1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * arch/parisc/kernel/firmware.c - safe PDC access routines
4 *
5 * PDC == Processor Dependent Code
6 *
7 * See PDC documentation at
8 * https://parisc.wiki.kernel.org/index.php/Technical_Documentation
9 * for documentation describing the entry points and calling
10 * conventions defined below.
11 *
12 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
13 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
14 * Copyright 2003 Grant Grundler <grundler parisc-linux org>
15 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
16 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
17 */
18
19 /* I think it would be in everyone's best interest to follow this
20 * guidelines when writing PDC wrappers:
21 *
22 * - the name of the pdc wrapper should match one of the macros
23 * used for the first two arguments
24 * - don't use caps for random parts of the name
25 * - use the static PDC result buffers and "copyout" to structs
26 * supplied by the caller to encapsulate alignment restrictions
27 * - hold pdc_lock while in PDC or using static result buffers
28 * - use __pa() to convert virtual (kernel) pointers to physical
29 * ones.
30 * - the name of the struct used for pdc return values should equal
31 * one of the macros used for the first two arguments to the
32 * corresponding PDC call
33 * - keep the order of arguments
34 * - don't be smart (setting trailing NUL bytes for strings, return
35 * something useful even if the call failed) unless you are sure
36 * it's not going to affect functionality or performance
37 *
38 * Example:
39 * int pdc_cache_info(struct pdc_cache_info *cache_info )
40 * {
41 * int retval;
42 *
43 * spin_lock_irq(&pdc_lock);
44 * retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
45 * convert_to_wide(pdc_result);
46 * memcpy(cache_info, pdc_result, sizeof(*cache_info));
47 * spin_unlock_irq(&pdc_lock);
48 *
49 * return retval;
50 * }
51 * prumpf 991016
52 */
53
54 #include <linux/stdarg.h>
55
56 #include <linux/delay.h>
57 #include <linux/init.h>
58 #include <linux/kernel.h>
59 #include <linux/module.h>
60 #include <linux/string.h>
61 #include <linux/spinlock.h>
62
63 #include <asm/page.h>
64 #include <asm/pdc.h>
65 #include <asm/pdcpat.h>
66 #include <asm/processor.h> /* for boot_cpu_data */
67
68 #if defined(BOOTLOADER)
69 # undef spin_lock_irqsave
70 # define spin_lock_irqsave(a, b) { b = 1; }
71 # undef spin_unlock_irqrestore
72 # define spin_unlock_irqrestore(a, b)
73 #else
74 static DEFINE_SPINLOCK(pdc_lock);
75 #endif
76
77 static unsigned long pdc_result[NUM_PDC_RESULT] __aligned(8);
78 static unsigned long pdc_result2[NUM_PDC_RESULT] __aligned(8);
79
80 #ifdef CONFIG_64BIT
81 #define WIDE_FIRMWARE PDC_MODEL_OS64
82 #define NARROW_FIRMWARE PDC_MODEL_OS32
83
84 /* Firmware needs to be initially set to narrow to determine the
85 * actual firmware width. */
86 int parisc_narrow_firmware __ro_after_init = NARROW_FIRMWARE;
87 #endif
88
89 /* On most currently-supported platforms, IODC I/O calls are 32-bit calls
90 * and MEM_PDC calls are always the same width as the OS.
91 * Some PAT boxes may have 64-bit IODC I/O.
92 *
93 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
94 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
95 * This allowed wide kernels to run on Cxxx boxes.
96 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
97 * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
98 */
99
100 #ifdef CONFIG_64BIT
101 long real64_call(unsigned long function, ...);
102 #endif
103 long real32_call(unsigned long function, ...);
104
105 #ifdef CONFIG_64BIT
106 # define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
107 # define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
108 #else
109 # define MEM_PDC (unsigned long)PAGE0->mem_pdc
110 # define mem_pdc_call(args...) real32_call(MEM_PDC, args)
111 #endif
112
113
114 /**
115 * f_extend - Convert PDC addresses to kernel addresses.
116 * @address: Address returned from PDC.
117 *
118 * This function is used to convert PDC addresses into kernel addresses
119 * when the PDC address size and kernel address size are different.
120 */
f_extend(unsigned long address)121 static unsigned long f_extend(unsigned long address)
122 {
123 #ifdef CONFIG_64BIT
124 if(unlikely(parisc_narrow_firmware)) {
125 if((address & 0xff000000) == 0xf0000000)
126 return (0xfffffff0UL << 32) | (u32)address;
127
128 if((address & 0xf0000000) == 0xf0000000)
129 return (0xffffffffUL << 32) | (u32)address;
130 }
131 #endif
132 return address;
133 }
134
135 /**
136 * convert_to_wide - Convert the return buffer addresses into kernel addresses.
137 * @addr: The return buffer from PDC.
138 *
139 * This function is used to convert the return buffer addresses retrieved from PDC
140 * into kernel addresses when the PDC address size and kernel address size are
141 * different.
142 */
convert_to_wide(unsigned long * addr)143 static void convert_to_wide(unsigned long *addr)
144 {
145 #ifdef CONFIG_64BIT
146 int i;
147 unsigned int *p = (unsigned int *)addr;
148
149 if (unlikely(parisc_narrow_firmware)) {
150 for (i = (NUM_PDC_RESULT-1); i >= 0; --i)
151 addr[i] = p[i];
152 }
153 #endif
154 }
155
156 #ifdef CONFIG_64BIT
set_firmware_width_unlocked(void)157 void set_firmware_width_unlocked(void)
158 {
159 int ret;
160
161 ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
162 __pa(pdc_result), 0);
163 if (ret < 0)
164 return;
165 convert_to_wide(pdc_result);
166 if (pdc_result[0] != NARROW_FIRMWARE)
167 parisc_narrow_firmware = 0;
168 }
169
170 /**
171 * set_firmware_width - Determine if the firmware is wide or narrow.
172 *
173 * This function must be called before any pdc_* function that uses the
174 * convert_to_wide function.
175 */
set_firmware_width(void)176 void set_firmware_width(void)
177 {
178 unsigned long flags;
179
180 /* already initialized? */
181 if (parisc_narrow_firmware != NARROW_FIRMWARE)
182 return;
183
184 spin_lock_irqsave(&pdc_lock, flags);
185 set_firmware_width_unlocked();
186 spin_unlock_irqrestore(&pdc_lock, flags);
187 }
188 #else
set_firmware_width_unlocked(void)189 void set_firmware_width_unlocked(void)
190 {
191 return;
192 }
193
set_firmware_width(void)194 void set_firmware_width(void)
195 {
196 return;
197 }
198 #endif /*CONFIG_64BIT*/
199
200
201 #if !defined(BOOTLOADER)
202 /**
203 * pdc_emergency_unlock - Unlock the linux pdc lock
204 *
205 * This call unlocks the linux pdc lock in case we need some PDC functions
206 * (like pdc_add_valid) during kernel stack dump.
207 */
pdc_emergency_unlock(void)208 void pdc_emergency_unlock(void)
209 {
210 /* Spinlock DEBUG code freaks out if we unconditionally unlock */
211 if (spin_is_locked(&pdc_lock))
212 spin_unlock(&pdc_lock);
213 }
214
215
216 /**
217 * pdc_add_valid - Verify address can be accessed without causing a HPMC.
218 * @address: Address to be verified.
219 *
220 * This PDC call attempts to read from the specified address and verifies
221 * if the address is valid.
222 *
223 * The return value is PDC_OK (0) in case accessing this address is valid.
224 */
pdc_add_valid(unsigned long address)225 int pdc_add_valid(unsigned long address)
226 {
227 int retval;
228 unsigned long flags;
229
230 spin_lock_irqsave(&pdc_lock, flags);
231 retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
232 spin_unlock_irqrestore(&pdc_lock, flags);
233
234 return retval;
235 }
236 EXPORT_SYMBOL(pdc_add_valid);
237
238 /**
239 * pdc_instr - Get instruction that invokes PDCE_CHECK in HPMC handler.
240 * @instr: Pointer to variable which will get instruction opcode.
241 *
242 * The return value is PDC_OK (0) in case call succeeded.
243 */
pdc_instr(unsigned int * instr)244 int __init pdc_instr(unsigned int *instr)
245 {
246 int retval;
247 unsigned long flags;
248
249 spin_lock_irqsave(&pdc_lock, flags);
250 retval = mem_pdc_call(PDC_INSTR, 0UL, __pa(pdc_result));
251 convert_to_wide(pdc_result);
252 *instr = pdc_result[0];
253 spin_unlock_irqrestore(&pdc_lock, flags);
254
255 return retval;
256 }
257
258 /**
259 * pdc_chassis_info - Return chassis information.
