1 /*
2 * Copyright 2008 Advanced Micro Devices, Inc.
3 * Copyright 2008 Red Hat Inc.
4 * Copyright 2009 Jerome Glisse.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 *
24 * Authors: Dave Airlie
25 * Alex Deucher
26 * Jerome Glisse
27 */
28
29 #include <drm/radeon_drm.h>
30 #include "radeon.h"
31 #include "radeon_trace.h"
32
33 /*
34 * GPUVM
35 * GPUVM is similar to the legacy gart on older asics, however
36 * rather than there being a single global gart table
37 * for the entire GPU, there are multiple VM page tables active
38 * at any given time. The VM page tables can contain a mix
39 * vram pages and system memory pages and system memory pages
40 * can be mapped as snooped (cached system pages) or unsnooped
41 * (uncached system pages).
42 * Each VM has an ID associated with it and there is a page table
43 * associated with each VMID. When execting a command buffer,
44 * the kernel tells the ring what VMID to use for that command
45 * buffer. VMIDs are allocated dynamically as commands are submitted.
46 * The userspace drivers maintain their own address space and the kernel
47 * sets up their pages tables accordingly when they submit their
48 * command buffers and a VMID is assigned.
49 * Cayman/Trinity support up to 8 active VMs at any given time;
50 * SI supports 16.
51 */
52
53 /**
54 * radeon_vm_num_pdes - return the number of page directory entries
55 *
56 * @rdev: radeon_device pointer
57 *
58 * Calculate the number of page directory entries (cayman+).
59 */
radeon_vm_num_pdes(struct radeon_device * rdev)60 static unsigned radeon_vm_num_pdes(struct radeon_device *rdev)
61 {
62 return rdev->vm_manager.max_pfn >> radeon_vm_block_size;
63 }
64
65 /**
66 * radeon_vm_directory_size - returns the size of the page directory in bytes
67 *
68 * @rdev: radeon_device pointer
69 *
70 * Calculate the size of the page directory in bytes (cayman+).
71 */
radeon_vm_directory_size(struct radeon_device * rdev)72 static unsigned radeon_vm_directory_size(struct radeon_device *rdev)
73 {
74 return RADEON_GPU_PAGE_ALIGN(radeon_vm_num_pdes(rdev) * 8);
75 }
76
77 /**
78 * radeon_vm_manager_init - init the vm manager
79 *
80 * @rdev: radeon_device pointer
81 *
82 * Init the vm manager (cayman+).
83 * Returns 0 for success, error for failure.
84 */
radeon_vm_manager_init(struct radeon_device * rdev)85 int radeon_vm_manager_init(struct radeon_device *rdev)
86 {
87 int r;
88
89 if (!rdev->vm_manager.enabled) {
90 r = radeon_asic_vm_init(rdev);
91 if (r)
92 return r;
93
94 rdev->vm_manager.enabled = true;
95 }
96 return 0;
97 }
98
99 /**
100 * radeon_vm_manager_fini - tear down the vm manager
101 *
102 * @rdev: radeon_device pointer
103 *
104 * Tear down the VM manager (cayman+).
105 */
radeon_vm_manager_fini(struct radeon_device * rdev)106 void radeon_vm_manager_fini(struct radeon_device *rdev)
107 {
108 int i;
109
110 if (!rdev->vm_manager.enabled)
111 return;
112
113 for (i = 0; i < RADEON_NUM_VM; ++i)
114 radeon_fence_unref(&rdev->vm_manager.active[i]);
115 radeon_asic_vm_fini(rdev);
116 rdev->vm_manager.enabled = false;
117 }
118
119 /**
120 * radeon_vm_get_bos - add the vm BOs to a validation list
121 *
122 * @rdev: radeon_device pointer
123 * @vm: vm providing the BOs
124 * @head: head of validation list
125 *
126 * Add the page directory to the list of BOs to
127 * validate for command submission (cayman+).
