATE_ACTIVE)
6430 		return 0;
6431 
6432 	return event->pmu->event_idx(event);
6433 }
6434 
perf_event_init_userpage(struct perf_event * event)6435 static void perf_event_init_userpage(struct perf_event *event)
6436 {
6437 	struct perf_event_mmap_page *userpg;
6438 	struct perf_buffer *rb;
6439 
6440 	rcu_read_lock();
6441 	rb = rcu_dereference(event->rb);
6442 	if (!rb)
6443 		goto unlock;
6444 
6445 	userpg = rb->user_page;
6446 
6447 	/* Allow new userspace to detect that bit 0 is deprecated */
6448 	userpg->cap_bit0_is_deprecated = 1;
6449 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
6450 	userpg->data_offset = PAGE_SIZE;
6451 	userpg->data_size = perf_data_size(rb);
6452 
6453 unlock:
6454 	rcu_read_unlock();
6455 }
6456 
arch_perf_update_userpage(struct perf_event * event,struct perf_event_mmap_page * userpg,u64 now)6457 void __weak arch_perf_update_userpage(
6458 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
6459 {
6460 }
6461 
6462 /*
6463  * Callers need to ensure there can be no nesting of this function, otherwise
6464  * the seqlock logic goes bad. We can not serialize this because the arch
6465  * code calls this from NMI context.
6466  */
perf_event_update_userpage(struct perf_event * event)6467 void perf_event_update_userpage(struct perf_event *event)
6468 {
6469 	struct perf_event_mmap_page *userpg;
6470 	struct perf_buffer *rb;
6471 	u64 enabled, running, now;
6472 
6473 	rcu_read_lock();
6474 	rb = rcu_dereference(event->rb);
6475 	if (!rb)
6476 		goto unlock;
6477 
6478 	/*
6479 	 * compute total_time_enabled, total_time_running
6480 	 * based on snapshot values taken when the event
6481 	 * was last scheduled in.
6482 	 *
6483 	 * we cannot simply called update_context_time()
6484 	 * because of locking issue as we can be called in
6485 	 * NMI context
6486 	 */
6487 	calc_timer_values(event, &now, &enabled, &running);
6488 
6489 	userpg = rb->user_page;
6490 	/*
6491 	 * Disable preemption to guarantee consistent time stamps are stored to
6492 	 * the user page.
6493 	 */
6494 	preempt_disable();
6495 	++userpg->lock;
6496 	barrier();
6497 	userpg->index = perf_event_index(event);
6498 	userpg->offset = perf_event_count(event, false);
6499 	if (userpg->index)
6500 		userpg->offset -= local64_read(&event->hw.prev_count);
6501 
6502 	userpg->time_enabled = enabled +
6503 			atomic64_read(&event->child_total_time_enabled);
6504 
6505 	userpg->time_running = running +
6506 			atomic64_read(&event->child_total_time_running);
6507 
6508 	arch_perf_update_userpage(event, userpg, now);
6509 
6510 	barrier();
6511 	++userpg->lock;
6512 	preempt_enable();
6513 unlock:
6514 	rcu_read_unlock();
6515 }
6516 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
6517 
ring_buffer_attach(struct perf_event * event,struct perf_buffer * rb)6518 static void ring_buffer_attach(struct perf_event *event,
6519 			       struct perf_buffer *rb)
6520 {
6521 	struct perf_buffer *old_rb = NULL;
6522 	unsigned long flags;
6523 
6524 	WARN_ON_ONCE(event->parent);
6525 
6526 	if (event->rb) {
6527 		/*
6528 		 * Should be impossible, we set this when removing
6529 		 * event->rb_entry and wait/clear when adding event->rb_entry.
6530 		 */
6531 		WARN_ON_ONCE(event->rcu_pending);
6532 
6533 		old_rb = event->rb;
6534 		spin_lock_irqsave(&old_rb->event_lock, flags);
6535 		list_del_rcu(&event->rb_entry);
6536 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
6537 
6538 		event->rcu_batches = get_state_synchronize_rcu();
6539 		event->rcu_pending = 1;
6540 	}
6541 
6542 	if (rb) {
6543 		if (event->rcu_pending) {
6544 			cond_synchronize_rcu(event->rcu_batches);
6545 			event->rcu_pending = 0;
6546 		}
6547 
6548 		spin_lock_irqsave(&rb->event_lock, flags);
6549 		list_add_rcu(&event->rb_entry, &rb->event_list);
6550 		spin_unlock_irqrestore(&rb->event_lock, flags);
6551 	}
6552 
6553 	/*
6554 	 * Avoid racing with perf_mmap_close(AUX): stop the event
6555 	 * before swizzling the event::rb pointer; if it's getting
6556 	 * unmapped, its aux_mmap_count will be 0 and it won't
6557 	 * restart. See the comment in __perf_pmu_output_stop().
6558 	 *
6559 	 * Data will inevitably be lost when set_output is done in
6560 	 * mid-air, but then again, whoever does it like this is
6561 	 * not in for the data anyway.
6562 	 */
6563 	if (has_aux(event))
6564 		perf_event_stop(event, 0);
6565 
6566 	rcu_assign_pointer(event->rb, rb);
6567 
6568 	if (old_rb) {
6569 		ring_buffer_put(old_rb);
6570 		/*
6571 		 * Since we detached before setting the new rb, so that we
6572 		 * could attach the new rb, we could have missed a wakeup.
6573 		 * Provide it now.
6574 		 */
6575 		wake_up_all(&event->waitq);
6576 	}
6577 }
6578 
ring_buffer_wakeup(struct perf_event * event)6579 static void ring_buffer_wakeup(struct perf_event *event)
6580 {
6581 	struct perf_buffer *rb;
6582 
6583 	if (event->parent)
6584 		event = event->parent;
6585 
6586 	rcu_read_lock();
6587 	rb = rcu_dereference(event->rb);
6588 	if (rb) {
6589 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6590 			wake_up_all(&event->waitq);
6591 	}
6592 	rcu_read_unlock();
6593 }
6594 
ring_buffer_get(struct perf_event * event)6595 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6596 {
6597 	struct perf_buffer *rb;
6598 
6599 	if (event->parent)
6600 		event = event->parent;
6601 
6602 	rcu_read_lock();
6603 	rb = rcu_dereference(event->rb);
6604 	if (rb) {
6605 		if (!refcount_inc_not_zero(&rb->refcount))
6606 			rb = NULL;
6607 	}
6608 	rcu_read_unlock();
6609 
6610 	return rb;
6611 }
6612 
ring_buffer_put(struct perf_buffer * rb)6613 void ring_buffer_put(struct perf_buffer *rb)
6614 {
6615 	if (!refcount_dec_and_test(&rb->refcount))
6616 		return;
6617 
6618 	WARN_ON_ONCE(!list_empty(&rb->event_list));
6619 
6620 	call_rcu(&rb->rcu_head, rb_free_rcu);
6621 }
6622 
perf_mmap_open(struct vm_area_struct * vma)6623 static void perf_mmap_open(struct vm_area_struct *vma)
6624 {
6625 	struct perf_event *event = vma->vm_file->private_data;
6626 
6627 	atomic_inc(&event->mmap_count);
6628 	atomic_inc(&event->rb->mmap_count);
6629 
6630 	if (vma->vm_pgoff)
6631 		atomic_inc(&event->rb->aux_mmap_count);
6632 
6633 	if (event->pmu->event_mapped)
6634 		event->pmu->event_mapped(event, vma->vm_mm);
6635 }
6636 
6637 static void perf_pmu_output_stop(struct perf_event *event);
6638 
6639 /*
6640  * A buffer can be mmap()ed multiple times; either directly through the same
6641  * event, or through other events by use of perf_event_set_output().
6642  *
6643  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6644  * the buffer here, where we still have a VM context. This means we need
6645  * to detach all events redirecting to us.
6646  */
perf_mmap_close(struct vm_area_struct * vma)6647 static void perf_mmap_close(struct vm_area_struct *vma)
6648 {
6649 	struct perf_event *event = vma->vm_file->private_data;
6650 	struct perf_buffer *rb = ring_buffer_get(event);
6651 	struct user_struct *mmap_user = rb->mmap_user;
6652 	int mmap_locked = rb->mmap_locked;
6653 	unsigned long size = perf_data_size(rb);
6654 	bool detach_rest = false;
6655 
6656 	if (event->pmu->event_unmapped)
6657 		event->pmu->event_unmapped(event, vma->vm_mm);
6658 
6659 	/*
6660 	 * The AUX buffer is strictly a sub-buffer, serialize using aux_mutex
6661 	 * to avoid complications.
6662 	 */
6663 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6664 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &rb->aux_mutex)) {
6665 		/*
6666 		 * Stop all AUX events that are writing to this buffer,
6667 		 * so that we can free its AUX pages and corresponding PMU
6668 		 * data. Note that after rb::aux_mmap_count dropped to zero,
6669 		 * they won't start any more (see perf_aux_output_begin()).
6670 		 */
6671 		perf_pmu_output_stop(event);
6672 
6673 		/* now it's safe to free the pages */
6674 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6675 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6676 
6677 		/* this has to be the last one */
6678 		rb_free_aux(rb);
6679 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6680 
6681 		mutex_unlock(&rb->aux_mutex);
6682 	}
6683 
6684 	if (atomic_dec_and_test(&rb->mmap_count))
6685 		detach_rest = true;
6686 
6687 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6688 		goto out_put;
6689 
6690 	ring_buffer_attach(event, NULL);
6691 	mutex_unlock(&event->mmap_mutex);
6692 
6693 	/* If there's still other mmap()s of this buffer, we're done. */
6694 	if (!detach_rest)
6695 		goto out_put;
6696 
6697 	/*
6698 	 * No other mmap()s, detach from all other events that might redirect
6699 	 * into the now unreachable buffer. Somewhat complicated by the
6700 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6701 	 */
6702 again:
6703 	rcu_read_lock();
6704 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6705 		if (!atomic_long_inc_not_zero(&event->refcount)) {
6706 			/*
6707 			 * This event is en-route to free_event() which will
6708 			 * detach it and remove it from the list.
6709 			 */
6710 			continue;
6711 		}
6712 		rcu_read_unlock();
6713 
6714 		mutex_lock(&event->mmap_mutex);
6715 		/*
6716 		 * Check we didn't race with perf_event_set_output() which can
6717 		 * swizzle the rb from under us while we were waiting to
6718 		 * acquire mmap_mutex.
6719 		 *
6720 		 * If we find a different rb; ignore this event, a next
6721 		 * iteration will no longer find it on the list. We have to
6722 		 * still restart the iteration to make sure we're not now
6723 		 * iterating the wrong list.
6724 		 */
6725 		if (event->rb == rb)
6726 			ring_buffer_attach(event, NULL);
6727 
6728 		mutex_unlock(&event->mmap_mutex);
6729 		put_event(event);
6730 
6731 		/*
6732 		 * Restart the iteration; either we're on the wrong list or
6733 		 * destroyed its integrity by doing a deletion.
6734 		 */
6735 		goto again;
6736 	}
6737 	rcu_read_unlock();
6738 
6739 	/*
6740 	 * It could be there's still a few 0-ref events on the list; they'll
6741 	 * get cleaned up by free_event() -- they'll also still have their
6742 	 * ref on the rb and will free it whenever they are done with it.
6743 	 *
6744 	 * Aside from that, this buffer is 'fully' detached and unmapped,
6745 	 * undo the VM accounting.
6746 	 */
6747 
6748 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6749 			&mmap_user->locked_vm);
6750 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6751 	free_uid(mmap_user);
6752 
6753 out_put:
6754 	ring_buffer_put(rb); /* could be last */
6755 }
6756 
perf_mmap_pfn_mkwrite(struct vm_fault * vmf)6757 static vm_fault_t perf_mmap_pfn_mkwrite(struct vm_fault *vmf)
6758 {
6759 	/* The first page is the user control page, others are read-only. */
6760 	return vmf->pgoff == 0 ? 0 : VM_FAULT_SIGBUS;
6761 }
6762 
6763 static const struct vm_operations_struct perf_mmap_vmops = {
6764 	.open		= perf_mmap_open,
6765 	.close		= perf_mmap_close, /* non mergeable */
6766 	.pfn_mkwrite	= perf_mmap_pfn_mkwrite,
6767 };
6768 
map_range(struct perf_buffer * rb,struct vm_area_struct * vma)6769 static int map_range(struct perf_buffer *rb, struct vm_area_struct *vma)
6770 {
6771 	unsigned long nr_pages = vma_pages(vma);
6772 	int err = 0;
6773 	unsigned long pagenum;
6774 
6775 	/*
6776 	 * We map this as a VM_PFNMAP VMA.
6777 	 *
6778 	 * This is not ideal as this is designed broadly for mappings of PFNs
6779 	 * referencing memory-mapped I/O ranges or non-system RAM i.e. for which
6780 	 * !pfn_valid(pfn).
6781 	 *
6782 	 * We are mapping kernel-allocated memory (memory we manage ourselves)
6783 	 * which would more ideally be mapped using vm_insert_page() or a
6784 	 * similar mechanism, that is as a VM_MIXEDMAP mapping.
6785 	 *
6786 	 * However this won't work here, because:
6787 	 *
6788 	 * 1. It uses vma->vm_page_prot, but this field has not been completely
6789 	 *    setup at the point of the f_op->mmp() hook, so we are unable to
6790 	 *    indicate that this should be mapped CoW in order that the
6791 	 *    mkwrite() hook can be invoked to make the first page R/W and the
6792 	 *    rest R/O as desired.
6793 	 *
6794 	 * 2. Anything other than a VM_PFNMAP of valid PFNs will result in
6795 	 *    vm_normal_page() returning a struct page * pointer, which means
6796 	 *    vm_ops->page_mkwrite() will be invoked rather than
6797 	 *    vm_ops->pfn_mkwrite(), and this means we have to set page->mapping
6798 	 *    to work around retry logic in the fault handler, however this
6799 	 *    field is no longer allowed to be used within struct page.
6800 	 *
6801 	 * 3. Having a struct page * made available in the fault logic also
6802 	 *    means that the page gets put on the rmap and becomes
6803 	 *    inappropriately accessible and subject to map and ref counting.
6804 	 *
6805 	 * Ideally we would have a mechanism that could explicitly express our
6806 	 * desires, but this is not currently the case, so we instead use
6807 	 * VM_PFNMAP.
6808 	 *
6809 	 * We manage the lifetime of these mappings with internal refcounts (see
6810 	 * perf_mmap_open() and perf_mmap_close()) so we ensure the lifetime of
6811 	 * this mapping is maintained correctly.
6812 	 */
6813 	for (pagenum = 0; pagenum < nr_pages; pagenum++) {
6814 		unsigned long va = vma->vm_start + PAGE_SIZE * pagenum;
6815 		struct page *page = perf_mmap_to_page(rb, vma->vm_pgoff + pagenum);
6816 
6817 		if (page == NULL) {
6818 			err = -EINVAL;
6819 			break;
6820 		}
6821 
6822 		/* Map readonly, perf_mmap_pfn_mkwrite() called on write fault. */
6823 		err = remap_pfn_range(vma, va, page_to_pfn(page), PAGE_SIZE,
6824 				      vm_get_page_prot(vma->vm_flags & ~VM_SHARED));
6825 		if (err)
6826 			break;
6827 	}
6828 
6829 #ifdef CONFIG_MMU
6830 	/* Clear any partial mappings on error. */
6831 	if (err)
6832 		zap_page_range_single(vma, vma->vm_start, nr_pages * PAGE_SIZE, NULL);
6833 #endif
6834 
6835 	return err;
6836 }
6837 
perf_mmap(struct file * file,struct vm_area_struct * vma)6838 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6839 {
6840 	struct perf_event *event = file->private_data;
6841 	unsigned long user_locked, user_lock_limit;
6842 	struct user_struct *user = current_user();
6843 	struct mutex *aux_mutex = NULL;
6844 	struct perf_buffer *rb = NULL;
6845 	unsigned long locked, lock_limit;
6846 	unsigned long vma_size;
6847 	unsigned long nr_pages;
6848 	long user_extra = 0, extra = 0;
6849 	int ret, flags = 0;
6850 
6851 	/*
6852 	 * Don't allow mmap() of inherited per-task counters. This would
6853 	 * create a performance issue due to all children writing to the
6854 	 * same rb.
6855 	 */
6856 	if (event->cpu == -1 && event->attr.inherit)
6857 		return -EINVAL;
6858 
6859 	if (!(vma->vm_flags & VM_SHARED))
6860 		return -EINVAL;
6861 
6862 	ret = security_perf_event_read(event);
6863 	if (ret)
6864 		return ret;
6865 
6866 	vma_size = vma->vm_end - vma->vm_start;
6867 	nr_pages = vma_size / PAGE_SIZE;
6868 
6869 	if (nr_pages > INT_MAX)
6870 		return -ENOMEM;
6871 
6872 	if (vma_size != PAGE_SIZE * nr_pages)
6873 		return -EINVAL;
6874 
6875 	user_extra = nr_pages;
6876 
6877 	mutex_lock(&event->mmap_mutex);
6878 	ret = -EINVAL;
6879 
6880 	if (vma->vm_pgoff == 0) {
6881 		nr_pages -= 1;
6882 
6883 		/*
6884 		 * If we have rb pages ensure they're a power-of-two number, so we
6885 		 * can do bitmasks instead of modulo.
6886 		 */
6887 		if (nr_pages != 0 && !is_power_of_2(nr_pages))
6888 			goto unlock;
6889 
6890 		WARN_ON_ONCE(event->ctx->parent_ctx);
6891 
6892 		if (event->rb) {
6893 			if (data_page_nr(event->rb) != nr_pages)
6894 				goto unlock;
6895 
6896 			if (atomic_inc_not_zero(&event->rb->mmap_count)) {
6897 				/*
6898 				 * Success -- managed to mmap() the same buffer
6899 				 * multiple times.
6900 				 */
6901 				ret = 0;
6902 				/* We need the rb to map pages. */
6903 				rb = event->rb;
6904 				goto unlock;
6905 			}
6906 
6907 			/*
6908 			 * Raced against perf_mmap_close()'s
6909 			 * atomic_dec_and_mutex_lock() remove the
6910 			 * event and continue as if !event->rb
6911 			 */
6912 			ring_buffer_attach(event, NULL);
6913 		}
6914 
6915 	} else {
6916 		/*
6917 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6918 		 * mapped, all subsequent mappings should have the same size
6919 		 * and offset. Must be above the normal perf buffer.
6920 		 */
6921 		u64 aux_offset, aux_size;
6922 
6923 		rb = event->rb;
6924 		if (!rb)
6925 			goto aux_unlock;
6926 
6927 		aux_mutex = &rb->aux_mutex;
6928 		mutex_lock(aux_mutex);
6929 
6930 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
6931 		aux_size = READ_ONCE(rb->user_page->aux_size);
6932 
6933 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6934 			goto aux_unlock;
6935 
6936 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6937 			goto aux_unlock;
6938 
6939 		/* already mapped with a different offset */
6940 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6941 			goto aux_unlock;
6942 
6943 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6944 			goto aux_unlock;
6945 
6946 		/* already mapped with a different size */
6947 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6948 			goto aux_unlock;
6949 
6950 		if (!is_power_of_2(nr_pages))
6951 			goto aux_unlock;
6952 
6953 		if (!atomic_inc_not_zero(&rb->mmap_count))
6954 			goto aux_unlock;
6955 
6956 		if (rb_has_aux(rb)) {
6957 			atomic_inc(&rb->aux_mmap_count);
6958 			ret = 0;
6959 			goto unlock;
6960 		}
6961 
6962 		atomic_set(&rb->aux_mmap_count, 1);
6963 	}
6964 
6965 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6966 
6967 	/*
6968 	 * Increase the limit linearly with more CPUs:
6969 	 */
6970 	user_lock_limit *= num_online_cpus();
6971 
6972 	user_locked = atomic_long_read(&user->locked_vm);
6973 
6974 	/*
6975 	 * sysctl_perf_event_mlock may have changed, so that
6976 	 *     user->locked_vm > user_lock_limit
6977 	 */
6978 	if (user_locked > user_lock_limit)
6979 		user_locked = user_lock_limit;
6980 	user_locked += user_extra;
6981 
6982 	if (user_locked > user_lock_limit) {
6983 		/*
6984 		 * charge locked_vm until it hits user_lock_limit;
6985 		 * charge the rest from pinned_vm
6986 		 */
6987 		extra = user_locked - user_lock_limit;
6988 		user_extra -= extra;
6989 	}
6990 
6991 	lock_limit = rlimit(RLIMIT_MEMLOCK);
6992 	lock_limit >>= PAGE_SHIFT;
6993 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6994 
6995 	if ((locked > lock_limit) && perf_is_paranoid() &&
6996 		!capable(CAP_IPC_LOCK)) {
6997 		ret = -EPERM;
6998 		goto unlock;
6999 	}
7000 
7001 	WARN_ON(!rb && event->rb);
7002 
7003 	if (vma->vm_flags & VM_WRITE)
7004 		flags |= RING_BUFFER_WRITABLE;
7005 
7006 	if (!rb) {
7007 		rb = rb_alloc(nr_pages,
7008 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
7009 			      event->cpu, flags);
7010 
7011 		if (!rb) {
7012 			ret = -ENOMEM;
7013 			goto unlock;
7014 		}
7015 
7016 		atomic_set(&rb->mmap_count, 1);
7017 		rb->mmap_user = get_current_user();
7018 		rb->mmap_locked = extra;
7019 
7020 		ring_buffer_attach(event, rb);
7021 
7022 		perf_event_update_time(event);
7023 		perf_event_init_userpage(event);
7024 		perf_event_update_userpage(event);
7025 	} else {
7026 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
7027 				   event->attr.aux_watermark, flags);
7028 		if (!ret)
7029 			rb->aux_mmap_locked = extra;
7030 	}
7031 
7032 	ret = 0;
7033 
7034 unlock:
7035 	if (!ret) {
7036 		atomic_long_add(user_extra, &user->locked_vm);
7037 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
7038 
7039 		atomic_inc(&event->mmap_count);
7040 	} else if (rb) {
7041 		atomic_dec(&rb->mmap_count);
7042 	}
7043 aux_unlock:
7044 	if (aux_mutex)
7045 		mutex_unlock(aux_mutex);
7046 	mutex_unlock(&event->mmap_mutex);
7047 
7048 	/*
7049 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
7050 	 * vma.
7051 	 */
7052 	vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP);
7053 	vma->vm_ops = &perf_mmap_vmops;
7054 
7055 	if (!ret)
7056 		ret = map_range(rb, vma);
7057 
7058 	if (!ret && event->pmu->event_mapped)
7059 		event->pmu->event_mapped(event, vma->vm_mm);
7060 
7061 	return ret;
7062 }
7063 
perf_fasync(int fd,struct file * filp,int on)7064 static int perf_fasync(int fd, struct file *filp, int on)
7065 {
7066 	struct inode *inode = file_inode(filp);
7067 	struct perf_event *event = filp->private_data;
7068 	int retval;
7069 
7070 	inode_lock(inode);
7071 	retval = fasync_helper(fd, filp, on, &event->fasync);
7072 	inode_unlock(inode);
7073 
7074 	if (retval < 0)
7075 		return retval;
7076 
7077 	return 0;
7078 }
7079 
7080 static const struct file_operations perf_fops = {
7081 	.release		= perf_release,
7082 	.read			= perf_read,
7083 	.poll			= perf_poll,
7084 	.unlocked_ioctl		= perf_ioctl,
7085 	.compat_ioctl		= perf_compat_ioctl,
7086 	.mmap			= perf_mmap,
7087 	.fasync			= perf_fasync,
7088 };
7089 
7090 /*
7091  * Perf event wakeup
7092  *
7093  * If there's data, ensure we set the poll() state and publish everything
7094  * to user-space before waking everybody up.
7095  */
7096 
perf_event_wakeup(struct perf_event * event)7097 void perf_event_wakeup(struct perf_event *event)
7098 {
7099 	ring_buffer_wakeup(event);
7100 
7101 	if (event->pending_kill) {
7102 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
7103 		event->pending_kill = 0;
7104 	}
7105 }
7106 
perf_sigtrap(struct perf_event * event)7107 static void perf_sigtrap(struct perf_event *event)
7108 {
7109 	/*
7110 	 * We'd expect this to only occur if the irq_work is delayed and either
7111 	 * ctx->task or current has changed in the meantime. This can be the
7112 	 * case on architectures that do not implement arch_irq_work_raise().
7113 	 */
7114 	if (WARN_ON_ONCE(event->ctx->task != current))
7115 		return;
7116 
7117 	/*
7118 	 * Both perf_pending_task() and perf_pending_irq() can race with the
7119 	 * task exiting.
7120 	 */
7121 	if (current->flags & PF_EXITING)
7122 		return;
7123 
7124 	send_sig_perf((void __user *)event->pending_addr,
7125 		      event->orig_type, event->attr.sig_data);
7126 }
7127 
7128 /*
7129  * Deliver the pending work in-event-context or follow the context.
7130  */
__perf_pending_disable(struct perf_event * event)7131 static void __perf_pending_disable(struct perf_event *event)
7132 {
7133 	int cpu = READ_ONCE(event->oncpu);
7134 
7135 	/*
7136 	 * If the event isn't running; we done. event_sched_out() will have
7137 	 * taken care of things.
7138 	 */
7139 	if (cpu < 0)
7140 		return;
7141 
7142 	/*
7143 	 * Yay, we hit home and are in the context of the event.
7144 	 */
7145 	if (cpu == smp_processor_id()) {
7146 		if (event->pending_disable) {
7147 			event->pending_disable = 0;
7148 			perf_event_disable_local(event);
7149 		}
7150 		return;
7151 	}
7152 
7153 	/*
7154 	 *  CPU-A			CPU-B
7155 	 *
7156 	 *  perf_event_disable_inatomic()
7157 	 *    @pending_disable = CPU-A;
7158 	 *    irq_work_queue();
7159 	 *
7160 	 *  sched-out
7161 	 *    @pending_disable = -1;
7162 	 *
7163 	 *				sched-in
7164 	 *				perf_event_disable_inatomic()
7165 	 *				  @pending_disable = CPU-B;
7166 	 *				  irq_work_queue(); // FAILS
7167 	 *
7168 	 *  irq_work_run()
7169 	 *    perf_pending_disable()
7170 	 *
7171 	 * But the event runs on CPU-B and wants disabling there.
7172 	 */
7173 	irq_work_queue_on(&event->pending_disable_irq, cpu);
7174 }
7175 
perf_pending_disable(struct irq_work * entry)7176 static void perf_pending_disable(struct irq_work *entry)
7177 {
7178 	struct perf_event *event = container_of(entry, struct perf_event, pending_disable_irq);
7179 	int rctx;
7180 
7181 	/*
7182 	 * If we 'fail' here, that's OK, it means recursion is already disabled
7183 	 * and we won't recurse 'further'.
7184 	 */
7185 	rctx = perf_swevent_get_recursion_context();
7186 	__perf_pending_disable(event);
7187 	if (rctx >= 0)
7188 		perf_swevent_put_recursion_context(rctx);
7189 }
7190 
perf_pending_irq(struct irq_work * entry)7191 static void perf_pending_irq(struct irq_work *entry)
7192 {
7193 	struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
7194 	int rctx;
7195 
7196 	/*
7197 	 * If we 'fail' here, that's OK, it means recursion is already disabled
7198 	 * and we won't recurse 'further'.
7199 	 */
7200 	rctx = perf_swevent_get_recursion_context();
7201 
7202 	/*
7203 	 * The wakeup isn't bound to the context of the event -- it can happen
7204 	 * irrespective of where the event is.
7205 	 */
7206 	if (event->pending_wakeup) {
7207 		event->pending_wakeup = 0;
7208 		perf_event_wakeup(event);
7209 	}
7210 
7211 	if (rctx >= 0)
7212 		perf_swevent_put_recursion_context(rctx);
7213 }
7214 
perf_pending_task(struct callback_head * head)7215 static void perf_pending_task(struct callback_head *head)
7216 {
7217 	struct perf_event *event = container_of(head, struct perf_event, pending_task);
7218 	int rctx;
7219 
7220 	/*
7221 	 * If we 'fail' here, that's OK, it means recursion is already disabled
7222 	 * and we won't recurse 'further'.
7223 	 */
7224 	rctx = perf_swevent_get_recursion_context();
7225 
7226 	if (event->pending_work) {
7227 		event->pending_work = 0;
7228 		perf_sigtrap(event);
7229 		local_dec(&event->ctx->nr_no_switch_fast);
7230 	}
7231 	put_event(event);
7232 
7233 	if (rctx >= 0)
7234 		perf_swevent_put_recursion_context(rctx);
7235 }
7236 
7237 #ifdef CONFIG_GUEST_PERF_EVENTS
7238 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
7239 
7240 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
7241 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
7242 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
7243 
perf_register_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)7244 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
7245 {
7246 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
7247 		return;
7248 
7249 	rcu_assign_pointer(perf_guest_cbs, cbs);
7250 	static_call_update(__perf_guest_state, cbs->state);
7251 	static_call_update(__perf_guest_get_ip, cbs->get_ip);
7252 
7253 	/* Implementing ->handle_intel_pt_intr is optional. */
7254 	if (cbs->handle_intel_pt_intr)
7255 		static_call_update(__perf_guest_handle_intel_pt_intr,
7256 				   cbs->handle_intel_pt_intr);
7257 }
7258 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
7259 
perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)7260 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
7261 {
7262 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
7263 		return;
7264 
7265 	rcu_assign_pointer(perf_guest_cbs, NULL);
7266 	static_call_update(__perf_guest_state, (void *)&__static_call_return0);
7267 	static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
7268 	static_call_update(__perf_guest_handle_intel_pt_intr,
7269 			   (void *)&__static_call_return0);
7270 	synchronize_rcu();
7271 }
7272 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
7273 #endif
7274 
should_sample_guest(struct perf_event * event)7275 static bool should_sample_guest(struct perf_event *event)
7276 {
7277 	return !event->attr.exclude_guest && perf_guest_state();
7278 }
7279 
perf_misc_flags(struct perf_event * event,struct pt_regs * regs)7280 unsigned long perf_misc_flags(struct perf_event *event,
7281 			      struct pt_regs *regs)
7282 {
7283 	if (should_sample_guest(event))
7284 		return perf_arch_guest_misc_flags(regs);
7285 
7286 	return perf_arch_misc_flags(regs);
7287 }
7288 
perf_instruction_pointer(struct perf_event * event,struct pt_regs * regs)7289 unsigned long perf_instruction_pointer(struct perf_event *event,
7290 				       struct pt_regs *regs)
7291 {
7292 	if (should_sample_guest(event))
7293 		return perf_guest_get_ip();
7294 
7295 	return perf_arch_instruction_pointer(regs);
7296 }
7297 
7298 static void
perf_output_sample_regs(struct perf_output_handle * handle,struct pt_regs * regs,u64 mask)7299 perf_output_sample_regs(struct perf_output_handle *handle,
7300 			struct pt_regs *regs, u64 mask)
7301 {
7302 	int bit;
7303 	DECLARE_BITMAP(_mask, 64);
7304 
7305 	bitmap_from_u64(_mask, mask);
7306 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
7307 		u64 val;
7308 
7309 		val = perf_reg_value(regs, bit);
7310 		perf_output_put(handle, val);
7311 	}
7312 }
7313 
perf_sample_regs_user(struct perf_regs * regs_user,struct pt_regs * regs)7314 static void perf_sample_regs_user(struct perf_regs *regs_user,
7315 				  struct pt_regs *regs)
7316 {
7317 	if (user_mode(regs)) {
7318 		regs_user->abi = perf_reg_abi(current);
7319 		regs_user->regs = regs;
7320 	} else if (!(current->flags & PF_KTHREAD)) {
7321 		perf_get_regs_user(regs_user, regs);
7322 	} else {
7323 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
7324 		regs_user->regs = NULL;
7325 	}
7326 }
7327 
perf_sample_regs_intr(struct perf_regs * regs_intr,struct pt_regs * regs)7328 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
7329 				  struct pt_regs *regs)
7330 {
7331 	regs_intr->regs = regs;
7332 	regs_intr->abi  = perf_reg_abi(current);
7333 }
7334 
7335 
7336 /*
7337  * Get remaining task size from user stack pointer.
7338  *
7339  * It'd be better to take stack vma map and limit this more
7340  * precisely, but there's no way to get it safely under interrupt,
7341  * so using TASK_SIZE as limit.
7342  */
perf_ustack_task_size(struct pt_regs * regs)7343 static u64 perf_ustack_task_size(struct pt_regs *regs)
7344 {
7345 	unsigned long addr = perf_user_stack_pointer(regs);
7346 
7347 	if (!addr || addr >= TASK_SIZE)
7348 		return 0;
7349 
7350 	return TASK_SIZE - addr;
7351 }
7352 
7353 static u16
perf_sample_ustack_size(u16 stack_size,u16 header_size,struct pt_regs * regs)7354 perf_sample_ustack_size(u16 stack_size, u16 header_size,
7355 			struct pt_regs *regs)
7356 {
7357 	u64 task_size;
7358 
7359 	/* No regs, no stack pointer, no dump. */
7360 	if (!regs)
7361 		return 0;
7362 
7363 	/*
7364 	 * Check if we fit in with the requested stack size into the:
7365 	 * - TASK_SIZE
7366 	 *   If we don't, we limit the size to the TASK_SIZE.
7367 	 *
7368 	 * - remaining sample size
7369 	 *   If we don't, we customize the stack size to
7370 	 *   fit in to the remaining sample size.
7371 	 */
7372 
7373 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
7374 	stack_size = min(stack_size, (u16) task_size);
7375 
7376 	/* Current header size plus static size and dynamic size. */
7377 	header_size += 2 * sizeof(u64);
7378 
7379 	/* Do we fit in with the current stack dump size? */
7380 	if ((u16) (header_size + stack_size) < header_size) {
7381 		/*
7382 		 * If we overflow the maximum size for the sample,
7383 		 * we customize the stack dump size to fit in.
