1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // peb2466.c -- Infineon PEB2466 ALSA SoC driver
4 //
5 // Copyright 2023 CS GROUP France
6 //
7 // Author: Herve Codina <herve.codina@bootlin.com>
8
9 #include <linux/unaligned.h>
10 #include <linux/clk.h>
11 #include <linux/firmware.h>
12 #include <linux/gpio/consumer.h>
13 #include <linux/gpio/driver.h>
14 #include <linux/module.h>
15 #include <linux/mutex.h>
16 #include <linux/slab.h>
17 #include <linux/spi/spi.h>
18 #include <sound/pcm_params.h>
19 #include <sound/soc.h>
20 #include <sound/tlv.h>
21
22 #define PEB2466_NB_CHANNEL 4
23
24 struct peb2466_lookup {
25 u8 (*table)[4];
26 unsigned int count;
27 };
28
29 #define PEB2466_TLV_SIZE (sizeof((unsigned int []){TLV_DB_SCALE_ITEM(0, 0, 0)}) / \
30 sizeof(unsigned int))
31
32 struct peb2466_lkup_ctrl {
33 int reg;
34 unsigned int index;
35 const struct peb2466_lookup *lookup;
36 unsigned int tlv_array[PEB2466_TLV_SIZE];
37 };
38
39 struct peb2466 {
40 struct spi_device *spi;
41 struct clk *mclk;
42 struct gpio_desc *reset_gpio;
43 u8 spi_tx_buf[2 + 8]; /* Cannot use stack area for SPI (dma-safe memory) */
44 u8 spi_rx_buf[2 + 8]; /* Cannot use stack area for SPI (dma-safe memory) */
45 struct regmap *regmap;
46 struct {
47 struct peb2466_lookup ax_lookup;
48 struct peb2466_lookup ar_lookup;
49 struct peb2466_lkup_ctrl ax_lkup_ctrl;
50 struct peb2466_lkup_ctrl ar_lkup_ctrl;
51 unsigned int tg1_freq_item;
52 unsigned int tg2_freq_item;
53 } ch[PEB2466_NB_CHANNEL];
54 int max_chan_playback;
55 int max_chan_capture;
56 struct {
57 struct gpio_chip gpio_chip;
58 struct mutex lock;
59 struct {
60 unsigned int xr0;
61 unsigned int xr1;
62 unsigned int xr2;
63 unsigned int xr3;
64 } cache;
65 } gpio;
66 };
67
68 #define PEB2466_CMD_R (1 << 5)
69 #define PEB2466_CMD_W (0 << 5)
70
71 #define PEB2466_CMD_MASK 0x18
72 #define PEB2466_CMD_XOP 0x18 /* XOP is 0bxxx11xxx */
73 #define PEB2466_CMD_SOP 0x10 /* SOP is 0bxxx10xxx */
74 #define PEB2466_CMD_COP 0x00 /* COP is 0bxxx0xxxx, handle 0bxxx00xxx */
75 #define PEB2466_CMD_COP1 0x08 /* COP is 0bxxx0xxxx, handle 0bxxx01xxx */
76
77 #define PEB2466_MAKE_XOP(_lsel) (PEB2466_CMD_XOP | (_lsel))
78 #define PEB2466_MAKE_SOP(_ad, _lsel) (PEB2466_CMD_SOP | ((_ad) << 6) | (_lsel))
79 #define PEB2466_MAKE_COP(_ad, _code) (PEB2466_CMD_COP | ((_ad) << 6) | (_code))
80
81 #define PEB2466_CR0(_ch) PEB2466_MAKE_SOP(_ch, 0x0)
82 #define PEB2466_CR0_TH (1 << 7)
83 #define PEB2466_CR0_IMR1 (1 << 6)
84 #define PEB2466_CR0_FRX (1 << 5)
85 #define PEB2466_CR0_FRR (1 << 4)
86 #define PEB2466_CR0_AX (1 << 3)
87 #define PEB2466_CR0_AR (1 << 2)
88 #define PEB2466_CR0_THSEL_MASK (0x3 << 0)
89 #define PEB2466_CR0_THSEL(_set) ((_set) << 0)
90
91 #define PEB2466_CR1(_ch) PEB2466_MAKE_SOP(_ch, 0x1)
92 #define PEB2466_CR1_ETG2 (1 << 7)
93 #define PEB2466_CR1_ETG1 (1 << 6)
94 #define PEB2466_CR1_PTG2 (1 << 5)
95 #define PEB2466_CR1_PTG1 (1 << 4)
96 #define PEB2466_CR1_LAW_MASK (1 << 3)
97 #define PEB2466_CR1_LAW_ALAW (0 << 3)
98 #define PEB2466_CR1_LAW_MULAW (1 << 3)
99 #define PEB2466_CR1_PU (1 << 0)
100
101 #define PEB2466_CR2(_ch) PEB2466_MAKE_SOP(_ch, 0x2)
102 #define PEB2466_CR3(_ch) PEB2466_MAKE_SOP(_ch, 0x3)
103 #define PEB2466_CR4(_ch) PEB2466_MAKE_SOP(_ch, 0x4)
104 #define PEB2466_CR5(_ch) PEB2466_MAKE_SOP(_ch, 0x5)
105
106 #define PEB2466_XR0 PEB2466_MAKE_XOP(0x0)
107 #define PEB2466_XR1 PEB2466_MAKE_XOP(0x1)
108 #define PEB2466_XR2 PEB2466_MAKE_XOP(0x2)
109 #define PEB2466_XR3 PEB2466_MAKE_XOP(0x3)
110 #define PEB2466_XR4 PEB2466_MAKE_XOP(0x4)
111 #define PEB2466_XR5 PEB2466_MAKE_XOP(0x5)
112 #define PEB2466_XR5_MCLK_1536 (0x0 << 6)
113 #define PEB2466_XR5_MCLK_2048 (0x1 << 6)
114 #define PEB2466_XR5_MCLK_4096 (0x2 << 6)
115 #define PEB2466_XR5_MCLK_8192 (0x3 << 6)
116
117 #define PEB2466_XR6 PEB2466_MAKE_XOP(0x6)
118 #define PEB2466_XR6_PCM_OFFSET(_off) ((_off) << 0)
119
120 #define PEB2466_XR7 PEB2466_MAKE_XOP(0x7)
121
122 #define PEB2466_TH_FILTER_P1(_ch) PEB2466_MAKE_COP(_ch, 0x0)
123 #define PEB2466_TH_FILTER_P2(_ch) PEB2466_MAKE_COP(_ch, 0x1)
124 #define PEB2466_TH_FILTER_P3(_ch) PEB2466_MAKE_COP(_ch, 0x2)
125 #define PEB2466_IMR1_FILTER_P1(_ch) PEB2466_MAKE_COP(_ch, 0x4)
126 #define PEB2466_IMR1_FILTER_P2(_ch) PEB2466_MAKE_COP(_ch, 0x5)
127 #define PEB2466_FRX_FILTER(_ch) PEB2466_MAKE_COP(_ch, 0x6)
128 #define PEB2466_FRR_FILTER(_ch) PEB2466_MAKE_COP(_ch, 0x7)
129 #define PEB2466_AX_FILTER(_ch) PEB2466_MAKE_COP(_ch, 0x8)
130 #define PEB2466_AR_FILTER(_ch) PEB2466_MAKE_COP(_ch, 0x9)
131 #define PEB2466_TG1(_ch) PEB2466_MAKE_COP(_ch, 0xc)
132 #define PEB2466_TG2(_ch) PEB2466_MAKE_COP(_ch, 0xd)
133
peb2466_write_byte(struct peb2466 * peb2466,u8 cmd,u8 val)134 static int peb2466_write_byte(struct peb2466 *peb2466, u8 cmd, u8 val)
135 {
136 struct spi_transfer xfer = {
137 .tx_buf = &peb2466->spi_tx_buf,
138 .len = 2,
139 };
140
141 peb2466->spi_tx_buf[0] = cmd | PEB2466_CMD_W;
142 peb2466->spi_tx_buf[1] = val;
143
144 dev_dbg(&peb2466->spi->dev, "write byte (cmd %02x) %02x\n",
145 peb2466->spi_tx_buf[0], peb2466->spi_tx_buf[1]);
146
147 return spi_sync_transfer(peb2466->spi, &xfer, 1);
148 }
149
peb2466_read_byte(struct peb2466 * peb2466,u8 cmd,u8 * val)150 static int peb2466_read_byte(struct peb2466 *peb2466, u8 cmd, u8 *val)
151 {
152 struct spi_transfer xfer = {
153 .tx_buf = &peb2466->spi_tx_buf,
154 .rx_buf = &peb2466->spi_rx_buf,
155 .len = 3,
156 };
157 int ret;
158
159 peb2466->spi_tx_buf[0] = cmd | PEB2466_CMD_R;
160
161 ret = spi_sync_transfer(peb2466->spi, &xfer, 1);
162 if (ret)
163 return ret;
164
165 if (peb2466->spi_rx_buf[1] != 0x81) {
166 dev_err(&peb2466->spi->dev,
167 "spi xfer rd (cmd %02x) invalid ident byte (0x%02x)\n",
168 peb2466->spi_tx_buf[0], peb2466->spi_rx_buf[1]);
169 return -EILSEQ;
170 }
171
172 *val = peb2466->spi_rx_buf[2];
173
174 dev_dbg(&peb2466->spi->dev, "read byte (cmd %02x) %02x\n",
175 peb2466->spi_tx_buf[0], *val);
176
177 return 0;
178 }
179
peb2466_write_buf(struct peb2466 * peb2466,u8 cmd,const u8 * buf,unsigned int len)180 static int peb2466_write_buf(struct peb2466 *peb2466, u8 cmd, const u8 *buf, unsigned int len)
181 {
182 struct spi_transfer xfer = {
183 .tx_buf = &peb2466->spi_tx_buf,
184 .len = len + 1,
185 };
186
187 if (len > 8)
188 return -EINVAL;
189
190 peb2466->spi_tx_buf[0] = cmd | PEB2466_CMD_W;
191 memcpy(&peb2466->spi_tx_buf[1], buf, len);
192
193 dev_dbg(&peb2466->spi->dev, "write buf (cmd %02x, %u) %*ph\n",
194 peb2466->spi_tx_buf[0], len, len, &peb2466->spi_tx_buf[1]);
195
196 return spi_sync_transfer(peb2466->spi, &xfer, 1);
197 }
198
peb2466_reg_write(void * context,unsigned int reg,unsigned int val)199 static int peb2466_reg_write(void *context, unsigned int reg, unsigned int val)
200 {
201 struct peb2466 *peb2466 = context;
202 int ret;
203
204 /*
205 * Only XOP and SOP commands can be handled as registers.
206 * COP commands are handled using direct peb2466_write_buf() calls.
