xref: /linux/arch/parisc/kernel/firmware.c (revision 8cc8ea228c4199482cf087fc6ed2d6e31b7a49e2)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * arch/parisc/kernel/firmware.c  - safe PDC access routines
4  *
5  *	PDC == Processor Dependent Code
6  *
7  * See PDC documentation at
8  * https://parisc.wiki.kernel.org/index.php/Technical_Documentation
9  * for documentation describing the entry points and calling
10  * conventions defined below.
11  *
12  * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
13  * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
14  * Copyright 2003 Grant Grundler <grundler parisc-linux org>
15  * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
16  * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
17  */
18 
19 /*	I think it would be in everyone's best interest to follow this
20  *	guidelines when writing PDC wrappers:
21  *
22  *	 - the name of the pdc wrapper should match one of the macros
23  *	   used for the first two arguments
24  *	 - don't use caps for random parts of the name
25  *	 - use the static PDC result buffers and "copyout" to structs
26  *	   supplied by the caller to encapsulate alignment restrictions
27  *	 - hold pdc_lock while in PDC or using static result buffers
28  *	 - use __pa() to convert virtual (kernel) pointers to physical
29  *	   ones.
30  *	 - the name of the struct used for pdc return values should equal
31  *	   one of the macros used for the first two arguments to the
32  *	   corresponding PDC call
33  *	 - keep the order of arguments
34  *	 - don't be smart (setting trailing NUL bytes for strings, return
35  *	   something useful even if the call failed) unless you are sure
36  *	   it's not going to affect functionality or performance
37  *
38  *	Example:
39  *	int pdc_cache_info(struct pdc_cache_info *cache_info )
40  *	{
41  *		int retval;
42  *
43  *		spin_lock_irq(&pdc_lock);
44  *		retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
45  *		convert_to_wide(pdc_result);
46  *		memcpy(cache_info, pdc_result, sizeof(*cache_info));
47  *		spin_unlock_irq(&pdc_lock);
48  *
49  *		return retval;
50  *	}
51  *					prumpf	991016
52  */
53 
54 #include <linux/stdarg.h>
55 
56 #include <linux/delay.h>
57 #include <linux/init.h>
58 #include <linux/kernel.h>
59 #include <linux/module.h>
60 #include <linux/string.h>
61 #include <linux/spinlock.h>
62 
63 #include <asm/page.h>
64 #include <asm/pdc.h>
65 #include <asm/pdcpat.h>
66 #include <asm/processor.h>	/* for boot_cpu_data */
67 
68 #if defined(BOOTLOADER)
69 # undef  spin_lock_irqsave
70 # define spin_lock_irqsave(a, b) { b = 1; }
71 # undef  spin_unlock_irqrestore
72 # define spin_unlock_irqrestore(a, b)
73 #else
74 static DEFINE_SPINLOCK(pdc_lock);
75 #endif
76 
77 static unsigned long pdc_result[NUM_PDC_RESULT]  __aligned(8);
78 static unsigned long pdc_result2[NUM_PDC_RESULT] __aligned(8);
79 
80 #ifdef CONFIG_64BIT
81 #define WIDE_FIRMWARE		PDC_MODEL_OS64
82 #define NARROW_FIRMWARE		PDC_MODEL_OS32
83 
84 /* Firmware needs to be initially set to narrow to determine the
85  * actual firmware width. */
86 int parisc_narrow_firmware __ro_after_init = NARROW_FIRMWARE;
87 #endif
88 
89 /* On most currently-supported platforms, IODC I/O calls are 32-bit calls
90  * and MEM_PDC calls are always the same width as the OS.
91  * Some PAT boxes may have 64-bit IODC I/O.
92  *
93  * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
94  * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
95  * This allowed wide kernels to run on Cxxx boxes.
96  * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
97  * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
98  */
99 
100 #ifdef CONFIG_64BIT
101 long real64_call(unsigned long function, ...);
102 #endif
103 long real32_call(unsigned long function, ...);
104 
105 #ifdef CONFIG_64BIT
106 #   define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
107 #   define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
108 #else
109 #   define MEM_PDC (unsigned long)PAGE0->mem_pdc
110 #   define mem_pdc_call(args...) real32_call(MEM_PDC, args)
111 #endif
112 
113 
114 /**
115  * f_extend - Convert PDC addresses to kernel addresses.
116  * @address: Address returned from PDC.
117  *
118  * This function is used to convert PDC addresses into kernel addresses
119  * when the PDC address size and kernel address size are different.
120  */
f_extend(unsigned long address)121 static unsigned long f_extend(unsigned long address)
122 {
123 #ifdef CONFIG_64BIT
124 	if(unlikely(parisc_narrow_firmware)) {
125 		if((address & 0xff000000) == 0xf0000000)
126 			return (0xfffffff0UL << 32) | (u32)address;
127 
128 		if((address & 0xf0000000) == 0xf0000000)
129 			return (0xffffffffUL << 32) | (u32)address;
130 	}
131 #endif
132 	return address;
133 }
134 
135 /**
136  * convert_to_wide - Convert the return buffer addresses into kernel addresses.
137  * @addr: The return buffer from PDC.
138  *
139  * This function is used to convert the return buffer addresses retrieved from PDC
140  * into kernel addresses when the PDC address size and kernel address size are
141  * different.
142  */
convert_to_wide(unsigned long * addr)143 static void convert_to_wide(unsigned long *addr)
144 {
145 #ifdef CONFIG_64BIT
146 	int i;
147 	unsigned int *p = (unsigned int *)addr;
148 
149 	if (unlikely(parisc_narrow_firmware)) {
150 		for (i = (NUM_PDC_RESULT-1); i >= 0; --i)
151 			addr[i] = p[i];
152 	}
153 #endif
154 }
155 
156 #ifdef CONFIG_64BIT
set_firmware_width_unlocked(void)157 void set_firmware_width_unlocked(void)
158 {
159 	int ret;
160 
161 	ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
162 		__pa(pdc_result), 0);
163 	if (ret < 0)
164 		return;
165 	convert_to_wide(pdc_result);
166 	if (pdc_result[0] != NARROW_FIRMWARE)
167 		parisc_narrow_firmware = 0;
168 }
169 
170 /**
171  * set_firmware_width - Determine if the firmware is wide or narrow.
172  *
173  * This function must be called before any pdc_* function that uses the
174  * convert_to_wide function.
175  */
set_firmware_width(void)176 void set_firmware_width(void)
177 {
178 	unsigned long flags;
179 
180 	/* already initialized? */
181 	if (parisc_narrow_firmware != NARROW_FIRMWARE)
182 		return;
183 
184 	spin_lock_irqsave(&pdc_lock, flags);
185 	set_firmware_width_unlocked();
186 	spin_unlock_irqrestore(&pdc_lock, flags);
187 }
188 #else
set_firmware_width_unlocked(void)189 void set_firmware_width_unlocked(void)
190 {
191 	return;
192 }
193 
set_firmware_width(void)194 void set_firmware_width(void)
195 {
196 	return;
197 }
198 #endif /*CONFIG_64BIT*/
199 
200 
201 #if !defined(BOOTLOADER)
202 /**
203  * pdc_emergency_unlock - Unlock the linux pdc lock
204  *
205  * This call unlocks the linux pdc lock in case we need some PDC functions
206  * (like pdc_add_valid) during kernel stack dump.
207  */
pdc_emergency_unlock(void)208 void pdc_emergency_unlock(void)
209 {
210  	/* Spinlock DEBUG code freaks out if we unconditionally unlock */
211         if (spin_is_locked(&pdc_lock))
212 		spin_unlock(&pdc_lock);
213 }
214 
215 
216 /**
217  * pdc_add_valid - Verify address can be accessed without causing a HPMC.
218  * @address: Address to be verified.
219  *
220  * This PDC call attempts to read from the specified address and verifies
221  * if the address is valid.
222  *
223  * The return value is PDC_OK (0) in case accessing this address is valid.
224  */
pdc_add_valid(unsigned long address)225 int pdc_add_valid(unsigned long address)
226 {
227         int retval;
228 	unsigned long flags;
229 
230         spin_lock_irqsave(&pdc_lock, flags);
231         retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
232         spin_unlock_irqrestore(&pdc_lock, flags);
233 
234         return retval;
235 }
236 EXPORT_SYMBOL(pdc_add_valid);
237 
238 /**
239  * pdc_instr - Get instruction that invokes PDCE_CHECK in HPMC handler.
240  * @instr: Pointer to variable which will get instruction opcode.
241  *
242  * The return value is PDC_OK (0) in case call succeeded.
243  */
pdc_instr(unsigned int * instr)244 int __init pdc_instr(unsigned int *instr)
245 {
246 	int retval;
247 	unsigned long flags;
248 
249 	spin_lock_irqsave(&pdc_lock, flags);
250 	retval = mem_pdc_call(PDC_INSTR, 0UL, __pa(pdc_result));
251 	convert_to_wide(pdc_result);
252 	*instr = pdc_result[0];
253 	spin_unlock_irqrestore(&pdc_lock, flags);
254 
255 	return retval;
256 }
257 
258 /**
259  * pdc_chassis_info - Return chassis information.
