1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _BCACHEFS_UTIL_H
3 #define _BCACHEFS_UTIL_H
4
5 #include <linux/bio.h>
6 #include <linux/blkdev.h>
7 #include <linux/closure.h>
8 #include <linux/errno.h>
9 #include <linux/freezer.h>
10 #include <linux/kernel.h>
11 #include <linux/min_heap.h>
12 #include <linux/sched/clock.h>
13 #include <linux/llist.h>
14 #include <linux/log2.h>
15 #include <linux/percpu.h>
16 #include <linux/preempt.h>
17 #include <linux/ratelimit.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/workqueue.h>
21
22 #include "mean_and_variance.h"
23
24 #include "darray.h"
25 #include "time_stats.h"
26
27 struct closure;
28
29 #ifdef CONFIG_BCACHEFS_DEBUG
30 #define EBUG_ON(cond) BUG_ON(cond)
31 #else
32 #define EBUG_ON(cond)
33 #endif
34
35 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
36 #define CPU_BIG_ENDIAN 0
37 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
38 #define CPU_BIG_ENDIAN 1
39 #endif
40
41 /* type hackery */
42
43 #define type_is_exact(_val, _type) \
44 __builtin_types_compatible_p(typeof(_val), _type)
45
46 #define type_is(_val, _type) \
47 (__builtin_types_compatible_p(typeof(_val), _type) || \
48 __builtin_types_compatible_p(typeof(_val), const _type))
49
50 /* Userspace doesn't align allocations as nicely as the kernel allocators: */
buf_pages(void * p,size_t len)51 static inline size_t buf_pages(void *p, size_t len)
52 {
53 return DIV_ROUND_UP(len +
54 ((unsigned long) p & (PAGE_SIZE - 1)),
55 PAGE_SIZE);
56 }
57
bch2_kvmalloc(size_t n,gfp_t flags)58 static inline void *bch2_kvmalloc(size_t n, gfp_t flags)
59 {
60 void *p = unlikely(n >= INT_MAX)
61 ? vmalloc(n)
62 : kvmalloc(n, flags & ~__GFP_ZERO);
63 if (p && (flags & __GFP_ZERO))
64 memset(p, 0, n);
65 return p;
66 }
67
68 #define init_heap(heap, _size, gfp) \
69 ({ \
70 (heap)->nr = 0; \
71 (heap)->size = (_size); \
72 (heap)->data = kvmalloc((heap)->size * sizeof((heap)->data[0]),\
73 (gfp)); \
74 })
75
76 #define free_heap(heap) \
77 do { \
78 kvfree((heap)->data); \
79 (heap)->data = NULL; \
80 } while (0)
81
82 #define ANYSINT_MAX(t) \
83 ((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1)
84
85 #include "printbuf.h"
86
87 #define prt_vprintf(_out, ...) bch2_prt_vprintf(_out, __VA_ARGS__)
88 #define prt_printf(_out, ...) bch2_prt_printf(_out, __VA_ARGS__)
89 #define printbuf_str(_buf) bch2_printbuf_str(_buf)
90 #define printbuf_exit(_buf) bch2_printbuf_exit(_buf)
91
92 #define printbuf_tabstops_reset(_buf) bch2_printbuf_tabstops_reset(_buf)
93 #define printbuf_tabstop_pop(_buf) bch2_printbuf_tabstop_pop(_buf)
94 #define printbuf_tabstop_push(_buf, _n) bch2_printbuf_tabstop_push(_buf, _n)
95
96 #define printbuf_indent_add(_out, _n) bch2_printbuf_indent_add(_out, _n)
97 #define printbuf_indent_sub(_out, _n) bch2_printbuf_indent_sub(_out, _n)
98
99 #define prt_newline(_out) bch2_prt_newline(_out)
100 #define prt_tab(_out) bch2_prt_tab(_out)