207 */
208 switch (reg & PEB2466_CMD_MASK) {
209 case PEB2466_CMD_XOP:
210 case PEB2466_CMD_SOP:
211 ret = peb2466_write_byte(peb2466, reg, val);
212 break;
213 default:
214 dev_err(&peb2466->spi->dev, "Not a XOP or SOP command\n");
215 ret = -EINVAL;
216 break;
217 }
218 return ret;
219 }
220
peb2466_reg_read(void * context,unsigned int reg,unsigned int * val)221 static int peb2466_reg_read(void *context, unsigned int reg, unsigned int *val)
222 {
223 struct peb2466 *peb2466 = context;
224 int ret;
225 u8 tmp;
226
227 /* Only XOP and SOP commands can be handled as registers */
228 switch (reg & PEB2466_CMD_MASK) {
229 case PEB2466_CMD_XOP:
230 case PEB2466_CMD_SOP:
231 ret = peb2466_read_byte(peb2466, reg, &tmp);
232 if (!ret)
233 *val = tmp;
234 break;
235 default:
236 dev_err(&peb2466->spi->dev, "Not a XOP or SOP command\n");
237 ret = -EINVAL;
238 break;
239 }
240 return ret;
241 }
242
243 static const struct regmap_config peb2466_regmap_config = {
244 .reg_bits = 8,
245 .val_bits = 8,
246 .max_register = 0xFF,
247 .reg_write = peb2466_reg_write,
248 .reg_read = peb2466_reg_read,
249 .cache_type = REGCACHE_NONE,
250 };
251
peb2466_lkup_ctrl_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)252 static int peb2466_lkup_ctrl_info(struct snd_kcontrol *kcontrol,
253 struct snd_ctl_elem_info *uinfo)
254 {
255 struct peb2466_lkup_ctrl *lkup_ctrl =
256 (struct peb2466_lkup_ctrl *)kcontrol->private_value;
257
258 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
259 uinfo->count = 1;
260 uinfo->value.integer.min = 0;
261 uinfo->value.integer.max = lkup_ctrl->lookup->count - 1;
262 return 0;
263 }
264
peb2466_lkup_ctrl_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)265 static int peb2466_lkup_ctrl_get(struct snd_kcontrol *kcontrol,
266 struct snd_ctl_elem_value *ucontrol)
267 {
268 struct peb2466_lkup_ctrl *lkup_ctrl =
269 (struct peb2466_lkup_ctrl *)kcontrol->private_value;
270
271 ucontrol->value.integer.value[0] = lkup_ctrl->index;
272 return 0;
273 }
274
peb2466_lkup_ctrl_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)275 static int peb2466_lkup_ctrl_put(struct snd_kcontrol *kcontrol,
276 struct snd_ctl_elem_value *ucontrol)
277 {
278 struct peb2466_lkup_ctrl *lkup_ctrl =
279 (struct peb2466_lkup_ctrl *)kcontrol->private_value;
280 struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
281 struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component);
282 unsigned int index;
283 int ret;
284
285 index = ucontrol->value.integer.value[0];
286 if (index >= lkup_ctrl->lookup->count)
287 return -EINVAL;
288
289 if (index == lkup_ctrl->index)
290 return 0;
291
292 ret = peb2466_write_buf(peb2466, lkup_ctrl->reg,
293 lkup_ctrl->lookup->table[index], 4);
294 if (ret)
295 return ret;
296
297 lkup_ctrl->index = index;
298 return 1; /* The value changed */
299 }
300
peb2466_add_lkup_ctrl(struct snd_soc_component * component,struct peb2466_lkup_ctrl * lkup_ctrl,const char * name,int min_val,int step)301 static int peb2466_add_lkup_ctrl(struct snd_soc_component *component,
302 struct peb2466_lkup_ctrl *lkup_ctrl,
303 const char *name, int min_val, int step)
304 {
305 DECLARE_TLV_DB_SCALE(tlv_array, min_val, step, 0);
306 struct snd_kcontrol_new control = {0};
307
308 BUILD_BUG_ON(sizeof(lkup_ctrl->tlv_array) < sizeof(tlv_array));
309 memcpy(lkup_ctrl->tlv_array, tlv_array, sizeof(tlv_array));
310
311 control.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
312 control.name = name;
313 control.access = SNDRV_CTL_ELEM_ACCESS_TLV_READ |
314 SNDRV_CTL_ELEM_ACCESS_READWRITE;
315 control.tlv.p = lkup_ctrl->tlv_array;
316 control.info = peb2466_lkup_ctrl_info;
317 control.get = peb2466_lkup_ctrl_get;
318 control.put = peb2466_lkup_ctrl_put;
319 control.private_value = (unsigned long)lkup_ctrl;
320
321 return snd_soc_add_component_controls(component, &control, 1);
322 }
323
324 enum peb2466_tone_freq {
325 PEB2466_TONE_697HZ,
326 PEB2466_TONE_800HZ,
327 PEB2466_TONE_950HZ,
328 PEB2466_TONE_1000HZ,
329 PEB2466_TONE_1008HZ,
330 PEB2466_TONE_2000HZ,
331 };
332
333 static const u8 peb2466_tone_lookup[][4] = {
334 [PEB2466_TONE_697HZ] = {0x0a, 0x33, 0x5a, 0x2c},
335 [PEB2466_TONE_800HZ] = {0x12, 0xD6, 0x5a, 0xc0},
336 [PEB2466_TONE_950HZ] = {0x1c, 0xf0, 0x5c, 0xc0},
337 [PEB2466_TONE_1000HZ] = {0}, /* lookup value not used for 1000Hz */
338 [PEB2466_TONE_1008HZ] = {0x1a, 0xae, 0x57, 0x70},
339 [PEB2466_TONE_2000HZ] = {0x00, 0x80, 0x50, 0x09},
340 };
341
342 static const char * const peb2466_tone_freq_txt[] = {
343 [PEB2466_TONE_697HZ] = "697Hz",
344 [PEB2466_TONE_800HZ] = "800Hz",
345 [PEB2466_TONE_950HZ] = "950Hz",
346 [PEB2466_TONE_1000HZ] = "1000Hz",
347 [PEB2466_TONE_1008HZ] = "1008Hz",
348 [PEB2466_TONE_2000HZ] = "2000Hz"
349 };
350
351 static const struct soc_enum peb2466_tg_freq[][2] = {
352 [0] = {
353 SOC_ENUM_SINGLE(PEB2466_TG1(0), 0, ARRAY_SIZE(peb2466_tone_freq_txt),
354 peb2466_tone_freq_txt),
355 SOC_ENUM_SINGLE(PEB2466_TG2(0), 0, ARRAY_SIZE(peb2466_tone_freq_txt),
356 peb2466_tone_freq_txt)
357 },
358 [1] = {
359 SOC_ENUM_SINGLE(PEB2466_TG1(1), 0, ARRAY_SIZE(peb2466_tone_freq_txt),
360 peb2466_tone_freq_txt),
361 SOC_ENUM_SINGLE(PEB2466_TG2(1), 0, ARRAY_SIZE(peb2466_tone_freq_txt),
362 peb2466_tone_freq_txt)
363 },
364 [2] = {
365 SOC_ENUM_SINGLE(PEB2466_TG1(2), 0, ARRAY_SIZE(peb2466_tone_freq_txt),
366 peb2466_tone_freq_txt),
367 SOC_ENUM_SINGLE(PEB2466_TG2(2), 0, ARRAY_SIZE(peb2466_tone_freq_txt),
368 peb2466_tone_freq_txt)
369 },
370 [3] = {
371 SOC_ENUM_SINGLE(PEB2466_TG1(3), 0, ARRAY_SIZE(peb2466_tone_freq_txt),
372 peb2466_tone_freq_txt),
373 SOC_ENUM_SINGLE(PEB2466_TG2(3), 0, ARRAY_SIZE(peb2466_tone_freq_txt),
374 peb2466_tone_freq_txt)
375 }
376 };
377
peb2466_tg_freq_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)378 static int peb2466_tg_freq_get(struct snd_kcontrol *kcontrol,
379 struct snd_ctl_elem_value *ucontrol)
380 {
381 struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
382 struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component);
383 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
384
385 switch (e->reg) {
386 case PEB2466_TG1(0):
387 ucontrol->value.enumerated.item[0] = peb2466->ch[0].tg1_freq_item;
388 break;
389 case PEB2466_TG2(0):
390 ucontrol->value.enumerated.item[0] = peb2466->ch[0].tg2_freq_item;
391 break;
392 case PEB2466_TG1(1):
393 ucontrol->value.enumerated.item[0] = peb2466->ch[1].tg1_freq_item;
394 break;
395 case PEB2466_TG2(1):
396 ucontrol->value.enumerated.item[0] = peb2466->ch[1].tg2_freq_item;
397 break;
398 case PEB2466_TG1(2):
399 ucontrol->value.enumerated.item[0] = peb2466->ch[2].tg1_freq_item;
400 break;
401 case PEB2466_TG2(2):
402 ucontrol->value.enumerated.item[0] = peb2466->ch[2].tg2_freq_item;
403 break;
404 case PEB2466_TG1(3):
405 ucontrol->value.enumerated.item[0] = peb2466->ch[3].tg1_freq_item;
406 break;
407 case PEB2466_TG2(3):
408 ucontrol->value.enumerated.item[0] = peb2466->ch[3].tg2_freq_item;
409 break;
410 default:
411 return -EINVAL;
412 }
413 return 0;
414 }
415
peb2466_tg_freq_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)416 static int peb2466_tg_freq_put(struct snd_kcontrol *kcontrol,
417 struct snd_ctl_elem_value *ucontrol)
418 {
419 struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
420 struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component);
421 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
422 unsigned int *tg_freq_item;
423 u8 cr1_reg, cr1_mask;
424 unsigned int index;
425 int ret;
426
427 index = ucontrol->value.enumerated.item[0];
428
429 if (index >= ARRAY_SIZE(peb2466_tone_lookup))
430 return -EINVAL;
431
432 switch (e->reg) {
433 case PEB2466_TG1(0):
434 tg_freq_item = &peb2466->ch[0].tg1_freq_item;
435 cr1_reg = PEB2466_CR1(0);