260  * @chassis_info: The memory buffer address.
261  * @led_info: The size of the memory buffer address.
262  * @len: The size of the memory buffer address.
263  *
264  * An HVERSION dependent call for returning the chassis information.
265  */
pdc_chassis_info(struct pdc_chassis_info * chassis_info,void * led_info,unsigned long len)266 int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
267 {
268         int retval;
269 	unsigned long flags;
270 
271         spin_lock_irqsave(&pdc_lock, flags);
272         memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
273         memcpy(&pdc_result2, led_info, len);
274         retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
275                               __pa(pdc_result), __pa(pdc_result2), len);
276         memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
277         memcpy(led_info, pdc_result2, len);
278         spin_unlock_irqrestore(&pdc_lock, flags);
279 
280         return retval;
281 }
282 
283 /**
284  * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
285  * @state: state of the machine
286  * @data: value for that state
287  *
288  * Must be correctly formatted or expect system crash
289  */
290 #ifdef CONFIG_64BIT
pdc_pat_chassis_send_log(unsigned long state,unsigned long data)291 int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
292 {
293 	int retval = 0;
294 	unsigned long flags;
295 
296 	if (!is_pdc_pat())
297 		return -1;
298 
299 	spin_lock_irqsave(&pdc_lock, flags);
300 	retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
301 	spin_unlock_irqrestore(&pdc_lock, flags);
302 
303 	return retval;
304 }
305 #endif
306 
307 /**
308  * pdc_chassis_disp - Updates chassis code
309  * @disp: value to show on display
310  */
pdc_chassis_disp(unsigned long disp)311 int pdc_chassis_disp(unsigned long disp)
312 {
313 	int retval = 0;
314 	unsigned long flags;
315 
316 	spin_lock_irqsave(&pdc_lock, flags);
317 	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
318 	spin_unlock_irqrestore(&pdc_lock, flags);
319 
320 	return retval;
321 }
322 
323 /**
324  * __pdc_cpu_rendezvous - Stop currently executing CPU and do not return.
325  */
__pdc_cpu_rendezvous(void)326 int __pdc_cpu_rendezvous(void)
327 {
328 	if (is_pdc_pat())
329 		return mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_RENDEZVOUS);
330 	else
331 		return mem_pdc_call(PDC_PROC, 1, 0);
332 }
333 
334 /**
335  * pdc_cpu_rendezvous_lock - Lock PDC while transitioning to rendezvous state
336  */
pdc_cpu_rendezvous_lock(void)337 void pdc_cpu_rendezvous_lock(void) __acquires(&pdc_lock)
338 {
339 	spin_lock(&pdc_lock);
340 }
341 
342 /**
343  * pdc_cpu_rendezvous_unlock - Unlock PDC after reaching rendezvous state
344  */
pdc_cpu_rendezvous_unlock(void)345 void pdc_cpu_rendezvous_unlock(void) __releases(&pdc_lock)
346 {
347 	spin_unlock(&pdc_lock);
348 }
349 
350 /**
351  * pdc_pat_get_PDC_entrypoint - Get PDC entry point for current CPU
352  * @pdc_entry: pointer to where the PDC entry point should be stored
353  */
pdc_pat_get_PDC_entrypoint(unsigned long * pdc_entry)354 int pdc_pat_get_PDC_entrypoint(unsigned long *pdc_entry)
355 {
356 	int retval = 0;
357 	unsigned long flags;
358 
359 	if (!IS_ENABLED(CONFIG_SMP) || !is_pdc_pat()) {
360 		*pdc_entry = MEM_PDC;
361 		return 0;
362 	}
363 
364 	spin_lock_irqsave(&pdc_lock, flags);
365 	retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_PDC_ENTRYPOINT,
366 			__pa(pdc_result));
367 	*pdc_entry = pdc_result[0];
368 	spin_unlock_irqrestore(&pdc_lock, flags);
369 
370 	return retval;
371 }
372 /**
373  * pdc_chassis_warn - Fetches chassis warnings
374  * @warn: The warning value to be shown
375  */
pdc_chassis_warn(unsigned long * warn)376 int pdc_chassis_warn(unsigned long *warn)
377 {
378 	int retval = 0;
379 	unsigned long flags;
380 
381 	spin_lock_irqsave(&pdc_lock, flags);
382 	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
383 	*warn = pdc_result[0];
384 	spin_unlock_irqrestore(&pdc_lock, flags);
385 
386 	return retval;
387 }
388 
pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg * pdc_coproc_info)389 int pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
390 {
391 	int ret;
392 
393 	ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
394 	convert_to_wide(pdc_result);
395 	pdc_coproc_info->ccr_functional = pdc_result[0];
396 	pdc_coproc_info->ccr_present = pdc_result[1];
397 	pdc_coproc_info->revision = pdc_result[17];
398 	pdc_coproc_info->model = pdc_result[18];
399 
400 	return ret;
401 }
402 
403 /**
404  * pdc_coproc_cfg - To identify coprocessors attached to the processor.
405  * @pdc_coproc_info: Return buffer address.
406  *
407  * This PDC call returns the presence and status of all the coprocessors
408  * attached to the processor.
409  */
pdc_coproc_cfg(struct pdc_coproc_cfg * pdc_coproc_info)410 int pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
411 {
412 	int ret;
413 	unsigned long flags;
414 
415 	spin_lock_irqsave(&pdc_lock, flags);
416 	ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
417 	spin_unlock_irqrestore(&pdc_lock, flags);
418 
419 	return ret;
420 }
421 
422 /**
423  * pdc_iodc_read - Read data from the modules IODC.
424  * @actcnt: The actual number of bytes.
425  * @hpa: The HPA of the module for the iodc read.
426  * @index: The iodc entry point.
427  * @iodc_data: A buffer memory for the iodc options.
428  * @iodc_data_size: Size of the memory buffer.
429  *
430  * This PDC call reads from the IODC of the module specified by the hpa
431  * argument.
432  */
pdc_iodc_read(unsigned long * actcnt,unsigned long hpa,unsigned int index,void * iodc_data,unsigned int iodc_data_size)433 int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
434 		  void *iodc_data, unsigned int iodc_data_size)
435 {
436 	int retval;
437 	unsigned long flags;
438 
439 	spin_lock_irqsave(&pdc_lock, flags);
440 	retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa,
441 			      index, __pa(pdc_result2), iodc_data_size);
442 	convert_to_wide(pdc_result);
443 	*actcnt = pdc_result[0];
444 	memcpy(iodc_data, pdc_result2, iodc_data_size);
445 	spin_unlock_irqrestore(&pdc_lock, flags);
446 
447 	return retval;
448 }
449 EXPORT_SYMBOL(pdc_iodc_read);
450 
451 /**
452  * pdc_system_map_find_mods - Locate unarchitected modules.
453  * @pdc_mod_info: Return buffer address.
454  * @mod_path: pointer to dev path structure.
455  * @mod_index: fixed address module index.
456  *
457  * To locate and identify modules which reside at fixed I/O addresses, which
458  * do not self-identify via architected bus walks.
459  */
pdc_system_map_find_mods(struct pdc_system_map_mod_info * pdc_mod_info,struct pdc_module_path * mod_path,long mod_index)460 int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
461 			     struct pdc_module_path *mod_path, long mod_index)
462 {
463 	int retval;
464 	unsigned long flags;
465 
466 	spin_lock_irqsave(&pdc_lock, flags);
467 	memcpy(pdc_result2, mod_path, sizeof(*mod_path));
468 	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result),
469 			      __pa(pdc_result2), mod_index);
470 	convert_to_wide(pdc_result);
471 	memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
472 	memcpy(mod_path, pdc_result2, sizeof(*mod_path));
473 	spin_unlock_irqrestore(&pdc_lock, flags);
474 
475 	pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
476 	return retval;
477 }
478 
479 /**
480  * pdc_system_map_find_addrs - Retrieve additional address ranges.
481  * @pdc_addr_info: Return buffer address.
482  * @mod_index: Fixed address module index.
483  * @addr_index: Address range index.
484  *
485  * Retrieve additional information about subsequent address ranges for modules
486  * with multiple address ranges.
487  */
pdc_system_map_find_addrs(struct pdc_system_map_addr_info * pdc_addr_info,long mod_index,long addr_index)488 int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info,
489 			      long mod_index, long addr_index)
490 {
491 	int retval;
492 	unsigned long flags;
493 
494 	spin_lock_irqsave(&pdc_lock, flags);
495 	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
496 			      mod_index, addr_index);
497 	convert_to_wide(pdc_result);
498 	memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
499 	spin_unlock_irqrestore(&pdc_lock, flags);
500 
501 	pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
502 	return retval;
503 }
504 
505 /**
506  * pdc_model_info - Return model information about the processor.
