xref: /linux/drivers/iommu/amd/iommu.c (revision 3222b6de5145272c43a90cb8667377d676635ea0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
4  * Author: Joerg Roedel <jroedel@suse.de>
5  *         Leo Duran <leo.duran@amd.com>
6  */
7 
8 #define pr_fmt(fmt)     "AMD-Vi: " fmt
9 #define dev_fmt(fmt)    pr_fmt(fmt)
10 
11 #include <linux/ratelimit.h>
12 #include <linux/pci.h>
13 #include <linux/acpi.h>
14 #include <linux/pci-ats.h>
15 #include <linux/bitmap.h>
16 #include <linux/slab.h>
17 #include <linux/string_choices.h>
18 #include <linux/debugfs.h>
19 #include <linux/scatterlist.h>
20 #include <linux/dma-map-ops.h>
21 #include <linux/dma-direct.h>
22 #include <linux/idr.h>
23 #include <linux/iommu-helper.h>
24 #include <linux/delay.h>
25 #include <linux/amd-iommu.h>
26 #include <linux/notifier.h>
27 #include <linux/export.h>
28 #include <linux/irq.h>
29 #include <linux/irqchip/irq-msi-lib.h>
30 #include <linux/msi.h>
31 #include <linux/irqdomain.h>
32 #include <linux/percpu.h>
33 #include <linux/cc_platform.h>
34 #include <asm/irq_remapping.h>
35 #include <asm/io_apic.h>
36 #include <asm/apic.h>
37 #include <asm/hw_irq.h>
38 #include <asm/proto.h>
39 #include <asm/iommu.h>
40 #include <asm/gart.h>
41 #include <asm/dma.h>
42 #include <uapi/linux/iommufd.h>
43 #include <linux/generic_pt/iommu.h>
44 
45 #include "amd_iommu.h"
46 #include "../irq_remapping.h"
47 #include "../iommu-pages.h"
48 
49 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
50 
51 /* Reserved IOVA ranges */
52 #define MSI_RANGE_START		(0xfee00000)
53 #define MSI_RANGE_END		(0xfeefffff)
54 #define HT_RANGE_START		(0xfd00000000ULL)
55 #define HT_RANGE_END		(0xffffffffffULL)
56 
57 LIST_HEAD(ioapic_map);
58 LIST_HEAD(hpet_map);
59 LIST_HEAD(acpihid_map);
60 
61 const struct iommu_ops amd_iommu_ops;
62 
63 int amd_iommu_max_glx_val = -1;
64 
65 /*
66  * AMD IOMMU allows up to 2^16 different protection domains. This is a bitmap
67  * to know which ones are already in use.
68  */
69 DEFINE_IDA(pdom_ids);
70 
71 static int amd_iommu_attach_device(struct iommu_domain *dom, struct device *dev,
72 				   struct iommu_domain *old);
73 
74 static void set_dte_entry(struct amd_iommu *iommu,
75 			  struct iommu_dev_data *dev_data,
76 			  phys_addr_t top_paddr, unsigned int top_level);
77 
78 static void amd_iommu_change_top(struct pt_iommu *iommu_table,
79 				 phys_addr_t top_paddr, unsigned int top_level);
80 
81 static void iommu_flush_dte_sync(struct amd_iommu *iommu, u16 devid);
82 
83 static struct iommu_dev_data *find_dev_data(struct amd_iommu *iommu, u16 devid);
84 static bool amd_iommu_enforce_cache_coherency(struct iommu_domain *domain);
85 static int amd_iommu_set_dirty_tracking(struct iommu_domain *domain,
86 					bool enable);
87 
88 /****************************************************************************
89  *
90  * Helper functions
91  *
92  ****************************************************************************/
93 
94 static __always_inline void amd_iommu_atomic128_set(__int128 *ptr, __int128 val)
95 {
96 	/*
97 	 * Note:
98 	 * We use arch_cmpxchg128_local() because:
99 	 * - Need cmpxchg16b instruction mainly for 128-bit store to DTE
100 	 *   (not necessary for cmpxchg since this function is already
101 	 *   protected by a spin_lock for this DTE).
102 	 * - Neither need LOCK_PREFIX nor try loop because of the spin_lock.
103 	 */
104 	arch_cmpxchg128_local(ptr, *ptr, val);
105 }
106 
107 static void write_dte_upper128(struct dev_table_entry *ptr, struct dev_table_entry *new)
108 {
109 	struct dev_table_entry old;
110 
111 	old.data128[1] = ptr->data128[1];
112 	/*
113 	 * Preserve DTE_DATA2_INTR_MASK. This needs to be
114 	 * done here since it requires to be inside
115 	 * spin_lock(&dev_data->dte_lock) context.
116 	 */
117 	new->data[2] &= ~DTE_DATA2_INTR_MASK;
118 	new->data[2] |= old.data[2] & DTE_DATA2_INTR_MASK;
119 
120 	amd_iommu_atomic128_set(&ptr->data128[1], new->data128[1]);
121 }
122 
123 static void write_dte_lower128(struct dev_table_entry *ptr, struct dev_table_entry *new)
124 {
125 	amd_iommu_atomic128_set(&ptr->data128[0], new->data128[0]);
126 }
127 
128 /*
129  * Note:
130  * IOMMU reads the entire Device Table entry in a single 256-bit transaction
131  * but the driver is programming DTE using 2 128-bit cmpxchg. So, the driver
132  * need to ensure the following:
133  *   - DTE[V|GV] bit is being written last when setting.
134  *   - DTE[V|GV] bit is being written first when clearing.
135  *
136  * This function is used only by code, which updates DMA translation part of the DTE.
137  * So, only consider control bits related to DMA when updating the entry.
138  */
139 static void update_dte256(struct amd_iommu *iommu, struct iommu_dev_data *dev_data,
140 			  struct dev_table_entry *new)
141 {
142 	unsigned long flags;
143 	struct dev_table_entry *dev_table = get_dev_table(iommu);
144 	struct dev_table_entry *ptr = &dev_table[dev_data->devid];
145 
146 	spin_lock_irqsave(&dev_data->dte_lock, flags);
147 
148 	if (!(ptr->data[0] & DTE_FLAG_V)) {
149 		/* Existing DTE is not valid. */
150 		write_dte_upper128(ptr, new);
151 		write_dte_lower128(ptr, new);
152 		iommu_flush_dte_sync(iommu, dev_data->devid);
153 	} else if (!(new->data[0] & DTE_FLAG_V)) {
154 		/* Existing DTE is valid. New DTE is not valid.  */
155 		write_dte_lower128(ptr, new);
156 		write_dte_upper128(ptr, new);
157 		iommu_flush_dte_sync(iommu, dev_data->devid);
158 	} else if (!FIELD_GET(DTE_FLAG_GV, ptr->data[0])) {
159 		/*
160 		 * Both DTEs are valid.
161 		 * Existing DTE has no guest page table.
162 		 */
163 		write_dte_upper128(ptr, new);
164 		write_dte_lower128(ptr, new);
165 		iommu_flush_dte_sync(iommu, dev_data->devid);
166 	} else if (!FIELD_GET(DTE_FLAG_GV, new->data[0])) {
167 		/*
168 		 * Both DTEs are valid.
169 		 * Existing DTE has guest page table,
170 		 * new DTE has no guest page table,
171 		 */
172 		write_dte_lower128(ptr, new);
173 		write_dte_upper128(ptr, new);
174 		iommu_flush_dte_sync(iommu, dev_data->devid);
175 	} else if (FIELD_GET(DTE_GPT_LEVEL_MASK, ptr->data[2]) !=
176 		   FIELD_GET(DTE_GPT_LEVEL_MASK, new->data[2])) {
177 		/*
178 		 * Both DTEs are valid and have guest page table,
179 		 * but have different number of levels. So, we need
180 		 * to upadte both upper and lower 128-bit value, which
181 		 * require disabling and flushing.
182 		 */
183 		struct dev_table_entry clear = {};
184 
185 		/* First disable DTE */
186 		write_dte_lower128(ptr, &clear);
187 		iommu_flush_dte_sync(iommu, dev_data->devid);
188 
189 		/* Then update DTE */
190 		write_dte_upper128(ptr, new);
191 		write_dte_lower128(ptr, new);
192 		iommu_flush_dte_sync(iommu, dev_data->devid);
193 	} else {
194 		/*
195 		 * Both DTEs are valid and have guest page table,
196 		 * and same number of levels. We just need to only
197 		 * update the lower 128-bit. So no need to disable DTE.
198 		 */
199 		write_dte_lower128(ptr, new);
200 	}
201 
202 	spin_unlock_irqrestore(&dev_data->dte_lock, flags);
203 }
204 
205 static void get_dte256(struct amd_iommu *iommu, struct iommu_dev_data *dev_data,
206 		      struct dev_table_entry *dte)
207 {
208 	unsigned long flags;
209 	struct dev_table_entry *ptr;
210 	struct dev_table_entry *dev_table = get_dev_table(iommu);
211 
212 	ptr = &dev_table[dev_data->devid];
213 
214 	spin_lock_irqsave(&dev_data->dte_lock, flags);
215 	dte->data128[0] = ptr->data128[0];
216 	dte->data128[1] = ptr->data128[1];
217 	spin_unlock_irqrestore(&dev_data->dte_lock, flags);
218 }
219 
220 static inline bool pdom_is_v2_pgtbl_mode(struct protection_domain *pdom)
221 {
222 	return (pdom && (pdom->pd_mode == PD_MODE_V2));
223 }
224 
225 static inline bool pdom_is_in_pt_mode(struct protection_domain *pdom)
226 {
227 	return (pdom->domain.type == IOMMU_DOMAIN_IDENTITY);
228 }
229 
230 /*
231  * We cannot support PASID w/ existing v1 page table in the same domain
232  * since it will be nested. However, existing domain w/ v2 page table
233  * or passthrough mode can be used for PASID.
234  */
235 static inline bool pdom_is_sva_capable(struct protection_domain *pdom)
236 {
237 	return pdom_is_v2_pgtbl_mode(pdom) || pdom_is_in_pt_mode(pdom);
238 }
239 
240 static inline int get_acpihid_device_id(struct device *dev,
241 					struct acpihid_map_entry **entry)
242 {
243 	struct acpi_device *adev = ACPI_COMPANION(dev);
244 	struct acpihid_map_entry *p, *p1 = NULL;
245 	int hid_count = 0;
246 	bool fw_bug;
247 
248 	if (!adev)
249 		return -ENODEV;
250 
251 	list_for_each_entry(p, &acpihid_map, list) {
252 		if (acpi_dev_hid_uid_match(adev, p->hid,
253 					   p->uid[0] ? p->uid : NULL)) {
254 			p1 = p;
255 			fw_bug = false;
256 			hid_count = 1;
257 			break;
258 		}
259 
260 		/*
261 		 * Count HID matches w/o UID, raise FW_BUG but allow exactly one match
262 		 */
263 		if (acpi_dev_hid_match(adev, p->hid)) {
264 			p1 = p;
265 			hid_count++;
266 			fw_bug = true;
267 		}
268 	}
269 
270 	if (!p1)
271 		return -EINVAL;
272 	if (fw_bug)
273 		dev_err_once(dev, FW_BUG "No ACPI device matched UID, but %d device%s matched HID.\n",
274 			     hid_count, str_plural(hid_count));
275 	if (hid_count > 1)
276 		return -EINVAL;
277 	if (entry)
278 		*entry = p1;
279 
280 	return p1->devid;
281 }
282 
283 static inline int get_device_sbdf_id(struct device *dev)
284 {
285 	int sbdf;
286 
287 	if (dev_is_pci(dev))
288 		sbdf = get_pci_sbdf_id(to_pci_dev(dev));
289 	else
290 		sbdf = get_acpihid_device_id(dev, NULL);
291 
292 	return sbdf;
293 }
294 
295 struct dev_table_entry *get_dev_table(struct amd_iommu *iommu)
296 {
297 	struct dev_table_entry *dev_table;
298 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
299 
300 	BUG_ON(pci_seg == NULL);
301 	dev_table = pci_seg->dev_table;
302 	BUG_ON(dev_table == NULL);
303 
304 	return dev_table;
305 }
306 
307 static inline u16 get_device_segment(struct device *dev)
308 {
309 	u16 seg;
310 
311 	if (dev_is_pci(dev)) {
312 		struct pci_dev *pdev = to_pci_dev(dev);
313 
314 		seg = pci_domain_nr(pdev->bus);
315 	} else {
316 		u32 devid = get_acpihid_device_id(dev, NULL);
317 
318 		seg = PCI_SBDF_TO_SEGID(devid);
319 	}
320 
321 	return seg;
322 }
323 
324 /* Writes the specific IOMMU for a device into the PCI segment rlookup table */
325 void amd_iommu_set_rlookup_table(struct amd_iommu *iommu, u16 devid)
326 {
327 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
328 
329 	pci_seg->rlookup_table[devid] = iommu;
330 }
331 
332 static struct amd_iommu *__rlookup_amd_iommu(u16 seg, u16 devid)
333 {
334 	struct amd_iommu_pci_seg *pci_seg;
335 
336 	for_each_pci_segment(pci_seg) {
337 		if (pci_seg->id == seg)
338 			return pci_seg->rlookup_table[devid];
339 	}
340 	return NULL;
341 }
342 
343 static struct amd_iommu *rlookup_amd_iommu(struct device *dev)
344 {
345 	u16 seg = get_device_segment(dev);
346 	int devid = get_device_sbdf_id(dev);
347 
348 	if (devid < 0)
349 		return NULL;
350 	return __rlookup_amd_iommu(seg, PCI_SBDF_TO_DEVID(devid));
351 }
352 
353 static struct iommu_dev_data *alloc_dev_data(struct amd_iommu *iommu, u16 devid)
354 {
355 	struct iommu_dev_data *dev_data;
356 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
357 
358 	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
359 	if (!dev_data)
360 		return NULL;
361 
362 	mutex_init(&dev_data->mutex);
363 	spin_lock_init(&dev_data->dte_lock);
364 	dev_data->devid = devid;
365 	ratelimit_default_init(&dev_data->rs);
366 
367 	llist_add(&dev_data->dev_data_list, &pci_seg->dev_data_list);
368 	return dev_data;
369 }
370 
371 struct iommu_dev_data *search_dev_data(struct amd_iommu *iommu, u16 devid)
372 {
373 	struct iommu_dev_data *dev_data;
374 	struct llist_node *node;
375 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
376 
377 	if (llist_empty(&pci_seg->dev_data_list))
378 		return NULL;
379 
380 	node = pci_seg->dev_data_list.first;
381 	llist_for_each_entry(dev_data, node, dev_data_list) {
382 		if (dev_data->devid == devid)
383 			return dev_data;
384 	}
385 
386 	return NULL;
387 }
388 
389 static int clone_alias(struct pci_dev *pdev, u16 alias, void *data)
390 {
391 	struct dev_table_entry new;
392 	struct amd_iommu *iommu;
393 	struct iommu_dev_data *dev_data, *alias_data;
394 	u16 devid = pci_dev_id(pdev);
395 	int ret = 0;
396 
397 	if (devid == alias)
398 		return 0;
399 
400 	iommu = rlookup_amd_iommu(&pdev->dev);
401 	if (!iommu)
402 		return 0;
403 
404 	/* Copy the data from pdev */
405 	dev_data = dev_iommu_priv_get(&pdev->dev);
406 	if (!dev_data) {
407 		pr_err("%s : Failed to get dev_data for 0x%x\n", __func__, devid);
408 		ret = -EINVAL;
409 		goto out;
410 	}
411 	get_dte256(iommu, dev_data, &new);
412 
413 	/* Setup alias */
414 	alias_data = find_dev_data(iommu, alias);
415 	if (!alias_data) {
416 		pr_err("%s : Failed to get alias dev_data for 0x%x\n", __func__, alias);
417 		ret = -EINVAL;
418 		goto out;
419 	}
420 	update_dte256(iommu, alias_data, &new);
421 
422 	amd_iommu_set_rlookup_table(iommu, alias);
423 out:
424 	return ret;
425 }
426 
427 static void clone_aliases(struct amd_iommu *iommu, struct device *dev)
428 {
429 	struct pci_dev *pdev;
430 
431 	if (!dev_is_pci(dev))
432 		return;
433 	pdev = to_pci_dev(dev);
434 
435 	/*
436 	 * The IVRS alias stored in the alias table may not be
437 	 * part of the PCI DMA aliases if it's bus differs
438 	 * from the original device.
439 	 */
440 	clone_alias(pdev, iommu->pci_seg->alias_table[pci_dev_id(pdev)], NULL);
441 
442 	pci_for_each_dma_alias(pdev, clone_alias, NULL);
443 }
444 
445 static void setup_aliases(struct amd_iommu *iommu, struct device *dev)
446 {
447 	struct pci_dev *pdev = to_pci_dev(dev);
448 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
449 	u16 ivrs_alias;
450 
451 	/* For ACPI HID devices, there are no aliases */
452 	if (!dev_is_pci(dev))
453 		return;
454 
455 	/*
456 	 * Add the IVRS alias to the pci aliases if it is on the same
457 	 * bus. The IVRS table may know about a quirk that we don't.
458 	 */
459 	ivrs_alias = pci_seg->alias_table[pci_dev_id(pdev)];
460 	if (ivrs_alias != pci_dev_id(pdev) &&
461 	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number)
462 		pci_add_dma_alias(pdev, ivrs_alias & 0xff, 1);
463 
464 	clone_aliases(iommu, dev);
465 }
466 
467 static struct iommu_dev_data *find_dev_data(struct amd_iommu *iommu, u16 devid)
468 {
469 	struct iommu_dev_data *dev_data;
470 
471 	dev_data = search_dev_data(iommu, devid);
472 
473 	if (dev_data == NULL) {
474 		dev_data = alloc_dev_data(iommu, devid);
475 		if (!dev_data)
476 			return NULL;
477 
478 		if (translation_pre_enabled(iommu))
479 			dev_data->defer_attach = true;
480 	}
481 
482 	return dev_data;
483 }
484 
485 /*
486 * Find or create an IOMMU group for a acpihid device.