436 cr1_mask = PEB2466_CR1_PTG1;
437 break;
438 case PEB2466_TG2(0):
439 tg_freq_item = &peb2466->ch[0].tg2_freq_item;
440 cr1_reg = PEB2466_CR1(0);
441 cr1_mask = PEB2466_CR1_PTG2;
442 break;
443 case PEB2466_TG1(1):
444 tg_freq_item = &peb2466->ch[1].tg1_freq_item;
445 cr1_reg = PEB2466_CR1(1);
446 cr1_mask = PEB2466_CR1_PTG1;
447 break;
448 case PEB2466_TG2(1):
449 tg_freq_item = &peb2466->ch[1].tg2_freq_item;
450 cr1_reg = PEB2466_CR1(1);
451 cr1_mask = PEB2466_CR1_PTG2;
452 break;
453 case PEB2466_TG1(2):
454 tg_freq_item = &peb2466->ch[2].tg1_freq_item;
455 cr1_reg = PEB2466_CR1(2);
456 cr1_mask = PEB2466_CR1_PTG1;
457 break;
458 case PEB2466_TG2(2):
459 tg_freq_item = &peb2466->ch[2].tg2_freq_item;
460 cr1_reg = PEB2466_CR1(2);
461 cr1_mask = PEB2466_CR1_PTG2;
462 break;
463 case PEB2466_TG1(3):
464 tg_freq_item = &peb2466->ch[3].tg1_freq_item;
465 cr1_reg = PEB2466_CR1(3);
466 cr1_mask = PEB2466_CR1_PTG1;
467 break;
468 case PEB2466_TG2(3):
469 tg_freq_item = &peb2466->ch[3].tg2_freq_item;
470 cr1_reg = PEB2466_CR1(3);
471 cr1_mask = PEB2466_CR1_PTG2;
472 break;
473 default:
474 return -EINVAL;
475 }
476
477 if (index == *tg_freq_item)
478 return 0;
479
480 if (index == PEB2466_TONE_1000HZ) {
481 ret = regmap_update_bits(peb2466->regmap, cr1_reg, cr1_mask, 0);
482 if (ret)
483 return ret;
484 } else {
485 ret = peb2466_write_buf(peb2466, e->reg, peb2466_tone_lookup[index], 4);
486 if (ret)
487 return ret;
488 ret = regmap_update_bits(peb2466->regmap, cr1_reg, cr1_mask, cr1_mask);
489 if (ret)
490 return ret;
491 }
492
493 *tg_freq_item = index;
494 return 1; /* The value changed */
495 }
496
497 static const struct snd_kcontrol_new peb2466_ch0_out_mix_controls[] = {
498 SOC_DAPM_SINGLE("TG1 Switch", PEB2466_CR1(0), 6, 1, 0),
499 SOC_DAPM_SINGLE("TG2 Switch", PEB2466_CR1(0), 7, 1, 0),
500 SOC_DAPM_SINGLE("Voice Switch", PEB2466_CR2(0), 0, 1, 0)
501 };
502
503 static const struct snd_kcontrol_new peb2466_ch1_out_mix_controls[] = {
504 SOC_DAPM_SINGLE("TG1 Switch", PEB2466_CR1(1), 6, 1, 0),
505 SOC_DAPM_SINGLE("TG2 Switch", PEB2466_CR1(1), 7, 1, 0),
506 SOC_DAPM_SINGLE("Voice Switch", PEB2466_CR2(1), 0, 1, 0)
507 };
508
509 static const struct snd_kcontrol_new peb2466_ch2_out_mix_controls[] = {
510 SOC_DAPM_SINGLE("TG1 Switch", PEB2466_CR1(2), 6, 1, 0),
511 SOC_DAPM_SINGLE("TG2 Switch", PEB2466_CR1(2), 7, 1, 0),
512 SOC_DAPM_SINGLE("Voice Switch", PEB2466_CR2(2), 0, 1, 0)
513 };
514
515 static const struct snd_kcontrol_new peb2466_ch3_out_mix_controls[] = {
516 SOC_DAPM_SINGLE("TG1 Switch", PEB2466_CR1(3), 6, 1, 0),
517 SOC_DAPM_SINGLE("TG2 Switch", PEB2466_CR1(3), 7, 1, 0),
518 SOC_DAPM_SINGLE("Voice Switch", PEB2466_CR2(3), 0, 1, 0)
519 };
520
521 static const struct snd_kcontrol_new peb2466_controls[] = {
522 /* Attenuators */
523 SOC_SINGLE("DAC0 -6dB Playback Switch", PEB2466_CR3(0), 2, 1, 0),
524 SOC_SINGLE("DAC1 -6dB Playback Switch", PEB2466_CR3(1), 2, 1, 0),
525 SOC_SINGLE("DAC2 -6dB Playback Switch", PEB2466_CR3(2), 2, 1, 0),
526 SOC_SINGLE("DAC3 -6dB Playback Switch", PEB2466_CR3(3), 2, 1, 0),
527
528 /* Amplifiers */
529 SOC_SINGLE("ADC0 +6dB Capture Switch", PEB2466_CR3(0), 3, 1, 0),
530 SOC_SINGLE("ADC1 +6dB Capture Switch", PEB2466_CR3(1), 3, 1, 0),
531 SOC_SINGLE("ADC2 +6dB Capture Switch", PEB2466_CR3(2), 3, 1, 0),
532 SOC_SINGLE("ADC3 +6dB Capture Switch", PEB2466_CR3(3), 3, 1, 0),
533
534 /* Tone generators */
535 SOC_ENUM_EXT("DAC0 TG1 Freq", peb2466_tg_freq[0][0],
536 peb2466_tg_freq_get, peb2466_tg_freq_put),
537 SOC_ENUM_EXT("DAC1 TG1 Freq", peb2466_tg_freq[1][0],
538 peb2466_tg_freq_get, peb2466_tg_freq_put),
539 SOC_ENUM_EXT("DAC2 TG1 Freq", peb2466_tg_freq[2][0],
540 peb2466_tg_freq_get, peb2466_tg_freq_put),
541 SOC_ENUM_EXT("DAC3 TG1 Freq", peb2466_tg_freq[3][0],
542 peb2466_tg_freq_get, peb2466_tg_freq_put),
543
544 SOC_ENUM_EXT("DAC0 TG2 Freq", peb2466_tg_freq[0][1],
545 peb2466_tg_freq_get, peb2466_tg_freq_put),
546 SOC_ENUM_EXT("DAC1 TG2 Freq", peb2466_tg_freq[1][1],
547 peb2466_tg_freq_get, peb2466_tg_freq_put),
548 SOC_ENUM_EXT("DAC2 TG2 Freq", peb2466_tg_freq[2][1],
549 peb2466_tg_freq_get, peb2466_tg_freq_put),
550 SOC_ENUM_EXT("DAC3 TG2 Freq", peb2466_tg_freq[3][1],
551 peb2466_tg_freq_get, peb2466_tg_freq_put),
552 };
553
554 static const struct snd_soc_dapm_widget peb2466_dapm_widgets[] = {
555 SND_SOC_DAPM_SUPPLY("CH0 PWR", PEB2466_CR1(0), 0, 0, NULL, 0),
556 SND_SOC_DAPM_SUPPLY("CH1 PWR", PEB2466_CR1(1), 0, 0, NULL, 0),
557 SND_SOC_DAPM_SUPPLY("CH2 PWR", PEB2466_CR1(2), 0, 0, NULL, 0),
558 SND_SOC_DAPM_SUPPLY("CH3 PWR", PEB2466_CR1(3), 0, 0, NULL, 0),
559
560 SND_SOC_DAPM_DAC("CH0 DIN", "Playback", SND_SOC_NOPM, 0, 0),
561 SND_SOC_DAPM_DAC("CH1 DIN", "Playback", SND_SOC_NOPM, 0, 0),
562 SND_SOC_DAPM_DAC("CH2 DIN", "Playback", SND_SOC_NOPM, 0, 0),
563 SND_SOC_DAPM_DAC("CH3 DIN", "Playback", SND_SOC_NOPM, 0, 0),
564
565 SND_SOC_DAPM_SIGGEN("CH0 TG1"),
566 SND_SOC_DAPM_SIGGEN("CH1 TG1"),
567 SND_SOC_DAPM_SIGGEN("CH2 TG1"),
568 SND_SOC_DAPM_SIGGEN("CH3 TG1"),
569
570 SND_SOC_DAPM_SIGGEN("CH0 TG2"),
571 SND_SOC_DAPM_SIGGEN("CH1 TG2"),
572 SND_SOC_DAPM_SIGGEN("CH2 TG2"),
573 SND_SOC_DAPM_SIGGEN("CH3 TG2"),
574
575 SND_SOC_DAPM_MIXER("DAC0 Mixer", SND_SOC_NOPM, 0, 0,
576 peb2466_ch0_out_mix_controls,
577 ARRAY_SIZE(peb2466_ch0_out_mix_controls)),
578 SND_SOC_DAPM_MIXER("DAC1 Mixer", SND_SOC_NOPM, 0, 0,
579 peb2466_ch1_out_mix_controls,
580 ARRAY_SIZE(peb2466_ch1_out_mix_controls)),
581 SND_SOC_DAPM_MIXER("DAC2 Mixer", SND_SOC_NOPM, 0, 0,
582 peb2466_ch2_out_mix_controls,
583 ARRAY_SIZE(peb2466_ch2_out_mix_controls)),
584 SND_SOC_DAPM_MIXER("DAC3 Mixer", SND_SOC_NOPM, 0, 0,
585 peb2466_ch3_out_mix_controls,
586 ARRAY_SIZE(peb2466_ch3_out_mix_controls)),
587
588 SND_SOC_DAPM_PGA("DAC0 PGA", SND_SOC_NOPM, 0, 0, NULL, 0),
589 SND_SOC_DAPM_PGA("DAC1 PGA", SND_SOC_NOPM, 0, 0, NULL, 0),
590 SND_SOC_DAPM_PGA("DAC2 PGA", SND_SOC_NOPM, 0, 0, NULL, 0),
591 SND_SOC_DAPM_PGA("DAC3 PGA", SND_SOC_NOPM, 0, 0, NULL, 0),
592
593 SND_SOC_DAPM_OUTPUT("OUT0"),
594 SND_SOC_DAPM_OUTPUT("OUT1"),
595 SND_SOC_DAPM_OUTPUT("OUT2"),
596 SND_SOC_DAPM_OUTPUT("OUT3"),
597
598 SND_SOC_DAPM_INPUT("IN0"),
599 SND_SOC_DAPM_INPUT("IN1"),
600 SND_SOC_DAPM_INPUT("IN2"),
601 SND_SOC_DAPM_INPUT("IN3"),
602
603 SND_SOC_DAPM_DAC("ADC0", "Capture", SND_SOC_NOPM, 0, 0),
604 SND_SOC_DAPM_DAC("ADC1", "Capture", SND_SOC_NOPM, 0, 0),
605 SND_SOC_DAPM_DAC("ADC2", "Capture", SND_SOC_NOPM, 0, 0),
606 SND_SOC_DAPM_DAC("ADC3", "Capture", SND_SOC_NOPM, 0, 0),
607 };
608
609 static const struct snd_soc_dapm_route peb2466_dapm_routes[] = {
610 { "CH0 DIN", NULL, "CH0 PWR" },
611 { "CH1 DIN", NULL, "CH1 PWR" },
612 { "CH2 DIN", NULL, "CH2 PWR" },
613 { "CH3 DIN", NULL, "CH3 PWR" },
614
615 { "CH0 TG1", NULL, "CH0 PWR" },
616 { "CH1 TG1", NULL, "CH1 PWR" },
617 { "CH2 TG1", NULL, "CH2 PWR" },
618 { "CH3 TG1", NULL, "CH3 PWR" },
619
620 { "CH0 TG2", NULL, "CH0 PWR" },
621 { "CH1 TG2", NULL, "CH1 PWR" },
622 { "CH2 TG2", NULL, "CH2 PWR" },
623 { "CH3 TG2", NULL, "CH3 PWR" },
624
625 { "DAC0 Mixer", "TG1 Switch", "CH0 TG1" },
626 { "DAC0 Mixer", "TG2 Switch", "CH0 TG2" },
627 { "DAC0 Mixer", "Voice Switch", "CH0 DIN" },
628 { "DAC0 Mixer", NULL, "CH0 DIN" },
629
630 { "DAC1 Mixer", "TG1 Switch", "CH1 TG1" },
631 { "DAC1 Mixer", "TG2 Switch", "CH1 TG2" },
632 { "DAC1 Mixer", "Voice Switch", "CH1 DIN" },
633 { "DAC1 Mixer", NULL, "CH1 DIN" },
634
635 { "DAC2 Mixer", "TG1 Switch", "CH2 TG1" },
636 { "DAC2 Mixer", "TG2 Switch", "CH2 TG2" },
637 { "DAC2 Mixer", "Voice Switch", "CH2 DIN" },
638 { "DAC2 Mixer", NULL, "CH2 DIN" },
639
640 { "DAC3 Mixer", "TG1 Switch", "CH3 TG1" },
641 { "DAC3 Mixer", "TG2 Switch", "CH3 TG2" },
642 { "DAC3 Mixer", "Voice Switch", "CH3 DIN" },
643 { "DAC3 Mixer", NULL, "CH3 DIN" },
644
645 { "DAC0 PGA", NULL, "DAC0 Mixer" },