507  * @model: The return buffer.
508  *
509  * Returns the version numbers, identifiers, and capabilities from the processor module.
510  */
pdc_model_info(struct pdc_model * model)511 int pdc_model_info(struct pdc_model *model)
512 {
513 	int retval;
514 	unsigned long flags;
515 
516 	spin_lock_irqsave(&pdc_lock, flags);
517 	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
518 	convert_to_wide(pdc_result);
519 	memcpy(model, pdc_result, sizeof(*model));
520 	spin_unlock_irqrestore(&pdc_lock, flags);
521 
522 	return retval;
523 }
524 
525 /**
526  * pdc_model_sysmodel - Get the system model name.
527  * @os_id: The operating system ID asked for (an OS_ID_* value)
528  * @name: A char array of at least 81 characters.
529  *
530  * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
531  * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
532  * on HP/UX.
533  */
pdc_model_sysmodel(unsigned int os_id,char * name)534 int pdc_model_sysmodel(unsigned int os_id, char *name)
535 {
536         int retval;
537 	unsigned long flags;
538 
539         spin_lock_irqsave(&pdc_lock, flags);
540         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
541                               os_id, __pa(name));
542         convert_to_wide(pdc_result);
543 
544         if (retval == PDC_OK) {
545                 name[pdc_result[0]] = '\0'; /* add trailing '\0' */
546         } else {
547                 name[0] = 0;
548         }
549         spin_unlock_irqrestore(&pdc_lock, flags);
550 
551         return retval;
552 }
553 
554 /**
555  * pdc_model_versions - Identify the version number of each processor.
556  * @versions: The return buffer.
557  * @id: The id of the processor to check.
558  *
559  * Returns the version number for each processor component.
560  *
561  * This comment was here before, but I do not know what it means :( -RB
562  * id: 0 = cpu revision, 1 = boot-rom-version
563  */
pdc_model_versions(unsigned long * versions,int id)564 int pdc_model_versions(unsigned long *versions, int id)
565 {
566         int retval;
567 	unsigned long flags;
568 
569         spin_lock_irqsave(&pdc_lock, flags);
570         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
571         convert_to_wide(pdc_result);
572         *versions = pdc_result[0];
573         spin_unlock_irqrestore(&pdc_lock, flags);
574 
575         return retval;
576 }
577 
578 /**
579  * pdc_model_cpuid - Returns the CPU_ID.
580  * @cpu_id: The return buffer.
581  *
582  * Returns the CPU_ID value which uniquely identifies the cpu portion of
583  * the processor module.
584  */
pdc_model_cpuid(unsigned long * cpu_id)585 int pdc_model_cpuid(unsigned long *cpu_id)
586 {
587         int retval;
588 	unsigned long flags;
589 
590         spin_lock_irqsave(&pdc_lock, flags);
591         pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
592         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
593         convert_to_wide(pdc_result);
594         *cpu_id = pdc_result[0];
595         spin_unlock_irqrestore(&pdc_lock, flags);
596 
597         return retval;
598 }
599 
600 /**
601  * pdc_model_capabilities - Returns the platform capabilities.
602  * @capabilities: The return buffer.
603  *
604  * Returns information about platform support for 32- and/or 64-bit
605  * OSes, IO-PDIR coherency, and virtual aliasing.
606  */
pdc_model_capabilities(unsigned long * capabilities)607 int pdc_model_capabilities(unsigned long *capabilities)
608 {
609         int retval;
610 	unsigned long flags;
611 
612         spin_lock_irqsave(&pdc_lock, flags);
613         pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
614         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
615         convert_to_wide(pdc_result);
616         if (retval == PDC_OK) {
617                 *capabilities = pdc_result[0];
618         } else {
619                 *capabilities = PDC_MODEL_OS32;
620         }
621         spin_unlock_irqrestore(&pdc_lock, flags);
622 
623         return retval;
624 }
625 
626 /**
627  * pdc_model_platform_info - Returns machine product and serial number.
628  * @orig_prod_num: Return buffer for original product number.
629  * @current_prod_num: Return buffer for current product number.
630  * @serial_no: Return buffer for serial number.
631  *
632  * Returns strings containing the original and current product numbers and the
633  * serial number of the system.
634  */
pdc_model_platform_info(char * orig_prod_num,char * current_prod_num,char * serial_no)635 int pdc_model_platform_info(char *orig_prod_num, char *current_prod_num,
636 		char *serial_no)
637 {
638 	int retval;
639 	unsigned long flags;
640 
641 	spin_lock_irqsave(&pdc_lock, flags);
642 	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_GET_PLATFORM_INFO,
643 		__pa(orig_prod_num), __pa(current_prod_num), __pa(serial_no));
644 	convert_to_wide(pdc_result);
645 	spin_unlock_irqrestore(&pdc_lock, flags);
646 
647 	return retval;
648 }
649 
650 /**
651  * pdc_cache_info - Return cache and TLB information.
652  * @cache_info: The return buffer.
653  *
654  * Returns information about the processor's cache and TLB.
655  */
pdc_cache_info(struct pdc_cache_info * cache_info)656 int pdc_cache_info(struct pdc_cache_info *cache_info)
657 {
658         int retval;
659 	unsigned long flags;
660 
661         spin_lock_irqsave(&pdc_lock, flags);
662         retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
663         convert_to_wide(pdc_result);
664         memcpy(cache_info, pdc_result, sizeof(*cache_info));
665         spin_unlock_irqrestore(&pdc_lock, flags);
666 
667         return retval;
668 }
669 
670 /**
671  * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
672  * @space_bits: Should be 0, if not, bad mojo!
673  *
674  * Returns information about Space ID hashing.
675  */
pdc_spaceid_bits(unsigned long * space_bits)676 int pdc_spaceid_bits(unsigned long *space_bits)
677 {
678 	int retval;
679 	unsigned long flags;
680 
681 	spin_lock_irqsave(&pdc_lock, flags);
682 	pdc_result[0] = 0;
683 	retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
684 	convert_to_wide(pdc_result);
685 	*space_bits = pdc_result[0];
686 	spin_unlock_irqrestore(&pdc_lock, flags);
687 
688 	return retval;
689 }
690 
691 /**
692  * pdc_btlb_info - Return block TLB information.
693  * @btlb: The return buffer.
694  *
695  * Returns information about the hardware Block TLB.
696  */
pdc_btlb_info(struct pdc_btlb_info * btlb)697 int pdc_btlb_info(struct pdc_btlb_info *btlb)
698 {
699 	int retval;
700 	unsigned long flags;
701 
702 	if (IS_ENABLED(CONFIG_PA20))
703 		return PDC_BAD_PROC;
704 
705 	spin_lock_irqsave(&pdc_lock, flags);
706 	retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
707 	memcpy(btlb, pdc_result, sizeof(*btlb));
708 	spin_unlock_irqrestore(&pdc_lock, flags);
709 
710 	if(retval < 0) {
711 		btlb->max_size = 0;
712 	}
713 	return retval;
714 }
715 
pdc_btlb_insert(unsigned long long vpage,unsigned long physpage,unsigned long len,unsigned long entry_info,unsigned long slot)716 int pdc_btlb_insert(unsigned long long vpage, unsigned long physpage, unsigned long len,
717 		    unsigned long entry_info, unsigned long slot)
718 {
719 	int retval;
720 	unsigned long flags;
721 
722 	if (IS_ENABLED(CONFIG_PA20))
723 		return PDC_BAD_PROC;
724 
725 	spin_lock_irqsave(&pdc_lock, flags);
726 	retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INSERT, (unsigned long) (vpage >> 32),
727 			      (unsigned long) vpage, physpage, len, entry_info, slot);
728 	spin_unlock_irqrestore(&pdc_lock, flags);
729 	return retval;
730 }
731 
pdc_btlb_purge_all(void)732 int pdc_btlb_purge_all(void)
733 {
734 	int retval;
735 	unsigned long flags;
736 
737 	if (IS_ENABLED(CONFIG_PA20))
738 		return PDC_BAD_PROC;
739 
740 	spin_lock_irqsave(&pdc_lock, flags);
741 	retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_PURGE_ALL);
742 	spin_unlock_irqrestore(&pdc_lock, flags);
743 	return retval;
744 }
745 
746 /**
747  * pdc_mem_map_hpa - Find fixed module information.
748  * @address: The return buffer
749  * @mod_path: pointer to dev path structure.
750  *
751  * This call was developed for S700 workstations to allow the kernel to find
752  * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
753  * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
754  * call.
755  *
756  * This call is supported by all existing S700 workstations (up to  Gecko).