260 * @chassis_info: The memory buffer address.
261 * @led_info: The size of the memory buffer address.
262 * @len: The size of the memory buffer address.
263 *
264 * An HVERSION dependent call for returning the chassis information.
265 */
pdc_chassis_info(struct pdc_chassis_info * chassis_info,void * led_info,unsigned long len)266 int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
267 {
268 int retval;
269 unsigned long flags;
270
271 spin_lock_irqsave(&pdc_lock, flags);
272 memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
273 memcpy(&pdc_result2, led_info, len);
274 retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
275 __pa(pdc_result), __pa(pdc_result2), len);
276 memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
277 memcpy(led_info, pdc_result2, len);
278 spin_unlock_irqrestore(&pdc_lock, flags);
279
280 return retval;
281 }
282
283 /**
284 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
285 * @state: state of the machine
286 * @data: value for that state
287 *
288 * Must be correctly formatted or expect system crash
289 */
290 #ifdef CONFIG_64BIT
pdc_pat_chassis_send_log(unsigned long state,unsigned long data)291 int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
292 {
293 int retval = 0;
294 unsigned long flags;
295
296 if (!is_pdc_pat())
297 return -1;
298
299 spin_lock_irqsave(&pdc_lock, flags);
300 retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
301 spin_unlock_irqrestore(&pdc_lock, flags);
302
303 return retval;
304 }
305 #endif
306
307 /**
308 * pdc_chassis_disp - Updates chassis code
309 * @disp: value to show on display
310 */
pdc_chassis_disp(unsigned long disp)311 int pdc_chassis_disp(unsigned long disp)
312 {
313 int retval = 0;
314 unsigned long flags;
315
316 spin_lock_irqsave(&pdc_lock, flags);
317 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
318 spin_unlock_irqrestore(&pdc_lock, flags);
319
320 return retval;
321 }
322
323 /**
324 * __pdc_cpu_rendezvous - Stop currently executing CPU and do not return.
325 */
__pdc_cpu_rendezvous(void)326 int __pdc_cpu_rendezvous(void)
327 {
328 if (is_pdc_pat())
329 return mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_RENDEZVOUS);
330 else
331 return mem_pdc_call(PDC_PROC, 1, 0);
332 }
333
334 /**
335 * pdc_cpu_rendezvous_lock - Lock PDC while transitioning to rendezvous state
336 */
pdc_cpu_rendezvous_lock(void)337 void pdc_cpu_rendezvous_lock(void) __acquires(&pdc_lock)
338 {
339 spin_lock(&pdc_lock);
340 }
341
342 /**
343 * pdc_cpu_rendezvous_unlock - Unlock PDC after reaching rendezvous state
344 */
pdc_cpu_rendezvous_unlock(void)345 void pdc_cpu_rendezvous_unlock(void) __releases(&pdc_lock)
346 {
347 spin_unlock(&pdc_lock);
348 }
349
350 /**
351 * pdc_pat_get_PDC_entrypoint - Get PDC entry point for current CPU
352 * @pdc_entry: pointer to where the PDC entry point should be stored
353 */
pdc_pat_get_PDC_entrypoint(unsigned long * pdc_entry)354 int pdc_pat_get_PDC_entrypoint(unsigned long *pdc_entry)
355 {
356 int retval = 0;
357 unsigned long flags;
358
359 if (!IS_ENABLED(CONFIG_SMP) || !is_pdc_pat()) {
360 *pdc_entry = MEM_PDC;
361 return 0;
362 }
363
364 spin_lock_irqsave(&pdc_lock, flags);
365 retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_PDC_ENTRYPOINT,
366 __pa(pdc_result));
367 *pdc_entry = pdc_result[0];
368 spin_unlock_irqrestore(&pdc_lock, flags);
369
370 return retval;
371 }
372 /**
373 * pdc_chassis_warn - Fetches chassis warnings
374 * @warn: The warning value to be shown
375 */
pdc_chassis_warn(unsigned long * warn)376 int pdc_chassis_warn(unsigned long *warn)
377 {
378 int retval = 0;
379 unsigned long flags;
380
381 spin_lock_irqsave(&pdc_lock, flags);
382 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
383 *warn = pdc_result[0];
384 spin_unlock_irqrestore(&pdc_lock, flags);
385
386 return retval;
387 }
388
pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg * pdc_coproc_info)389 int pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
390 {
391 int ret;
392
393 ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
394 convert_to_wide(pdc_result);
395 pdc_coproc_info->ccr_functional = pdc_result[0];
396 pdc_coproc_info->ccr_present = pdc_result[1];
397 pdc_coproc_info->revision = pdc_result[17];
398 pdc_coproc_info->model = pdc_result[18];
399
400 return ret;
401 }
402
403 /**
404 * pdc_coproc_cfg - To identify coprocessors attached to the processor.
405 * @pdc_coproc_info: Return buffer address.
406 *
407 * This PDC call returns the presence and status of all the coprocessors
408 * attached to the processor.
409 */
pdc_coproc_cfg(struct pdc_coproc_cfg * pdc_coproc_info)410 int pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
411 {
412 int ret;
413 unsigned long flags;
414
415 spin_lock_irqsave(&pdc_lock, flags);
416 ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
417 spin_unlock_irqrestore(&pdc_lock, flags);
418
419 return ret;
420 }
421
422 /**
423 * pdc_iodc_read - Read data from the modules IODC.
424 * @actcnt: The actual number of bytes.
425 * @hpa: The HPA of the module for the iodc read.
426 * @index: The iodc entry point.
427 * @iodc_data: A buffer memory for the iodc options.
428 * @iodc_data_size: Size of the memory buffer.
429 *
430 * This PDC call reads from the IODC of the module specified by the hpa
431 * argument.
432 */
pdc_iodc_read(unsigned long * actcnt,unsigned long hpa,unsigned int index,void * iodc_data,unsigned int iodc_data_size)433 int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
434 void *iodc_data, unsigned int iodc_data_size)
435 {
436 int retval;
437 unsigned long flags;
438
439 spin_lock_irqsave(&pdc_lock, flags);
440 retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa,
441 index, __pa(pdc_result2), iodc_data_size);
442 convert_to_wide(pdc_result);
443 *actcnt = pdc_result[0];
444 memcpy(iodc_data, pdc_result2, iodc_data_size);
445 spin_unlock_irqrestore(&pdc_lock, flags);
446
447 return retval;
448 }
449 EXPORT_SYMBOL(pdc_iodc_read);
450
451 /**
452 * pdc_system_map_find_mods - Locate unarchitected modules.
453 * @pdc_mod_info: Return buffer address.
454 * @mod_path: pointer to dev path structure.
455 * @mod_index: fixed address module index.
456 *
457 * To locate and identify modules which reside at fixed I/O addresses, which
458 * do not self-identify via architected bus walks.
459 */
pdc_system_map_find_mods(struct pdc_system_map_mod_info * pdc_mod_info,struct pdc_module_path * mod_path,long mod_index)460 int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
461 struct pdc_module_path *mod_path, long mod_index)
462 {
463 int retval;
464 unsigned long flags;
465
466 spin_lock_irqsave(&pdc_lock, flags);
467 memcpy(pdc_result2, mod_path, sizeof(*mod_path));
468 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result),
469 __pa(pdc_result2), mod_index);
470 convert_to_wide(pdc_result);
471 memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
472 memcpy(mod_path, pdc_result2, sizeof(*mod_path));
473 spin_unlock_irqrestore(&pdc_lock, flags);
474
475 pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
476 return retval;
477 }
478
479 /**
480 * pdc_system_map_find_addrs - Retrieve additional address ranges.
481 * @pdc_addr_info: Return buffer address.
482 * @mod_index: Fixed address module index.
483 * @addr_index: Address range index.
484 *
485 * Retrieve additional information about subsequent address ranges for modules
486 * with multiple address ranges.
487 */
pdc_system_map_find_addrs(struct pdc_system_map_addr_info * pdc_addr_info,long mod_index,long addr_index)488 int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info,
489 long mod_index, long addr_index)
490 {
491 int retval;
492 unsigned long flags;
493
494 spin_lock_irqsave(&pdc_lock, flags);
495 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
496 mod_index, addr_index);
497 convert_to_wide(pdc_result);
498 memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
499 spin_unlock_irqrestore(&pdc_lock, flags);
500
501 pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
502 return retval;
503 }
504
505 /**
506 * pdc_model_info - Return model information about the processor.