487 */
488 static struct iommu_group *acpihid_device_group(struct device *dev)
489 {
490 	struct acpihid_map_entry *p, *entry = NULL;
491 	int devid;
492 
493 	devid = get_acpihid_device_id(dev, &entry);
494 	if (devid < 0)
495 		return ERR_PTR(devid);
496 
497 	list_for_each_entry(p, &acpihid_map, list) {
498 		if ((devid == p->devid) && p->group)
499 			entry->group = p->group;
500 	}
501 
502 	if (!entry->group)
503 		entry->group = generic_device_group(dev);
504 	else
505 		iommu_group_ref_get(entry->group);
506 
507 	return entry->group;
508 }
509 
510 static inline bool pdev_pasid_supported(struct iommu_dev_data *dev_data)
511 {
512 	return (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PASID_SUP);
513 }
514 
515 static u32 pdev_get_caps(struct pci_dev *pdev)
516 {
517 	int features;
518 	u32 flags = 0;
519 
520 	if (pci_ats_supported(pdev))
521 		flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
522 
523 	if (pci_pri_supported(pdev))
524 		flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
525 
526 	features = pci_pasid_features(pdev);
527 	if (features >= 0) {
528 		flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
529 
530 		if (features & PCI_PASID_CAP_EXEC)
531 			flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
532 
533 		if (features & PCI_PASID_CAP_PRIV)
534 			flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
535 	}
536 
537 	return flags;
538 }
539 
540 static inline int pdev_enable_cap_ats(struct pci_dev *pdev)
541 {
542 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
543 	int ret = -EINVAL;
544 
545 	if (dev_data->ats_enabled)
546 		return 0;
547 
548 	if (amd_iommu_iotlb_sup &&
549 	    (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_ATS_SUP)) {
550 		ret = pci_enable_ats(pdev, PAGE_SHIFT);
551 		if (!ret) {
552 			dev_data->ats_enabled = 1;
553 			dev_data->ats_qdep    = pci_ats_queue_depth(pdev);
554 		}
555 	}
556 
557 	return ret;
558 }
559 
560 static inline void pdev_disable_cap_ats(struct pci_dev *pdev)
561 {
562 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
563 
564 	if (dev_data->ats_enabled) {
565 		pci_disable_ats(pdev);
566 		dev_data->ats_enabled = 0;
567 	}
568 }
569 
570 static inline int pdev_enable_cap_pri(struct pci_dev *pdev)
571 {
572 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
573 	int ret = -EINVAL;
574 
575 	if (dev_data->pri_enabled)
576 		return 0;
577 
578 	if (!dev_data->ats_enabled)
579 		return 0;
580 
581 	if (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PRI_SUP) {
582 		/*
583 		 * First reset the PRI state of the device.
584 		 * FIXME: Hardcode number of outstanding requests for now
585 		 */
586 		if (!pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32)) {
587 			dev_data->pri_enabled = 1;
588 			dev_data->pri_tlp     = pci_prg_resp_pasid_required(pdev);
589 
590 			ret = 0;
591 		}
592 	}
593 
594 	return ret;
595 }
596 
597 static inline void pdev_disable_cap_pri(struct pci_dev *pdev)
598 {
599 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
600 
601 	if (dev_data->pri_enabled) {
602 		pci_disable_pri(pdev);
603 		dev_data->pri_enabled = 0;
604 	}
605 }
606 
607 static inline int pdev_enable_cap_pasid(struct pci_dev *pdev)
608 {
609 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
610 	int ret = -EINVAL;
611 
612 	if (dev_data->pasid_enabled)
613 		return 0;
614 
615 	if (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PASID_SUP) {
616 		/* Only allow access to user-accessible pages */
617 		ret = pci_enable_pasid(pdev, 0);
618 		if (!ret)
619 			dev_data->pasid_enabled = 1;
620 	}
621 
622 	return ret;
623 }
624 
625 static inline void pdev_disable_cap_pasid(struct pci_dev *pdev)
626 {
627 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
628 
629 	if (dev_data->pasid_enabled) {
630 		pci_disable_pasid(pdev);
631 		dev_data->pasid_enabled = 0;
632 	}
633 }
634 
635 static void pdev_enable_caps(struct pci_dev *pdev)
636 {
637 	pdev_enable_cap_pasid(pdev);
638 	pdev_enable_cap_ats(pdev);
639 	pdev_enable_cap_pri(pdev);
640 }
641 
642 static void pdev_disable_caps(struct pci_dev *pdev)
643 {
644 	pdev_disable_cap_ats(pdev);
645 	pdev_disable_cap_pasid(pdev);
646 	pdev_disable_cap_pri(pdev);
647 }
648 
649 /*
650  * This function checks if the driver got a valid device from the caller to
651  * avoid dereferencing invalid pointers.
652  */
653 static bool check_device(struct device *dev)
654 {
655 	struct amd_iommu_pci_seg *pci_seg;
656 	struct amd_iommu *iommu;
657 	int devid, sbdf;
658 
659 	if (!dev)
660 		return false;
661 
662 	sbdf = get_device_sbdf_id(dev);
663 	if (sbdf < 0)
664 		return false;
665 	devid = PCI_SBDF_TO_DEVID(sbdf);
666 
667 	iommu = rlookup_amd_iommu(dev);
668 	if (!iommu)
669 		return false;
670 
671 	/* Out of our scope? */
672 	pci_seg = iommu->pci_seg;
673 	if (devid > pci_seg->last_bdf)
674 		return false;
675 
676 	return true;
677 }
678 
679 static int iommu_init_device(struct amd_iommu *iommu, struct device *dev)
680 {
681 	struct iommu_dev_data *dev_data;
682 	int devid, sbdf;
683 
684 	if (dev_iommu_priv_get(dev))
685 		return 0;
686 
687 	sbdf = get_device_sbdf_id(dev);
688 	if (sbdf < 0)
689 		return sbdf;
690 
691 	devid = PCI_SBDF_TO_DEVID(sbdf);
692 	dev_data = find_dev_data(iommu, devid);
693 	if (!dev_data)
694 		return -ENOMEM;
695 
696 	dev_data->dev = dev;
697 
698 	/*
699 	 * The dev_iommu_priv_set() needes to be called before setup_aliases.
700 	 * Otherwise, subsequent call to dev_iommu_priv_get() will fail.
701 	 */
702 	dev_iommu_priv_set(dev, dev_data);
703 	setup_aliases(iommu, dev);
704 
705 	/*
706 	 * By default we use passthrough mode for IOMMUv2 capable device.
707 	 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to
708 	 * invalid address), we ignore the capability for the device so
709 	 * it'll be forced to go into translation mode.
710 	 */
711 	if ((iommu_default_passthrough() || !amd_iommu_force_isolation) &&
712 	    dev_is_pci(dev) && amd_iommu_gt_ppr_supported()) {
713 		dev_data->flags = pdev_get_caps(to_pci_dev(dev));
714 	}
715 
716 	return 0;
717 }
718 
719 static void iommu_ignore_device(struct amd_iommu *iommu, struct device *dev)
720 {
721 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
722 	struct dev_table_entry *dev_table = get_dev_table(iommu);
723 	int devid, sbdf;
724 
725 	sbdf = get_device_sbdf_id(dev);
726 	if (sbdf < 0)
727 		return;
728 
729 	devid = PCI_SBDF_TO_DEVID(sbdf);
730 	pci_seg->rlookup_table[devid] = NULL;
731 	memset(&dev_table[devid], 0, sizeof(struct dev_table_entry));
732 
733 	setup_aliases(iommu, dev);
734 }
735 
736 
737 /****************************************************************************
738  *
739  * Interrupt handling functions
740  *
741  ****************************************************************************/
742 
743 static void dump_dte_entry(struct amd_iommu *iommu, u16 devid)
744 {
745 	int i;
746 	struct dev_table_entry dte;
747 	struct iommu_dev_data *dev_data = find_dev_data(iommu, devid);
748 
749 	get_dte256(iommu, dev_data, &dte);
750 
751 	for (i = 0; i < 4; ++i)
752 		pr_err("DTE[%d]: %016llx\n", i, dte.data[i]);
753 }
754 
755 static void dump_command(unsigned long phys_addr)
756 {
757 	struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
758 	int i;
759 
760 	for (i = 0; i < 4; ++i)
761 		pr_err("CMD[%d]: %08x\n", i, cmd->data[i]);
762 }
763 
764 static void amd_iommu_report_rmp_hw_error(struct amd_iommu *iommu, volatile u32 *event)
765 {
766 	struct iommu_dev_data *dev_data = NULL;
767 	int devid, vmg_tag, flags;
768 	struct pci_dev *pdev;
769 	u64 spa;
770 
771 	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
772 	vmg_tag = (event[1]) & 0xFFFF;
773 	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
774 	spa     = ((u64)event[3] << 32) | (event[2] & 0xFFFFFFF8);
775 
776 	pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
777 					   devid & 0xff);
778 	if (pdev)
779 		dev_data = dev_iommu_priv_get(&pdev->dev);
780 
781 	if (dev_data) {
782 		if (__ratelimit(&dev_data->rs)) {
783 			pci_err(pdev, "Event logged [RMP_HW_ERROR vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
784 				vmg_tag, spa, flags);
785 		}
786 	} else {
787 		pr_err_ratelimited("Event logged [RMP_HW_ERROR device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
788 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
789 			vmg_tag, spa, flags);
790 	}
791 
792 	if (pdev)
793 		pci_dev_put(pdev);
794 }
795 
796 static void amd_iommu_report_rmp_fault(struct amd_iommu *iommu, volatile u32 *event)
797 {
798 	struct iommu_dev_data *dev_data = NULL;
799 	int devid, flags_rmp, vmg_tag, flags;
800 	struct pci_dev *pdev;
801 	u64 gpa;
802 
803 	devid     = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
804 	flags_rmp = (event[0] >> EVENT_FLAGS_SHIFT) & 0xFF;
805 	vmg_tag   = (event[1]) & 0xFFFF;
806 	flags     = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
807 	gpa       = ((u64)event[3] << 32) | event[2];
808 
809 	pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
810 					   devid & 0xff);
811 	if (pdev)
812 		dev_data = dev_iommu_priv_get(&pdev->dev);
813 
814 	if (dev_data) {
815 		if (__ratelimit(&dev_data->rs)) {
816 			pci_err(pdev, "Event logged [RMP_PAGE_FAULT vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
817 				vmg_tag, gpa, flags_rmp, flags);
818 		}
819 	} else {
820 		pr_err_ratelimited("Event logged [RMP_PAGE_FAULT device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
821 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
822 			vmg_tag, gpa, flags_rmp, flags);
823 	}
824 
825 	if (pdev)
826 		pci_dev_put(pdev);
827 }
828 
829 #define IS_IOMMU_MEM_TRANSACTION(flags)		\
830 	(((flags) & EVENT_FLAG_I) == 0)
831 
832 #define IS_WRITE_REQUEST(flags)			\
833 	((flags) & EVENT_FLAG_RW)
834 
835 static void amd_iommu_report_page_fault(struct amd_iommu *iommu,
836 					u16 devid, u16 domain_id,
837 					u64 address, int flags)
838 {
839 	struct iommu_dev_data *dev_data = NULL;
840 	struct pci_dev *pdev;
841 
842 	pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
843 					   devid & 0xff);
844 	if (pdev)
845 		dev_data = dev_iommu_priv_get(&pdev->dev);
846 
847 	if (dev_data) {
848 		/*
849 		 * If this is a DMA fault (for which the I(nterrupt)
850 		 * bit will be unset), allow report_iommu_fault() to
851 		 * prevent logging it.
852 		 */
853 		if (IS_IOMMU_MEM_TRANSACTION(flags)) {
854 			/* Device not attached to domain properly */
855 			if (dev_data->domain == NULL) {
856 				pr_err_ratelimited("Event logged [Device not attached to domain properly]\n");
857 				pr_err_ratelimited("  device=%04x:%02x:%02x.%x domain=0x%04x\n",
858 						   iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid),
859 						   PCI_FUNC(devid), domain_id);
860 				goto out;
861 			}
862 
863 			if (!report_iommu_fault(&dev_data->domain->domain,
864 						&pdev->dev, address,
865 						IS_WRITE_REQUEST(flags) ?
866 							IOMMU_FAULT_WRITE :
867 							IOMMU_FAULT_READ))
868 				goto out;
869 		}
870 
871 		if (__ratelimit(&dev_data->rs)) {
872 			pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n",
873 				domain_id, address, flags);
874 		}
875 	} else {
876 		pr_err_ratelimited("Event logged [IO_PAGE_FAULT device=%04x:%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n",
877 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
878 			domain_id, address, flags);
879 	}
880 
881 out:
882 	if (pdev)
883 		pci_dev_put(pdev);
884 }
885 
886 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
887 {
888 	struct device *dev = iommu->iommu.dev;
889 	int type, devid, flags, tag;
890 	volatile u32 *event = __evt;
891 	int count = 0;
892 	u64 address, ctrl;
893 	u32 pasid;
894 
895 retry:
896 	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
897 	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
898 	pasid   = (event[0] & EVENT_DOMID_MASK_HI) |
899 		  (event[1] & EVENT_DOMID_MASK_LO);
900 	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
901 	address = (u64)(((u64)event[3]) << 32) | event[2];
902 	ctrl    = readq(iommu->mmio_base + MMIO_CONTROL_OFFSET);
903 
904 	if (type == 0) {
905 		/* Did we hit the erratum? */
906 		if (++count == LOOP_TIMEOUT) {
907 			pr_err("No event written to event log\n");
908 			return;
909 		}
910 		udelay(1);
911 		goto retry;
912 	}
913 
914 	if (type == EVENT_TYPE_IO_FAULT) {
915 		amd_iommu_report_page_fault(iommu, devid, pasid, address, flags);
916 		return;
917 	}
918 
919 	switch (type) {
920 	case EVENT_TYPE_ILL_DEV:
921 		dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
922 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
923 			pasid, address, flags);
924 		dev_err(dev, "Control Reg : 0x%llx\n", ctrl);
925 		dump_dte_entry(iommu, devid);
926 		break;
927 	case EVENT_TYPE_DEV_TAB_ERR:
928 		dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x "
929 			"address=0x%llx flags=0x%04x]\n",
930 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
931 			address, flags);
932 		break;
933 	case EVENT_TYPE_PAGE_TAB_ERR:
934 		dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x pasid=0x%04x address=0x%llx flags=0x%04x]\n",
935 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
936 			pasid, address, flags);
937 		break;
938 	case EVENT_TYPE_ILL_CMD:
939 		dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address);
940 		dump_command(address);
941 		break;
942 	case EVENT_TYPE_CMD_HARD_ERR:
943 		dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n",
944 			address, flags);
945 		break;
946 	case EVENT_TYPE_IOTLB_INV_TO:
947 		dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%04x:%02x:%02x.%x address=0x%llx]\n",
948 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
949 			address);
950 		break;
951 	case EVENT_TYPE_INV_DEV_REQ:
952 		dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
953 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
954 			pasid, address, flags);
955 		break;
956 	case EVENT_TYPE_RMP_FAULT:
957 		amd_iommu_report_rmp_fault(iommu, event);
958 		break;
959 	case EVENT_TYPE_RMP_HW_ERR:
960 		amd_iommu_report_rmp_hw_error(iommu, event);
961 		break;
962 	case EVENT_TYPE_INV_PPR_REQ:
963 		pasid = PPR_PASID(*((u64 *)__evt));
964 		tag = event[1] & 0x03FF;
965 		dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x tag=0x%03x]\n",
966 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
967 			pasid, address, flags, tag);
968 		break;
969 	default:
970 		dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
971 			event[0], event[1], event[2], event[3]);
972 	}
973 
974 	/*
975 	 * To detect the hardware errata 732 we need to clear the
976 	 * entry back to zero. This issue does not exist on SNP
977 	 * enabled system. Also this buffer is not writeable on
978 	 * SNP enabled system.
979 	 */
980 	if (!amd_iommu_snp_en)
981 		memset(__evt, 0, 4 * sizeof(u32));
982 }
983 
984 static void iommu_poll_events(struct amd_iommu *iommu)
985 {
986 	u32 head, tail;
987 
988 	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
989 	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
990 
991 	while (head != tail) {
992 		iommu_print_event(iommu, iommu->evt_buf + head);
993 
994 		/* Update head pointer of hardware ring-buffer */
995 		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
996 		writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
997 	}
998 
999 }
1000 
1001 #ifdef CONFIG_IRQ_REMAP
1002 static int (*iommu_ga_log_notifier)(u32);
1003 
1004 int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
1005 {
1006 	iommu_ga_log_notifier = notifier;
1007 
1008 	/*
1009 	 * Ensure all in-flight IRQ handlers run to completion before returning
1010 	 * to the caller, e.g. to ensure module code isn't unloaded while it's
1011 	 * being executed in the IRQ handler.
1012 	 */
1013 	if (!notifier)
1014 		synchronize_rcu();
1015 
1016 	return 0;
1017 }
1018 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
1019 
1020 static void iommu_poll_ga_log(struct amd_iommu *iommu)
1021 {
1022 	u32 head, tail;
1023 
1024 	if (iommu->ga_log == NULL)
1025 		return;
1026 
1027 	head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
1028 	tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
1029 
1030 	while (head != tail) {
1031 		volatile u64 *raw;
1032 		u64 log_entry;
1033 
1034 		raw = (u64 *)(iommu->ga_log + head);
1035 
1036 		/* Avoid memcpy function-call overhead */
1037 		log_entry = *raw;
1038 
1039 		/* Update head pointer of hardware ring-buffer */
1040 		head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
1041 		writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
1042 
1043 		/* Handle GA entry */
1044 		switch (GA_REQ_TYPE(log_entry)) {
1045 		case GA_GUEST_NR:
1046 			if (!iommu_ga_log_notifier)
1047 				break;
1048 
1049 			pr_debug("%s: devid=%#x, ga_tag=%#x\n",
1050 				 __func__, GA_DEVID(log_entry),
1051 				 GA_TAG(log_entry));
1052 
1053 			if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
1054 				pr_err("GA log notifier failed.\n");
1055 			break;
1056 		default:
1057 			break;
1058 		}
1059 	}
1060 }
1061 
1062 static void
1063 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu)
1064 {
1065 	if (!irq_remapping_enabled || !dev_is_pci(dev) ||
1066 	    !pci_dev_has_default_msi_parent_domain(to_pci_dev(dev)))
1067 		return;
1068 
1069 	dev_set_msi_domain(dev, iommu->ir_domain);
1070 }
1071 
1072 #else /* CONFIG_IRQ_REMAP */
1073 static inline void
1074 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu) { }
1075 #endif /* !CONFIG_IRQ_REMAP */
1076 
1077 static void amd_iommu_handle_irq(void *data, const char *evt_type,
1078 				 u32 int_mask, u32 overflow_mask,
1079 				 void (*int_handler)(struct amd_iommu *),
1080 				 void (*overflow_handler)(struct amd_iommu *))
1081 {
1082 	struct amd_iommu *iommu = (struct amd_iommu *) data;
1083 	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
1084 	u32 mask = int_mask | overflow_mask;
1085 
1086 	while (status & mask) {
1087 		/* Enable interrupt sources again */
1088 		writel(mask, iommu->mmio_base + MMIO_STATUS_OFFSET);
1089 
1090 		if (int_handler) {
1091 			pr_devel("Processing IOMMU (ivhd%d) %s Log\n",
1092 				 iommu->index, evt_type);
1093 			int_handler(iommu);
1094 		}
1095 
1096 		if ((status & overflow_mask) && overflow_handler)
1097 			overflow_handler(iommu);
1098 
1099 		/*
1100 		 * Hardware bug: ERBT1312
1101 		 * When re-enabling interrupt (by writing 1
1102 		 * to clear the bit), the hardware might also try to set
1103 		 * the interrupt bit in the event status register.