101 #define prt_tab_rjust(_out) bch2_prt_tab_rjust(_out)
102
103 #define prt_bytes_indented(...) bch2_prt_bytes_indented(__VA_ARGS__)
104 #define prt_u64(_out, _v) prt_printf(_out, "%llu", (u64) (_v))
105 #define prt_human_readable_u64(...) bch2_prt_human_readable_u64(__VA_ARGS__)
106 #define prt_human_readable_s64(...) bch2_prt_human_readable_s64(__VA_ARGS__)
107 #define prt_units_u64(...) bch2_prt_units_u64(__VA_ARGS__)
108 #define prt_units_s64(...) bch2_prt_units_s64(__VA_ARGS__)
109 #define prt_string_option(...) bch2_prt_string_option(__VA_ARGS__)
110 #define prt_bitflags(...) bch2_prt_bitflags(__VA_ARGS__)
111 #define prt_bitflags_vector(...) bch2_prt_bitflags_vector(__VA_ARGS__)
112
113 void bch2_pr_time_units(struct printbuf *, u64);
114 void bch2_prt_datetime(struct printbuf *, time64_t);
115
116 #ifdef __KERNEL__
uuid_unparse_lower(u8 * uuid,char * out)117 static inline void uuid_unparse_lower(u8 *uuid, char *out)
118 {
119 sprintf(out, "%pUb", uuid);
120 }
121 #else
122 #include <uuid/uuid.h>
123 #endif
124
pr_uuid(struct printbuf * out,u8 * uuid)125 static inline void pr_uuid(struct printbuf *out, u8 *uuid)
126 {
127 char uuid_str[40];
128
129 uuid_unparse_lower(uuid, uuid_str);
130 prt_printf(out, "%s", uuid_str);
131 }
132
133 int bch2_strtoint_h(const char *, int *);
134 int bch2_strtouint_h(const char *, unsigned int *);
135 int bch2_strtoll_h(const char *, long long *);
136 int bch2_strtoull_h(const char *, unsigned long long *);
137 int bch2_strtou64_h(const char *, u64 *);
138
bch2_strtol_h(const char * cp,long * res)139 static inline int bch2_strtol_h(const char *cp, long *res)
140 {
141 #if BITS_PER_LONG == 32
142 return bch2_strtoint_h(cp, (int *) res);
143 #else
144 return bch2_strtoll_h(cp, (long long *) res);
145 #endif
146 }
147
bch2_strtoul_h(const char * cp,long * res)148 static inline int bch2_strtoul_h(const char *cp, long *res)
149 {
150 #if BITS_PER_LONG == 32
151 return bch2_strtouint_h(cp, (unsigned int *) res);
152 #else
153 return bch2_strtoull_h(cp, (unsigned long long *) res);
154 #endif
155 }
156
157 #define strtoi_h(cp, res) \
158 ( type_is(*res, int) ? bch2_strtoint_h(cp, (void *) res)\
159 : type_is(*res, long) ? bch2_strtol_h(cp, (void *) res)\
160 : type_is(*res, long long) ? bch2_strtoll_h(cp, (void *) res)\
161 : type_is(*res, unsigned) ? bch2_strtouint_h(cp, (void *) res)\
162 : type_is(*res, unsigned long) ? bch2_strtoul_h(cp, (void *) res)\
163 : type_is(*res, unsigned long long) ? bch2_strtoull_h(cp, (void *) res)\
164 : -EINVAL)
165
166 #define strtoul_safe(cp, var) \
167 ({ \
168 unsigned long _v; \
169 int _r = kstrtoul(cp, 10, &_v); \
170 if (!_r) \
171 var = _v; \
172 _r; \
173 })
174
175 #define strtoul_safe_clamp(cp, var, min, max) \
176 ({ \
177 unsigned long _v; \
178 int _r = kstrtoul(cp, 10, &_v); \
179 if (!_r) \
180 var = clamp_t(typeof(var), _v, min, max); \
181 _r; \
182 })
183