7384 		 */
7385 		stack_size = USHRT_MAX - header_size - sizeof(u64);
7386 		stack_size = round_up(stack_size, sizeof(u64));
7387 	}
7388 
7389 	return stack_size;
7390 }
7391 
7392 static void
perf_output_sample_ustack(struct perf_output_handle * handle,u64 dump_size,struct pt_regs * regs)7393 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
7394 			  struct pt_regs *regs)
7395 {
7396 	/* Case of a kernel thread, nothing to dump */
7397 	if (!regs) {
7398 		u64 size = 0;
7399 		perf_output_put(handle, size);
7400 	} else {
7401 		unsigned long sp;
7402 		unsigned int rem;
7403 		u64 dyn_size;
7404 
7405 		/*
7406 		 * We dump:
7407 		 * static size
7408 		 *   - the size requested by user or the best one we can fit
7409 		 *     in to the sample max size
7410 		 * data
7411 		 *   - user stack dump data
7412 		 * dynamic size
7413 		 *   - the actual dumped size
7414 		 */
7415 
7416 		/* Static size. */
7417 		perf_output_put(handle, dump_size);
7418 
7419 		/* Data. */
7420 		sp = perf_user_stack_pointer(regs);
7421 		rem = __output_copy_user(handle, (void *) sp, dump_size);
7422 		dyn_size = dump_size - rem;
7423 
7424 		perf_output_skip(handle, rem);
7425 
7426 		/* Dynamic size. */
7427 		perf_output_put(handle, dyn_size);
7428 	}
7429 }
7430 
perf_prepare_sample_aux(struct perf_event * event,struct perf_sample_data * data,size_t size)7431 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
7432 					  struct perf_sample_data *data,
7433 					  size_t size)
7434 {
7435 	struct perf_event *sampler = event->aux_event;
7436 	struct perf_buffer *rb;
7437 
7438 	data->aux_size = 0;
7439 
7440 	if (!sampler)
7441 		goto out;
7442 
7443 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
7444 		goto out;
7445 
7446 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
7447 		goto out;
7448 
7449 	rb = ring_buffer_get(sampler);
7450 	if (!rb)
7451 		goto out;
7452 
7453 	/*
7454 	 * If this is an NMI hit inside sampling code, don't take
7455 	 * the sample. See also perf_aux_sample_output().
7456 	 */
7457 	if (READ_ONCE(rb->aux_in_sampling)) {
7458 		data->aux_size = 0;
7459 	} else {
7460 		size = min_t(size_t, size, perf_aux_size(rb));
7461 		data->aux_size = ALIGN(size, sizeof(u64));
7462 	}
7463 	ring_buffer_put(rb);
7464 
7465 out:
7466 	return data->aux_size;
7467 }
7468 
perf_pmu_snapshot_aux(struct perf_buffer * rb,struct perf_event * event,struct perf_output_handle * handle,unsigned long size)7469 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
7470                                  struct perf_event *event,
7471                                  struct perf_output_handle *handle,
7472                                  unsigned long size)
7473 {
7474 	unsigned long flags;
7475 	long ret;
7476 
7477 	/*
7478 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
7479 	 * paths. If we start calling them in NMI context, they may race with
7480 	 * the IRQ ones, that is, for example, re-starting an event that's just
7481 	 * been stopped, which is why we're using a separate callback that
7482 	 * doesn't change the event state.
7483 	 *
7484 	 * IRQs need to be disabled to prevent IPIs from racing with us.
7485 	 */
7486 	local_irq_save(flags);
7487 	/*
7488 	 * Guard against NMI hits inside the critical section;
7489 	 * see also perf_prepare_sample_aux().
7490 	 */
7491 	WRITE_ONCE(rb->aux_in_sampling, 1);
7492 	barrier();
7493 
7494 	ret = event->pmu->snapshot_aux(event, handle, size);
7495 
7496 	barrier();
7497 	WRITE_ONCE(rb->aux_in_sampling, 0);
7498 	local_irq_restore(flags);
7499 
7500 	return ret;
7501 }
7502 
perf_aux_sample_output(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * data)7503 static void perf_aux_sample_output(struct perf_event *event,
7504 				   struct perf_output_handle *handle,
7505 				   struct perf_sample_data *data)
7506 {
7507 	struct perf_event *sampler = event->aux_event;
7508 	struct perf_buffer *rb;
7509 	unsigned long pad;
7510 	long size;
7511 
7512 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
7513 		return;
7514 
7515 	rb = ring_buffer_get(sampler);
7516 	if (!rb)
7517 		return;
7518 
7519 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
7520 
7521 	/*
7522 	 * An error here means that perf_output_copy() failed (returned a
7523 	 * non-zero surplus that it didn't copy), which in its current
7524 	 * enlightened implementation is not possible. If that changes, we'd
7525 	 * like to know.
7526 	 */
7527 	if (WARN_ON_ONCE(size < 0))
7528 		goto out_put;
7529 
7530 	/*
7531 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
7532 	 * perf_prepare_sample_aux(), so should not be more than that.
7533 	 */
7534 	pad = data->aux_size - size;
7535 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
7536 		pad = 8;
7537 
7538 	if (pad) {
7539 		u64 zero = 0;
7540 		perf_output_copy(handle, &zero, pad);
7541 	}
7542 
7543 out_put:
7544 	ring_buffer_put(rb);
7545 }
7546 
7547 /*
7548  * A set of common sample data types saved even for non-sample records
7549  * when event->attr.sample_id_all is set.
7550  */
7551 #define PERF_SAMPLE_ID_ALL  (PERF_SAMPLE_TID | PERF_SAMPLE_TIME |	\
7552 			     PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID |	\
7553 			     PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER)
7554 
__perf_event_header__init_id(struct perf_sample_data * data,struct perf_event * event,u64 sample_type)7555 static void __perf_event_header__init_id(struct perf_sample_data *data,
7556 					 struct perf_event *event,
7557 					 u64 sample_type)
7558 {
7559 	data->type = event->attr.sample_type;
7560 	data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL;
7561 
7562 	if (sample_type & PERF_SAMPLE_TID) {
7563 		/* namespace issues */
7564 		data->tid_entry.pid = perf_event_pid(event, current);
7565 		data->tid_entry.tid = perf_event_tid(event, current);
7566 	}
7567 
7568 	if (sample_type & PERF_SAMPLE_TIME)
7569 		data->time = perf_event_clock(event);
7570 
7571 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
7572 		data->id = primary_event_id(event);
7573 
7574 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7575 		data->stream_id = event->id;
7576 
7577 	if (sample_type & PERF_SAMPLE_CPU) {
7578 		data->cpu_entry.cpu	 = raw_smp_processor_id();
7579 		data->cpu_entry.reserved = 0;
7580 	}
7581 }
7582 
perf_event_header__init_id(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)7583 void perf_event_header__init_id(struct perf_event_header *header,
7584 				struct perf_sample_data *data,
7585 				struct perf_event *event)
7586 {
7587 	if (event->attr.sample_id_all) {
7588 		header->size += event->id_header_size;
7589 		__perf_event_header__init_id(data, event, event->attr.sample_type);
7590 	}
7591 }
7592 
__perf_event__output_id_sample(struct perf_output_handle * handle,struct perf_sample_data * data)7593 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
7594 					   struct perf_sample_data *data)
7595 {
7596 	u64 sample_type = data->type;
7597 
7598 	if (sample_type & PERF_SAMPLE_TID)
7599 		perf_output_put(handle, data->tid_entry);
7600 
7601 	if (sample_type & PERF_SAMPLE_TIME)
7602 		perf_output_put(handle, data->time);
7603 
7604 	if (sample_type & PERF_SAMPLE_ID)
7605 		perf_output_put(handle, data->id);
7606 
7607 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7608 		perf_output_put(handle, data->stream_id);
7609 
7610 	if (sample_type & PERF_SAMPLE_CPU)
7611 		perf_output_put(handle, data->cpu_entry);
7612 
7613 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7614 		perf_output_put(handle, data->id);
7615 }
7616 
perf_event__output_id_sample(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * sample)7617 void perf_event__output_id_sample(struct perf_event *event,
7618 				  struct perf_output_handle *handle,
7619 				  struct perf_sample_data *sample)
7620 {
7621 	if (event->attr.sample_id_all)
7622 		__perf_event__output_id_sample(handle, sample);
7623 }
7624 
perf_output_read_one(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)7625 static void perf_output_read_one(struct perf_output_handle *handle,
7626 				 struct perf_event *event,
7627 				 u64 enabled, u64 running)
7628 {
7629 	u64 read_format = event->attr.read_format;
7630 	u64 values[5];
7631 	int n = 0;
7632 
7633 	values[n++] = perf_event_count(event, has_inherit_and_sample_read(&event->attr));
7634 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
7635 		values[n++] = enabled +
7636 			atomic64_read(&event->child_total_time_enabled);
7637 	}
7638 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
7639 		values[n++] = running +
7640 			atomic64_read(&event->child_total_time_running);
7641 	}
7642 	if (read_format & PERF_FORMAT_ID)
7643 		values[n++] = primary_event_id(event);
7644 	if (read_format & PERF_FORMAT_LOST)
7645 		values[n++] = atomic64_read(&event->lost_samples);
7646 
7647 	__output_copy(handle, values, n * sizeof(u64));
7648 }
7649 
perf_output_read_group(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)7650 static void perf_output_read_group(struct perf_output_handle *handle,
7651 				   struct perf_event *event,
7652 				   u64 enabled, u64 running)
7653 {
7654 	struct perf_event *leader = event->group_leader, *sub;
7655 	u64 read_format = event->attr.read_format;
7656 	unsigned long flags;
7657 	u64 values[6];
7658 	int n = 0;
7659 	bool self = has_inherit_and_sample_read(&event->attr);
7660 
7661 	/*
7662 	 * Disabling interrupts avoids all counter scheduling
7663 	 * (context switches, timer based rotation and IPIs).
7664 	 */
7665 	local_irq_save(flags);
7666 
7667 	values[n++] = 1 + leader->nr_siblings;
7668 
7669 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
7670 		values[n++] = enabled;
7671 
7672 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
7673 		values[n++] = running;
7674 
7675 	if ((leader != event) && !handle->skip_read)
7676 		perf_pmu_read(leader);
7677 
7678 	values[n++] = perf_event_count(leader, self);
7679 	if (read_format & PERF_FORMAT_ID)
7680 		values[n++] = primary_event_id(leader);
7681 	if (read_format & PERF_FORMAT_LOST)
7682 		values[n++] = atomic64_read(&leader->lost_samples);
7683 
7684 	__output_copy(handle, values, n * sizeof(u64));
7685 
7686 	for_each_sibling_event(sub, leader) {
7687 		n = 0;
7688 
7689 		if ((sub != event) && !handle->skip_read)
7690 			perf_pmu_read(sub);
7691 
7692 		values[n++] = perf_event_count(sub, self);
7693 		if (read_format & PERF_FORMAT_ID)
7694 			values[n++] = primary_event_id(sub);
7695 		if (read_format & PERF_FORMAT_LOST)
7696 			values[n++] = atomic64_read(&sub->lost_samples);
7697 
7698 		__output_copy(handle, values, n * sizeof(u64));
7699 	}
7700 
7701 	local_irq_restore(flags);
7702 }
7703 
7704 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7705 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
7706 
7707 /*
7708  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7709  *
7710  * The problem is that its both hard and excessively expensive to iterate the
7711  * child list, not to mention that its impossible to IPI the children running
7712  * on another CPU, from interrupt/NMI context.
7713  *
7714  * Instead the combination of PERF_SAMPLE_READ and inherit will track per-thread
7715  * counts rather than attempting to accumulate some value across all children on
7716  * all cores.
7717  */
perf_output_read(struct perf_output_handle * handle,struct perf_event * event)7718 static void perf_output_read(struct perf_output_handle *handle,
7719 			     struct perf_event *event)
7720 {
7721 	u64 enabled = 0, running = 0, now;
7722 	u64 read_format = event->attr.read_format;
7723 
7724 	/*
7725 	 * compute total_time_enabled, total_time_running
7726 	 * based on snapshot values taken when the event
7727 	 * was last scheduled in.
7728 	 *
7729 	 * we cannot simply called update_context_time()
7730 	 * because of locking issue as we are called in
7731 	 * NMI context
7732 	 */
7733 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
7734 		calc_timer_values(event, &now, &enabled, &running);
7735 
7736 	if (event->attr.read_format & PERF_FORMAT_GROUP)
7737 		perf_output_read_group(handle, event, enabled, running);
7738 	else
7739 		perf_output_read_one(handle, event, enabled, running);
7740 }
7741 
perf_output_sample(struct perf_output_handle * handle,struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)7742 void perf_output_sample(struct perf_output_handle *handle,
7743 			struct perf_event_header *header,
7744 			struct perf_sample_data *data,
7745 			struct perf_event *event)
7746 {
7747 	u64 sample_type = data->type;
7748 
7749 	if (data->sample_flags & PERF_SAMPLE_READ)
7750 		handle->skip_read = 1;
7751 
7752 	perf_output_put(handle, *header);
7753 
7754 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7755 		perf_output_put(handle, data->id);
7756 
7757 	if (sample_type & PERF_SAMPLE_IP)
7758 		perf_output_put(handle, data->ip);
7759 
7760 	if (sample_type & PERF_SAMPLE_TID)
7761 		perf_output_put(handle, data->tid_entry);
7762 
7763 	if (sample_type & PERF_SAMPLE_TIME)
7764 		perf_output_put(handle, data->time);
7765 
7766 	if (sample_type & PERF_SAMPLE_ADDR)
7767 		perf_output_put(handle, data->addr);
7768 
7769 	if (sample_type & PERF_SAMPLE_ID)
7770 		perf_output_put(handle, data->id);
7771 
7772 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7773 		perf_output_put(handle, data->stream_id);
7774 
7775 	if (sample_type & PERF_SAMPLE_CPU)
7776 		perf_output_put(handle, data->cpu_entry);
7777 
7778 	if (sample_type & PERF_SAMPLE_PERIOD)
7779 		perf_output_put(handle, data->period);
7780 
7781 	if (sample_type & PERF_SAMPLE_READ)
7782 		perf_output_read(handle, event);
7783 
7784 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7785 		int size = 1;
7786 
7787 		size += data->callchain->nr;
7788 		size *= sizeof(u64);
7789 		__output_copy(handle, data->callchain, size);
7790 	}
7791 
7792 	if (sample_type & PERF_SAMPLE_RAW) {
7793 		struct perf_raw_record *raw = data->raw;
7794 
7795 		if (raw) {
7796 			struct perf_raw_frag *frag = &raw->frag;
7797 
7798 			perf_output_put(handle, raw->size);
7799 			do {
7800 				if (frag->copy) {
7801 					__output_custom(handle, frag->copy,
7802 							frag->data, frag->size);
7803 				} else {
7804 					__output_copy(handle, frag->data,
7805 						      frag->size);
7806 				}
7807 				if (perf_raw_frag_last(frag))
7808 					break;
7809 				frag = frag->next;
7810 			} while (1);
7811 			if (frag->pad)
7812 				__output_skip(handle, NULL, frag->pad);
7813 		} else {
7814 			struct {
7815 				u32	size;
7816 				u32	data;
7817 			} raw = {
7818 				.size = sizeof(u32),
7819 				.data = 0,
7820 			};
7821 			perf_output_put(handle, raw);
7822 		}
7823 	}
7824 
7825 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7826 		if (data->br_stack) {
7827 			size_t size;
7828 
7829 			size = data->br_stack->nr
7830 			     * sizeof(struct perf_branch_entry);
7831 
7832 			perf_output_put(handle, data->br_stack->nr);
7833 			if (branch_sample_hw_index(event))
7834 				perf_output_put(handle, data->br_stack->hw_idx);
7835 			perf_output_copy(handle, data->br_stack->entries, size);
7836 			/*
7837 			 * Add the extension space which is appended
7838 			 * right after the struct perf_branch_stack.
7839 			 */
7840 			if (data->br_stack_cntr) {
7841 				size = data->br_stack->nr * sizeof(u64);
7842 				perf_output_copy(handle, data->br_stack_cntr, size);
7843 			}
7844 		} else {
7845 			/*
7846 			 * we always store at least the value of nr
7847 			 */
7848 			u64 nr = 0;
7849 			perf_output_put(handle, nr);
7850 		}
7851 	}
7852 
7853 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7854 		u64 abi = data->regs_user.abi;
7855 
7856 		/*
7857 		 * If there are no regs to dump, notice it through
7858 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7859 		 */
7860 		perf_output_put(handle, abi);
7861 
7862 		if (abi) {
7863 			u64 mask = event->attr.sample_regs_user;
7864 			perf_output_sample_regs(handle,
7865 						data->regs_user.regs,
7866 						mask);
7867 		}
7868 	}
7869 
7870 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7871 		perf_output_sample_ustack(handle,
7872 					  data->stack_user_size,
7873 					  data->regs_user.regs);
7874 	}
7875 
7876 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7877 		perf_output_put(handle, data->weight.full);
7878 
7879 	if (sample_type & PERF_SAMPLE_DATA_SRC)
7880 		perf_output_put(handle, data->data_src.val);
7881 
7882 	if (sample_type & PERF_SAMPLE_TRANSACTION)
7883 		perf_output_put(handle, data->txn);
7884 
7885 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7886 		u64 abi = data->regs_intr.abi;
7887 		/*
7888 		 * If there are no regs to dump, notice it through
7889 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7890 		 */
7891 		perf_output_put(handle, abi);
7892 
7893 		if (abi) {
7894 			u64 mask = event->attr.sample_regs_intr;
7895 
7896 			perf_output_sample_regs(handle,
7897 						data->regs_intr.regs,
7898 						mask);
7899 		}
7900 	}
7901 
7902 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7903 		perf_output_put(handle, data->phys_addr);
7904 
7905 	if (sample_type & PERF_SAMPLE_CGROUP)
7906 		perf_output_put(handle, data->cgroup);
7907 
7908 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7909 		perf_output_put(handle, data->data_page_size);
7910 
7911 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7912 		perf_output_put(handle, data->code_page_size);
7913 
7914 	if (sample_type & PERF_SAMPLE_AUX) {
7915 		perf_output_put(handle, data->aux_size);
7916 
7917 		if (data->aux_size)
7918 			perf_aux_sample_output(event, handle, data);
7919 	}
7920 
7921 	if (!event->attr.watermark) {
7922 		int wakeup_events = event->attr.wakeup_events;
7923 
7924 		if (wakeup_events) {
7925 			struct perf_buffer *rb = handle->rb;
7926 			int events = local_inc_return(&rb->events);
7927 
7928 			if (events >= wakeup_events) {
7929 				local_sub(wakeup_events, &rb->events);
7930 				local_inc(&rb->wakeup);
7931 			}
7932 		}
7933 	}
7934 }
7935 
perf_virt_to_phys(u64 virt)7936 static u64 perf_virt_to_phys(u64 virt)
7937 {
7938 	u64 phys_addr = 0;
7939 
7940 	if (!virt)
7941 		return 0;
7942 
7943 	if (virt >= TASK_SIZE) {
7944 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
7945 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
7946 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
7947 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7948 	} else {
7949 		/*
7950 		 * Walking the pages tables for user address.
7951 		 * Interrupts are disabled, so it prevents any tear down
7952 		 * of the page tables.
7953 		 * Try IRQ-safe get_user_page_fast_only first.
7954 		 * If failed, leave phys_addr as 0.
7955 		 */
7956 		if (current->mm != NULL) {
7957 			struct page *p;
7958 
7959 			pagefault_disable();
7960 			if (get_user_page_fast_only(virt, 0, &p)) {
7961 				phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7962 				put_page(p);
7963 			}
7964 			pagefault_enable();
7965 		}
7966 	}
7967 
7968 	return phys_addr;
7969 }
7970 
7971 /*
7972  * Return the pagetable size of a given virtual address.
7973  */
perf_get_pgtable_size(struct mm_struct * mm,unsigned long addr)7974 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7975 {
7976 	u64 size = 0;
7977 
7978 #ifdef CONFIG_HAVE_GUP_FAST
7979 	pgd_t *pgdp, pgd;
7980 	p4d_t *p4dp, p4d;
7981 	pud_t *pudp, pud;
7982 	pmd_t *pmdp, pmd;
7983 	pte_t *ptep, pte;
7984 
7985 	pgdp = pgd_offset(mm, addr);
7986 	pgd = READ_ONCE(*pgdp);
7987 	if (pgd_none(pgd))
7988 		return 0;
7989 
7990 	if (pgd_leaf(pgd))
7991 		return pgd_leaf_size(pgd);
7992 
7993 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7994 	p4d = READ_ONCE(*p4dp);
7995 	if (!p4d_present(p4d))
7996 		return 0;
7997 
7998 	if (p4d_leaf(p4d))
7999 		return p4d_leaf_size(p4d);
8000 
8001 	pudp = pud_offset_lockless(p4dp, p4d, addr);
8002 	pud = READ_ONCE(*pudp);
8003 	if (!pud_present(pud))
8004 		return 0;
8005 
8006 	if (pud_leaf(pud))
8007 		return pud_leaf_size(pud);
8008 
8009 	pmdp = pmd_offset_lockless(pudp, pud, addr);
8010 again:
8011 	pmd = pmdp_get_lockless(pmdp);
8012 	if (!pmd_present(pmd))
8013 		return 0;
8014 
8015 	if (pmd_leaf(pmd))
8016 		return pmd_leaf_size(pmd);
8017 
8018 	ptep = pte_offset_map(&pmd, addr);
8019 	if (!ptep)
8020 		goto again;
8021 
8022 	pte = ptep_get_lockless(ptep);
8023 	if (pte_present(pte))
8024 		size = __pte_leaf_size(pmd, pte);
8025 	pte_unmap(ptep);
8026 #endif /* CONFIG_HAVE_GUP_FAST */
8027 
8028 	return size;
8029 }
8030 
perf_get_page_size(unsigned long addr)8031 static u64 perf_get_page_size(unsigned long addr)
8032 {
8033 	struct mm_struct *mm;
8034 	unsigned long flags;
8035 	u64 size;
8036 
8037 	if (!addr)
8038 		return 0;
8039 
8040 	/*
8041 	 * Software page-table walkers must disable IRQs,
8042 	 * which prevents any tear down of the page tables.
8043 	 */
8044 	local_irq_save(flags);
8045 
8046 	mm = current->mm;
8047 	if (!mm) {
8048 		/*
8049 		 * For kernel threads and the like, use init_mm so that
8050 		 * we can find kernel memory.
8051 		 */
8052 		mm = &init_mm;
8053 	}
8054 
8055 	size = perf_get_pgtable_size(mm, addr);
8056 
8057 	local_irq_restore(flags);
8058 
8059 	return size;
8060 }
8061 
8062 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
8063 
8064 struct perf_callchain_entry *
perf_callchain(struct perf_event * event,struct pt_regs * regs)8065 perf_callchain(struct perf_event *event, struct pt_regs *regs)
8066 {
8067 	bool kernel = !event->attr.exclude_callchain_kernel;
8068 	bool user   = !event->attr.exclude_callchain_user;
8069 	/* Disallow cross-task user callchains. */
8070 	bool crosstask = event->ctx->task && event->ctx->task != current;
8071 	const u32 max_stack = event->attr.sample_max_stack;
8072 	struct perf_callchain_entry *callchain;
8073 
8074 	if (!kernel && !user)
8075 		return &__empty_callchain;
8076 
8077 	callchain = get_perf_callchain(regs, 0, kernel, user,
8078 				       max_stack, crosstask, true);
8079 	return callchain ?: &__empty_callchain;
8080 }
8081 
__cond_set(u64 flags,u64 s,u64 d)8082 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d)
8083 {
8084 	return d * !!(flags & s);
8085 }
8086 
perf_prepare_sample(struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)8087 void perf_prepare_sample(struct perf_sample_data *data,
8088 			 struct perf_event *event,
8089 			 struct pt_regs *regs)
8090 {
8091 	u64 sample_type = event->attr.sample_type;
8092 	u64 filtered_sample_type;
8093 
8094 	/*
8095 	 * Add the sample flags that are dependent to others.  And clear the
8096 	 * sample flags that have already been done by the PMU driver.
8097 	 */
8098 	filtered_sample_type = sample_type;
8099 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE,
8100 					   PERF_SAMPLE_IP);
8101 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE |
8102 					   PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR);
8103 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER,
8104 					   PERF_SAMPLE_REGS_USER);
8105 	filtered_sample_type &= ~data->sample_flags;
8106 
8107 	if (filtered_sample_type == 0) {
8108 		/* Make sure it has the correct data->type for output */
8109 		data->type = event->attr.sample_type;
8110 		return;
8111 	}
8112 
8113 	__perf_event_header__init_id(data, event, filtered_sample_type);
8114 
8115 	if (filtered_sample_type & PERF_SAMPLE_IP) {
8116 		data->ip = perf_instruction_pointer(event, regs);
8117 		data->sample_flags |= PERF_SAMPLE_IP;
8118 	}
8119 
8120 	if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
8121 		perf_sample_save_callchain(data, event, regs);
8122 
8123 	if (filtered_sample_type & PERF_SAMPLE_RAW) {
8124 		data->raw = NULL;
8125 		data->dyn_size += sizeof(u64);
8126 		data->sample_flags |= PERF_SAMPLE_RAW;
8127 	}
8128 
8129 	if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) {
8130 		data->br_stack = NULL;
8131 		data->dyn_size += sizeof(u64);
8132 		data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
8133 	}
8134 
8135 	if (filtered_sample_type & PERF_SAMPLE_REGS_USER)
8136 		perf_sample_regs_user(&data->regs_user, regs);
8137 
8138 	/*
8139 	 * It cannot use the filtered_sample_type here as REGS_USER can be set
8140 	 * by STACK_USER (using __cond_set() above) and we don't want to update
8141 	 * the dyn_size if it's not requested by users.
8142 	 */
8143 	if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) {
8144 		/* regs dump ABI info */
8145 		int size = sizeof(u64);
8146 
8147 		if (data->regs_user.regs) {
8148 			u64 mask = event->attr.sample_regs_user;
8149 			size += hweight64(mask) * sizeof(u64);
8150 		}
8151 
8152 		data->dyn_size += size;
8153 		data->sample_flags |= PERF_SAMPLE_REGS_USER;
8154 	}
8155 
8156 	if (filtered_sample_type & PERF_SAMPLE_STACK_USER) {
8157 		/*
8158 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
8159 		 * processed as the last one or have additional check added
8160 		 * in case new sample type is added, because we could eat
8161 		 * up the rest of the sample size.
8162 		 */
8163 		u16 stack_size = event->attr.sample_stack_user;
8164 		u16 header_size = perf_sample_data_size(data, event);
8165 		u16 size = sizeof(u64);
8166 
8167 		stack_size = perf_sample_ustack_size(stack_size, header_size,
8168 						     data->regs_user.regs);
8169 
8170 		/*
8171 		 * If there is something to dump, add space for the dump
8172 		 * itself and for the field that tells the dynamic size,
8173 		 * which is how many have been actually dumped.
8174 		 */
8175 		if (stack_size)
8176 			size += sizeof(u64) + stack_size;
8177 
8178 		data->stack_user_size = stack_size;
8179 		data->dyn_size += size;
8180 		data->sample_flags |= PERF_SAMPLE_STACK_USER;
8181 	}
8182 
8183 	if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
8184 		data->weight.full = 0;
8185 		data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
8186 	}
8187 
8188 	if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) {
8189 		data->data_src.val = PERF_MEM_NA;
8190 		data->sample_flags |= PERF_SAMPLE_DATA_SRC;
8191 	}
8192 
8193 	if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) {
8194 		data->txn = 0;
8195 		data->sample_flags |= PERF_SAMPLE_TRANSACTION;
8196 	}
8197 
8198 	if (filtered_sample_type & PERF_SAMPLE_ADDR) {
8199 		data->addr = 0;
8200 		data->sample_flags |= PERF_SAMPLE_ADDR;
8201 	}
8202 
8203 	if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) {
8204 		/* regs dump ABI info */
8205 		int size = sizeof(u64);
8206 
8207 		perf_sample_regs_intr(&data->regs_intr, regs);
8208 
8209 		if (data->regs_intr.regs) {
8210 			u64 mask = event->attr.sample_regs_intr;
8211 
8212 			size += hweight64(mask) * sizeof(u64);
8213 		}
8214 
8215 		data->dyn_size += size;
8216 		data->sample_flags |= PERF_SAMPLE_REGS_INTR;
8217 	}
8218 
8219 	if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) {
8220 		data->phys_addr = perf_virt_to_phys(data->addr);
8221 		data->sample_flags |= PERF_SAMPLE_PHYS_ADDR;
8222 	}
8223 
8224 #ifdef CONFIG_CGROUP_PERF
8225 	if (filtered_sample_type & PERF_SAMPLE_CGROUP) {
8226 		struct cgroup *cgrp;
8227 
8228 		/* protected by RCU */
8229 		cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
8230 		data->cgroup = cgroup_id(cgrp);
8231 		data->sample_flags |= PERF_SAMPLE_CGROUP;
8232 	}
8233 #endif
8234 
8235 	/*
8236 	 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
8237 	 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
8238 	 * but the value will not dump to the userspace.
8239 	 */
8240 	if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) {
8241 		data->data_page_size = perf_get_page_size(data->addr);
8242 		data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE;
8243 	}
8244 
8245 	if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) {
8246 		data->code_page_size = perf_get_page_size(data->ip);
8247 		data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE;
8248 	}
8249 
8250 	if (filtered_sample_type & PERF_SAMPLE_AUX) {
8251 		u64 size;
8252 		u16 header_size = perf_sample_data_size(data, event);
8253 
8254 		header_size += sizeof(u64); /* size */
8255 
8256 		/*
8257 		 * Given the 16bit nature of header::size, an AUX sample can
8258 		 * easily overflow it, what with all the preceding sample bits.
8259 		 * Make sure this doesn't happen by using up to U16_MAX bytes
8260 		 * per sample in total (rounded down to 8 byte boundary).
8261 		 */
8262 		size = min_t(size_t, U16_MAX - header_size,
8263 			     event->attr.aux_sample_size);
8264 		size = rounddown(size, 8);
8265 		size = perf_prepare_sample_aux(event, data, size);
8266 
8267 		WARN_ON_ONCE(size + header_size > U16_MAX);
8268 		data->dyn_size += size + sizeof(u64); /* size above */
8269 		data->sample_flags |= PERF_SAMPLE_AUX;
8270 	}
8271 }
8272 
perf_prepare_header(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)8273 void perf_prepare_header(struct perf_event_header *header,
8274 			 struct perf_sample_data *data,
8275 			 struct perf_event *event,
8276 			 struct pt_regs *regs)
8277 {
8278 	header->type = PERF_RECORD_SAMPLE;
8279 	header->size = perf_sample_data_size(data, event);
8280 	header->misc = perf_misc_flags(event, regs);
8281 
8282 	/*
8283 	 * If you're adding more sample types here, you likely need to do
8284 	 * something about the overflowing header::size, like repurpose the
8285 	 * lowest 3 bits of size, which should be always zero at the moment.
8286 	 * This raises a more important question, do we really need 512k sized
8287 	 * samples and why, so good argumentation is in order for whatever you
8288 	 * do here next.
8289 	 */
8290 	WARN_ON_ONCE(header->size & 7);
8291 }
8292 
__perf_event_aux_pause(struct perf_event * event,bool pause)8293 static void __perf_event_aux_pause(struct perf_event *event, bool pause)
8294 {
8295 	if (pause) {
8296 		if (!event->hw.aux_paused) {
8297 			event->hw.aux_paused = 1;
8298 			event->pmu->stop(event, PERF_EF_PAUSE);
8299 		}
8300 	} else {
8301 		if (event->hw.aux_paused) {
8302 			event->hw.aux_paused = 0;
8303 			event->pmu->start(event, PERF_EF_RESUME);
8304 		}
8305 	}
8306 }
8307 
perf_event_aux_pause(struct perf_event * event,bool pause)8308 static void perf_event_aux_pause(struct perf_event *event, bool pause)
8309 {
8310 	struct perf_buffer *rb;
8311 
8312 	if (WARN_ON_ONCE(!event))
8313 		return;
8314 
8315 	rb = ring_buffer_get(event);
8316 	if (!rb)
8317 		return;
8318 
8319 	scoped_guard (irqsave) {
8320 		/*
8321 		 * Guard against self-recursion here. Another event could trip
8322 		 * this same from NMI context.
8323 		 */
8324 		if (READ_ONCE(rb->aux_in_pause_resume))
8325 			break;
8326 
8327 		WRITE_ONCE(rb->aux_in_pause_resume, 1);
8328 		barrier();
8329 		__perf_event_aux_pause(event, pause);
8330 		barrier();
8331 		WRITE_ONCE(rb->aux_in_pause_resume, 0);
8332 	}
8333 	ring_buffer_put(rb);
8334 }
8335 
8336 static __always_inline int
__perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs,int (* output_begin)(struct perf_output_handle *,struct perf_sample_data *,struct perf_event *,unsigned int))8337 __perf_event_output(struct perf_event *event,
8338 		    struct perf_sample_data *data,
8339 		    struct pt_regs *regs,
8340 		    int (*output_begin)(struct perf_output_handle *,
8341 					struct perf_sample_data *,
8342 					struct perf_event *,
8343 					unsigned int))
8344 {
8345 	struct perf_output_handle handle;
8346 	struct perf_event_header header;
8347 	int err;
8348 
8349 	/* protect the callchain buffers */
8350 	rcu_read_lock();
8351 
8352 	perf_prepare_sample(data, event, regs);
8353 	perf_prepare_header(&header, data, event, regs);
8354 
8355 	err = output_begin(&handle, data, event, header.size);
8356 	if (err)
8357 		goto exit;
8358 
8359 	perf_output_sample(&handle, &header, data, event);
8360 
8361 	perf_output_end(&handle);
8362 
8363 exit:
8364 	rcu_read_unlock();
8365 	return err;
8366 }
8367 
8368 void
perf_event_output_forward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)8369 perf_event_output_forward(struct perf_event *event,
8370 			 struct perf_sample_data *data,
8371 			 struct pt_regs *regs)
8372 {
8373 	__perf_event_output(event, data, regs, perf_output_begin_forward);
8374 }
8375 
8376 void
perf_event_output_backward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)8377 perf_event_output_backward(struct perf_event *event,
8378 			   struct perf_sample_data *data,
8379 			   struct pt_regs *regs)
8380 {
8381 	__perf_event_output(event, data, regs, perf_output_begin_backward);
8382 }
8383 
8384 int
perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)8385 perf_event_output(struct perf_event *event,
8386 		  struct perf_sample_data *data,
8387 		  struct pt_regs *regs)
8388 {
8389 	return __perf_event_output(event, data, regs, perf_output_begin);
8390 }
8391 
8392 /*
8393  * read event_id
8394  */
8395 
8396 struct perf_read_event {
8397 	struct perf_event_header	header;
8398 
8399 	u32				pid;
8400 	u32				tid;
8401 };
8402 
8403 static void
perf_event_read_event(struct perf_event * event,struct task_struct * task)8404 perf_event_read_event(struct perf_event *event,
8405 			struct task_struct *task)
8406 {
8407 	struct perf_output_handle handle;
8408 	struct perf_sample_data sample;
8409 	struct perf_read_event read_event = {
8410 		.header = {
8411 			.type = PERF_RECORD_READ,
8412 			.misc = 0,
8413 			.size = sizeof(read_event) + event->read_size,
8414 		},
8415 		.pid = perf_event_pid(event, task),
8416 		.tid = perf_event_tid(event, task),
8417 	};
8418 	int ret;
8419 
8420 	perf_event_header__init_id(&read_event.header, &sample, event);
8421 	ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
8422 	if (ret)
8423 		return;
8424 
8425 	perf_output_put(&handle, read_event);
8426 	perf_output_read(&handle, event);
8427 	perf_event__output_id_sample(event, &handle, &sample);
8428 
8429 	perf_output_end(&handle);
8430 }
8431 
8432 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
8433 
8434 static void
perf_iterate_ctx(struct perf_event_context * ctx,perf_iterate_f output,void * data,bool all)8435 perf_iterate_ctx(struct perf_event_context *ctx,
8436 		   perf_iterate_f output,
8437 		   void *data, bool all)
8438 {
8439 	struct perf_event *event;
8440 
8441 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8442 		if (!all) {
8443 			if (event->state < PERF_EVENT_STATE_INACTIVE)
8444 				continue;
8445 			if (!event_filter_match(event))
8446 				continue;
8447 		}
8448 
8449 		output(event, data);
8450 	}
8451 }
8452 
perf_iterate_sb_cpu(perf_iterate_f output,void * data)8453 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
8454 {
8455 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
8456 	struct perf_event *event;
8457 
8458 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
8459 		/*
8460 		 * Skip events that are not fully formed yet; ensure that
8461 		 * if we observe event->ctx, both event and ctx will be
8462 		 * complete enough. See perf_install_in_context().