1104 		 * In this scenario, the bit will be set, and disable
1105 		 * subsequent interrupts.
1106 		 *
1107 		 * Workaround: The IOMMU driver should read back the
1108 		 * status register and check if the interrupt bits are cleared.
1109 		 * If not, driver will need to go through the interrupt handler
1110 		 * again and re-clear the bits
1111 		 */
1112 		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
1113 	}
1114 }
1115 
1116 irqreturn_t amd_iommu_int_thread_evtlog(int irq, void *data)
1117 {
1118 	amd_iommu_handle_irq(data, "Evt", MMIO_STATUS_EVT_INT_MASK,
1119 			     MMIO_STATUS_EVT_OVERFLOW_MASK,
1120 			     iommu_poll_events, amd_iommu_restart_event_logging);
1121 
1122 	return IRQ_HANDLED;
1123 }
1124 
1125 irqreturn_t amd_iommu_int_thread_pprlog(int irq, void *data)
1126 {
1127 	amd_iommu_handle_irq(data, "PPR", MMIO_STATUS_PPR_INT_MASK,
1128 			     MMIO_STATUS_PPR_OVERFLOW_MASK,
1129 			     amd_iommu_poll_ppr_log, amd_iommu_restart_ppr_log);
1130 
1131 	return IRQ_HANDLED;
1132 }
1133 
1134 irqreturn_t amd_iommu_int_thread_galog(int irq, void *data)
1135 {
1136 #ifdef CONFIG_IRQ_REMAP
1137 	amd_iommu_handle_irq(data, "GA", MMIO_STATUS_GALOG_INT_MASK,
1138 			     MMIO_STATUS_GALOG_OVERFLOW_MASK,
1139 			     iommu_poll_ga_log, amd_iommu_restart_ga_log);
1140 #endif
1141 
1142 	return IRQ_HANDLED;
1143 }
1144 
1145 irqreturn_t amd_iommu_int_thread(int irq, void *data)
1146 {
1147 	amd_iommu_int_thread_evtlog(irq, data);
1148 	amd_iommu_int_thread_pprlog(irq, data);
1149 	amd_iommu_int_thread_galog(irq, data);
1150 
1151 	return IRQ_HANDLED;
1152 }
1153 
1154 irqreturn_t amd_iommu_int_handler(int irq, void *data)
1155 {
1156 	return IRQ_WAKE_THREAD;
1157 }
1158 
1159 /****************************************************************************
1160  *
1161  * IOMMU command queuing functions
1162  *
1163  ****************************************************************************/
1164 
1165 static void dump_command_buffer(struct amd_iommu *iommu)
1166 {
1167 	struct iommu_cmd *cmd;
1168 	u32 head, tail;
1169 	int i;
1170 
1171 	head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
1172 	tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
1173 
1174 	pr_err("CMD Buffer head=%llu tail=%llu\n", MMIO_CMD_BUFFER_HEAD(head),
1175 	       MMIO_CMD_BUFFER_TAIL(tail));
1176 
1177 	for (i = 0; i < CMD_BUFFER_ENTRIES; i++) {
1178 		cmd = (struct iommu_cmd *)(iommu->cmd_buf + i * sizeof(*cmd));
1179 		pr_err("%3d: %08x %08x %08x %08x\n", i, cmd->data[0], cmd->data[1], cmd->data[2],
1180 		       cmd->data[3]);
1181 	}
1182 }
1183 
1184 static int wait_on_sem(struct amd_iommu *iommu, u64 data)
1185 {
1186 	int i = 0;
1187 
1188 	while (*iommu->cmd_sem != data && i < LOOP_TIMEOUT) {
1189 		udelay(1);
1190 		i += 1;
1191 	}
1192 
1193 	if (i == LOOP_TIMEOUT) {
1194 
1195 		pr_alert("IOMMU %04x:%02x:%02x.%01x: Completion-Wait loop timed out\n",
1196 			 iommu->pci_seg->id, PCI_BUS_NUM(iommu->devid),
1197 			 PCI_SLOT(iommu->devid), PCI_FUNC(iommu->devid));
1198 
1199 		if (amd_iommu_dump)
1200 			DO_ONCE_LITE(dump_command_buffer, iommu);
1201 
1202 		return -EIO;
1203 	}
1204 
1205 	return 0;
1206 }
1207 
1208 static void copy_cmd_to_buffer(struct amd_iommu *iommu,
1209 			       struct iommu_cmd *cmd)
1210 {
1211 	u8 *target;
1212 	u32 tail;
1213 
1214 	/* Copy command to buffer */
1215 	tail = iommu->cmd_buf_tail;
1216 	target = iommu->cmd_buf + tail;
1217 	memcpy(target, cmd, sizeof(*cmd));
1218 
1219 	tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1220 	iommu->cmd_buf_tail = tail;
1221 
1222 	/* Tell the IOMMU about it */
1223 	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
1224 }
1225 
1226 static void build_completion_wait(struct iommu_cmd *cmd,
1227 				  struct amd_iommu *iommu,
1228 				  u64 data)
1229 {
1230 	u64 paddr = iommu->cmd_sem_paddr;
1231 
1232 	memset(cmd, 0, sizeof(*cmd));
1233 	cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
1234 	cmd->data[1] = upper_32_bits(paddr);
1235 	cmd->data[2] = lower_32_bits(data);
1236 	cmd->data[3] = upper_32_bits(data);
1237 	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
1238 }
1239 
1240 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
1241 {
1242 	memset(cmd, 0, sizeof(*cmd));
1243 	cmd->data[0] = devid;
1244 	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
1245 }
1246 
1247 /*
1248  * Builds an invalidation address which is suitable for one page or multiple
1249  * pages. Sets the size bit (S) as needed is more than one page is flushed.
1250  */
1251 static inline u64 build_inv_address(u64 address, size_t size)
1252 {
1253 	u64 pages, end, msb_diff;
1254 
1255 	pages = iommu_num_pages(address, size, PAGE_SIZE);
1256 
1257 	if (pages == 1)
1258 		return address & PAGE_MASK;
1259 
1260 	end = address + size - 1;
1261 
1262 	/*
1263 	 * msb_diff would hold the index of the most significant bit that
1264 	 * flipped between the start and end.
1265 	 */
1266 	msb_diff = fls64(end ^ address) - 1;
1267 
1268 	/*
1269 	 * Bits 63:52 are sign extended. If for some reason bit 51 is different
1270 	 * between the start and the end, invalidate everything.
1271 	 */
1272 	if (unlikely(msb_diff > 51)) {
1273 		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
1274 	} else {
1275 		/*
1276 		 * The msb-bit must be clear on the address. Just set all the
1277 		 * lower bits.
1278 		 */
1279 		address |= (1ull << msb_diff) - 1;
1280 	}
1281 
1282 	/* Clear bits 11:0 */
1283 	address &= PAGE_MASK;
1284 
1285 	/* Set the size bit - we flush more than one 4kb page */
1286 	return address | CMD_INV_IOMMU_PAGES_SIZE_MASK;
1287 }
1288 
1289 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
1290 				  size_t size, u16 domid,
1291 				  ioasid_t pasid, bool gn)
1292 {
1293 	u64 inv_address = build_inv_address(address, size);
1294 
1295 	memset(cmd, 0, sizeof(*cmd));
1296 
1297 	cmd->data[1] |= domid;
1298 	cmd->data[2]  = lower_32_bits(inv_address);
1299 	cmd->data[3]  = upper_32_bits(inv_address);
1300 	/* PDE bit - we want to flush everything, not only the PTEs */
1301 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
1302 	if (gn) {
1303 		cmd->data[0] |= pasid;
1304 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1305 	}
1306 	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
1307 }
1308 
1309 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
1310 				  u64 address, size_t size,
1311 				  ioasid_t pasid, bool gn)
1312 {
1313 	u64 inv_address = build_inv_address(address, size);
1314 
1315 	memset(cmd, 0, sizeof(*cmd));
1316 
1317 	cmd->data[0]  = devid;
1318 	cmd->data[0] |= (qdep & 0xff) << 24;
1319 	cmd->data[1]  = devid;
1320 	cmd->data[2]  = lower_32_bits(inv_address);
1321 	cmd->data[3]  = upper_32_bits(inv_address);
1322 	if (gn) {
1323 		cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
1324 		cmd->data[1] |= (pasid & 0xff) << 16;
1325 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1326 	}
1327 
1328 	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
1329 }
1330 
1331 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, u32 pasid,
1332 			       int status, int tag, u8 gn)
1333 {
1334 	memset(cmd, 0, sizeof(*cmd));
1335 
1336 	cmd->data[0]  = devid;
1337 	if (gn) {
1338 		cmd->data[1]  = pasid;
1339 		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
1340 	}
1341 	cmd->data[3]  = tag & 0x1ff;
1342 	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
1343 
1344 	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
1345 }
1346 
1347 static void build_inv_all(struct iommu_cmd *cmd)
1348 {
1349 	memset(cmd, 0, sizeof(*cmd));
1350 	CMD_SET_TYPE(cmd, CMD_INV_ALL);
1351 }
1352 
1353 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
1354 {
1355 	memset(cmd, 0, sizeof(*cmd));
1356 	cmd->data[0] = devid;
1357 	CMD_SET_TYPE(cmd, CMD_INV_IRT);
1358 }
1359 
1360 /*
1361  * Writes the command to the IOMMUs command buffer and informs the
1362  * hardware about the new command.
1363  */
1364 static int __iommu_queue_command_sync(struct amd_iommu *iommu,
1365 				      struct iommu_cmd *cmd,
1366 				      bool sync)
1367 {
1368 	unsigned int count = 0;
1369 	u32 left, next_tail;
1370 
1371 	next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1372 again:
1373 	left      = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1374 
1375 	if (left <= 0x20) {
1376 		/* Skip udelay() the first time around */
1377 		if (count++) {
1378 			if (count == LOOP_TIMEOUT) {
1379 				pr_err("Command buffer timeout\n");
1380 				return -EIO;
1381 			}
1382 
1383 			udelay(1);
1384 		}
1385 
1386 		/* Update head and recheck remaining space */
1387 		iommu->cmd_buf_head = readl(iommu->mmio_base +
1388 					    MMIO_CMD_HEAD_OFFSET);
1389 
1390 		goto again;
1391 	}
1392 
1393 	copy_cmd_to_buffer(iommu, cmd);
1394 
1395 	/* Do we need to make sure all commands are processed? */
1396 	iommu->need_sync = sync;
1397 
1398 	return 0;
1399 }
1400 
1401 static int iommu_queue_command_sync(struct amd_iommu *iommu,
1402 				    struct iommu_cmd *cmd,
1403 				    bool sync)
1404 {
1405 	unsigned long flags;
1406 	int ret;
1407 
1408 	raw_spin_lock_irqsave(&iommu->lock, flags);
1409 	ret = __iommu_queue_command_sync(iommu, cmd, sync);
1410 	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1411 
1412 	return ret;
1413 }
1414 
1415 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1416 {
1417 	return iommu_queue_command_sync(iommu, cmd, true);
1418 }
1419 
1420 /*
1421  * This function queues a completion wait command into the command
1422  * buffer of an IOMMU
1423  */
1424 static int iommu_completion_wait(struct amd_iommu *iommu)
1425 {
1426 	struct iommu_cmd cmd;
1427 	unsigned long flags;
1428 	int ret;
1429 	u64 data;
1430 
1431 	if (!iommu->need_sync)
1432 		return 0;
1433 
1434 	data = atomic64_inc_return(&iommu->cmd_sem_val);
1435 	build_completion_wait(&cmd, iommu, data);
1436 
1437 	raw_spin_lock_irqsave(&iommu->lock, flags);
1438 
1439 	ret = __iommu_queue_command_sync(iommu, &cmd, false);
1440 	if (ret)
1441 		goto out_unlock;
1442 
1443 	ret = wait_on_sem(iommu, data);
1444 
1445 out_unlock:
1446 	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1447 
1448 	return ret;
1449 }
1450 
1451 static void domain_flush_complete(struct protection_domain *domain)
1452 {
1453 	struct pdom_iommu_info *pdom_iommu_info;
1454 	unsigned long i;
1455 
1456 	lockdep_assert_held(&domain->lock);
1457 
1458 	/*
1459 	 * Devices of this domain are behind this IOMMU
1460 	 * We need to wait for completion of all commands.
1461 	 */
1462 	 xa_for_each(&domain->iommu_array, i, pdom_iommu_info)
1463 		iommu_completion_wait(pdom_iommu_info->iommu);
1464 }
1465 
1466 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1467 {
1468 	struct iommu_cmd cmd;
1469 
1470 	build_inv_dte(&cmd, devid);
1471 
1472 	return iommu_queue_command(iommu, &cmd);
1473 }
1474 
1475 static void iommu_flush_dte_sync(struct amd_iommu *iommu, u16 devid)
1476 {
1477 	int ret;
1478 
1479 	ret = iommu_flush_dte(iommu, devid);
1480 	if (!ret)
1481 		iommu_completion_wait(iommu);
1482 }
1483 
1484 static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1485 {
1486 	u32 devid;
1487 	u16 last_bdf = iommu->pci_seg->last_bdf;
1488 
1489 	for (devid = 0; devid <= last_bdf; ++devid)
1490 		iommu_flush_dte(iommu, devid);
1491 
1492 	iommu_completion_wait(iommu);
1493 }
1494 
1495 /*
1496  * This function uses heavy locking and may disable irqs for some time. But
1497  * this is no issue because it is only called during resume.
1498  */
1499 static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1500 {
1501 	u32 dom_id;
1502 	u16 last_bdf = iommu->pci_seg->last_bdf;
1503 
1504 	for (dom_id = 0; dom_id <= last_bdf; ++dom_id) {
1505 		struct iommu_cmd cmd;
1506 		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1507 				      dom_id, IOMMU_NO_PASID, false);
1508 		iommu_queue_command(iommu, &cmd);
1509 	}
1510 
1511 	iommu_completion_wait(iommu);
1512 }
1513 
1514 static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id)
1515 {
1516 	struct iommu_cmd cmd;
1517 
1518 	build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1519 			      dom_id, IOMMU_NO_PASID, false);
1520 	iommu_queue_command(iommu, &cmd);
1521 
1522 	iommu_completion_wait(iommu);
1523 }
1524 
1525 static void amd_iommu_flush_all(struct amd_iommu *iommu)
1526 {
1527 	struct iommu_cmd cmd;
1528 
1529 	build_inv_all(&cmd);
1530 
1531 	iommu_queue_command(iommu, &cmd);
1532 	iommu_completion_wait(iommu);
1533 }
1534 
1535 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1536 {
1537 	struct iommu_cmd cmd;
1538 
1539 	build_inv_irt(&cmd, devid);
1540 
1541 	iommu_queue_command(iommu, &cmd);
1542 }
1543 
1544 static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1545 {
1546 	u32 devid;
1547 	u16 last_bdf = iommu->pci_seg->last_bdf;
1548 
1549 	if (iommu->irtcachedis_enabled)
1550 		return;
1551 
1552 	for (devid = 0; devid <= last_bdf; devid++)
1553 		iommu_flush_irt(iommu, devid);
1554 
1555 	iommu_completion_wait(iommu);
1556 }
1557 
1558 void amd_iommu_flush_all_caches(struct amd_iommu *iommu)
1559 {
1560 	if (check_feature(FEATURE_IA)) {
1561 		amd_iommu_flush_all(iommu);
1562 	} else {
1563 		amd_iommu_flush_dte_all(iommu);
1564 		amd_iommu_flush_irt_all(iommu);
1565 		amd_iommu_flush_tlb_all(iommu);
1566 	}
1567 }
1568 
1569 /*
1570  * Command send function for flushing on-device TLB
1571  */
1572 static int device_flush_iotlb(struct iommu_dev_data *dev_data, u64 address,
1573 			      size_t size, ioasid_t pasid, bool gn)
1574 {
1575 	struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
1576 	struct iommu_cmd cmd;
1577 	int qdep = dev_data->ats_qdep;
1578 
1579 	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address,
1580 			      size, pasid, gn);
1581 
1582 	return iommu_queue_command(iommu, &cmd);
1583 }
1584 
1585 static int device_flush_dte_alias(struct pci_dev *pdev, u16 alias, void *data)
1586 {
1587 	struct amd_iommu *iommu = data;
1588 
1589 	return iommu_flush_dte(iommu, alias);
1590 }
1591 
1592 /*
1593  * Command send function for invalidating a device table entry
1594  */
1595 static int device_flush_dte(struct iommu_dev_data *dev_data)
1596 {
1597 	struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
1598 	struct pci_dev *pdev = NULL;
1599 	struct amd_iommu_pci_seg *pci_seg;
1600 	u16 alias;
1601 	int ret;
1602 
1603 	if (dev_is_pci(dev_data->dev))
1604 		pdev = to_pci_dev(dev_data->dev);
1605 
1606 	if (pdev)
1607 		ret = pci_for_each_dma_alias(pdev,
1608 					     device_flush_dte_alias, iommu);
1609 	else
1610 		ret = iommu_flush_dte(iommu, dev_data->devid);
1611 	if (ret)
1612 		return ret;
1613 
1614 	pci_seg = iommu->pci_seg;
1615 	alias = pci_seg->alias_table[dev_data->devid];
1616 	if (alias != dev_data->devid) {
1617 		ret = iommu_flush_dte(iommu, alias);
1618 		if (ret)
1619 			return ret;
1620 	}
1621 
1622 	if (dev_data->ats_enabled) {
1623 		/* Invalidate the entire contents of an IOTLB */
1624 		ret = device_flush_iotlb(dev_data, 0, ~0UL,
1625 					 IOMMU_NO_PASID, false);
1626 	}
1627 
1628 	return ret;
1629 }
1630 
1631 static int domain_flush_pages_v2(struct protection_domain *pdom,
1632 				 u64 address, size_t size)
1633 {
1634 	struct iommu_dev_data *dev_data;
1635 	struct iommu_cmd cmd;
1636 	int ret = 0;
1637 
1638 	lockdep_assert_held(&pdom->lock);
1639 	list_for_each_entry(dev_data, &pdom->dev_list, list) {
1640 		struct amd_iommu *iommu = get_amd_iommu_from_dev(dev_data->dev);
1641 		u16 domid = dev_data->gcr3_info.domid;
1642 
1643 		build_inv_iommu_pages(&cmd, address, size,
1644 				      domid, IOMMU_NO_PASID, true);
1645 
1646 		ret |= iommu_queue_command(iommu, &cmd);
1647 	}
1648 
1649 	return ret;
1650 }
1651 
1652 static int domain_flush_pages_v1(struct protection_domain *pdom,
1653 				 u64 address, size_t size)
1654 {
1655 	struct pdom_iommu_info *pdom_iommu_info;
1656 	struct iommu_cmd cmd;
1657 	int ret = 0;
1658 	unsigned long i;
1659 
1660 	lockdep_assert_held(&pdom->lock);
1661 
1662 	build_inv_iommu_pages(&cmd, address, size,
1663 			      pdom->id, IOMMU_NO_PASID, false);
1664 
1665 	xa_for_each(&pdom->iommu_array, i, pdom_iommu_info) {
1666 		/*
1667 		 * Devices of this domain are behind this IOMMU
1668 		 * We need a TLB flush
1669 		 */
1670 		ret |= iommu_queue_command(pdom_iommu_info->iommu, &cmd);
1671 	}
1672 
1673 	return ret;
1674 }
1675 
1676 /*
1677  * TLB invalidation function which is called from the mapping functions.