646 { "DAC1 PGA", NULL, "DAC1 Mixer" },
647 { "DAC2 PGA", NULL, "DAC2 Mixer" },
648 { "DAC3 PGA", NULL, "DAC3 Mixer" },
649
650 { "OUT0", NULL, "DAC0 PGA" },
651 { "OUT1", NULL, "DAC1 PGA" },
652 { "OUT2", NULL, "DAC2 PGA" },
653 { "OUT3", NULL, "DAC3 PGA" },
654
655 { "ADC0", NULL, "IN0" },
656 { "ADC1", NULL, "IN1" },
657 { "ADC2", NULL, "IN2" },
658 { "ADC3", NULL, "IN3" },
659
660 { "ADC0", NULL, "CH0 PWR" },
661 { "ADC1", NULL, "CH1 PWR" },
662 { "ADC2", NULL, "CH2 PWR" },
663 { "ADC3", NULL, "CH3 PWR" },
664 };
665
peb2466_dai_set_tdm_slot(struct snd_soc_dai * dai,unsigned int tx_mask,unsigned int rx_mask,int slots,int width)666 static int peb2466_dai_set_tdm_slot(struct snd_soc_dai *dai, unsigned int tx_mask,
667 unsigned int rx_mask, int slots, int width)
668 {
669 struct peb2466 *peb2466 = snd_soc_component_get_drvdata(dai->component);
670 unsigned int chan;
671 unsigned int mask;
672 u8 slot;
673 int ret;
674
675 switch (width) {
676 case 0:
677 /* Not set -> default 8 */
678 case 8:
679 break;
680 default:
681 dev_err(dai->dev, "tdm slot width %d not supported\n", width);
682 return -EINVAL;
683 }
684
685 mask = tx_mask;
686 slot = 0;
687 chan = 0;
688 while (mask && chan < PEB2466_NB_CHANNEL) {
689 if (mask & 0x1) {
690 ret = regmap_write(peb2466->regmap, PEB2466_CR5(chan), slot);
691 if (ret) {
692 dev_err(dai->dev, "chan %d set tx tdm slot failed (%d)\n",
693 chan, ret);
694 return ret;
695 }
696 chan++;
697 }
698 mask >>= 1;
699 slot++;
700 }
701 if (mask) {
702 dev_err(dai->dev, "too much tx slots defined (mask = 0x%x) support max %d\n",
703 tx_mask, PEB2466_NB_CHANNEL);
704 return -EINVAL;
705 }
706 peb2466->max_chan_playback = chan;
707
708 mask = rx_mask;
709 slot = 0;
710 chan = 0;
711 while (mask && chan < PEB2466_NB_CHANNEL) {
712 if (mask & 0x1) {
713 ret = regmap_write(peb2466->regmap, PEB2466_CR4(chan), slot);
714 if (ret) {
715 dev_err(dai->dev, "chan %d set rx tdm slot failed (%d)\n",
716 chan, ret);
717 return ret;
718 }
719 chan++;
720 }
721 mask >>= 1;
722 slot++;
723 }
724 if (mask) {
725 dev_err(dai->dev, "too much rx slots defined (mask = 0x%x) support max %d\n",
726 rx_mask, PEB2466_NB_CHANNEL);
727 return -EINVAL;
728 }
729 peb2466->max_chan_capture = chan;
730
731 return 0;
732 }
733
peb2466_dai_set_fmt(struct snd_soc_dai * dai,unsigned int fmt)734 static int peb2466_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
735 {
736 struct peb2466 *peb2466 = snd_soc_component_get_drvdata(dai->component);
737 u8 xr6;
738
739 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
740 case SND_SOC_DAIFMT_DSP_A:
741 xr6 = PEB2466_XR6_PCM_OFFSET(1);
742 break;
743 case SND_SOC_DAIFMT_DSP_B:
744 xr6 = PEB2466_XR6_PCM_OFFSET(0);
745 break;
746 default:
747 dev_err(dai->dev, "Unsupported format 0x%x\n",
748 fmt & SND_SOC_DAIFMT_FORMAT_MASK);
749 return -EINVAL;
750 }
751 return regmap_write(peb2466->regmap, PEB2466_XR6, xr6);
752 }
753
peb2466_dai_hw_params(struct snd_pcm_substream * substream,struct snd_pcm_hw_params * params,struct snd_soc_dai * dai)754 static int peb2466_dai_hw_params(struct snd_pcm_substream *substream,
755 struct snd_pcm_hw_params *params,
756 struct snd_soc_dai *dai)
757 {
758 struct peb2466 *peb2466 = snd_soc_component_get_drvdata(dai->component);
759 unsigned int ch;
760 int ret;
761 u8 cr1;
762
763 switch (params_format(params)) {
764 case SNDRV_PCM_FORMAT_MU_LAW:
765 cr1 = PEB2466_CR1_LAW_MULAW;
766 break;
767 case SNDRV_PCM_FORMAT_A_LAW:
768 cr1 = PEB2466_CR1_LAW_ALAW;
769 break;
770 default:
771 dev_err(&peb2466->spi->dev, "Unsupported format 0x%x\n",
772 params_format(params));
773 return -EINVAL;
774 }
775
776 for (ch = 0; ch < PEB2466_NB_CHANNEL; ch++) {
777 ret = regmap_update_bits(peb2466->regmap, PEB2466_CR1(ch),
778 PEB2466_CR1_LAW_MASK, cr1);
779 if (ret)
780 return ret;
781 }
782
783 return 0;
784 }
785
786 static const unsigned int peb2466_sample_bits[] = {8};
787
788 static struct snd_pcm_hw_constraint_list peb2466_sample_bits_constr = {
789 .list = peb2466_sample_bits,
790 .count = ARRAY_SIZE(peb2466_sample_bits),
791 };
792
peb2466_dai_startup(struct snd_pcm_substream * substream,struct snd_soc_dai * dai)793 static int peb2466_dai_startup(struct snd_pcm_substream *substream,
794 struct snd_soc_dai *dai)
795 {
796 struct peb2466 *peb2466 = snd_soc_component_get_drvdata(dai->component);
797 unsigned int max_ch;
798 int ret;
799
800 max_ch = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
801 peb2466->max_chan_playback : peb2466->max_chan_capture;
802
803 /*
804 * Disable stream support (min = 0, max = 0) if no timeslots were
805 * configured.
806 */
807 ret = snd_pcm_hw_constraint_minmax(substream->runtime,
808 SNDRV_PCM_HW_PARAM_CHANNELS,
809 max_ch ? 1 : 0, max_ch);
810 if (ret < 0)
811 return ret;
812
813 return snd_pcm_hw_constraint_list(substream->runtime, 0,
814 SNDRV_PCM_HW_PARAM_SAMPLE_BITS,
815 &peb2466_sample_bits_constr);
816 }
817
818 static const u64 peb2466_dai_formats[] = {
819 SND_SOC_POSSIBLE_DAIFMT_DSP_A |
820 SND_SOC_POSSIBLE_DAIFMT_DSP_B,
821 };
822
823 static const struct snd_soc_dai_ops peb2466_dai_ops = {
824 .startup = peb2466_dai_startup,
825 .hw_params = peb2466_dai_hw_params,
826 .set_tdm_slot = peb2466_dai_set_tdm_slot,
827 .set_fmt = peb2466_dai_set_fmt,
828 .auto_selectable_formats = peb2466_dai_formats,
829 .num_auto_selectable_formats = ARRAY_SIZE(peb2466_dai_formats),
830 };
831
832 static struct snd_soc_dai_driver peb2466_dai_driver = {
833 .name = "peb2466",
834 .playback = {
835 .stream_name = "Playback",
836 .channels_min = 1,
837 .channels_max = PEB2466_NB_CHANNEL,
838 .rates = SNDRV_PCM_RATE_8000,
839 .formats = SNDRV_PCM_FMTBIT_MU_LAW | SNDRV_PCM_FMTBIT_A_LAW,
840 },
841 .capture = {
842 .stream_name = "Capture",
843 .channels_min = 1,
844 .channels_max = PEB2466_NB_CHANNEL,
845 .rates = SNDRV_PCM_RATE_8000,
846 .formats = SNDRV_PCM_FMTBIT_MU_LAW | SNDRV_PCM_FMTBIT_A_LAW,
847 },
848 .ops = &peb2466_dai_ops,
849 };
850
peb2466_reset_audio(struct peb2466 * peb2466)851 static int peb2466_reset_audio(struct peb2466 *peb2466)
852 {
853 static const struct reg_sequence reg_reset[] = {
854 { .reg = PEB2466_XR6, .def = 0x00 },
855
856 { .reg = PEB2466_CR5(0), .def = 0x00 },
857 { .reg = PEB2466_CR4(0), .def = 0x00 },
858 { .reg = PEB2466_CR3(0), .def = 0x00 },
859 { .reg = PEB2466_CR2(0), .def = 0x00 },
860 { .reg = PEB2466_CR1(0), .def = 0x00 },
861 { .reg = PEB2466_CR0(0), .def = PEB2466_CR0_IMR1 },
862
863 { .reg = PEB2466_CR5(1), .def = 0x00 },
864 { .reg = PEB2466_CR4(1), .def = 0x00 },
865 { .reg = PEB2466_CR3(1), .def = 0x00 },
866 { .reg = PEB2466_CR2(1), .def = 0x00 },
867 { .reg = PEB2466_CR1(1), .def = 0x00 },
868 { .reg = PEB2466_CR0(1), .def = PEB2466_CR0_IMR1 },
869
870 { .reg = PEB2466_CR5(2), .def = 0x00 },
871 { .reg = PEB2466_CR4(2), .def = 0x00 },
872 { .reg = PEB2466_CR3(2), .def = 0x00 },
873 { .reg = PEB2466_CR2(2), .def = 0x00 },
874 { .reg = PEB2466_CR1(2), .def = 0x00 },
875 { .reg = PEB2466_CR0(2), .def = PEB2466_CR0_IMR1 },
876
877 { .reg = PEB2466_CR5(3), .def = 0x00 },
878 { .reg = PEB2466_CR4(3), .def = 0x00 },
879 { .reg = PEB2466_CR3(3), .def = 0x00 },
880 { .reg = PEB2466_CR2(3), .def = 0x00 },
881 { .reg = PEB2466_CR1(3), .def = 0x00 },
882 { .reg = PEB2466_CR0(3), .def = PEB2466_CR0_IMR1 },
883 };
884 static const u8 imr1_p1[8] = {0x00, 0x90, 0x09, 0x00, 0x90, 0x09, 0x00, 0x00};
885 static const u8 imr1_p2[8] = {0x7F, 0xFF, 0x00, 0x00, 0x90, 0x14, 0x40, 0x08};
886 static const u8 zero[8] = {0};
887 int ret;
888 int i;
889
890 for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) {
891 peb2466->ch[i].tg1_freq_item = PEB2466_TONE_1000HZ;
892 peb2466->ch[i].tg2_freq_item = PEB2466_TONE_1000HZ;
893
894 /*
895 * Even if not used, disabling IM/R1 filter is not recommended.