8463 		 */
8464 		if (!smp_load_acquire(&event->ctx))
8465 			continue;
8466 
8467 		if (event->state < PERF_EVENT_STATE_INACTIVE)
8468 			continue;
8469 		if (!event_filter_match(event))
8470 			continue;
8471 		output(event, data);
8472 	}
8473 }
8474 
8475 /*
8476  * Iterate all events that need to receive side-band events.
8477  *
8478  * For new callers; ensure that account_pmu_sb_event() includes
8479  * your event, otherwise it might not get delivered.
8480  */
8481 static void
perf_iterate_sb(perf_iterate_f output,void * data,struct perf_event_context * task_ctx)8482 perf_iterate_sb(perf_iterate_f output, void *data,
8483 	       struct perf_event_context *task_ctx)
8484 {
8485 	struct perf_event_context *ctx;
8486 
8487 	rcu_read_lock();
8488 	preempt_disable();
8489 
8490 	/*
8491 	 * If we have task_ctx != NULL we only notify the task context itself.
8492 	 * The task_ctx is set only for EXIT events before releasing task
8493 	 * context.
8494 	 */
8495 	if (task_ctx) {
8496 		perf_iterate_ctx(task_ctx, output, data, false);
8497 		goto done;
8498 	}
8499 
8500 	perf_iterate_sb_cpu(output, data);
8501 
8502 	ctx = rcu_dereference(current->perf_event_ctxp);
8503 	if (ctx)
8504 		perf_iterate_ctx(ctx, output, data, false);
8505 done:
8506 	preempt_enable();
8507 	rcu_read_unlock();
8508 }
8509 
8510 /*
8511  * Clear all file-based filters at exec, they'll have to be
8512  * re-instated when/if these objects are mmapped again.
8513  */
perf_event_addr_filters_exec(struct perf_event * event,void * data)8514 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
8515 {
8516 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8517 	struct perf_addr_filter *filter;
8518 	unsigned int restart = 0, count = 0;
8519 	unsigned long flags;
8520 
8521 	if (!has_addr_filter(event))
8522 		return;
8523 
8524 	raw_spin_lock_irqsave(&ifh->lock, flags);
8525 	list_for_each_entry(filter, &ifh->list, entry) {
8526 		if (filter->path.dentry) {
8527 			event->addr_filter_ranges[count].start = 0;
8528 			event->addr_filter_ranges[count].size = 0;
8529 			restart++;
8530 		}
8531 
8532 		count++;
8533 	}
8534 
8535 	if (restart)
8536 		event->addr_filters_gen++;
8537 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8538 
8539 	if (restart)
8540 		perf_event_stop(event, 1);
8541 }
8542 
perf_event_exec(void)8543 void perf_event_exec(void)
8544 {
8545 	struct perf_event_context *ctx;
8546 
8547 	ctx = perf_pin_task_context(current);
8548 	if (!ctx)
8549 		return;
8550 
8551 	perf_event_enable_on_exec(ctx);
8552 	perf_event_remove_on_exec(ctx);
8553 	scoped_guard(rcu)
8554 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true);
8555 
8556 	perf_unpin_context(ctx);
8557 	put_ctx(ctx);
8558 }
8559 
8560 struct remote_output {
8561 	struct perf_buffer	*rb;
8562 	int			err;
8563 };
8564 
__perf_event_output_stop(struct perf_event * event,void * data)8565 static void __perf_event_output_stop(struct perf_event *event, void *data)
8566 {
8567 	struct perf_event *parent = event->parent;
8568 	struct remote_output *ro = data;
8569 	struct perf_buffer *rb = ro->rb;
8570 	struct stop_event_data sd = {
8571 		.event	= event,
8572 	};
8573 
8574 	if (!has_aux(event))
8575 		return;
8576 
8577 	if (!parent)
8578 		parent = event;
8579 
8580 	/*
8581 	 * In case of inheritance, it will be the parent that links to the
8582 	 * ring-buffer, but it will be the child that's actually using it.
8583 	 *
8584 	 * We are using event::rb to determine if the event should be stopped,
8585 	 * however this may race with ring_buffer_attach() (through set_output),
8586 	 * which will make us skip the event that actually needs to be stopped.
8587 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
8588 	 * its rb pointer.
8589 	 */
8590 	if (rcu_dereference(parent->rb) == rb)
8591 		ro->err = __perf_event_stop(&sd);
8592 }
8593 
__perf_pmu_output_stop(void * info)8594 static int __perf_pmu_output_stop(void *info)
8595 {
8596 	struct perf_event *event = info;
8597 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
8598 	struct remote_output ro = {
8599 		.rb	= event->rb,
8600 	};
8601 
8602 	rcu_read_lock();
8603 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
8604 	if (cpuctx->task_ctx)
8605 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
8606 				   &ro, false);
8607 	rcu_read_unlock();
8608 
8609 	return ro.err;
8610 }
8611 
perf_pmu_output_stop(struct perf_event * event)8612 static void perf_pmu_output_stop(struct perf_event *event)
8613 {
8614 	struct perf_event *iter;
8615 	int err, cpu;
8616 
8617 restart:
8618 	rcu_read_lock();
8619 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
8620 		/*
8621 		 * For per-CPU events, we need to make sure that neither they
8622 		 * nor their children are running; for cpu==-1 events it's
8623 		 * sufficient to stop the event itself if it's active, since
8624 		 * it can't have children.
8625 		 */
8626 		cpu = iter->cpu;
8627 		if (cpu == -1)
8628 			cpu = READ_ONCE(iter->oncpu);
8629 
8630 		if (cpu == -1)
8631 			continue;
8632 
8633 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
8634 		if (err == -EAGAIN) {
8635 			rcu_read_unlock();
8636 			goto restart;
8637 		}
8638 	}
8639 	rcu_read_unlock();
8640 }
8641 
8642 /*
8643  * task tracking -- fork/exit
8644  *
8645  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
8646  */
8647 
8648 struct perf_task_event {
8649 	struct task_struct		*task;
8650 	struct perf_event_context	*task_ctx;
8651 
8652 	struct {
8653 		struct perf_event_header	header;
8654 
8655 		u32				pid;
8656 		u32				ppid;
8657 		u32				tid;
8658 		u32				ptid;
8659 		u64				time;
8660 	} event_id;
8661 };
8662 
perf_event_task_match(struct perf_event * event)8663 static int perf_event_task_match(struct perf_event *event)
8664 {
8665 	return event->attr.comm  || event->attr.mmap ||
8666 	       event->attr.mmap2 || event->attr.mmap_data ||
8667 	       event->attr.task;
8668 }
8669 
perf_event_task_output(struct perf_event * event,void * data)8670 static void perf_event_task_output(struct perf_event *event,
8671 				   void *data)
8672 {
8673 	struct perf_task_event *task_event = data;
8674 	struct perf_output_handle handle;
8675 	struct perf_sample_data	sample;
8676 	struct task_struct *task = task_event->task;
8677 	int ret, size = task_event->event_id.header.size;
8678 
8679 	if (!perf_event_task_match(event))
8680 		return;
8681 
8682 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
8683 
8684 	ret = perf_output_begin(&handle, &sample, event,
8685 				task_event->event_id.header.size);
8686 	if (ret)
8687 		goto out;
8688 
8689 	task_event->event_id.pid = perf_event_pid(event, task);
8690 	task_event->event_id.tid = perf_event_tid(event, task);
8691 
8692 	if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
8693 		task_event->event_id.ppid = perf_event_pid(event,
8694 							task->real_parent);
8695 		task_event->event_id.ptid = perf_event_pid(event,
8696 							task->real_parent);
8697 	} else {  /* PERF_RECORD_FORK */
8698 		task_event->event_id.ppid = perf_event_pid(event, current);
8699 		task_event->event_id.ptid = perf_event_tid(event, current);
8700 	}
8701 
8702 	task_event->event_id.time = perf_event_clock(event);
8703 
8704 	perf_output_put(&handle, task_event->event_id);
8705 
8706 	perf_event__output_id_sample(event, &handle, &sample);
8707 
8708 	perf_output_end(&handle);
8709 out:
8710 	task_event->event_id.header.size = size;
8711 }
8712 
perf_event_task(struct task_struct * task,struct perf_event_context * task_ctx,int new)8713 static void perf_event_task(struct task_struct *task,
8714 			      struct perf_event_context *task_ctx,
8715 			      int new)
8716 {
8717 	struct perf_task_event task_event;
8718 
8719 	if (!atomic_read(&nr_comm_events) &&
8720 	    !atomic_read(&nr_mmap_events) &&
8721 	    !atomic_read(&nr_task_events))
8722 		return;
8723 
8724 	task_event = (struct perf_task_event){
8725 		.task	  = task,
8726 		.task_ctx = task_ctx,
8727 		.event_id    = {
8728 			.header = {
8729 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
8730 				.misc = 0,
8731 				.size = sizeof(task_event.event_id),
8732 			},
8733 			/* .pid  */
8734 			/* .ppid */
8735 			/* .tid  */
8736 			/* .ptid */
8737 			/* .time */
8738 		},
8739 	};
8740 
8741 	perf_iterate_sb(perf_event_task_output,
8742 		       &task_event,
8743 		       task_ctx);
8744 }
8745 
8746 /*
8747  * Allocate data for a new task when profiling system-wide
8748  * events which require PMU specific data
8749  */
8750 static void
perf_event_alloc_task_data(struct task_struct * child,struct task_struct * parent)8751 perf_event_alloc_task_data(struct task_struct *child,
8752 			   struct task_struct *parent)
8753 {
8754 	struct kmem_cache *ctx_cache = NULL;
8755 	struct perf_ctx_data *cd;
8756 
8757 	if (!refcount_read(&global_ctx_data_ref))
8758 		return;
8759 
8760 	scoped_guard (rcu) {
8761 		cd = rcu_dereference(parent->perf_ctx_data);
8762 		if (cd)
8763 			ctx_cache = cd->ctx_cache;
8764 	}
8765 
8766 	if (!ctx_cache)
8767 		return;
8768 
8769 	guard(percpu_read)(&global_ctx_data_rwsem);
8770 	scoped_guard (rcu) {
8771 		cd = rcu_dereference(child->perf_ctx_data);
8772 		if (!cd) {
8773 			/*
8774 			 * A system-wide event may be unaccount,
8775 			 * when attaching the perf_ctx_data.
8776 			 */
8777 			if (!refcount_read(&global_ctx_data_ref))
8778 				return;
8779 			goto attach;
8780 		}
8781 
8782 		if (!cd->global) {
8783 			cd->global = 1;
8784 			refcount_inc(&cd->refcount);
8785 		}
8786 	}
8787 
8788 	return;
8789 attach:
8790 	attach_task_ctx_data(child, ctx_cache, true);
8791 }
8792 
perf_event_fork(struct task_struct * task)8793 void perf_event_fork(struct task_struct *task)
8794 {
8795 	perf_event_task(task, NULL, 1);
8796 	perf_event_namespaces(task);
8797 	perf_event_alloc_task_data(task, current);
8798 }
8799 
8800 /*
8801  * comm tracking
8802  */
8803 
8804 struct perf_comm_event {
8805 	struct task_struct	*task;
8806 	char			*comm;
8807 	int			comm_size;
8808 
8809 	struct {
8810 		struct perf_event_header	header;
8811 
8812 		u32				pid;
8813 		u32				tid;
8814 	} event_id;
8815 };
8816 
perf_event_comm_match(struct perf_event * event)8817 static int perf_event_comm_match(struct perf_event *event)
8818 {
8819 	return event->attr.comm;
8820 }
8821 
perf_event_comm_output(struct perf_event * event,void * data)8822 static void perf_event_comm_output(struct perf_event *event,
8823 				   void *data)
8824 {
8825 	struct perf_comm_event *comm_event = data;
8826 	struct perf_output_handle handle;
8827 	struct perf_sample_data sample;
8828 	int size = comm_event->event_id.header.size;
8829 	int ret;
8830 
8831 	if (!perf_event_comm_match(event))
8832 		return;
8833 
8834 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8835 	ret = perf_output_begin(&handle, &sample, event,
8836 				comm_event->event_id.header.size);
8837 
8838 	if (ret)
8839 		goto out;
8840 
8841 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8842 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8843 
8844 	perf_output_put(&handle, comm_event->event_id);
8845 	__output_copy(&handle, comm_event->comm,
8846 				   comm_event->comm_size);
8847 
8848 	perf_event__output_id_sample(event, &handle, &sample);
8849 
8850 	perf_output_end(&handle);
8851 out:
8852 	comm_event->event_id.header.size = size;
8853 }
8854 
perf_event_comm_event(struct perf_comm_event * comm_event)8855 static void perf_event_comm_event(struct perf_comm_event *comm_event)
8856 {
8857 	char comm[TASK_COMM_LEN];
8858 	unsigned int size;
8859 
8860 	memset(comm, 0, sizeof(comm));
8861 	strscpy(comm, comm_event->task->comm);
8862 	size = ALIGN(strlen(comm)+1, sizeof(u64));
8863 
8864 	comm_event->comm = comm;
8865 	comm_event->comm_size = size;
8866 
8867 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8868 
8869 	perf_iterate_sb(perf_event_comm_output,
8870 		       comm_event,
8871 		       NULL);
8872 }
8873 
perf_event_comm(struct task_struct * task,bool exec)8874 void perf_event_comm(struct task_struct *task, bool exec)
8875 {
8876 	struct perf_comm_event comm_event;
8877 
8878 	if (!atomic_read(&nr_comm_events))
8879 		return;
8880 
8881 	comm_event = (struct perf_comm_event){
8882 		.task	= task,
8883 		/* .comm      */
8884 		/* .comm_size */
8885 		.event_id  = {
8886 			.header = {
8887 				.type = PERF_RECORD_COMM,
8888 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8889 				/* .size */
8890 			},
8891 			/* .pid */
8892 			/* .tid */
8893 		},
8894 	};
8895 
8896 	perf_event_comm_event(&comm_event);
8897 }
8898 
8899 /*
8900  * namespaces tracking
8901  */
8902 
8903 struct perf_namespaces_event {
8904 	struct task_struct		*task;
8905 
8906 	struct {
8907 		struct perf_event_header	header;
8908 
8909 		u32				pid;
8910 		u32				tid;
8911 		u64				nr_namespaces;
8912 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
8913 	} event_id;
8914 };
8915 
perf_event_namespaces_match(struct perf_event * event)8916 static int perf_event_namespaces_match(struct perf_event *event)
8917 {
8918 	return event->attr.namespaces;
8919 }
8920 
perf_event_namespaces_output(struct perf_event * event,void * data)8921 static void perf_event_namespaces_output(struct perf_event *event,
8922 					 void *data)
8923 {
8924 	struct perf_namespaces_event *namespaces_event = data;
8925 	struct perf_output_handle handle;
8926 	struct perf_sample_data sample;
8927 	u16 header_size = namespaces_event->event_id.header.size;
8928 	int ret;
8929 
8930 	if (!perf_event_namespaces_match(event))
8931 		return;
8932 
8933 	perf_event_header__init_id(&namespaces_event->event_id.header,
8934 				   &sample, event);
8935 	ret = perf_output_begin(&handle, &sample, event,
8936 				namespaces_event->event_id.header.size);
8937 	if (ret)
8938 		goto out;
8939 
8940 	namespaces_event->event_id.pid = perf_event_pid(event,
8941 							namespaces_event->task);
8942 	namespaces_event->event_id.tid = perf_event_tid(event,
8943 							namespaces_event->task);
8944 
8945 	perf_output_put(&handle, namespaces_event->event_id);
8946 
8947 	perf_event__output_id_sample(event, &handle, &sample);
8948 
8949 	perf_output_end(&handle);
8950 out:
8951 	namespaces_event->event_id.header.size = header_size;
8952 }
8953 
perf_fill_ns_link_info(struct perf_ns_link_info * ns_link_info,struct task_struct * task,const struct proc_ns_operations * ns_ops)8954 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8955 				   struct task_struct *task,
8956 				   const struct proc_ns_operations *ns_ops)
8957 {
8958 	struct path ns_path;
8959 	struct inode *ns_inode;
8960 	int error;
8961 
8962 	error = ns_get_path(&ns_path, task, ns_ops);
8963 	if (!error) {
8964 		ns_inode = ns_path.dentry->d_inode;
8965 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8966 		ns_link_info->ino = ns_inode->i_ino;
8967 		path_put(&ns_path);
8968 	}
8969 }
8970 
perf_event_namespaces(struct task_struct * task)8971 void perf_event_namespaces(struct task_struct *task)
8972 {
8973 	struct perf_namespaces_event namespaces_event;
8974 	struct perf_ns_link_info *ns_link_info;
8975 
8976 	if (!atomic_read(&nr_namespaces_events))
8977 		return;
8978 
8979 	namespaces_event = (struct perf_namespaces_event){
8980 		.task	= task,
8981 		.event_id  = {
8982 			.header = {
8983 				.type = PERF_RECORD_NAMESPACES,
8984 				.misc = 0,
8985 				.size = sizeof(namespaces_event.event_id),
8986 			},
8987 			/* .pid */
8988 			/* .tid */
8989 			.nr_namespaces = NR_NAMESPACES,
8990 			/* .link_info[NR_NAMESPACES] */
8991 		},
8992 	};
8993 
8994 	ns_link_info = namespaces_event.event_id.link_info;
8995 
8996 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8997 			       task, &mntns_operations);
8998 
8999 #ifdef CONFIG_USER_NS
9000 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
9001 			       task, &userns_operations);
9002 #endif
9003 #ifdef CONFIG_NET_NS
9004 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
9005 			       task, &netns_operations);
9006 #endif
9007 #ifdef CONFIG_UTS_NS
9008 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
9009 			       task, &utsns_operations);
9010 #endif
9011 #ifdef CONFIG_IPC_NS
9012 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
9013 			       task, &ipcns_operations);
9014 #endif
9015 #ifdef CONFIG_PID_NS
9016 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
9017 			       task, &pidns_operations);
9018 #endif
9019 #ifdef CONFIG_CGROUPS
9020 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
9021 			       task, &cgroupns_operations);
9022 #endif
9023 
9024 	perf_iterate_sb(perf_event_namespaces_output,
9025 			&namespaces_event,
9026 			NULL);
9027 }
9028 
9029 /*
9030  * cgroup tracking
9031  */
9032 #ifdef CONFIG_CGROUP_PERF
9033 
9034 struct perf_cgroup_event {
9035 	char				*path;
9036 	int				path_size;
9037 	struct {
9038 		struct perf_event_header	header;
9039 		u64				id;
9040 		char				path[];
9041 	} event_id;
9042 };
9043 
perf_event_cgroup_match(struct perf_event * event)9044 static int perf_event_cgroup_match(struct perf_event *event)
9045 {
9046 	return event->attr.cgroup;
9047 }
9048 
perf_event_cgroup_output(struct perf_event * event,void * data)9049 static void perf_event_cgroup_output(struct perf_event *event, void *data)
9050 {
9051 	struct perf_cgroup_event *cgroup_event = data;
9052 	struct perf_output_handle handle;
9053 	struct perf_sample_data sample;
9054 	u16 header_size = cgroup_event->event_id.header.size;
9055 	int ret;
9056 
9057 	if (!perf_event_cgroup_match(event))
9058 		return;
9059 
9060 	perf_event_header__init_id(&cgroup_event->event_id.header,
9061 				   &sample, event);
9062 	ret = perf_output_begin(&handle, &sample, event,
9063 				cgroup_event->event_id.header.size);
9064 	if (ret)
9065 		goto out;
9066 
9067 	perf_output_put(&handle, cgroup_event->event_id);
9068 	__output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
9069 
9070 	perf_event__output_id_sample(event, &handle, &sample);
9071 
9072 	perf_output_end(&handle);
9073 out:
9074 	cgroup_event->event_id.header.size = header_size;
9075 }
9076 
perf_event_cgroup(struct cgroup * cgrp)9077 static void perf_event_cgroup(struct cgroup *cgrp)
9078 {
9079 	struct perf_cgroup_event cgroup_event;
9080 	char path_enomem[16] = "//enomem";
9081 	char *pathname;
9082 	size_t size;
9083 
9084 	if (!atomic_read(&nr_cgroup_events))
9085 		return;
9086 
9087 	cgroup_event = (struct perf_cgroup_event){
9088 		.event_id  = {
9089 			.header = {
9090 				.type = PERF_RECORD_CGROUP,
9091 				.misc = 0,
9092 				.size = sizeof(cgroup_event.event_id),
9093 			},
9094 			.id = cgroup_id(cgrp),
9095 		},
9096 	};
9097 
9098 	pathname = kmalloc(PATH_MAX, GFP_KERNEL);
9099 	if (pathname == NULL) {
9100 		cgroup_event.path = path_enomem;
9101 	} else {
9102 		/* just to be sure to have enough space for alignment */
9103 		cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
9104 		cgroup_event.path = pathname;
9105 	}
9106 
9107 	/*
9108 	 * Since our buffer works in 8 byte units we need to align our string
9109 	 * size to a multiple of 8. However, we must guarantee the tail end is
9110 	 * zero'd out to avoid leaking random bits to userspace.
9111 	 */
9112 	size = strlen(cgroup_event.path) + 1;
9113 	while (!IS_ALIGNED(size, sizeof(u64)))
9114 		cgroup_event.path[size++] = '\0';
9115 
9116 	cgroup_event.event_id.header.size += size;
9117 	cgroup_event.path_size = size;
9118 
9119 	perf_iterate_sb(perf_event_cgroup_output,
9120 			&cgroup_event,
9121 			NULL);
9122 
9123 	kfree(pathname);
9124 }
9125 
9126 #endif
9127 
9128 /*
9129  * mmap tracking
9130  */
9131 
9132 struct perf_mmap_event {
9133 	struct vm_area_struct	*vma;
9134 
9135 	const char		*file_name;
9136 	int			file_size;
9137 	int			maj, min;
9138 	u64			ino;
9139 	u64			ino_generation;
9140 	u32			prot, flags;
9141 	u8			build_id[BUILD_ID_SIZE_MAX];
9142 	u32			build_id_size;
9143 
9144 	struct {
9145 		struct perf_event_header	header;
9146 
9147 		u32				pid;
9148 		u32				tid;
9149 		u64				start;
9150 		u64				len;
9151 		u64				pgoff;
9152 	} event_id;
9153 };
9154 
perf_event_mmap_match(struct perf_event * event,void * data)9155 static int perf_event_mmap_match(struct perf_event *event,
9156 				 void *data)
9157 {
9158 	struct perf_mmap_event *mmap_event = data;
9159 	struct vm_area_struct *vma = mmap_event->vma;
9160 	int executable = vma->vm_flags & VM_EXEC;
9161 
9162 	return (!executable && event->attr.mmap_data) ||
9163 	       (executable && (event->attr.mmap || event->attr.mmap2));
9164 }
9165 
perf_event_mmap_output(struct perf_event * event,void * data)9166 static void perf_event_mmap_output(struct perf_event *event,
9167 				   void *data)
9168 {
9169 	struct perf_mmap_event *mmap_event = data;
9170 	struct perf_output_handle handle;
9171 	struct perf_sample_data sample;
9172 	int size = mmap_event->event_id.header.size;
9173 	u32 type = mmap_event->event_id.header.type;
9174 	bool use_build_id;
9175 	int ret;
9176 
9177 	if (!perf_event_mmap_match(event, data))
9178 		return;
9179 
9180 	if (event->attr.mmap2) {
9181 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
9182 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
9183 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
9184 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
9185 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
9186 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
9187 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
9188 	}
9189 
9190 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
9191 	ret = perf_output_begin(&handle, &sample, event,
9192 				mmap_event->event_id.header.size);
9193 	if (ret)
9194 		goto out;
9195 
9196 	mmap_event->event_id.pid = perf_event_pid(event, current);
9197 	mmap_event->event_id.tid = perf_event_tid(event, current);
9198 
9199 	use_build_id = event->attr.build_id && mmap_event->build_id_size;
9200 
9201 	if (event->attr.mmap2 && use_build_id)
9202 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
9203 
9204 	perf_output_put(&handle, mmap_event->event_id);
9205 
9206 	if (event->attr.mmap2) {
9207 		if (use_build_id) {
9208 			u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
9209 
9210 			__output_copy(&handle, size, 4);
9211 			__output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
9212 		} else {
9213 			perf_output_put(&handle, mmap_event->maj);
9214 			perf_output_put(&handle, mmap_event->min);
9215 			perf_output_put(&handle, mmap_event->ino);
9216 			perf_output_put(&handle, mmap_event->ino_generation);
9217 		}
9218 		perf_output_put(&handle, mmap_event->prot);
9219 		perf_output_put(&handle, mmap_event->flags);
9220 	}
9221 
9222 	__output_copy(&handle, mmap_event->file_name,
9223 				   mmap_event->file_size);
9224 
9225 	perf_event__output_id_sample(event, &handle, &sample);
9226 
9227 	perf_output_end(&handle);
9228 out:
9229 	mmap_event->event_id.header.size = size;
9230 	mmap_event->event_id.header.type = type;
9231 }
9232 
perf_event_mmap_event(struct perf_mmap_event * mmap_event)9233 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
9234 {
9235 	struct vm_area_struct *vma = mmap_event->vma;
9236 	struct file *file = vma->vm_file;
9237 	int maj = 0, min = 0;
9238 	u64 ino = 0, gen = 0;
9239 	u32 prot = 0, flags = 0;
9240 	unsigned int size;
9241 	char tmp[16];
9242 	char *buf = NULL;
9243 	char *name = NULL;
9244 
9245 	if (vma->vm_flags & VM_READ)
9246 		prot |= PROT_READ;
9247 	if (vma->vm_flags & VM_WRITE)
9248 		prot |= PROT_WRITE;
9249 	if (vma->vm_flags & VM_EXEC)
9250 		prot |= PROT_EXEC;
9251 
9252 	if (vma->vm_flags & VM_MAYSHARE)
9253 		flags = MAP_SHARED;
9254 	else
9255 		flags = MAP_PRIVATE;
9256 
9257 	if (vma->vm_flags & VM_LOCKED)
9258 		flags |= MAP_LOCKED;
9259 	if (is_vm_hugetlb_page(vma))
9260 		flags |= MAP_HUGETLB;
9261 
9262 	if (file) {
9263 		struct inode *inode;
9264 		dev_t dev;
9265 
9266 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
9267 		if (!buf) {
9268 			name = "//enomem";
9269 			goto cpy_name;
9270 		}
9271 		/*
9272 		 * d_path() works from the end of the rb backwards, so we
9273 		 * need to add enough zero bytes after the string to handle
9274 		 * the 64bit alignment we do later.
9275 		 */
9276 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
9277 		if (IS_ERR(name)) {
9278 			name = "//toolong";
9279 			goto cpy_name;
9280 		}
9281 		inode = file_inode(vma->vm_file);
9282 		dev = inode->i_sb->s_dev;
9283 		ino = inode->i_ino;
9284 		gen = inode->i_generation;
9285 		maj = MAJOR(dev);
9286 		min = MINOR(dev);
9287 
9288 		goto got_name;
9289 	} else {
9290 		if (vma->vm_ops && vma->vm_ops->name)
9291 			name = (char *) vma->vm_ops->name(vma);
9292 		if (!name)
9293 			name = (char *)arch_vma_name(vma);
9294 		if (!name) {
9295 			if (vma_is_initial_heap(vma))
9296 				name = "[heap]";
9297 			else if (vma_is_initial_stack(vma))
9298 				name = "[stack]";
9299 			else
9300 				name = "//anon";
9301 		}
9302 	}
9303 
9304 cpy_name:
9305 	strscpy(tmp, name);
9306 	name = tmp;
9307 got_name:
9308 	/*
9309 	 * Since our buffer works in 8 byte units we need to align our string
9310 	 * size to a multiple of 8. However, we must guarantee the tail end is
9311 	 * zero'd out to avoid leaking random bits to userspace.
9312 	 */
9313 	size = strlen(name)+1;
9314 	while (!IS_ALIGNED(size, sizeof(u64)))
9315 		name[size++] = '\0';
9316 
9317 	mmap_event->file_name = name;
9318 	mmap_event->file_size = size;
9319 	mmap_event->maj = maj;
9320 	mmap_event->min = min;
9321 	mmap_event->ino = ino;
9322 	mmap_event->ino_generation = gen;
9323 	mmap_event->prot = prot;
9324 	mmap_event->flags = flags;
9325 
9326 	if (!(vma->vm_flags & VM_EXEC))
9327 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
9328 
9329 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
9330 
9331 	if (atomic_read(&nr_build_id_events))
9332 		build_id_parse_nofault(vma, mmap_event->build_id, &mmap_event->build_id_size);
9333 
9334 	perf_iterate_sb(perf_event_mmap_output,
9335 		       mmap_event,
9336 		       NULL);
9337 
9338 	kfree(buf);
9339 }
9340 
9341 /*
9342  * Check whether inode and address range match filter criteria.