757  */
pdc_mem_map_hpa(struct pdc_memory_map * address,struct pdc_module_path * mod_path)758 int pdc_mem_map_hpa(struct pdc_memory_map *address,
759 		struct pdc_module_path *mod_path)
760 {
761         int retval;
762 	unsigned long flags;
763 
764 	if (IS_ENABLED(CONFIG_PA20))
765 		return PDC_BAD_PROC;
766 
767         spin_lock_irqsave(&pdc_lock, flags);
768         memcpy(pdc_result2, mod_path, sizeof(*mod_path));
769         retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
770 				__pa(pdc_result2));
771         memcpy(address, pdc_result, sizeof(*address));
772         spin_unlock_irqrestore(&pdc_lock, flags);
773 
774         return retval;
775 }
776 
777 /**
778  * pdc_lan_station_id - Get the LAN address.
779  * @lan_addr: The return buffer.
780  * @hpa: The network device HPA.
781  *
782  * Get the LAN station address when it is not directly available from the LAN hardware.
783  */
pdc_lan_station_id(char * lan_addr,unsigned long hpa)784 int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
785 {
786 	int retval;
787 	unsigned long flags;
788 
789 	spin_lock_irqsave(&pdc_lock, flags);
790 	retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
791 			__pa(pdc_result), hpa);
792 	if (retval < 0) {
793 		/* FIXME: else read MAC from NVRAM */
794 		memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
795 	} else {
796 		memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
797 	}
798 	spin_unlock_irqrestore(&pdc_lock, flags);
799 
800 	return retval;
801 }
802 EXPORT_SYMBOL(pdc_lan_station_id);
803 
804 /**
805  * pdc_stable_read - Read data from Stable Storage.
806  * @staddr: Stable Storage address to access.
807  * @memaddr: The memory address where Stable Storage data shall be copied.
808  * @count: number of bytes to transfer. count is multiple of 4.
809  *
810  * This PDC call reads from the Stable Storage address supplied in staddr
811  * and copies count bytes to the memory address memaddr.
812  * The call will fail if staddr+count > PDC_STABLE size.
813  */
pdc_stable_read(unsigned long staddr,void * memaddr,unsigned long count)814 int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
815 {
816        int retval;
817 	unsigned long flags;
818 
819        spin_lock_irqsave(&pdc_lock, flags);
820        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
821                __pa(pdc_result), count);
822        convert_to_wide(pdc_result);
823        memcpy(memaddr, pdc_result, count);
824        spin_unlock_irqrestore(&pdc_lock, flags);
825 
826        return retval;
827 }
828 EXPORT_SYMBOL(pdc_stable_read);
829 
830 /**
831  * pdc_stable_write - Write data to Stable Storage.
832  * @staddr: Stable Storage address to access.
833  * @memaddr: The memory address where Stable Storage data shall be read from.
834  * @count: number of bytes to transfer. count is multiple of 4.
835  *
836  * This PDC call reads count bytes from the supplied memaddr address,
837  * and copies count bytes to the Stable Storage address staddr.
838  * The call will fail if staddr+count > PDC_STABLE size.
839  */
pdc_stable_write(unsigned long staddr,void * memaddr,unsigned long count)840 int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
841 {
842        int retval;
843 	unsigned long flags;
844 
845        spin_lock_irqsave(&pdc_lock, flags);
846        memcpy(pdc_result, memaddr, count);
847        convert_to_wide(pdc_result);
848        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
849                __pa(pdc_result), count);
850        spin_unlock_irqrestore(&pdc_lock, flags);
851 
852        return retval;
853 }
854 EXPORT_SYMBOL(pdc_stable_write);
855 
856 /**
857  * pdc_stable_get_size - Get Stable Storage size in bytes.
858  * @size: pointer where the size will be stored.
859  *
860  * This PDC call returns the number of bytes in the processor's Stable
861  * Storage, which is the number of contiguous bytes implemented in Stable
862  * Storage starting from staddr=0. size in an unsigned 64-bit integer
863  * which is a multiple of four.
864  */
pdc_stable_get_size(unsigned long * size)865 int pdc_stable_get_size(unsigned long *size)
866 {
867        int retval;
868 	unsigned long flags;
869 
870        spin_lock_irqsave(&pdc_lock, flags);
871        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
872        *size = pdc_result[0];
873        spin_unlock_irqrestore(&pdc_lock, flags);
874 
875        return retval;
876 }
877 EXPORT_SYMBOL(pdc_stable_get_size);
878 
879 /**
880  * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
881  *
882  * This PDC call is meant to be used to check the integrity of the current
883  * contents of Stable Storage.
884  */
pdc_stable_verify_contents(void)885 int pdc_stable_verify_contents(void)
886 {
887        int retval;
888 	unsigned long flags;
889 
890        spin_lock_irqsave(&pdc_lock, flags);
891        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
892        spin_unlock_irqrestore(&pdc_lock, flags);
893 
894        return retval;
895 }
896 EXPORT_SYMBOL(pdc_stable_verify_contents);
897 
898 /**
899  * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
900  * the validity indicator.
901  *
902  * This PDC call will erase all contents of Stable Storage. Use with care!
903  */
pdc_stable_initialize(void)904 int pdc_stable_initialize(void)
905 {
906        int retval;
907 	unsigned long flags;
908 
909        spin_lock_irqsave(&pdc_lock, flags);
910        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
911        spin_unlock_irqrestore(&pdc_lock, flags);
912 
913        return retval;
914 }
915 EXPORT_SYMBOL(pdc_stable_initialize);
916 
917 /**
918  * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
919  * @hwpath: fully bc.mod style path to the device.
920  * @initiator: the array to return the result into
921  *
922  * Get the SCSI operational parameters from PDC.
923  * Needed since HPUX never used BIOS or symbios card NVRAM.
924  * Most ncr/sym cards won't have an entry and just use whatever
925  * capabilities of the card are (eg Ultra, LVD). But there are
926  * several cases where it's useful:
927  *    o set SCSI id for Multi-initiator clusters,
928  *    o cable too long (ie SE scsi 10Mhz won't support 6m length),
929  *    o bus width exported is less than what the interface chip supports.
930  */
pdc_get_initiator(struct hardware_path * hwpath,struct pdc_initiator * initiator)931 int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
932 {
933 	int retval;
934 	unsigned long flags;
935 
936 	spin_lock_irqsave(&pdc_lock, flags);
937 
938 /* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
939 #define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
940 	strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
941 
942 	retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR,
943 			      __pa(pdc_result), __pa(hwpath));
944 	if (retval < PDC_OK)
945 		goto out;
946 
947 	if (pdc_result[0] < 16) {
948 		initiator->host_id = pdc_result[0];
949 	} else {
950 		initiator->host_id = -1;
951 	}
952 
953 	/*
954 	 * Sprockets and Piranha return 20 or 40 (MT/s).  Prelude returns
955 	 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
956 	 */
957 	switch (pdc_result[1]) {
958 		case  1: initiator->factor = 50; break;
959 		case  2: initiator->factor = 25; break;
960 		case  5: initiator->factor = 12; break;
961 		case 25: initiator->factor = 10; break;
962 		case 20: initiator->factor = 12; break;
963 		case 40: initiator->factor = 10; break;
964 		default: initiator->factor = -1; break;
965 	}
966 
967 	if (IS_SPROCKETS()) {
968 		initiator->width = pdc_result[4];
969 		initiator->mode = pdc_result[5];
970 	} else {
971 		initiator->width = -1;
972 		initiator->mode = -1;
973 	}
974 
975  out:
976 	spin_unlock_irqrestore(&pdc_lock, flags);
977 
978 	return (retval >= PDC_OK);
979 }
980 EXPORT_SYMBOL(pdc_get_initiator);
981 
982 
983 /**
984  * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
985  * @num_entries: The return value.
986  * @hpa: The HPA for the device.
987  *
988  * This PDC function returns the number of entries in the specified cell's
989  * interrupt table.
990  * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
991  */
pdc_pci_irt_size(unsigned long * num_entries,unsigned long hpa)992 int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
993 {
994 	int retval;
995 	unsigned long flags;
996 
997 	spin_lock_irqsave(&pdc_lock, flags);
998 	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE,
999 			      __pa(pdc_result), hpa);
1000 	convert_to_wide(pdc_result);
1001 	*num_entries = pdc_result[0];
1002 	spin_unlock_irqrestore(&pdc_lock, flags);
1003 
1004 	return retval;
1005 }
1006 
1007 /**
1008  * pdc_pci_irt - Get the PCI interrupt routing table.
1009  * @num_entries: The number of entries in the table.
1010  * @hpa: The Hard Physical Address of the device.
1011  * @tbl:
1012  *
1013  * Get the PCI interrupt routing table for the device at the given HPA.