184 #define strtoul_safe_restrict(cp, var, min, max) \
185 ({ \
186 unsigned long _v; \
187 int _r = kstrtoul(cp, 10, &_v); \
188 if (!_r && _v >= min && _v <= max) \
189 var = _v; \
190 else \
191 _r = -EINVAL; \
192 _r; \
193 })
194
195 #define snprint(out, var) \
196 prt_printf(out, \
197 type_is(var, int) ? "%i\n" \
198 : type_is(var, unsigned) ? "%u\n" \
199 : type_is(var, long) ? "%li\n" \
200 : type_is(var, unsigned long) ? "%lu\n" \
201 : type_is(var, s64) ? "%lli\n" \
202 : type_is(var, u64) ? "%llu\n" \
203 : type_is(var, char *) ? "%s\n" \
204 : "%i\n", var)
205
206 bool bch2_is_zero(const void *, size_t);
207
208 u64 bch2_read_flag_list(const char *, const char * const[]);
209
210 void bch2_prt_u64_base2_nbits(struct printbuf *, u64, unsigned);
211 void bch2_prt_u64_base2(struct printbuf *, u64);
212
213 void bch2_print_string_as_lines(const char *prefix, const char *lines);
214 void bch2_print_string_as_lines_nonblocking(const char *prefix, const char *lines);
215
216 typedef DARRAY(unsigned long) bch_stacktrace;
217 int bch2_save_backtrace(bch_stacktrace *stack, struct task_struct *, unsigned, gfp_t);
218 void bch2_prt_backtrace(struct printbuf *, bch_stacktrace *);
219 int bch2_prt_task_backtrace(struct printbuf *, struct task_struct *, unsigned, gfp_t);
220
prt_bdevname(struct printbuf * out,struct block_device * bdev)221 static inline void prt_bdevname(struct printbuf *out, struct block_device *bdev)
222 {
223 #ifdef __KERNEL__
224 prt_printf(out, "%pg", bdev);
225 #else
226 prt_str(out, bdev->name);
227 #endif
228 }
229
230 void bch2_time_stats_to_text(struct printbuf *, struct bch2_time_stats *);
231
232 #define ewma_add(ewma, val, weight) \
233 ({ \
234 typeof(ewma) _ewma = (ewma); \
235 typeof(weight) _weight = (weight); \
236 \
237 (((_ewma << _weight) - _ewma) + (val)) >> _weight; \
238 })
239
240 struct bch_ratelimit {
241 /* Next time we want to do some work, in nanoseconds */
242 u64 next;
243
244 /*
245 * Rate at which we want to do work, in units per nanosecond
246 * The units here correspond to the units passed to
247 * bch2_ratelimit_increment()
248 */
249 unsigned rate;
250 };
251
bch2_ratelimit_reset(struct bch_ratelimit * d)252 static inline void bch2_ratelimit_reset(struct bch_ratelimit *d)
253 {
254 d->next = local_clock();
255 }
256
257 u64 bch2_ratelimit_delay(struct bch_ratelimit *);
258 void bch2_ratelimit_increment(struct bch_ratelimit *, u64);
259
260 struct bch_pd_controller {
261 struct bch_ratelimit rate;
262 unsigned long last_update;
263
264 s64 last_actual;
265 s64 smoothed_derivative;
266
267 unsigned p_term_inverse;
268 unsigned d_smooth;
269 unsigned d_term;
270
271 /* for exporting to sysfs (no effect on behavior) */
272 s64 last_derivative;
273 s64 last_proportional;
274 s64 last_change;
275 s64 last_target;
276
277 /*
278 * If true, the rate will not increase if bch2_ratelimit_delay()
279 * is not being called often enough.