507 * @model: The return buffer.
508 *
509 * Returns the version numbers, identifiers, and capabilities from the processor module.
510 */
pdc_model_info(struct pdc_model * model)511 int pdc_model_info(struct pdc_model *model)
512 {
513 int retval;
514 unsigned long flags;
515
516 spin_lock_irqsave(&pdc_lock, flags);
517 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
518 convert_to_wide(pdc_result);
519 memcpy(model, pdc_result, sizeof(*model));
520 spin_unlock_irqrestore(&pdc_lock, flags);
521
522 return retval;
523 }
524
525 /**
526 * pdc_model_sysmodel - Get the system model name.
527 * @os_id: The operating system ID asked for (an OS_ID_* value)
528 * @name: A char array of at least 81 characters.
529 *
530 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
531 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
532 * on HP/UX.
533 */
pdc_model_sysmodel(unsigned int os_id,char * name)534 int pdc_model_sysmodel(unsigned int os_id, char *name)
535 {
536 int retval;
537 unsigned long flags;
538
539 spin_lock_irqsave(&pdc_lock, flags);
540 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
541 os_id, __pa(name));
542 convert_to_wide(pdc_result);
543
544 if (retval == PDC_OK) {
545 name[pdc_result[0]] = '\0'; /* add trailing '\0' */
546 } else {
547 name[0] = 0;
548 }
549 spin_unlock_irqrestore(&pdc_lock, flags);
550
551 return retval;
552 }
553
554 /**
555 * pdc_model_versions - Identify the version number of each processor.
556 * @versions: The return buffer.
557 * @id: The id of the processor to check.
558 *
559 * Returns the version number for each processor component.
560 *
561 * This comment was here before, but I do not know what it means :( -RB
562 * id: 0 = cpu revision, 1 = boot-rom-version
563 */
pdc_model_versions(unsigned long * versions,int id)564 int pdc_model_versions(unsigned long *versions, int id)
565 {
566 int retval;
567 unsigned long flags;
568
569 spin_lock_irqsave(&pdc_lock, flags);
570 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
571 convert_to_wide(pdc_result);
572 *versions = pdc_result[0];
573 spin_unlock_irqrestore(&pdc_lock, flags);
574
575 return retval;
576 }
577
578 /**
579 * pdc_model_cpuid - Returns the CPU_ID.
580 * @cpu_id: The return buffer.
581 *
582 * Returns the CPU_ID value which uniquely identifies the cpu portion of
583 * the processor module.
584 */
pdc_model_cpuid(unsigned long * cpu_id)585 int pdc_model_cpuid(unsigned long *cpu_id)
586 {
587 int retval;
588 unsigned long flags;
589
590 spin_lock_irqsave(&pdc_lock, flags);
591 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
592 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
593 convert_to_wide(pdc_result);
594 *cpu_id = pdc_result[0];
595 spin_unlock_irqrestore(&pdc_lock, flags);
596
597 return retval;
598 }
599
600 /**
601 * pdc_model_capabilities - Returns the platform capabilities.
602 * @capabilities: The return buffer.
603 *
604 * Returns information about platform support for 32- and/or 64-bit
605 * OSes, IO-PDIR coherency, and virtual aliasing.
606 */
pdc_model_capabilities(unsigned long * capabilities)607 int pdc_model_capabilities(unsigned long *capabilities)
608 {
609 int retval;
610 unsigned long flags;
611
612 spin_lock_irqsave(&pdc_lock, flags);
613 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
614 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
615 convert_to_wide(pdc_result);
616 if (retval == PDC_OK) {
617 *capabilities = pdc_result[0];
618 } else {
619 *capabilities = PDC_MODEL_OS32;
620 }
621 spin_unlock_irqrestore(&pdc_lock, flags);
622
623 return retval;
624 }
625
626 /**
627 * pdc_model_platform_info - Returns machine product and serial number.
628 * @orig_prod_num: Return buffer for original product number.
629 * @current_prod_num: Return buffer for current product number.
630 * @serial_no: Return buffer for serial number.
631 *
632 * Returns strings containing the original and current product numbers and the
633 * serial number of the system.
634 */
pdc_model_platform_info(char * orig_prod_num,char * current_prod_num,char * serial_no)635 int pdc_model_platform_info(char *orig_prod_num, char *current_prod_num,
636 char *serial_no)
637 {
638 int retval;
639 unsigned long flags;
640
641 spin_lock_irqsave(&pdc_lock, flags);
642 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_GET_PLATFORM_INFO,
643 __pa(orig_prod_num), __pa(current_prod_num), __pa(serial_no));
644 convert_to_wide(pdc_result);
645 spin_unlock_irqrestore(&pdc_lock, flags);
646
647 return retval;
648 }
649
650 /**
651 * pdc_cache_info - Return cache and TLB information.
652 * @cache_info: The return buffer.
653 *
654 * Returns information about the processor's cache and TLB.
655 */
pdc_cache_info(struct pdc_cache_info * cache_info)656 int pdc_cache_info(struct pdc_cache_info *cache_info)
657 {
658 int retval;
659 unsigned long flags;
660
661 spin_lock_irqsave(&pdc_lock, flags);
662 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
663 convert_to_wide(pdc_result);
664 memcpy(cache_info, pdc_result, sizeof(*cache_info));
665 spin_unlock_irqrestore(&pdc_lock, flags);
666
667 return retval;
668 }
669
670 /**
671 * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
672 * @space_bits: Should be 0, if not, bad mojo!
673 *
674 * Returns information about Space ID hashing.
675 */
pdc_spaceid_bits(unsigned long * space_bits)676 int pdc_spaceid_bits(unsigned long *space_bits)
677 {
678 int retval;
679 unsigned long flags;
680
681 spin_lock_irqsave(&pdc_lock, flags);
682 pdc_result[0] = 0;
683 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
684 convert_to_wide(pdc_result);
685 *space_bits = pdc_result[0];
686 spin_unlock_irqrestore(&pdc_lock, flags);
687
688 return retval;
689 }
690
691 /**
692 * pdc_btlb_info - Return block TLB information.
693 * @btlb: The return buffer.
694 *
695 * Returns information about the hardware Block TLB.
696 */
pdc_btlb_info(struct pdc_btlb_info * btlb)697 int pdc_btlb_info(struct pdc_btlb_info *btlb)
698 {
699 int retval;
700 unsigned long flags;
701
702 if (IS_ENABLED(CONFIG_PA20))
703 return PDC_BAD_PROC;
704
705 spin_lock_irqsave(&pdc_lock, flags);
706 retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
707 memcpy(btlb, pdc_result, sizeof(*btlb));
708 spin_unlock_irqrestore(&pdc_lock, flags);
709
710 if(retval < 0) {
711 btlb->max_size = 0;
712 }
713 return retval;
714 }
715
pdc_btlb_insert(unsigned long long vpage,unsigned long physpage,unsigned long len,unsigned long entry_info,unsigned long slot)716 int pdc_btlb_insert(unsigned long long vpage, unsigned long physpage, unsigned long len,
717 unsigned long entry_info, unsigned long slot)
718 {
719 int retval;
720 unsigned long flags;
721
722 if (IS_ENABLED(CONFIG_PA20))
723 return PDC_BAD_PROC;
724
725 spin_lock_irqsave(&pdc_lock, flags);
726 retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INSERT, (unsigned long) (vpage >> 32),
727 (unsigned long) vpage, physpage, len, entry_info, slot);
728 spin_unlock_irqrestore(&pdc_lock, flags);
729 return retval;
730 }
731
pdc_btlb_purge_all(void)732 int pdc_btlb_purge_all(void)
733 {
734 int retval;
735 unsigned long flags;
736
737 if (IS_ENABLED(CONFIG_PA20))
738 return PDC_BAD_PROC;
739
740 spin_lock_irqsave(&pdc_lock, flags);
741 retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_PURGE_ALL);
742 spin_unlock_irqrestore(&pdc_lock, flags);
743 return retval;
744 }
745
746 /**
747 * pdc_mem_map_hpa - Find fixed module information.
748 * @address: The return buffer
749 * @mod_path: pointer to dev path structure.
750 *
751 * This call was developed for S700 workstations to allow the kernel to find
752 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
753 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
754 * call.
755 *
756 * This call is supported by all existing S700 workstations (up to Gecko).