1678  * It flushes range of PTEs of the domain.
1679  */
1680 static void __domain_flush_pages(struct protection_domain *domain,
1681 				 u64 address, size_t size)
1682 {
1683 	struct iommu_dev_data *dev_data;
1684 	int ret = 0;
1685 	ioasid_t pasid = IOMMU_NO_PASID;
1686 	bool gn = false;
1687 
1688 	lockdep_assert_held(&domain->lock);
1689 
1690 	if (pdom_is_v2_pgtbl_mode(domain)) {
1691 		gn = true;
1692 		ret = domain_flush_pages_v2(domain, address, size);
1693 	} else {
1694 		ret = domain_flush_pages_v1(domain, address, size);
1695 	}
1696 
1697 	list_for_each_entry(dev_data, &domain->dev_list, list) {
1698 
1699 		if (!dev_data->ats_enabled)
1700 			continue;
1701 
1702 		ret |= device_flush_iotlb(dev_data, address, size, pasid, gn);
1703 	}
1704 
1705 	WARN_ON(ret);
1706 }
1707 
1708 void amd_iommu_domain_flush_pages(struct protection_domain *domain,
1709 				  u64 address, size_t size)
1710 {
1711 	lockdep_assert_held(&domain->lock);
1712 
1713 	if (likely(!amd_iommu_np_cache)) {
1714 		__domain_flush_pages(domain, address, size);
1715 
1716 		/* Wait until IOMMU TLB and all device IOTLB flushes are complete */
1717 		domain_flush_complete(domain);
1718 
1719 		return;
1720 	}
1721 
1722 	/*
1723 	 * When NpCache is on, we infer that we run in a VM and use a vIOMMU.
1724 	 * In such setups it is best to avoid flushes of ranges which are not
1725 	 * naturally aligned, since it would lead to flushes of unmodified
1726 	 * PTEs. Such flushes would require the hypervisor to do more work than
1727 	 * necessary. Therefore, perform repeated flushes of aligned ranges
1728 	 * until you cover the range. Each iteration flushes the smaller
1729 	 * between the natural alignment of the address that we flush and the
1730 	 * greatest naturally aligned region that fits in the range.
1731 	 */
1732 	while (size != 0) {
1733 		int addr_alignment = __ffs(address);
1734 		int size_alignment = __fls(size);
1735 		int min_alignment;
1736 		size_t flush_size;
1737 
1738 		/*
1739 		 * size is always non-zero, but address might be zero, causing
1740 		 * addr_alignment to be negative. As the casting of the
1741 		 * argument in __ffs(address) to long might trim the high bits
1742 		 * of the address on x86-32, cast to long when doing the check.
1743 		 */
1744 		if (likely((unsigned long)address != 0))
1745 			min_alignment = min(addr_alignment, size_alignment);
1746 		else
1747 			min_alignment = size_alignment;
1748 
1749 		flush_size = 1ul << min_alignment;
1750 
1751 		__domain_flush_pages(domain, address, flush_size);
1752 		address += flush_size;
1753 		size -= flush_size;
1754 	}
1755 
1756 	/* Wait until IOMMU TLB and all device IOTLB flushes are complete */
1757 	domain_flush_complete(domain);
1758 }
1759 
1760 /* Flush the whole IO/TLB for a given protection domain - including PDE */
1761 static void amd_iommu_domain_flush_all(struct protection_domain *domain)
1762 {
1763 	amd_iommu_domain_flush_pages(domain, 0,
1764 				     CMD_INV_IOMMU_ALL_PAGES_ADDRESS);
1765 }
1766 
1767 void amd_iommu_dev_flush_pasid_pages(struct iommu_dev_data *dev_data,
1768 				     ioasid_t pasid, u64 address, size_t size)
1769 {
1770 	struct iommu_cmd cmd;
1771 	struct amd_iommu *iommu = get_amd_iommu_from_dev(dev_data->dev);
1772 
1773 	build_inv_iommu_pages(&cmd, address, size,
1774 			      dev_data->gcr3_info.domid, pasid, true);
1775 	iommu_queue_command(iommu, &cmd);
1776 
1777 	if (dev_data->ats_enabled)
1778 		device_flush_iotlb(dev_data, address, size, pasid, true);
1779 
1780 	iommu_completion_wait(iommu);
1781 }
1782 
1783 static void dev_flush_pasid_all(struct iommu_dev_data *dev_data,
1784 				ioasid_t pasid)
1785 {
1786 	amd_iommu_dev_flush_pasid_pages(dev_data, pasid, 0,
1787 					CMD_INV_IOMMU_ALL_PAGES_ADDRESS);
1788 }
1789 
1790 int amd_iommu_complete_ppr(struct device *dev, u32 pasid, int status, int tag)
1791 {
1792 	struct iommu_dev_data *dev_data;
1793 	struct amd_iommu *iommu;
1794 	struct iommu_cmd cmd;
1795 
1796 	dev_data = dev_iommu_priv_get(dev);
1797 	iommu    = get_amd_iommu_from_dev(dev);
1798 
1799 	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
1800 			   tag, dev_data->pri_tlp);
1801 
1802 	return iommu_queue_command(iommu, &cmd);
1803 }
1804 
1805 /****************************************************************************
1806  *
1807  * The next functions belong to the domain allocation. A domain is
1808  * allocated for every IOMMU as the default domain. If device isolation
1809  * is enabled, every device get its own domain. The most important thing
1810  * about domains is the page table mapping the DMA address space they
1811  * contain.
1812  *
1813  ****************************************************************************/
1814 int amd_iommu_pdom_id_alloc(void)
1815 {
1816 	return ida_alloc_range(&pdom_ids, 1, MAX_DOMAIN_ID - 1, GFP_ATOMIC);
1817 }
1818 
1819 int amd_iommu_pdom_id_reserve(u16 id, gfp_t gfp)
1820 {
1821 	return ida_alloc_range(&pdom_ids, id, id, gfp);
1822 }
1823 
1824 void amd_iommu_pdom_id_free(int id)
1825 {
1826 	ida_free(&pdom_ids, id);
1827 }
1828 
1829 void amd_iommu_pdom_id_destroy(void)
1830 {
1831 	ida_destroy(&pdom_ids);
1832 }
1833 
1834 static void free_gcr3_tbl_level1(u64 *tbl)
1835 {
1836 	u64 *ptr;
1837 	int i;
1838 
1839 	for (i = 0; i < 512; ++i) {
1840 		if (!(tbl[i] & GCR3_VALID))
1841 			continue;
1842 
1843 		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1844 
1845 		iommu_free_pages(ptr);
1846 	}
1847 }
1848 
1849 static void free_gcr3_tbl_level2(u64 *tbl)
1850 {
1851 	u64 *ptr;
1852 	int i;
1853 
1854 	for (i = 0; i < 512; ++i) {
1855 		if (!(tbl[i] & GCR3_VALID))
1856 			continue;
1857 
1858 		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1859 
1860 		free_gcr3_tbl_level1(ptr);
1861 	}
1862 }
1863 
1864 static void free_gcr3_table(struct gcr3_tbl_info *gcr3_info)
1865 {
1866 	if (gcr3_info->glx == 2)
1867 		free_gcr3_tbl_level2(gcr3_info->gcr3_tbl);
1868 	else if (gcr3_info->glx == 1)
1869 		free_gcr3_tbl_level1(gcr3_info->gcr3_tbl);
1870 	else
1871 		WARN_ON_ONCE(gcr3_info->glx != 0);
1872 
1873 	gcr3_info->glx = 0;
1874 
1875 	/* Free per device domain ID */
1876 	amd_iommu_pdom_id_free(gcr3_info->domid);
1877 
1878 	iommu_free_pages(gcr3_info->gcr3_tbl);
1879 	gcr3_info->gcr3_tbl = NULL;
1880 }
1881 
1882 /*
1883  * Number of GCR3 table levels required. Level must be 4-Kbyte
1884  * page and can contain up to 512 entries.
1885  */
1886 static int get_gcr3_levels(int pasids)
1887 {
1888 	int levels;
1889 
1890 	if (pasids == -1)
1891 		return amd_iommu_max_glx_val;
1892 
1893 	levels = get_count_order(pasids);
1894 
1895 	return levels ? (DIV_ROUND_UP(levels, 9) - 1) : levels;
1896 }
1897 
1898 static int setup_gcr3_table(struct gcr3_tbl_info *gcr3_info,
1899 			    struct amd_iommu *iommu, int pasids)
1900 {
1901 	int levels = get_gcr3_levels(pasids);
1902 	int nid = iommu ? dev_to_node(&iommu->dev->dev) : NUMA_NO_NODE;
1903 	int domid;
1904 
1905 	if (levels > amd_iommu_max_glx_val)
1906 		return -EINVAL;
1907 
1908 	if (gcr3_info->gcr3_tbl)
1909 		return -EBUSY;
1910 
1911 	/* Allocate per device domain ID */
1912 	domid = amd_iommu_pdom_id_alloc();
1913 	if (domid <= 0)
1914 		return -ENOSPC;
1915 	gcr3_info->domid = domid;
1916 
1917 	gcr3_info->gcr3_tbl = iommu_alloc_pages_node_sz(nid, GFP_ATOMIC, SZ_4K);
1918 	if (gcr3_info->gcr3_tbl == NULL) {
1919 		amd_iommu_pdom_id_free(domid);
1920 		return -ENOMEM;
1921 	}
1922 
1923 	gcr3_info->glx = levels;
1924 
1925 	return 0;
1926 }
1927 
1928 static u64 *__get_gcr3_pte(struct gcr3_tbl_info *gcr3_info,
1929 			   ioasid_t pasid, bool alloc)
1930 {
1931 	int index;
1932 	u64 *pte;
1933 	u64 *root = gcr3_info->gcr3_tbl;
1934 	int level = gcr3_info->glx;
1935 
1936 	while (true) {
1937 
1938 		index = (pasid >> (9 * level)) & 0x1ff;
1939 		pte   = &root[index];
1940 
1941 		if (level == 0)
1942 			break;
1943 
1944 		if (!(*pte & GCR3_VALID)) {
1945 			if (!alloc)
1946 				return NULL;
1947 
1948 			root = (void *)get_zeroed_page(GFP_ATOMIC);
1949 			if (root == NULL)
1950 				return NULL;
1951 
1952 			*pte = iommu_virt_to_phys(root) | GCR3_VALID;
1953 		}
1954 
1955 		root = iommu_phys_to_virt(*pte & PAGE_MASK);
1956 
1957 		level -= 1;
1958 	}
1959 
1960 	return pte;
1961 }
1962 
1963 static int update_gcr3(struct iommu_dev_data *dev_data,
1964 		       ioasid_t pasid, unsigned long gcr3, bool set)
1965 {
1966 	struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
1967 	u64 *pte;
1968 
1969 	pte = __get_gcr3_pte(gcr3_info, pasid, true);
1970 	if (pte == NULL)
1971 		return -ENOMEM;
1972 
1973 	if (set)
1974 		*pte = (gcr3 & PAGE_MASK) | GCR3_VALID;
1975 	else
1976 		*pte = 0;
1977 
1978 	dev_flush_pasid_all(dev_data, pasid);
1979 	return 0;
1980 }
1981 
1982 int amd_iommu_set_gcr3(struct iommu_dev_data *dev_data, ioasid_t pasid,
1983 		       unsigned long gcr3)
1984 {
1985 	struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
1986 	int ret;
1987 
1988 	iommu_group_mutex_assert(dev_data->dev);
1989 
1990 	ret = update_gcr3(dev_data, pasid, gcr3, true);
1991 	if (ret)
1992 		return ret;
1993 
1994 	gcr3_info->pasid_cnt++;
1995 	return ret;
1996 }
1997 
1998 int amd_iommu_clear_gcr3(struct iommu_dev_data *dev_data, ioasid_t pasid)
1999 {
2000 	struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
2001 	int ret;
2002 
2003 	iommu_group_mutex_assert(dev_data->dev);
2004 
2005 	ret = update_gcr3(dev_data, pasid, 0, false);
2006 	if (ret)
2007 		return ret;
2008 
2009 	gcr3_info->pasid_cnt--;
2010 	return ret;
2011 }
2012 
2013 static void make_clear_dte(struct iommu_dev_data *dev_data, struct dev_table_entry *ptr,
2014 			   struct dev_table_entry *new)
2015 {
2016 	/* All existing DTE must have V bit set */
2017 	new->data128[0] = DTE_FLAG_V;
2018 	new->data128[1] = 0;
2019 }
2020 
2021 /*
2022  * Note:
2023  * The old value for GCR3 table and GPT have been cleared from caller.
2024  */
2025 static void set_dte_gcr3_table(struct amd_iommu *iommu,
2026 			       struct iommu_dev_data *dev_data,
2027 			       struct dev_table_entry *target)
2028 {
2029 	struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
2030 	u64 gcr3;
2031 
2032 	if (!gcr3_info->gcr3_tbl)
2033 		return;
2034 
2035 	pr_debug("%s: devid=%#x, glx=%#x, gcr3_tbl=%#llx\n",
2036 		 __func__, dev_data->devid, gcr3_info->glx,
2037 		 (unsigned long long)gcr3_info->gcr3_tbl);
2038 
2039 	gcr3 = iommu_virt_to_phys(gcr3_info->gcr3_tbl);
2040 
2041 	target->data[0] |= DTE_FLAG_GV |
2042 			   FIELD_PREP(DTE_GLX, gcr3_info->glx) |
2043 			   FIELD_PREP(DTE_GCR3_14_12, gcr3 >> 12);
2044 	if (pdom_is_v2_pgtbl_mode(dev_data->domain))
2045 		target->data[0] |= DTE_FLAG_GIOV;
2046 
2047 	target->data[1] |= FIELD_PREP(DTE_GCR3_30_15, gcr3 >> 15) |
2048 			   FIELD_PREP(DTE_GCR3_51_31, gcr3 >> 31);
2049 
2050 	/* Guest page table can only support 4 and 5 levels  */
2051 	if (amd_iommu_gpt_level == PAGE_MODE_5_LEVEL)
2052 		target->data[2] |= FIELD_PREP(DTE_GPT_LEVEL_MASK, GUEST_PGTABLE_5_LEVEL);
2053 	else
2054 		target->data[2] |= FIELD_PREP(DTE_GPT_LEVEL_MASK, GUEST_PGTABLE_4_LEVEL);
2055 }
2056 
2057 static void set_dte_entry(struct amd_iommu *iommu,
2058 			  struct iommu_dev_data *dev_data,
2059 			  phys_addr_t top_paddr, unsigned int top_level)
2060 {
2061 	u16 domid;
2062 	u32 old_domid;
2063 	struct dev_table_entry *initial_dte;
2064 	struct dev_table_entry new = {};
2065 	struct protection_domain *domain = dev_data->domain;
2066 	struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
2067 	struct dev_table_entry *dte = &get_dev_table(iommu)[dev_data->devid];
2068 	struct pt_iommu_amdv1_hw_info pt_info;
2069 
2070 	make_clear_dte(dev_data, dte, &new);
2071 
2072 	if (gcr3_info && gcr3_info->gcr3_tbl)
2073 		domid = dev_data->gcr3_info.domid;
2074 	else {
2075 		domid = domain->id;
2076 
2077 		if (domain->domain.type & __IOMMU_DOMAIN_PAGING) {
2078 			/*
2079 			 * When updating the IO pagetable, the new top and level
2080 			 * are provided as parameters. For other operations i.e.
2081 			 * device attach, retrieve the current pagetable info
2082 			 * via the IOMMU PT API.
2083 			 */
2084 			if (top_paddr) {
2085 				pt_info.host_pt_root = top_paddr;
2086 				pt_info.mode = top_level + 1;
2087 			} else {
2088 				WARN_ON(top_paddr || top_level);
2089 				pt_iommu_amdv1_hw_info(&domain->amdv1,
2090 						       &pt_info);
2091 			}
2092 
2093 			new.data[0] |= __sme_set(pt_info.host_pt_root) |
2094 				       (pt_info.mode & DEV_ENTRY_MODE_MASK)
2095 					       << DEV_ENTRY_MODE_SHIFT;
2096 		}
2097 	}
2098 
2099 	new.data[0] |= DTE_FLAG_IR | DTE_FLAG_IW;
2100 
2101 	/*
2102 	 * When SNP is enabled, we can only support TV=1 with non-zero domain ID.
2103 	 * This is prevented by the SNP-enable and IOMMU_DOMAIN_IDENTITY check in
2104 	 * do_iommu_domain_alloc().
2105 	 */
2106 	WARN_ON(amd_iommu_snp_en && (domid == 0));
2107 	new.data[0] |= DTE_FLAG_TV;
2108 
2109 	if (dev_data->ppr)
2110 		new.data[0] |= 1ULL << DEV_ENTRY_PPR;
2111 
2112 	if (domain->dirty_tracking)
2113 		new.data[0] |= DTE_FLAG_HAD;
2114 
2115 	if (dev_data->ats_enabled)
2116 		new.data[1] |= DTE_FLAG_IOTLB;
2117 
2118 	old_domid = READ_ONCE(dte->data[1]) & DEV_DOMID_MASK;
2119 	new.data[1] |= domid;
2120 
2121 	/*
2122 	 * Restore cached persistent DTE bits, which can be set by information
2123 	 * in IVRS table. See set_dev_entry_from_acpi().
2124 	 */
2125 	initial_dte = amd_iommu_get_ivhd_dte_flags(iommu->pci_seg->id, dev_data->devid);
2126 	if (initial_dte) {
2127 		new.data128[0] |= initial_dte->data128[0];
2128 		new.data128[1] |= initial_dte->data128[1];
2129 	}
2130 
2131 	set_dte_gcr3_table(iommu, dev_data, &new);
2132 
2133 	update_dte256(iommu, dev_data, &new);
2134 
2135 	/*
2136 	 * A kdump kernel might be replacing a domain ID that was copied from
2137 	 * the previous kernel--if so, it needs to flush the translation cache
2138 	 * entries for the old domain ID that is being overwritten
2139 	 */
2140 	if (old_domid) {
2141 		amd_iommu_flush_tlb_domid(iommu, old_domid);
2142 	}
2143 }
2144 
2145 /*
2146  * Clear DMA-remap related flags to block all DMA (blockeded domain)
2147  */
2148 static void clear_dte_entry(struct amd_iommu *iommu, struct iommu_dev_data *dev_data)
2149 {
2150 	struct dev_table_entry new = {};
2151 	struct dev_table_entry *dte = &get_dev_table(iommu)[dev_data->devid];
2152 
2153 	make_clear_dte(dev_data, dte, &new);
2154 	update_dte256(iommu, dev_data, &new);
2155 }
2156 
2157 /* Update and flush DTE for the given device */
2158 static void dev_update_dte(struct iommu_dev_data *dev_data, bool set)
2159 {
2160 	struct amd_iommu *iommu = get_amd_iommu_from_dev(dev_data->dev);
2161 
2162 	if (set)
2163 		set_dte_entry(iommu, dev_data, 0, 0);
2164 	else
2165 		clear_dte_entry(iommu, dev_data);
2166 
2167 	clone_aliases(iommu, dev_data->dev);
2168 	device_flush_dte(dev_data);
2169 	iommu_completion_wait(iommu);
2170 }
2171 
2172 /*
2173  * If domain is SVA capable then initialize GCR3 table. Also if domain is
2174  * in v2 page table mode then update GCR3[0].