1014  * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
1015  */
pdc_pci_irt(unsigned long num_entries,unsigned long hpa,void * tbl)1016 int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
1017 {
1018 	int retval;
1019 	unsigned long flags;
1020 
1021 	BUG_ON((unsigned long)tbl & 0x7);
1022 
1023 	spin_lock_irqsave(&pdc_lock, flags);
1024 	pdc_result[0] = num_entries;
1025 	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL,
1026 			      __pa(pdc_result), hpa, __pa(tbl));
1027 	spin_unlock_irqrestore(&pdc_lock, flags);
1028 
1029 	return retval;
1030 }
1031 
1032 
1033 #if 0	/* UNTEST CODE - left here in case someone needs it */
1034 
1035 /**
1036  * pdc_pci_config_read - read PCI config space.
1037  * @hpa: Token from PDC to indicate which PCI device
1038  * @cfg_addr: Configuration space address to read from
1039  *
1040  * Read PCI Configuration space *before* linux PCI subsystem is running.
1041  */
1042 unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
1043 {
1044 	int retval;
1045 	unsigned long flags;
1046 
1047 	spin_lock_irqsave(&pdc_lock, flags);
1048 	pdc_result[0] = 0;
1049 	pdc_result[1] = 0;
1050 	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG,
1051 			      __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
1052 	spin_unlock_irqrestore(&pdc_lock, flags);
1053 
1054 	return retval ? ~0 : (unsigned int) pdc_result[0];
1055 }
1056 
1057 
1058 /**
1059  * pdc_pci_config_write - read PCI config space.
1060  * @hpa: Token from PDC to indicate which PCI device
1061  * @cfg_addr: Configuration space address to write
1062  * @val: Value we want in the 32-bit register
1063  *
1064  * Write PCI Configuration space *before* linux PCI subsystem is running.
1065  */
1066 void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
1067 {
1068 	int retval;
1069 	unsigned long flags;
1070 
1071 	spin_lock_irqsave(&pdc_lock, flags);
1072 	pdc_result[0] = 0;
1073 	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG,
1074 			      __pa(pdc_result), hpa,
1075 			      cfg_addr&~3UL, 4UL, (unsigned long) val);
1076 	spin_unlock_irqrestore(&pdc_lock, flags);
1077 
1078 	return retval;
1079 }
1080 #endif /* UNTESTED CODE */
1081 
1082 /**
1083  * pdc_tod_read - Read the Time-Of-Day clock.
1084  * @tod: The return buffer:
1085  *
1086  * Read the Time-Of-Day clock
1087  */
pdc_tod_read(struct pdc_tod * tod)1088 int pdc_tod_read(struct pdc_tod *tod)
1089 {
1090         int retval;
1091 	unsigned long flags;
1092 
1093         spin_lock_irqsave(&pdc_lock, flags);
1094         retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
1095         convert_to_wide(pdc_result);
1096         memcpy(tod, pdc_result, sizeof(*tod));
1097         spin_unlock_irqrestore(&pdc_lock, flags);
1098 
1099         return retval;
1100 }
1101 EXPORT_SYMBOL(pdc_tod_read);
1102 
pdc_mem_pdt_info(struct pdc_mem_retinfo * rinfo)1103 int pdc_mem_pdt_info(struct pdc_mem_retinfo *rinfo)
1104 {
1105 	int retval;
1106 	unsigned long flags;
1107 
1108 	spin_lock_irqsave(&pdc_lock, flags);
1109 	retval = mem_pdc_call(PDC_MEM, PDC_MEM_MEMINFO, __pa(pdc_result), 0);
1110 	convert_to_wide(pdc_result);
1111 	memcpy(rinfo, pdc_result, sizeof(*rinfo));
1112 	spin_unlock_irqrestore(&pdc_lock, flags);
1113 
1114 	return retval;
1115 }
1116 
pdc_mem_pdt_read_entries(struct pdc_mem_read_pdt * pret,unsigned long * pdt_entries_ptr)1117 int pdc_mem_pdt_read_entries(struct pdc_mem_read_pdt *pret,
1118 		unsigned long *pdt_entries_ptr)
1119 {
1120 	int retval;
1121 	unsigned long flags;
1122 
1123 	spin_lock_irqsave(&pdc_lock, flags);
1124 	retval = mem_pdc_call(PDC_MEM, PDC_MEM_READ_PDT, __pa(pdc_result),
1125 			__pa(pdt_entries_ptr));
1126 	if (retval == PDC_OK) {
1127 		convert_to_wide(pdc_result);
1128 		memcpy(pret, pdc_result, sizeof(*pret));
1129 	}
1130 	spin_unlock_irqrestore(&pdc_lock, flags);
1131 
1132 #ifdef CONFIG_64BIT
1133 	/*
1134 	 * 64-bit kernels should not call this PDT function in narrow mode.
1135 	 * The pdt_entries_ptr array above will now contain 32-bit values
1136 	 */
1137 	if (WARN_ON_ONCE((retval == PDC_OK) && parisc_narrow_firmware))
1138 		return PDC_ERROR;
1139 #endif
1140 
1141 	return retval;
1142 }
1143 
1144 /**
1145  * pdc_pim_toc11 - Fetch TOC PIM 1.1 data from firmware.
1146  * @ret: pointer to return buffer
1147  */
pdc_pim_toc11(struct pdc_toc_pim_11 * ret)1148 int pdc_pim_toc11(struct pdc_toc_pim_11 *ret)
1149 {
1150 	int retval;
1151 	unsigned long flags;
1152 
1153 	spin_lock_irqsave(&pdc_lock, flags);
1154 	retval = mem_pdc_call(PDC_PIM, PDC_PIM_TOC, __pa(pdc_result),
1155 			      __pa(ret), sizeof(*ret));
1156 	spin_unlock_irqrestore(&pdc_lock, flags);
1157 	return retval;
1158 }
1159 
1160 /**
1161  * pdc_pim_toc20 - Fetch TOC PIM 2.0 data from firmware.
1162  * @ret: pointer to return buffer
1163  */
pdc_pim_toc20(struct pdc_toc_pim_20 * ret)1164 int pdc_pim_toc20(struct pdc_toc_pim_20 *ret)
1165 {
1166 	int retval;
1167 	unsigned long flags;
1168 
1169 	spin_lock_irqsave(&pdc_lock, flags);
1170 	retval = mem_pdc_call(PDC_PIM, PDC_PIM_TOC, __pa(pdc_result),
1171 			      __pa(ret), sizeof(*ret));
1172 	spin_unlock_irqrestore(&pdc_lock, flags);
1173 	return retval;
1174 }
1175 
1176 /**
1177  * pdc_tod_set - Set the Time-Of-Day clock.
1178  * @sec: The number of seconds since epoch.
1179  * @usec: The number of micro seconds.
1180  *
1181  * Set the Time-Of-Day clock.
1182  */
pdc_tod_set(unsigned long sec,unsigned long usec)1183 int pdc_tod_set(unsigned long sec, unsigned long usec)
1184 {
1185         int retval;
1186 	unsigned long flags;
1187 
1188         spin_lock_irqsave(&pdc_lock, flags);
1189         retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
1190         spin_unlock_irqrestore(&pdc_lock, flags);
1191 
1192         return retval;
1193 }
1194 EXPORT_SYMBOL(pdc_tod_set);
1195 
1196 #ifdef CONFIG_64BIT
pdc_mem_mem_table(struct pdc_memory_table_raddr * r_addr,struct pdc_memory_table * tbl,unsigned long entries)1197 int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
1198 		struct pdc_memory_table *tbl, unsigned long entries)
1199 {
1200 	int retval;
1201 	unsigned long flags;
1202 
1203 	spin_lock_irqsave(&pdc_lock, flags);
1204 	retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
1205 	convert_to_wide(pdc_result);
1206 	memcpy(r_addr, pdc_result, sizeof(*r_addr));
1207 	memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
1208 	spin_unlock_irqrestore(&pdc_lock, flags);
1209 
1210 	return retval;
1211 }
1212 #endif /* CONFIG_64BIT */
1213 
1214 /* FIXME: Is this pdc used?  I could not find type reference to ftc_bitmap
1215  * so I guessed at unsigned long.  Someone who knows what this does, can fix
1216  * it later. :)
1217  */
pdc_do_firm_test_reset(unsigned long ftc_bitmap)1218 int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1219 {
1220         int retval;
1221 	unsigned long flags;
1222 
1223         spin_lock_irqsave(&pdc_lock, flags);
1224         retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1225                               PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1226         spin_unlock_irqrestore(&pdc_lock, flags);
1227 
1228         return retval;
1229 }
1230 
1231 /*
1232  * pdc_do_reset - Reset the system.
1233  *
1234  * Reset the system.
1235  */
pdc_do_reset(void)1236 int pdc_do_reset(void)
1237 {
1238         int retval;
1239 	unsigned long flags;
1240 
1241         spin_lock_irqsave(&pdc_lock, flags);
1242         retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1243         spin_unlock_irqrestore(&pdc_lock, flags);
1244 
1245         return retval;
1246 }
1247 
1248 /*
1249  * pdc_soft_power_info - Enable soft power switch.