757 */
pdc_mem_map_hpa(struct pdc_memory_map * address,struct pdc_module_path * mod_path)758 int pdc_mem_map_hpa(struct pdc_memory_map *address,
759 struct pdc_module_path *mod_path)
760 {
761 int retval;
762 unsigned long flags;
763
764 if (IS_ENABLED(CONFIG_PA20))
765 return PDC_BAD_PROC;
766
767 spin_lock_irqsave(&pdc_lock, flags);
768 memcpy(pdc_result2, mod_path, sizeof(*mod_path));
769 retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
770 __pa(pdc_result2));
771 memcpy(address, pdc_result, sizeof(*address));
772 spin_unlock_irqrestore(&pdc_lock, flags);
773
774 return retval;
775 }
776
777 /**
778 * pdc_lan_station_id - Get the LAN address.
779 * @lan_addr: The return buffer.
780 * @hpa: The network device HPA.
781 *
782 * Get the LAN station address when it is not directly available from the LAN hardware.
783 */
pdc_lan_station_id(char * lan_addr,unsigned long hpa)784 int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
785 {
786 int retval;
787 unsigned long flags;
788
789 spin_lock_irqsave(&pdc_lock, flags);
790 retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
791 __pa(pdc_result), hpa);
792 if (retval < 0) {
793 /* FIXME: else read MAC from NVRAM */
794 memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
795 } else {
796 memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
797 }
798 spin_unlock_irqrestore(&pdc_lock, flags);
799
800 return retval;
801 }
802 EXPORT_SYMBOL(pdc_lan_station_id);
803
804 /**
805 * pdc_stable_read - Read data from Stable Storage.
806 * @staddr: Stable Storage address to access.
807 * @memaddr: The memory address where Stable Storage data shall be copied.
808 * @count: number of bytes to transfer. count is multiple of 4.
809 *
810 * This PDC call reads from the Stable Storage address supplied in staddr
811 * and copies count bytes to the memory address memaddr.
812 * The call will fail if staddr+count > PDC_STABLE size.
813 */
pdc_stable_read(unsigned long staddr,void * memaddr,unsigned long count)814 int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
815 {
816 int retval;
817 unsigned long flags;
818
819 spin_lock_irqsave(&pdc_lock, flags);
820 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
821 __pa(pdc_result), count);
822 convert_to_wide(pdc_result);
823 memcpy(memaddr, pdc_result, count);
824 spin_unlock_irqrestore(&pdc_lock, flags);
825
826 return retval;
827 }
828 EXPORT_SYMBOL(pdc_stable_read);
829
830 /**
831 * pdc_stable_write - Write data to Stable Storage.
832 * @staddr: Stable Storage address to access.
833 * @memaddr: The memory address where Stable Storage data shall be read from.
834 * @count: number of bytes to transfer. count is multiple of 4.
835 *
836 * This PDC call reads count bytes from the supplied memaddr address,
837 * and copies count bytes to the Stable Storage address staddr.
838 * The call will fail if staddr+count > PDC_STABLE size.
839 */
pdc_stable_write(unsigned long staddr,void * memaddr,unsigned long count)840 int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
841 {
842 int retval;
843 unsigned long flags;
844
845 spin_lock_irqsave(&pdc_lock, flags);
846 memcpy(pdc_result, memaddr, count);
847 convert_to_wide(pdc_result);
848 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
849 __pa(pdc_result), count);
850 spin_unlock_irqrestore(&pdc_lock, flags);
851
852 return retval;
853 }
854 EXPORT_SYMBOL(pdc_stable_write);
855
856 /**
857 * pdc_stable_get_size - Get Stable Storage size in bytes.
858 * @size: pointer where the size will be stored.
859 *
860 * This PDC call returns the number of bytes in the processor's Stable
861 * Storage, which is the number of contiguous bytes implemented in Stable
862 * Storage starting from staddr=0. size in an unsigned 64-bit integer
863 * which is a multiple of four.
864 */
pdc_stable_get_size(unsigned long * size)865 int pdc_stable_get_size(unsigned long *size)
866 {
867 int retval;
868 unsigned long flags;
869
870 spin_lock_irqsave(&pdc_lock, flags);
871 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
872 *size = pdc_result[0];
873 spin_unlock_irqrestore(&pdc_lock, flags);
874
875 return retval;
876 }
877 EXPORT_SYMBOL(pdc_stable_get_size);
878
879 /**
880 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
881 *
882 * This PDC call is meant to be used to check the integrity of the current
883 * contents of Stable Storage.
884 */
pdc_stable_verify_contents(void)885 int pdc_stable_verify_contents(void)
886 {
887 int retval;
888 unsigned long flags;
889
890 spin_lock_irqsave(&pdc_lock, flags);
891 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
892 spin_unlock_irqrestore(&pdc_lock, flags);
893
894 return retval;
895 }
896 EXPORT_SYMBOL(pdc_stable_verify_contents);
897
898 /**
899 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
900 * the validity indicator.
901 *
902 * This PDC call will erase all contents of Stable Storage. Use with care!
903 */
pdc_stable_initialize(void)904 int pdc_stable_initialize(void)
905 {
906 int retval;
907 unsigned long flags;
908
909 spin_lock_irqsave(&pdc_lock, flags);
910 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
911 spin_unlock_irqrestore(&pdc_lock, flags);
912
913 return retval;
914 }
915 EXPORT_SYMBOL(pdc_stable_initialize);
916
917 /**
918 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
919 * @hwpath: fully bc.mod style path to the device.
920 * @initiator: the array to return the result into
921 *
922 * Get the SCSI operational parameters from PDC.
923 * Needed since HPUX never used BIOS or symbios card NVRAM.
924 * Most ncr/sym cards won't have an entry and just use whatever
925 * capabilities of the card are (eg Ultra, LVD). But there are
926 * several cases where it's useful:
927 * o set SCSI id for Multi-initiator clusters,
928 * o cable too long (ie SE scsi 10Mhz won't support 6m length),
929 * o bus width exported is less than what the interface chip supports.
930 */
pdc_get_initiator(struct hardware_path * hwpath,struct pdc_initiator * initiator)931 int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
932 {
933 int retval;
934 unsigned long flags;
935
936 spin_lock_irqsave(&pdc_lock, flags);
937
938 /* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
939 #define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
940 strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
941
942 retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR,
943 __pa(pdc_result), __pa(hwpath));
944 if (retval < PDC_OK)
945 goto out;
946
947 if (pdc_result[0] < 16) {
948 initiator->host_id = pdc_result[0];
949 } else {
950 initiator->host_id = -1;
951 }
952
953 /*
954 * Sprockets and Piranha return 20 or 40 (MT/s). Prelude returns
955 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
956 */
957 switch (pdc_result[1]) {
958 case 1: initiator->factor = 50; break;
959 case 2: initiator->factor = 25; break;
960 case 5: initiator->factor = 12; break;
961 case 25: initiator->factor = 10; break;
962 case 20: initiator->factor = 12; break;
963 case 40: initiator->factor = 10; break;
964 default: initiator->factor = -1; break;
965 }
966
967 if (IS_SPROCKETS()) {
968 initiator->width = pdc_result[4];
969 initiator->mode = pdc_result[5];
970 } else {
971 initiator->width = -1;
972 initiator->mode = -1;
973 }
974
975 out:
976 spin_unlock_irqrestore(&pdc_lock, flags);
977
978 return (retval >= PDC_OK);
979 }
980 EXPORT_SYMBOL(pdc_get_initiator);
981
982
983 /**
984 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
985 * @num_entries: The return value.
986 * @hpa: The HPA for the device.
987 *
988 * This PDC function returns the number of entries in the specified cell's
989 * interrupt table.
990 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
991 */
pdc_pci_irt_size(unsigned long * num_entries,unsigned long hpa)992 int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
993 {
994 int retval;
995 unsigned long flags;
996
997 spin_lock_irqsave(&pdc_lock, flags);
998 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE,
999 __pa(pdc_result), hpa);
1000 convert_to_wide(pdc_result);
1001 *num_entries = pdc_result[0];
1002 spin_unlock_irqrestore(&pdc_lock, flags);
1003
1004 return retval;
1005 }
1006
1007 /**
1008 * pdc_pci_irt - Get the PCI interrupt routing table.
1009 * @num_entries: The number of entries in the table.
1010 * @hpa: The Hard Physical Address of the device.
1011 * @tbl:
1012 *
1013 * Get the PCI interrupt routing table for the device at the given HPA.