9343  */
perf_addr_filter_match(struct perf_addr_filter * filter,struct file * file,unsigned long offset,unsigned long size)9344 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
9345 				     struct file *file, unsigned long offset,
9346 				     unsigned long size)
9347 {
9348 	/* d_inode(NULL) won't be equal to any mapped user-space file */
9349 	if (!filter->path.dentry)
9350 		return false;
9351 
9352 	if (d_inode(filter->path.dentry) != file_inode(file))
9353 		return false;
9354 
9355 	if (filter->offset > offset + size)
9356 		return false;
9357 
9358 	if (filter->offset + filter->size < offset)
9359 		return false;
9360 
9361 	return true;
9362 }
9363 
perf_addr_filter_vma_adjust(struct perf_addr_filter * filter,struct vm_area_struct * vma,struct perf_addr_filter_range * fr)9364 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
9365 					struct vm_area_struct *vma,
9366 					struct perf_addr_filter_range *fr)
9367 {
9368 	unsigned long vma_size = vma->vm_end - vma->vm_start;
9369 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
9370 	struct file *file = vma->vm_file;
9371 
9372 	if (!perf_addr_filter_match(filter, file, off, vma_size))
9373 		return false;
9374 
9375 	if (filter->offset < off) {
9376 		fr->start = vma->vm_start;
9377 		fr->size = min(vma_size, filter->size - (off - filter->offset));
9378 	} else {
9379 		fr->start = vma->vm_start + filter->offset - off;
9380 		fr->size = min(vma->vm_end - fr->start, filter->size);
9381 	}
9382 
9383 	return true;
9384 }
9385 
__perf_addr_filters_adjust(struct perf_event * event,void * data)9386 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
9387 {
9388 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9389 	struct vm_area_struct *vma = data;
9390 	struct perf_addr_filter *filter;
9391 	unsigned int restart = 0, count = 0;
9392 	unsigned long flags;
9393 
9394 	if (!has_addr_filter(event))
9395 		return;
9396 
9397 	if (!vma->vm_file)
9398 		return;
9399 
9400 	raw_spin_lock_irqsave(&ifh->lock, flags);
9401 	list_for_each_entry(filter, &ifh->list, entry) {
9402 		if (perf_addr_filter_vma_adjust(filter, vma,
9403 						&event->addr_filter_ranges[count]))
9404 			restart++;
9405 
9406 		count++;
9407 	}
9408 
9409 	if (restart)
9410 		event->addr_filters_gen++;
9411 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
9412 
9413 	if (restart)
9414 		perf_event_stop(event, 1);
9415 }
9416 
9417 /*
9418  * Adjust all task's events' filters to the new vma
9419  */
perf_addr_filters_adjust(struct vm_area_struct * vma)9420 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
9421 {
9422 	struct perf_event_context *ctx;
9423 
9424 	/*
9425 	 * Data tracing isn't supported yet and as such there is no need
9426 	 * to keep track of anything that isn't related to executable code:
9427 	 */
9428 	if (!(vma->vm_flags & VM_EXEC))
9429 		return;
9430 
9431 	rcu_read_lock();
9432 	ctx = rcu_dereference(current->perf_event_ctxp);
9433 	if (ctx)
9434 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
9435 	rcu_read_unlock();
9436 }
9437 
perf_event_mmap(struct vm_area_struct * vma)9438 void perf_event_mmap(struct vm_area_struct *vma)
9439 {
9440 	struct perf_mmap_event mmap_event;
9441 
9442 	if (!atomic_read(&nr_mmap_events))
9443 		return;
9444 
9445 	mmap_event = (struct perf_mmap_event){
9446 		.vma	= vma,
9447 		/* .file_name */
9448 		/* .file_size */
9449 		.event_id  = {
9450 			.header = {
9451 				.type = PERF_RECORD_MMAP,
9452 				.misc = PERF_RECORD_MISC_USER,
9453 				/* .size */
9454 			},
9455 			/* .pid */
9456 			/* .tid */
9457 			.start  = vma->vm_start,
9458 			.len    = vma->vm_end - vma->vm_start,
9459 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
9460 		},
9461 		/* .maj (attr_mmap2 only) */
9462 		/* .min (attr_mmap2 only) */
9463 		/* .ino (attr_mmap2 only) */
9464 		/* .ino_generation (attr_mmap2 only) */
9465 		/* .prot (attr_mmap2 only) */
9466 		/* .flags (attr_mmap2 only) */
9467 	};
9468 
9469 	perf_addr_filters_adjust(vma);
9470 	perf_event_mmap_event(&mmap_event);
9471 }
9472 
perf_event_aux_event(struct perf_event * event,unsigned long head,unsigned long size,u64 flags)9473 void perf_event_aux_event(struct perf_event *event, unsigned long head,
9474 			  unsigned long size, u64 flags)
9475 {
9476 	struct perf_output_handle handle;
9477 	struct perf_sample_data sample;
9478 	struct perf_aux_event {
9479 		struct perf_event_header	header;
9480 		u64				offset;
9481 		u64				size;
9482 		u64				flags;
9483 	} rec = {
9484 		.header = {
9485 			.type = PERF_RECORD_AUX,
9486 			.misc = 0,
9487 			.size = sizeof(rec),
9488 		},
9489 		.offset		= head,
9490 		.size		= size,
9491 		.flags		= flags,
9492 	};
9493 	int ret;
9494 
9495 	perf_event_header__init_id(&rec.header, &sample, event);
9496 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9497 
9498 	if (ret)
9499 		return;
9500 
9501 	perf_output_put(&handle, rec);
9502 	perf_event__output_id_sample(event, &handle, &sample);
9503 
9504 	perf_output_end(&handle);
9505 }
9506 
9507 /*
9508  * Lost/dropped samples logging
9509  */
perf_log_lost_samples(struct perf_event * event,u64 lost)9510 void perf_log_lost_samples(struct perf_event *event, u64 lost)
9511 {
9512 	struct perf_output_handle handle;
9513 	struct perf_sample_data sample;
9514 	int ret;
9515 
9516 	struct {
9517 		struct perf_event_header	header;
9518 		u64				lost;
9519 	} lost_samples_event = {
9520 		.header = {
9521 			.type = PERF_RECORD_LOST_SAMPLES,
9522 			.misc = 0,
9523 			.size = sizeof(lost_samples_event),
9524 		},
9525 		.lost		= lost,
9526 	};
9527 
9528 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
9529 
9530 	ret = perf_output_begin(&handle, &sample, event,
9531 				lost_samples_event.header.size);
9532 	if (ret)
9533 		return;
9534 
9535 	perf_output_put(&handle, lost_samples_event);
9536 	perf_event__output_id_sample(event, &handle, &sample);
9537 	perf_output_end(&handle);
9538 }
9539 
9540 /*
9541  * context_switch tracking
9542  */
9543 
9544 struct perf_switch_event {
9545 	struct task_struct	*task;
9546 	struct task_struct	*next_prev;
9547 
9548 	struct {
9549 		struct perf_event_header	header;
9550 		u32				next_prev_pid;
9551 		u32				next_prev_tid;
9552 	} event_id;
9553 };
9554 
perf_event_switch_match(struct perf_event * event)9555 static int perf_event_switch_match(struct perf_event *event)
9556 {
9557 	return event->attr.context_switch;
9558 }
9559 
perf_event_switch_output(struct perf_event * event,void * data)9560 static void perf_event_switch_output(struct perf_event *event, void *data)
9561 {
9562 	struct perf_switch_event *se = data;
9563 	struct perf_output_handle handle;
9564 	struct perf_sample_data sample;
9565 	int ret;
9566 
9567 	if (!perf_event_switch_match(event))
9568 		return;
9569 
9570 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
9571 	if (event->ctx->task) {
9572 		se->event_id.header.type = PERF_RECORD_SWITCH;
9573 		se->event_id.header.size = sizeof(se->event_id.header);
9574 	} else {
9575 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
9576 		se->event_id.header.size = sizeof(se->event_id);
9577 		se->event_id.next_prev_pid =
9578 					perf_event_pid(event, se->next_prev);
9579 		se->event_id.next_prev_tid =
9580 					perf_event_tid(event, se->next_prev);
9581 	}
9582 
9583 	perf_event_header__init_id(&se->event_id.header, &sample, event);
9584 
9585 	ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
9586 	if (ret)
9587 		return;
9588 
9589 	if (event->ctx->task)
9590 		perf_output_put(&handle, se->event_id.header);
9591 	else
9592 		perf_output_put(&handle, se->event_id);
9593 
9594 	perf_event__output_id_sample(event, &handle, &sample);
9595 
9596 	perf_output_end(&handle);
9597 }
9598 
perf_event_switch(struct task_struct * task,struct task_struct * next_prev,bool sched_in)9599 static void perf_event_switch(struct task_struct *task,
9600 			      struct task_struct *next_prev, bool sched_in)
9601 {
9602 	struct perf_switch_event switch_event;
9603 
9604 	/* N.B. caller checks nr_switch_events != 0 */
9605 
9606 	switch_event = (struct perf_switch_event){
9607 		.task		= task,
9608 		.next_prev	= next_prev,
9609 		.event_id	= {
9610 			.header = {
9611 				/* .type */
9612 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
9613 				/* .size */
9614 			},
9615 			/* .next_prev_pid */
9616 			/* .next_prev_tid */
9617 		},
9618 	};
9619 
9620 	if (!sched_in && task_is_runnable(task)) {
9621 		switch_event.event_id.header.misc |=
9622 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
9623 	}
9624 
9625 	perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
9626 }
9627 
9628 /*
9629  * IRQ throttle logging
9630  */
9631 
perf_log_throttle(struct perf_event * event,int enable)9632 static void perf_log_throttle(struct perf_event *event, int enable)
9633 {
9634 	struct perf_output_handle handle;
9635 	struct perf_sample_data sample;
9636 	int ret;
9637 
9638 	struct {
9639 		struct perf_event_header	header;
9640 		u64				time;
9641 		u64				id;
9642 		u64				stream_id;
9643 	} throttle_event = {
9644 		.header = {
9645 			.type = PERF_RECORD_THROTTLE,
9646 			.misc = 0,
9647 			.size = sizeof(throttle_event),
9648 		},
9649 		.time		= perf_event_clock(event),
9650 		.id		= primary_event_id(event),
9651 		.stream_id	= event->id,
9652 	};
9653 
9654 	if (enable)
9655 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
9656 
9657 	perf_event_header__init_id(&throttle_event.header, &sample, event);
9658 
9659 	ret = perf_output_begin(&handle, &sample, event,
9660 				throttle_event.header.size);
9661 	if (ret)
9662 		return;
9663 
9664 	perf_output_put(&handle, throttle_event);
9665 	perf_event__output_id_sample(event, &handle, &sample);
9666 	perf_output_end(&handle);
9667 }
9668 
9669 /*
9670  * ksymbol register/unregister tracking
9671  */
9672 
9673 struct perf_ksymbol_event {
9674 	const char	*name;
9675 	int		name_len;
9676 	struct {
9677 		struct perf_event_header        header;
9678 		u64				addr;
9679 		u32				len;
9680 		u16				ksym_type;
9681 		u16				flags;
9682 	} event_id;
9683 };
9684 
perf_event_ksymbol_match(struct perf_event * event)9685 static int perf_event_ksymbol_match(struct perf_event *event)
9686 {
9687 	return event->attr.ksymbol;
9688 }
9689 
perf_event_ksymbol_output(struct perf_event * event,void * data)9690 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
9691 {
9692 	struct perf_ksymbol_event *ksymbol_event = data;
9693 	struct perf_output_handle handle;
9694 	struct perf_sample_data sample;
9695 	int ret;
9696 
9697 	if (!perf_event_ksymbol_match(event))
9698 		return;
9699 
9700 	perf_event_header__init_id(&ksymbol_event->event_id.header,
9701 				   &sample, event);
9702 	ret = perf_output_begin(&handle, &sample, event,
9703 				ksymbol_event->event_id.header.size);
9704 	if (ret)
9705 		return;
9706 
9707 	perf_output_put(&handle, ksymbol_event->event_id);
9708 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
9709 	perf_event__output_id_sample(event, &handle, &sample);
9710 
9711 	perf_output_end(&handle);
9712 }
9713 
perf_event_ksymbol(u16 ksym_type,u64 addr,u32 len,bool unregister,const char * sym)9714 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
9715 			const char *sym)
9716 {
9717 	struct perf_ksymbol_event ksymbol_event;
9718 	char name[KSYM_NAME_LEN];
9719 	u16 flags = 0;
9720 	int name_len;
9721 
9722 	if (!atomic_read(&nr_ksymbol_events))
9723 		return;
9724 
9725 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
9726 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
9727 		goto err;
9728 
9729 	strscpy(name, sym);
9730 	name_len = strlen(name) + 1;
9731 	while (!IS_ALIGNED(name_len, sizeof(u64)))
9732 		name[name_len++] = '\0';
9733 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
9734 
9735 	if (unregister)
9736 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
9737 
9738 	ksymbol_event = (struct perf_ksymbol_event){
9739 		.name = name,
9740 		.name_len = name_len,
9741 		.event_id = {
9742 			.header = {
9743 				.type = PERF_RECORD_KSYMBOL,
9744 				.size = sizeof(ksymbol_event.event_id) +
9745 					name_len,
9746 			},
9747 			.addr = addr,
9748 			.len = len,
9749 			.ksym_type = ksym_type,
9750 			.flags = flags,
9751 		},
9752 	};
9753 
9754 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
9755 	return;
9756 err:
9757 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
9758 }
9759 
9760 /*
9761  * bpf program load/unload tracking
9762  */
9763 
9764 struct perf_bpf_event {
9765 	struct bpf_prog	*prog;
9766 	struct {
9767 		struct perf_event_header        header;
9768 		u16				type;
9769 		u16				flags;
9770 		u32				id;
9771 		u8				tag[BPF_TAG_SIZE];
9772 	} event_id;
9773 };
9774 
perf_event_bpf_match(struct perf_event * event)9775 static int perf_event_bpf_match(struct perf_event *event)
9776 {
9777 	return event->attr.bpf_event;
9778 }
9779 
perf_event_bpf_output(struct perf_event * event,void * data)9780 static void perf_event_bpf_output(struct perf_event *event, void *data)
9781 {
9782 	struct perf_bpf_event *bpf_event = data;
9783 	struct perf_output_handle handle;
9784 	struct perf_sample_data sample;
9785 	int ret;
9786 
9787 	if (!perf_event_bpf_match(event))
9788 		return;
9789 
9790 	perf_event_header__init_id(&bpf_event->event_id.header,
9791 				   &sample, event);
9792 	ret = perf_output_begin(&handle, &sample, event,
9793 				bpf_event->event_id.header.size);
9794 	if (ret)
9795 		return;
9796 
9797 	perf_output_put(&handle, bpf_event->event_id);
9798 	perf_event__output_id_sample(event, &handle, &sample);
9799 
9800 	perf_output_end(&handle);
9801 }
9802 
perf_event_bpf_emit_ksymbols(struct bpf_prog * prog,enum perf_bpf_event_type type)9803 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9804 					 enum perf_bpf_event_type type)
9805 {
9806 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9807 	int i;
9808 
9809 	perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9810 			   (u64)(unsigned long)prog->bpf_func,
9811 			   prog->jited_len, unregister,
9812 			   prog->aux->ksym.name);
9813 
9814 	for (i = 1; i < prog->aux->func_cnt; i++) {
9815 		struct bpf_prog *subprog = prog->aux->func[i];
9816 
9817 		perf_event_ksymbol(
9818 			PERF_RECORD_KSYMBOL_TYPE_BPF,
9819 			(u64)(unsigned long)subprog->bpf_func,
9820 			subprog->jited_len, unregister,
9821 			subprog->aux->ksym.name);
9822 	}
9823 }
9824 
perf_event_bpf_event(struct bpf_prog * prog,enum perf_bpf_event_type type,u16 flags)9825 void perf_event_bpf_event(struct bpf_prog *prog,
9826 			  enum perf_bpf_event_type type,
9827 			  u16 flags)
9828 {
9829 	struct perf_bpf_event bpf_event;
9830 
9831 	switch (type) {
9832 	case PERF_BPF_EVENT_PROG_LOAD:
9833 	case PERF_BPF_EVENT_PROG_UNLOAD:
9834 		if (atomic_read(&nr_ksymbol_events))
9835 			perf_event_bpf_emit_ksymbols(prog, type);
9836 		break;
9837 	default:
9838 		return;
9839 	}
9840 
9841 	if (!atomic_read(&nr_bpf_events))
9842 		return;
9843 
9844 	bpf_event = (struct perf_bpf_event){
9845 		.prog = prog,
9846 		.event_id = {
9847 			.header = {
9848 				.type = PERF_RECORD_BPF_EVENT,
9849 				.size = sizeof(bpf_event.event_id),
9850 			},
9851 			.type = type,
9852 			.flags = flags,
9853 			.id = prog->aux->id,
9854 		},
9855 	};
9856 
9857 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9858 
9859 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9860 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9861 }
9862 
9863 struct perf_text_poke_event {
9864 	const void		*old_bytes;
9865 	const void		*new_bytes;
9866 	size_t			pad;
9867 	u16			old_len;
9868 	u16			new_len;
9869 
9870 	struct {
9871 		struct perf_event_header	header;
9872 
9873 		u64				addr;
9874 	} event_id;
9875 };
9876 
perf_event_text_poke_match(struct perf_event * event)9877 static int perf_event_text_poke_match(struct perf_event *event)
9878 {
9879 	return event->attr.text_poke;
9880 }
9881 
perf_event_text_poke_output(struct perf_event * event,void * data)9882 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9883 {
9884 	struct perf_text_poke_event *text_poke_event = data;
9885 	struct perf_output_handle handle;
9886 	struct perf_sample_data sample;
9887 	u64 padding = 0;
9888 	int ret;
9889 
9890 	if (!perf_event_text_poke_match(event))
9891 		return;
9892 
9893 	perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9894 
9895 	ret = perf_output_begin(&handle, &sample, event,
9896 				text_poke_event->event_id.header.size);
9897 	if (ret)
9898 		return;
9899 
9900 	perf_output_put(&handle, text_poke_event->event_id);
9901 	perf_output_put(&handle, text_poke_event->old_len);
9902 	perf_output_put(&handle, text_poke_event->new_len);
9903 
9904 	__output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9905 	__output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9906 
9907 	if (text_poke_event->pad)
9908 		__output_copy(&handle, &padding, text_poke_event->pad);
9909 
9910 	perf_event__output_id_sample(event, &handle, &sample);
9911 
9912 	perf_output_end(&handle);
9913 }
9914 
perf_event_text_poke(const void * addr,const void * old_bytes,size_t old_len,const void * new_bytes,size_t new_len)9915 void perf_event_text_poke(const void *addr, const void *old_bytes,
9916 			  size_t old_len, const void *new_bytes, size_t new_len)
9917 {
9918 	struct perf_text_poke_event text_poke_event;
9919 	size_t tot, pad;
9920 
9921 	if (!atomic_read(&nr_text_poke_events))
9922 		return;
9923 
9924 	tot  = sizeof(text_poke_event.old_len) + old_len;
9925 	tot += sizeof(text_poke_event.new_len) + new_len;
9926 	pad  = ALIGN(tot, sizeof(u64)) - tot;
9927 
9928 	text_poke_event = (struct perf_text_poke_event){
9929 		.old_bytes    = old_bytes,
9930 		.new_bytes    = new_bytes,
9931 		.pad          = pad,
9932 		.old_len      = old_len,
9933 		.new_len      = new_len,
9934 		.event_id  = {
9935 			.header = {
9936 				.type = PERF_RECORD_TEXT_POKE,
9937 				.misc = PERF_RECORD_MISC_KERNEL,
9938 				.size = sizeof(text_poke_event.event_id) + tot + pad,
9939 			},
9940 			.addr = (unsigned long)addr,
9941 		},
9942 	};
9943 
9944 	perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9945 }
9946 
perf_event_itrace_started(struct perf_event * event)9947 void perf_event_itrace_started(struct perf_event *event)
9948 {
9949 	event->attach_state |= PERF_ATTACH_ITRACE;
9950 }
9951 
perf_log_itrace_start(struct perf_event * event)9952 static void perf_log_itrace_start(struct perf_event *event)
9953 {
9954 	struct perf_output_handle handle;
9955 	struct perf_sample_data sample;
9956 	struct perf_aux_event {
9957 		struct perf_event_header        header;
9958 		u32				pid;
9959 		u32				tid;
9960 	} rec;
9961 	int ret;
9962 
9963 	if (event->parent)
9964 		event = event->parent;
9965 
9966 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9967 	    event->attach_state & PERF_ATTACH_ITRACE)
9968 		return;
9969 
9970 	rec.header.type	= PERF_RECORD_ITRACE_START;
9971 	rec.header.misc	= 0;
9972 	rec.header.size	= sizeof(rec);
9973 	rec.pid	= perf_event_pid(event, current);
9974 	rec.tid	= perf_event_tid(event, current);
9975 
9976 	perf_event_header__init_id(&rec.header, &sample, event);
9977 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9978 
9979 	if (ret)
9980 		return;
9981 
9982 	perf_output_put(&handle, rec);
9983 	perf_event__output_id_sample(event, &handle, &sample);
9984 
9985 	perf_output_end(&handle);
9986 }
9987 
perf_report_aux_output_id(struct perf_event * event,u64 hw_id)9988 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9989 {
9990 	struct perf_output_handle handle;
9991 	struct perf_sample_data sample;
9992 	struct perf_aux_event {
9993 		struct perf_event_header        header;
9994 		u64				hw_id;
9995 	} rec;
9996 	int ret;
9997 
9998 	if (event->parent)
9999 		event = event->parent;
10000 
10001 	rec.header.type	= PERF_RECORD_AUX_OUTPUT_HW_ID;
10002 	rec.header.misc	= 0;
10003 	rec.header.size	= sizeof(rec);
10004 	rec.hw_id	= hw_id;
10005 
10006 	perf_event_header__init_id(&rec.header, &sample, event);
10007 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
10008 
10009 	if (ret)
10010 		return;
10011 
10012 	perf_output_put(&handle, rec);
10013 	perf_event__output_id_sample(event, &handle, &sample);
10014 
10015 	perf_output_end(&handle);
10016 }
10017 EXPORT_SYMBOL_GPL(perf_report_aux_output_id);
10018 
10019 static int
__perf_event_account_interrupt(struct perf_event * event,int throttle)10020 __perf_event_account_interrupt(struct perf_event *event, int throttle)
10021 {
10022 	struct hw_perf_event *hwc = &event->hw;
10023 	int ret = 0;
10024 	u64 seq;
10025 
10026 	seq = __this_cpu_read(perf_throttled_seq);
10027 	if (seq != hwc->interrupts_seq) {
10028 		hwc->interrupts_seq = seq;
10029 		hwc->interrupts = 1;
10030 	} else {
10031 		hwc->interrupts++;
10032 		if (unlikely(throttle &&
10033 			     hwc->interrupts > max_samples_per_tick)) {
10034 			__this_cpu_inc(perf_throttled_count);
10035 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
10036 			hwc->interrupts = MAX_INTERRUPTS;
10037 			perf_log_throttle(event, 0);
10038 			ret = 1;
10039 		}
10040 	}
10041 
10042 	if (event->attr.freq) {
10043 		u64 now = perf_clock();
10044 		s64 delta = now - hwc->freq_time_stamp;
10045 
10046 		hwc->freq_time_stamp = now;
10047 
10048 		if (delta > 0 && delta < 2*TICK_NSEC)
10049 			perf_adjust_period(event, delta, hwc->last_period, true);
10050 	}
10051 
10052 	return ret;
10053 }
10054 
perf_event_account_interrupt(struct perf_event * event)10055 int perf_event_account_interrupt(struct perf_event *event)
10056 {
10057 	return __perf_event_account_interrupt(event, 1);
10058 }
10059 
sample_is_allowed(struct perf_event * event,struct pt_regs * regs)10060 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
10061 {
10062 	/*
10063 	 * Due to interrupt latency (AKA "skid"), we may enter the
10064 	 * kernel before taking an overflow, even if the PMU is only
10065 	 * counting user events.
10066 	 */
10067 	if (event->attr.exclude_kernel && !user_mode(regs))
10068 		return false;
10069 
10070 	return true;
10071 }
10072 
10073 #ifdef CONFIG_BPF_SYSCALL
bpf_overflow_handler(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)10074 static int bpf_overflow_handler(struct perf_event *event,
10075 				struct perf_sample_data *data,
10076 				struct pt_regs *regs)
10077 {
10078 	struct bpf_perf_event_data_kern ctx = {
10079 		.data = data,
10080 		.event = event,
10081 	};
10082 	struct bpf_prog *prog;
10083 	int ret = 0;
10084 
10085 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
10086 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
10087 		goto out;
10088 	rcu_read_lock();
10089 	prog = READ_ONCE(event->prog);
10090 	if (prog) {
10091 		perf_prepare_sample(data, event, regs);
10092 		ret = bpf_prog_run(prog, &ctx);
10093 	}
10094 	rcu_read_unlock();
10095 out:
10096 	__this_cpu_dec(bpf_prog_active);
10097 
10098 	return ret;
10099 }
10100 
perf_event_set_bpf_handler(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10101 static inline int perf_event_set_bpf_handler(struct perf_event *event,
10102 					     struct bpf_prog *prog,
10103 					     u64 bpf_cookie)
10104 {
10105 	if (event->overflow_handler_context)
10106 		/* hw breakpoint or kernel counter */
10107 		return -EINVAL;
10108 
10109 	if (event->prog)
10110 		return -EEXIST;
10111 
10112 	if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10113 		return -EINVAL;
10114 
10115 	if (event->attr.precise_ip &&
10116 	    prog->call_get_stack &&
10117 	    (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
10118 	     event->attr.exclude_callchain_kernel ||
10119 	     event->attr.exclude_callchain_user)) {
10120 		/*
10121 		 * On perf_event with precise_ip, calling bpf_get_stack()
10122 		 * may trigger unwinder warnings and occasional crashes.
10123 		 * bpf_get_[stack|stackid] works around this issue by using
10124 		 * callchain attached to perf_sample_data. If the
10125 		 * perf_event does not full (kernel and user) callchain
10126 		 * attached to perf_sample_data, do not allow attaching BPF
10127 		 * program that calls bpf_get_[stack|stackid].
10128 		 */
10129 		return -EPROTO;
10130 	}
10131 
10132 	event->prog = prog;
10133 	event->bpf_cookie = bpf_cookie;
10134 	return 0;
10135 }
10136 
perf_event_free_bpf_handler(struct perf_event * event)10137 static inline void perf_event_free_bpf_handler(struct perf_event *event)
10138 {
10139 	struct bpf_prog *prog = event->prog;
10140 
10141 	if (!prog)
10142 		return;
10143 
10144 	event->prog = NULL;
10145 	bpf_prog_put(prog);
10146 }
10147 #else
bpf_overflow_handler(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)10148 static inline int bpf_overflow_handler(struct perf_event *event,
10149 				       struct perf_sample_data *data,
10150 				       struct pt_regs *regs)
10151 {
10152 	return 1;
10153 }
10154 
perf_event_set_bpf_handler(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10155 static inline int perf_event_set_bpf_handler(struct perf_event *event,
10156 					     struct bpf_prog *prog,
10157 					     u64 bpf_cookie)
10158 {
10159 	return -EOPNOTSUPP;
10160 }
10161 
perf_event_free_bpf_handler(struct perf_event * event)10162 static inline void perf_event_free_bpf_handler(struct perf_event *event)
10163 {
10164 }
10165 #endif
10166 
10167 /*
10168  * Generic event overflow handling, sampling.
10169  */
10170 
__perf_event_overflow(struct perf_event * event,int throttle,struct perf_sample_data * data,struct pt_regs * regs)10171 static int __perf_event_overflow(struct perf_event *event,
10172 				 int throttle, struct perf_sample_data *data,
10173 				 struct pt_regs *regs)
10174 {
10175 	int events = atomic_read(&event->event_limit);
10176 	int ret = 0;
10177 
10178 	/*
10179 	 * Non-sampling counters might still use the PMI to fold short
10180 	 * hardware counters, ignore those.
10181 	 */
10182 	if (unlikely(!is_sampling_event(event)))
10183 		return 0;
10184 
10185 	ret = __perf_event_account_interrupt(event, throttle);
10186 
10187 	if (event->attr.aux_pause)
10188 		perf_event_aux_pause(event->aux_event, true);
10189 
10190 	if (event->prog && event->prog->type == BPF_PROG_TYPE_PERF_EVENT &&
10191 	    !bpf_overflow_handler(event, data, regs))
10192 		goto out;
10193 
10194 	/*
10195 	 * XXX event_limit might not quite work as expected on inherited
10196 	 * events
10197 	 */
10198 
10199 	event->pending_kill = POLL_IN;
10200 	if (events && atomic_dec_and_test(&event->event_limit)) {
10201 		ret = 1;
10202 		event->pending_kill = POLL_HUP;
10203 		perf_event_disable_inatomic(event);
10204 	}
10205 
10206 	if (event->attr.sigtrap) {
10207 		/*
10208 		 * The desired behaviour of sigtrap vs invalid samples is a bit
10209 		 * tricky; on the one hand, one should not loose the SIGTRAP if
10210 		 * it is the first event, on the other hand, we should also not
10211 		 * trigger the WARN or override the data address.
10212 		 */
10213 		bool valid_sample = sample_is_allowed(event, regs);
10214 		unsigned int pending_id = 1;
10215 		enum task_work_notify_mode notify_mode;
10216 
10217 		if (regs)
10218 			pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
10219 
10220 		notify_mode = in_nmi() ? TWA_NMI_CURRENT : TWA_RESUME;
10221 
10222 		if (!event->pending_work &&
10223 		    !task_work_add(current, &event->pending_task, notify_mode)) {
10224 			event->pending_work = pending_id;
10225 			local_inc(&event->ctx->nr_no_switch_fast);
10226 			WARN_ON_ONCE(!atomic_long_inc_not_zero(&event->refcount));
10227 
10228 			event->pending_addr = 0;
10229 			if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR))
10230 				event->pending_addr = data->addr;
10231 
10232 		} else if (event->attr.exclude_kernel && valid_sample) {
10233 			/*
10234 			 * Should not be able to return to user space without
10235 			 * consuming pending_work; with exceptions:
10236 			 *
10237 			 *  1. Where !exclude_kernel, events can overflow again
10238 			 *     in the kernel without returning to user space.
10239 			 *
10240 			 *  2. Events that can overflow again before the IRQ-
10241 			 *     work without user space progress (e.g. hrtimer).
10242 			 *     To approximate progress (with false negatives),
10243 			 *     check 32-bit hash of the current IP.
10244 			 */
10245 			WARN_ON_ONCE(event->pending_work != pending_id);
10246 		}
10247 	}
10248 
10249 	READ_ONCE(event->overflow_handler)(event, data, regs);
10250 
10251 	if (*perf_event_fasync(event) && event->pending_kill) {
10252 		event->pending_wakeup = 1;
10253 		irq_work_queue(&event->pending_irq);
10254 	}
10255 out:
10256 	if (event->attr.aux_resume)
10257 		perf_event_aux_pause(event->aux_event, false);
10258 
10259 	return ret;
10260 }
10261 
perf_event_overflow(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)10262 int perf_event_overflow(struct perf_event *event,
10263 			struct perf_sample_data *data,
10264 			struct pt_regs *regs)
10265 {
10266 	return __perf_event_overflow(event, 1, data, regs);
10267 }
10268 
10269 /*
10270  * Generic software event infrastructure
10271  */
10272 
10273 struct swevent_htable {
10274 	struct swevent_hlist		*swevent_hlist;
10275 	struct mutex			hlist_mutex;
10276 	int				hlist_refcount;
10277 };
10278 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
10279 
10280 /*
10281  * We directly increment event->count and keep a second value in
10282  * event->hw.period_left to count intervals. This period event
10283  * is kept in the range [-sample_period, 0] so that we can use the
10284  * sign as trigger.
10285  */
10286 
perf_swevent_set_period(struct perf_event * event)10287 u64 perf_swevent_set_period(struct perf_event *event)
10288 {
10289 	struct hw_perf_event *hwc = &event->hw;
10290 	u64 period = hwc->last_period;
10291 	u64 nr, offset;
10292 	s64 old, val;
10293 
10294 	hwc->last_period = hwc->sample_period;
10295 
10296 	old = local64_read(&hwc->period_left);
10297 	do {
10298 		val = old;
10299 		if (val < 0)
10300 			return 0;
10301 
10302 		nr = div64_u64(period + val, period);
10303 		offset = nr * period;
10304 		val -= offset;
10305 	} while (!local64_try_cmpxchg(&hwc->period_left, &old, val));
10306 
10307 	return nr;
10308 }
10309 
perf_swevent_overflow(struct perf_event * event,u64 overflow,struct perf_sample_data * data,struct pt_regs * regs)10310 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
10311 				    struct perf_sample_data *data,
10312 				    struct pt_regs *regs)
10313 {
10314 	struct hw_perf_event *hwc = &event->hw;
10315 	int throttle = 0;
10316 
10317 	if (!overflow)
10318 		overflow = perf_swevent_set_period(event);
10319 
10320 	if (hwc->interrupts == MAX_INTERRUPTS)
10321 		return;
10322 
10323 	for (; overflow; overflow--) {
10324 		if (__perf_event_overflow(event, throttle,
10325 					    data, regs)) {
10326 			/*
10327 			 * We inhibit the overflow from happening when
10328 			 * hwc->interrupts == MAX_INTERRUPTS.
10329 			 */
10330 			break;
10331 		}
10332 		throttle = 1;
10333 	}
10334 }
10335 
perf_swevent_event(struct perf_event * event,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)10336 static void perf_swevent_event(struct perf_event *event, u64 nr,
10337 			       struct perf_sample_data *data,
10338 			       struct pt_regs *regs)
10339 {
10340 	struct hw_perf_event *hwc = &event->hw;
10341 
10342 	local64_add(nr, &event->count);
10343 
10344 	if (!regs)
10345 		return;
10346 
10347 	if (!is_sampling_event(event))
10348 		return;
10349 
10350 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
10351 		data->period = nr;
10352 		return perf_swevent_overflow(event, 1, data, regs);
10353 	} else
10354 		data->period = event->hw.last_period;
10355 
10356 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
10357 		return perf_swevent_overflow(event, 1, data, regs);
10358 
10359 	if (local64_add_negative(nr, &hwc->period_left))
10360 		return;
10361 
10362 	perf_swevent_overflow(event, 0, data, regs);
10363 }
10364 
perf_exclude_event(struct perf_event * event,struct pt_regs * regs)10365 int perf_exclude_event(struct perf_event *event, struct pt_regs *regs)
10366 {
10367 	if (event->hw.state & PERF_HES_STOPPED)
10368 		return 1;
10369 
10370 	if (regs) {
10371 		if (event->attr.exclude_user && user_mode(regs))
10372 			return 1;
10373 
10374 		if (event->attr.exclude_kernel && !user_mode(regs))
10375 			return 1;
10376 	}
10377 
10378 	return 0;
10379 }
10380 
perf_swevent_match(struct perf_event * event,enum perf_type_id type,u32 event_id,struct perf_sample_data * data,struct pt_regs * regs)10381 static int perf_swevent_match(struct perf_event *event,
10382 				enum perf_type_id type,
10383 				u32 event_id,
10384 				struct perf_sample_data *data,
10385 				struct pt_regs *regs)
10386 {
10387 	if (event->attr.type != type)
10388 		return 0;
10389 
10390 	if (event->attr.config != event_id)
10391 		return 0;
10392 
10393 	if (perf_exclude_event(event, regs))
10394 		return 0;
10395 
10396 	return 1;
10397 }
10398 
swevent_hash(u64 type,u32 event_id)10399 static inline u64 swevent_hash(u64 type, u32 event_id)
10400 {
10401 	u64 val = event_id | (type << 32);
10402 
10403 	return hash_64(val, SWEVENT_HLIST_BITS);
10404 }
10405 
10406 static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist * hlist,u64 type,u32 event_id)10407 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
10408 {
10409 	u64 hash = swevent_hash(type, event_id);
10410 
10411 	return &hlist->heads[hash];
10412 }
10413 
10414 /* For the read side: events when they trigger */
10415 static inline struct hlist_head *
find_swevent_head_rcu(struct swevent_htable * swhash,u64 type,u32 event_id)10416 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
10417 {
10418 	struct swevent_hlist *hlist;
10419 
10420 	hlist = rcu_dereference(swhash->swevent_hlist);
10421 	if (!hlist)
10422 		return NULL;
10423 
10424 	return __find_swevent_head(hlist, type, event_id);
10425 }
10426 
10427 /* For the event head insertion and removal in the hlist */
10428 static inline struct hlist_head *
find_swevent_head(struct swevent_htable * swhash,struct perf_event * event)10429 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
10430 {
10431 	struct swevent_hlist *hlist;
10432 	u32 event_id = event->attr.config;
10433 	u64 type = event->attr.type;
10434 
10435 	/*
10436 	 * Event scheduling is always serialized against hlist allocation
10437 	 * and release. Which makes the protected version suitable here.
10438 	 * The context lock guarantees that.