896 * Instead, we must configure it with default coefficients and
897 * enable it.
898 * The filter will be enabled right after (in the following
899 * regmap_multi_reg_write() call).
900 */
901 ret = peb2466_write_buf(peb2466, PEB2466_IMR1_FILTER_P1(i), imr1_p1, 8);
902 if (ret)
903 return ret;
904 ret = peb2466_write_buf(peb2466, PEB2466_IMR1_FILTER_P2(i), imr1_p2, 8);
905 if (ret)
906 return ret;
907
908 /* Set all other filters coefficients to zero */
909 ret = peb2466_write_buf(peb2466, PEB2466_TH_FILTER_P1(i), zero, 8);
910 if (ret)
911 return ret;
912 ret = peb2466_write_buf(peb2466, PEB2466_TH_FILTER_P2(i), zero, 8);
913 if (ret)
914 return ret;
915 ret = peb2466_write_buf(peb2466, PEB2466_TH_FILTER_P3(i), zero, 8);
916 if (ret)
917 return ret;
918 ret = peb2466_write_buf(peb2466, PEB2466_FRX_FILTER(i), zero, 8);
919 if (ret)
920 return ret;
921 ret = peb2466_write_buf(peb2466, PEB2466_FRR_FILTER(i), zero, 8);
922 if (ret)
923 return ret;
924 ret = peb2466_write_buf(peb2466, PEB2466_AX_FILTER(i), zero, 4);
925 if (ret)
926 return ret;
927 ret = peb2466_write_buf(peb2466, PEB2466_AR_FILTER(i), zero, 4);
928 if (ret)
929 return ret;
930 }
931
932 return regmap_multi_reg_write(peb2466->regmap, reg_reset, ARRAY_SIZE(reg_reset));
933 }
934
peb2466_fw_parse_thfilter(struct snd_soc_component * component,u16 tag,u32 lng,const u8 * data)935 static int peb2466_fw_parse_thfilter(struct snd_soc_component *component,
936 u16 tag, u32 lng, const u8 *data)
937 {
938 struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component);
939 u8 mask;
940 int ret;
941 int i;
942
943 dev_info(component->dev, "fw TH filter: mask %x, %*phN\n", *data,
944 lng - 1, data + 1);
945
946 /*
947 * TH_FILTER TLV data:
948 * - @0 1 byte: Chan mask (bit set means related channel is concerned)
949 * - @1 8 bytes: TH-Filter coefficients part1
950 * - @9 8 bytes: TH-Filter coefficients part2
951 * - @17 8 bytes: TH-Filter coefficients part3
952 */
953 mask = *data;
954 for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) {
955 if (!(mask & (1 << i)))
956 continue;
957
958 ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
959 PEB2466_CR0_TH, 0);
960 if (ret)
961 return ret;
962
963 ret = peb2466_write_buf(peb2466, PEB2466_TH_FILTER_P1(i), data + 1, 8);
964 if (ret)
965 return ret;
966
967 ret = peb2466_write_buf(peb2466, PEB2466_TH_FILTER_P2(i), data + 9, 8);
968 if (ret)
969 return ret;
970
971 ret = peb2466_write_buf(peb2466, PEB2466_TH_FILTER_P3(i), data + 17, 8);
972 if (ret)
973 return ret;
974
975 ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
976 PEB2466_CR0_TH | PEB2466_CR0_THSEL_MASK,
977 PEB2466_CR0_TH | PEB2466_CR0_THSEL(i));
978 if (ret)
979 return ret;
980 }
981 return 0;
982 }
983
peb2466_fw_parse_imr1filter(struct snd_soc_component * component,u16 tag,u32 lng,const u8 * data)984 static int peb2466_fw_parse_imr1filter(struct snd_soc_component *component,
985 u16 tag, u32 lng, const u8 *data)
986 {
987 struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component);
988 u8 mask;
989 int ret;
990 int i;
991
992 dev_info(component->dev, "fw IM/R1 filter: mask %x, %*phN\n", *data,
993 lng - 1, data + 1);
994
995 /*
996 * IMR1_FILTER TLV data:
997 * - @0 1 byte: Chan mask (bit set means related channel is concerned)
998 * - @1 8 bytes: IM/R1-Filter coefficients part1
999 * - @9 8 bytes: IM/R1-Filter coefficients part2
1000 */
1001 mask = *data;
1002 for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) {
1003 if (!(mask & (1 << i)))
1004 continue;
1005
1006 ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
1007 PEB2466_CR0_IMR1, 0);
1008 if (ret)
1009 return ret;
1010
1011 ret = peb2466_write_buf(peb2466, PEB2466_IMR1_FILTER_P1(i), data + 1, 8);
1012 if (ret)
1013 return ret;
1014
1015 ret = peb2466_write_buf(peb2466, PEB2466_IMR1_FILTER_P2(i), data + 9, 8);
1016 if (ret)
1017 return ret;
1018
1019 ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
1020 PEB2466_CR0_IMR1, PEB2466_CR0_IMR1);
1021 if (ret)
1022 return ret;
1023 }
1024 return 0;
1025 }
1026
peb2466_fw_parse_frxfilter(struct snd_soc_component * component,u16 tag,u32 lng,const u8 * data)1027 static int peb2466_fw_parse_frxfilter(struct snd_soc_component *component,
1028 u16 tag, u32 lng, const u8 *data)
1029 {
1030 struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component);
1031 u8 mask;
1032 int ret;
1033 int i;
1034
1035 dev_info(component->dev, "fw FRX filter: mask %x, %*phN\n", *data,
1036 lng - 1, data + 1);
1037
1038 /*
1039 * FRX_FILTER TLV data:
1040 * - @0 1 byte: Chan mask (bit set means related channel is concerned)
1041 * - @1 8 bytes: FRX-Filter coefficients
1042 */
1043 mask = *data;
1044 for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) {
1045 if (!(mask & (1 << i)))
1046 continue;
1047
1048 ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
1049 PEB2466_CR0_FRX, 0);
1050 if (ret)
1051 return ret;
1052
1053 ret = peb2466_write_buf(peb2466, PEB2466_FRX_FILTER(i), data + 1, 8);
1054 if (ret)
1055 return ret;
1056
1057 ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
1058 PEB2466_CR0_FRX, PEB2466_CR0_FRX);
1059 if (ret)
1060 return ret;
1061 }
1062 return 0;
1063 }
1064
peb2466_fw_parse_frrfilter(struct snd_soc_component * component,u16 tag,u32 lng,const u8 * data)1065 static int peb2466_fw_parse_frrfilter(struct snd_soc_component *component,
1066 u16 tag, u32 lng, const u8 *data)
1067 {
1068 struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component);
1069 u8 mask;
1070 int ret;
1071 int i;
1072
1073 dev_info(component->dev, "fw FRR filter: mask %x, %*phN\n", *data,
1074 lng - 1, data + 1);
1075
1076 /*
1077 * FRR_FILTER TLV data:
1078 * - @0 1 byte: Chan mask (bit set means related channel is concerned)
1079 * - @1 8 bytes: FRR-Filter coefficients
1080 */
1081 mask = *data;
1082 for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) {
1083 if (!(mask & (1 << i)))
1084 continue;
1085
1086 ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
1087 PEB2466_CR0_FRR, 0);
1088 if (ret)
1089 return ret;
1090
1091 ret = peb2466_write_buf(peb2466, PEB2466_FRR_FILTER(i), data + 1, 8);
1092 if (ret)
1093 return ret;
1094
1095 ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
1096 PEB2466_CR0_FRR, PEB2466_CR0_FRR);
1097 if (ret)
1098 return ret;
1099 }
1100 return 0;
1101 }
1102
peb2466_fw_parse_axfilter(struct snd_soc_component * component,u16 tag,u32 lng,const u8 * data)1103 static int peb2466_fw_parse_axfilter(struct snd_soc_component *component,
1104 u16 tag, u32 lng, const u8 *data)
1105 {
1106 struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component);
1107 u8 mask;
1108 int ret;
1109 int i;
1110
1111 dev_info(component->dev, "fw AX filter: mask %x, %*phN\n", *data,
1112 lng - 1, data + 1);
1113
1114 /*
1115 * AX_FILTER TLV data:
1116 * - @0 1 byte: Chan mask (bit set means related channel is concerned)
1117 * - @1 4 bytes: AX-Filter coefficients
1118 */
1119 mask = *data;
1120 for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) {
1121 if (!(mask & (1 << i)))
1122 continue;
1123
1124 ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
1125 PEB2466_CR0_AX, 0);
1126 if (ret)
1127 return ret;
1128
1129 ret = peb2466_write_buf(peb2466, PEB2466_AX_FILTER(i), data + 1, 4);
1130 if (ret)
1131 return ret;
1132
1133 ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
1134 PEB2466_CR0_AX, PEB2466_CR0_AX);
1135 if (ret)
1136 return ret;
1137 }
1138 return 0;
1139 }
1140
peb2466_fw_parse_arfilter(struct snd_soc_component * component,u16 tag,u32 lng,const u8 * data)1141 static int peb2466_fw_parse_arfilter(struct snd_soc_component *component,
1142 u16 tag, u32 lng, const u8 *data)
1143 {
1144 struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component);
1145 u8 mask;
1146 int ret;
1147 int i;
1148
1149 dev_info(component->dev, "fw AR filter: mask %x, %*phN\n", *data,
1150 lng - 1, data + 1);
1151
1152 /*
1153 * AR_FILTER TLV data:
1154 * - @0 1 byte: Chan mask (bit set means related channel is concerned)
1155 * - @1 4 bytes: AR-Filter coefficients
1156 */
1157 mask = *data;
1158 for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) {
1159 if (!(mask & (1 << i)))
1160 continue;
1161
1162 ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
1163 PEB2466_CR0_AR, 0);
1164 if (ret)
1165 return ret;
1166
1167 ret = peb2466_write_buf(peb2466, PEB2466_AR_FILTER(i), data + 1, 4);
1168 if (ret)
1169 return ret;
1170
1171 ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
1172 PEB2466_CR0_AR, PEB2466_CR0_AR);
1173 if (ret)
1174 return ret;
1175 }
1176 return 0;
1177 }
1178
1179 static const char * const peb2466_ax_ctrl_names[] = {
1180 "ADC0 Capture Volume",
1181 "ADC1 Capture Volume",
1182 "ADC2 Capture Volume",
1183 "ADC3 Capture Volume",
1184 };
1185
peb2466_fw_parse_axtable(struct snd_soc_component * component,u16 tag,u32 lng,const u8 * data)1186 static int peb2466_fw_parse_axtable(struct snd_soc_component *component,
1187 u16 tag, u32 lng, const u8 *data)
1188 {
1189 struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component);
1190 struct peb2466_lkup_ctrl *lkup_ctrl;
1191 struct peb2466_lookup *lookup;
1192 u8 (*table)[4];
1193 u32 table_size;
1194 u32 init_index;
1195 s32 min_val;
1196 s32 step;
1197 u8 mask;
1198 int ret;
1199 int i;
1200
1201 /*
1202 * AX_TABLE TLV data:
1203 * - @0 1 byte: Chan mask (bit set means related channel is concerned)
1204 * - @1 32bits signed: Min table value in centi dB (MinVal)
1205 * ie -300 means -3.0 dB
1206 * - @5 32bits signed: Step from on item to other item in centi dB (Step)
1207 * ie 25 means 0.25 dB)
1208 * - @9 32bits unsigned: Item index in the table to use for the initial
1209 * value
1210 * - @13 N*4 bytes: Table composed of 4 bytes items.