280 */
281 bool backpressure;
282 };
283
284 void bch2_pd_controller_update(struct bch_pd_controller *, s64, s64, int);
285 void bch2_pd_controller_init(struct bch_pd_controller *);
286 void bch2_pd_controller_debug_to_text(struct printbuf *, struct bch_pd_controller *);
287
288 #define sysfs_pd_controller_attribute(name) \
289 rw_attribute(name##_rate); \
290 rw_attribute(name##_rate_bytes); \
291 rw_attribute(name##_rate_d_term); \
292 rw_attribute(name##_rate_p_term_inverse); \
293 read_attribute(name##_rate_debug)
294
295 #define sysfs_pd_controller_files(name) \
296 &sysfs_##name##_rate, \
297 &sysfs_##name##_rate_bytes, \
298 &sysfs_##name##_rate_d_term, \
299 &sysfs_##name##_rate_p_term_inverse, \
300 &sysfs_##name##_rate_debug
301
302 #define sysfs_pd_controller_show(name, var) \
303 do { \
304 sysfs_hprint(name##_rate, (var)->rate.rate); \
305 sysfs_print(name##_rate_bytes, (var)->rate.rate); \
306 sysfs_print(name##_rate_d_term, (var)->d_term); \
307 sysfs_print(name##_rate_p_term_inverse, (var)->p_term_inverse); \
308 \
309 if (attr == &sysfs_##name##_rate_debug) \
310 bch2_pd_controller_debug_to_text(out, var); \
311 } while (0)
312
313 #define sysfs_pd_controller_store(name, var) \
314 do { \
315 sysfs_strtoul_clamp(name##_rate, \
316 (var)->rate.rate, 1, UINT_MAX); \
317 sysfs_strtoul_clamp(name##_rate_bytes, \
318 (var)->rate.rate, 1, UINT_MAX); \
319 sysfs_strtoul(name##_rate_d_term, (var)->d_term); \
320 sysfs_strtoul_clamp(name##_rate_p_term_inverse, \
321 (var)->p_term_inverse, 1, INT_MAX); \
322 } while (0)
323
324 #define container_of_or_null(ptr, type, member) \
325 ({ \
326 typeof(ptr) _ptr = ptr; \
327 _ptr ? container_of(_ptr, type, member) : NULL; \
328 })
329
list_pop(struct list_head * head)330 static inline struct list_head *list_pop(struct list_head *head)
331 {
332 if (list_empty(head))
333 return NULL;
334
335 struct list_head *ret = head->next;
336 list_del_init(ret);
337 return ret;
338 }
339
340 #define list_pop_entry(head, type, member) \
341 container_of_or_null(list_pop(head), type, member)
342
343 /* Does linear interpolation between powers of two */
fract_exp_two(unsigned x,unsigned fract_bits)344 static inline unsigned fract_exp_two(unsigned x, unsigned fract_bits)
345 {
346 unsigned fract = x & ~(~0 << fract_bits);
347
348 x >>= fract_bits;
349 x = 1 << x;
350 x += (x * fract) >> fract_bits;
351
352 return x;
353 }
354
355 void bch2_bio_map(struct bio *bio, void *base, size_t);
356 int bch2_bio_alloc_pages(struct bio *, size_t, gfp_t);
357
358 #define closure_bio_submit(bio, cl) \
359 do { \
360 closure_get(cl); \
361 submit_bio(bio); \
362 } while (0)
363
364 #define kthread_wait(cond) \
365 ({ \
366 int _ret = 0; \
367 \
368 while (1) { \
369 set_current_state(TASK_INTERRUPTIBLE); \
370 if (kthread_should_stop()) { \
371 _ret = -1; \
372 break; \
373 } \
374 \
375 if (cond) \
376 break; \
377 \
378 schedule(); \
379 } \
380 set_current_state(TASK_RUNNING); \
381 _ret; \
382 })
383
384 #define kthread_wait_freezable(cond) \
385 ({ \
386 int _ret = 0; \
387 while (1) { \
388 set_current_state(TASK_INTERRUPTIBLE); \
389 if (kthread_should_stop()) { \
390 _ret = -1; \
391 break; \
392 } \
393 \
394 if (cond) \
395 break; \
396 \
397 schedule(); \
398 try_to_freeze(); \
399 } \
400 set_current_state(TASK_RUNNING); \
401 _ret; \
402 })