128 */
radeon_vm_get_bos(struct radeon_device * rdev,struct radeon_vm * vm,struct list_head * head)129 struct radeon_bo_list *radeon_vm_get_bos(struct radeon_device *rdev,
130 struct radeon_vm *vm,
131 struct list_head *head)
132 {
133 struct radeon_bo_list *list;
134 unsigned i, idx;
135
136 list = kvmalloc_array(vm->max_pde_used + 2,
137 sizeof(struct radeon_bo_list), GFP_KERNEL);
138 if (!list)
139 return NULL;
140
141 /* add the vm page table to the list */
142 list[0].robj = vm->page_directory;
143 list[0].preferred_domains = RADEON_GEM_DOMAIN_VRAM;
144 list[0].allowed_domains = RADEON_GEM_DOMAIN_VRAM;
145 list[0].shared = true;
146 list[0].tiling_flags = 0;
147 list_add(&list[0].list, head);
148
149 for (i = 0, idx = 1; i <= vm->max_pde_used; i++) {
150 if (!vm->page_tables[i].bo)
151 continue;
152
153 list[idx].robj = vm->page_tables[i].bo;
154 list[idx].preferred_domains = RADEON_GEM_DOMAIN_VRAM;
155 list[idx].allowed_domains = RADEON_GEM_DOMAIN_VRAM;
156 list[idx].shared = true;
157 list[idx].tiling_flags = 0;
158 list_add(&list[idx++].list, head);
159 }
160
161 return list;
162 }
163
164 /**
165 * radeon_vm_grab_id - allocate the next free VMID
166 *
167 * @rdev: radeon_device pointer
168 * @vm: vm to allocate id for
169 * @ring: ring we want to submit job to
170 *
171 * Allocate an id for the vm (cayman+).
172 * Returns the fence we need to sync to (if any).
173 *
174 * Global and local mutex must be locked!
175 */
radeon_vm_grab_id(struct radeon_device * rdev,struct radeon_vm * vm,int ring)176 struct radeon_fence *radeon_vm_grab_id(struct radeon_device *rdev,
177 struct radeon_vm *vm, int ring)
178 {
179 struct radeon_fence *best[RADEON_NUM_RINGS] = {};
180 struct radeon_vm_id *vm_id = &vm->ids[ring];
181
182 unsigned choices[2] = {};
183 unsigned i;
184
185 /* check if the id is still valid */
186 if (vm_id->id && vm_id->last_id_use &&
187 vm_id->last_id_use == rdev->vm_manager.active[vm_id->id])
188 return NULL;
189
190 /* we definitely need to flush */
191 vm_id->pd_gpu_addr = ~0ll;
192
193 /* skip over VMID 0, since it is the system VM */
194 for (i = 1; i < rdev->vm_manager.nvm; ++i) {
195 struct radeon_fence *fence = rdev->vm_manager.active[i];
196
197 if (fence == NULL) {
198 /* found a free one */
199 vm_id->id = i;
200 trace_radeon_vm_grab_id(i, ring);
201 return NULL;
202 }
203
204 if (radeon_fence_is_earlier(fence, best[fence->ring])) {
205 best[fence->ring] = fence;
206 choices[fence->ring == ring ? 0 : 1] = i;
207 }
208 }
209
210 for (i = 0; i < 2; ++i) {
211 if (choices[i]) {
212 vm_id->id = choices[i];
213 trace_radeon_vm_grab_id(choices[i], ring);
214 return rdev->vm_manager.active[choices[i]];
215 }
216 }
217
218 /* should never happen */
219 BUG();
220 return NULL;
221 }
222
223 /**
224 * radeon_vm_flush - hardware flush the vm
225 *
226 * @rdev: radeon_device pointer
227 * @vm: vm we want to flush
228 * @ring: ring to use for flush
229 * @updates: last vm update that is waited for
230 *
231 * Flush the vm (cayman+).
232 *
233 * Global and local mutex must be locked!
234 */
radeon_vm_flush(struct radeon_device * rdev,struct radeon_vm * vm,int ring,struct radeon_fence * updates)235 void radeon_vm_flush(struct radeon_device *rdev,
236 struct radeon_vm *vm,
237 int ring, struct radeon_fence *updates)
238 {
239 uint64_t pd_addr = radeon_bo_gpu_offset(vm->page_directory);
240 struct radeon_vm_id *vm_id = &vm->ids[ring];
241
242 if (pd_addr != vm_id->pd_gpu_addr || !vm_id->flushed_updates ||
243 radeon_fence_is_earlier(vm_id->flushed_updates, updates)) {
244
245 trace_radeon_vm_flush(pd_addr, ring, vm->ids[ring].id);
246 radeon_fence_unref(&vm_id->flushed_updates);
247 vm_id->flushed_updates = radeon_fence_ref(updates);
248 vm_id->pd_gpu_addr = pd_addr;
249 radeon_ring_vm_flush(rdev, &rdev->ring[ring],
250 vm_id->id, vm_id->pd_gpu_addr);
251
252 }
253 }
254
255 /**
256 * radeon_vm_fence - remember fence for vm
257 *
258 * @rdev: radeon_device pointer
259 * @vm: vm we want to fence
260 * @fence: fence to remember
261 *
262 * Fence the vm (cayman+).