1211 * Each item correspond to an AX filter value.
1212 *
1213 * The conversion from raw value item in the table to/from the value in
1214 * dB is: Raw value at index i <-> (MinVal + i * Step) in centi dB.
1215 */
1216
1217 /* Check Lng and extract the table size. */
1218 if (lng < 13 || ((lng - 13) % 4)) {
1219 dev_err(component->dev, "fw AX table lng %u invalid\n", lng);
1220 return -EINVAL;
1221 }
1222 table_size = lng - 13;
1223
1224 min_val = get_unaligned_be32(data + 1);
1225 step = get_unaligned_be32(data + 5);
1226 init_index = get_unaligned_be32(data + 9);
1227 if (init_index >= (table_size / 4)) {
1228 dev_err(component->dev, "fw AX table index %u out of table[%u]\n",
1229 init_index, table_size / 4);
1230 return -EINVAL;
1231 }
1232
1233 dev_info(component->dev,
1234 "fw AX table: mask %x, min %d, step %d, %u items, tbl[%u] %*phN\n",
1235 *data, min_val, step, table_size / 4, init_index,
1236 4, data + 13 + (init_index * 4));
1237
1238 BUILD_BUG_ON(sizeof(*table) != 4);
1239 table = devm_kzalloc(&peb2466->spi->dev, table_size, GFP_KERNEL);
1240 if (!table)
1241 return -ENOMEM;
1242 memcpy(table, data + 13, table_size);
1243
1244 mask = *data;
1245 BUILD_BUG_ON(ARRAY_SIZE(peb2466_ax_ctrl_names) != ARRAY_SIZE(peb2466->ch));
1246 for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) {
1247 if (!(mask & (1 << i)))
1248 continue;
1249
1250 lookup = &peb2466->ch[i].ax_lookup;
1251 lookup->table = table;
1252 lookup->count = table_size / 4;
1253
1254 ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
1255 PEB2466_CR0_AX, 0);
1256 if (ret)
1257 return ret;
1258
1259 ret = peb2466_write_buf(peb2466, PEB2466_AX_FILTER(i),
1260 lookup->table[init_index], 4);
1261 if (ret)
1262 return ret;
1263
1264 ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
1265 PEB2466_CR0_AX, PEB2466_CR0_AX);
1266 if (ret)
1267 return ret;
1268
1269 lkup_ctrl = &peb2466->ch[i].ax_lkup_ctrl;
1270 lkup_ctrl->lookup = lookup;
1271 lkup_ctrl->reg = PEB2466_AX_FILTER(i);
1272 lkup_ctrl->index = init_index;
1273
1274 ret = peb2466_add_lkup_ctrl(component, lkup_ctrl,
1275 peb2466_ax_ctrl_names[i],
1276 min_val, step);
1277 if (ret)
1278 return ret;
1279 }
1280 return 0;
1281 }
1282
1283 static const char * const peb2466_ar_ctrl_names[] = {
1284 "DAC0 Playback Volume",
1285 "DAC1 Playback Volume",
1286 "DAC2 Playback Volume",
1287 "DAC3 Playback Volume",
1288 };
1289
peb2466_fw_parse_artable(struct snd_soc_component * component,u16 tag,u32 lng,const u8 * data)1290 static int peb2466_fw_parse_artable(struct snd_soc_component *component,
1291 u16 tag, u32 lng, const u8 *data)
1292 {
1293 struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component);
1294 struct peb2466_lkup_ctrl *lkup_ctrl;
1295 struct peb2466_lookup *lookup;
1296 u8 (*table)[4];
1297 u32 table_size;
1298 u32 init_index;
1299 s32 min_val;
1300 s32 step;
1301 u8 mask;
1302 int ret;
1303 int i;
1304
1305 /*
1306 * AR_TABLE TLV data:
1307 * - @0 1 byte: Chan mask (bit set means related channel is concerned)
1308 * - @1 32bits signed: Min table value in centi dB (MinVal)
1309 * ie -300 means -3.0 dB
1310 * - @5 32bits signed: Step from on item to other item in centi dB (Step)
1311 * ie 25 means 0.25 dB)
1312 * - @9 32bits unsigned: Item index in the table to use for the initial
1313 * value
1314 * - @13 N*4 bytes: Table composed of 4 bytes items.
1315 * Each item correspond to an AR filter value.
1316 *
1317 * The conversion from raw value item in the table to/from the value in
1318 * dB is: Raw value at index i <-> (MinVal + i * Step) in centi dB.
1319 */
1320
1321 /* Check Lng and extract the table size. */
1322 if (lng < 13 || ((lng - 13) % 4)) {
1323 dev_err(component->dev, "fw AR table lng %u invalid\n", lng);
1324 return -EINVAL;
1325 }
1326 table_size = lng - 13;
1327
1328 min_val = get_unaligned_be32(data + 1);
1329 step = get_unaligned_be32(data + 5);
1330 init_index = get_unaligned_be32(data + 9);
1331 if (init_index >= (table_size / 4)) {
1332 dev_err(component->dev, "fw AR table index %u out of table[%u]\n",
1333 init_index, table_size / 4);
1334 return -EINVAL;
1335 }
1336
1337 dev_info(component->dev,
1338 "fw AR table: mask %x, min %d, step %d, %u items, tbl[%u] %*phN\n",
1339 *data, min_val, step, table_size / 4, init_index,
1340 4, data + 13 + (init_index * 4));
1341
1342 BUILD_BUG_ON(sizeof(*table) != 4);
1343 table = devm_kzalloc(&peb2466->spi->dev, table_size, GFP_KERNEL);
1344 if (!table)
1345 return -ENOMEM;
1346 memcpy(table, data + 13, table_size);
1347
1348 mask = *data;
1349 BUILD_BUG_ON(ARRAY_SIZE(peb2466_ar_ctrl_names) != ARRAY_SIZE(peb2466->ch));
1350 for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) {
1351 if (!(mask & (1 << i)))
1352 continue;
1353
1354 lookup = &peb2466->ch[i].ar_lookup;
1355 lookup->table = table;
1356 lookup->count = table_size / 4;
1357
1358 ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
1359 PEB2466_CR0_AR, 0);
1360 if (ret)
1361 return ret;
1362
1363 ret = peb2466_write_buf(peb2466, PEB2466_AR_FILTER(i),
1364 lookup->table[init_index], 4);
1365 if (ret)
1366 return ret;
1367
1368 ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
1369 PEB2466_CR0_AR, PEB2466_CR0_AR);
1370 if (ret)
1371 return ret;
1372
1373 lkup_ctrl = &peb2466->ch[i].ar_lkup_ctrl;
1374 lkup_ctrl->lookup = lookup;
1375 lkup_ctrl->reg = PEB2466_AR_FILTER(i);
1376 lkup_ctrl->index = init_index;
1377
1378 ret = peb2466_add_lkup_ctrl(component, lkup_ctrl,
1379 peb2466_ar_ctrl_names[i],
1380 min_val, step);
1381 if (ret)
1382 return ret;
1383 }
1384 return 0;
1385 }
1386
1387 struct peb2466_fw_tag_def {
1388 u16 tag;
1389 u32 lng_min;
1390 u32 lng_max;
1391 int (*parse)(struct snd_soc_component *component,
1392 u16 tag, u32 lng, const u8 *data);
1393 };
1394
1395 #define PEB2466_TAG_DEF_LNG_EQ(__tag, __lng, __parse) { \
1396 .tag = __tag, \
1397 .lng_min = __lng, \
1398 .lng_max = __lng, \
1399 .parse = __parse, \
1400 }
1401
1402 #define PEB2466_TAG_DEF_LNG_MIN(__tag, __lng_min, __parse) { \
1403 .tag = __tag, \
1404 .lng_min = __lng_min, \
1405 .lng_max = U32_MAX, \
1406 .parse = __parse, \
1407 }
1408
1409 static const struct peb2466_fw_tag_def peb2466_fw_tag_defs[] = {
1410 /* TH FILTER */
1411 PEB2466_TAG_DEF_LNG_EQ(0x0001, 1 + 3 * 8, peb2466_fw_parse_thfilter),
1412 /* IMR1 FILTER */
1413 PEB2466_TAG_DEF_LNG_EQ(0x0002, 1 + 2 * 8, peb2466_fw_parse_imr1filter),
1414 /* FRX FILTER */
1415 PEB2466_TAG_DEF_LNG_EQ(0x0003, 1 + 8, peb2466_fw_parse_frxfilter),
1416 /* FRR FILTER */
1417 PEB2466_TAG_DEF_LNG_EQ(0x0004, 1 + 8, peb2466_fw_parse_frrfilter),
1418 /* AX FILTER */
1419 PEB2466_TAG_DEF_LNG_EQ(0x0005, 1 + 4, peb2466_fw_parse_axfilter),
1420 /* AR FILTER */
1421 PEB2466_TAG_DEF_LNG_EQ(0x0006, 1 + 4, peb2466_fw_parse_arfilter),
1422 /* AX TABLE */
1423 PEB2466_TAG_DEF_LNG_MIN(0x0105, 1 + 3 * 4, peb2466_fw_parse_axtable),
1424 /* AR TABLE */
1425 PEB2466_TAG_DEF_LNG_MIN(0x0106, 1 + 3 * 4, peb2466_fw_parse_artable),
1426 };
1427
peb2466_fw_get_tag_def(u16 tag)1428 static const struct peb2466_fw_tag_def *peb2466_fw_get_tag_def(u16 tag)
1429 {
1430 int i;
1431
1432 for (i = 0; i < ARRAY_SIZE(peb2466_fw_tag_defs); i++) {
1433 if (peb2466_fw_tag_defs[i].tag == tag)
1434 return &peb2466_fw_tag_defs[i];
1435 }
1436 return NULL;
1437 }
1438
peb2466_fw_parse(struct snd_soc_component * component,const u8 * data,size_t size)1439 static int peb2466_fw_parse(struct snd_soc_component *component,
1440 const u8 *data, size_t size)
1441 {
1442 const struct peb2466_fw_tag_def *tag_def;
1443 size_t left;
1444 const u8 *buf;
1445 u16 val16;
1446 u16 tag;
1447 u32 lng;
1448 int ret;
1449
1450 /*
1451 * Coefficients firmware binary structure (16bits and 32bits are
1452 * big-endian values).
1453 *
1454 * @0, 16bits: Magic (0x2466)
1455 * @2, 16bits: Version (0x0100 for version 1.0)
1456 * @4, 2+4+N bytes: TLV block
1457 * @4+(2+4+N) bytes: Next TLV block
1458 * ...
1459 *
1460 * Detail of a TLV block:
1461 * @0, 16bits: Tag
1462 * @2, 32bits: Lng
1463 * @6, lng bytes: Data
1464 *
1465 * The detail the Data for a given TLV Tag is provided in the related
1466 * parser.