1014 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
1015 */
pdc_pci_irt(unsigned long num_entries,unsigned long hpa,void * tbl)1016 int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
1017 {
1018 int retval;
1019 unsigned long flags;
1020
1021 BUG_ON((unsigned long)tbl & 0x7);
1022
1023 spin_lock_irqsave(&pdc_lock, flags);
1024 pdc_result[0] = num_entries;
1025 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL,
1026 __pa(pdc_result), hpa, __pa(tbl));
1027 spin_unlock_irqrestore(&pdc_lock, flags);
1028
1029 return retval;
1030 }
1031
1032
1033 #if 0 /* UNTEST CODE - left here in case someone needs it */
1034
1035 /**
1036 * pdc_pci_config_read - read PCI config space.
1037 * @hpa: Token from PDC to indicate which PCI device
1038 * @cfg_addr: Configuration space address to read from
1039 *
1040 * Read PCI Configuration space *before* linux PCI subsystem is running.
1041 */
1042 unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
1043 {
1044 int retval;
1045 unsigned long flags;
1046
1047 spin_lock_irqsave(&pdc_lock, flags);
1048 pdc_result[0] = 0;
1049 pdc_result[1] = 0;
1050 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG,
1051 __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
1052 spin_unlock_irqrestore(&pdc_lock, flags);
1053
1054 return retval ? ~0 : (unsigned int) pdc_result[0];
1055 }
1056
1057
1058 /**
1059 * pdc_pci_config_write - read PCI config space.
1060 * @hpa: Token from PDC to indicate which PCI device
1061 * @cfg_addr: Configuration space address to write
1062 * @val: Value we want in the 32-bit register
1063 *
1064 * Write PCI Configuration space *before* linux PCI subsystem is running.
1065 */
1066 void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
1067 {
1068 int retval;
1069 unsigned long flags;
1070
1071 spin_lock_irqsave(&pdc_lock, flags);
1072 pdc_result[0] = 0;
1073 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG,
1074 __pa(pdc_result), hpa,
1075 cfg_addr&~3UL, 4UL, (unsigned long) val);
1076 spin_unlock_irqrestore(&pdc_lock, flags);
1077
1078 return retval;
1079 }
1080 #endif /* UNTESTED CODE */
1081
1082 /**
1083 * pdc_tod_read - Read the Time-Of-Day clock.
1084 * @tod: The return buffer:
1085 *
1086 * Read the Time-Of-Day clock
1087 */
pdc_tod_read(struct pdc_tod * tod)1088 int pdc_tod_read(struct pdc_tod *tod)
1089 {
1090 int retval;
1091 unsigned long flags;
1092
1093 spin_lock_irqsave(&pdc_lock, flags);
1094 retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
1095 convert_to_wide(pdc_result);
1096 memcpy(tod, pdc_result, sizeof(*tod));
1097 spin_unlock_irqrestore(&pdc_lock, flags);
1098
1099 return retval;
1100 }
1101 EXPORT_SYMBOL(pdc_tod_read);
1102
pdc_mem_pdt_info(struct pdc_mem_retinfo * rinfo)1103 int pdc_mem_pdt_info(struct pdc_mem_retinfo *rinfo)
1104 {
1105 int retval;
1106 unsigned long flags;
1107
1108 spin_lock_irqsave(&pdc_lock, flags);
1109 retval = mem_pdc_call(PDC_MEM, PDC_MEM_MEMINFO, __pa(pdc_result), 0);
1110 convert_to_wide(pdc_result);
1111 memcpy(rinfo, pdc_result, sizeof(*rinfo));
1112 spin_unlock_irqrestore(&pdc_lock, flags);
1113
1114 return retval;
1115 }
1116
pdc_mem_pdt_read_entries(struct pdc_mem_read_pdt * pret,unsigned long * pdt_entries_ptr)1117 int pdc_mem_pdt_read_entries(struct pdc_mem_read_pdt *pret,
1118 unsigned long *pdt_entries_ptr)
1119 {
1120 int retval;
1121 unsigned long flags;
1122
1123 spin_lock_irqsave(&pdc_lock, flags);
1124 retval = mem_pdc_call(PDC_MEM, PDC_MEM_READ_PDT, __pa(pdc_result),
1125 __pa(pdt_entries_ptr));
1126 if (retval == PDC_OK) {
1127 convert_to_wide(pdc_result);
1128 memcpy(pret, pdc_result, sizeof(*pret));
1129 }
1130 spin_unlock_irqrestore(&pdc_lock, flags);
1131
1132 #ifdef CONFIG_64BIT
1133 /*
1134 * 64-bit kernels should not call this PDT function in narrow mode.
1135 * The pdt_entries_ptr array above will now contain 32-bit values
1136 */
1137 if (WARN_ON_ONCE((retval == PDC_OK) && parisc_narrow_firmware))
1138 return PDC_ERROR;
1139 #endif
1140
1141 return retval;
1142 }
1143
1144 /**
1145 * pdc_pim_toc11 - Fetch TOC PIM 1.1 data from firmware.
1146 * @ret: pointer to return buffer
1147 */
pdc_pim_toc11(struct pdc_toc_pim_11 * ret)1148 int pdc_pim_toc11(struct pdc_toc_pim_11 *ret)
1149 {
1150 int retval;
1151 unsigned long flags;
1152
1153 spin_lock_irqsave(&pdc_lock, flags);
1154 retval = mem_pdc_call(PDC_PIM, PDC_PIM_TOC, __pa(pdc_result),
1155 __pa(ret), sizeof(*ret));
1156 spin_unlock_irqrestore(&pdc_lock, flags);
1157 return retval;
1158 }
1159
1160 /**
1161 * pdc_pim_toc20 - Fetch TOC PIM 2.0 data from firmware.
1162 * @ret: pointer to return buffer
1163 */
pdc_pim_toc20(struct pdc_toc_pim_20 * ret)1164 int pdc_pim_toc20(struct pdc_toc_pim_20 *ret)
1165 {
1166 int retval;
1167 unsigned long flags;
1168
1169 spin_lock_irqsave(&pdc_lock, flags);
1170 retval = mem_pdc_call(PDC_PIM, PDC_PIM_TOC, __pa(pdc_result),
1171 __pa(ret), sizeof(*ret));
1172 spin_unlock_irqrestore(&pdc_lock, flags);
1173 return retval;
1174 }
1175
1176 /**
1177 * pdc_tod_set - Set the Time-Of-Day clock.
1178 * @sec: The number of seconds since epoch.
1179 * @usec: The number of micro seconds.
1180 *
1181 * Set the Time-Of-Day clock.
1182 */
pdc_tod_set(unsigned long sec,unsigned long usec)1183 int pdc_tod_set(unsigned long sec, unsigned long usec)
1184 {
1185 int retval;
1186 unsigned long flags;
1187
1188 spin_lock_irqsave(&pdc_lock, flags);
1189 retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
1190 spin_unlock_irqrestore(&pdc_lock, flags);
1191
1192 return retval;
1193 }
1194 EXPORT_SYMBOL(pdc_tod_set);
1195
1196 #ifdef CONFIG_64BIT
pdc_mem_mem_table(struct pdc_memory_table_raddr * r_addr,struct pdc_memory_table * tbl,unsigned long entries)1197 int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
1198 struct pdc_memory_table *tbl, unsigned long entries)
1199 {
1200 int retval;
1201 unsigned long flags;
1202
1203 spin_lock_irqsave(&pdc_lock, flags);
1204 retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
1205 convert_to_wide(pdc_result);
1206 memcpy(r_addr, pdc_result, sizeof(*r_addr));
1207 memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
1208 spin_unlock_irqrestore(&pdc_lock, flags);
1209
1210 return retval;
1211 }
1212 #endif /* CONFIG_64BIT */
1213
1214 /* FIXME: Is this pdc used? I could not find type reference to ftc_bitmap
1215 * so I guessed at unsigned long. Someone who knows what this does, can fix
1216 * it later. :)
1217 */
pdc_do_firm_test_reset(unsigned long ftc_bitmap)1218 int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1219 {
1220 int retval;
1221 unsigned long flags;
1222
1223 spin_lock_irqsave(&pdc_lock, flags);
1224 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1225 PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1226 spin_unlock_irqrestore(&pdc_lock, flags);
1227
1228 return retval;
1229 }
1230
1231 /*
1232 * pdc_do_reset - Reset the system.
1233 *
1234 * Reset the system.
1235 */
pdc_do_reset(void)1236 int pdc_do_reset(void)
1237 {
1238 int retval;
1239 unsigned long flags;
1240
1241 spin_lock_irqsave(&pdc_lock, flags);
1242 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1243 spin_unlock_irqrestore(&pdc_lock, flags);
1244
1245 return retval;
1246 }
1247
1248 /*
1249 * pdc_soft_power_info - Enable soft power switch.