10439 	 */
10440 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
10441 					  lockdep_is_held(&event->ctx->lock));
10442 	if (!hlist)
10443 		return NULL;
10444 
10445 	return __find_swevent_head(hlist, type, event_id);
10446 }
10447 
do_perf_sw_event(enum perf_type_id type,u32 event_id,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)10448 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
10449 				    u64 nr,
10450 				    struct perf_sample_data *data,
10451 				    struct pt_regs *regs)
10452 {
10453 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
10454 	struct perf_event *event;
10455 	struct hlist_head *head;
10456 
10457 	rcu_read_lock();
10458 	head = find_swevent_head_rcu(swhash, type, event_id);
10459 	if (!head)
10460 		goto end;
10461 
10462 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
10463 		if (perf_swevent_match(event, type, event_id, data, regs))
10464 			perf_swevent_event(event, nr, data, regs);
10465 	}
10466 end:
10467 	rcu_read_unlock();
10468 }
10469 
10470 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
10471 
perf_swevent_get_recursion_context(void)10472 int perf_swevent_get_recursion_context(void)
10473 {
10474 	return get_recursion_context(current->perf_recursion);
10475 }
10476 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
10477 
perf_swevent_put_recursion_context(int rctx)10478 void perf_swevent_put_recursion_context(int rctx)
10479 {
10480 	put_recursion_context(current->perf_recursion, rctx);
10481 }
10482 
___perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)10483 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
10484 {
10485 	struct perf_sample_data data;
10486 
10487 	if (WARN_ON_ONCE(!regs))
10488 		return;
10489 
10490 	perf_sample_data_init(&data, addr, 0);
10491 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
10492 }
10493 
__perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)10494 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
10495 {
10496 	int rctx;
10497 
10498 	preempt_disable_notrace();
10499 	rctx = perf_swevent_get_recursion_context();
10500 	if (unlikely(rctx < 0))
10501 		goto fail;
10502 
10503 	___perf_sw_event(event_id, nr, regs, addr);
10504 
10505 	perf_swevent_put_recursion_context(rctx);
10506 fail:
10507 	preempt_enable_notrace();
10508 }
10509 
perf_swevent_read(struct perf_event * event)10510 static void perf_swevent_read(struct perf_event *event)
10511 {
10512 }
10513 
perf_swevent_add(struct perf_event * event,int flags)10514 static int perf_swevent_add(struct perf_event *event, int flags)
10515 {
10516 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
10517 	struct hw_perf_event *hwc = &event->hw;
10518 	struct hlist_head *head;
10519 
10520 	if (is_sampling_event(event)) {
10521 		hwc->last_period = hwc->sample_period;
10522 		perf_swevent_set_period(event);
10523 	}
10524 
10525 	hwc->state = !(flags & PERF_EF_START);
10526 
10527 	head = find_swevent_head(swhash, event);
10528 	if (WARN_ON_ONCE(!head))
10529 		return -EINVAL;
10530 
10531 	hlist_add_head_rcu(&event->hlist_entry, head);
10532 	perf_event_update_userpage(event);
10533 
10534 	return 0;
10535 }
10536 
perf_swevent_del(struct perf_event * event,int flags)10537 static void perf_swevent_del(struct perf_event *event, int flags)
10538 {
10539 	hlist_del_rcu(&event->hlist_entry);
10540 }
10541 
perf_swevent_start(struct perf_event * event,int flags)10542 static void perf_swevent_start(struct perf_event *event, int flags)
10543 {
10544 	event->hw.state = 0;
10545 }
10546 
perf_swevent_stop(struct perf_event * event,int flags)10547 static void perf_swevent_stop(struct perf_event *event, int flags)
10548 {
10549 	event->hw.state = PERF_HES_STOPPED;
10550 }
10551 
10552 /* Deref the hlist from the update side */
10553 static inline struct swevent_hlist *
swevent_hlist_deref(struct swevent_htable * swhash)10554 swevent_hlist_deref(struct swevent_htable *swhash)
10555 {
10556 	return rcu_dereference_protected(swhash->swevent_hlist,
10557 					 lockdep_is_held(&swhash->hlist_mutex));
10558 }
10559 
swevent_hlist_release(struct swevent_htable * swhash)10560 static void swevent_hlist_release(struct swevent_htable *swhash)
10561 {
10562 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
10563 
10564 	if (!hlist)
10565 		return;
10566 
10567 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
10568 	kfree_rcu(hlist, rcu_head);
10569 }
10570 
swevent_hlist_put_cpu(int cpu)10571 static void swevent_hlist_put_cpu(int cpu)
10572 {
10573 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10574 
10575 	mutex_lock(&swhash->hlist_mutex);
10576 
10577 	if (!--swhash->hlist_refcount)
10578 		swevent_hlist_release(swhash);
10579 
10580 	mutex_unlock(&swhash->hlist_mutex);
10581 }
10582 
swevent_hlist_put(void)10583 static void swevent_hlist_put(void)
10584 {
10585 	int cpu;
10586 
10587 	for_each_possible_cpu(cpu)
10588 		swevent_hlist_put_cpu(cpu);
10589 }
10590 
swevent_hlist_get_cpu(int cpu)10591 static int swevent_hlist_get_cpu(int cpu)
10592 {
10593 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10594 	int err = 0;
10595 
10596 	mutex_lock(&swhash->hlist_mutex);
10597 	if (!swevent_hlist_deref(swhash) &&
10598 	    cpumask_test_cpu(cpu, perf_online_mask)) {
10599 		struct swevent_hlist *hlist;
10600 
10601 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
10602 		if (!hlist) {
10603 			err = -ENOMEM;
10604 			goto exit;
10605 		}
10606 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
10607 	}
10608 	swhash->hlist_refcount++;
10609 exit:
10610 	mutex_unlock(&swhash->hlist_mutex);
10611 
10612 	return err;
10613 }
10614 
swevent_hlist_get(void)10615 static int swevent_hlist_get(void)
10616 {
10617 	int err, cpu, failed_cpu;
10618 
10619 	mutex_lock(&pmus_lock);
10620 	for_each_possible_cpu(cpu) {
10621 		err = swevent_hlist_get_cpu(cpu);
10622 		if (err) {
10623 			failed_cpu = cpu;
10624 			goto fail;
10625 		}
10626 	}
10627 	mutex_unlock(&pmus_lock);
10628 	return 0;
10629 fail:
10630 	for_each_possible_cpu(cpu) {
10631 		if (cpu == failed_cpu)
10632 			break;
10633 		swevent_hlist_put_cpu(cpu);
10634 	}
10635 	mutex_unlock(&pmus_lock);
10636 	return err;
10637 }
10638 
10639 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
10640 
sw_perf_event_destroy(struct perf_event * event)10641 static void sw_perf_event_destroy(struct perf_event *event)
10642 {
10643 	u64 event_id = event->attr.config;
10644 
10645 	WARN_ON(event->parent);
10646 
10647 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
10648 	swevent_hlist_put();
10649 }
10650 
10651 static struct pmu perf_cpu_clock; /* fwd declaration */
10652 static struct pmu perf_task_clock;
10653 
perf_swevent_init(struct perf_event * event)10654 static int perf_swevent_init(struct perf_event *event)
10655 {
10656 	u64 event_id = event->attr.config;
10657 
10658 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10659 		return -ENOENT;
10660 
10661 	/*
10662 	 * no branch sampling for software events
10663 	 */
10664 	if (has_branch_stack(event))
10665 		return -EOPNOTSUPP;
10666 
10667 	switch (event_id) {
10668 	case PERF_COUNT_SW_CPU_CLOCK:
10669 		event->attr.type = perf_cpu_clock.type;
10670 		return -ENOENT;
10671 	case PERF_COUNT_SW_TASK_CLOCK:
10672 		event->attr.type = perf_task_clock.type;
10673 		return -ENOENT;
10674 
10675 	default:
10676 		break;
10677 	}
10678 
10679 	if (event_id >= PERF_COUNT_SW_MAX)
10680 		return -ENOENT;
10681 
10682 	if (!event->parent) {
10683 		int err;
10684 
10685 		err = swevent_hlist_get();
10686 		if (err)
10687 			return err;
10688 
10689 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
10690 		event->destroy = sw_perf_event_destroy;
10691 	}
10692 
10693 	return 0;
10694 }
10695 
10696 static struct pmu perf_swevent = {
10697 	.task_ctx_nr	= perf_sw_context,
10698 
10699 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10700 
10701 	.event_init	= perf_swevent_init,
10702 	.add		= perf_swevent_add,
10703 	.del		= perf_swevent_del,
10704 	.start		= perf_swevent_start,
10705 	.stop		= perf_swevent_stop,
10706 	.read		= perf_swevent_read,
10707 };
10708 
10709 #ifdef CONFIG_EVENT_TRACING
10710 
tp_perf_event_destroy(struct perf_event * event)10711 static void tp_perf_event_destroy(struct perf_event *event)
10712 {
10713 	perf_trace_destroy(event);
10714 }
10715 
perf_tp_event_init(struct perf_event * event)10716 static int perf_tp_event_init(struct perf_event *event)
10717 {
10718 	int err;
10719 
10720 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
10721 		return -ENOENT;
10722 
10723 	/*
10724 	 * no branch sampling for tracepoint events
10725 	 */
10726 	if (has_branch_stack(event))
10727 		return -EOPNOTSUPP;
10728 
10729 	err = perf_trace_init(event);
10730 	if (err)
10731 		return err;
10732 
10733 	event->destroy = tp_perf_event_destroy;
10734 
10735 	return 0;
10736 }
10737 
10738 static struct pmu perf_tracepoint = {
10739 	.task_ctx_nr	= perf_sw_context,
10740 
10741 	.event_init	= perf_tp_event_init,
10742 	.add		= perf_trace_add,
10743 	.del		= perf_trace_del,
10744 	.start		= perf_swevent_start,
10745 	.stop		= perf_swevent_stop,
10746 	.read		= perf_swevent_read,
10747 };
10748 
perf_tp_filter_match(struct perf_event * event,struct perf_raw_record * raw)10749 static int perf_tp_filter_match(struct perf_event *event,
10750 				struct perf_raw_record *raw)
10751 {
10752 	void *record = raw->frag.data;
10753 
10754 	/* only top level events have filters set */
10755 	if (event->parent)
10756 		event = event->parent;
10757 
10758 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
10759 		return 1;
10760 	return 0;
10761 }
10762 
perf_tp_event_match(struct perf_event * event,struct perf_raw_record * raw,struct pt_regs * regs)10763 static int perf_tp_event_match(struct perf_event *event,
10764 				struct perf_raw_record *raw,
10765 				struct pt_regs *regs)
10766 {
10767 	if (event->hw.state & PERF_HES_STOPPED)
10768 		return 0;
10769 	/*
10770 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
10771 	 */
10772 	if (event->attr.exclude_kernel && !user_mode(regs))
10773 		return 0;
10774 
10775 	if (!perf_tp_filter_match(event, raw))
10776 		return 0;
10777 
10778 	return 1;
10779 }
10780 
perf_trace_run_bpf_submit(void * raw_data,int size,int rctx,struct trace_event_call * call,u64 count,struct pt_regs * regs,struct hlist_head * head,struct task_struct * task)10781 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
10782 			       struct trace_event_call *call, u64 count,
10783 			       struct pt_regs *regs, struct hlist_head *head,
10784 			       struct task_struct *task)
10785 {
10786 	if (bpf_prog_array_valid(call)) {
10787 		*(struct pt_regs **)raw_data = regs;
10788 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
10789 			perf_swevent_put_recursion_context(rctx);
10790 			return;
10791 		}
10792 	}
10793 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
10794 		      rctx, task);
10795 }
10796 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
10797 
__perf_tp_event_target_task(u64 count,void * record,struct pt_regs * regs,struct perf_sample_data * data,struct perf_raw_record * raw,struct perf_event * event)10798 static void __perf_tp_event_target_task(u64 count, void *record,
10799 					struct pt_regs *regs,
10800 					struct perf_sample_data *data,
10801 					struct perf_raw_record *raw,
10802 					struct perf_event *event)
10803 {
10804 	struct trace_entry *entry = record;
10805 
10806 	if (event->attr.config != entry->type)
10807 		return;
10808 	/* Cannot deliver synchronous signal to other task. */
10809 	if (event->attr.sigtrap)
10810 		return;
10811 	if (perf_tp_event_match(event, raw, regs)) {
10812 		perf_sample_data_init(data, 0, 0);
10813 		perf_sample_save_raw_data(data, event, raw);
10814 		perf_swevent_event(event, count, data, regs);
10815 	}
10816 }
10817 
perf_tp_event_target_task(u64 count,void * record,struct pt_regs * regs,struct perf_sample_data * data,struct perf_raw_record * raw,struct perf_event_context * ctx)10818 static void perf_tp_event_target_task(u64 count, void *record,
10819 				      struct pt_regs *regs,
10820 				      struct perf_sample_data *data,
10821 				      struct perf_raw_record *raw,
10822 				      struct perf_event_context *ctx)
10823 {
10824 	unsigned int cpu = smp_processor_id();
10825 	struct pmu *pmu = &perf_tracepoint;
10826 	struct perf_event *event, *sibling;
10827 
10828 	perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) {
10829 		__perf_tp_event_target_task(count, record, regs, data, raw, event);
10830 		for_each_sibling_event(sibling, event)
10831 			__perf_tp_event_target_task(count, record, regs, data, raw, sibling);
10832 	}
10833 
10834 	perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) {
10835 		__perf_tp_event_target_task(count, record, regs, data, raw, event);
10836 		for_each_sibling_event(sibling, event)
10837 			__perf_tp_event_target_task(count, record, regs, data, raw, sibling);
10838 	}
10839 }
10840 
perf_tp_event(u16 event_type,u64 count,void * record,int entry_size,struct pt_regs * regs,struct hlist_head * head,int rctx,struct task_struct * task)10841 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
10842 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
10843 		   struct task_struct *task)
10844 {
10845 	struct perf_sample_data data;
10846 	struct perf_event *event;
10847 
10848 	struct perf_raw_record raw = {
10849 		.frag = {
10850 			.size = entry_size,
10851 			.data = record,
10852 		},
10853 	};
10854 
10855 	perf_trace_buf_update(record, event_type);
10856 
10857 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
10858 		if (perf_tp_event_match(event, &raw, regs)) {
10859 			/*
10860 			 * Here use the same on-stack perf_sample_data,
10861 			 * some members in data are event-specific and
10862 			 * need to be re-computed for different sweveents.
10863 			 * Re-initialize data->sample_flags safely to avoid
10864 			 * the problem that next event skips preparing data
10865 			 * because data->sample_flags is set.
10866 			 */
10867 			perf_sample_data_init(&data, 0, 0);
10868 			perf_sample_save_raw_data(&data, event, &raw);
10869 			perf_swevent_event(event, count, &data, regs);
10870 		}
10871 	}
10872 
10873 	/*
10874 	 * If we got specified a target task, also iterate its context and
10875 	 * deliver this event there too.
10876 	 */
10877 	if (task && task != current) {
10878 		struct perf_event_context *ctx;
10879 
10880 		rcu_read_lock();
10881 		ctx = rcu_dereference(task->perf_event_ctxp);
10882 		if (!ctx)
10883 			goto unlock;
10884 
10885 		raw_spin_lock(&ctx->lock);
10886 		perf_tp_event_target_task(count, record, regs, &data, &raw, ctx);
10887 		raw_spin_unlock(&ctx->lock);
10888 unlock:
10889 		rcu_read_unlock();
10890 	}
10891 
10892 	perf_swevent_put_recursion_context(rctx);
10893 }
10894 EXPORT_SYMBOL_GPL(perf_tp_event);
10895 
10896 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
10897 /*
10898  * Flags in config, used by dynamic PMU kprobe and uprobe
10899  * The flags should match following PMU_FORMAT_ATTR().
10900  *
10901  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
10902  *                               if not set, create kprobe/uprobe
10903  *
10904  * The following values specify a reference counter (or semaphore in the
10905  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
10906  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
10907  *
10908  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
10909  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
10910  */
10911 enum perf_probe_config {
10912 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
10913 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
10914 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
10915 };
10916 
10917 PMU_FORMAT_ATTR(retprobe, "config:0");
10918 #endif
10919 
10920 #ifdef CONFIG_KPROBE_EVENTS
10921 static struct attribute *kprobe_attrs[] = {
10922 	&format_attr_retprobe.attr,
10923 	NULL,
10924 };
10925 
10926 static struct attribute_group kprobe_format_group = {
10927 	.name = "format",
10928 	.attrs = kprobe_attrs,
10929 };
10930 
10931 static const struct attribute_group *kprobe_attr_groups[] = {
10932 	&kprobe_format_group,
10933 	NULL,
10934 };
10935 
10936 static int perf_kprobe_event_init(struct perf_event *event);
10937 static struct pmu perf_kprobe = {
10938 	.task_ctx_nr	= perf_sw_context,
10939 	.event_init	= perf_kprobe_event_init,
10940 	.add		= perf_trace_add,
10941 	.del		= perf_trace_del,
10942 	.start		= perf_swevent_start,
10943 	.stop		= perf_swevent_stop,
10944 	.read		= perf_swevent_read,
10945 	.attr_groups	= kprobe_attr_groups,
10946 };
10947 
perf_kprobe_event_init(struct perf_event * event)10948 static int perf_kprobe_event_init(struct perf_event *event)
10949 {
10950 	int err;
10951 	bool is_retprobe;
10952 
10953 	if (event->attr.type != perf_kprobe.type)
10954 		return -ENOENT;
10955 
10956 	if (!perfmon_capable())
10957 		return -EACCES;
10958 
10959 	/*
10960 	 * no branch sampling for probe events
10961 	 */
10962 	if (has_branch_stack(event))
10963 		return -EOPNOTSUPP;
10964 
10965 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10966 	err = perf_kprobe_init(event, is_retprobe);
10967 	if (err)
10968 		return err;
10969 
10970 	event->destroy = perf_kprobe_destroy;
10971 
10972 	return 0;
10973 }
10974 #endif /* CONFIG_KPROBE_EVENTS */
10975 
10976 #ifdef CONFIG_UPROBE_EVENTS
10977 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
10978 
10979 static struct attribute *uprobe_attrs[] = {
10980 	&format_attr_retprobe.attr,
10981 	&format_attr_ref_ctr_offset.attr,
10982 	NULL,
10983 };
10984 
10985 static struct attribute_group uprobe_format_group = {
10986 	.name = "format",
10987 	.attrs = uprobe_attrs,
10988 };
10989 
10990 static const struct attribute_group *uprobe_attr_groups[] = {
10991 	&uprobe_format_group,
10992 	NULL,
10993 };
10994 
10995 static int perf_uprobe_event_init(struct perf_event *event);
10996 static struct pmu perf_uprobe = {
10997 	.task_ctx_nr	= perf_sw_context,
10998 	.event_init	= perf_uprobe_event_init,
10999 	.add		= perf_trace_add,
11000 	.del		= perf_trace_del,
11001 	.start		= perf_swevent_start,
11002 	.stop		= perf_swevent_stop,
11003 	.read		= perf_swevent_read,
11004 	.attr_groups	= uprobe_attr_groups,
11005 };
11006 
perf_uprobe_event_init(struct perf_event * event)11007 static int perf_uprobe_event_init(struct perf_event *event)
11008 {
11009 	int err;
11010 	unsigned long ref_ctr_offset;
11011 	bool is_retprobe;
11012 
11013 	if (event->attr.type != perf_uprobe.type)
11014 		return -ENOENT;
11015 
11016 	if (!perfmon_capable())
11017 		return -EACCES;
11018 
11019 	/*
11020 	 * no branch sampling for probe events
11021 	 */
11022 	if (has_branch_stack(event))
11023 		return -EOPNOTSUPP;
11024 
11025 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
11026 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
11027 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
11028 	if (err)
11029 		return err;
11030 
11031 	event->destroy = perf_uprobe_destroy;
11032 
11033 	return 0;
11034 }
11035 #endif /* CONFIG_UPROBE_EVENTS */
11036 
perf_tp_register(void)11037 static inline void perf_tp_register(void)
11038 {
11039 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
11040 #ifdef CONFIG_KPROBE_EVENTS
11041 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
11042 #endif
11043 #ifdef CONFIG_UPROBE_EVENTS
11044 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
11045 #endif
11046 }
11047 
perf_event_free_filter(struct perf_event * event)11048 static void perf_event_free_filter(struct perf_event *event)
11049 {
11050 	ftrace_profile_free_filter(event);
11051 }
11052 
11053 /*
11054  * returns true if the event is a tracepoint, or a kprobe/upprobe created
11055  * with perf_event_open()
11056  */
perf_event_is_tracing(struct perf_event * event)11057 static inline bool perf_event_is_tracing(struct perf_event *event)
11058 {
11059 	if (event->pmu == &perf_tracepoint)
11060 		return true;
11061 #ifdef CONFIG_KPROBE_EVENTS
11062 	if (event->pmu == &perf_kprobe)
11063 		return true;
11064 #endif
11065 #ifdef CONFIG_UPROBE_EVENTS
11066 	if (event->pmu == &perf_uprobe)
11067 		return true;
11068 #endif
11069 	return false;
11070 }
11071 
perf_event_set_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)11072 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
11073 			    u64 bpf_cookie)
11074 {
11075 	bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
11076 
11077 	if (!perf_event_is_tracing(event))
11078 		return perf_event_set_bpf_handler(event, prog, bpf_cookie);
11079 
11080 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
11081 	is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
11082 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
11083 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
11084 	if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
11085 		/* bpf programs can only be attached to u/kprobe or tracepoint */
11086 		return -EINVAL;
11087 
11088 	if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
11089 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
11090 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
11091 		return -EINVAL;
11092 
11093 	if (prog->type == BPF_PROG_TYPE_KPROBE && prog->sleepable && !is_uprobe)
11094 		/* only uprobe programs are allowed to be sleepable */
11095 		return -EINVAL;
11096 
11097 	/* Kprobe override only works for kprobes, not uprobes. */
11098 	if (prog->kprobe_override && !is_kprobe)
11099 		return -EINVAL;
11100 
11101 	if (is_tracepoint || is_syscall_tp) {
11102 		int off = trace_event_get_offsets(event->tp_event);
11103 
11104 		if (prog->aux->max_ctx_offset > off)
11105 			return -EACCES;
11106 	}
11107 
11108 	return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
11109 }
11110 
perf_event_free_bpf_prog(struct perf_event * event)11111 void perf_event_free_bpf_prog(struct perf_event *event)
11112 {
11113 	if (!event->prog)
11114 		return;
11115 
11116 	if (!perf_event_is_tracing(event)) {
11117 		perf_event_free_bpf_handler(event);
11118 		return;
11119 	}
11120 	perf_event_detach_bpf_prog(event);
11121 }
11122 
11123 #else
11124 
perf_tp_register(void)11125 static inline void perf_tp_register(void)
11126 {
11127 }
11128 
perf_event_free_filter(struct perf_event * event)11129 static void perf_event_free_filter(struct perf_event *event)
11130 {
11131 }
11132 
perf_event_set_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)11133 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
11134 			    u64 bpf_cookie)
11135 {
11136 	return -ENOENT;
11137 }
11138 
perf_event_free_bpf_prog(struct perf_event * event)11139 void perf_event_free_bpf_prog(struct perf_event *event)
11140 {
11141 }
11142 #endif /* CONFIG_EVENT_TRACING */
11143 
11144 #ifdef CONFIG_HAVE_HW_BREAKPOINT
perf_bp_event(struct perf_event * bp,void * data)11145 void perf_bp_event(struct perf_event *bp, void *data)
11146 {
11147 	struct perf_sample_data sample;
11148 	struct pt_regs *regs = data;
11149 
11150 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
11151 
11152 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
11153 		perf_swevent_event(bp, 1, &sample, regs);
11154 }
11155 #endif
11156 
11157 /*
11158  * Allocate a new address filter
11159  */
11160 static struct perf_addr_filter *
perf_addr_filter_new(struct perf_event * event,struct list_head * filters)11161 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
11162 {
11163 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
11164 	struct perf_addr_filter *filter;
11165 
11166 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
11167 	if (!filter)
11168 		return NULL;
11169 
11170 	INIT_LIST_HEAD(&filter->entry);
11171 	list_add_tail(&filter->entry, filters);
11172 
11173 	return filter;
11174 }
11175 
free_filters_list(struct list_head * filters)11176 static void free_filters_list(struct list_head *filters)
11177 {
11178 	struct perf_addr_filter *filter, *iter;
11179 
11180 	list_for_each_entry_safe(filter, iter, filters, entry) {
11181 		path_put(&filter->path);
11182 		list_del(&filter->entry);
11183 		kfree(filter);
11184 	}
11185 }
11186 
11187 /*
11188  * Free existing address filters and optionally install new ones
11189  */
perf_addr_filters_splice(struct perf_event * event,struct list_head * head)11190 static void perf_addr_filters_splice(struct perf_event *event,
11191 				     struct list_head *head)
11192 {
11193 	unsigned long flags;
11194 	LIST_HEAD(list);
11195 
11196 	if (!has_addr_filter(event))
11197 		return;
11198 
11199 	/* don't bother with children, they don't have their own filters */
11200 	if (event->parent)
11201 		return;
11202 
11203 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
11204 
11205 	list_splice_init(&event->addr_filters.list, &list);
11206 	if (head)
11207 		list_splice(head, &event->addr_filters.list);
11208 
11209 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
11210 
11211 	free_filters_list(&list);
11212 }
11213 
perf_free_addr_filters(struct perf_event * event)11214 static void perf_free_addr_filters(struct perf_event *event)
11215 {
11216 	/*
11217 	 * Used during free paths, there is no concurrency.
11218 	 */
11219 	if (list_empty(&event->addr_filters.list))
11220 		return;
11221 
11222 	perf_addr_filters_splice(event, NULL);
11223 }
11224 
11225 /*
11226  * Scan through mm's vmas and see if one of them matches the
11227  * @filter; if so, adjust filter's address range.
11228  * Called with mm::mmap_lock down for reading.
11229  */
perf_addr_filter_apply(struct perf_addr_filter * filter,struct mm_struct * mm,struct perf_addr_filter_range * fr)11230 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
11231 				   struct mm_struct *mm,
11232 				   struct perf_addr_filter_range *fr)
11233 {
11234 	struct vm_area_struct *vma;
11235 	VMA_ITERATOR(vmi, mm, 0);
11236 
11237 	for_each_vma(vmi, vma) {
11238 		if (!vma->vm_file)
11239 			continue;
11240 
11241 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
11242 			return;
11243 	}
11244 }
11245 
11246 /*
11247  * Update event's address range filters based on the
11248  * task's existing mappings, if any.
11249  */
perf_event_addr_filters_apply(struct perf_event * event)11250 static void perf_event_addr_filters_apply(struct perf_event *event)
11251 {
11252 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11253 	struct task_struct *task = READ_ONCE(event->ctx->task);
11254 	struct perf_addr_filter *filter;
11255 	struct mm_struct *mm = NULL;
11256 	unsigned int count = 0;
11257 	unsigned long flags;
11258 
11259 	/*
11260 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
11261 	 * will stop on the parent's child_mutex that our caller is also holding
11262 	 */
11263 	if (task == TASK_TOMBSTONE)
11264 		return;
11265 
11266 	if (ifh->nr_file_filters) {
11267 		mm = get_task_mm(task);
11268 		if (!mm)
11269 			goto restart;
11270 
11271 		mmap_read_lock(mm);
11272 	}
11273 
11274 	raw_spin_lock_irqsave(&ifh->lock, flags);
11275 	list_for_each_entry(filter, &ifh->list, entry) {
11276 		if (filter->path.dentry) {
11277 			/*
11278 			 * Adjust base offset if the filter is associated to a
11279 			 * binary that needs to be mapped:
11280 			 */
11281 			event->addr_filter_ranges[count].start = 0;
11282 			event->addr_filter_ranges[count].size = 0;
11283 
11284 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
11285 		} else {
11286 			event->addr_filter_ranges[count].start = filter->offset;
11287 			event->addr_filter_ranges[count].size  = filter->size;
11288 		}
11289 
11290 		count++;
11291 	}
11292 
11293 	event->addr_filters_gen++;
11294 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
11295 
11296 	if (ifh->nr_file_filters) {
11297 		mmap_read_unlock(mm);
11298 
11299 		mmput(mm);
11300 	}
11301 
11302 restart:
11303 	perf_event_stop(event, 1);
11304 }
11305 
11306 /*
11307  * Address range filtering: limiting the data to certain
11308  * instruction address ranges. Filters are ioctl()ed to us from
11309  * userspace as ascii strings.
11310  *
11311  * Filter string format:
11312  *
11313  * ACTION RANGE_SPEC
11314  * where ACTION is one of the
11315  *  * "filter": limit the trace to this region
11316  *  * "start": start tracing from this address
11317  *  * "stop": stop tracing at this address/region;
11318  * RANGE_SPEC is
11319  *  * for kernel addresses: <start address>[/<size>]
11320  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
11321  *
11322  * if <size> is not specified or is zero, the range is treated as a single
11323  * address; not valid for ACTION=="filter".
11324  */
11325 enum {
11326 	IF_ACT_NONE = -1,
11327 	IF_ACT_FILTER,
11328 	IF_ACT_START,
11329 	IF_ACT_STOP,
11330 	IF_SRC_FILE,
11331 	IF_SRC_KERNEL,
11332 	IF_SRC_FILEADDR,
11333 	IF_SRC_KERNELADDR,
11334 };
11335 
11336 enum {
11337 	IF_STATE_ACTION = 0,
11338 	IF_STATE_SOURCE,
11339 	IF_STATE_END,
11340 };
11341 
11342 static const match_table_t if_tokens = {
11343 	{ IF_ACT_FILTER,	"filter" },
11344 	{ IF_ACT_START,		"start" },
11345 	{ IF_ACT_STOP,		"stop" },
11346 	{ IF_SRC_FILE,		"%u/%u@%s" },
11347 	{ IF_SRC_KERNEL,	"%u/%u" },
11348 	{ IF_SRC_FILEADDR,	"%u@%s" },
11349 	{ IF_SRC_KERNELADDR,	"%u" },
11350 	{ IF_ACT_NONE,		NULL },
11351 };
11352 
11353 /*
11354  * Address filter string parser
11355  */
11356 static int
perf_event_parse_addr_filter(struct perf_event * event,char * fstr,struct list_head * filters)11357 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
11358 			     struct list_head *filters)
11359 {
11360 	struct perf_addr_filter *filter = NULL;
11361 	char *start, *orig, *filename = NULL;
11362 	substring_t args[MAX_OPT_ARGS];
11363 	int state = IF_STATE_ACTION, token;
11364 	unsigned int kernel = 0;
11365 	int ret = -EINVAL;
11366 
11367 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
11368 	if (!fstr)
11369 		return -ENOMEM;
11370 
11371 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
11372 		static const enum perf_addr_filter_action_t actions[] = {
11373 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
11374 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
11375 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
11376 		};
11377 		ret = -EINVAL;
11378 
11379 		if (!*start)
11380 			continue;
11381 
11382 		/* filter definition begins */
11383 		if (state == IF_STATE_ACTION) {
11384 			filter = perf_addr_filter_new(event, filters);
11385 			if (!filter)
11386 				goto fail;
11387 		}
11388 
11389 		token = match_token(start, if_tokens, args);
11390 		switch (token) {
11391 		case IF_ACT_FILTER:
11392 		case IF_ACT_START:
11393 		case IF_ACT_STOP:
11394 			if (state != IF_STATE_ACTION)
11395 				goto fail;
11396 
11397 			filter->action = actions[token];
11398 			state = IF_STATE_SOURCE;
11399 			break;
11400 
11401 		case IF_SRC_KERNELADDR:
11402 		case IF_SRC_KERNEL:
11403 			kernel = 1;
11404 			fallthrough;
11405 
11406 		case IF_SRC_FILEADDR:
11407 		case IF_SRC_FILE:
11408 			if (state != IF_STATE_SOURCE)
11409 				goto fail;
11410 
11411 			*args[0].to = 0;
11412 			ret = kstrtoul(args[0].from, 0, &filter->offset);
11413 			if (ret)
11414 				goto fail;
11415 
11416 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
11417 				*args[1].to = 0;
11418 				ret = kstrtoul(args[1].from, 0, &filter->size);
11419 				if (ret)
11420 					goto fail;
11421 			}
11422 
11423 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
11424 				int fpos = token == IF_SRC_FILE ? 2 : 1;
11425 
11426 				kfree(filename);
11427 				filename = match_strdup(&args[fpos]);
11428 				if (!filename) {
11429 					ret = -ENOMEM;
11430 					goto fail;
11431 				}
11432 			}
11433 
11434 			state = IF_STATE_END;
11435 			break;
11436 
11437 		default:
11438 			goto fail;
11439 		}
11440 
11441 		/*
11442 		 * Filter definition is fully parsed, validate and install it.
11443 		 * Make sure that it doesn't contradict itself or the event's
11444 		 * attribute.
11445 		 */
11446 		if (state == IF_STATE_END) {
11447 			ret = -EINVAL;
11448 
11449 			/*
11450 			 * ACTION "filter" must have a non-zero length region
11451 			 * specified.
11452 			 */
11453 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
11454 			    !filter->size)
11455 				goto fail;
11456 
11457 			if (!kernel) {
11458 				if (!filename)
11459 					goto fail;
11460 
11461 				/*
11462 				 * For now, we only support file-based filters
11463 				 * in per-task events; doing so for CPU-wide
11464 				 * events requires additional context switching
11465 				 * trickery, since same object code will be
11466 				 * mapped at different virtual addresses in
11467 				 * different processes.
11468 				 */
11469 				ret = -EOPNOTSUPP;
11470 				if (!event->ctx->task)
11471 					goto fail;
11472 
11473 				/* look up the path and grab its inode */
11474 				ret = kern_path(filename, LOOKUP_FOLLOW,
11475 						&filter->path);
11476 				if (ret)
11477 					goto fail;
11478 
11479 				ret = -EINVAL;
11480 				if (!filter->path.dentry ||
11481 				    !S_ISREG(d_inode(filter->path.dentry)
11482 					     ->i_mode))
11483 					goto fail;
11484 
11485 				event->addr_filters.nr_file_filters++;
11486 			}
11487 
11488 			/* ready to consume more filters */
11489 			kfree(filename);
11490 			filename = NULL;
11491 			state = IF_STATE_ACTION;
11492 			filter = NULL;
11493 			kernel = 0;
11494 		}
11495 	}
11496 
11497 	if (state != IF_STATE_ACTION)
11498 		goto fail;
11499 
11500 	kfree(filename);
11501 	kfree(orig);
11502 
11503 	return 0;
11504 
11505 fail:
11506 	kfree(filename);
11507 	free_filters_list(filters);
11508 	kfree(orig);
11509 
11510 	return ret;
11511 }
11512 
11513 static int
perf_event_set_addr_filter(struct perf_event * event,char * filter_str)11514 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
11515 {
11516 	LIST_HEAD(filters);
11517 	int ret;
11518 
11519 	/*
11520 	 * Since this is called in perf_ioctl() path, we're already holding
11521 	 * ctx::mutex.
11522 	 */
11523 	lockdep_assert_held(&event->ctx->mutex);
11524 
11525 	if (WARN_ON_ONCE(event->parent))
11526 		return -EINVAL;
11527 
11528 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
11529 	if (ret)
11530 		goto fail_clear_files;
11531 
11532 	ret = event->pmu->addr_filters_validate(&filters);
11533 	if (ret)
11534 		goto fail_free_filters;
11535 
11536 	/* remove existing filters, if any */
11537 	perf_addr_filters_splice(event, &filters);
11538 
11539 	/* install new filters */
11540 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
11541 
11542 	return ret;
11543 
11544 fail_free_filters:
11545 	free_filters_list(&filters);
11546 
11547 fail_clear_files:
11548 	event->addr_filters.nr_file_filters = 0;
11549 
11550 	return ret;
11551 }
11552 
perf_event_set_filter(struct perf_event * event,void __user * arg)11553 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
11554 {
11555 	int ret = -EINVAL;
11556 	char *filter_str;
11557 
11558 	filter_str = strndup_user(arg, PAGE_SIZE);
11559 	if (IS_ERR(filter_str))
11560 		return PTR_ERR(filter_str);
11561 
11562 #ifdef CONFIG_EVENT_TRACING
11563 	if (perf_event_is_tracing(event)) {
11564 		struct perf_event_context *ctx = event->ctx;
11565 
11566 		/*
11567 		 * Beware, here be dragons!!
11568 		 *
11569 		 * the tracepoint muck will deadlock against ctx->mutex, but
11570 		 * the tracepoint stuff does not actually need it. So
11571 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
11572 		 * already have a reference on ctx.
11573 		 *
11574 		 * This can result in event getting moved to a different ctx,
11575 		 * but that does not affect the tracepoint state.