2175  */
2176 static int init_gcr3_table(struct iommu_dev_data *dev_data,
2177 			   struct protection_domain *pdom)
2178 {
2179 	struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
2180 	int max_pasids = dev_data->max_pasids;
2181 	struct pt_iommu_x86_64_hw_info pt_info;
2182 	int ret = 0;
2183 
2184 	 /*
2185 	  * If domain is in pt mode then setup GCR3 table only if device
2186 	  * is PASID capable
2187 	  */
2188 	if (pdom_is_in_pt_mode(pdom) && !pdev_pasid_supported(dev_data))
2189 		return ret;
2190 
2191 	/*
2192 	 * By default, setup GCR3 table to support MAX PASIDs
2193 	 * supported by the device/IOMMU.
2194 	 */
2195 	ret = setup_gcr3_table(&dev_data->gcr3_info, iommu,
2196 			       max_pasids > 0 ?  max_pasids : 1);
2197 	if (ret)
2198 		return ret;
2199 
2200 	/* Setup GCR3[0] only if domain is setup with v2 page table mode */
2201 	if (!pdom_is_v2_pgtbl_mode(pdom))
2202 		return ret;
2203 
2204 	pt_iommu_x86_64_hw_info(&pdom->amdv2, &pt_info);
2205 	ret = update_gcr3(dev_data, 0, __sme_set(pt_info.gcr3_pt), true);
2206 	if (ret)
2207 		free_gcr3_table(&dev_data->gcr3_info);
2208 
2209 	return ret;
2210 }
2211 
2212 static void destroy_gcr3_table(struct iommu_dev_data *dev_data,
2213 			       struct protection_domain *pdom)
2214 {
2215 	struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
2216 
2217 	if (pdom_is_v2_pgtbl_mode(pdom))
2218 		update_gcr3(dev_data, 0, 0, false);
2219 
2220 	if (gcr3_info->gcr3_tbl == NULL)
2221 		return;
2222 
2223 	free_gcr3_table(gcr3_info);
2224 }
2225 
2226 static int pdom_attach_iommu(struct amd_iommu *iommu,
2227 			     struct protection_domain *pdom)
2228 {
2229 	struct pdom_iommu_info *pdom_iommu_info, *curr;
2230 	unsigned long flags;
2231 	int ret = 0;
2232 
2233 	spin_lock_irqsave(&pdom->lock, flags);
2234 
2235 	pdom_iommu_info = xa_load(&pdom->iommu_array, iommu->index);
2236 	if (pdom_iommu_info) {
2237 		pdom_iommu_info->refcnt++;
2238 		goto out_unlock;
2239 	}
2240 
2241 	pdom_iommu_info = kzalloc(sizeof(*pdom_iommu_info), GFP_ATOMIC);
2242 	if (!pdom_iommu_info) {
2243 		ret = -ENOMEM;
2244 		goto out_unlock;
2245 	}
2246 
2247 	pdom_iommu_info->iommu = iommu;
2248 	pdom_iommu_info->refcnt = 1;
2249 
2250 	curr = xa_cmpxchg(&pdom->iommu_array, iommu->index,
2251 			  NULL, pdom_iommu_info, GFP_ATOMIC);
2252 	if (curr) {
2253 		kfree(pdom_iommu_info);
2254 		ret = -ENOSPC;
2255 		goto out_unlock;
2256 	}
2257 
2258 out_unlock:
2259 	spin_unlock_irqrestore(&pdom->lock, flags);
2260 	return ret;
2261 }
2262 
2263 static void pdom_detach_iommu(struct amd_iommu *iommu,
2264 			      struct protection_domain *pdom)
2265 {
2266 	struct pdom_iommu_info *pdom_iommu_info;
2267 	unsigned long flags;
2268 
2269 	spin_lock_irqsave(&pdom->lock, flags);
2270 
2271 	pdom_iommu_info = xa_load(&pdom->iommu_array, iommu->index);
2272 	if (!pdom_iommu_info) {
2273 		spin_unlock_irqrestore(&pdom->lock, flags);
2274 		return;
2275 	}
2276 
2277 	pdom_iommu_info->refcnt--;
2278 	if (pdom_iommu_info->refcnt == 0) {
2279 		xa_erase(&pdom->iommu_array, iommu->index);
2280 		kfree(pdom_iommu_info);
2281 	}
2282 
2283 	spin_unlock_irqrestore(&pdom->lock, flags);
2284 }
2285 
2286 /*
2287  * If a device is not yet associated with a domain, this function makes the
2288  * device visible in the domain
2289  */
2290 static int attach_device(struct device *dev,
2291 			 struct protection_domain *domain)
2292 {
2293 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2294 	struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
2295 	struct pci_dev *pdev;
2296 	unsigned long flags;
2297 	int ret = 0;
2298 
2299 	mutex_lock(&dev_data->mutex);
2300 
2301 	if (dev_data->domain != NULL) {
2302 		ret = -EBUSY;
2303 		goto out;
2304 	}
2305 
2306 	/* Do reference counting */
2307 	ret = pdom_attach_iommu(iommu, domain);
2308 	if (ret)
2309 		goto out;
2310 
2311 	/* Setup GCR3 table */
2312 	if (pdom_is_sva_capable(domain)) {
2313 		ret = init_gcr3_table(dev_data, domain);
2314 		if (ret) {
2315 			pdom_detach_iommu(iommu, domain);
2316 			goto out;
2317 		}
2318 	}
2319 
2320 	pdev = dev_is_pci(dev_data->dev) ? to_pci_dev(dev_data->dev) : NULL;
2321 	if (pdev && pdom_is_sva_capable(domain)) {
2322 		pdev_enable_caps(pdev);
2323 
2324 		/*
2325 		 * Device can continue to function even if IOPF
2326 		 * enablement failed. Hence in error path just
2327 		 * disable device PRI support.
2328 		 */
2329 		if (amd_iommu_iopf_add_device(iommu, dev_data))
2330 			pdev_disable_cap_pri(pdev);
2331 	} else if (pdev) {
2332 		pdev_enable_cap_ats(pdev);
2333 	}
2334 
2335 	/* Update data structures */
2336 	dev_data->domain = domain;
2337 	spin_lock_irqsave(&domain->lock, flags);
2338 	list_add(&dev_data->list, &domain->dev_list);
2339 	spin_unlock_irqrestore(&domain->lock, flags);
2340 
2341 	/* Update device table */
2342 	dev_update_dte(dev_data, true);
2343 
2344 out:
2345 	mutex_unlock(&dev_data->mutex);
2346 
2347 	return ret;
2348 }
2349 
2350 /*
2351  * Removes a device from a protection domain (with devtable_lock held)
2352  */
2353 static void detach_device(struct device *dev)
2354 {
2355 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2356 	struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
2357 	struct protection_domain *domain = dev_data->domain;
2358 	unsigned long flags;
2359 
2360 	mutex_lock(&dev_data->mutex);
2361 
2362 	/*
2363 	 * First check if the device is still attached. It might already
2364 	 * be detached from its domain because the generic
2365 	 * iommu_detach_group code detached it and we try again here in
2366 	 * our alias handling.
2367 	 */
2368 	if (WARN_ON(!dev_data->domain))
2369 		goto out;
2370 
2371 	/* Remove IOPF handler */
2372 	if (dev_data->ppr) {
2373 		iopf_queue_flush_dev(dev);
2374 		amd_iommu_iopf_remove_device(iommu, dev_data);
2375 	}
2376 
2377 	if (dev_is_pci(dev))
2378 		pdev_disable_caps(to_pci_dev(dev));
2379 
2380 	/* Clear DTE and flush the entry */
2381 	dev_update_dte(dev_data, false);
2382 
2383 	/* Flush IOTLB and wait for the flushes to finish */
2384 	spin_lock_irqsave(&domain->lock, flags);
2385 	amd_iommu_domain_flush_all(domain);
2386 	list_del(&dev_data->list);
2387 	spin_unlock_irqrestore(&domain->lock, flags);
2388 
2389 	/* Clear GCR3 table */
2390 	if (pdom_is_sva_capable(domain))
2391 		destroy_gcr3_table(dev_data, domain);
2392 
2393 	/* Update data structures */
2394 	dev_data->domain = NULL;
2395 
2396 	/* decrease reference counters - needs to happen after the flushes */
2397 	pdom_detach_iommu(iommu, domain);
2398 
2399 out:
2400 	mutex_unlock(&dev_data->mutex);
2401 }
2402 
2403 static struct iommu_device *amd_iommu_probe_device(struct device *dev)
2404 {
2405 	struct iommu_device *iommu_dev;
2406 	struct amd_iommu *iommu;
2407 	struct iommu_dev_data *dev_data;
2408 	int ret;
2409 
2410 	if (!check_device(dev))
2411 		return ERR_PTR(-ENODEV);
2412 
2413 	iommu = rlookup_amd_iommu(dev);
2414 	if (!iommu)
2415 		return ERR_PTR(-ENODEV);
2416 
2417 	/* Not registered yet? */
2418 	if (!iommu->iommu.ops)
2419 		return ERR_PTR(-ENODEV);
2420 
2421 	if (dev_iommu_priv_get(dev))
2422 		return &iommu->iommu;
2423 
2424 	ret = iommu_init_device(iommu, dev);
2425 	if (ret) {
2426 		dev_err(dev, "Failed to initialize - trying to proceed anyway\n");
2427 		iommu_dev = ERR_PTR(ret);
2428 		iommu_ignore_device(iommu, dev);
2429 		goto out_err;
2430 	}
2431 
2432 	amd_iommu_set_pci_msi_domain(dev, iommu);
2433 	iommu_dev = &iommu->iommu;
2434 
2435 	/*
2436 	 * If IOMMU and device supports PASID then it will contain max
2437 	 * supported PASIDs, else it will be zero.
2438 	 */
2439 	dev_data = dev_iommu_priv_get(dev);
2440 	if (amd_iommu_pasid_supported() && dev_is_pci(dev) &&
2441 	    pdev_pasid_supported(dev_data)) {
2442 		dev_data->max_pasids = min_t(u32, iommu->iommu.max_pasids,
2443 					     pci_max_pasids(to_pci_dev(dev)));
2444 	}
2445 
2446 	if (amd_iommu_pgtable == PD_MODE_NONE) {
2447 		pr_warn_once("%s: DMA translation not supported by iommu.\n",
2448 			     __func__);
2449 		iommu_dev = ERR_PTR(-ENODEV);
2450 		goto out_err;
2451 	}
2452 
2453 	iommu_completion_wait(iommu);
2454 
2455 	if (FEATURE_NUM_INT_REMAP_SUP_2K(amd_iommu_efr2))
2456 		dev_data->max_irqs = MAX_IRQS_PER_TABLE_2K;
2457 	else
2458 		dev_data->max_irqs = MAX_IRQS_PER_TABLE_512;
2459 
2460 	if (dev_is_pci(dev))
2461 		pci_prepare_ats(to_pci_dev(dev), PAGE_SHIFT);
2462 
2463 out_err:
2464 	return iommu_dev;
2465 }
2466 
2467 static void amd_iommu_release_device(struct device *dev)
2468 {
2469 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2470 
2471 	WARN_ON(dev_data->domain);
2472 
2473 	/*
2474 	 * We keep dev_data around for unplugged devices and reuse it when the
2475 	 * device is re-plugged - not doing so would introduce a ton of races.
2476 	 */
2477 }
2478 
2479 static struct iommu_group *amd_iommu_device_group(struct device *dev)
2480 {
2481 	if (dev_is_pci(dev))
2482 		return pci_device_group(dev);
2483 
2484 	return acpihid_device_group(dev);
2485 }
2486 
2487 /*****************************************************************************
2488  *
2489  * The following functions belong to the exported interface of AMD IOMMU
2490  *
2491  * This interface allows access to lower level functions of the IOMMU
2492  * like protection domain handling and assignement of devices to domains
2493  * which is not possible with the dma_ops interface.
2494  *
2495  *****************************************************************************/
2496 
2497 static void protection_domain_init(struct protection_domain *domain)
2498 {
2499 	spin_lock_init(&domain->lock);
2500 	INIT_LIST_HEAD(&domain->dev_list);
2501 	INIT_LIST_HEAD(&domain->dev_data_list);
2502 	xa_init(&domain->iommu_array);
2503 }
2504 
2505 struct protection_domain *protection_domain_alloc(void)
2506 {
2507 	struct protection_domain *domain;
2508 	int domid;
2509 
2510 	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2511 	if (!domain)
2512 		return NULL;
2513 
2514 	domid = amd_iommu_pdom_id_alloc();
2515 	if (domid <= 0) {
2516 		kfree(domain);
2517 		return NULL;
2518 	}
2519 	domain->id = domid;
2520 
2521 	protection_domain_init(domain);
2522 
2523 	return domain;
2524 }
2525 
2526 static bool amd_iommu_hd_support(struct amd_iommu *iommu)
2527 {
2528 	if (amd_iommu_hatdis)
2529 		return false;
2530 
2531 	return iommu && (iommu->features & FEATURE_HDSUP);
2532 }
2533 
2534 static spinlock_t *amd_iommu_get_top_lock(struct pt_iommu *iommupt)
2535 {
2536 	struct protection_domain *pdom =
2537 		container_of(iommupt, struct protection_domain, iommu);
2538 
2539 	return &pdom->lock;
2540 }
2541 
2542 /*
2543  * Update all HW references to the domain with a new pgtable configuration.
2544  */
2545 static void amd_iommu_change_top(struct pt_iommu *iommu_table,
2546 				 phys_addr_t top_paddr, unsigned int top_level)
2547 {
2548 	struct protection_domain *pdom =
2549 		container_of(iommu_table, struct protection_domain, iommu);
2550 	struct iommu_dev_data *dev_data;
2551 
2552 	lockdep_assert_held(&pdom->lock);
2553 
2554 	/* Update the DTE for all devices attached to this domain */
2555 	list_for_each_entry(dev_data, &pdom->dev_list, list) {
2556 		struct amd_iommu *iommu = rlookup_amd_iommu(dev_data->dev);
2557 
2558 		/* Update the HW references with the new level and top ptr */
2559 		set_dte_entry(iommu, dev_data, top_paddr, top_level);
2560 		clone_aliases(iommu, dev_data->dev);
2561 	}
2562 
2563 	list_for_each_entry(dev_data, &pdom->dev_list, list)
2564 		device_flush_dte(dev_data);
2565 
2566 	domain_flush_complete(pdom);
2567 }
2568 
2569 /*
2570  * amd_iommu_iotlb_sync_map() is used to generate flushes for non-present to
2571  * present (ie mapping) operations. It is a NOP if the IOMMU doesn't have non
2572  * present caching (like hypervisor shadowing).
2573  */
2574 static int amd_iommu_iotlb_sync_map(struct iommu_domain *dom,
2575 				    unsigned long iova, size_t size)
2576 {
2577 	struct protection_domain *domain = to_pdomain(dom);
2578 	unsigned long flags;
2579 
2580 	if (likely(!amd_iommu_np_cache))
2581 		return 0;
2582 
2583 	spin_lock_irqsave(&domain->lock, flags);
2584 	amd_iommu_domain_flush_pages(domain, iova, size);
2585 	spin_unlock_irqrestore(&domain->lock, flags);
2586 	return 0;
2587 }
2588 
2589 static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
2590 {
2591 	struct protection_domain *dom = to_pdomain(domain);
2592 	unsigned long flags;
2593 
2594 	spin_lock_irqsave(&dom->lock, flags);
2595 	amd_iommu_domain_flush_all(dom);
2596 	spin_unlock_irqrestore(&dom->lock, flags);
2597 }
2598 
2599 static void amd_iommu_iotlb_sync(struct iommu_domain *domain,
2600 				 struct iommu_iotlb_gather *gather)
2601 {
2602 	struct protection_domain *dom = to_pdomain(domain);
2603 	unsigned long flags;
2604 
2605 	spin_lock_irqsave(&dom->lock, flags);
2606 	amd_iommu_domain_flush_pages(dom, gather->start,
2607 				     gather->end - gather->start + 1);
2608 	spin_unlock_irqrestore(&dom->lock, flags);
2609 	iommu_put_pages_list(&gather->freelist);
2610 }
2611 
2612 static const struct pt_iommu_driver_ops amd_hw_driver_ops_v1 = {
2613 	.get_top_lock = amd_iommu_get_top_lock,
2614 	.change_top = amd_iommu_change_top,
2615 };
2616 
2617 static const struct iommu_domain_ops amdv1_ops = {
2618 	IOMMU_PT_DOMAIN_OPS(amdv1),
2619 	.iotlb_sync_map = amd_iommu_iotlb_sync_map,
2620 	.flush_iotlb_all = amd_iommu_flush_iotlb_all,
2621 	.iotlb_sync = amd_iommu_iotlb_sync,
2622 	.attach_dev = amd_iommu_attach_device,
2623 	.free = amd_iommu_domain_free,
2624 	.enforce_cache_coherency = amd_iommu_enforce_cache_coherency,
2625 };
2626 
2627 static const struct iommu_dirty_ops amdv1_dirty_ops = {
2628 	IOMMU_PT_DIRTY_OPS(amdv1),
2629 	.set_dirty_tracking = amd_iommu_set_dirty_tracking,
2630 };
2631 
2632 static struct iommu_domain *amd_iommu_domain_alloc_paging_v1(struct device *dev,
2633 							     u32 flags)
2634 {
2635 	struct pt_iommu_amdv1_cfg cfg = {};
2636 	struct protection_domain *domain;
2637 	int ret;
2638 
2639 	if (amd_iommu_hatdis)
2640 		return ERR_PTR(-EOPNOTSUPP);
2641 
2642 	domain = protection_domain_alloc();
2643 	if (!domain)
2644 		return ERR_PTR(-ENOMEM);
2645 
2646 	domain->pd_mode = PD_MODE_V1;
2647 	domain->iommu.driver_ops = &amd_hw_driver_ops_v1;
2648 	domain->iommu.nid = dev_to_node(dev);
2649 	if (flags & IOMMU_HWPT_ALLOC_DIRTY_TRACKING)
2650 		domain->domain.dirty_ops = &amdv1_dirty_ops;
2651 
2652 	/*
2653 	 * Someday FORCE_COHERENCE should be set by
2654 	 * amd_iommu_enforce_cache_coherency() like VT-d does.