1250  * @power_reg: address of soft power register
1251  *
1252  * Return the absolute address of the soft power switch register
1253  */
pdc_soft_power_info(unsigned long * power_reg)1254 int __init pdc_soft_power_info(unsigned long *power_reg)
1255 {
1256 	int retval;
1257 	unsigned long flags;
1258 
1259 	*power_reg = (unsigned long) (-1);
1260 
1261 	spin_lock_irqsave(&pdc_lock, flags);
1262 	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1263 	if (retval == PDC_OK) {
1264                 convert_to_wide(pdc_result);
1265                 *power_reg = f_extend(pdc_result[0]);
1266 	}
1267 	spin_unlock_irqrestore(&pdc_lock, flags);
1268 
1269 	return retval;
1270 }
1271 
1272 /*
1273  * pdc_soft_power_button{_panic} - Control the soft power button behaviour
1274  * @sw_control: 0 for hardware control, 1 for software control
1275  *
1276  *
1277  * This PDC function places the soft power button under software or
1278  * hardware control.
1279  * Under software control the OS may control to when to allow to shut
1280  * down the system. Under hardware control pressing the power button
1281  * powers off the system immediately.
1282  *
1283  * The _panic version relies on spin_trylock to prevent deadlock
1284  * on panic path.
1285  */
pdc_soft_power_button(int sw_control)1286 int pdc_soft_power_button(int sw_control)
1287 {
1288 	int retval;
1289 	unsigned long flags;
1290 
1291 	spin_lock_irqsave(&pdc_lock, flags);
1292 	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1293 	spin_unlock_irqrestore(&pdc_lock, flags);
1294 
1295 	return retval;
1296 }
1297 
pdc_soft_power_button_panic(int sw_control)1298 int pdc_soft_power_button_panic(int sw_control)
1299 {
1300 	int retval;
1301 	unsigned long flags;
1302 
1303 	if (!spin_trylock_irqsave(&pdc_lock, flags)) {
1304 		pr_emerg("Couldn't enable soft power button\n");
1305 		return -EBUSY; /* ignored by the panic notifier */
1306 	}
1307 
1308 	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1309 	spin_unlock_irqrestore(&pdc_lock, flags);
1310 
1311 	return retval;
1312 }
1313 
1314 /*
1315  * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1316  * Primarily a problem on T600 (which parisc-linux doesn't support) but
1317  * who knows what other platform firmware might do with this OS "hook".
1318  */
pdc_io_reset(void)1319 void pdc_io_reset(void)
1320 {
1321 	unsigned long flags;
1322 
1323 	spin_lock_irqsave(&pdc_lock, flags);
1324 	mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1325 	spin_unlock_irqrestore(&pdc_lock, flags);
1326 }
1327 
1328 /*
1329  * pdc_io_reset_devices - Hack to Stop USB controller
1330  *
1331  * If PDC used the usb controller, the usb controller
1332  * is still running and will crash the machines during iommu
1333  * setup, because of still running DMA. This PDC call
1334  * stops the USB controller.
1335  * Normally called after calling pdc_io_reset().
1336  */
pdc_io_reset_devices(void)1337 void pdc_io_reset_devices(void)
1338 {
1339 	unsigned long flags;
1340 
1341 	spin_lock_irqsave(&pdc_lock, flags);
1342 	mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1343 	spin_unlock_irqrestore(&pdc_lock, flags);
1344 }
1345 
1346 #endif /* defined(BOOTLOADER) */
1347 
1348 /* locked by pdc_lock */
1349 static char iodc_dbuf[4096] __page_aligned_bss;
1350 
1351 /**
1352  * pdc_iodc_print - Console print using IODC.
1353  * @str: the string to output.
1354  * @count: length of str
1355  *
1356  * Note that only these special chars are architected for console IODC io:
1357  * BEL, BS, CR, and LF. Others are passed through.
1358  * Since the HP console requires CR+LF to perform a 'newline', we translate
1359  * "\n" to "\r\n".
1360  */
pdc_iodc_print(const unsigned char * str,unsigned count)1361 int pdc_iodc_print(const unsigned char *str, unsigned count)
1362 {
1363 	unsigned int i, found = 0;
1364 	unsigned long flags;
1365 
1366 	count = min_t(unsigned int, count, sizeof(iodc_dbuf));
1367 
1368 	spin_lock_irqsave(&pdc_lock, flags);
1369 	for (i = 0; i < count;) {
1370 		switch(str[i]) {
1371 		case '\n':
1372 			iodc_dbuf[i+0] = '\r';
1373 			iodc_dbuf[i+1] = '\n';
1374 			i += 2;
1375 			found = 1;
1376 			goto print;
1377 		default:
1378 			iodc_dbuf[i] = str[i];
1379 			i++;
1380 			break;
1381 		}
1382 	}
1383 
1384 print:
1385 	real32_call(PAGE0->mem_cons.iodc_io,
1386 		(unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1387 		PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1388 		__pa(pdc_result), 0, __pa(iodc_dbuf), i, 0);
1389 	spin_unlock_irqrestore(&pdc_lock, flags);
1390 
1391 	return i - found;
1392 }
1393 
1394 #if !defined(BOOTLOADER)
1395 /**
1396  * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1397  *
1398  * Read a character (non-blocking) from the PDC console, returns -1 if
1399  * key is not present.
1400  */
pdc_iodc_getc(void)1401 int pdc_iodc_getc(void)
1402 {
1403 	int ch;
1404 	int status;
1405 	unsigned long flags;
1406 
1407 	/* Bail if no console input device. */
1408 	if (!PAGE0->mem_kbd.iodc_io)
1409 		return 0;
1410 
1411 	/* wait for a keyboard (rs232)-input */
1412 	spin_lock_irqsave(&pdc_lock, flags);
1413 	real32_call(PAGE0->mem_kbd.iodc_io,
1414 		    (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1415 		    PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers),
1416 		    __pa(pdc_result), 0, __pa(iodc_dbuf), 1, 0);
1417 
1418 	ch = *iodc_dbuf;
1419 	/* like convert_to_wide() but for first return value only: */
1420 	status = *(int *)&pdc_result;
1421 	spin_unlock_irqrestore(&pdc_lock, flags);
1422 
1423 	if (status == 0)
1424 	    return -1;
1425 
1426 	return ch;
1427 }
1428 
pdc_sti_call(unsigned long func,unsigned long flags,unsigned long inptr,unsigned long outputr,unsigned long glob_cfg,int do_call64)1429 int pdc_sti_call(unsigned long func, unsigned long flags,
1430 		unsigned long inptr, unsigned long outputr,
1431 		unsigned long glob_cfg, int do_call64)
1432 {
1433 	int retval = 0;
1434 	unsigned long irqflags;
1435 
1436 	spin_lock_irqsave(&pdc_lock, irqflags);
1437 	if (IS_ENABLED(CONFIG_64BIT) && do_call64) {
1438 #ifdef CONFIG_64BIT
1439 		retval = real64_call(func, flags, inptr, outputr, glob_cfg);
1440 #else
1441 		WARN_ON(1);
1442 #endif
1443 	} else {
1444 		retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1445 	}
1446 	spin_unlock_irqrestore(&pdc_lock, irqflags);
1447 
1448 	return retval;
1449 }
1450 EXPORT_SYMBOL(pdc_sti_call);
1451 
1452 #ifdef CONFIG_64BIT
1453 /**
1454  * pdc_pat_cell_get_number - Returns the cell number.
1455  * @cell_info: The return buffer.
1456  *
1457  * This PDC call returns the cell number of the cell from which the call
1458  * is made.
1459  */
pdc_pat_cell_get_number(struct pdc_pat_cell_num * cell_info)1460 int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1461 {
1462 	int retval;
1463 	unsigned long flags;
1464 
1465 	spin_lock_irqsave(&pdc_lock, flags);
1466 	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1467 	memcpy(cell_info, pdc_result, sizeof(*cell_info));
1468 	spin_unlock_irqrestore(&pdc_lock, flags);
1469 
1470 	return retval;
1471 }
1472 
1473 /**
1474  * pdc_pat_cell_module - Retrieve the cell's module information.
1475  * @actcnt: The number of bytes written to mem_addr.
1476  * @ploc: The physical location.
1477  * @mod: The module index.
1478  * @view_type: The view of the address type.
1479  * @mem_addr: The return buffer.
1480  *
1481  * This PDC call returns information about each module attached to the cell
1482  * at the specified location.
1483  */
pdc_pat_cell_module(unsigned long * actcnt,unsigned long ploc,unsigned long mod,unsigned long view_type,void * mem_addr)1484 int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1485 			unsigned long view_type, void *mem_addr)
1486 {
1487 	int retval;
1488 	unsigned long flags;
1489 	static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1490 
1491 	spin_lock_irqsave(&pdc_lock, flags);
1492 	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result),
1493 			      ploc, mod, view_type, __pa(&result));
1494 	if(!retval) {
1495 		*actcnt = pdc_result[0];
1496 		memcpy(mem_addr, &result, *actcnt);
1497 	}
1498 	spin_unlock_irqrestore(&pdc_lock, flags);
1499 
1500 	return retval;
1501 }
1502 
1503 /**
1504  * pdc_pat_cell_info - Retrieve the cell's information.