11576 		 */
11577 		mutex_unlock(&ctx->mutex);
11578 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
11579 		mutex_lock(&ctx->mutex);
11580 	} else
11581 #endif
11582 	if (has_addr_filter(event))
11583 		ret = perf_event_set_addr_filter(event, filter_str);
11584 
11585 	kfree(filter_str);
11586 	return ret;
11587 }
11588 
11589 /*
11590  * hrtimer based swevent callback
11591  */
11592 
perf_swevent_hrtimer(struct hrtimer * hrtimer)11593 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
11594 {
11595 	enum hrtimer_restart ret = HRTIMER_RESTART;
11596 	struct perf_sample_data data;
11597 	struct pt_regs *regs;
11598 	struct perf_event *event;
11599 	u64 period;
11600 
11601 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
11602 
11603 	if (event->state != PERF_EVENT_STATE_ACTIVE)
11604 		return HRTIMER_NORESTART;
11605 
11606 	event->pmu->read(event);
11607 
11608 	perf_sample_data_init(&data, 0, event->hw.last_period);
11609 	regs = get_irq_regs();
11610 
11611 	if (regs && !perf_exclude_event(event, regs)) {
11612 		if (!(event->attr.exclude_idle && is_idle_task(current)))
11613 			if (__perf_event_overflow(event, 1, &data, regs))
11614 				ret = HRTIMER_NORESTART;
11615 	}
11616 
11617 	period = max_t(u64, 10000, event->hw.sample_period);
11618 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
11619 
11620 	return ret;
11621 }
11622 
perf_swevent_start_hrtimer(struct perf_event * event)11623 static void perf_swevent_start_hrtimer(struct perf_event *event)
11624 {
11625 	struct hw_perf_event *hwc = &event->hw;
11626 	s64 period;
11627 
11628 	if (!is_sampling_event(event))
11629 		return;
11630 
11631 	period = local64_read(&hwc->period_left);
11632 	if (period) {
11633 		if (period < 0)
11634 			period = 10000;
11635 
11636 		local64_set(&hwc->period_left, 0);
11637 	} else {
11638 		period = max_t(u64, 10000, hwc->sample_period);
11639 	}
11640 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
11641 		      HRTIMER_MODE_REL_PINNED_HARD);
11642 }
11643 
perf_swevent_cancel_hrtimer(struct perf_event * event)11644 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
11645 {
11646 	struct hw_perf_event *hwc = &event->hw;
11647 
11648 	if (is_sampling_event(event)) {
11649 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
11650 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
11651 
11652 		hrtimer_cancel(&hwc->hrtimer);
11653 	}
11654 }
11655 
perf_swevent_init_hrtimer(struct perf_event * event)11656 static void perf_swevent_init_hrtimer(struct perf_event *event)
11657 {
11658 	struct hw_perf_event *hwc = &event->hw;
11659 
11660 	if (!is_sampling_event(event))
11661 		return;
11662 
11663 	hrtimer_setup(&hwc->hrtimer, perf_swevent_hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
11664 
11665 	/*
11666 	 * Since hrtimers have a fixed rate, we can do a static freq->period
11667 	 * mapping and avoid the whole period adjust feedback stuff.
11668 	 */
11669 	if (event->attr.freq) {
11670 		long freq = event->attr.sample_freq;
11671 
11672 		event->attr.sample_period = NSEC_PER_SEC / freq;
11673 		hwc->sample_period = event->attr.sample_period;
11674 		local64_set(&hwc->period_left, hwc->sample_period);
11675 		hwc->last_period = hwc->sample_period;
11676 		event->attr.freq = 0;
11677 	}
11678 }
11679 
11680 /*
11681  * Software event: cpu wall time clock
11682  */
11683 
cpu_clock_event_update(struct perf_event * event)11684 static void cpu_clock_event_update(struct perf_event *event)
11685 {
11686 	s64 prev;
11687 	u64 now;
11688 
11689 	now = local_clock();
11690 	prev = local64_xchg(&event->hw.prev_count, now);
11691 	local64_add(now - prev, &event->count);
11692 }
11693 
cpu_clock_event_start(struct perf_event * event,int flags)11694 static void cpu_clock_event_start(struct perf_event *event, int flags)
11695 {
11696 	local64_set(&event->hw.prev_count, local_clock());
11697 	perf_swevent_start_hrtimer(event);
11698 }
11699 
cpu_clock_event_stop(struct perf_event * event,int flags)11700 static void cpu_clock_event_stop(struct perf_event *event, int flags)
11701 {
11702 	perf_swevent_cancel_hrtimer(event);
11703 	cpu_clock_event_update(event);
11704 }
11705 
cpu_clock_event_add(struct perf_event * event,int flags)11706 static int cpu_clock_event_add(struct perf_event *event, int flags)
11707 {
11708 	if (flags & PERF_EF_START)
11709 		cpu_clock_event_start(event, flags);
11710 	perf_event_update_userpage(event);
11711 
11712 	return 0;
11713 }
11714 
cpu_clock_event_del(struct perf_event * event,int flags)11715 static void cpu_clock_event_del(struct perf_event *event, int flags)
11716 {
11717 	cpu_clock_event_stop(event, flags);
11718 }
11719 
cpu_clock_event_read(struct perf_event * event)11720 static void cpu_clock_event_read(struct perf_event *event)
11721 {
11722 	cpu_clock_event_update(event);
11723 }
11724 
cpu_clock_event_init(struct perf_event * event)11725 static int cpu_clock_event_init(struct perf_event *event)
11726 {
11727 	if (event->attr.type != perf_cpu_clock.type)
11728 		return -ENOENT;
11729 
11730 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
11731 		return -ENOENT;
11732 
11733 	/*
11734 	 * no branch sampling for software events
11735 	 */
11736 	if (has_branch_stack(event))
11737 		return -EOPNOTSUPP;
11738 
11739 	perf_swevent_init_hrtimer(event);
11740 
11741 	return 0;
11742 }
11743 
11744 static struct pmu perf_cpu_clock = {
11745 	.task_ctx_nr	= perf_sw_context,
11746 
11747 	.capabilities	= PERF_PMU_CAP_NO_NMI,
11748 	.dev		= PMU_NULL_DEV,
11749 
11750 	.event_init	= cpu_clock_event_init,
11751 	.add		= cpu_clock_event_add,
11752 	.del		= cpu_clock_event_del,
11753 	.start		= cpu_clock_event_start,
11754 	.stop		= cpu_clock_event_stop,
11755 	.read		= cpu_clock_event_read,
11756 };
11757 
11758 /*
11759  * Software event: task time clock
11760  */
11761 
task_clock_event_update(struct perf_event * event,u64 now)11762 static void task_clock_event_update(struct perf_event *event, u64 now)
11763 {
11764 	u64 prev;
11765 	s64 delta;
11766 
11767 	prev = local64_xchg(&event->hw.prev_count, now);
11768 	delta = now - prev;
11769 	local64_add(delta, &event->count);
11770 }
11771 
task_clock_event_start(struct perf_event * event,int flags)11772 static void task_clock_event_start(struct perf_event *event, int flags)
11773 {
11774 	local64_set(&event->hw.prev_count, event->ctx->time);
11775 	perf_swevent_start_hrtimer(event);
11776 }
11777 
task_clock_event_stop(struct perf_event * event,int flags)11778 static void task_clock_event_stop(struct perf_event *event, int flags)
11779 {
11780 	perf_swevent_cancel_hrtimer(event);
11781 	task_clock_event_update(event, event->ctx->time);
11782 }
11783 
task_clock_event_add(struct perf_event * event,int flags)11784 static int task_clock_event_add(struct perf_event *event, int flags)
11785 {
11786 	if (flags & PERF_EF_START)
11787 		task_clock_event_start(event, flags);
11788 	perf_event_update_userpage(event);
11789 
11790 	return 0;
11791 }
11792 
task_clock_event_del(struct perf_event * event,int flags)11793 static void task_clock_event_del(struct perf_event *event, int flags)
11794 {
11795 	task_clock_event_stop(event, PERF_EF_UPDATE);
11796 }
11797 
task_clock_event_read(struct perf_event * event)11798 static void task_clock_event_read(struct perf_event *event)
11799 {
11800 	u64 now = perf_clock();
11801 	u64 delta = now - event->ctx->timestamp;
11802 	u64 time = event->ctx->time + delta;
11803 
11804 	task_clock_event_update(event, time);
11805 }
11806 
task_clock_event_init(struct perf_event * event)11807 static int task_clock_event_init(struct perf_event *event)
11808 {
11809 	if (event->attr.type != perf_task_clock.type)
11810 		return -ENOENT;
11811 
11812 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
11813 		return -ENOENT;
11814 
11815 	/*
11816 	 * no branch sampling for software events
11817 	 */
11818 	if (has_branch_stack(event))
11819 		return -EOPNOTSUPP;
11820 
11821 	perf_swevent_init_hrtimer(event);
11822 
11823 	return 0;
11824 }
11825 
11826 static struct pmu perf_task_clock = {
11827 	.task_ctx_nr	= perf_sw_context,
11828 
11829 	.capabilities	= PERF_PMU_CAP_NO_NMI,
11830 	.dev		= PMU_NULL_DEV,
11831 
11832 	.event_init	= task_clock_event_init,
11833 	.add		= task_clock_event_add,
11834 	.del		= task_clock_event_del,
11835 	.start		= task_clock_event_start,
11836 	.stop		= task_clock_event_stop,
11837 	.read		= task_clock_event_read,
11838 };
11839 
perf_pmu_nop_void(struct pmu * pmu)11840 static void perf_pmu_nop_void(struct pmu *pmu)
11841 {
11842 }
11843 
perf_pmu_nop_txn(struct pmu * pmu,unsigned int flags)11844 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
11845 {
11846 }
11847 
perf_pmu_nop_int(struct pmu * pmu)11848 static int perf_pmu_nop_int(struct pmu *pmu)
11849 {
11850 	return 0;
11851 }
11852 
perf_event_nop_int(struct perf_event * event,u64 value)11853 static int perf_event_nop_int(struct perf_event *event, u64 value)
11854 {
11855 	return 0;
11856 }
11857 
11858 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
11859 
perf_pmu_start_txn(struct pmu * pmu,unsigned int flags)11860 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
11861 {
11862 	__this_cpu_write(nop_txn_flags, flags);
11863 
11864 	if (flags & ~PERF_PMU_TXN_ADD)
11865 		return;
11866 
11867 	perf_pmu_disable(pmu);
11868 }
11869 
perf_pmu_commit_txn(struct pmu * pmu)11870 static int perf_pmu_commit_txn(struct pmu *pmu)
11871 {
11872 	unsigned int flags = __this_cpu_read(nop_txn_flags);
11873 
11874 	__this_cpu_write(nop_txn_flags, 0);
11875 
11876 	if (flags & ~PERF_PMU_TXN_ADD)
11877 		return 0;
11878 
11879 	perf_pmu_enable(pmu);
11880 	return 0;
11881 }
11882 
perf_pmu_cancel_txn(struct pmu * pmu)11883 static void perf_pmu_cancel_txn(struct pmu *pmu)
11884 {
11885 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
11886 
11887 	__this_cpu_write(nop_txn_flags, 0);
11888 
11889 	if (flags & ~PERF_PMU_TXN_ADD)
11890 		return;
11891 
11892 	perf_pmu_enable(pmu);
11893 }
11894 
perf_event_idx_default(struct perf_event * event)11895 static int perf_event_idx_default(struct perf_event *event)
11896 {
11897 	return 0;
11898 }
11899 
11900 /*
11901  * Let userspace know that this PMU supports address range filtering:
11902  */
nr_addr_filters_show(struct device * dev,struct device_attribute * attr,char * page)11903 static ssize_t nr_addr_filters_show(struct device *dev,
11904 				    struct device_attribute *attr,
11905 				    char *page)
11906 {
11907 	struct pmu *pmu = dev_get_drvdata(dev);
11908 
11909 	return sysfs_emit(page, "%d\n", pmu->nr_addr_filters);
11910 }
11911 DEVICE_ATTR_RO(nr_addr_filters);
11912 
11913 static struct idr pmu_idr;
11914 
11915 static ssize_t
type_show(struct device * dev,struct device_attribute * attr,char * page)11916 type_show(struct device *dev, struct device_attribute *attr, char *page)
11917 {
11918 	struct pmu *pmu = dev_get_drvdata(dev);
11919 
11920 	return sysfs_emit(page, "%d\n", pmu->type);
11921 }
11922 static DEVICE_ATTR_RO(type);
11923 
11924 static ssize_t
perf_event_mux_interval_ms_show(struct device * dev,struct device_attribute * attr,char * page)11925 perf_event_mux_interval_ms_show(struct device *dev,
11926 				struct device_attribute *attr,
11927 				char *page)
11928 {
11929 	struct pmu *pmu = dev_get_drvdata(dev);
11930 
11931 	return sysfs_emit(page, "%d\n", pmu->hrtimer_interval_ms);
11932 }
11933 
11934 static DEFINE_MUTEX(mux_interval_mutex);
11935 
11936 static ssize_t
perf_event_mux_interval_ms_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)11937 perf_event_mux_interval_ms_store(struct device *dev,
11938 				 struct device_attribute *attr,
11939 				 const char *buf, size_t count)
11940 {
11941 	struct pmu *pmu = dev_get_drvdata(dev);
11942 	int timer, cpu, ret;
11943 
11944 	ret = kstrtoint(buf, 0, &timer);
11945 	if (ret)
11946 		return ret;
11947 
11948 	if (timer < 1)
11949 		return -EINVAL;
11950 
11951 	/* same value, noting to do */
11952 	if (timer == pmu->hrtimer_interval_ms)
11953 		return count;
11954 
11955 	mutex_lock(&mux_interval_mutex);
11956 	pmu->hrtimer_interval_ms = timer;
11957 
11958 	/* update all cpuctx for this PMU */
11959 	cpus_read_lock();
11960 	for_each_online_cpu(cpu) {
11961 		struct perf_cpu_pmu_context *cpc;
11962 		cpc = *per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11963 		cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11964 
11965 		cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc);
11966 	}
11967 	cpus_read_unlock();
11968 	mutex_unlock(&mux_interval_mutex);
11969 
11970 	return count;
11971 }
11972 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11973 
perf_scope_cpu_topology_cpumask(unsigned int scope,int cpu)11974 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu)
11975 {
11976 	switch (scope) {
11977 	case PERF_PMU_SCOPE_CORE:
11978 		return topology_sibling_cpumask(cpu);
11979 	case PERF_PMU_SCOPE_DIE:
11980 		return topology_die_cpumask(cpu);
11981 	case PERF_PMU_SCOPE_CLUSTER:
11982 		return topology_cluster_cpumask(cpu);
11983 	case PERF_PMU_SCOPE_PKG:
11984 		return topology_core_cpumask(cpu);
11985 	case PERF_PMU_SCOPE_SYS_WIDE:
11986 		return cpu_online_mask;
11987 	}
11988 
11989 	return NULL;
11990 }
11991 
perf_scope_cpumask(unsigned int scope)11992 static inline struct cpumask *perf_scope_cpumask(unsigned int scope)
11993 {
11994 	switch (scope) {
11995 	case PERF_PMU_SCOPE_CORE:
11996 		return perf_online_core_mask;
11997 	case PERF_PMU_SCOPE_DIE:
11998 		return perf_online_die_mask;
11999 	case PERF_PMU_SCOPE_CLUSTER:
12000 		return perf_online_cluster_mask;
12001 	case PERF_PMU_SCOPE_PKG:
12002 		return perf_online_pkg_mask;
12003 	case PERF_PMU_SCOPE_SYS_WIDE:
12004 		return perf_online_sys_mask;
12005 	}
12006 
12007 	return NULL;
12008 }
12009 
cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)12010 static ssize_t cpumask_show(struct device *dev, struct device_attribute *attr,
12011 			    char *buf)
12012 {
12013 	struct pmu *pmu = dev_get_drvdata(dev);
12014 	struct cpumask *mask = perf_scope_cpumask(pmu->scope);
12015 
12016 	if (mask)
12017 		return cpumap_print_to_pagebuf(true, buf, mask);
12018 	return 0;
12019 }
12020 
12021 static DEVICE_ATTR_RO(cpumask);
12022 
12023 static struct attribute *pmu_dev_attrs[] = {
12024 	&dev_attr_type.attr,
12025 	&dev_attr_perf_event_mux_interval_ms.attr,
12026 	&dev_attr_nr_addr_filters.attr,
12027 	&dev_attr_cpumask.attr,
12028 	NULL,
12029 };
12030 
pmu_dev_is_visible(struct kobject * kobj,struct attribute * a,int n)12031 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n)
12032 {
12033 	struct device *dev = kobj_to_dev(kobj);
12034 	struct pmu *pmu = dev_get_drvdata(dev);
12035 
12036 	if (n == 2 && !pmu->nr_addr_filters)
12037 		return 0;
12038 
12039 	/* cpumask */
12040 	if (n == 3 && pmu->scope == PERF_PMU_SCOPE_NONE)
12041 		return 0;
12042 
12043 	return a->mode;
12044 }
12045 
12046 static struct attribute_group pmu_dev_attr_group = {
12047 	.is_visible = pmu_dev_is_visible,
12048 	.attrs = pmu_dev_attrs,
12049 };
12050 
12051 static const struct attribute_group *pmu_dev_groups[] = {
12052 	&pmu_dev_attr_group,
12053 	NULL,
12054 };
12055 
12056 static int pmu_bus_running;
12057 static struct bus_type pmu_bus = {
12058 	.name		= "event_source",
12059 	.dev_groups	= pmu_dev_groups,
12060 };
12061 
pmu_dev_release(struct device * dev)12062 static void pmu_dev_release(struct device *dev)
12063 {
12064 	kfree(dev);
12065 }
12066 
pmu_dev_alloc(struct pmu * pmu)12067 static int pmu_dev_alloc(struct pmu *pmu)
12068 {
12069 	int ret = -ENOMEM;
12070 
12071 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
12072 	if (!pmu->dev)
12073 		goto out;
12074 
12075 	pmu->dev->groups = pmu->attr_groups;
12076 	device_initialize(pmu->dev);
12077 
12078 	dev_set_drvdata(pmu->dev, pmu);
12079 	pmu->dev->bus = &pmu_bus;
12080 	pmu->dev->parent = pmu->parent;
12081 	pmu->dev->release = pmu_dev_release;
12082 
12083 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
12084 	if (ret)
12085 		goto free_dev;
12086 
12087 	ret = device_add(pmu->dev);
12088 	if (ret)
12089 		goto free_dev;
12090 
12091 	if (pmu->attr_update) {
12092 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
12093 		if (ret)
12094 			goto del_dev;
12095 	}
12096 
12097 out:
12098 	return ret;
12099 
12100 del_dev:
12101 	device_del(pmu->dev);
12102 
12103 free_dev:
12104 	put_device(pmu->dev);
12105 	pmu->dev = NULL;
12106 	goto out;
12107 }
12108 
12109 static struct lock_class_key cpuctx_mutex;
12110 static struct lock_class_key cpuctx_lock;
12111 
idr_cmpxchg(struct idr * idr,unsigned long id,void * old,void * new)12112 static bool idr_cmpxchg(struct idr *idr, unsigned long id, void *old, void *new)
12113 {
12114 	void *tmp, *val = idr_find(idr, id);
12115 
12116 	if (val != old)
12117 		return false;
12118 
12119 	tmp = idr_replace(idr, new, id);
12120 	if (IS_ERR(tmp))
12121 		return false;
12122 
12123 	WARN_ON_ONCE(tmp != val);
12124 	return true;
12125 }
12126 
perf_pmu_free(struct pmu * pmu)12127 static void perf_pmu_free(struct pmu *pmu)
12128 {
12129 	if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) {
12130 		if (pmu->nr_addr_filters)
12131 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
12132 		device_del(pmu->dev);
12133 		put_device(pmu->dev);
12134 	}
12135 
12136 	if (pmu->cpu_pmu_context) {
12137 		int cpu;
12138 
12139 		for_each_possible_cpu(cpu) {
12140 			struct perf_cpu_pmu_context *cpc;
12141 
12142 			cpc = *per_cpu_ptr(pmu->cpu_pmu_context, cpu);
12143 			if (!cpc)
12144 				continue;
12145 			if (cpc->epc.embedded) {
12146 				/* refcount managed */
12147 				put_pmu_ctx(&cpc->epc);
12148 				continue;
12149 			}
12150 			kfree(cpc);
12151 		}
12152 		free_percpu(pmu->cpu_pmu_context);
12153 	}
12154 }
12155 
DEFINE_FREE(pmu_unregister,struct pmu *,if (_T)perf_pmu_free (_T))12156 DEFINE_FREE(pmu_unregister, struct pmu *, if (_T) perf_pmu_free(_T))
12157 
12158 int perf_pmu_register(struct pmu *_pmu, const char *name, int type)
12159 {
12160 	int cpu, max = PERF_TYPE_MAX;
12161 
12162 	struct pmu *pmu __free(pmu_unregister) = _pmu;
12163 	guard(mutex)(&pmus_lock);
12164 
12165 	if (WARN_ONCE(!name, "Can not register anonymous pmu.\n"))
12166 		return -EINVAL;
12167 
12168 	if (WARN_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE,
12169 		      "Can not register a pmu with an invalid scope.\n"))
12170 		return -EINVAL;
12171 
12172 	pmu->name = name;
12173 
12174 	if (type >= 0)
12175 		max = type;
12176 
12177 	CLASS(idr_alloc, pmu_type)(&pmu_idr, NULL, max, 0, GFP_KERNEL);
12178 	if (pmu_type.id < 0)
12179 		return pmu_type.id;
12180 
12181 	WARN_ON(type >= 0 && pmu_type.id != type);
12182 
12183 	pmu->type = pmu_type.id;
12184 	atomic_set(&pmu->exclusive_cnt, 0);
12185 
12186 	if (pmu_bus_running && !pmu->dev) {
12187 		int ret = pmu_dev_alloc(pmu);
12188 		if (ret)
12189 			return ret;
12190 	}
12191 
12192 	pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context *);
12193 	if (!pmu->cpu_pmu_context)
12194 		return -ENOMEM;
12195 
12196 	for_each_possible_cpu(cpu) {
12197 		struct perf_cpu_pmu_context *cpc =
12198 			kmalloc_node(sizeof(struct perf_cpu_pmu_context),
12199 				     GFP_KERNEL | __GFP_ZERO,
12200 				     cpu_to_node(cpu));
12201 
12202 		if (!cpc)
12203 			return -ENOMEM;
12204 
12205 		*per_cpu_ptr(pmu->cpu_pmu_context, cpu) = cpc;
12206 		__perf_init_event_pmu_context(&cpc->epc, pmu);
12207 		__perf_mux_hrtimer_init(cpc, cpu);
12208 	}
12209 
12210 	if (!pmu->start_txn) {
12211 		if (pmu->pmu_enable) {
12212 			/*
12213 			 * If we have pmu_enable/pmu_disable calls, install
12214 			 * transaction stubs that use that to try and batch
12215 			 * hardware accesses.
12216 			 */
12217 			pmu->start_txn  = perf_pmu_start_txn;
12218 			pmu->commit_txn = perf_pmu_commit_txn;
12219 			pmu->cancel_txn = perf_pmu_cancel_txn;
12220 		} else {
12221 			pmu->start_txn  = perf_pmu_nop_txn;
12222 			pmu->commit_txn = perf_pmu_nop_int;
12223 			pmu->cancel_txn = perf_pmu_nop_void;
12224 		}
12225 	}
12226 
12227 	if (!pmu->pmu_enable) {
12228 		pmu->pmu_enable  = perf_pmu_nop_void;
12229 		pmu->pmu_disable = perf_pmu_nop_void;
12230 	}
12231 
12232 	if (!pmu->check_period)
12233 		pmu->check_period = perf_event_nop_int;
12234 
12235 	if (!pmu->event_idx)
12236 		pmu->event_idx = perf_event_idx_default;
12237 
12238 	/*
12239 	 * Now that the PMU is complete, make it visible to perf_try_init_event().
12240 	 */
12241 	if (!idr_cmpxchg(&pmu_idr, pmu->type, NULL, pmu))
12242 		return -EINVAL;
12243 	list_add_rcu(&pmu->entry, &pmus);
12244 
12245 	take_idr_id(pmu_type);
12246 	_pmu = no_free_ptr(pmu); // let it rip
12247 	return 0;
12248 }
12249 EXPORT_SYMBOL_GPL(perf_pmu_register);
12250 
perf_pmu_unregister(struct pmu * pmu)12251 void perf_pmu_unregister(struct pmu *pmu)
12252 {
12253 	scoped_guard (mutex, &pmus_lock) {
12254 		list_del_rcu(&pmu->entry);
12255 		idr_remove(&pmu_idr, pmu->type);
12256 	}
12257 
12258 	/*
12259 	 * We dereference the pmu list under both SRCU and regular RCU, so
12260 	 * synchronize against both of those.
12261 	 */
12262 	synchronize_srcu(&pmus_srcu);
12263 	synchronize_rcu();
12264 
12265 	perf_pmu_free(pmu);
12266 }
12267 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
12268 
has_extended_regs(struct perf_event * event)12269 static inline bool has_extended_regs(struct perf_event *event)
12270 {
12271 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
12272 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
12273 }
12274 
perf_try_init_event(struct pmu * pmu,struct perf_event * event)12275 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
12276 {
12277 	struct perf_event_context *ctx = NULL;
12278 	int ret;
12279 
12280 	if (!try_module_get(pmu->module))
12281 		return -ENODEV;
12282 
12283 	/*
12284 	 * A number of pmu->event_init() methods iterate the sibling_list to,
12285 	 * for example, validate if the group fits on the PMU. Therefore,
12286 	 * if this is a sibling event, acquire the ctx->mutex to protect
12287 	 * the sibling_list.
12288 	 */
12289 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
12290 		/*
12291 		 * This ctx->mutex can nest when we're called through
12292 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
12293 		 */
12294 		ctx = perf_event_ctx_lock_nested(event->group_leader,
12295 						 SINGLE_DEPTH_NESTING);
12296 		BUG_ON(!ctx);
12297 	}
12298 
12299 	event->pmu = pmu;
12300 	ret = pmu->event_init(event);
12301 
12302 	if (ctx)
12303 		perf_event_ctx_unlock(event->group_leader, ctx);
12304 
12305 	if (ret)
12306 		goto err_pmu;
12307 
12308 	if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
12309 	    has_extended_regs(event)) {
12310 		ret = -EOPNOTSUPP;
12311 		goto err_destroy;
12312 	}
12313 
12314 	if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
12315 	    event_has_any_exclude_flag(event)) {
12316 		ret = -EINVAL;
12317 		goto err_destroy;
12318 	}
12319 
12320 	if (pmu->scope != PERF_PMU_SCOPE_NONE && event->cpu >= 0) {
12321 		const struct cpumask *cpumask;
12322 		struct cpumask *pmu_cpumask;
12323 		int cpu;
12324 
12325 		cpumask = perf_scope_cpu_topology_cpumask(pmu->scope, event->cpu);
12326 		pmu_cpumask = perf_scope_cpumask(pmu->scope);
12327 
12328 		ret = -ENODEV;
12329 		if (!pmu_cpumask || !cpumask)
12330 			goto err_destroy;
12331 
12332 		cpu = cpumask_any_and(pmu_cpumask, cpumask);
12333 		if (cpu >= nr_cpu_ids)
12334 			goto err_destroy;
12335 
12336 		event->event_caps |= PERF_EV_CAP_READ_SCOPE;
12337 	}
12338 
12339 	return 0;
12340 
12341 err_destroy:
12342 	if (event->destroy) {
12343 		event->destroy(event);
12344 		event->destroy = NULL;
12345 	}
12346 
12347 err_pmu:
12348 	event->pmu = NULL;
12349 	module_put(pmu->module);
12350 	return ret;
12351 }
12352 
perf_init_event(struct perf_event * event)12353 static struct pmu *perf_init_event(struct perf_event *event)
12354 {
12355 	bool extended_type = false;
12356 	struct pmu *pmu;
12357 	int type, ret;
12358 
12359 	guard(srcu)(&pmus_srcu);
12360 
12361 	/*
12362 	 * Save original type before calling pmu->event_init() since certain
12363 	 * pmus overwrites event->attr.type to forward event to another pmu.
12364 	 */
12365 	event->orig_type = event->attr.type;
12366 
12367 	/* Try parent's PMU first: */
12368 	if (event->parent && event->parent->pmu) {
12369 		pmu = event->parent->pmu;
12370 		ret = perf_try_init_event(pmu, event);
12371 		if (!ret)
12372 			return pmu;
12373 	}
12374 
12375 	/*
12376 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
12377 	 * are often aliases for PERF_TYPE_RAW.
12378 	 */
12379 	type = event->attr.type;
12380 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
12381 		type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
12382 		if (!type) {
12383 			type = PERF_TYPE_RAW;
12384 		} else {
12385 			extended_type = true;
12386 			event->attr.config &= PERF_HW_EVENT_MASK;
12387 		}
12388 	}
12389 
12390 again:
12391 	scoped_guard (rcu)
12392 		pmu = idr_find(&pmu_idr, type);
12393 	if (pmu) {
12394 		if (event->attr.type != type && type != PERF_TYPE_RAW &&
12395 		    !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
12396 			return ERR_PTR(-ENOENT);
12397 
12398 		ret = perf_try_init_event(pmu, event);
12399 		if (ret == -ENOENT && event->attr.type != type && !extended_type) {
12400 			type = event->attr.type;
12401 			goto again;
12402 		}
12403 
12404 		if (ret)
12405 			return ERR_PTR(ret);
12406 
12407 		return pmu;
12408 	}
12409 
12410 	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
12411 		ret = perf_try_init_event(pmu, event);
12412 		if (!ret)
12413 			return pmu;
12414 
12415 		if (ret != -ENOENT)
12416 			return ERR_PTR(ret);
12417 	}
12418 
12419 	return ERR_PTR(-ENOENT);
12420 }
12421 
attach_sb_event(struct perf_event * event)12422 static void attach_sb_event(struct perf_event *event)
12423 {
12424 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
12425 
12426 	raw_spin_lock(&pel->lock);
12427 	list_add_rcu(&event->sb_list, &pel->list);
12428 	raw_spin_unlock(&pel->lock);
12429 }
12430 
12431 /*
12432  * We keep a list of all !task (and therefore per-cpu) events
12433  * that need to receive side-band records.
12434  *
12435  * This avoids having to scan all the various PMU per-cpu contexts
12436  * looking for them.
12437  */
account_pmu_sb_event(struct perf_event * event)12438 static void account_pmu_sb_event(struct perf_event *event)
12439 {
12440 	if (is_sb_event(event))
12441 		attach_sb_event(event);
12442 }
12443 
12444 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
account_freq_event_nohz(void)12445 static void account_freq_event_nohz(void)
12446 {
12447 #ifdef CONFIG_NO_HZ_FULL
12448 	/* Lock so we don't race with concurrent unaccount */
12449 	spin_lock(&nr_freq_lock);
12450 	if (atomic_inc_return(&nr_freq_events) == 1)
12451 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
12452 	spin_unlock(&nr_freq_lock);
12453 #endif
12454 }
12455 
account_freq_event(void)12456 static void account_freq_event(void)
12457 {
12458 	if (tick_nohz_full_enabled())
12459 		account_freq_event_nohz();
12460 	else
12461 		atomic_inc(&nr_freq_events);
12462 }
12463 
12464 
account_event(struct perf_event * event)12465 static void account_event(struct perf_event *event)
12466 {
12467 	bool inc = false;
12468 
12469 	if (event->parent)
12470 		return;
12471 
12472 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
12473 		inc = true;
12474 	if (event->attr.mmap || event->attr.mmap_data)
12475 		atomic_inc(&nr_mmap_events);
12476 	if (event->attr.build_id)
12477 		atomic_inc(&nr_build_id_events);
12478 	if (event->attr.comm)
12479 		atomic_inc(&nr_comm_events);
12480 	if (event->attr.namespaces)
12481 		atomic_inc(&nr_namespaces_events);
12482 	if (event->attr.cgroup)
12483 		atomic_inc(&nr_cgroup_events);
12484 	if (event->attr.task)
12485 		atomic_inc(&nr_task_events);
12486 	if (event->attr.freq)
12487 		account_freq_event();
12488 	if (event->attr.context_switch) {
12489 		atomic_inc(&nr_switch_events);
12490 		inc = true;
12491 	}
12492 	if (has_branch_stack(event))
12493 		inc = true;
12494 	if (is_cgroup_event(event))
12495 		inc = true;
12496 	if (event->attr.ksymbol)
12497 		atomic_inc(&nr_ksymbol_events);
12498 	if (event->attr.bpf_event)
12499 		atomic_inc(&nr_bpf_events);
12500 	if (event->attr.text_poke)
12501 		atomic_inc(&nr_text_poke_events);
12502 
12503 	if (inc) {
12504 		/*
12505 		 * We need the mutex here because static_branch_enable()
12506 		 * must complete *before* the perf_sched_count increment
12507 		 * becomes visible.
12508 		 */
12509 		if (atomic_inc_not_zero(&perf_sched_count))
12510 			goto enabled;
12511 
12512 		mutex_lock(&perf_sched_mutex);
12513 		if (!atomic_read(&perf_sched_count)) {
12514 			static_branch_enable(&perf_sched_events);
12515 			/*
12516 			 * Guarantee that all CPUs observe they key change and
12517 			 * call the perf scheduling hooks before proceeding to
12518 			 * install events that need them.
12519 			 */
12520 			synchronize_rcu();
12521 		}
12522 		/*
12523 		 * Now that we have waited for the sync_sched(), allow further
12524 		 * increments to by-pass the mutex.
12525 		 */
12526 		atomic_inc(&perf_sched_count);
12527 		mutex_unlock(&perf_sched_mutex);
12528 	}
12529 enabled:
12530 
12531 	account_pmu_sb_event(event);
12532 }
12533 
12534 /*
12535  * Allocate and initialize an event structure
12536  */
12537 static struct perf_event *
perf_event_alloc(struct perf_event_attr * attr,int cpu,struct task_struct * task,struct perf_event * group_leader,struct perf_event * parent_event,perf_overflow_handler_t overflow_handler,void * context,int cgroup_fd)12538 perf_event_alloc(struct perf_event_attr *attr, int cpu,
12539 		 struct task_struct *task,
12540 		 struct perf_event *group_leader,
12541 		 struct perf_event *parent_event,
12542 		 perf_overflow_handler_t overflow_handler,
12543 		 void *context, int cgroup_fd)
12544 {
12545 	struct pmu *pmu;
12546 	struct hw_perf_event *hwc;
12547 	long err = -EINVAL;
12548 	int node;
12549 
12550 	if ((unsigned)cpu >= nr_cpu_ids) {
12551 		if (!task || cpu != -1)
12552 			return ERR_PTR(-EINVAL);
12553 	}
12554 	if (attr->sigtrap && !task) {
12555 		/* Requires a task: avoid signalling random tasks. */
12556 		return ERR_PTR(-EINVAL);
12557 	}
12558 
12559 	node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
12560 	struct perf_event *event __free(__free_event) =
12561 		kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO, node);
12562 	if (!event)
12563 		return ERR_PTR(-ENOMEM);
12564 
12565 	/*
12566 	 * Single events are their own group leaders, with an
12567 	 * empty sibling list:
12568 	 */
12569 	if (!group_leader)
12570 		group_leader = event;
12571 
12572 	mutex_init(&event->child_mutex);
12573 	INIT_LIST_HEAD(&event->child_list);
12574 
12575 	INIT_LIST_HEAD(&event->event_entry);
12576 	INIT_LIST_HEAD(&event->sibling_list);
12577 	INIT_LIST_HEAD(&event->active_list);
12578 	init_event_group(event);
12579 	INIT_LIST_HEAD(&event->rb_entry);
12580 	INIT_LIST_HEAD(&event->active_entry);
12581 	INIT_LIST_HEAD(&event->addr_filters.list);
12582 	INIT_HLIST_NODE(&event->hlist_entry);
12583 
12584 
12585 	init_waitqueue_head(&event->waitq);
12586 	init_irq_work(&event->pending_irq, perf_pending_irq);
12587 	event->pending_disable_irq = IRQ_WORK_INIT_HARD(perf_pending_disable);
12588 	init_task_work(&event->pending_task, perf_pending_task);
12589 
12590 	mutex_init(&event->mmap_mutex);
12591 	raw_spin_lock_init(&event->addr_filters.lock);
12592 
12593 	atomic_long_set(&event->refcount, 1);
12594 	event->cpu		= cpu;
12595 	event->attr		= *attr;
12596 	event->group_leader	= group_leader;
12597 	event->pmu		= NULL;
12598 	event->oncpu		= -1;
12599 
12600 	event->parent		= parent_event;
12601 
12602 	event->ns		= get_pid_ns(task_active_pid_ns(current));
12603 	event->id		= atomic64_inc_return(&perf_event_id);
12604 
12605 	event->state		= PERF_EVENT_STATE_INACTIVE;
12606 
12607 	if (parent_event)
12608 		event->event_caps = parent_event->event_caps;
12609 
12610 	if (task) {
12611 		event->attach_state = PERF_ATTACH_TASK;
12612 		/*
12613 		 * XXX pmu::event_init needs to know what task to account to
12614 		 * and we cannot use the ctx information because we need the
12615 		 * pmu before we get a ctx.