263 * Set the fence used to protect page table and id.
264 *
265 * Global and local mutex must be locked!
266 */
radeon_vm_fence(struct radeon_device * rdev,struct radeon_vm * vm,struct radeon_fence * fence)267 void radeon_vm_fence(struct radeon_device *rdev,
268 struct radeon_vm *vm,
269 struct radeon_fence *fence)
270 {
271 unsigned vm_id = vm->ids[fence->ring].id;
272
273 radeon_fence_unref(&rdev->vm_manager.active[vm_id]);
274 rdev->vm_manager.active[vm_id] = radeon_fence_ref(fence);
275
276 radeon_fence_unref(&vm->ids[fence->ring].last_id_use);
277 vm->ids[fence->ring].last_id_use = radeon_fence_ref(fence);
278 }
279
280 /**
281 * radeon_vm_bo_find - find the bo_va for a specific vm & bo
282 *
283 * @vm: requested vm
284 * @bo: requested buffer object
285 *
286 * Find @bo inside the requested vm (cayman+).
287 * Search inside the @bos vm list for the requested vm
288 * Returns the found bo_va or NULL if none is found
289 *
290 * Object has to be reserved!
291 */
radeon_vm_bo_find(struct radeon_vm * vm,struct radeon_bo * bo)292 struct radeon_bo_va *radeon_vm_bo_find(struct radeon_vm *vm,
293 struct radeon_bo *bo)
294 {
295 struct radeon_bo_va *bo_va;
296
297 list_for_each_entry(bo_va, &bo->va, bo_list) {
298 if (bo_va->vm == vm)
299 return bo_va;
300
301 }
302 return NULL;
303 }
304
305 /**
306 * radeon_vm_bo_add - add a bo to a specific vm
307 *
308 * @rdev: radeon_device pointer
309 * @vm: requested vm
310 * @bo: radeon buffer object
311 *
312 * Add @bo into the requested vm (cayman+).
313 * Add @bo to the list of bos associated with the vm
314 * Returns newly added bo_va or NULL for failure
315 *
316 * Object has to be reserved!
317 */
radeon_vm_bo_add(struct radeon_device * rdev,struct radeon_vm * vm,struct radeon_bo * bo)318 struct radeon_bo_va *radeon_vm_bo_add(struct radeon_device *rdev,
319 struct radeon_vm *vm,
320 struct radeon_bo *bo)
321 {
322 struct radeon_bo_va *bo_va;
323
324 bo_va = kzalloc(sizeof(struct radeon_bo_va), GFP_KERNEL);
325 if (bo_va == NULL)
326 return NULL;
327
328 bo_va->vm = vm;
329 bo_va->bo = bo;
330 bo_va->it.start = 0;
331 bo_va->it.last = 0;
332 bo_va->flags = 0;
333 bo_va->ref_count = 1;
334 INIT_LIST_HEAD(&bo_va->bo_list);
335 INIT_LIST_HEAD(&bo_va->vm_status);
336
337 mutex_lock(&vm->mutex);
338 list_add_tail(&bo_va->bo_list, &bo->va);
339 mutex_unlock(&vm->mutex);
340
341 return bo_va;
342 }
343
344 /**
345 * radeon_vm_set_pages - helper to call the right asic function
346 *
347 * @rdev: radeon_device pointer
348 * @ib: indirect buffer to fill with commands
349 * @pe: addr of the page entry
350 * @addr: dst addr to write into pe
351 * @count: number of page entries to update
352 * @incr: increase next addr by incr bytes
353 * @flags: hw access flags
354 *
355 * Traces the parameters and calls the right asic functions
356 * to setup the page table using the DMA.