1250 * @power_reg: address of soft power register
1251 *
1252 * Return the absolute address of the soft power switch register
1253 */
pdc_soft_power_info(unsigned long * power_reg)1254 int __init pdc_soft_power_info(unsigned long *power_reg)
1255 {
1256 int retval;
1257 unsigned long flags;
1258
1259 *power_reg = (unsigned long) (-1);
1260
1261 spin_lock_irqsave(&pdc_lock, flags);
1262 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1263 if (retval == PDC_OK) {
1264 convert_to_wide(pdc_result);
1265 *power_reg = f_extend(pdc_result[0]);
1266 }
1267 spin_unlock_irqrestore(&pdc_lock, flags);
1268
1269 return retval;
1270 }
1271
1272 /*
1273 * pdc_soft_power_button{_panic} - Control the soft power button behaviour
1274 * @sw_control: 0 for hardware control, 1 for software control
1275 *
1276 *
1277 * This PDC function places the soft power button under software or
1278 * hardware control.
1279 * Under software control the OS may control to when to allow to shut
1280 * down the system. Under hardware control pressing the power button
1281 * powers off the system immediately.
1282 *
1283 * The _panic version relies on spin_trylock to prevent deadlock
1284 * on panic path.
1285 */
pdc_soft_power_button(int sw_control)1286 int pdc_soft_power_button(int sw_control)
1287 {
1288 int retval;
1289 unsigned long flags;
1290
1291 spin_lock_irqsave(&pdc_lock, flags);
1292 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1293 spin_unlock_irqrestore(&pdc_lock, flags);
1294
1295 return retval;
1296 }
1297
pdc_soft_power_button_panic(int sw_control)1298 int pdc_soft_power_button_panic(int sw_control)
1299 {
1300 int retval;
1301 unsigned long flags;
1302
1303 if (!spin_trylock_irqsave(&pdc_lock, flags)) {
1304 pr_emerg("Couldn't enable soft power button\n");
1305 return -EBUSY; /* ignored by the panic notifier */
1306 }
1307
1308 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1309 spin_unlock_irqrestore(&pdc_lock, flags);
1310
1311 return retval;
1312 }
1313
1314 /*
1315 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1316 * Primarily a problem on T600 (which parisc-linux doesn't support) but
1317 * who knows what other platform firmware might do with this OS "hook".
1318 */
pdc_io_reset(void)1319 void pdc_io_reset(void)
1320 {
1321 unsigned long flags;
1322
1323 spin_lock_irqsave(&pdc_lock, flags);
1324 mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1325 spin_unlock_irqrestore(&pdc_lock, flags);
1326 }
1327
1328 /*
1329 * pdc_io_reset_devices - Hack to Stop USB controller
1330 *
1331 * If PDC used the usb controller, the usb controller
1332 * is still running and will crash the machines during iommu
1333 * setup, because of still running DMA. This PDC call
1334 * stops the USB controller.
1335 * Normally called after calling pdc_io_reset().
1336 */
pdc_io_reset_devices(void)1337 void pdc_io_reset_devices(void)
1338 {
1339 unsigned long flags;
1340
1341 spin_lock_irqsave(&pdc_lock, flags);
1342 mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1343 spin_unlock_irqrestore(&pdc_lock, flags);
1344 }
1345
1346 #endif /* defined(BOOTLOADER) */
1347
1348 /* locked by pdc_lock */
1349 static char iodc_dbuf[4096] __page_aligned_bss;
1350
1351 /**
1352 * pdc_iodc_print - Console print using IODC.
1353 * @str: the string to output.
1354 * @count: length of str
1355 *
1356 * Note that only these special chars are architected for console IODC io:
1357 * BEL, BS, CR, and LF. Others are passed through.
1358 * Since the HP console requires CR+LF to perform a 'newline', we translate
1359 * "\n" to "\r\n".
1360 */
pdc_iodc_print(const unsigned char * str,unsigned count)1361 int pdc_iodc_print(const unsigned char *str, unsigned count)
1362 {
1363 unsigned int i, found = 0;
1364 unsigned long flags;
1365
1366 count = min_t(unsigned int, count, sizeof(iodc_dbuf));
1367
1368 spin_lock_irqsave(&pdc_lock, flags);
1369 for (i = 0; i < count;) {
1370 switch(str[i]) {
1371 case '\n':
1372 iodc_dbuf[i+0] = '\r';
1373 iodc_dbuf[i+1] = '\n';
1374 i += 2;
1375 found = 1;
1376 goto print;
1377 default:
1378 iodc_dbuf[i] = str[i];
1379 i++;
1380 break;
1381 }
1382 }
1383
1384 print:
1385 real32_call(PAGE0->mem_cons.iodc_io,
1386 (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1387 PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1388 __pa(pdc_result), 0, __pa(iodc_dbuf), i, 0);
1389 spin_unlock_irqrestore(&pdc_lock, flags);
1390
1391 return i - found;
1392 }
1393
1394 #if !defined(BOOTLOADER)
1395 /**
1396 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1397 *
1398 * Read a character (non-blocking) from the PDC console, returns -1 if
1399 * key is not present.
1400 */
pdc_iodc_getc(void)1401 int pdc_iodc_getc(void)
1402 {
1403 int ch;
1404 int status;
1405 unsigned long flags;
1406
1407 /* Bail if no console input device. */
1408 if (!PAGE0->mem_kbd.iodc_io)
1409 return 0;
1410
1411 /* wait for a keyboard (rs232)-input */
1412 spin_lock_irqsave(&pdc_lock, flags);
1413 real32_call(PAGE0->mem_kbd.iodc_io,
1414 (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1415 PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers),
1416 __pa(pdc_result), 0, __pa(iodc_dbuf), 1, 0);
1417
1418 ch = *iodc_dbuf;
1419 /* like convert_to_wide() but for first return value only: */
1420 status = *(int *)&pdc_result;
1421 spin_unlock_irqrestore(&pdc_lock, flags);
1422
1423 if (status == 0)
1424 return -1;
1425
1426 return ch;
1427 }
1428
pdc_sti_call(unsigned long func,unsigned long flags,unsigned long inptr,unsigned long outputr,unsigned long glob_cfg,int do_call64)1429 int pdc_sti_call(unsigned long func, unsigned long flags,
1430 unsigned long inptr, unsigned long outputr,
1431 unsigned long glob_cfg, int do_call64)
1432 {
1433 int retval = 0;
1434 unsigned long irqflags;
1435
1436 spin_lock_irqsave(&pdc_lock, irqflags);
1437 if (IS_ENABLED(CONFIG_64BIT) && do_call64) {
1438 #ifdef CONFIG_64BIT
1439 retval = real64_call(func, flags, inptr, outputr, glob_cfg);
1440 #else
1441 WARN_ON(1);
1442 #endif
1443 } else {
1444 retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1445 }
1446 spin_unlock_irqrestore(&pdc_lock, irqflags);
1447
1448 return retval;
1449 }
1450 EXPORT_SYMBOL(pdc_sti_call);
1451
1452 #ifdef CONFIG_64BIT
1453 /**
1454 * pdc_pat_cell_get_number - Returns the cell number.
1455 * @cell_info: The return buffer.
1456 *
1457 * This PDC call returns the cell number of the cell from which the call
1458 * is made.
1459 */
pdc_pat_cell_get_number(struct pdc_pat_cell_num * cell_info)1460 int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1461 {
1462 int retval;
1463 unsigned long flags;
1464
1465 spin_lock_irqsave(&pdc_lock, flags);
1466 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1467 memcpy(cell_info, pdc_result, sizeof(*cell_info));
1468 spin_unlock_irqrestore(&pdc_lock, flags);
1469
1470 return retval;
1471 }
1472
1473 /**
1474 * pdc_pat_cell_module - Retrieve the cell's module information.
1475 * @actcnt: The number of bytes written to mem_addr.
1476 * @ploc: The physical location.
1477 * @mod: The module index.
1478 * @view_type: The view of the address type.
1479 * @mem_addr: The return buffer.
1480 *
1481 * This PDC call returns information about each module attached to the cell
1482 * at the specified location.
1483 */
pdc_pat_cell_module(unsigned long * actcnt,unsigned long ploc,unsigned long mod,unsigned long view_type,void * mem_addr)1484 int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1485 unsigned long view_type, void *mem_addr)
1486 {
1487 int retval;
1488 unsigned long flags;
1489 static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1490
1491 spin_lock_irqsave(&pdc_lock, flags);
1492 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result),
1493 ploc, mod, view_type, __pa(&result));
1494 if(!retval) {
1495 *actcnt = pdc_result[0];
1496 memcpy(mem_addr, &result, *actcnt);
1497 }
1498 spin_unlock_irqrestore(&pdc_lock, flags);
1499
1500 return retval;
1501 }
1502
1503 /**
1504 * pdc_pat_cell_info - Retrieve the cell's information.