403
404 u64 bch2_get_random_u64_below(u64);
405
406 void memcpy_to_bio(struct bio *, struct bvec_iter, const void *);
407 void memcpy_from_bio(void *, struct bio *, struct bvec_iter);
408
409 #ifdef CONFIG_BCACHEFS_DEBUG
410 void bch2_corrupt_bio(struct bio *);
411
bch2_maybe_corrupt_bio(struct bio * bio,unsigned ratio)412 static inline void bch2_maybe_corrupt_bio(struct bio *bio, unsigned ratio)
413 {
414 if (ratio && !get_random_u32_below(ratio))
415 bch2_corrupt_bio(bio);
416 }
417 #else
418 #define bch2_maybe_corrupt_bio(...) do {} while (0)
419 #endif
420
memcpy_u64s_small(void * dst,const void * src,unsigned u64s)421 static inline void memcpy_u64s_small(void *dst, const void *src,
422 unsigned u64s)
423 {
424 u64 *d = dst;
425 const u64 *s = src;
426
427 while (u64s--)
428 *d++ = *s++;
429 }
430
__memcpy_u64s(void * dst,const void * src,unsigned u64s)431 static inline void __memcpy_u64s(void *dst, const void *src,
432 unsigned u64s)
433 {
434 #if defined(CONFIG_X86_64) && !defined(CONFIG_KMSAN)
435 long d0, d1, d2;
436
437 asm volatile("rep ; movsq"
438 : "=&c" (d0), "=&D" (d1), "=&S" (d2)
439 : "0" (u64s), "1" (dst), "2" (src)
440 : "memory");
441 #else
442 u64 *d = dst;
443 const u64 *s = src;
444
445 while (u64s--)
446 *d++ = *s++;
447 #endif
448 }
449
memcpy_u64s(void * dst,const void * src,unsigned u64s)450 static inline void memcpy_u64s(void *dst, const void *src,
451 unsigned u64s)
452 {
453 EBUG_ON(!(dst >= src + u64s * sizeof(u64) ||
454 dst + u64s * sizeof(u64) <= src));
455
456 __memcpy_u64s(dst, src, u64s);
457 }
458
__memmove_u64s_down(void * dst,const void * src,unsigned u64s)459 static inline void __memmove_u64s_down(void *dst, const void *src,
460 unsigned u64s)
461 {
462 __memcpy_u64s(dst, src, u64s);
463 }
464
memmove_u64s_down(void * dst,const void * src,unsigned u64s)465 static inline void memmove_u64s_down(void *dst, const void *src,
466 unsigned u64s)
467 {
468 EBUG_ON(dst > src);
469
470 __memmove_u64s_down(dst, src, u64s);
471 }
472
__memmove_u64s_down_small(void * dst,const void * src,unsigned u64s)473 static inline void __memmove_u64s_down_small(void *dst, const void *src,
474 unsigned u64s)
475 {
476 memcpy_u64s_small(dst, src, u64s);
477 }
478
memmove_u64s_down_small(void * dst,const void * src,unsigned u64s)479 static inline void memmove_u64s_down_small(void *dst, const void *src,
480 unsigned u64s)
481 {
482 EBUG_ON(dst > src);
483
484 __memmove_u64s_down_small(dst, src, u64s);
485 }
486
__memmove_u64s_up_small(void * _dst,const void * _src,unsigned u64s)487 static inline void __memmove_u64s_up_small(void *_dst, const void *_src,
488 unsigned u64s)
489 {
490 u64 *dst = (u64 *) _dst + u64s;
491 u64 *src = (u64 *) _src + u64s;
492
493 while (u64s--)
494 *--dst = *--src;
495 }
496
memmove_u64s_up_small(void * dst,const void * src,unsigned u64s)497 static inline void memmove_u64s_up_small(void *dst, const void *src,
498 unsigned u64s)
499 {
500 EBUG_ON(dst < src);
501
502 __memmove_u64s_up_small(dst, src, u64s);
503 }
504
__memmove_u64s_up(void * _dst,const void * _src,unsigned u64s)505 static inline void __memmove_u64s_up(void *_dst, const void *_src,
506 unsigned u64s)
507 {
508 u64 *dst = (u64 *) _dst + u64s - 1;
509 u64 *src = (u64 *) _src + u64s - 1;
510
511 #if defined(CONFIG_X86_64) && !defined(CONFIG_KMSAN)
512 long d0, d1, d2;
513