1505  * @info: The pointer to a struct pdc_pat_cell_info_rtn_block.
1506  * @actcnt: The number of bytes which should be written to info.
1507  * @offset: offset of the structure.
1508  * @cell_number: The cell number which should be asked, or -1 for current cell.
1509  *
1510  * This PDC call returns information about the given cell (or all cells).
1511  */
pdc_pat_cell_info(struct pdc_pat_cell_info_rtn_block * info,unsigned long * actcnt,unsigned long offset,unsigned long cell_number)1512 int pdc_pat_cell_info(struct pdc_pat_cell_info_rtn_block *info,
1513 		unsigned long *actcnt, unsigned long offset,
1514 		unsigned long cell_number)
1515 {
1516 	int retval;
1517 	unsigned long flags;
1518 	struct pdc_pat_cell_info_rtn_block result;
1519 
1520 	spin_lock_irqsave(&pdc_lock, flags);
1521 	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_INFO,
1522 			__pa(pdc_result), __pa(&result), *actcnt,
1523 			offset, cell_number);
1524 	if (!retval) {
1525 		*actcnt = pdc_result[0];
1526 		memcpy(info, &result, *actcnt);
1527 	}
1528 	spin_unlock_irqrestore(&pdc_lock, flags);
1529 
1530 	return retval;
1531 }
1532 
1533 /**
1534  * pdc_pat_cpu_get_number - Retrieve the cpu number.
1535  * @cpu_info: The return buffer.
1536  * @hpa: The Hard Physical Address of the CPU.
1537  *
1538  * Retrieve the cpu number for the cpu at the specified HPA.
1539  */
pdc_pat_cpu_get_number(struct pdc_pat_cpu_num * cpu_info,unsigned long hpa)1540 int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, unsigned long hpa)
1541 {
1542 	int retval;
1543 	unsigned long flags;
1544 
1545 	spin_lock_irqsave(&pdc_lock, flags);
1546 	retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1547 			      __pa(&pdc_result), hpa);
1548 	memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1549 	spin_unlock_irqrestore(&pdc_lock, flags);
1550 
1551 	return retval;
1552 }
1553 
1554 /**
1555  * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1556  * @num_entries: The return value.
1557  * @cell_num: The target cell.
1558  *
1559  * This PDC function returns the number of entries in the specified cell's
1560  * interrupt table.
1561  */
pdc_pat_get_irt_size(unsigned long * num_entries,unsigned long cell_num)1562 int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1563 {
1564 	int retval;
1565 	unsigned long flags;
1566 
1567 	spin_lock_irqsave(&pdc_lock, flags);
1568 	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1569 			      __pa(pdc_result), cell_num);
1570 	*num_entries = pdc_result[0];
1571 	spin_unlock_irqrestore(&pdc_lock, flags);
1572 
1573 	return retval;
1574 }
1575 
1576 /**
1577  * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1578  * @r_addr: The return buffer.
1579  * @cell_num: The target cell.
1580  *
1581  * This PDC function returns the actual interrupt table for the specified cell.
1582  */
pdc_pat_get_irt(void * r_addr,unsigned long cell_num)1583 int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1584 {
1585 	int retval;
1586 	unsigned long flags;
1587 
1588 	spin_lock_irqsave(&pdc_lock, flags);
1589 	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1590 			      __pa(r_addr), cell_num);
1591 	spin_unlock_irqrestore(&pdc_lock, flags);
1592 
1593 	return retval;
1594 }
1595 
1596 /**
1597  * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1598  * @actual_len: The return buffer.
1599  * @mem_addr: Pointer to the memory buffer.
1600  * @count: The number of bytes to read from the buffer.
1601  * @offset: The offset with respect to the beginning of the buffer.
1602  *
1603  */
pdc_pat_pd_get_addr_map(unsigned long * actual_len,void * mem_addr,unsigned long count,unsigned long offset)1604 int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr,
1605 			    unsigned long count, unsigned long offset)
1606 {
1607 	int retval;
1608 	unsigned long flags;
1609 
1610 	spin_lock_irqsave(&pdc_lock, flags);
1611 	retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result),
1612 			      __pa(pdc_result2), count, offset);
1613 	*actual_len = pdc_result[0];
1614 	memcpy(mem_addr, pdc_result2, *actual_len);
1615 	spin_unlock_irqrestore(&pdc_lock, flags);
1616 
1617 	return retval;
1618 }
1619 
1620 /**
1621  * pdc_pat_pd_get_pdc_revisions - Retrieve PDC interface revisions.
1622  * @legacy_rev: The legacy revision.
1623  * @pat_rev: The PAT revision.
1624  * @pdc_cap: The PDC capabilities.
1625  *
1626  */
pdc_pat_pd_get_pdc_revisions(unsigned long * legacy_rev,unsigned long * pat_rev,unsigned long * pdc_cap)1627 int pdc_pat_pd_get_pdc_revisions(unsigned long *legacy_rev,
1628 		unsigned long *pat_rev, unsigned long *pdc_cap)
1629 {
1630 	int retval;
1631 	unsigned long flags;
1632 
1633 	spin_lock_irqsave(&pdc_lock, flags);
1634 	retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_PDC_INTERF_REV,
1635 				__pa(pdc_result));
1636 	if (retval == PDC_OK) {
1637 		*legacy_rev = pdc_result[0];
1638 		*pat_rev = pdc_result[1];
1639 		*pdc_cap = pdc_result[2];
1640 	}
1641 	spin_unlock_irqrestore(&pdc_lock, flags);
1642 
1643 	return retval;
1644 }
1645 
1646 
1647 /**
1648  * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1649  * @pci_addr: PCI configuration space address for which the read request is being made.
1650  * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4.
1651  * @mem_addr: Pointer to return memory buffer.
1652  *
1653  */
pdc_pat_io_pci_cfg_read(unsigned long pci_addr,int pci_size,u32 * mem_addr)1654 int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1655 {
1656 	int retval;
1657 	unsigned long flags;
1658 
1659 	spin_lock_irqsave(&pdc_lock, flags);
1660 	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1661 					__pa(pdc_result), pci_addr, pci_size);
1662 	switch(pci_size) {
1663 		case 1: *(u8 *) mem_addr =  (u8)  pdc_result[0]; break;
1664 		case 2: *(u16 *)mem_addr =  (u16) pdc_result[0]; break;
1665 		case 4: *(u32 *)mem_addr =  (u32) pdc_result[0]; break;
1666 	}
1667 	spin_unlock_irqrestore(&pdc_lock, flags);
1668 
1669 	return retval;
1670 }
1671 
1672 /**
1673  * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1674  * @pci_addr: PCI configuration space address for which the write  request is being made.
1675  * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4.
1676  * @val: Pointer to 1, 2, or 4 byte value in low order end of argument to be
1677  *         written to PCI Config space.