1467 */
1468
1469 left = size;
1470 buf = data;
1471
1472 if (left < 4) {
1473 dev_err(component->dev, "fw size %zu, exp at least 4\n", left);
1474 return -EINVAL;
1475 }
1476
1477 /* Check magic */
1478 val16 = get_unaligned_be16(buf);
1479 if (val16 != 0x2466) {
1480 dev_err(component->dev, "fw magic 0x%04x exp 0x2466\n", val16);
1481 return -EINVAL;
1482 }
1483 buf += 2;
1484 left -= 2;
1485
1486 /* Check version */
1487 val16 = get_unaligned_be16(buf);
1488 if (val16 != 0x0100) {
1489 dev_err(component->dev, "fw magic 0x%04x exp 0x0100\n", val16);
1490 return -EINVAL;
1491 }
1492 buf += 2;
1493 left -= 2;
1494
1495 while (left) {
1496 if (left < 6) {
1497 dev_err(component->dev, "fw %td/%zu left %zu, exp at least 6\n",
1498 buf - data, size, left);
1499 return -EINVAL;
1500 }
1501 /* Check tag and lng */
1502 tag = get_unaligned_be16(buf);
1503 lng = get_unaligned_be32(buf + 2);
1504 tag_def = peb2466_fw_get_tag_def(tag);
1505 if (!tag_def) {
1506 dev_err(component->dev, "fw %td/%zu tag 0x%04x unknown\n",
1507 buf - data, size, tag);
1508 return -EINVAL;
1509 }
1510 if (lng < tag_def->lng_min || lng > tag_def->lng_max) {
1511 dev_err(component->dev, "fw %td/%zu tag 0x%04x lng %u, exp [%u;%u]\n",
1512 buf - data, size, tag, lng, tag_def->lng_min, tag_def->lng_max);
1513 return -EINVAL;
1514 }
1515 buf += 6;
1516 left -= 6;
1517 if (left < lng) {
1518 dev_err(component->dev, "fw %td/%zu tag 0x%04x lng %u, left %zu\n",
1519 buf - data, size, tag, lng, left);
1520 return -EINVAL;
1521 }
1522
1523 /* TLV block is valid -> parse the data part */
1524 ret = tag_def->parse(component, tag, lng, buf);
1525 if (ret) {
1526 dev_err(component->dev, "fw %td/%zu tag 0x%04x lng %u parse failed\n",
1527 buf - data, size, tag, lng);
1528 return ret;
1529 }
1530
1531 buf += lng;
1532 left -= lng;
1533 }
1534 return 0;
1535 }
1536
peb2466_load_coeffs(struct snd_soc_component * component,const char * fw_name)1537 static int peb2466_load_coeffs(struct snd_soc_component *component, const char *fw_name)
1538 {
1539 const struct firmware *fw;
1540 int ret;
1541
1542 ret = request_firmware(&fw, fw_name, component->dev);
1543 if (ret)
1544 return ret;
1545
1546 ret = peb2466_fw_parse(component, fw->data, fw->size);
1547 release_firmware(fw);
1548
1549 return ret;
1550 }
1551
peb2466_component_probe(struct snd_soc_component * component)1552 static int peb2466_component_probe(struct snd_soc_component *component)
1553 {
1554 struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component);
1555 const char *firmware_name;
1556 int ret;
1557
1558 /* reset peb2466 audio part */
1559 ret = peb2466_reset_audio(peb2466);
1560 if (ret)
1561 return ret;
1562
1563 ret = of_property_read_string(peb2466->spi->dev.of_node,
1564 "firmware-name", &firmware_name);
1565 if (ret)
1566 return (ret == -EINVAL) ? 0 : ret;
1567
1568 return peb2466_load_coeffs(component, firmware_name);
1569 }
1570
1571 static const struct snd_soc_component_driver peb2466_component_driver = {
1572 .probe = peb2466_component_probe,
1573 .controls = peb2466_controls,
1574 .num_controls = ARRAY_SIZE(peb2466_controls),
1575 .dapm_widgets = peb2466_dapm_widgets,
1576 .num_dapm_widgets = ARRAY_SIZE(peb2466_dapm_widgets),
1577 .dapm_routes = peb2466_dapm_routes,
1578 .num_dapm_routes = ARRAY_SIZE(peb2466_dapm_routes),
1579 .endianness = 1,
1580 };
1581
1582 /*
1583 * The mapping used for the relationship between the gpio offset and the
1584 * physical pin is the following:
1585 *
1586 * offset pin
1587 * 0 SI1_0
1588 * 1 SI1_1
1589 * 2 SI2_0
1590 * 3 SI2_1
1591 * 4 SI3_0
1592 * 5 SI3_1
1593 * 6 SI4_0
1594 * 7 SI4_1
1595 * 8 SO1_0
1596 * 9 SO1_1
1597 * 10 SO2_0
1598 * 11 SO2_1
1599 * 12 SO3_0
1600 * 13 SO3_1
1601 * 14 SO4_0
1602 * 15 SO4_1
1603 * 16 SB1_0
1604 * 17 SB1_1
1605 * 18 SB2_0
1606 * 19 SB2_1
1607 * 20 SB3_0
1608 * 21 SB3_1
1609 * 22 SB4_0
1610 * 23 SB4_1
1611 * 24 SB1_2
1612 * 25 SB2_2
1613 * 26 SB3_2
1614 * 27 SB4_2
1615 */
1616
peb2466_chip_gpio_offset_to_data_regmask(unsigned int offset,unsigned int * xr_reg,unsigned int * mask)1617 static int peb2466_chip_gpio_offset_to_data_regmask(unsigned int offset,
1618 unsigned int *xr_reg,
1619 unsigned int *mask)
1620 {
1621 if (offset < 16) {
1622 /*
1623 * SIx_{0,1} and SOx_{0,1}
1624 * Read accesses read SIx_{0,1} values
1625 * Write accesses write SOx_{0,1} values
1626 */
1627 *xr_reg = PEB2466_XR0;
1628 *mask = (1 << (offset % 8));
1629 return 0;
1630 }
1631 if (offset < 24) {
1632 /* SBx_{0,1} */
1633 *xr_reg = PEB2466_XR1;
1634 *mask = (1 << (offset - 16));
1635 return 0;
1636 }
1637 if (offset < 28) {
1638 /* SBx_2 */
1639 *xr_reg = PEB2466_XR3;
1640 *mask = (1 << (offset - 24 + 4));
1641 return 0;
1642 }
1643 return -EINVAL;
1644 }
1645
peb2466_chip_gpio_offset_to_dir_regmask(unsigned int offset,unsigned int * xr_reg,unsigned int * mask)1646 static int peb2466_chip_gpio_offset_to_dir_regmask(unsigned int offset,
1647 unsigned int *xr_reg,
1648 unsigned int *mask)
1649 {
1650 if (offset < 16) {
1651 /* Direction cannot be changed for these GPIOs */
1652 return -EINVAL;
1653 }
1654 if (offset < 24) {
1655 *xr_reg = PEB2466_XR2;
1656 *mask = (1 << (offset - 16));
1657 return 0;
1658 }
1659 if (offset < 28) {
1660 *xr_reg = PEB2466_XR3;
1661 *mask = (1 << (offset - 24));
1662 return 0;
1663 }
1664 return -EINVAL;
1665 }
1666
peb2466_chip_gpio_get_cache(struct peb2466 * peb2466,unsigned int xr_reg)1667 static unsigned int *peb2466_chip_gpio_get_cache(struct peb2466 *peb2466,
1668 unsigned int xr_reg)
1669 {
1670 unsigned int *cache;
1671
1672 switch (xr_reg) {
1673 case PEB2466_XR0:
1674 cache = &peb2466->gpio.cache.xr0;
1675 break;
1676 case PEB2466_XR1:
1677 cache = &peb2466->gpio.cache.xr1;
1678 break;
1679 case PEB2466_XR2:
1680 cache = &peb2466->gpio.cache.xr2;
1681 break;
1682 case PEB2466_XR3:
1683 cache = &peb2466->gpio.cache.xr3;
1684 break;
1685 default:
1686 cache = NULL;
1687 break;
1688 }
1689 return cache;
1690 }
1691
peb2466_chip_gpio_update_bits(struct peb2466 * peb2466,unsigned int xr_reg,unsigned int mask,unsigned int val)1692 static int peb2466_chip_gpio_update_bits(struct peb2466 *peb2466, unsigned int xr_reg,
1693 unsigned int mask, unsigned int val)
1694 {
1695 unsigned int tmp;
1696 unsigned int *cache;
1697 int ret;
1698
1699 /*
1700 * Read and write accesses use different peb2466 internal signals (input
1701 * signals on reads and output signals on writes). regmap_update_bits
1702 * cannot be used to read/modify/write the value.
1703 * So, a specific cache value is used.
1704 */
1705
1706 mutex_lock(&peb2466->gpio.lock);
1707
1708 cache = peb2466_chip_gpio_get_cache(peb2466, xr_reg);
1709 if (!cache) {
1710 ret = -EINVAL;
1711 goto end;
1712 }
1713
1714 tmp = *cache;
1715 tmp &= ~mask;
1716 tmp |= val;
1717
1718 ret = regmap_write(peb2466->regmap, xr_reg, tmp);
1719 if (ret)
1720 goto end;
1721
1722 *cache = tmp;
1723 ret = 0;
1724
1725 end:
1726 mutex_unlock(&peb2466->gpio.lock);
1727 return ret;
1728 }
1729
peb2466_chip_gpio_set(struct gpio_chip * c,unsigned int offset,int val)1730 static void peb2466_chip_gpio_set(struct gpio_chip *c, unsigned int offset, int val)
1731 {
1732 struct peb2466 *peb2466 = gpiochip_get_data(c);
1733 unsigned int xr_reg;
1734 unsigned int mask;
1735 int ret;
1736
1737 if (offset < 8) {
1738 /*
1739 * SIx_{0,1} signals cannot be set and writing the related
1740 * register will change the SOx_{0,1} signals
1741 */
1742 dev_warn(&peb2466->spi->dev, "cannot set gpio %d (read-only)\n",
1743 offset);
1744 return;
1745 }
1746
1747 ret = peb2466_chip_gpio_offset_to_data_regmask(offset, &xr_reg, &mask);
1748 if (ret) {
1749 dev_err(&peb2466->spi->dev, "cannot set gpio %d (%d)\n",
1750 offset, ret);
1751 return;
1752 }
1753
1754 ret = peb2466_chip_gpio_update_bits(peb2466, xr_reg, mask, val ? mask : 0);
1755 if (ret) {
1756 dev_err(&peb2466->spi->dev, "set gpio %d (0x%x, 0x%x) failed (%d)\n",
1757 offset, xr_reg, mask, ret);
1758 }
1759 }
1760
peb2466_chip_gpio_get(struct gpio_chip * c,unsigned int offset)1761 static int peb2466_chip_gpio_get(struct gpio_chip *c, unsigned int offset)
1762 {
1763 struct peb2466 *peb2466 = gpiochip_get_data(c);
1764 bool use_cache = false;
1765 unsigned int *cache;
1766 unsigned int xr_reg;
1767 unsigned int mask;
1768 unsigned int val;
1769 int ret;
1770
1771 if (offset >= 8 && offset < 16) {
1772 /*
1773 * SOx_{0,1} signals cannot be read. Reading the related
1774 * register will read the SIx_{0,1} signals.