514 asm volatile("std ;\n"
515 "rep ; movsq\n"
516 "cld ;\n"
517 : "=&c" (d0), "=&D" (d1), "=&S" (d2)
518 : "0" (u64s), "1" (dst), "2" (src)
519 : "memory");
520 #else
521 while (u64s--)
522 *dst-- = *src--;
523 #endif
524 }
525
memmove_u64s_up(void * dst,const void * src,unsigned u64s)526 static inline void memmove_u64s_up(void *dst, const void *src,
527 unsigned u64s)
528 {
529 EBUG_ON(dst < src);
530
531 __memmove_u64s_up(dst, src, u64s);
532 }
533
memmove_u64s(void * dst,const void * src,unsigned u64s)534 static inline void memmove_u64s(void *dst, const void *src,
535 unsigned u64s)
536 {
537 if (dst < src)
538 __memmove_u64s_down(dst, src, u64s);
539 else
540 __memmove_u64s_up(dst, src, u64s);
541 }
542
543 /* Set the last few bytes up to a u64 boundary given an offset into a buffer. */
memset_u64s_tail(void * s,int c,unsigned bytes)544 static inline void memset_u64s_tail(void *s, int c, unsigned bytes)
545 {
546 unsigned rem = round_up(bytes, sizeof(u64)) - bytes;
547
548 memset(s + bytes, c, rem);
549 }
550
551 /* just the memmove, doesn't update @_nr */
552 #define __array_insert_item(_array, _nr, _pos) \
553 memmove(&(_array)[(_pos) + 1], \
554 &(_array)[(_pos)], \
555 sizeof((_array)[0]) * ((_nr) - (_pos)))
556
557 #define array_insert_item(_array, _nr, _pos, _new_item) \
558 do { \
559 __array_insert_item(_array, _nr, _pos); \
560 (_nr)++; \
561 (_array)[(_pos)] = (_new_item); \
562 } while (0)
563
564 #define array_remove_items(_array, _nr, _pos, _nr_to_remove) \
565 do { \
566 (_nr) -= (_nr_to_remove); \
567 memmove(&(_array)[(_pos)], \
568 &(_array)[(_pos) + (_nr_to_remove)], \
569 sizeof((_array)[0]) * ((_nr) - (_pos))); \
570 } while (0)
571
572 #define array_remove_item(_array, _nr, _pos) \
573 array_remove_items(_array, _nr, _pos, 1)
574
__move_gap(void * array,size_t element_size,size_t nr,size_t size,size_t old_gap,size_t new_gap)575 static inline void __move_gap(void *array, size_t element_size,
576 size_t nr, size_t size,
577 size_t old_gap, size_t new_gap)
578 {
579 size_t gap_end = old_gap + size - nr;
580
581 if (new_gap < old_gap) {
582 size_t move = old_gap - new_gap;
583
584 memmove(array + element_size * (gap_end - move),
585 array + element_size * (old_gap - move),
586 element_size * move);
587 } else if (new_gap > old_gap) {
588 size_t move = new_gap - old_gap;
589
590 memmove(array + element_size * old_gap,
591 array + element_size * gap_end,
592 element_size * move);
593 }
594 }
595
596 /* Move the gap in a gap buffer: */
597 #define move_gap(_d, _new_gap) \
598 do { \
599 BUG_ON(_new_gap > (_d)->nr); \
600 BUG_ON((_d)->gap > (_d)->nr); \
601 \
602 __move_gap((_d)->data, sizeof((_d)->data[0]), \
603 (_d)->nr, (_d)->size, (_d)->gap, _new_gap); \
604 (_d)->gap = _new_gap; \
605 } while (0)
606
607 #define bubble_sort(_base, _nr, _cmp) \
608 do { \
609 ssize_t _i, _last; \
610 bool _swapped = true; \
611 \
612 for (_last= (ssize_t) (_nr) - 1; _last > 0 && _swapped; --_last) {\
613 _swapped = false; \
614 for (_i = 0; _i < _last; _i++) \
615 if (_cmp((_base)[_i], (_base)[_i + 1]) > 0) { \
616 swap((_base)[_i], (_base)[_i + 1]); \
617 _swapped = true; \
618 } \
619 } \
620 } while (0)
621
622 #define per_cpu_sum(_p) \
623 ({ \
624 typeof(*_p) _ret = 0; \
625 \
626 int cpu; \
627 for_each_possible_cpu(cpu) \
628 _ret += *per_cpu_ptr(_p, cpu); \