1678  *
1679  */
pdc_pat_io_pci_cfg_write(unsigned long pci_addr,int pci_size,u32 val)1680 int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1681 {
1682 	int retval;
1683 	unsigned long flags;
1684 
1685 	spin_lock_irqsave(&pdc_lock, flags);
1686 	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1687 				pci_addr, pci_size, val);
1688 	spin_unlock_irqrestore(&pdc_lock, flags);
1689 
1690 	return retval;
1691 }
1692 
1693 /**
1694  * pdc_pat_mem_pdt_info - Retrieve information about page deallocation table
1695  * @rinfo: memory pdt information
1696  *
1697  */
pdc_pat_mem_pdt_info(struct pdc_pat_mem_retinfo * rinfo)1698 int pdc_pat_mem_pdt_info(struct pdc_pat_mem_retinfo *rinfo)
1699 {
1700 	int retval;
1701 	unsigned long flags;
1702 
1703 	spin_lock_irqsave(&pdc_lock, flags);
1704 	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_INFO,
1705 			__pa(&pdc_result));
1706 	if (retval == PDC_OK)
1707 		memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1708 	spin_unlock_irqrestore(&pdc_lock, flags);
1709 
1710 	return retval;
1711 }
1712 
1713 /**
1714  * pdc_pat_mem_pdt_cell_info - Retrieve information about page deallocation
1715  *				table of a cell
1716  * @rinfo: memory pdt information
1717  * @cell: cell number
1718  *
1719  */
pdc_pat_mem_pdt_cell_info(struct pdc_pat_mem_cell_pdt_retinfo * rinfo,unsigned long cell)1720 int pdc_pat_mem_pdt_cell_info(struct pdc_pat_mem_cell_pdt_retinfo *rinfo,
1721 		unsigned long cell)
1722 {
1723 	int retval;
1724 	unsigned long flags;
1725 
1726 	spin_lock_irqsave(&pdc_lock, flags);
1727 	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_INFO,
1728 			__pa(&pdc_result), cell);
1729 	if (retval == PDC_OK)
1730 		memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1731 	spin_unlock_irqrestore(&pdc_lock, flags);
1732 
1733 	return retval;
1734 }
1735 
1736 /**
1737  * pdc_pat_mem_read_cell_pdt - Read PDT entries from (old) PAT firmware
1738  * @pret: array of PDT entries
1739  * @pdt_entries_ptr: ptr to hold number of PDT entries
1740  * @max_entries: maximum number of entries to be read
1741  *
1742  */
pdc_pat_mem_read_cell_pdt(struct pdc_pat_mem_read_pd_retinfo * pret,unsigned long * pdt_entries_ptr,unsigned long max_entries)1743 int pdc_pat_mem_read_cell_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1744 		unsigned long *pdt_entries_ptr, unsigned long max_entries)
1745 {
1746 	int retval;
1747 	unsigned long flags, entries;
1748 
1749 	spin_lock_irqsave(&pdc_lock, flags);
1750 	/* PDC_PAT_MEM_CELL_READ is available on early PAT machines only */
1751 	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_READ,
1752 			__pa(&pdc_result), parisc_cell_num,
1753 			__pa(pdt_entries_ptr));
1754 
1755 	if (retval == PDC_OK) {
1756 		/* build up return value as for PDC_PAT_MEM_PD_READ */
1757 		entries = min(pdc_result[0], max_entries);
1758 		pret->pdt_entries = entries;
1759 		pret->actual_count_bytes = entries * sizeof(unsigned long);
1760 	}
1761 
1762 	spin_unlock_irqrestore(&pdc_lock, flags);
1763 	WARN_ON(retval == PDC_OK && pdc_result[0] > max_entries);
1764 
1765 	return retval;
1766 }
1767 /**
1768  * pdc_pat_mem_read_pd_pdt - Read PDT entries from (newer) PAT firmware
1769  * @pret: array of PDT entries
1770  * @pdt_entries_ptr: ptr to hold number of PDT entries
1771  * @count: number of bytes to read
1772  * @offset: offset to start (in bytes)
1773  *
1774  */
pdc_pat_mem_read_pd_pdt(struct pdc_pat_mem_read_pd_retinfo * pret,unsigned long * pdt_entries_ptr,unsigned long count,unsigned long offset)1775 int pdc_pat_mem_read_pd_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1776 		unsigned long *pdt_entries_ptr, unsigned long count,
1777 		unsigned long offset)
1778 {
1779 	int retval;
1780 	unsigned long flags, entries;
1781 
1782 	spin_lock_irqsave(&pdc_lock, flags);
1783 	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_READ,
1784 		__pa(&pdc_result), __pa(pdt_entries_ptr),
1785 		count, offset);
1786 
1787 	if (retval == PDC_OK) {
1788 		entries = min(pdc_result[0], count);
1789 		pret->actual_count_bytes = entries;
1790 		pret->pdt_entries = entries / sizeof(unsigned long);
1791 	}
1792 
1793 	spin_unlock_irqrestore(&pdc_lock, flags);
1794 
1795 	return retval;
1796 }
1797 
1798 /**
1799  * pdc_pat_mem_get_dimm_phys_location - Get physical DIMM slot via PAT firmware
1800  * @pret: ptr to hold returned information
1801  * @phys_addr: physical address to examine
1802  *
1803  */
pdc_pat_mem_get_dimm_phys_location(struct pdc_pat_mem_phys_mem_location * pret,unsigned long phys_addr)1804 int pdc_pat_mem_get_dimm_phys_location(
1805 		struct pdc_pat_mem_phys_mem_location *pret,
1806 		unsigned long phys_addr)
1807 {
1808 	int retval;
1809 	unsigned long flags;
1810 
1811 	spin_lock_irqsave(&pdc_lock, flags);
1812 	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_ADDRESS,
1813 		__pa(&pdc_result), phys_addr);
1814 
1815 	if (retval == PDC_OK)
1816 		memcpy(pret, &pdc_result, sizeof(*pret));
1817 
1818 	spin_unlock_irqrestore(&pdc_lock, flags);
1819 
1820 	return retval;
1821 }
1822 #endif /* CONFIG_64BIT */
1823 #endif /* defined(BOOTLOADER) */
1824 
1825 
1826 /***************** 32-bit real-mode calls ***********/
1827 /* The struct below is used
1828  * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1829  * real32_call_asm() then uses this stack in narrow real mode
1830  */
1831 
1832 struct narrow_stack {
1833 	/* use int, not long which is 64 bits */
1834 	unsigned int arg13;
1835 	unsigned int arg12;
1836 	unsigned int arg11;
1837 	unsigned int arg10;
1838 	unsigned int arg9;
1839 	unsigned int arg8;
1840 	unsigned int arg7;
1841 	unsigned int arg6;
1842 	unsigned int arg5;
1843 	unsigned int arg4;
1844 	unsigned int arg3;
1845 	unsigned int arg2;
1846 	unsigned int arg1;
1847 	unsigned int arg0;
1848 	unsigned int frame_marker[8];
1849 	unsigned int sp;
1850 	/* in reality, there's nearly 8k of stack after this */
1851 };
1852 
real32_call(unsigned long fn,...)1853 long real32_call(unsigned long fn, ...)
1854 {
1855 	va_list args;
1856 	extern struct narrow_stack real_stack;
1857 	extern unsigned long real32_call_asm(unsigned int *,
1858 					     unsigned int *,
1859 					     unsigned int);
1860 
1861 	va_start(args, fn);
1862 	real_stack.arg0 = va_arg(args, unsigned int);
1863 	real_stack.arg1 = va_arg(args, unsigned int);
1864 	real_stack.arg2 = va_arg(args, unsigned int);
1865 	real_stack.arg3 = va_arg(args, unsigned int);
1866 	real_stack.arg4 = va_arg(args, unsigned int);
1867 	real_stack.arg5 = va_arg(args, unsigned int);
1868 	real_stack.arg6 = va_arg(args, unsigned int);
1869 	real_stack.arg7 = va_arg(args, unsigned int);
1870 	real_stack.arg8 = va_arg(args, unsigned int);
1871 	real_stack.arg9 = va_arg(args, unsigned int);
1872 	real_stack.arg10 = va_arg(args, unsigned int);
1873 	real_stack.arg11 = va_arg(args, unsigned int);
1874 	real_stack.arg12 = va_arg(args, unsigned int);
1875 	real_stack.arg13 = va_arg(args, unsigned int);
1876 	va_end(args);
1877 
1878 	return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1879 }
1880 
1881 #ifdef CONFIG_64BIT
1882 /***************** 64-bit real-mode calls ***********/
1883 
1884 struct wide_stack {
1885 	unsigned long arg0;
1886 	unsigned long arg1;
1887 	unsigned long arg2;
1888 	unsigned long arg3;
1889 	unsigned long arg4;
1890 	unsigned long arg5;
1891 	unsigned long arg6;
1892 	unsigned long arg7;
1893 	unsigned long arg8;
1894 	unsigned long arg9;
1895 	unsigned long arg10;
1896 	unsigned long arg11;
1897 	unsigned long arg12;
1898 	unsigned long arg13;
1899 	unsigned long frame_marker[2];	/* rp, previous sp */
1900 	unsigned long sp;
1901 	/* in reality, there's nearly 8k of stack after this */
1902 };
1903 
real64_call(unsigned long fn,...)1904 long real64_call(unsigned long fn, ...)
1905 {
1906 	va_list args;
1907 	extern struct wide_stack real64_stack;
1908 	extern unsigned long real64_call_asm(unsigned long *,
1909 					     unsigned long *,
1910 					     unsigned long);
1911 
1912 	va_start(args, fn);
1913 	real64_stack.arg0 = va_arg(args, unsigned long);
1914 	real64_stack.arg1 = va_arg(args, unsigned long);
1915 	real64_stack.arg2 = va_arg(args, unsigned long);
1916 	real64_stack.arg3 = va_arg(args, unsigned long);
1917 	real64_stack.arg4 = va_arg(args, unsigned long);
1918 	real64_stack.arg5 = va_arg(args, unsigned long);
1919 	real64_stack.arg6 = va_arg(args, unsigned long);
1920 	real64_stack.arg7 = va_arg(args, unsigned long);
1921 	real64_stack.arg8 = va_arg(args, unsigned long);
1922 	real64_stack.arg9 = va_arg(args, unsigned long);
1923 	real64_stack.arg10 = va_arg(args, unsigned long);
1924 	real64_stack.arg11 = va_arg(args, unsigned long);
1925 	real64_stack.arg12 = va_arg(args, unsigned long);
1926 	real64_stack.arg13 = va_arg(args, unsigned long);
1927 	va_end(args);
1928 
1929 	return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1930 }
1931 
1932 #endif /* CONFIG_64BIT */
1933