12616 		 */
12617 		event->hw.target = get_task_struct(task);
12618 	}
12619 
12620 	event->clock = &local_clock;
12621 	if (parent_event)
12622 		event->clock = parent_event->clock;
12623 
12624 	if (!overflow_handler && parent_event) {
12625 		overflow_handler = parent_event->overflow_handler;
12626 		context = parent_event->overflow_handler_context;
12627 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
12628 		if (parent_event->prog) {
12629 			struct bpf_prog *prog = parent_event->prog;
12630 
12631 			bpf_prog_inc(prog);
12632 			event->prog = prog;
12633 		}
12634 #endif
12635 	}
12636 
12637 	if (overflow_handler) {
12638 		event->overflow_handler	= overflow_handler;
12639 		event->overflow_handler_context = context;
12640 	} else if (is_write_backward(event)){
12641 		event->overflow_handler = perf_event_output_backward;
12642 		event->overflow_handler_context = NULL;
12643 	} else {
12644 		event->overflow_handler = perf_event_output_forward;
12645 		event->overflow_handler_context = NULL;
12646 	}
12647 
12648 	perf_event__state_init(event);
12649 
12650 	pmu = NULL;
12651 
12652 	hwc = &event->hw;
12653 	hwc->sample_period = attr->sample_period;
12654 	if (attr->freq && attr->sample_freq)
12655 		hwc->sample_period = 1;
12656 	hwc->last_period = hwc->sample_period;
12657 
12658 	local64_set(&hwc->period_left, hwc->sample_period);
12659 
12660 	/*
12661 	 * We do not support PERF_SAMPLE_READ on inherited events unless
12662 	 * PERF_SAMPLE_TID is also selected, which allows inherited events to
12663 	 * collect per-thread samples.
12664 	 * See perf_output_read().
12665 	 */
12666 	if (has_inherit_and_sample_read(attr) && !(attr->sample_type & PERF_SAMPLE_TID))
12667 		return ERR_PTR(-EINVAL);
12668 
12669 	if (!has_branch_stack(event))
12670 		event->attr.branch_sample_type = 0;
12671 
12672 	pmu = perf_init_event(event);
12673 	if (IS_ERR(pmu))
12674 		return (void*)pmu;
12675 
12676 	/*
12677 	 * The PERF_ATTACH_TASK_DATA is set in the event_init()->hw_config().
12678 	 * The attach should be right after the perf_init_event().
12679 	 * Otherwise, the __free_event() would mistakenly detach the non-exist
12680 	 * perf_ctx_data because of the other errors between them.
12681 	 */
12682 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
12683 		err = attach_perf_ctx_data(event);
12684 		if (err)
12685 			return ERR_PTR(err);
12686 	}
12687 
12688 	/*
12689 	 * Disallow uncore-task events. Similarly, disallow uncore-cgroup
12690 	 * events (they don't make sense as the cgroup will be different
12691 	 * on other CPUs in the uncore mask).
12692 	 */
12693 	if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1))
12694 		return ERR_PTR(-EINVAL);
12695 
12696 	if (event->attr.aux_output &&
12697 	    (!(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT) ||
12698 	     event->attr.aux_pause || event->attr.aux_resume))
12699 		return ERR_PTR(-EOPNOTSUPP);
12700 
12701 	if (event->attr.aux_pause && event->attr.aux_resume)
12702 		return ERR_PTR(-EINVAL);
12703 
12704 	if (event->attr.aux_start_paused) {
12705 		if (!(pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE))
12706 			return ERR_PTR(-EOPNOTSUPP);
12707 		event->hw.aux_paused = 1;
12708 	}
12709 
12710 	if (cgroup_fd != -1) {
12711 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
12712 		if (err)
12713 			return ERR_PTR(err);
12714 	}
12715 
12716 	err = exclusive_event_init(event);
12717 	if (err)
12718 		return ERR_PTR(err);
12719 
12720 	if (has_addr_filter(event)) {
12721 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
12722 						    sizeof(struct perf_addr_filter_range),
12723 						    GFP_KERNEL);
12724 		if (!event->addr_filter_ranges)
12725 			return ERR_PTR(-ENOMEM);
12726 
12727 		/*
12728 		 * Clone the parent's vma offsets: they are valid until exec()
12729 		 * even if the mm is not shared with the parent.
12730 		 */
12731 		if (event->parent) {
12732 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
12733 
12734 			raw_spin_lock_irq(&ifh->lock);
12735 			memcpy(event->addr_filter_ranges,
12736 			       event->parent->addr_filter_ranges,
12737 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
12738 			raw_spin_unlock_irq(&ifh->lock);
12739 		}
12740 
12741 		/* force hw sync on the address filters */
12742 		event->addr_filters_gen = 1;
12743 	}
12744 
12745 	if (!event->parent) {
12746 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
12747 			err = get_callchain_buffers(attr->sample_max_stack);
12748 			if (err)
12749 				return ERR_PTR(err);
12750 			event->attach_state |= PERF_ATTACH_CALLCHAIN;
12751 		}
12752 	}
12753 
12754 	err = security_perf_event_alloc(event);
12755 	if (err)
12756 		return ERR_PTR(err);
12757 
12758 	/* symmetric to unaccount_event() in _free_event() */
12759 	account_event(event);
12760 
12761 	return_ptr(event);
12762 }
12763 
perf_copy_attr(struct perf_event_attr __user * uattr,struct perf_event_attr * attr)12764 static int perf_copy_attr(struct perf_event_attr __user *uattr,
12765 			  struct perf_event_attr *attr)
12766 {
12767 	u32 size;
12768 	int ret;
12769 
12770 	/* Zero the full structure, so that a short copy will be nice. */
12771 	memset(attr, 0, sizeof(*attr));
12772 
12773 	ret = get_user(size, &uattr->size);
12774 	if (ret)
12775 		return ret;
12776 
12777 	/* ABI compatibility quirk: */
12778 	if (!size)
12779 		size = PERF_ATTR_SIZE_VER0;
12780 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
12781 		goto err_size;
12782 
12783 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
12784 	if (ret) {
12785 		if (ret == -E2BIG)
12786 			goto err_size;
12787 		return ret;
12788 	}
12789 
12790 	attr->size = size;
12791 
12792 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
12793 		return -EINVAL;
12794 
12795 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
12796 		return -EINVAL;
12797 
12798 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
12799 		return -EINVAL;
12800 
12801 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
12802 		u64 mask = attr->branch_sample_type;
12803 
12804 		/* only using defined bits */
12805 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
12806 			return -EINVAL;
12807 
12808 		/* at least one branch bit must be set */
12809 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
12810 			return -EINVAL;
12811 
12812 		/* propagate priv level, when not set for branch */
12813 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
12814 
12815 			/* exclude_kernel checked on syscall entry */
12816 			if (!attr->exclude_kernel)
12817 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
12818 
12819 			if (!attr->exclude_user)
12820 				mask |= PERF_SAMPLE_BRANCH_USER;
12821 
12822 			if (!attr->exclude_hv)
12823 				mask |= PERF_SAMPLE_BRANCH_HV;
12824 			/*
12825 			 * adjust user setting (for HW filter setup)
12826 			 */
12827 			attr->branch_sample_type = mask;
12828 		}
12829 		/* privileged levels capture (kernel, hv): check permissions */
12830 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
12831 			ret = perf_allow_kernel();
12832 			if (ret)
12833 				return ret;
12834 		}
12835 	}
12836 
12837 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
12838 		ret = perf_reg_validate(attr->sample_regs_user);
12839 		if (ret)
12840 			return ret;
12841 	}
12842 
12843 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
12844 		if (!arch_perf_have_user_stack_dump())
12845 			return -ENOSYS;
12846 
12847 		/*
12848 		 * We have __u32 type for the size, but so far
12849 		 * we can only use __u16 as maximum due to the
12850 		 * __u16 sample size limit.
12851 		 */
12852 		if (attr->sample_stack_user >= USHRT_MAX)
12853 			return -EINVAL;
12854 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
12855 			return -EINVAL;
12856 	}
12857 
12858 	if (!attr->sample_max_stack)
12859 		attr->sample_max_stack = sysctl_perf_event_max_stack;
12860 
12861 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
12862 		ret = perf_reg_validate(attr->sample_regs_intr);
12863 
12864 #ifndef CONFIG_CGROUP_PERF
12865 	if (attr->sample_type & PERF_SAMPLE_CGROUP)
12866 		return -EINVAL;
12867 #endif
12868 	if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
12869 	    (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
12870 		return -EINVAL;
12871 
12872 	if (!attr->inherit && attr->inherit_thread)
12873 		return -EINVAL;
12874 
12875 	if (attr->remove_on_exec && attr->enable_on_exec)
12876 		return -EINVAL;
12877 
12878 	if (attr->sigtrap && !attr->remove_on_exec)
12879 		return -EINVAL;
12880 
12881 out:
12882 	return ret;
12883 
12884 err_size:
12885 	put_user(sizeof(*attr), &uattr->size);
12886 	ret = -E2BIG;
12887 	goto out;
12888 }
12889 
mutex_lock_double(struct mutex * a,struct mutex * b)12890 static void mutex_lock_double(struct mutex *a, struct mutex *b)
12891 {
12892 	if (b < a)
12893 		swap(a, b);
12894 
12895 	mutex_lock(a);
12896 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
12897 }
12898 
12899 static int
perf_event_set_output(struct perf_event * event,struct perf_event * output_event)12900 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
12901 {
12902 	struct perf_buffer *rb = NULL;
12903 	int ret = -EINVAL;
12904 
12905 	if (!output_event) {
12906 		mutex_lock(&event->mmap_mutex);
12907 		goto set;
12908 	}
12909 
12910 	/* don't allow circular references */
12911 	if (event == output_event)
12912 		goto out;
12913 
12914 	/*
12915 	 * Don't allow cross-cpu buffers
12916 	 */
12917 	if (output_event->cpu != event->cpu)
12918 		goto out;
12919 
12920 	/*
12921 	 * If its not a per-cpu rb, it must be the same task.
12922 	 */
12923 	if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
12924 		goto out;
12925 
12926 	/*
12927 	 * Mixing clocks in the same buffer is trouble you don't need.
12928 	 */
12929 	if (output_event->clock != event->clock)
12930 		goto out;
12931 
12932 	/*
12933 	 * Either writing ring buffer from beginning or from end.
12934 	 * Mixing is not allowed.
12935 	 */
12936 	if (is_write_backward(output_event) != is_write_backward(event))
12937 		goto out;
12938 
12939 	/*
12940 	 * If both events generate aux data, they must be on the same PMU
12941 	 */
12942 	if (has_aux(event) && has_aux(output_event) &&
12943 	    event->pmu != output_event->pmu)
12944 		goto out;
12945 
12946 	/*
12947 	 * Hold both mmap_mutex to serialize against perf_mmap_close().  Since
12948 	 * output_event is already on rb->event_list, and the list iteration
12949 	 * restarts after every removal, it is guaranteed this new event is
12950 	 * observed *OR* if output_event is already removed, it's guaranteed we
12951 	 * observe !rb->mmap_count.
12952 	 */
12953 	mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
12954 set:
12955 	/* Can't redirect output if we've got an active mmap() */
12956 	if (atomic_read(&event->mmap_count))
12957 		goto unlock;
12958 
12959 	if (output_event) {
12960 		/* get the rb we want to redirect to */
12961 		rb = ring_buffer_get(output_event);
12962 		if (!rb)
12963 			goto unlock;
12964 
12965 		/* did we race against perf_mmap_close() */
12966 		if (!atomic_read(&rb->mmap_count)) {
12967 			ring_buffer_put(rb);
12968 			goto unlock;
12969 		}
12970 	}
12971 
12972 	ring_buffer_attach(event, rb);
12973 
12974 	ret = 0;
12975 unlock:
12976 	mutex_unlock(&event->mmap_mutex);
12977 	if (output_event)
12978 		mutex_unlock(&output_event->mmap_mutex);
12979 
12980 out:
12981 	return ret;
12982 }
12983 
perf_event_set_clock(struct perf_event * event,clockid_t clk_id)12984 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
12985 {
12986 	bool nmi_safe = false;
12987 
12988 	switch (clk_id) {
12989 	case CLOCK_MONOTONIC:
12990 		event->clock = &ktime_get_mono_fast_ns;
12991 		nmi_safe = true;
12992 		break;
12993 
12994 	case CLOCK_MONOTONIC_RAW:
12995 		event->clock = &ktime_get_raw_fast_ns;
12996 		nmi_safe = true;
12997 		break;
12998 
12999 	case CLOCK_REALTIME:
13000 		event->clock = &ktime_get_real_ns;
13001 		break;
13002 
13003 	case CLOCK_BOOTTIME:
13004 		event->clock = &ktime_get_boottime_ns;
13005 		break;
13006 
13007 	case CLOCK_TAI:
13008 		event->clock = &ktime_get_clocktai_ns;
13009 		break;
13010 
13011 	default:
13012 		return -EINVAL;
13013 	}
13014 
13015 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
13016 		return -EINVAL;
13017 
13018 	return 0;
13019 }
13020 
13021 static bool
perf_check_permission(struct perf_event_attr * attr,struct task_struct * task)13022 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
13023 {
13024 	unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
13025 	bool is_capable = perfmon_capable();
13026 
13027 	if (attr->sigtrap) {
13028 		/*
13029 		 * perf_event_attr::sigtrap sends signals to the other task.
13030 		 * Require the current task to also have CAP_KILL.
13031 		 */
13032 		rcu_read_lock();
13033 		is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
13034 		rcu_read_unlock();
13035 
13036 		/*
13037 		 * If the required capabilities aren't available, checks for
13038 		 * ptrace permissions: upgrade to ATTACH, since sending signals
13039 		 * can effectively change the target task.
13040 		 */
13041 		ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
13042 	}
13043 
13044 	/*
13045 	 * Preserve ptrace permission check for backwards compatibility. The
13046 	 * ptrace check also includes checks that the current task and other
13047 	 * task have matching uids, and is therefore not done here explicitly.
13048 	 */
13049 	return is_capable || ptrace_may_access(task, ptrace_mode);
13050 }
13051 
13052 /**
13053  * sys_perf_event_open - open a performance event, associate it to a task/cpu
13054  *
13055  * @attr_uptr:	event_id type attributes for monitoring/sampling
13056  * @pid:		target pid
13057  * @cpu:		target cpu
13058  * @group_fd:		group leader event fd
13059  * @flags:		perf event open flags
13060  */
SYSCALL_DEFINE5(perf_event_open,struct perf_event_attr __user *,attr_uptr,pid_t,pid,int,cpu,int,group_fd,unsigned long,flags)13061 SYSCALL_DEFINE5(perf_event_open,
13062 		struct perf_event_attr __user *, attr_uptr,
13063 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
13064 {
13065 	struct perf_event *group_leader = NULL, *output_event = NULL;
13066 	struct perf_event_pmu_context *pmu_ctx;
13067 	struct perf_event *event, *sibling;
13068 	struct perf_event_attr attr;
13069 	struct perf_event_context *ctx;
13070 	struct file *event_file = NULL;
13071 	struct task_struct *task = NULL;
13072 	struct pmu *pmu;
13073 	int event_fd;
13074 	int move_group = 0;
13075 	int err;
13076 	int f_flags = O_RDWR;
13077 	int cgroup_fd = -1;
13078 
13079 	/* for future expandability... */
13080 	if (flags & ~PERF_FLAG_ALL)
13081 		return -EINVAL;
13082 
13083 	err = perf_copy_attr(attr_uptr, &attr);
13084 	if (err)
13085 		return err;
13086 
13087 	/* Do we allow access to perf_event_open(2) ? */
13088 	err = security_perf_event_open(PERF_SECURITY_OPEN);
13089 	if (err)
13090 		return err;
13091 
13092 	if (!attr.exclude_kernel) {
13093 		err = perf_allow_kernel();
13094 		if (err)
13095 			return err;
13096 	}
13097 
13098 	if (attr.namespaces) {
13099 		if (!perfmon_capable())
13100 			return -EACCES;
13101 	}
13102 
13103 	if (attr.freq) {
13104 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
13105 			return -EINVAL;
13106 	} else {
13107 		if (attr.sample_period & (1ULL << 63))
13108 			return -EINVAL;
13109 	}
13110 
13111 	/* Only privileged users can get physical addresses */
13112 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
13113 		err = perf_allow_kernel();
13114 		if (err)
13115 			return err;
13116 	}
13117 
13118 	/* REGS_INTR can leak data, lockdown must prevent this */
13119 	if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
13120 		err = security_locked_down(LOCKDOWN_PERF);
13121 		if (err)
13122 			return err;
13123 	}
13124 
13125 	/*
13126 	 * In cgroup mode, the pid argument is used to pass the fd
13127 	 * opened to the cgroup directory in cgroupfs. The cpu argument
13128 	 * designates the cpu on which to monitor threads from that
13129 	 * cgroup.
13130 	 */
13131 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
13132 		return -EINVAL;
13133 
13134 	if (flags & PERF_FLAG_FD_CLOEXEC)
13135 		f_flags |= O_CLOEXEC;
13136 
13137 	event_fd = get_unused_fd_flags(f_flags);
13138 	if (event_fd < 0)
13139 		return event_fd;
13140 
13141 	CLASS(fd, group)(group_fd);     // group_fd == -1 => empty
13142 	if (group_fd != -1) {
13143 		if (!is_perf_file(group)) {
13144 			err = -EBADF;
13145 			goto err_fd;
13146 		}
13147 		group_leader = fd_file(group)->private_data;
13148 		if (flags & PERF_FLAG_FD_OUTPUT)
13149 			output_event = group_leader;
13150 		if (flags & PERF_FLAG_FD_NO_GROUP)
13151 			group_leader = NULL;
13152 	}
13153 
13154 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
13155 		task = find_lively_task_by_vpid(pid);
13156 		if (IS_ERR(task)) {
13157 			err = PTR_ERR(task);
13158 			goto err_fd;
13159 		}
13160 	}
13161 
13162 	if (task && group_leader &&
13163 	    group_leader->attr.inherit != attr.inherit) {
13164 		err = -EINVAL;
13165 		goto err_task;
13166 	}
13167 
13168 	if (flags & PERF_FLAG_PID_CGROUP)
13169 		cgroup_fd = pid;
13170 
13171 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
13172 				 NULL, NULL, cgroup_fd);
13173 	if (IS_ERR(event)) {
13174 		err = PTR_ERR(event);
13175 		goto err_task;
13176 	}
13177 
13178 	if (is_sampling_event(event)) {
13179 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
13180 			err = -EOPNOTSUPP;
13181 			goto err_alloc;
13182 		}
13183 	}
13184 
13185 	/*
13186 	 * Special case software events and allow them to be part of
13187 	 * any hardware group.
13188 	 */
13189 	pmu = event->pmu;
13190 
13191 	if (attr.use_clockid) {
13192 		err = perf_event_set_clock(event, attr.clockid);
13193 		if (err)
13194 			goto err_alloc;
13195 	}
13196 
13197 	if (pmu->task_ctx_nr == perf_sw_context)
13198 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
13199 
13200 	if (task) {
13201 		err = down_read_interruptible(&task->signal->exec_update_lock);
13202 		if (err)
13203 			goto err_alloc;
13204 
13205 		/*
13206 		 * We must hold exec_update_lock across this and any potential
13207 		 * perf_install_in_context() call for this new event to
13208 		 * serialize against exec() altering our credentials (and the
13209 		 * perf_event_exit_task() that could imply).
13210 		 */
13211 		err = -EACCES;
13212 		if (!perf_check_permission(&attr, task))
13213 			goto err_cred;
13214 	}
13215 
13216 	/*
13217 	 * Get the target context (task or percpu):
13218 	 */
13219 	ctx = find_get_context(task, event);
13220 	if (IS_ERR(ctx)) {
13221 		err = PTR_ERR(ctx);
13222 		goto err_cred;
13223 	}
13224 
13225 	mutex_lock(&ctx->mutex);
13226 
13227 	if (ctx->task == TASK_TOMBSTONE) {
13228 		err = -ESRCH;
13229 		goto err_locked;
13230 	}
13231 
13232 	if (!task) {
13233 		/*
13234 		 * Check if the @cpu we're creating an event for is online.
13235 		 *
13236 		 * We use the perf_cpu_context::ctx::mutex to serialize against
13237 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
13238 		 */
13239 		struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
13240 
13241 		if (!cpuctx->online) {
13242 			err = -ENODEV;
13243 			goto err_locked;
13244 		}
13245 	}
13246 
13247 	if (group_leader) {
13248 		err = -EINVAL;
13249 
13250 		/*
13251 		 * Do not allow a recursive hierarchy (this new sibling
13252 		 * becoming part of another group-sibling):
13253 		 */
13254 		if (group_leader->group_leader != group_leader)
13255 			goto err_locked;
13256 
13257 		/* All events in a group should have the same clock */
13258 		if (group_leader->clock != event->clock)
13259 			goto err_locked;
13260 
13261 		/*
13262 		 * Make sure we're both events for the same CPU;
13263 		 * grouping events for different CPUs is broken; since
13264 		 * you can never concurrently schedule them anyhow.
13265 		 */
13266 		if (group_leader->cpu != event->cpu)
13267 			goto err_locked;
13268 
13269 		/*
13270 		 * Make sure we're both on the same context; either task or cpu.
13271 		 */
13272 		if (group_leader->ctx != ctx)
13273 			goto err_locked;
13274 
13275 		/*
13276 		 * Only a group leader can be exclusive or pinned
13277 		 */
13278 		if (attr.exclusive || attr.pinned)
13279 			goto err_locked;
13280 
13281 		if (is_software_event(event) &&
13282 		    !in_software_context(group_leader)) {
13283 			/*
13284 			 * If the event is a sw event, but the group_leader
13285 			 * is on hw context.
13286 			 *
13287 			 * Allow the addition of software events to hw
13288 			 * groups, this is safe because software events
13289 			 * never fail to schedule.
13290 			 *
13291 			 * Note the comment that goes with struct
13292 			 * perf_event_pmu_context.
13293 			 */
13294 			pmu = group_leader->pmu_ctx->pmu;
13295 		} else if (!is_software_event(event)) {
13296 			if (is_software_event(group_leader) &&
13297 			    (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
13298 				/*
13299 				 * In case the group is a pure software group, and we
13300 				 * try to add a hardware event, move the whole group to
13301 				 * the hardware context.
13302 				 */
13303 				move_group = 1;
13304 			}
13305 
13306 			/* Don't allow group of multiple hw events from different pmus */
13307 			if (!in_software_context(group_leader) &&
13308 			    group_leader->pmu_ctx->pmu != pmu)
13309 				goto err_locked;
13310 		}
13311 	}
13312 
13313 	/*
13314 	 * Now that we're certain of the pmu; find the pmu_ctx.
13315 	 */
13316 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
13317 	if (IS_ERR(pmu_ctx)) {
13318 		err = PTR_ERR(pmu_ctx);
13319 		goto err_locked;
13320 	}
13321 	event->pmu_ctx = pmu_ctx;
13322 
13323 	if (output_event) {
13324 		err = perf_event_set_output(event, output_event);
13325 		if (err)
13326 			goto err_context;
13327 	}
13328 
13329 	if (!perf_event_validate_size(event)) {
13330 		err = -E2BIG;
13331 		goto err_context;
13332 	}
13333 
13334 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
13335 		err = -EINVAL;
13336 		goto err_context;
13337 	}
13338 
13339 	/*
13340 	 * Must be under the same ctx::mutex as perf_install_in_context(),
13341 	 * because we need to serialize with concurrent event creation.
13342 	 */
13343 	if (!exclusive_event_installable(event, ctx)) {
13344 		err = -EBUSY;
13345 		goto err_context;
13346 	}
13347 
13348 	WARN_ON_ONCE(ctx->parent_ctx);
13349 
13350 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags);
13351 	if (IS_ERR(event_file)) {
13352 		err = PTR_ERR(event_file);
13353 		event_file = NULL;
13354 		goto err_context;
13355 	}
13356 
13357 	/*
13358 	 * This is the point on no return; we cannot fail hereafter. This is
13359 	 * where we start modifying current state.
13360 	 */
13361 
13362 	if (move_group) {
13363 		perf_remove_from_context(group_leader, 0);
13364 		put_pmu_ctx(group_leader->pmu_ctx);
13365 
13366 		for_each_sibling_event(sibling, group_leader) {
13367 			perf_remove_from_context(sibling, 0);
13368 			put_pmu_ctx(sibling->pmu_ctx);
13369 		}
13370 
13371 		/*
13372 		 * Install the group siblings before the group leader.
13373 		 *
13374 		 * Because a group leader will try and install the entire group
13375 		 * (through the sibling list, which is still in-tact), we can
13376 		 * end up with siblings installed in the wrong context.
13377 		 *
13378 		 * By installing siblings first we NO-OP because they're not
13379 		 * reachable through the group lists.
13380 		 */
13381 		for_each_sibling_event(sibling, group_leader) {
13382 			sibling->pmu_ctx = pmu_ctx;
13383 			get_pmu_ctx(pmu_ctx);
13384 			perf_event__state_init(sibling);
13385 			perf_install_in_context(ctx, sibling, sibling->cpu);
13386 		}
13387 
13388 		/*
13389 		 * Removing from the context ends up with disabled
13390 		 * event. What we want here is event in the initial
13391 		 * startup state, ready to be add into new context.
13392 		 */
13393 		group_leader->pmu_ctx = pmu_ctx;
13394 		get_pmu_ctx(pmu_ctx);
13395 		perf_event__state_init(group_leader);
13396 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
13397 	}
13398 
13399 	/*
13400 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
13401 	 * that we're serialized against further additions and before
13402 	 * perf_install_in_context() which is the point the event is active and
13403 	 * can use these values.
13404 	 */
13405 	perf_event__header_size(event);
13406 	perf_event__id_header_size(event);
13407 
13408 	event->owner = current;
13409 
13410 	perf_install_in_context(ctx, event, event->cpu);
13411 	perf_unpin_context(ctx);
13412 
13413 	mutex_unlock(&ctx->mutex);
13414 
13415 	if (task) {
13416 		up_read(&task->signal->exec_update_lock);
13417 		put_task_struct(task);
13418 	}
13419 
13420 	mutex_lock(&current->perf_event_mutex);
13421 	list_add_tail(&event->owner_entry, &current->perf_event_list);
13422 	mutex_unlock(&current->perf_event_mutex);
13423 
13424 	/*
13425 	 * File reference in group guarantees that group_leader has been
13426 	 * kept alive until we place the new event on the sibling_list.
13427 	 * This ensures destruction of the group leader will find
13428 	 * the pointer to itself in perf_group_detach().
13429 	 */
13430 	fd_install(event_fd, event_file);
13431 	return event_fd;
13432 
13433 err_context:
13434 	put_pmu_ctx(event->pmu_ctx);
13435 	event->pmu_ctx = NULL; /* _free_event() */
13436 err_locked:
13437 	mutex_unlock(&ctx->mutex);
13438 	perf_unpin_context(ctx);
13439 	put_ctx(ctx);
13440 err_cred:
13441 	if (task)
13442 		up_read(&task->signal->exec_update_lock);
13443 err_alloc:
13444 	free_event(event);
13445 err_task:
13446 	if (task)
13447 		put_task_struct(task);
13448 err_fd:
13449 	put_unused_fd(event_fd);
13450 	return err;
13451 }
13452 
13453 /**
13454  * perf_event_create_kernel_counter
13455  *
13456  * @attr: attributes of the counter to create
13457  * @cpu: cpu in which the counter is bound
13458  * @task: task to profile (NULL for percpu)
13459  * @overflow_handler: callback to trigger when we hit the event
13460  * @context: context data could be used in overflow_handler callback
13461  */
13462 struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr * attr,int cpu,struct task_struct * task,perf_overflow_handler_t overflow_handler,void * context)13463 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
13464 				 struct task_struct *task,
13465 				 perf_overflow_handler_t overflow_handler,
13466 				 void *context)
13467 {
13468 	struct perf_event_pmu_context *pmu_ctx;
13469 	struct perf_event_context *ctx;
13470 	struct perf_event *event;
13471 	struct pmu *pmu;
13472 	int err;
13473 
13474 	/*
13475 	 * Grouping is not supported for kernel events, neither is 'AUX',
13476 	 * make sure the caller's intentions are adjusted.
13477 	 */
13478 	if (attr->aux_output || attr->aux_action)
13479 		return ERR_PTR(-EINVAL);
13480 
13481 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
13482 				 overflow_handler, context, -1);
13483 	if (IS_ERR(event)) {
13484 		err = PTR_ERR(event);
13485 		goto err;
13486 	}
13487 
13488 	/* Mark owner so we could distinguish it from user events. */
13489 	event->owner = TASK_TOMBSTONE;
13490 	pmu = event->pmu;
13491 
13492 	if (pmu->task_ctx_nr == perf_sw_context)
13493 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
13494 
13495 	/*
13496 	 * Get the target context (task or percpu):
13497 	 */
13498 	ctx = find_get_context(task, event);
13499 	if (IS_ERR(ctx)) {
13500 		err = PTR_ERR(ctx);
13501 		goto err_alloc;
13502 	}
13503 
13504 	WARN_ON_ONCE(ctx->parent_ctx);
13505 	mutex_lock(&ctx->mutex);
13506 	if (ctx->task == TASK_TOMBSTONE) {
13507 		err = -ESRCH;
13508 		goto err_unlock;
13509 	}
13510 
13511 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
13512 	if (IS_ERR(pmu_ctx)) {
13513 		err = PTR_ERR(pmu_ctx);
13514 		goto err_unlock;
13515 	}
13516 	event->pmu_ctx = pmu_ctx;
13517 
13518 	if (!task) {
13519 		/*
13520 		 * Check if the @cpu we're creating an event for is online.
13521 		 *
13522 		 * We use the perf_cpu_context::ctx::mutex to serialize against
13523 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
13524 		 */
13525 		struct perf_cpu_context *cpuctx =
13526 			container_of(ctx, struct perf_cpu_context, ctx);
13527 		if (!cpuctx->online) {
13528 			err = -ENODEV;
13529 			goto err_pmu_ctx;
13530 		}
13531 	}
13532 
13533 	if (!exclusive_event_installable(event, ctx)) {
13534 		err = -EBUSY;
13535 		goto err_pmu_ctx;
13536 	}
13537 
13538 	perf_install_in_context(ctx, event, event->cpu);
13539 	perf_unpin_context(ctx);
13540 	mutex_unlock(&ctx->mutex);
13541 
13542 	return event;
13543 
13544 err_pmu_ctx:
13545 	put_pmu_ctx(pmu_ctx);
13546 	event->pmu_ctx = NULL; /* _free_event() */
13547 err_unlock:
13548 	mutex_unlock(&ctx->mutex);
13549 	perf_unpin_context(ctx);
13550 	put_ctx(ctx);
13551 err_alloc:
13552 	free_event(event);
13553 err:
13554 	return ERR_PTR(err);
13555 }
13556 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
13557 
__perf_pmu_remove(struct perf_event_context * ctx,int cpu,struct pmu * pmu,struct perf_event_groups * groups,struct list_head * events)13558 static void __perf_pmu_remove(struct perf_event_context *ctx,
13559 			      int cpu, struct pmu *pmu,
13560 			      struct perf_event_groups *groups,
13561 			      struct list_head *events)
13562 {
13563 	struct perf_event *event, *sibling;
13564 
13565 	perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) {
13566 		perf_remove_from_context(event, 0);
13567 		put_pmu_ctx(event->pmu_ctx);
13568 		list_add(&event->migrate_entry, events);
13569 
13570 		for_each_sibling_event(sibling, event) {
13571 			perf_remove_from_context(sibling, 0);
13572 			put_pmu_ctx(sibling->pmu_ctx);
13573 			list_add(&sibling->migrate_entry, events);
13574 		}
13575 	}
13576 }
13577 
__perf_pmu_install_event(struct pmu * pmu,struct perf_event_context * ctx,int cpu,struct perf_event * event)13578 static void __perf_pmu_install_event(struct pmu *pmu,
13579 				     struct perf_event_context *ctx,
13580 				     int cpu, struct perf_event *event)
13581 {
13582 	struct perf_event_pmu_context *epc;
13583 	struct perf_event_context *old_ctx = event->ctx;
13584 
13585 	get_ctx(ctx); /* normally find_get_context() */
13586 
13587 	event->cpu = cpu;
13588 	epc = find_get_pmu_context(pmu, ctx, event);
13589 	event->pmu_ctx = epc;
13590 
13591 	if (event->state >= PERF_EVENT_STATE_OFF)
13592 		event->state = PERF_EVENT_STATE_INACTIVE;
13593 	perf_install_in_context(ctx, event, cpu);
13594 
13595 	/*
13596 	 * Now that event->ctx is updated and visible, put the old ctx.
13597 	 */
13598 	put_ctx(old_ctx);
13599 }
13600 
__perf_pmu_install(struct perf_event_context * ctx,int cpu,struct pmu * pmu,struct list_head * events)13601 static void __perf_pmu_install(struct perf_event_context *ctx,
13602 			       int cpu, struct pmu *pmu, struct list_head *events)
13603 {
13604 	struct perf_event *event, *tmp;
13605 
13606 	/*
13607 	 * Re-instate events in 2 passes.
13608 	 *
13609 	 * Skip over group leaders and only install siblings on this first
13610 	 * pass, siblings will not get enabled without a leader, however a
13611 	 * leader will enable its siblings, even if those are still on the old
13612 	 * context.
13613 	 */
13614 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
13615 		if (event->group_leader == event)
13616 			continue;
13617 
13618 		list_del(&event->migrate_entry);
13619 		__perf_pmu_install_event(pmu, ctx, cpu, event);
13620 	}
13621 
13622 	/*
13623 	 * Once all the siblings are setup properly, install the group leaders
13624 	 * to make it go.