629 _ret; \
630 })
631
percpu_u64_get(u64 __percpu * src)632 static inline u64 percpu_u64_get(u64 __percpu *src)
633 {
634 return per_cpu_sum(src);
635 }
636
percpu_u64_set(u64 __percpu * dst,u64 src)637 static inline void percpu_u64_set(u64 __percpu *dst, u64 src)
638 {
639 int cpu;
640
641 for_each_possible_cpu(cpu)
642 *per_cpu_ptr(dst, cpu) = 0;
643 this_cpu_write(*dst, src);
644 }
645
acc_u64s(u64 * acc,const u64 * src,unsigned nr)646 static inline void acc_u64s(u64 *acc, const u64 *src, unsigned nr)
647 {
648 for (unsigned i = 0; i < nr; i++)
649 acc[i] += src[i];
650 }
651
acc_u64s_percpu(u64 * acc,const u64 __percpu * src,unsigned nr)652 static inline void acc_u64s_percpu(u64 *acc, const u64 __percpu *src,
653 unsigned nr)
654 {
655 int cpu;
656
657 for_each_possible_cpu(cpu)
658 acc_u64s(acc, per_cpu_ptr(src, cpu), nr);
659 }
660
percpu_memset(void __percpu * p,int c,size_t bytes)661 static inline void percpu_memset(void __percpu *p, int c, size_t bytes)
662 {
663 int cpu;
664
665 for_each_possible_cpu(cpu)
666 memset(per_cpu_ptr(p, cpu), c, bytes);
667 }
668
669 u64 *bch2_acc_percpu_u64s(u64 __percpu *, unsigned);
670
671 #define cmp_int(l, r) ((l > r) - (l < r))
672
u8_cmp(u8 l,u8 r)673 static inline int u8_cmp(u8 l, u8 r)
674 {
675 return cmp_int(l, r);
676 }
677
cmp_le32(__le32 l,__le32 r)678 static inline int cmp_le32(__le32 l, __le32 r)
679 {
680 return cmp_int(le32_to_cpu(l), le32_to_cpu(r));
681 }
682
683 #include <linux/uuid.h>
684
qstr_eq(const struct qstr l,const struct qstr r)685 static inline bool qstr_eq(const struct qstr l, const struct qstr r)
686 {
687 return l.len == r.len && !memcmp(l.name, r.name, l.len);
688 }
689
690 void bch2_darray_str_exit(darray_str *);
691 int bch2_split_devs(const char *, darray_str *);
692
693 #ifdef __KERNEL__
694
695 __must_check
copy_to_user_errcode(void __user * to,const void * from,unsigned long n)696 static inline int copy_to_user_errcode(void __user *to, const void *from, unsigned long n)
697 {
698 return copy_to_user(to, from, n) ? -EFAULT : 0;
699 }
700
701 __must_check
copy_from_user_errcode(void * to,const void __user * from,unsigned long n)702 static inline int copy_from_user_errcode(void *to, const void __user *from, unsigned long n)
703 {
704 return copy_from_user(to, from, n) ? -EFAULT : 0;
705 }
706
707 #endif
708
mod_bit(long nr,volatile unsigned long * addr,bool v)709 static inline void mod_bit(long nr, volatile unsigned long *addr, bool v)
710 {
711 if (v)
712 set_bit(nr, addr);
713 else
714 clear_bit(nr, addr);
715 }
716
__set_bit_le64(size_t bit,__le64 * addr)717 static inline void __set_bit_le64(size_t bit, __le64 *addr)
718 {
719 addr[bit / 64] |= cpu_to_le64(BIT_ULL(bit % 64));
720 }
721
__clear_bit_le64(size_t bit,__le64 * addr)722 static inline void __clear_bit_le64(size_t bit, __le64 *addr)
723 {
724 addr[bit / 64] &= ~cpu_to_le64(BIT_ULL(bit % 64));
725 }
726
test_bit_le64(size_t bit,__le64 * addr)727 static inline bool test_bit_le64(size_t bit, __le64 *addr)
728 {
729 return (addr[bit / 64] & cpu_to_le64(BIT_ULL(bit % 64))) != 0;
730 }
731
memcpy_swab(void * _dst,void * _src,size_t len)732 static inline void memcpy_swab(void *_dst, void *_src, size_t len)
733 {
734 u8 *dst = _dst + len;
735 u8 *src = _src;
736
737 while (len--)
738 *--dst = *src++;
739 }
740
741 #endif /* _BCACHEFS_UTIL_H */
742