2655 	 */
2656 	cfg.common.features = BIT(PT_FEAT_DYNAMIC_TOP) |
2657 			      BIT(PT_FEAT_AMDV1_ENCRYPT_TABLES) |
2658 			      BIT(PT_FEAT_AMDV1_FORCE_COHERENCE);
2659 
2660 	/*
2661 	 * AMD's IOMMU can flush as many pages as necessary in a single flush.
2662 	 * Unless we run in a virtual machine, which can be inferred according
2663 	 * to whether "non-present cache" is on, it is probably best to prefer
2664 	 * (potentially) too extensive TLB flushing (i.e., more misses) over
2665 	 * multiple TLB flushes (i.e., more flushes). For virtual machines the
2666 	 * hypervisor needs to synchronize the host IOMMU PTEs with those of
2667 	 * the guest, and the trade-off is different: unnecessary TLB flushes
2668 	 * should be avoided.
2669 	 */
2670 	if (amd_iommu_np_cache)
2671 		cfg.common.features |= BIT(PT_FEAT_FLUSH_RANGE_NO_GAPS);
2672 	else
2673 		cfg.common.features |= BIT(PT_FEAT_FLUSH_RANGE);
2674 
2675 	cfg.common.hw_max_vasz_lg2 =
2676 		min(64, (amd_iommu_hpt_level - 1) * 9 + 21);
2677 	cfg.common.hw_max_oasz_lg2 = 52;
2678 	cfg.starting_level = 2;
2679 	domain->domain.ops = &amdv1_ops;
2680 
2681 	ret = pt_iommu_amdv1_init(&domain->amdv1, &cfg, GFP_KERNEL);
2682 	if (ret) {
2683 		amd_iommu_domain_free(&domain->domain);
2684 		return ERR_PTR(ret);
2685 	}
2686 
2687 	/*
2688 	 * Narrow the supported page sizes to those selected by the kernel
2689 	 * command line.
2690 	 */
2691 	domain->domain.pgsize_bitmap &= amd_iommu_pgsize_bitmap;
2692 	return &domain->domain;
2693 }
2694 
2695 static const struct iommu_domain_ops amdv2_ops = {
2696 	IOMMU_PT_DOMAIN_OPS(x86_64),
2697 	.iotlb_sync_map = amd_iommu_iotlb_sync_map,
2698 	.flush_iotlb_all = amd_iommu_flush_iotlb_all,
2699 	.iotlb_sync = amd_iommu_iotlb_sync,
2700 	.attach_dev = amd_iommu_attach_device,
2701 	.free = amd_iommu_domain_free,
2702 	/*
2703 	 * Note the AMDv2 page table format does not support a Force Coherency
2704 	 * bit, so enforce_cache_coherency should not be set. However VFIO is
2705 	 * not prepared to handle a case where some domains will support
2706 	 * enforcement and others do not. VFIO and iommufd will have to be fixed
2707 	 * before it can fully use the V2 page table. See the comment in
2708 	 * iommufd_hwpt_paging_alloc(). For now leave things as they have
2709 	 * historically been and lie about enforce_cache_coherencey.
2710 	 */
2711 	.enforce_cache_coherency = amd_iommu_enforce_cache_coherency,
2712 };
2713 
2714 static struct iommu_domain *amd_iommu_domain_alloc_paging_v2(struct device *dev,
2715 							     u32 flags)
2716 {
2717 	struct pt_iommu_x86_64_cfg cfg = {};
2718 	struct protection_domain *domain;
2719 	int ret;
2720 
2721 	if (!amd_iommu_v2_pgtbl_supported())
2722 		return ERR_PTR(-EOPNOTSUPP);
2723 
2724 	domain = protection_domain_alloc();
2725 	if (!domain)
2726 		return ERR_PTR(-ENOMEM);
2727 
2728 	domain->pd_mode = PD_MODE_V2;
2729 	domain->iommu.nid = dev_to_node(dev);
2730 
2731 	cfg.common.features = BIT(PT_FEAT_X86_64_AMD_ENCRYPT_TABLES);
2732 	if (amd_iommu_np_cache)
2733 		cfg.common.features |= BIT(PT_FEAT_FLUSH_RANGE_NO_GAPS);
2734 	else
2735 		cfg.common.features |= BIT(PT_FEAT_FLUSH_RANGE);
2736 
2737 	/*
2738 	 * The v2 table behaves differently if it is attached to PASID 0 vs a
2739 	 * non-zero PASID. On PASID 0 it has no sign extension and the full
2740 	 * 57/48 bits decode the lower addresses. Otherwise it behaves like a
2741 	 * normal sign extended x86 page table. Since we want the domain to work
2742 	 * in both modes the top bit is removed and PT_FEAT_SIGN_EXTEND is not
2743 	 * set which creates a table that is compatible in both modes.
2744 	 */
2745 	if (amd_iommu_gpt_level == PAGE_MODE_5_LEVEL) {
2746 		cfg.common.hw_max_vasz_lg2 = 56;
2747 		cfg.top_level = 4;
2748 	} else {
2749 		cfg.common.hw_max_vasz_lg2 = 47;
2750 		cfg.top_level = 3;
2751 	}
2752 	cfg.common.hw_max_oasz_lg2 = 52;
2753 	domain->domain.ops = &amdv2_ops;
2754 
2755 	ret = pt_iommu_x86_64_init(&domain->amdv2, &cfg, GFP_KERNEL);
2756 	if (ret) {
2757 		amd_iommu_domain_free(&domain->domain);
2758 		return ERR_PTR(ret);
2759 	}
2760 	return &domain->domain;
2761 }
2762 
2763 static struct iommu_domain *
2764 amd_iommu_domain_alloc_paging_flags(struct device *dev, u32 flags,
2765 				    const struct iommu_user_data *user_data)
2766 
2767 {
2768 	struct amd_iommu *iommu = get_amd_iommu_from_dev(dev);
2769 	const u32 supported_flags = IOMMU_HWPT_ALLOC_DIRTY_TRACKING |
2770 						IOMMU_HWPT_ALLOC_PASID;
2771 
2772 	if ((flags & ~supported_flags) || user_data)
2773 		return ERR_PTR(-EOPNOTSUPP);
2774 
2775 	switch (flags & supported_flags) {
2776 	case IOMMU_HWPT_ALLOC_DIRTY_TRACKING:
2777 		/* Allocate domain with v1 page table for dirty tracking */
2778 		if (!amd_iommu_hd_support(iommu))
2779 			break;
2780 		return amd_iommu_domain_alloc_paging_v1(dev, flags);
2781 	case IOMMU_HWPT_ALLOC_PASID:
2782 		/* Allocate domain with v2 page table if IOMMU supports PASID. */
2783 		if (!amd_iommu_pasid_supported())
2784 			break;
2785 		return amd_iommu_domain_alloc_paging_v2(dev, flags);
2786 	case 0: {
2787 		struct iommu_domain *ret;
2788 
2789 		/* If nothing specific is required use the kernel commandline default */
2790 		if (amd_iommu_pgtable == PD_MODE_V1) {
2791 			ret = amd_iommu_domain_alloc_paging_v1(dev, flags);
2792 			if (ret != ERR_PTR(-EOPNOTSUPP))
2793 				return ret;
2794 			return amd_iommu_domain_alloc_paging_v2(dev, flags);
2795 		}
2796 		ret = amd_iommu_domain_alloc_paging_v2(dev, flags);
2797 		if (ret != ERR_PTR(-EOPNOTSUPP))
2798 			return ret;
2799 		return amd_iommu_domain_alloc_paging_v1(dev, flags);
2800 	}
2801 	default:
2802 		break;
2803 	}
2804 	return ERR_PTR(-EOPNOTSUPP);
2805 }
2806 
2807 void amd_iommu_domain_free(struct iommu_domain *dom)
2808 {
2809 	struct protection_domain *domain = to_pdomain(dom);
2810 
2811 	WARN_ON(!list_empty(&domain->dev_list));
2812 	pt_iommu_deinit(&domain->iommu);
2813 	amd_iommu_pdom_id_free(domain->id);
2814 	kfree(domain);
2815 }
2816 
2817 static int blocked_domain_attach_device(struct iommu_domain *domain,
2818 					struct device *dev,
2819 					struct iommu_domain *old)
2820 {
2821 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2822 
2823 	if (dev_data->domain)
2824 		detach_device(dev);
2825 
2826 	/* Clear DTE and flush the entry */
2827 	mutex_lock(&dev_data->mutex);
2828 	dev_update_dte(dev_data, false);
2829 	mutex_unlock(&dev_data->mutex);
2830 
2831 	return 0;
2832 }
2833 
2834 static int blocked_domain_set_dev_pasid(struct iommu_domain *domain,
2835 					struct device *dev, ioasid_t pasid,
2836 					struct iommu_domain *old)
2837 {
2838 	amd_iommu_remove_dev_pasid(dev, pasid, old);
2839 	return 0;
2840 }
2841 
2842 static struct iommu_domain blocked_domain = {
2843 	.type = IOMMU_DOMAIN_BLOCKED,
2844 	.ops = &(const struct iommu_domain_ops) {
2845 		.attach_dev     = blocked_domain_attach_device,
2846 		.set_dev_pasid  = blocked_domain_set_dev_pasid,
2847 	}
2848 };
2849 
2850 static struct protection_domain identity_domain;
2851 
2852 static const struct iommu_domain_ops identity_domain_ops = {
2853 	.attach_dev = amd_iommu_attach_device,
2854 };
2855 
2856 void amd_iommu_init_identity_domain(void)
2857 {
2858 	struct iommu_domain *domain = &identity_domain.domain;
2859 
2860 	domain->type = IOMMU_DOMAIN_IDENTITY;
2861 	domain->ops = &identity_domain_ops;
2862 	domain->owner = &amd_iommu_ops;
2863 
2864 	identity_domain.id = amd_iommu_pdom_id_alloc();
2865 
2866 	protection_domain_init(&identity_domain);
2867 }
2868 
2869 static int amd_iommu_attach_device(struct iommu_domain *dom, struct device *dev,
2870 				   struct iommu_domain *old)
2871 {
2872 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2873 	struct protection_domain *domain = to_pdomain(dom);
2874 	struct amd_iommu *iommu = get_amd_iommu_from_dev(dev);
2875 	int ret;
2876 
2877 	/*
2878 	 * Skip attach device to domain if new domain is same as
2879 	 * devices current domain
2880 	 */
2881 	if (dev_data->domain == domain)
2882 		return 0;
2883 
2884 	dev_data->defer_attach = false;
2885 
2886 	/*
2887 	 * Restrict to devices with compatible IOMMU hardware support
2888 	 * when enforcement of dirty tracking is enabled.
2889 	 */
2890 	if (dom->dirty_ops && !amd_iommu_hd_support(iommu))
2891 		return -EINVAL;
2892 
2893 	if (dev_data->domain)
2894 		detach_device(dev);
2895 
2896 	ret = attach_device(dev, domain);
2897 
2898 #ifdef CONFIG_IRQ_REMAP
2899 	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
2900 		if (dom->type == IOMMU_DOMAIN_UNMANAGED)
2901 			dev_data->use_vapic = 1;
2902 		else
2903 			dev_data->use_vapic = 0;
2904 	}
2905 #endif
2906 
2907 	return ret;
2908 }
2909 
2910 static bool amd_iommu_capable(struct device *dev, enum iommu_cap cap)
2911 {
2912 	switch (cap) {
2913 	case IOMMU_CAP_CACHE_COHERENCY:
2914 		return true;
2915 	case IOMMU_CAP_NOEXEC:
2916 		return false;
2917 	case IOMMU_CAP_PRE_BOOT_PROTECTION:
2918 		return amdr_ivrs_remap_support;
2919 	case IOMMU_CAP_ENFORCE_CACHE_COHERENCY:
2920 		return true;
2921 	case IOMMU_CAP_DEFERRED_FLUSH:
2922 		return true;
2923 	case IOMMU_CAP_DIRTY_TRACKING: {
2924 		struct amd_iommu *iommu = get_amd_iommu_from_dev(dev);
2925 
2926 		return amd_iommu_hd_support(iommu);
2927 	}
2928 	default:
2929 		break;
2930 	}
2931 
2932 	return false;
2933 }
2934 
2935 static int amd_iommu_set_dirty_tracking(struct iommu_domain *domain,
2936 					bool enable)
2937 {
2938 	struct protection_domain *pdomain = to_pdomain(domain);
2939 	struct dev_table_entry *dte;
2940 	struct iommu_dev_data *dev_data;
2941 	bool domain_flush = false;
2942 	struct amd_iommu *iommu;
2943 	unsigned long flags;
2944 	u64 new;
2945 
2946 	spin_lock_irqsave(&pdomain->lock, flags);
2947 	if (!(pdomain->dirty_tracking ^ enable)) {
2948 		spin_unlock_irqrestore(&pdomain->lock, flags);
2949 		return 0;
2950 	}
2951 
2952 	list_for_each_entry(dev_data, &pdomain->dev_list, list) {
2953 		spin_lock(&dev_data->dte_lock);
2954 		iommu = get_amd_iommu_from_dev_data(dev_data);
2955 		dte = &get_dev_table(iommu)[dev_data->devid];
2956 		new = dte->data[0];
2957 		new = (enable ? new | DTE_FLAG_HAD : new & ~DTE_FLAG_HAD);
2958 		dte->data[0] = new;
2959 		spin_unlock(&dev_data->dte_lock);
2960 
2961 		/* Flush device DTE */
2962 		device_flush_dte(dev_data);
2963 		domain_flush = true;
2964 	}
2965 
2966 	/* Flush IOTLB to mark IOPTE dirty on the next translation(s) */
2967 	if (domain_flush)
2968 		amd_iommu_domain_flush_all(pdomain);
2969 
2970 	pdomain->dirty_tracking = enable;
2971 	spin_unlock_irqrestore(&pdomain->lock, flags);
2972 
2973 	return 0;
2974 }
2975 
2976 static void amd_iommu_get_resv_regions(struct device *dev,
2977 				       struct list_head *head)
2978 {
2979 	struct iommu_resv_region *region;
2980 	struct unity_map_entry *entry;
2981 	struct amd_iommu *iommu;
2982 	struct amd_iommu_pci_seg *pci_seg;
2983 	int devid, sbdf;
2984 
2985 	sbdf = get_device_sbdf_id(dev);
2986 	if (sbdf < 0)
2987 		return;
2988 
2989 	devid = PCI_SBDF_TO_DEVID(sbdf);
2990 	iommu = get_amd_iommu_from_dev(dev);
2991 	pci_seg = iommu->pci_seg;
2992 
2993 	list_for_each_entry(entry, &pci_seg->unity_map, list) {
2994 		int type, prot = 0;
2995 		size_t length;
2996 
2997 		if (devid < entry->devid_start || devid > entry->devid_end)
2998 			continue;
2999 
3000 		type   = IOMMU_RESV_DIRECT;
3001 		length = entry->address_end - entry->address_start;
3002 		if (entry->prot & IOMMU_PROT_IR)
3003 			prot |= IOMMU_READ;
3004 		if (entry->prot & IOMMU_PROT_IW)
3005 			prot |= IOMMU_WRITE;
3006 		if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE)
3007 			/* Exclusion range */
3008 			type = IOMMU_RESV_RESERVED;
3009 
3010 		region = iommu_alloc_resv_region(entry->address_start,
3011 						 length, prot, type,
3012 						 GFP_KERNEL);
3013 		if (!region) {
3014 			dev_err(dev, "Out of memory allocating dm-regions\n");
3015 			return;
3016 		}
3017 		list_add_tail(&region->list, head);
3018 	}
3019 
3020 	region = iommu_alloc_resv_region(MSI_RANGE_START,
3021 					 MSI_RANGE_END - MSI_RANGE_START + 1,
3022 					 0, IOMMU_RESV_MSI, GFP_KERNEL);
3023 	if (!region)
3024 		return;
3025 	list_add_tail(&region->list, head);
3026 
3027 	if (amd_iommu_ht_range_ignore())
3028 		return;
3029 
3030 	region = iommu_alloc_resv_region(HT_RANGE_START,
3031 					 HT_RANGE_END - HT_RANGE_START + 1,
3032 					 0, IOMMU_RESV_RESERVED, GFP_KERNEL);
3033 	if (!region)
3034 		return;
3035 	list_add_tail(&region->list, head);
3036 }
3037 
3038 static bool amd_iommu_is_attach_deferred(struct device *dev)
3039 {
3040 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
3041 
3042 	return dev_data->defer_attach;
3043 }
3044 
3045 static int amd_iommu_def_domain_type(struct device *dev)
3046 {
3047 	struct iommu_dev_data *dev_data;
3048 
3049 	dev_data = dev_iommu_priv_get(dev);
3050 	if (!dev_data)
3051 		return 0;
3052 
3053 	/* Always use DMA domain for untrusted device */
3054 	if (dev_is_pci(dev) && to_pci_dev(dev)->untrusted)
3055 		return IOMMU_DOMAIN_DMA;
3056 
3057 	/*
3058 	 * Do not identity map IOMMUv2 capable devices when:
3059 	 *  - memory encryption is active, because some of those devices
3060 	 *    (AMD GPUs) don't have the encryption bit in their DMA-mask
3061 	 *    and require remapping.
3062 	 *  - SNP is enabled, because it prohibits DTE[Mode]=0.