13625 	 */
13626 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
13627 		list_del(&event->migrate_entry);
13628 		__perf_pmu_install_event(pmu, ctx, cpu, event);
13629 	}
13630 }
13631 
perf_pmu_migrate_context(struct pmu * pmu,int src_cpu,int dst_cpu)13632 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
13633 {
13634 	struct perf_event_context *src_ctx, *dst_ctx;
13635 	LIST_HEAD(events);
13636 
13637 	/*
13638 	 * Since per-cpu context is persistent, no need to grab an extra
13639 	 * reference.
13640 	 */
13641 	src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx;
13642 	dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx;
13643 
13644 	/*
13645 	 * See perf_event_ctx_lock() for comments on the details
13646 	 * of swizzling perf_event::ctx.
13647 	 */
13648 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
13649 
13650 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events);
13651 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events);
13652 
13653 	if (!list_empty(&events)) {
13654 		/*
13655 		 * Wait for the events to quiesce before re-instating them.
13656 		 */
13657 		synchronize_rcu();
13658 
13659 		__perf_pmu_install(dst_ctx, dst_cpu, pmu, &events);
13660 	}
13661 
13662 	mutex_unlock(&dst_ctx->mutex);
13663 	mutex_unlock(&src_ctx->mutex);
13664 }
13665 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
13666 
sync_child_event(struct perf_event * child_event)13667 static void sync_child_event(struct perf_event *child_event)
13668 {
13669 	struct perf_event *parent_event = child_event->parent;
13670 	u64 child_val;
13671 
13672 	if (child_event->attr.inherit_stat) {
13673 		struct task_struct *task = child_event->ctx->task;
13674 
13675 		if (task && task != TASK_TOMBSTONE)
13676 			perf_event_read_event(child_event, task);
13677 	}
13678 
13679 	child_val = perf_event_count(child_event, false);
13680 
13681 	/*
13682 	 * Add back the child's count to the parent's count:
13683 	 */
13684 	atomic64_add(child_val, &parent_event->child_count);
13685 	atomic64_add(child_event->total_time_enabled,
13686 		     &parent_event->child_total_time_enabled);
13687 	atomic64_add(child_event->total_time_running,
13688 		     &parent_event->child_total_time_running);
13689 }
13690 
13691 static void
perf_event_exit_event(struct perf_event * event,struct perf_event_context * ctx)13692 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
13693 {
13694 	struct perf_event *parent_event = event->parent;
13695 	unsigned long detach_flags = 0;
13696 
13697 	if (parent_event) {
13698 		/*
13699 		 * Do not destroy the 'original' grouping; because of the
13700 		 * context switch optimization the original events could've
13701 		 * ended up in a random child task.
13702 		 *
13703 		 * If we were to destroy the original group, all group related
13704 		 * operations would cease to function properly after this
13705 		 * random child dies.
13706 		 *
13707 		 * Do destroy all inherited groups, we don't care about those
13708 		 * and being thorough is better.
13709 		 */
13710 		detach_flags = DETACH_GROUP | DETACH_CHILD;
13711 		mutex_lock(&parent_event->child_mutex);
13712 	}
13713 
13714 	perf_remove_from_context(event, detach_flags | DETACH_EXIT);
13715 
13716 	/*
13717 	 * Child events can be freed.
13718 	 */
13719 	if (parent_event) {
13720 		mutex_unlock(&parent_event->child_mutex);
13721 		/*
13722 		 * Kick perf_poll() for is_event_hup();
13723 		 */
13724 		perf_event_wakeup(parent_event);
13725 		put_event(event);
13726 		return;
13727 	}
13728 
13729 	/*
13730 	 * Parent events are governed by their filedesc, retain them.
13731 	 */
13732 	perf_event_wakeup(event);
13733 }
13734 
perf_event_exit_task_context(struct task_struct * child)13735 static void perf_event_exit_task_context(struct task_struct *child)
13736 {
13737 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
13738 	struct perf_event *child_event, *next;
13739 
13740 	WARN_ON_ONCE(child != current);
13741 
13742 	child_ctx = perf_pin_task_context(child);
13743 	if (!child_ctx)
13744 		return;
13745 
13746 	/*
13747 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
13748 	 * ctx::mutex over the entire thing. This serializes against almost
13749 	 * everything that wants to access the ctx.
13750 	 *
13751 	 * The exception is sys_perf_event_open() /
13752 	 * perf_event_create_kernel_count() which does find_get_context()
13753 	 * without ctx::mutex (it cannot because of the move_group double mutex
13754 	 * lock thing). See the comments in perf_install_in_context().
13755 	 */
13756 	mutex_lock(&child_ctx->mutex);
13757 
13758 	/*
13759 	 * In a single ctx::lock section, de-schedule the events and detach the
13760 	 * context from the task such that we cannot ever get it scheduled back
13761 	 * in.
13762 	 */
13763 	raw_spin_lock_irq(&child_ctx->lock);
13764 	task_ctx_sched_out(child_ctx, NULL, EVENT_ALL);
13765 
13766 	/*
13767 	 * Now that the context is inactive, destroy the task <-> ctx relation
13768 	 * and mark the context dead.
13769 	 */
13770 	RCU_INIT_POINTER(child->perf_event_ctxp, NULL);
13771 	put_ctx(child_ctx); /* cannot be last */
13772 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
13773 	put_task_struct(current); /* cannot be last */
13774 
13775 	clone_ctx = unclone_ctx(child_ctx);
13776 	raw_spin_unlock_irq(&child_ctx->lock);
13777 
13778 	if (clone_ctx)
13779 		put_ctx(clone_ctx);
13780 
13781 	/*
13782 	 * Report the task dead after unscheduling the events so that we
13783 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
13784 	 * get a few PERF_RECORD_READ events.
13785 	 */
13786 	perf_event_task(child, child_ctx, 0);
13787 
13788 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
13789 		perf_event_exit_event(child_event, child_ctx);
13790 
13791 	mutex_unlock(&child_ctx->mutex);
13792 
13793 	put_ctx(child_ctx);
13794 }
13795 
13796 /*
13797  * When a child task exits, feed back event values to parent events.
13798  *
13799  * Can be called with exec_update_lock held when called from
13800  * setup_new_exec().
13801  */
perf_event_exit_task(struct task_struct * child)13802 void perf_event_exit_task(struct task_struct *child)
13803 {
13804 	struct perf_event *event, *tmp;
13805 
13806 	mutex_lock(&child->perf_event_mutex);
13807 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
13808 				 owner_entry) {
13809 		list_del_init(&event->owner_entry);
13810 
13811 		/*
13812 		 * Ensure the list deletion is visible before we clear
13813 		 * the owner, closes a race against perf_release() where
13814 		 * we need to serialize on the owner->perf_event_mutex.
13815 		 */
13816 		smp_store_release(&event->owner, NULL);
13817 	}
13818 	mutex_unlock(&child->perf_event_mutex);
13819 
13820 	perf_event_exit_task_context(child);
13821 
13822 	/*
13823 	 * The perf_event_exit_task_context calls perf_event_task
13824 	 * with child's task_ctx, which generates EXIT events for
13825 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
13826 	 * At this point we need to send EXIT events to cpu contexts.
13827 	 */
13828 	perf_event_task(child, NULL, 0);
13829 
13830 	/*
13831 	 * Detach the perf_ctx_data for the system-wide event.
13832 	 */
13833 	guard(percpu_read)(&global_ctx_data_rwsem);
13834 	detach_task_ctx_data(child);
13835 }
13836 
perf_free_event(struct perf_event * event,struct perf_event_context * ctx)13837 static void perf_free_event(struct perf_event *event,
13838 			    struct perf_event_context *ctx)
13839 {
13840 	struct perf_event *parent = event->parent;
13841 
13842 	if (WARN_ON_ONCE(!parent))
13843 		return;
13844 
13845 	mutex_lock(&parent->child_mutex);
13846 	list_del_init(&event->child_list);
13847 	mutex_unlock(&parent->child_mutex);
13848 
13849 	raw_spin_lock_irq(&ctx->lock);
13850 	perf_group_detach(event);
13851 	list_del_event(event, ctx);
13852 	raw_spin_unlock_irq(&ctx->lock);
13853 	put_event(event);
13854 }
13855 
13856 /*
13857  * Free a context as created by inheritance by perf_event_init_task() below,
13858  * used by fork() in case of fail.
13859  *
13860  * Even though the task has never lived, the context and events have been
13861  * exposed through the child_list, so we must take care tearing it all down.
13862  */
perf_event_free_task(struct task_struct * task)13863 void perf_event_free_task(struct task_struct *task)
13864 {
13865 	struct perf_event_context *ctx;
13866 	struct perf_event *event, *tmp;
13867 
13868 	ctx = rcu_access_pointer(task->perf_event_ctxp);
13869 	if (!ctx)
13870 		return;
13871 
13872 	mutex_lock(&ctx->mutex);
13873 	raw_spin_lock_irq(&ctx->lock);
13874 	/*
13875 	 * Destroy the task <-> ctx relation and mark the context dead.
13876 	 *
13877 	 * This is important because even though the task hasn't been
13878 	 * exposed yet the context has been (through child_list).
13879 	 */
13880 	RCU_INIT_POINTER(task->perf_event_ctxp, NULL);
13881 	WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
13882 	put_task_struct(task); /* cannot be last */
13883 	raw_spin_unlock_irq(&ctx->lock);
13884 
13885 
13886 	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
13887 		perf_free_event(event, ctx);
13888 
13889 	mutex_unlock(&ctx->mutex);
13890 
13891 	/*
13892 	 * perf_event_release_kernel() could've stolen some of our
13893 	 * child events and still have them on its free_list. In that
13894 	 * case we must wait for these events to have been freed (in
13895 	 * particular all their references to this task must've been
13896 	 * dropped).
13897 	 *
13898 	 * Without this copy_process() will unconditionally free this
13899 	 * task (irrespective of its reference count) and
13900 	 * _free_event()'s put_task_struct(event->hw.target) will be a
13901 	 * use-after-free.
13902 	 *
13903 	 * Wait for all events to drop their context reference.
13904 	 */
13905 	wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
13906 	put_ctx(ctx); /* must be last */
13907 }
13908 
perf_event_delayed_put(struct task_struct * task)13909 void perf_event_delayed_put(struct task_struct *task)
13910 {
13911 	WARN_ON_ONCE(task->perf_event_ctxp);
13912 }
13913 
perf_event_get(unsigned int fd)13914 struct file *perf_event_get(unsigned int fd)
13915 {
13916 	struct file *file = fget(fd);
13917 	if (!file)
13918 		return ERR_PTR(-EBADF);
13919 
13920 	if (file->f_op != &perf_fops) {
13921 		fput(file);
13922 		return ERR_PTR(-EBADF);
13923 	}
13924 
13925 	return file;
13926 }
13927 
perf_get_event(struct file * file)13928 const struct perf_event *perf_get_event(struct file *file)
13929 {
13930 	if (file->f_op != &perf_fops)
13931 		return ERR_PTR(-EINVAL);
13932 
13933 	return file->private_data;
13934 }
13935 
perf_event_attrs(struct perf_event * event)13936 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
13937 {
13938 	if (!event)
13939 		return ERR_PTR(-EINVAL);
13940 
13941 	return &event->attr;
13942 }
13943 
perf_allow_kernel(void)13944 int perf_allow_kernel(void)
13945 {
13946 	if (sysctl_perf_event_paranoid > 1 && !perfmon_capable())
13947 		return -EACCES;
13948 
13949 	return security_perf_event_open(PERF_SECURITY_KERNEL);
13950 }
13951 EXPORT_SYMBOL_GPL(perf_allow_kernel);
13952 
13953 /*
13954  * Inherit an event from parent task to child task.
13955  *
13956  * Returns:
13957  *  - valid pointer on success
13958  *  - NULL for orphaned events
13959  *  - IS_ERR() on error
13960  */
13961 static struct perf_event *
inherit_event(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event * group_leader,struct perf_event_context * child_ctx)13962 inherit_event(struct perf_event *parent_event,
13963 	      struct task_struct *parent,
13964 	      struct perf_event_context *parent_ctx,
13965 	      struct task_struct *child,
13966 	      struct perf_event *group_leader,
13967 	      struct perf_event_context *child_ctx)
13968 {
13969 	enum perf_event_state parent_state = parent_event->state;
13970 	struct perf_event_pmu_context *pmu_ctx;
13971 	struct perf_event *child_event;
13972 	unsigned long flags;
13973 
13974 	/*
13975 	 * Instead of creating recursive hierarchies of events,
13976 	 * we link inherited events back to the original parent,
13977 	 * which has a filp for sure, which we use as the reference
13978 	 * count:
13979 	 */
13980 	if (parent_event->parent)
13981 		parent_event = parent_event->parent;
13982 
13983 	child_event = perf_event_alloc(&parent_event->attr,
13984 					   parent_event->cpu,
13985 					   child,
13986 					   group_leader, parent_event,
13987 					   NULL, NULL, -1);
13988 	if (IS_ERR(child_event))
13989 		return child_event;
13990 
13991 	get_ctx(child_ctx);
13992 	child_event->ctx = child_ctx;
13993 
13994 	pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event);
13995 	if (IS_ERR(pmu_ctx)) {
13996 		free_event(child_event);
13997 		return ERR_CAST(pmu_ctx);
13998 	}
13999 	child_event->pmu_ctx = pmu_ctx;
14000 
14001 	/*
14002 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
14003 	 * must be under the same lock in order to serialize against
14004 	 * perf_event_release_kernel(), such that either we must observe
14005 	 * is_orphaned_event() or they will observe us on the child_list.
14006 	 */
14007 	mutex_lock(&parent_event->child_mutex);
14008 	if (is_orphaned_event(parent_event) ||
14009 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
14010 		mutex_unlock(&parent_event->child_mutex);
14011 		free_event(child_event);
14012 		return NULL;
14013 	}
14014 
14015 	/*
14016 	 * Make the child state follow the state of the parent event,
14017 	 * not its attr.disabled bit.  We hold the parent's mutex,
14018 	 * so we won't race with perf_event_{en, dis}able_family.
14019 	 */
14020 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
14021 		child_event->state = PERF_EVENT_STATE_INACTIVE;
14022 	else
14023 		child_event->state = PERF_EVENT_STATE_OFF;
14024 
14025 	if (parent_event->attr.freq) {
14026 		u64 sample_period = parent_event->hw.sample_period;
14027 		struct hw_perf_event *hwc = &child_event->hw;
14028 
14029 		hwc->sample_period = sample_period;
14030 		hwc->last_period   = sample_period;
14031 
14032 		local64_set(&hwc->period_left, sample_period);
14033 	}
14034 
14035 	child_event->overflow_handler = parent_event->overflow_handler;
14036 	child_event->overflow_handler_context
14037 		= parent_event->overflow_handler_context;
14038 
14039 	/*
14040 	 * Precalculate sample_data sizes
14041 	 */
14042 	perf_event__header_size(child_event);
14043 	perf_event__id_header_size(child_event);
14044 
14045 	/*
14046 	 * Link it up in the child's context:
14047 	 */
14048 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
14049 	add_event_to_ctx(child_event, child_ctx);
14050 	child_event->attach_state |= PERF_ATTACH_CHILD;
14051 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
14052 
14053 	/*
14054 	 * Link this into the parent event's child list
14055 	 */
14056 	list_add_tail(&child_event->child_list, &parent_event->child_list);
14057 	mutex_unlock(&parent_event->child_mutex);
14058 
14059 	return child_event;
14060 }
14061 
14062 /*
14063  * Inherits an event group.
14064  *
14065  * This will quietly suppress orphaned events; !inherit_event() is not an error.
14066  * This matches with perf_event_release_kernel() removing all child events.
14067  *
14068  * Returns:
14069  *  - 0 on success
14070  *  - <0 on error
14071  */
inherit_group(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event_context * child_ctx)14072 static int inherit_group(struct perf_event *parent_event,
14073 	      struct task_struct *parent,
14074 	      struct perf_event_context *parent_ctx,
14075 	      struct task_struct *child,
14076 	      struct perf_event_context *child_ctx)
14077 {
14078 	struct perf_event *leader;
14079 	struct perf_event *sub;
14080 	struct perf_event *child_ctr;
14081 
14082 	leader = inherit_event(parent_event, parent, parent_ctx,
14083 				 child, NULL, child_ctx);
14084 	if (IS_ERR(leader))
14085 		return PTR_ERR(leader);
14086 	/*
14087 	 * @leader can be NULL here because of is_orphaned_event(). In this
14088 	 * case inherit_event() will create individual events, similar to what
14089 	 * perf_group_detach() would do anyway.
14090 	 */
14091 	for_each_sibling_event(sub, parent_event) {
14092 		child_ctr = inherit_event(sub, parent, parent_ctx,
14093 					    child, leader, child_ctx);
14094 		if (IS_ERR(child_ctr))
14095 			return PTR_ERR(child_ctr);
14096 
14097 		if (sub->aux_event == parent_event && child_ctr &&
14098 		    !perf_get_aux_event(child_ctr, leader))
14099 			return -EINVAL;
14100 	}
14101 	if (leader)
14102 		leader->group_generation = parent_event->group_generation;
14103 	return 0;
14104 }
14105 
14106 /*
14107  * Creates the child task context and tries to inherit the event-group.
14108  *
14109  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
14110  * inherited_all set when we 'fail' to inherit an orphaned event; this is
14111  * consistent with perf_event_release_kernel() removing all child events.
14112  *
14113  * Returns:
14114  *  - 0 on success
14115  *  - <0 on error
14116  */
14117 static int
inherit_task_group(struct perf_event * event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,u64 clone_flags,int * inherited_all)14118 inherit_task_group(struct perf_event *event, struct task_struct *parent,
14119 		   struct perf_event_context *parent_ctx,
14120 		   struct task_struct *child,
14121 		   u64 clone_flags, int *inherited_all)
14122 {
14123 	struct perf_event_context *child_ctx;
14124 	int ret;
14125 
14126 	if (!event->attr.inherit ||
14127 	    (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
14128 	    /* Do not inherit if sigtrap and signal handlers were cleared. */
14129 	    (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
14130 		*inherited_all = 0;
14131 		return 0;
14132 	}
14133 
14134 	child_ctx = child->perf_event_ctxp;
14135 	if (!child_ctx) {
14136 		/*
14137 		 * This is executed from the parent task context, so
14138 		 * inherit events that have been marked for cloning.
14139 		 * First allocate and initialize a context for the
14140 		 * child.
14141 		 */
14142 		child_ctx = alloc_perf_context(child);
14143 		if (!child_ctx)
14144 			return -ENOMEM;
14145 
14146 		child->perf_event_ctxp = child_ctx;
14147 	}
14148 
14149 	ret = inherit_group(event, parent, parent_ctx, child, child_ctx);
14150 	if (ret)
14151 		*inherited_all = 0;
14152 
14153 	return ret;
14154 }
14155 
14156 /*
14157  * Initialize the perf_event context in task_struct
14158  */
perf_event_init_context(struct task_struct * child,u64 clone_flags)14159 static int perf_event_init_context(struct task_struct *child, u64 clone_flags)
14160 {
14161 	struct perf_event_context *child_ctx, *parent_ctx;
14162 	struct perf_event_context *cloned_ctx;
14163 	struct perf_event *event;
14164 	struct task_struct *parent = current;
14165 	int inherited_all = 1;
14166 	unsigned long flags;
14167 	int ret = 0;
14168 
14169 	if (likely(!parent->perf_event_ctxp))
14170 		return 0;
14171 
14172 	/*
14173 	 * If the parent's context is a clone, pin it so it won't get
14174 	 * swapped under us.
14175 	 */
14176 	parent_ctx = perf_pin_task_context(parent);
14177 	if (!parent_ctx)
14178 		return 0;
14179 
14180 	/*
14181 	 * No need to check if parent_ctx != NULL here; since we saw
14182 	 * it non-NULL earlier, the only reason for it to become NULL
14183 	 * is if we exit, and since we're currently in the middle of
14184 	 * a fork we can't be exiting at the same time.
14185 	 */
14186 
14187 	/*
14188 	 * Lock the parent list. No need to lock the child - not PID
14189 	 * hashed yet and not running, so nobody can access it.
14190 	 */
14191 	mutex_lock(&parent_ctx->mutex);
14192 
14193 	/*
14194 	 * We dont have to disable NMIs - we are only looking at
14195 	 * the list, not manipulating it:
14196 	 */
14197 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
14198 		ret = inherit_task_group(event, parent, parent_ctx,
14199 					 child, clone_flags, &inherited_all);
14200 		if (ret)
14201 			goto out_unlock;
14202 	}
14203 
14204 	/*
14205 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
14206 	 * to allocations, but we need to prevent rotation because
14207 	 * rotate_ctx() will change the list from interrupt context.
14208 	 */
14209 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
14210 	parent_ctx->rotate_disable = 1;
14211 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
14212 
14213 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
14214 		ret = inherit_task_group(event, parent, parent_ctx,
14215 					 child, clone_flags, &inherited_all);
14216 		if (ret)
14217 			goto out_unlock;
14218 	}
14219 
14220 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
14221 	parent_ctx->rotate_disable = 0;
14222 
14223 	child_ctx = child->perf_event_ctxp;
14224 
14225 	if (child_ctx && inherited_all) {
14226 		/*
14227 		 * Mark the child context as a clone of the parent
14228 		 * context, or of whatever the parent is a clone of.
14229 		 *
14230 		 * Note that if the parent is a clone, the holding of
14231 		 * parent_ctx->lock avoids it from being uncloned.
14232 		 */
14233 		cloned_ctx = parent_ctx->parent_ctx;
14234 		if (cloned_ctx) {
14235 			child_ctx->parent_ctx = cloned_ctx;
14236 			child_ctx->parent_gen = parent_ctx->parent_gen;
14237 		} else {
14238 			child_ctx->parent_ctx = parent_ctx;
14239 			child_ctx->parent_gen = parent_ctx->generation;
14240 		}
14241 		get_ctx(child_ctx->parent_ctx);
14242 	}
14243 
14244 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
14245 out_unlock:
14246 	mutex_unlock(&parent_ctx->mutex);
14247 
14248 	perf_unpin_context(parent_ctx);
14249 	put_ctx(parent_ctx);
14250 
14251 	return ret;
14252 }
14253 
14254 /*
14255  * Initialize the perf_event context in task_struct
14256  */
perf_event_init_task(struct task_struct * child,u64 clone_flags)14257 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
14258 {
14259 	int ret;
14260 
14261 	memset(child->perf_recursion, 0, sizeof(child->perf_recursion));
14262 	child->perf_event_ctxp = NULL;
14263 	mutex_init(&child->perf_event_mutex);
14264 	INIT_LIST_HEAD(&child->perf_event_list);
14265 	child->perf_ctx_data = NULL;
14266 
14267 	ret = perf_event_init_context(child, clone_flags);
14268 	if (ret) {
14269 		perf_event_free_task(child);
14270 		return ret;
14271 	}
14272 
14273 	return 0;
14274 }
14275 
perf_event_init_all_cpus(void)14276 static void __init perf_event_init_all_cpus(void)
14277 {
14278 	struct swevent_htable *swhash;
14279 	struct perf_cpu_context *cpuctx;
14280 	int cpu;
14281 
14282 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
14283 	zalloc_cpumask_var(&perf_online_core_mask, GFP_KERNEL);
14284 	zalloc_cpumask_var(&perf_online_die_mask, GFP_KERNEL);
14285 	zalloc_cpumask_var(&perf_online_cluster_mask, GFP_KERNEL);
14286 	zalloc_cpumask_var(&perf_online_pkg_mask, GFP_KERNEL);
14287 	zalloc_cpumask_var(&perf_online_sys_mask, GFP_KERNEL);
14288 
14289 
14290 	for_each_possible_cpu(cpu) {
14291 		swhash = &per_cpu(swevent_htable, cpu);
14292 		mutex_init(&swhash->hlist_mutex);
14293 
14294 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
14295 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
14296 
14297 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
14298 
14299 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
14300 		__perf_event_init_context(&cpuctx->ctx);
14301 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
14302 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
14303 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
14304 		cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
14305 		cpuctx->heap = cpuctx->heap_default;
14306 	}
14307 }
14308 
perf_swevent_init_cpu(unsigned int cpu)14309 static void perf_swevent_init_cpu(unsigned int cpu)
14310 {
14311 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
14312 
14313 	mutex_lock(&swhash->hlist_mutex);
14314 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
14315 		struct swevent_hlist *hlist;
14316 
14317 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
14318 		WARN_ON(!hlist);
14319 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
14320 	}
14321 	mutex_unlock(&swhash->hlist_mutex);
14322 }
14323 
14324 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
__perf_event_exit_context(void * __info)14325 static void __perf_event_exit_context(void *__info)
14326 {
14327 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
14328 	struct perf_event_context *ctx = __info;
14329 	struct perf_event *event;
14330 
14331 	raw_spin_lock(&ctx->lock);
14332 	ctx_sched_out(ctx, NULL, EVENT_TIME);
14333 	list_for_each_entry(event, &ctx->event_list, event_entry)
14334 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
14335 	raw_spin_unlock(&ctx->lock);
14336 }
14337 
perf_event_clear_cpumask(unsigned int cpu)14338 static void perf_event_clear_cpumask(unsigned int cpu)
14339 {
14340 	int target[PERF_PMU_MAX_SCOPE];
14341 	unsigned int scope;
14342 	struct pmu *pmu;
14343 
14344 	cpumask_clear_cpu(cpu, perf_online_mask);
14345 
14346 	for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14347 		const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu);
14348 		struct cpumask *pmu_cpumask = perf_scope_cpumask(scope);
14349 
14350 		target[scope] = -1;
14351 		if (WARN_ON_ONCE(!pmu_cpumask || !cpumask))
14352 			continue;
14353 
14354 		if (!cpumask_test_and_clear_cpu(cpu, pmu_cpumask))
14355 			continue;
14356 		target[scope] = cpumask_any_but(cpumask, cpu);
14357 		if (target[scope] < nr_cpu_ids)
14358 			cpumask_set_cpu(target[scope], pmu_cpumask);
14359 	}
14360 
14361 	/* migrate */
14362 	list_for_each_entry(pmu, &pmus, entry) {
14363 		if (pmu->scope == PERF_PMU_SCOPE_NONE ||
14364 		    WARN_ON_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE))
14365 			continue;
14366 
14367 		if (target[pmu->scope] >= 0 && target[pmu->scope] < nr_cpu_ids)
14368 			perf_pmu_migrate_context(pmu, cpu, target[pmu->scope]);
14369 	}
14370 }
14371 
perf_event_exit_cpu_context(int cpu)14372 static void perf_event_exit_cpu_context(int cpu)
14373 {
14374 	struct perf_cpu_context *cpuctx;
14375 	struct perf_event_context *ctx;
14376 
14377 	// XXX simplify cpuctx->online
14378 	mutex_lock(&pmus_lock);
14379 	/*
14380 	 * Clear the cpumasks, and migrate to other CPUs if possible.
14381 	 * Must be invoked before the __perf_event_exit_context.
14382 	 */
14383 	perf_event_clear_cpumask(cpu);
14384 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
14385 	ctx = &cpuctx->ctx;
14386 
14387 	mutex_lock(&ctx->mutex);
14388 	smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
14389 	cpuctx->online = 0;
14390 	mutex_unlock(&ctx->mutex);
14391 	mutex_unlock(&pmus_lock);
14392 }
14393 #else
14394 
perf_event_exit_cpu_context(int cpu)14395 static void perf_event_exit_cpu_context(int cpu) { }
14396 
14397 #endif
14398 
perf_event_setup_cpumask(unsigned int cpu)14399 static void perf_event_setup_cpumask(unsigned int cpu)
14400 {
14401 	struct cpumask *pmu_cpumask;
14402 	unsigned int scope;
14403 
14404 	/*
14405 	 * Early boot stage, the cpumask hasn't been set yet.
14406 	 * The perf_online_<domain>_masks includes the first CPU of each domain.
14407 	 * Always unconditionally set the boot CPU for the perf_online_<domain>_masks.
14408 	 */
14409 	if (cpumask_empty(perf_online_mask)) {
14410 		for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14411 			pmu_cpumask = perf_scope_cpumask(scope);
14412 			if (WARN_ON_ONCE(!pmu_cpumask))
14413 				continue;
14414 			cpumask_set_cpu(cpu, pmu_cpumask);
14415 		}
14416 		goto end;
14417 	}
14418 
14419 	for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14420 		const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu);
14421 
14422 		pmu_cpumask = perf_scope_cpumask(scope);
14423 
14424 		if (WARN_ON_ONCE(!pmu_cpumask || !cpumask))
14425 			continue;
14426 
14427 		if (!cpumask_empty(cpumask) &&
14428 		    cpumask_any_and(pmu_cpumask, cpumask) >= nr_cpu_ids)
14429 			cpumask_set_cpu(cpu, pmu_cpumask);
14430 	}
14431 end:
14432 	cpumask_set_cpu(cpu, perf_online_mask);
14433 }
14434 
perf_event_init_cpu(unsigned int cpu)14435 int perf_event_init_cpu(unsigned int cpu)
14436 {
14437 	struct perf_cpu_context *cpuctx;
14438 	struct perf_event_context *ctx;
14439 
14440 	perf_swevent_init_cpu(cpu);
14441 
14442 	mutex_lock(&pmus_lock);
14443 	perf_event_setup_cpumask(cpu);
14444 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
14445 	ctx = &cpuctx->ctx;
14446 
14447 	mutex_lock(&ctx->mutex);
14448 	cpuctx->online = 1;
14449 	mutex_unlock(&ctx->mutex);
14450 	mutex_unlock(&pmus_lock);
14451 
14452 	return 0;
14453 }
14454 
perf_event_exit_cpu(unsigned int cpu)14455 int perf_event_exit_cpu(unsigned int cpu)
14456 {
14457 	perf_event_exit_cpu_context(cpu);
14458 	return 0;
14459 }
14460 
14461 static int
perf_reboot(struct notifier_block * notifier,unsigned long val,void * v)14462 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
14463 {
14464 	int cpu;
14465 
14466 	for_each_online_cpu(cpu)
14467 		perf_event_exit_cpu(cpu);
14468 
14469 	return NOTIFY_OK;
14470 }
14471 
14472 /*
14473  * Run the perf reboot notifier at the very last possible moment so that
14474  * the generic watchdog code runs as long as possible.
14475  */
14476 static struct notifier_block perf_reboot_notifier = {
14477 	.notifier_call = perf_reboot,
14478 	.priority = INT_MIN,
14479 };
14480 
perf_event_init(void)14481 void __init perf_event_init(void)
14482 {
14483 	int ret;
14484 
14485 	idr_init(&pmu_idr);
14486 
14487 	perf_event_init_all_cpus();
14488 	init_srcu_struct(&pmus_srcu);
14489 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
14490 	perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1);
14491 	perf_pmu_register(&perf_task_clock, "task_clock", -1);
14492 	perf_tp_register();
14493 	perf_event_init_cpu(smp_processor_id());
14494 	register_reboot_notifier(&perf_reboot_notifier);
14495 
14496 	ret = init_hw_breakpoint();
14497 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
14498 
14499 	perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
14500 
14501 	/*
14502 	 * Build time assertion that we keep the data_head at the intended
14503 	 * location.  IOW, validation we got the __reserved[] size right.
14504 	 */
14505 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
14506 		     != 1024);
14507 }
14508 
perf_event_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)14509 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
14510 			      char *page)
14511 {
14512 	struct perf_pmu_events_attr *pmu_attr =
14513 		container_of(attr, struct perf_pmu_events_attr, attr);
14514 
14515 	if (pmu_attr->event_str)
14516 		return sprintf(page, "%s\n", pmu_attr->event_str);
14517 
14518 	return 0;
14519 }
14520 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
14521 
perf_event_sysfs_init(void)14522 static int __init perf_event_sysfs_init(void)
14523 {
14524 	struct pmu *pmu;
14525 	int ret;
14526 
14527 	mutex_lock(&pmus_lock);
14528 
14529 	ret = bus_register(&pmu_bus);
14530 	if (ret)
14531 		goto unlock;
14532 
14533 	list_for_each_entry(pmu, &pmus, entry) {
14534 		if (pmu->dev)
14535 			continue;
14536 
14537 		ret = pmu_dev_alloc(pmu);
14538 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
14539 	}
14540 	pmu_bus_running = 1;
14541 	ret = 0;
14542 
14543 unlock:
14544 	mutex_unlock(&pmus_lock);
14545 
14546 	return ret;
14547 }
14548 device_initcall(perf_event_sysfs_init);
14549 
14550 #ifdef CONFIG_CGROUP_PERF
14551 static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)14552 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
14553 {
14554 	struct perf_cgroup *jc;
14555 
14556 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
14557 	if (!jc)
14558 		return ERR_PTR(-ENOMEM);
14559 
14560 	jc->info = alloc_percpu(struct perf_cgroup_info);
14561 	if (!jc->info) {
14562 		kfree(jc);
14563 		return ERR_PTR(-ENOMEM);
14564 	}
14565 
14566 	return &jc->css;
14567 }
14568 
perf_cgroup_css_free(struct cgroup_subsys_state * css)14569 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
14570 {
14571 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
14572 
14573 	free_percpu(jc->info);
14574 	kfree(jc);
14575 }
14576 
perf_cgroup_css_online(struct cgroup_subsys_state * css)14577 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
14578 {
14579 	perf_event_cgroup(css->cgroup);
14580 	return 0;
14581 }
14582 
__perf_cgroup_move(void * info)14583 static int __perf_cgroup_move(void *info)
14584 {
14585 	struct task_struct *task = info;
14586 
14587 	preempt_disable();
14588 	perf_cgroup_switch(task);
14589 	preempt_enable();
14590 
14591 	return 0;
14592 }
14593 
perf_cgroup_attach(struct cgroup_taskset * tset)14594 static void perf_cgroup_attach(struct cgroup_taskset *tset)
14595 {
14596 	struct task_struct *task;
14597 	struct cgroup_subsys_state *css;
14598 
14599 	cgroup_taskset_for_each(task, css, tset)
14600 		task_function_call(task, __perf_cgroup_move, task);
14601 }
14602 
14603 struct cgroup_subsys perf_event_cgrp_subsys = {
14604 	.css_alloc	= perf_cgroup_css_alloc,
14605 	.css_free	= perf_cgroup_css_free,
14606 	.css_online	= perf_cgroup_css_online,
14607 	.attach		= perf_cgroup_attach,
14608 	/*
14609 	 * Implicitly enable on dfl hierarchy so that perf events can
14610 	 * always be filtered by cgroup2 path as long as perf_event
14611 	 * controller is not mounted on a legacy hierarchy.
14612 	 */
14613 	.implicit_on_dfl = true,
14614 	.threaded	= true,
14615 };
14616 #endif /* CONFIG_CGROUP_PERF */
14617 
14618 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
14619