1505 * @info: The pointer to a struct pdc_pat_cell_info_rtn_block.
1506 * @actcnt: The number of bytes which should be written to info.
1507 * @offset: offset of the structure.
1508 * @cell_number: The cell number which should be asked, or -1 for current cell.
1509 *
1510 * This PDC call returns information about the given cell (or all cells).
1511 */
pdc_pat_cell_info(struct pdc_pat_cell_info_rtn_block * info,unsigned long * actcnt,unsigned long offset,unsigned long cell_number)1512 int pdc_pat_cell_info(struct pdc_pat_cell_info_rtn_block *info,
1513 unsigned long *actcnt, unsigned long offset,
1514 unsigned long cell_number)
1515 {
1516 int retval;
1517 unsigned long flags;
1518 struct pdc_pat_cell_info_rtn_block result;
1519
1520 spin_lock_irqsave(&pdc_lock, flags);
1521 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_INFO,
1522 __pa(pdc_result), __pa(&result), *actcnt,
1523 offset, cell_number);
1524 if (!retval) {
1525 *actcnt = pdc_result[0];
1526 memcpy(info, &result, *actcnt);
1527 }
1528 spin_unlock_irqrestore(&pdc_lock, flags);
1529
1530 return retval;
1531 }
1532
1533 /**
1534 * pdc_pat_cpu_get_number - Retrieve the cpu number.
1535 * @cpu_info: The return buffer.
1536 * @hpa: The Hard Physical Address of the CPU.
1537 *
1538 * Retrieve the cpu number for the cpu at the specified HPA.
1539 */
pdc_pat_cpu_get_number(struct pdc_pat_cpu_num * cpu_info,unsigned long hpa)1540 int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, unsigned long hpa)
1541 {
1542 int retval;
1543 unsigned long flags;
1544
1545 spin_lock_irqsave(&pdc_lock, flags);
1546 retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1547 __pa(&pdc_result), hpa);
1548 memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1549 spin_unlock_irqrestore(&pdc_lock, flags);
1550
1551 return retval;
1552 }
1553
1554 /**
1555 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1556 * @num_entries: The return value.
1557 * @cell_num: The target cell.
1558 *
1559 * This PDC function returns the number of entries in the specified cell's
1560 * interrupt table.
1561 */
pdc_pat_get_irt_size(unsigned long * num_entries,unsigned long cell_num)1562 int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1563 {
1564 int retval;
1565 unsigned long flags;
1566
1567 spin_lock_irqsave(&pdc_lock, flags);
1568 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1569 __pa(pdc_result), cell_num);
1570 *num_entries = pdc_result[0];
1571 spin_unlock_irqrestore(&pdc_lock, flags);
1572
1573 return retval;
1574 }
1575
1576 /**
1577 * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1578 * @r_addr: The return buffer.
1579 * @cell_num: The target cell.
1580 *
1581 * This PDC function returns the actual interrupt table for the specified cell.
1582 */
pdc_pat_get_irt(void * r_addr,unsigned long cell_num)1583 int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1584 {
1585 int retval;
1586 unsigned long flags;
1587
1588 spin_lock_irqsave(&pdc_lock, flags);
1589 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1590 __pa(r_addr), cell_num);
1591 spin_unlock_irqrestore(&pdc_lock, flags);
1592
1593 return retval;
1594 }
1595
1596 /**
1597 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1598 * @actual_len: The return buffer.
1599 * @mem_addr: Pointer to the memory buffer.
1600 * @count: The number of bytes to read from the buffer.
1601 * @offset: The offset with respect to the beginning of the buffer.
1602 *
1603 */
pdc_pat_pd_get_addr_map(unsigned long * actual_len,void * mem_addr,unsigned long count,unsigned long offset)1604 int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr,
1605 unsigned long count, unsigned long offset)
1606 {
1607 int retval;
1608 unsigned long flags;
1609
1610 spin_lock_irqsave(&pdc_lock, flags);
1611 retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result),
1612 __pa(pdc_result2), count, offset);
1613 *actual_len = pdc_result[0];
1614 memcpy(mem_addr, pdc_result2, *actual_len);
1615 spin_unlock_irqrestore(&pdc_lock, flags);
1616
1617 return retval;
1618 }
1619
1620 /**
1621 * pdc_pat_pd_get_pdc_revisions - Retrieve PDC interface revisions.
1622 * @legacy_rev: The legacy revision.
1623 * @pat_rev: The PAT revision.
1624 * @pdc_cap: The PDC capabilities.
1625 *
1626 */
pdc_pat_pd_get_pdc_revisions(unsigned long * legacy_rev,unsigned long * pat_rev,unsigned long * pdc_cap)1627 int pdc_pat_pd_get_pdc_revisions(unsigned long *legacy_rev,
1628 unsigned long *pat_rev, unsigned long *pdc_cap)
1629 {
1630 int retval;
1631 unsigned long flags;
1632
1633 spin_lock_irqsave(&pdc_lock, flags);
1634 retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_PDC_INTERF_REV,
1635 __pa(pdc_result));
1636 if (retval == PDC_OK) {
1637 *legacy_rev = pdc_result[0];
1638 *pat_rev = pdc_result[1];
1639 *pdc_cap = pdc_result[2];
1640 }
1641 spin_unlock_irqrestore(&pdc_lock, flags);
1642
1643 return retval;
1644 }
1645
1646
1647 /**
1648 * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1649 * @pci_addr: PCI configuration space address for which the read request is being made.
1650 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4.
1651 * @mem_addr: Pointer to return memory buffer.
1652 *
1653 */
pdc_pat_io_pci_cfg_read(unsigned long pci_addr,int pci_size,u32 * mem_addr)1654 int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1655 {
1656 int retval;
1657 unsigned long flags;
1658
1659 spin_lock_irqsave(&pdc_lock, flags);
1660 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1661 __pa(pdc_result), pci_addr, pci_size);
1662 switch(pci_size) {
1663 case 1: *(u8 *) mem_addr = (u8) pdc_result[0]; break;
1664 case 2: *(u16 *)mem_addr = (u16) pdc_result[0]; break;
1665 case 4: *(u32 *)mem_addr = (u32) pdc_result[0]; break;
1666 }
1667 spin_unlock_irqrestore(&pdc_lock, flags);
1668
1669 return retval;
1670 }
1671
1672 /**
1673 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1674 * @pci_addr: PCI configuration space address for which the write request is being made.
1675 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4.
1676 * @val: Pointer to 1, 2, or 4 byte value in low order end of argument to be
1677 * written to PCI Config space.