3063 	 */
3064 	if (pdev_pasid_supported(dev_data) &&
3065 	    !cc_platform_has(CC_ATTR_MEM_ENCRYPT) &&
3066 	    !amd_iommu_snp_en) {
3067 		return IOMMU_DOMAIN_IDENTITY;
3068 	}
3069 
3070 	return 0;
3071 }
3072 
3073 static bool amd_iommu_enforce_cache_coherency(struct iommu_domain *domain)
3074 {
3075 	/* IOMMU_PTE_FC is always set */
3076 	return true;
3077 }
3078 
3079 const struct iommu_ops amd_iommu_ops = {
3080 	.capable = amd_iommu_capable,
3081 	.blocked_domain = &blocked_domain,
3082 	.release_domain = &blocked_domain,
3083 	.identity_domain = &identity_domain.domain,
3084 	.domain_alloc_paging_flags = amd_iommu_domain_alloc_paging_flags,
3085 	.domain_alloc_sva = amd_iommu_domain_alloc_sva,
3086 	.probe_device = amd_iommu_probe_device,
3087 	.release_device = amd_iommu_release_device,
3088 	.device_group = amd_iommu_device_group,
3089 	.get_resv_regions = amd_iommu_get_resv_regions,
3090 	.is_attach_deferred = amd_iommu_is_attach_deferred,
3091 	.def_domain_type = amd_iommu_def_domain_type,
3092 	.page_response = amd_iommu_page_response,
3093 };
3094 
3095 #ifdef CONFIG_IRQ_REMAP
3096 
3097 /*****************************************************************************
3098  *
3099  * Interrupt Remapping Implementation
3100  *
3101  *****************************************************************************/
3102 
3103 static struct irq_chip amd_ir_chip;
3104 static DEFINE_SPINLOCK(iommu_table_lock);
3105 
3106 static void iommu_flush_irt_and_complete(struct amd_iommu *iommu, u16 devid)
3107 {
3108 	int ret;
3109 	u64 data;
3110 	unsigned long flags;
3111 	struct iommu_cmd cmd, cmd2;
3112 
3113 	if (iommu->irtcachedis_enabled)
3114 		return;
3115 
3116 	build_inv_irt(&cmd, devid);
3117 	data = atomic64_inc_return(&iommu->cmd_sem_val);
3118 	build_completion_wait(&cmd2, iommu, data);
3119 
3120 	raw_spin_lock_irqsave(&iommu->lock, flags);
3121 	ret = __iommu_queue_command_sync(iommu, &cmd, true);
3122 	if (ret)
3123 		goto out;
3124 	ret = __iommu_queue_command_sync(iommu, &cmd2, false);
3125 	if (ret)
3126 		goto out;
3127 	wait_on_sem(iommu, data);
3128 out:
3129 	raw_spin_unlock_irqrestore(&iommu->lock, flags);
3130 }
3131 
3132 static inline u8 iommu_get_int_tablen(struct iommu_dev_data *dev_data)
3133 {
3134 	if (dev_data && dev_data->max_irqs == MAX_IRQS_PER_TABLE_2K)
3135 		return DTE_INTTABLEN_2K;
3136 	return DTE_INTTABLEN_512;
3137 }
3138 
3139 static void set_dte_irq_entry(struct amd_iommu *iommu, u16 devid,
3140 			      struct irq_remap_table *table)
3141 {
3142 	u64 new;
3143 	struct dev_table_entry *dte = &get_dev_table(iommu)[devid];
3144 	struct iommu_dev_data *dev_data = search_dev_data(iommu, devid);
3145 
3146 	if (dev_data)
3147 		spin_lock(&dev_data->dte_lock);
3148 
3149 	new = READ_ONCE(dte->data[2]);
3150 	new &= ~DTE_IRQ_PHYS_ADDR_MASK;
3151 	new |= iommu_virt_to_phys(table->table);
3152 	new |= DTE_IRQ_REMAP_INTCTL;
3153 	new |= iommu_get_int_tablen(dev_data);
3154 	new |= DTE_IRQ_REMAP_ENABLE;
3155 	WRITE_ONCE(dte->data[2], new);
3156 
3157 	if (dev_data)
3158 		spin_unlock(&dev_data->dte_lock);
3159 }
3160 
3161 static struct irq_remap_table *get_irq_table(struct amd_iommu *iommu, u16 devid)
3162 {
3163 	struct irq_remap_table *table;
3164 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
3165 
3166 	if (WARN_ONCE(!pci_seg->rlookup_table[devid],
3167 		      "%s: no iommu for devid %x:%x\n",
3168 		      __func__, pci_seg->id, devid))
3169 		return NULL;
3170 
3171 	table = pci_seg->irq_lookup_table[devid];
3172 	if (WARN_ONCE(!table, "%s: no table for devid %x:%x\n",
3173 		      __func__, pci_seg->id, devid))
3174 		return NULL;
3175 
3176 	return table;
3177 }
3178 
3179 static struct irq_remap_table *__alloc_irq_table(int nid, size_t size)
3180 {
3181 	struct irq_remap_table *table;
3182 
3183 	table = kzalloc(sizeof(*table), GFP_KERNEL);
3184 	if (!table)
3185 		return NULL;
3186 
3187 	table->table = iommu_alloc_pages_node_sz(
3188 		nid, GFP_KERNEL, max(DTE_INTTAB_ALIGNMENT, size));
3189 	if (!table->table) {
3190 		kfree(table);
3191 		return NULL;
3192 	}
3193 	raw_spin_lock_init(&table->lock);
3194 
3195 	return table;
3196 }
3197 
3198 static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
3199 				  struct irq_remap_table *table)
3200 {
3201 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
3202 
3203 	pci_seg->irq_lookup_table[devid] = table;
3204 	set_dte_irq_entry(iommu, devid, table);
3205 	iommu_flush_dte(iommu, devid);
3206 }
3207 
3208 static int set_remap_table_entry_alias(struct pci_dev *pdev, u16 alias,
3209 				       void *data)
3210 {
3211 	struct irq_remap_table *table = data;
3212 	struct amd_iommu_pci_seg *pci_seg;
3213 	struct amd_iommu *iommu = rlookup_amd_iommu(&pdev->dev);
3214 
3215 	if (!iommu)
3216 		return -EINVAL;
3217 
3218 	pci_seg = iommu->pci_seg;
3219 	pci_seg->irq_lookup_table[alias] = table;
3220 	set_dte_irq_entry(iommu, alias, table);
3221 	iommu_flush_dte(pci_seg->rlookup_table[alias], alias);
3222 
3223 	return 0;
3224 }
3225 
3226 static inline size_t get_irq_table_size(unsigned int max_irqs)
3227 {
3228 	if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3229 		return max_irqs * sizeof(u32);
3230 
3231 	return max_irqs * (sizeof(u64) * 2);
3232 }
3233 
3234 static struct irq_remap_table *alloc_irq_table(struct amd_iommu *iommu,
3235 					       u16 devid, struct pci_dev *pdev,
3236 					       unsigned int max_irqs)
3237 {
3238 	struct irq_remap_table *table = NULL;
3239 	struct irq_remap_table *new_table = NULL;
3240 	struct amd_iommu_pci_seg *pci_seg;
3241 	unsigned long flags;
3242 	int nid = iommu && iommu->dev ? dev_to_node(&iommu->dev->dev) : NUMA_NO_NODE;
3243 	u16 alias;
3244 
3245 	spin_lock_irqsave(&iommu_table_lock, flags);
3246 
3247 	pci_seg = iommu->pci_seg;
3248 	table = pci_seg->irq_lookup_table[devid];
3249 	if (table)
3250 		goto out_unlock;
3251 
3252 	alias = pci_seg->alias_table[devid];
3253 	table = pci_seg->irq_lookup_table[alias];
3254 	if (table) {
3255 		set_remap_table_entry(iommu, devid, table);
3256 		goto out_wait;
3257 	}
3258 	spin_unlock_irqrestore(&iommu_table_lock, flags);
3259 
3260 	/* Nothing there yet, allocate new irq remapping table */
3261 	new_table = __alloc_irq_table(nid, get_irq_table_size(max_irqs));
3262 	if (!new_table)
3263 		return NULL;
3264 
3265 	spin_lock_irqsave(&iommu_table_lock, flags);
3266 
3267 	table = pci_seg->irq_lookup_table[devid];
3268 	if (table)
3269 		goto out_unlock;
3270 
3271 	table = pci_seg->irq_lookup_table[alias];
3272 	if (table) {
3273 		set_remap_table_entry(iommu, devid, table);
3274 		goto out_wait;
3275 	}
3276 
3277 	table = new_table;
3278 	new_table = NULL;
3279 
3280 	if (pdev)
3281 		pci_for_each_dma_alias(pdev, set_remap_table_entry_alias,
3282 				       table);
3283 	else
3284 		set_remap_table_entry(iommu, devid, table);
3285 
3286 	if (devid != alias)
3287 		set_remap_table_entry(iommu, alias, table);
3288 
3289 out_wait:
3290 	iommu_completion_wait(iommu);
3291 
3292 out_unlock:
3293 	spin_unlock_irqrestore(&iommu_table_lock, flags);
3294 
3295 	if (new_table) {
3296 		iommu_free_pages(new_table->table);
3297 		kfree(new_table);
3298 	}
3299 	return table;
3300 }
3301 
3302 static int alloc_irq_index(struct amd_iommu *iommu, u16 devid, int count,
3303 			   bool align, struct pci_dev *pdev,
3304 			   unsigned long max_irqs)
3305 {
3306 	struct irq_remap_table *table;
3307 	int index, c, alignment = 1;
3308 	unsigned long flags;
3309 
3310 	table = alloc_irq_table(iommu, devid, pdev, max_irqs);
3311 	if (!table)
3312 		return -ENODEV;
3313 
3314 	if (align)
3315 		alignment = roundup_pow_of_two(count);
3316 
3317 	raw_spin_lock_irqsave(&table->lock, flags);
3318 
3319 	/* Scan table for free entries */
3320 	for (index = ALIGN(table->min_index, alignment), c = 0;
3321 	     index < max_irqs;) {
3322 		if (!iommu->irte_ops->is_allocated(table, index)) {
3323 			c += 1;
3324 		} else {
3325 			c     = 0;
3326 			index = ALIGN(index + 1, alignment);
3327 			continue;
3328 		}
3329 
3330 		if (c == count)	{
3331 			for (; c != 0; --c)
3332 				iommu->irte_ops->set_allocated(table, index - c + 1);
3333 
3334 			index -= count - 1;
3335 			goto out;
3336 		}
3337 
3338 		index++;
3339 	}
3340 
3341 	index = -ENOSPC;
3342 
3343 out:
3344 	raw_spin_unlock_irqrestore(&table->lock, flags);
3345 
3346 	return index;
3347 }
3348 
3349 static int __modify_irte_ga(struct amd_iommu *iommu, u16 devid, int index,
3350 			    struct irte_ga *irte)
3351 {
3352 	struct irq_remap_table *table;
3353 	struct irte_ga *entry;
3354 	unsigned long flags;
3355 	u128 old;
3356 
3357 	table = get_irq_table(iommu, devid);
3358 	if (!table)
3359 		return -ENOMEM;
3360 
3361 	raw_spin_lock_irqsave(&table->lock, flags);
3362 
3363 	entry = (struct irte_ga *)table->table;
3364 	entry = &entry[index];
3365 
3366 	/*
3367 	 * We use cmpxchg16 to atomically update the 128-bit IRTE,
3368 	 * and it cannot be updated by the hardware or other processors
3369 	 * behind us, so the return value of cmpxchg16 should be the
3370 	 * same as the old value.
3371 	 */
3372 	old = entry->irte;
3373 	WARN_ON(!try_cmpxchg128(&entry->irte, &old, irte->irte));
3374 
3375 	raw_spin_unlock_irqrestore(&table->lock, flags);
3376 
3377 	return 0;
3378 }
3379 
3380 static int modify_irte_ga(struct amd_iommu *iommu, u16 devid, int index,
3381 			  struct irte_ga *irte)
3382 {
3383 	int ret;
3384 
3385 	ret = __modify_irte_ga(iommu, devid, index, irte);
3386 	if (ret)
3387 		return ret;
3388 
3389 	iommu_flush_irt_and_complete(iommu, devid);
3390 
3391 	return 0;
3392 }
3393 
3394 static int modify_irte(struct amd_iommu *iommu,
3395 		       u16 devid, int index, union irte *irte)
3396 {
3397 	struct irq_remap_table *table;
3398 	unsigned long flags;
3399 
3400 	table = get_irq_table(iommu, devid);
3401 	if (!table)
3402 		return -ENOMEM;
3403 
3404 	raw_spin_lock_irqsave(&table->lock, flags);
3405 	table->table[index] = irte->val;
3406 	raw_spin_unlock_irqrestore(&table->lock, flags);
3407 
3408 	iommu_flush_irt_and_complete(iommu, devid);
3409 
3410 	return 0;
3411 }
3412 
3413 static void free_irte(struct amd_iommu *iommu, u16 devid, int index)
3414 {
3415 	struct irq_remap_table *table;
3416 	unsigned long flags;
3417 
3418 	table = get_irq_table(iommu, devid);
3419 	if (!table)
3420 		return;
3421 
3422 	raw_spin_lock_irqsave(&table->lock, flags);
3423 	iommu->irte_ops->clear_allocated(table, index);
3424 	raw_spin_unlock_irqrestore(&table->lock, flags);
3425 
3426 	iommu_flush_irt_and_complete(iommu, devid);
3427 }
3428 
3429 static void irte_prepare(void *entry,
3430 			 u32 delivery_mode, bool dest_mode,
3431 			 u8 vector, u32 dest_apicid, int devid)
3432 {
3433 	union irte *irte = (union irte *) entry;
3434 
3435 	irte->val                = 0;
3436 	irte->fields.vector      = vector;
3437 	irte->fields.int_type    = delivery_mode;
3438 	irte->fields.destination = dest_apicid;
3439 	irte->fields.dm          = dest_mode;
3440 	irte->fields.valid       = 1;
3441 }
3442 
3443 static void irte_ga_prepare(void *entry,
3444 			    u32 delivery_mode, bool dest_mode,
3445 			    u8 vector, u32 dest_apicid, int devid)
3446 {
3447 	struct irte_ga *irte = (struct irte_ga *) entry;
3448 
3449 	irte->lo.val                      = 0;
3450 	irte->hi.val                      = 0;
3451 	irte->lo.fields_remap.int_type    = delivery_mode;
3452 	irte->lo.fields_remap.dm          = dest_mode;
3453 	irte->hi.fields.vector            = vector;
3454 	irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid);
3455 	irte->hi.fields.destination       = APICID_TO_IRTE_DEST_HI(dest_apicid);
3456 	irte->lo.fields_remap.valid       = 1;
3457 }
3458 
3459 static void irte_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3460 {
3461 	union irte *irte = (union irte *) entry;
3462 
3463 	irte->fields.valid = 1;
3464 	modify_irte(iommu, devid, index, irte);
3465 }
3466 
3467 static void irte_ga_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3468 {
3469 	struct irte_ga *irte = (struct irte_ga *) entry;
3470 
3471 	irte->lo.fields_remap.valid = 1;
3472 	modify_irte_ga(iommu, devid, index, irte);
3473 }
3474 
3475 static void irte_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3476 {
3477 	union irte *irte = (union irte *) entry;
3478 
3479 	irte->fields.valid = 0;
3480 	modify_irte(iommu, devid, index, irte);
3481 }
3482 
3483 static void irte_ga_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3484 {
3485 	struct irte_ga *irte = (struct irte_ga *) entry;
3486 
3487 	irte->lo.fields_remap.valid = 0;
3488 	modify_irte_ga(iommu, devid, index, irte);
3489 }
3490 
3491 static void irte_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index,
3492 			      u8 vector, u32 dest_apicid)
3493 {
3494 	union irte *irte = (union irte *) entry;
3495 
3496 	irte->fields.vector = vector;
3497 	irte->fields.destination = dest_apicid;
3498 	modify_irte(iommu, devid, index, irte);
3499 }
3500 
3501 static void irte_ga_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index,
3502 				 u8 vector, u32 dest_apicid)
3503 {
3504 	struct irte_ga *irte = (struct irte_ga *) entry;
3505 
3506 	if (!irte->lo.fields_remap.guest_mode) {
3507 		irte->hi.fields.vector = vector;
3508 		irte->lo.fields_remap.destination =
3509 					APICID_TO_IRTE_DEST_LO(dest_apicid);
3510 		irte->hi.fields.destination =
3511 					APICID_TO_IRTE_DEST_HI(dest_apicid);
3512 		modify_irte_ga(iommu, devid, index, irte);
3513 	}
3514 }
3515 
3516 #define IRTE_ALLOCATED (~1U)
3517 static void irte_set_allocated(struct irq_remap_table *table, int index)
3518 {
3519 	table->table[index] = IRTE_ALLOCATED;
3520 }
3521 
3522 static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
3523 {
3524 	struct irte_ga *ptr = (struct irte_ga *)table->table;
3525 	struct irte_ga *irte = &ptr[index];
3526 
3527 	memset(&irte->lo.val, 0, sizeof(u64));
3528 	memset(&irte->hi.val, 0, sizeof(u64));
3529 	irte->hi.fields.vector = 0xff;
3530 }
3531 
3532 static bool irte_is_allocated(struct irq_remap_table *table, int index)
3533 {
3534 	union irte *ptr = (union irte *)table->table;
3535 	union irte *irte = &ptr[index];
3536 
3537 	return irte->val != 0;
3538 }
3539 
3540 static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
3541 {
3542 	struct irte_ga *ptr = (struct irte_ga *)table->table;
3543 	struct irte_ga *irte = &ptr[index];
3544 
3545 	return irte->hi.fields.vector != 0;
3546 }
3547 
3548 static void irte_clear_allocated(struct irq_remap_table *table, int index)
3549 {
3550 	table->table[index] = 0;
3551 }
3552 
3553 static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
3554 {
3555 	struct irte_ga *ptr = (struct irte_ga *)table->table;
3556 	struct irte_ga *irte = &ptr[index];
3557 
3558 	memset(&irte->lo.val, 0, sizeof(u64));
3559 	memset(&irte->hi.val, 0, sizeof(u64));
3560 }
3561 
3562 static int get_devid(struct irq_alloc_info *info)
3563 {
3564 	switch (info->type) {
3565 	case X86_IRQ_ALLOC_TYPE_IOAPIC:
3566 		return get_ioapic_devid(info->devid);
3567 	case X86_IRQ_ALLOC_TYPE_HPET:
3568 		return get_hpet_devid(info->devid);
3569 	case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3570 	case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3571 		return get_device_sbdf_id(msi_desc_to_dev(info->desc));
3572 	default:
3573 		WARN_ON_ONCE(1);
3574 		return -1;
3575 	}
3576 }
3577 
3578 struct irq_remap_ops amd_iommu_irq_ops = {
3579 	.prepare		= amd_iommu_prepare,
3580 	.enable			= amd_iommu_enable,
3581 	.disable		= amd_iommu_disable,
3582 	.reenable		= amd_iommu_reenable,
3583 	.enable_faulting	= amd_iommu_enable_faulting,
3584 };
3585 
3586 static void fill_msi_msg(struct msi_msg *msg, u32 index)
3587 {
3588 	msg->data = index;
3589 	msg->address_lo = 0;
3590 	msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
3591 	/*
3592 	 * The struct msi_msg.dest_mode_logical is used to set the DM bit
3593 	 * in MSI Message Address Register. For device w/ 2K int-remap support,
3594 	 * this is bit must be set to 1 regardless of the actual destination
3595 	 * mode, which is signified by the IRTE[DM].