1775 * Use the cache to get value;
1776 */
1777 use_cache = true;
1778 }
1779
1780 ret = peb2466_chip_gpio_offset_to_data_regmask(offset, &xr_reg, &mask);
1781 if (ret) {
1782 dev_err(&peb2466->spi->dev, "cannot get gpio %d (%d)\n",
1783 offset, ret);
1784 return -EINVAL;
1785 }
1786
1787 if (use_cache) {
1788 cache = peb2466_chip_gpio_get_cache(peb2466, xr_reg);
1789 if (!cache)
1790 return -EINVAL;
1791 val = *cache;
1792 } else {
1793 ret = regmap_read(peb2466->regmap, xr_reg, &val);
1794 if (ret) {
1795 dev_err(&peb2466->spi->dev, "get gpio %d (0x%x, 0x%x) failed (%d)\n",
1796 offset, xr_reg, mask, ret);
1797 return ret;
1798 }
1799 }
1800
1801 return !!(val & mask);
1802 }
1803
peb2466_chip_get_direction(struct gpio_chip * c,unsigned int offset)1804 static int peb2466_chip_get_direction(struct gpio_chip *c, unsigned int offset)
1805 {
1806 struct peb2466 *peb2466 = gpiochip_get_data(c);
1807 unsigned int xr_reg;
1808 unsigned int mask;
1809 unsigned int val;
1810 int ret;
1811
1812 if (offset < 8) {
1813 /* SIx_{0,1} */
1814 return GPIO_LINE_DIRECTION_IN;
1815 }
1816 if (offset < 16) {
1817 /* SOx_{0,1} */
1818 return GPIO_LINE_DIRECTION_OUT;
1819 }
1820
1821 ret = peb2466_chip_gpio_offset_to_dir_regmask(offset, &xr_reg, &mask);
1822 if (ret) {
1823 dev_err(&peb2466->spi->dev, "cannot get gpio %d direction (%d)\n",
1824 offset, ret);
1825 return ret;
1826 }
1827
1828 ret = regmap_read(peb2466->regmap, xr_reg, &val);
1829 if (ret) {
1830 dev_err(&peb2466->spi->dev, "get dir gpio %d (0x%x, 0x%x) failed (%d)\n",
1831 offset, xr_reg, mask, ret);
1832 return ret;
1833 }
1834
1835 return val & mask ? GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1836 }
1837
peb2466_chip_direction_input(struct gpio_chip * c,unsigned int offset)1838 static int peb2466_chip_direction_input(struct gpio_chip *c, unsigned int offset)
1839 {
1840 struct peb2466 *peb2466 = gpiochip_get_data(c);
1841 unsigned int xr_reg;
1842 unsigned int mask;
1843 int ret;
1844
1845 if (offset < 8) {
1846 /* SIx_{0,1} */
1847 return 0;
1848 }
1849 if (offset < 16) {
1850 /* SOx_{0,1} */
1851 return -EINVAL;
1852 }
1853
1854 ret = peb2466_chip_gpio_offset_to_dir_regmask(offset, &xr_reg, &mask);
1855 if (ret) {
1856 dev_err(&peb2466->spi->dev, "cannot set gpio %d direction (%d)\n",
1857 offset, ret);
1858 return ret;
1859 }
1860
1861 ret = peb2466_chip_gpio_update_bits(peb2466, xr_reg, mask, 0);
1862 if (ret) {
1863 dev_err(&peb2466->spi->dev, "Set dir in gpio %d (0x%x, 0x%x) failed (%d)\n",
1864 offset, xr_reg, mask, ret);
1865 return ret;
1866 }
1867
1868 return 0;
1869 }
1870
peb2466_chip_direction_output(struct gpio_chip * c,unsigned int offset,int val)1871 static int peb2466_chip_direction_output(struct gpio_chip *c, unsigned int offset, int val)
1872 {
1873 struct peb2466 *peb2466 = gpiochip_get_data(c);
1874 unsigned int xr_reg;
1875 unsigned int mask;
1876 int ret;
1877
1878 if (offset < 8) {
1879 /* SIx_{0,1} */
1880 return -EINVAL;
1881 }
1882
1883 peb2466_chip_gpio_set(c, offset, val);
1884
1885 if (offset < 16) {
1886 /* SOx_{0,1} */
1887 return 0;
1888 }
1889
1890 ret = peb2466_chip_gpio_offset_to_dir_regmask(offset, &xr_reg, &mask);
1891 if (ret) {
1892 dev_err(&peb2466->spi->dev, "cannot set gpio %d direction (%d)\n",
1893 offset, ret);
1894 return ret;
1895 }
1896
1897 ret = peb2466_chip_gpio_update_bits(peb2466, xr_reg, mask, mask);
1898 if (ret) {
1899 dev_err(&peb2466->spi->dev, "Set dir in gpio %d (0x%x, 0x%x) failed (%d)\n",
1900 offset, xr_reg, mask, ret);
1901 return ret;
1902 }
1903
1904 return 0;
1905 }
1906
peb2466_reset_gpio(struct peb2466 * peb2466)1907 static int peb2466_reset_gpio(struct peb2466 *peb2466)
1908 {
1909 static const struct reg_sequence reg_reset[] = {
1910 /* Output pins at 0, input/output pins as input */
1911 { .reg = PEB2466_XR0, .def = 0 },
1912 { .reg = PEB2466_XR1, .def = 0 },
1913 { .reg = PEB2466_XR2, .def = 0 },
1914 { .reg = PEB2466_XR3, .def = 0 },
1915 };
1916
1917 peb2466->gpio.cache.xr0 = 0;
1918 peb2466->gpio.cache.xr1 = 0;
1919 peb2466->gpio.cache.xr2 = 0;
1920 peb2466->gpio.cache.xr3 = 0;
1921
1922 return regmap_multi_reg_write(peb2466->regmap, reg_reset, ARRAY_SIZE(reg_reset));
1923 }
1924
peb2466_gpio_init(struct peb2466 * peb2466)1925 static int peb2466_gpio_init(struct peb2466 *peb2466)
1926 {
1927 int ret;
1928
1929 mutex_init(&peb2466->gpio.lock);
1930
1931 ret = peb2466_reset_gpio(peb2466);
1932 if (ret)
1933 return ret;
1934
1935 peb2466->gpio.gpio_chip.owner = THIS_MODULE;
1936 peb2466->gpio.gpio_chip.label = dev_name(&peb2466->spi->dev);
1937 peb2466->gpio.gpio_chip.parent = &peb2466->spi->dev;
1938 peb2466->gpio.gpio_chip.base = -1;
1939 peb2466->gpio.gpio_chip.ngpio = 28;
1940 peb2466->gpio.gpio_chip.get_direction = peb2466_chip_get_direction;
1941 peb2466->gpio.gpio_chip.direction_input = peb2466_chip_direction_input;
1942 peb2466->gpio.gpio_chip.direction_output = peb2466_chip_direction_output;
1943 peb2466->gpio.gpio_chip.get = peb2466_chip_gpio_get;
1944 peb2466->gpio.gpio_chip.set = peb2466_chip_gpio_set;
1945 peb2466->gpio.gpio_chip.can_sleep = true;
1946
1947 return devm_gpiochip_add_data(&peb2466->spi->dev, &peb2466->gpio.gpio_chip,
1948 peb2466);
1949 }
1950
peb2466_spi_probe(struct spi_device * spi)1951 static int peb2466_spi_probe(struct spi_device *spi)
1952 {
1953 struct peb2466 *peb2466;
1954 unsigned long mclk_rate;
1955 int ret;
1956 u8 xr5;
1957
1958 spi->bits_per_word = 8;
1959 ret = spi_setup(spi);
1960 if (ret < 0)
1961 return ret;
1962
1963 peb2466 = devm_kzalloc(&spi->dev, sizeof(*peb2466), GFP_KERNEL);
1964 if (!peb2466)
1965 return -ENOMEM;
1966
1967 peb2466->spi = spi;
1968
1969 peb2466->regmap = devm_regmap_init(&peb2466->spi->dev, NULL, peb2466,
1970 &peb2466_regmap_config);
1971 if (IS_ERR(peb2466->regmap))
1972 return PTR_ERR(peb2466->regmap);
1973
1974 peb2466->reset_gpio = devm_gpiod_get_optional(&peb2466->spi->dev,
1975 "reset", GPIOD_OUT_LOW);
1976 if (IS_ERR(peb2466->reset_gpio))
1977 return PTR_ERR(peb2466->reset_gpio);
1978
1979 peb2466->mclk = devm_clk_get_enabled(&peb2466->spi->dev, "mclk");
1980 if (IS_ERR(peb2466->mclk))
1981 return PTR_ERR(peb2466->mclk);
1982
1983 if (peb2466->reset_gpio) {
1984 gpiod_set_value_cansleep(peb2466->reset_gpio, 1);
1985 udelay(4);
1986 gpiod_set_value_cansleep(peb2466->reset_gpio, 0);
1987 udelay(4);
1988 }
1989
1990 spi_set_drvdata(spi, peb2466);
1991
1992 mclk_rate = clk_get_rate(peb2466->mclk);
1993 switch (mclk_rate) {
1994 case 1536000:
1995 xr5 = PEB2466_XR5_MCLK_1536;
1996 break;
1997 case 2048000:
1998 xr5 = PEB2466_XR5_MCLK_2048;
1999 break;
2000 case 4096000:
2001 xr5 = PEB2466_XR5_MCLK_4096;
2002 break;
2003 case 8192000:
2004 xr5 = PEB2466_XR5_MCLK_8192;
2005 break;
2006 default:
2007 dev_err(&peb2466->spi->dev, "Unsupported clock rate %lu\n",
2008 mclk_rate);
2009 ret = -EINVAL;
2010 goto failed;
2011 }
2012 ret = regmap_write(peb2466->regmap, PEB2466_XR5, xr5);
2013 if (ret) {
2014 dev_err(&peb2466->spi->dev, "Setting MCLK failed (%d)\n", ret);
2015 goto failed;
2016 }
2017
2018 ret = devm_snd_soc_register_component(&spi->dev, &peb2466_component_driver,
2019 &peb2466_dai_driver, 1);
2020 if (ret)
2021 goto failed;
2022
2023 if (IS_ENABLED(CONFIG_GPIOLIB)) {
2024 ret = peb2466_gpio_init(peb2466);
2025 if (ret)
2026 goto failed;
2027 }
2028
2029 return 0;
2030
2031 failed:
2032 return ret;
2033 }
2034
2035 static const struct of_device_id peb2466_of_match[] = {
2036 { .compatible = "infineon,peb2466", },
2037 { }
2038 };
2039 MODULE_DEVICE_TABLE(of, peb2466_of_match);
2040
2041 static const struct spi_device_id peb2466_id_table[] = {
2042 { "peb2466", 0 },
2043 { }
2044 };
2045 MODULE_DEVICE_TABLE(spi, peb2466_id_table);
2046
2047 static struct spi_driver peb2466_spi_driver = {
2048 .driver = {
2049 .name = "peb2466",
2050 .of_match_table = peb2466_of_match,
2051 },
2052 .id_table = peb2466_id_table,
2053 .probe = peb2466_spi_probe,
2054 };
2055
2056 module_spi_driver(peb2466_spi_driver);
2057
2058 MODULE_AUTHOR("Herve Codina <herve.codina@bootlin.com>");
2059 MODULE_DESCRIPTION("PEB2466 ALSA SoC driver");
2060 MODULE_LICENSE("GPL");
2061