1678 *
1679 */
pdc_pat_io_pci_cfg_write(unsigned long pci_addr,int pci_size,u32 val)1680 int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1681 {
1682 int retval;
1683 unsigned long flags;
1684
1685 spin_lock_irqsave(&pdc_lock, flags);
1686 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1687 pci_addr, pci_size, val);
1688 spin_unlock_irqrestore(&pdc_lock, flags);
1689
1690 return retval;
1691 }
1692
1693 /**
1694 * pdc_pat_mem_pdt_info - Retrieve information about page deallocation table
1695 * @rinfo: memory pdt information
1696 *
1697 */
pdc_pat_mem_pdt_info(struct pdc_pat_mem_retinfo * rinfo)1698 int pdc_pat_mem_pdt_info(struct pdc_pat_mem_retinfo *rinfo)
1699 {
1700 int retval;
1701 unsigned long flags;
1702
1703 spin_lock_irqsave(&pdc_lock, flags);
1704 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_INFO,
1705 __pa(&pdc_result));
1706 if (retval == PDC_OK)
1707 memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1708 spin_unlock_irqrestore(&pdc_lock, flags);
1709
1710 return retval;
1711 }
1712
1713 /**
1714 * pdc_pat_mem_pdt_cell_info - Retrieve information about page deallocation
1715 * table of a cell
1716 * @rinfo: memory pdt information
1717 * @cell: cell number
1718 *
1719 */
pdc_pat_mem_pdt_cell_info(struct pdc_pat_mem_cell_pdt_retinfo * rinfo,unsigned long cell)1720 int pdc_pat_mem_pdt_cell_info(struct pdc_pat_mem_cell_pdt_retinfo *rinfo,
1721 unsigned long cell)
1722 {
1723 int retval;
1724 unsigned long flags;
1725
1726 spin_lock_irqsave(&pdc_lock, flags);
1727 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_INFO,
1728 __pa(&pdc_result), cell);
1729 if (retval == PDC_OK)
1730 memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1731 spin_unlock_irqrestore(&pdc_lock, flags);
1732
1733 return retval;
1734 }
1735
1736 /**
1737 * pdc_pat_mem_read_cell_pdt - Read PDT entries from (old) PAT firmware
1738 * @pret: array of PDT entries
1739 * @pdt_entries_ptr: ptr to hold number of PDT entries
1740 * @max_entries: maximum number of entries to be read
1741 *
1742 */
pdc_pat_mem_read_cell_pdt(struct pdc_pat_mem_read_pd_retinfo * pret,unsigned long * pdt_entries_ptr,unsigned long max_entries)1743 int pdc_pat_mem_read_cell_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1744 unsigned long *pdt_entries_ptr, unsigned long max_entries)
1745 {
1746 int retval;
1747 unsigned long flags, entries;
1748
1749 spin_lock_irqsave(&pdc_lock, flags);
1750 /* PDC_PAT_MEM_CELL_READ is available on early PAT machines only */
1751 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_READ,
1752 __pa(&pdc_result), parisc_cell_num,
1753 __pa(pdt_entries_ptr));
1754
1755 if (retval == PDC_OK) {
1756 /* build up return value as for PDC_PAT_MEM_PD_READ */
1757 entries = min(pdc_result[0], max_entries);
1758 pret->pdt_entries = entries;
1759 pret->actual_count_bytes = entries * sizeof(unsigned long);
1760 }
1761
1762 spin_unlock_irqrestore(&pdc_lock, flags);
1763 WARN_ON(retval == PDC_OK && pdc_result[0] > max_entries);
1764
1765 return retval;
1766 }
1767 /**
1768 * pdc_pat_mem_read_pd_pdt - Read PDT entries from (newer) PAT firmware
1769 * @pret: array of PDT entries
1770 * @pdt_entries_ptr: ptr to hold number of PDT entries
1771 * @count: number of bytes to read
1772 * @offset: offset to start (in bytes)
1773 *
1774 */
pdc_pat_mem_read_pd_pdt(struct pdc_pat_mem_read_pd_retinfo * pret,unsigned long * pdt_entries_ptr,unsigned long count,unsigned long offset)1775 int pdc_pat_mem_read_pd_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1776 unsigned long *pdt_entries_ptr, unsigned long count,
1777 unsigned long offset)
1778 {
1779 int retval;
1780 unsigned long flags, entries;
1781
1782 spin_lock_irqsave(&pdc_lock, flags);
1783 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_READ,
1784 __pa(&pdc_result), __pa(pdt_entries_ptr),
1785 count, offset);
1786
1787 if (retval == PDC_OK) {
1788 entries = min(pdc_result[0], count);
1789 pret->actual_count_bytes = entries;
1790 pret->pdt_entries = entries / sizeof(unsigned long);
1791 }
1792
1793 spin_unlock_irqrestore(&pdc_lock, flags);
1794
1795 return retval;
1796 }
1797
1798 /**
1799 * pdc_pat_mem_get_dimm_phys_location - Get physical DIMM slot via PAT firmware
1800 * @pret: ptr to hold returned information
1801 * @phys_addr: physical address to examine
1802 *
1803 */
pdc_pat_mem_get_dimm_phys_location(struct pdc_pat_mem_phys_mem_location * pret,unsigned long phys_addr)1804 int pdc_pat_mem_get_dimm_phys_location(
1805 struct pdc_pat_mem_phys_mem_location *pret,
1806 unsigned long phys_addr)
1807 {
1808 int retval;
1809 unsigned long flags;
1810
1811 spin_lock_irqsave(&pdc_lock, flags);
1812 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_ADDRESS,
1813 __pa(&pdc_result), phys_addr);
1814
1815 if (retval == PDC_OK)
1816 memcpy(pret, &pdc_result, sizeof(*pret));
1817
1818 spin_unlock_irqrestore(&pdc_lock, flags);
1819
1820 return retval;
1821 }
1822 #endif /* CONFIG_64BIT */
1823 #endif /* defined(BOOTLOADER) */
1824
1825
1826 /***************** 32-bit real-mode calls ***********/
1827 /* The struct below is used
1828 * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1829 * real32_call_asm() then uses this stack in narrow real mode
1830 */
1831
1832 struct narrow_stack {
1833 /* use int, not long which is 64 bits */
1834 unsigned int arg13;
1835 unsigned int arg12;
1836 unsigned int arg11;
1837 unsigned int arg10;
1838 unsigned int arg9;
1839 unsigned int arg8;
1840 unsigned int arg7;
1841 unsigned int arg6;
1842 unsigned int arg5;
1843 unsigned int arg4;
1844 unsigned int arg3;
1845 unsigned int arg2;
1846 unsigned int arg1;
1847 unsigned int arg0;
1848 unsigned int frame_marker[8];
1849 unsigned int sp;
1850 /* in reality, there's nearly 8k of stack after this */
1851 };
1852
real32_call(unsigned long fn,...)1853 long real32_call(unsigned long fn, ...)
1854 {
1855 va_list args;
1856 extern struct narrow_stack real_stack;
1857 extern unsigned long real32_call_asm(unsigned int *,
1858 unsigned int *,
1859 unsigned int);
1860
1861 va_start(args, fn);
1862 real_stack.arg0 = va_arg(args, unsigned int);
1863 real_stack.arg1 = va_arg(args, unsigned int);
1864 real_stack.arg2 = va_arg(args, unsigned int);
1865 real_stack.arg3 = va_arg(args, unsigned int);
1866 real_stack.arg4 = va_arg(args, unsigned int);
1867 real_stack.arg5 = va_arg(args, unsigned int);
1868 real_stack.arg6 = va_arg(args, unsigned int);
1869 real_stack.arg7 = va_arg(args, unsigned int);
1870 real_stack.arg8 = va_arg(args, unsigned int);
1871 real_stack.arg9 = va_arg(args, unsigned int);
1872 real_stack.arg10 = va_arg(args, unsigned int);
1873 real_stack.arg11 = va_arg(args, unsigned int);
1874 real_stack.arg12 = va_arg(args, unsigned int);
1875 real_stack.arg13 = va_arg(args, unsigned int);
1876 va_end(args);
1877
1878 return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1879 }
1880
1881 #ifdef CONFIG_64BIT
1882 /***************** 64-bit real-mode calls ***********/
1883
1884 struct wide_stack {
1885 unsigned long arg0;
1886 unsigned long arg1;
1887 unsigned long arg2;
1888 unsigned long arg3;
1889 unsigned long arg4;
1890 unsigned long arg5;
1891 unsigned long arg6;
1892 unsigned long arg7;
1893 unsigned long arg8;
1894 unsigned long arg9;
1895 unsigned long arg10;
1896 unsigned long arg11;
1897 unsigned long arg12;
1898 unsigned long arg13;
1899 unsigned long frame_marker[2]; /* rp, previous sp */
1900 unsigned long sp;
1901 /* in reality, there's nearly 8k of stack after this */
1902 };
1903
real64_call(unsigned long fn,...)1904 long real64_call(unsigned long fn, ...)
1905 {
1906 va_list args;
1907 extern struct wide_stack real64_stack;
1908 extern unsigned long real64_call_asm(unsigned long *,
1909 unsigned long *,
1910 unsigned long);
1911
1912 va_start(args, fn);
1913 real64_stack.arg0 = va_arg(args, unsigned long);
1914 real64_stack.arg1 = va_arg(args, unsigned long);
1915 real64_stack.arg2 = va_arg(args, unsigned long);
1916 real64_stack.arg3 = va_arg(args, unsigned long);
1917 real64_stack.arg4 = va_arg(args, unsigned long);
1918 real64_stack.arg5 = va_arg(args, unsigned long);
1919 real64_stack.arg6 = va_arg(args, unsigned long);
1920 real64_stack.arg7 = va_arg(args, unsigned long);
1921 real64_stack.arg8 = va_arg(args, unsigned long);
1922 real64_stack.arg9 = va_arg(args, unsigned long);
1923 real64_stack.arg10 = va_arg(args, unsigned long);
1924 real64_stack.arg11 = va_arg(args, unsigned long);
1925 real64_stack.arg12 = va_arg(args, unsigned long);
1926 real64_stack.arg13 = va_arg(args, unsigned long);
1927 va_end(args);
1928
1929 return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1930 }
1931
1932 #endif /* CONFIG_64BIT */
1933