3596 	 */
3597 	if (FEATURE_NUM_INT_REMAP_SUP_2K(amd_iommu_efr2))
3598 		msg->arch_addr_lo.dest_mode_logical = true;
3599 	msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
3600 }
3601 
3602 static void irq_remapping_prepare_irte(struct amd_ir_data *data,
3603 				       struct irq_cfg *irq_cfg,
3604 				       struct irq_alloc_info *info,
3605 				       int devid, int index, int sub_handle)
3606 {
3607 	struct irq_2_irte *irte_info = &data->irq_2_irte;
3608 	struct amd_iommu *iommu = data->iommu;
3609 
3610 	if (!iommu)
3611 		return;
3612 
3613 	data->irq_2_irte.devid = devid;
3614 	data->irq_2_irte.index = index + sub_handle;
3615 	iommu->irte_ops->prepare(data->entry, APIC_DELIVERY_MODE_FIXED,
3616 				 apic->dest_mode_logical, irq_cfg->vector,
3617 				 irq_cfg->dest_apicid, devid);
3618 
3619 	switch (info->type) {
3620 	case X86_IRQ_ALLOC_TYPE_IOAPIC:
3621 	case X86_IRQ_ALLOC_TYPE_HPET:
3622 	case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3623 	case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3624 		fill_msi_msg(&data->msi_entry, irte_info->index);
3625 		break;
3626 
3627 	default:
3628 		BUG_ON(1);
3629 		break;
3630 	}
3631 }
3632 
3633 struct amd_irte_ops irte_32_ops = {
3634 	.prepare = irte_prepare,
3635 	.activate = irte_activate,
3636 	.deactivate = irte_deactivate,
3637 	.set_affinity = irte_set_affinity,
3638 	.set_allocated = irte_set_allocated,
3639 	.is_allocated = irte_is_allocated,
3640 	.clear_allocated = irte_clear_allocated,
3641 };
3642 
3643 struct amd_irte_ops irte_128_ops = {
3644 	.prepare = irte_ga_prepare,
3645 	.activate = irte_ga_activate,
3646 	.deactivate = irte_ga_deactivate,
3647 	.set_affinity = irte_ga_set_affinity,
3648 	.set_allocated = irte_ga_set_allocated,
3649 	.is_allocated = irte_ga_is_allocated,
3650 	.clear_allocated = irte_ga_clear_allocated,
3651 };
3652 
3653 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
3654 			       unsigned int nr_irqs, void *arg)
3655 {
3656 	struct irq_alloc_info *info = arg;
3657 	struct irq_data *irq_data;
3658 	struct amd_ir_data *data = NULL;
3659 	struct amd_iommu *iommu;
3660 	struct irq_cfg *cfg;
3661 	struct iommu_dev_data *dev_data;
3662 	unsigned long max_irqs;
3663 	int i, ret, devid, seg, sbdf;
3664 	int index;
3665 
3666 	if (!info)
3667 		return -EINVAL;
3668 	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI)
3669 		return -EINVAL;
3670 
3671 	sbdf = get_devid(info);
3672 	if (sbdf < 0)
3673 		return -EINVAL;
3674 
3675 	seg = PCI_SBDF_TO_SEGID(sbdf);
3676 	devid = PCI_SBDF_TO_DEVID(sbdf);
3677 	iommu = __rlookup_amd_iommu(seg, devid);
3678 	if (!iommu)
3679 		return -EINVAL;
3680 
3681 	dev_data = search_dev_data(iommu, devid);
3682 	max_irqs = dev_data ? dev_data->max_irqs : MAX_IRQS_PER_TABLE_512;
3683 
3684 	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
3685 	if (ret < 0)
3686 		return ret;
3687 
3688 	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
3689 		struct irq_remap_table *table;
3690 
3691 		table = alloc_irq_table(iommu, devid, NULL, max_irqs);
3692 		if (table) {
3693 			if (!table->min_index) {
3694 				/*
3695 				 * Keep the first 32 indexes free for IOAPIC
3696 				 * interrupts.
3697 				 */
3698 				table->min_index = 32;
3699 				for (i = 0; i < 32; ++i)
3700 					iommu->irte_ops->set_allocated(table, i);
3701 			}
3702 			WARN_ON(table->min_index != 32);
3703 			index = info->ioapic.pin;
3704 		} else {
3705 			index = -ENOMEM;
3706 		}
3707 	} else if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI ||
3708 		   info->type == X86_IRQ_ALLOC_TYPE_PCI_MSIX) {
3709 		bool align = (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI);
3710 
3711 		index = alloc_irq_index(iommu, devid, nr_irqs, align,
3712 					msi_desc_to_pci_dev(info->desc),
3713 					max_irqs);
3714 	} else {
3715 		index = alloc_irq_index(iommu, devid, nr_irqs, false, NULL,
3716 					max_irqs);
3717 	}
3718 
3719 	if (index < 0) {
3720 		pr_warn("Failed to allocate IRTE\n");
3721 		ret = index;
3722 		goto out_free_parent;
3723 	}
3724 
3725 	for (i = 0; i < nr_irqs; i++) {
3726 		irq_data = irq_domain_get_irq_data(domain, virq + i);
3727 		cfg = irq_data ? irqd_cfg(irq_data) : NULL;
3728 		if (!cfg) {
3729 			ret = -EINVAL;
3730 			goto out_free_data;
3731 		}
3732 
3733 		ret = -ENOMEM;
3734 		data = kzalloc(sizeof(*data), GFP_KERNEL);
3735 		if (!data)
3736 			goto out_free_data;
3737 
3738 		if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3739 			data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
3740 		else
3741 			data->entry = kzalloc(sizeof(struct irte_ga),
3742 						     GFP_KERNEL);
3743 		if (!data->entry) {
3744 			kfree(data);
3745 			goto out_free_data;
3746 		}
3747 
3748 		data->iommu = iommu;
3749 		irq_data->hwirq = (devid << 16) + i;
3750 		irq_data->chip_data = data;
3751 		irq_data->chip = &amd_ir_chip;
3752 		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
3753 	}
3754 
3755 	return 0;
3756 
3757 out_free_data:
3758 	for (i--; i >= 0; i--) {
3759 		irq_data = irq_domain_get_irq_data(domain, virq + i);
3760 		if (irq_data)
3761 			kfree(irq_data->chip_data);
3762 	}
3763 	for (i = 0; i < nr_irqs; i++)
3764 		free_irte(iommu, devid, index + i);
3765 out_free_parent:
3766 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
3767 	return ret;
3768 }
3769 
3770 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
3771 			       unsigned int nr_irqs)
3772 {
3773 	struct irq_2_irte *irte_info;
3774 	struct irq_data *irq_data;
3775 	struct amd_ir_data *data;
3776 	int i;
3777 
3778 	for (i = 0; i < nr_irqs; i++) {
3779 		irq_data = irq_domain_get_irq_data(domain, virq  + i);
3780 		if (irq_data && irq_data->chip_data) {
3781 			data = irq_data->chip_data;
3782 			irte_info = &data->irq_2_irte;
3783 			free_irte(data->iommu, irte_info->devid, irte_info->index);
3784 			kfree(data->entry);
3785 			kfree(data);
3786 		}
3787 	}
3788 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
3789 }
3790 
3791 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3792 			       struct amd_ir_data *ir_data,
3793 			       struct irq_2_irte *irte_info,
3794 			       struct irq_cfg *cfg);
3795 
3796 static int irq_remapping_activate(struct irq_domain *domain,
3797 				  struct irq_data *irq_data, bool reserve)
3798 {
3799 	struct amd_ir_data *data = irq_data->chip_data;
3800 	struct irq_2_irte *irte_info = &data->irq_2_irte;
3801 	struct amd_iommu *iommu = data->iommu;
3802 	struct irq_cfg *cfg = irqd_cfg(irq_data);
3803 
3804 	if (!iommu)
3805 		return 0;
3806 
3807 	iommu->irte_ops->activate(iommu, data->entry, irte_info->devid,
3808 				  irte_info->index);
3809 	amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
3810 	return 0;
3811 }
3812 
3813 static void irq_remapping_deactivate(struct irq_domain *domain,
3814 				     struct irq_data *irq_data)
3815 {
3816 	struct amd_ir_data *data = irq_data->chip_data;
3817 	struct irq_2_irte *irte_info = &data->irq_2_irte;
3818 	struct amd_iommu *iommu = data->iommu;
3819 
3820 	if (iommu)
3821 		iommu->irte_ops->deactivate(iommu, data->entry, irte_info->devid,
3822 					    irte_info->index);
3823 }
3824 
3825 static int irq_remapping_select(struct irq_domain *d, struct irq_fwspec *fwspec,
3826 				enum irq_domain_bus_token bus_token)
3827 {
3828 	struct amd_iommu *iommu;
3829 	int devid = -1;
3830 
3831 	if (!amd_iommu_irq_remap)
3832 		return 0;
3833 
3834 	if (x86_fwspec_is_ioapic(fwspec))
3835 		devid = get_ioapic_devid(fwspec->param[0]);
3836 	else if (x86_fwspec_is_hpet(fwspec))
3837 		devid = get_hpet_devid(fwspec->param[0]);
3838 
3839 	if (devid < 0)
3840 		return 0;
3841 	iommu = __rlookup_amd_iommu((devid >> 16), (devid & 0xffff));
3842 
3843 	return iommu && iommu->ir_domain == d;
3844 }
3845 
3846 static const struct irq_domain_ops amd_ir_domain_ops = {
3847 	.select = irq_remapping_select,
3848 	.alloc = irq_remapping_alloc,
3849 	.free = irq_remapping_free,
3850 	.activate = irq_remapping_activate,
3851 	.deactivate = irq_remapping_deactivate,
3852 };
3853 
3854 static void __amd_iommu_update_ga(struct irte_ga *entry, int cpu,
3855 				  bool ga_log_intr)
3856 {
3857 	if (cpu >= 0) {
3858 		entry->lo.fields_vapic.destination =
3859 					APICID_TO_IRTE_DEST_LO(cpu);
3860 		entry->hi.fields.destination =
3861 					APICID_TO_IRTE_DEST_HI(cpu);
3862 		entry->lo.fields_vapic.is_run = true;
3863 		entry->lo.fields_vapic.ga_log_intr = false;
3864 	} else {
3865 		entry->lo.fields_vapic.is_run = false;
3866 		entry->lo.fields_vapic.ga_log_intr = ga_log_intr;
3867 	}
3868 }
3869 
3870 /*
3871  * Update the pCPU information for an IRTE that is configured to post IRQs to
3872  * a vCPU, without issuing an IOMMU invalidation for the IRTE.
3873  *
3874  * If the vCPU is associated with a pCPU (@cpu >= 0), configure the Destination
3875  * with the pCPU's APIC ID, set IsRun, and clear GALogIntr.  If the vCPU isn't
3876  * associated with a pCPU (@cpu < 0), clear IsRun and set/clear GALogIntr based
3877  * on input from the caller (e.g. KVM only requests GALogIntr when the vCPU is
3878  * blocking and requires a notification wake event).  I.e. treat vCPUs that are
3879  * associated with a pCPU as running.  This API is intended to be used when a
3880  * vCPU is scheduled in/out (or stops running for any reason), to do a fast
3881  * update of IsRun, GALogIntr, and (conditionally) Destination.
3882  *
3883  * Per the IOMMU spec, the Destination, IsRun, and GATag fields are not cached
3884  * and thus don't require an invalidation to ensure the IOMMU consumes fresh
3885  * information.
3886  */
3887 int amd_iommu_update_ga(void *data, int cpu, bool ga_log_intr)
3888 {
3889 	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3890 	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3891 
3892 	if (WARN_ON_ONCE(!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)))
3893 		return -EINVAL;
3894 
3895 	if (!entry || !entry->lo.fields_vapic.guest_mode)
3896 		return 0;
3897 
3898 	if (!ir_data->iommu)
3899 		return -ENODEV;
3900 
3901 	__amd_iommu_update_ga(entry, cpu, ga_log_intr);
3902 
3903 	return __modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3904 				ir_data->irq_2_irte.index, entry);
3905 }
3906 EXPORT_SYMBOL(amd_iommu_update_ga);
3907 
3908 int amd_iommu_activate_guest_mode(void *data, int cpu, bool ga_log_intr)
3909 {
3910 	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3911 	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3912 	u64 valid;
3913 
3914 	if (WARN_ON_ONCE(!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)))
3915 		return -EINVAL;
3916 
3917 	if (!entry)
3918 		return 0;
3919 
3920 	valid = entry->lo.fields_vapic.valid;
3921 
3922 	entry->lo.val = 0;
3923 	entry->hi.val = 0;
3924 
3925 	entry->lo.fields_vapic.valid       = valid;
3926 	entry->lo.fields_vapic.guest_mode  = 1;
3927 	entry->hi.fields.ga_root_ptr       = ir_data->ga_root_ptr;
3928 	entry->hi.fields.vector            = ir_data->ga_vector;
3929 	entry->lo.fields_vapic.ga_tag      = ir_data->ga_tag;
3930 
3931 	__amd_iommu_update_ga(entry, cpu, ga_log_intr);
3932 
3933 	return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3934 			      ir_data->irq_2_irte.index, entry);
3935 }
3936 EXPORT_SYMBOL(amd_iommu_activate_guest_mode);
3937 
3938 int amd_iommu_deactivate_guest_mode(void *data)
3939 {
3940 	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3941 	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3942 	struct irq_cfg *cfg = ir_data->cfg;
3943 	u64 valid;
3944 
3945 	if (WARN_ON_ONCE(!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)))
3946 		return -EINVAL;
3947 
3948 	if (!entry || !entry->lo.fields_vapic.guest_mode)
3949 		return 0;
3950 
3951 	valid = entry->lo.fields_remap.valid;
3952 
3953 	entry->lo.val = 0;
3954 	entry->hi.val = 0;
3955 
3956 	entry->lo.fields_remap.valid       = valid;
3957 	entry->lo.fields_remap.dm          = apic->dest_mode_logical;
3958 	entry->lo.fields_remap.int_type    = APIC_DELIVERY_MODE_FIXED;
3959 	entry->hi.fields.vector            = cfg->vector;
3960 	entry->lo.fields_remap.destination =
3961 				APICID_TO_IRTE_DEST_LO(cfg->dest_apicid);
3962 	entry->hi.fields.destination =
3963 				APICID_TO_IRTE_DEST_HI(cfg->dest_apicid);
3964 
3965 	return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3966 			      ir_data->irq_2_irte.index, entry);
3967 }
3968 EXPORT_SYMBOL(amd_iommu_deactivate_guest_mode);
3969 
3970 static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *info)
3971 {
3972 	int ret;
3973 	struct amd_iommu_pi_data *pi_data = info;
3974 	struct amd_ir_data *ir_data = data->chip_data;
3975 	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
3976 	struct iommu_dev_data *dev_data;
3977 
3978 	if (WARN_ON_ONCE(!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)))
3979 		return -EINVAL;
3980 
3981 	if (ir_data->iommu == NULL)
3982 		return -EINVAL;
3983 
3984 	dev_data = search_dev_data(ir_data->iommu, irte_info->devid);
3985 
3986 	/* Note:
3987 	 * This device has never been set up for guest mode.
3988 	 * we should not modify the IRTE
3989 	 */
3990 	if (!dev_data || !dev_data->use_vapic)
3991 		return -EINVAL;
3992 
3993 	ir_data->cfg = irqd_cfg(data);
3994 
3995 	if (pi_data) {
3996 		pi_data->ir_data = ir_data;
3997 
3998 		ir_data->ga_root_ptr = (pi_data->vapic_addr >> 12);
3999 		ir_data->ga_vector = pi_data->vector;
4000 		ir_data->ga_tag = pi_data->ga_tag;
4001 		if (pi_data->is_guest_mode)
4002 			ret = amd_iommu_activate_guest_mode(ir_data, pi_data->cpu,
4003 							    pi_data->ga_log_intr);
4004 		else
4005 			ret = amd_iommu_deactivate_guest_mode(ir_data);
4006 	} else {
4007 		ret = amd_iommu_deactivate_guest_mode(ir_data);
4008 	}
4009 
4010 	return ret;
4011 }
4012 
4013 
4014 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
4015 			       struct amd_ir_data *ir_data,
4016 			       struct irq_2_irte *irte_info,
4017 			       struct irq_cfg *cfg)
4018 {
4019 
4020 	/*
4021 	 * Atomically updates the IRTE with the new destination, vector
4022 	 * and flushes the interrupt entry cache.
4023 	 */
4024 	iommu->irte_ops->set_affinity(iommu, ir_data->entry, irte_info->devid,
4025 				      irte_info->index, cfg->vector,
4026 				      cfg->dest_apicid);
4027 }
4028 
4029 static int amd_ir_set_affinity(struct irq_data *data,
4030 			       const struct cpumask *mask, bool force)
4031 {
4032 	struct amd_ir_data *ir_data = data->chip_data;
4033 	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4034 	struct irq_cfg *cfg = irqd_cfg(data);
4035 	struct irq_data *parent = data->parent_data;
4036 	struct amd_iommu *iommu = ir_data->iommu;
4037 	int ret;
4038 
4039 	if (!iommu)
4040 		return -ENODEV;
4041 
4042 	ret = parent->chip->irq_set_affinity(parent, mask, force);
4043 	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
4044 		return ret;
4045 
4046 	amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
4047 	/*
4048 	 * After this point, all the interrupts will start arriving
4049 	 * at the new destination. So, time to cleanup the previous
4050 	 * vector allocation.
4051 	 */
4052 	vector_schedule_cleanup(cfg);
4053 
4054 	return IRQ_SET_MASK_OK_DONE;
4055 }
4056 
4057 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4058 {
4059 	struct amd_ir_data *ir_data = irq_data->chip_data;
4060 
4061 	*msg = ir_data->msi_entry;
4062 }
4063 
4064 static struct irq_chip amd_ir_chip = {
4065 	.name			= "AMD-IR",
4066 	.irq_ack		= apic_ack_irq,
4067 	.irq_set_affinity	= amd_ir_set_affinity,
4068 	.irq_set_vcpu_affinity	= amd_ir_set_vcpu_affinity,
4069 	.irq_compose_msi_msg	= ir_compose_msi_msg,
4070 };
4071 
4072 static const struct msi_parent_ops amdvi_msi_parent_ops = {
4073 	.supported_flags	= X86_VECTOR_MSI_FLAGS_SUPPORTED | MSI_FLAG_MULTI_PCI_MSI,
4074 	.bus_select_token	= DOMAIN_BUS_AMDVI,
4075 	.bus_select_mask	= MATCH_PCI_MSI,
4076 	.prefix			= "IR-",
4077 	.init_dev_msi_info	= msi_parent_init_dev_msi_info,
4078 };
4079 
4080 int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
4081 {
4082 	struct irq_domain_info info = {
4083 		.fwnode		= irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index),
4084 		.ops		= &amd_ir_domain_ops,
4085 		.domain_flags	= IRQ_DOMAIN_FLAG_ISOLATED_MSI,
4086 		.host_data	= iommu,
4087 		.parent		= arch_get_ir_parent_domain(),
4088 	};
4089 
4090 	if (!info.fwnode)
4091 		return -ENOMEM;
4092 
4093 	iommu->ir_domain = msi_create_parent_irq_domain(&info, &amdvi_msi_parent_ops);
4094 	if (!iommu->ir_domain) {
4095 		irq_domain_free_fwnode(info.fwnode);
4096 		return -ENOMEM;
4097 	}
4098 	return 0;
4099 }
4100 #endif
4101 
4102 MODULE_IMPORT_NS("GENERIC_PT_IOMMU");
4103