357 */
radeon_vm_set_pages(struct radeon_device * rdev,struct radeon_ib * ib,uint64_t pe,uint64_t addr,unsigned count,uint32_t incr,uint32_t flags)358 static void radeon_vm_set_pages(struct radeon_device *rdev,
359 struct radeon_ib *ib,
360 uint64_t pe,
361 uint64_t addr, unsigned count,
362 uint32_t incr, uint32_t flags)
363 {
364 trace_radeon_vm_set_page(pe, addr, count, incr, flags);
365
366 if ((flags & R600_PTE_GART_MASK) == R600_PTE_GART_MASK) {
367 uint64_t src = rdev->gart.table_addr + (addr >> 12) * 8;
368 radeon_asic_vm_copy_pages(rdev, ib, pe, src, count);
369
370 } else if ((flags & R600_PTE_SYSTEM) || (count < 3)) {
371 radeon_asic_vm_write_pages(rdev, ib, pe, addr,
372 count, incr, flags);
373
374 } else {
375 radeon_asic_vm_set_pages(rdev, ib, pe, addr,
376 count, incr, flags);
377 }
378 }
379
380 /**
381 * radeon_vm_clear_bo - initially clear the page dir/table
382 *
383 * @rdev: radeon_device pointer
384 * @bo: bo to clear
385 */
radeon_vm_clear_bo(struct radeon_device * rdev,struct radeon_bo * bo)386 static int radeon_vm_clear_bo(struct radeon_device *rdev,
387 struct radeon_bo *bo)
388 {
389 struct ttm_operation_ctx ctx = { true, false };
390 struct radeon_ib ib;
391 unsigned entries;
392 uint64_t addr;
393 int r;
394
395 r = radeon_bo_reserve(bo, false);
396 if (r)
397 return r;
398
399 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
400 if (r)
401 goto error_unreserve;
402
403 addr = radeon_bo_gpu_offset(bo);
404 entries = radeon_bo_size(bo) / 8;
405
406 r = radeon_ib_get(rdev, R600_RING_TYPE_DMA_INDEX, &ib, NULL, 256);
407 if (r)
408 goto error_unreserve;
409
410 ib.length_dw = 0;
411
412 radeon_vm_set_pages(rdev, &ib, addr, 0, entries, 0, 0);
413 radeon_asic_vm_pad_ib(rdev, &ib);
414 WARN_ON(ib.length_dw > 64);
415
416 r = radeon_ib_schedule(rdev, &ib, NULL, false);
417 if (r)
418 goto error_free;
419
420 ib.fence->is_vm_update = true;
421 radeon_bo_fence(bo, ib.fence, false);
422
423 error_free:
424 radeon_ib_free(rdev, &ib);
425
426 error_unreserve:
427 radeon_bo_unreserve(bo);
428 return r;
429 }
430
431 /**
432 * radeon_vm_bo_set_addr - set bos virtual address inside a vm
433 *
434 * @rdev: radeon_device pointer
435 * @bo_va: bo_va to store the address
436 * @soffset: requested offset of the buffer in the VM address space
437 * @flags: attributes of pages (read/write/valid/etc.)
438 *
439 * Set offset of @bo_va (cayman+).
440 * Validate and set the offset requested within the vm address space.
441 * Returns 0 for success, error for failure.
442 *
443 * Object has to be reserved and gets unreserved by this function!
444 */
radeon_vm_bo_set_addr(struct radeon_device * rdev,struct radeon_bo_va * bo_va,uint64_t soffset,uint32_t flags)445 int radeon_vm_bo_set_addr(struct radeon_device *rdev,
446 struct radeon_bo_va *bo_va,
447 uint64_t soffset,
448 uint32_t flags)
449 {
450 uint64_t size = radeon_bo_size(bo_va->bo);
451 struct radeon_vm *vm = bo_va->vm;
452 unsigned last_pfn, pt_idx;
453 uint64_t eoffset;
454 int r;
455
456 if (soffset) {
457 /* make sure object fit at this offset */
458 eoffset = soffset + size - 1;
459 if (soffset >= eoffset) {
460 r = -EINVAL;
461 goto error_unreserve;
462 }
463
464 last_pfn = eoffset / RADEON_GPU_PAGE_SIZE;
465 if (last_pfn >= rdev->vm_manager.max_pfn) {
466 dev_err(rdev->dev, "va above limit (0x%08X >= 0x%08X)\n",
467 last_pfn, rdev->vm_manager.max_pfn);
468 r = -EINVAL;
469 goto error_unreserve;
470 }
471
472 } else {
473 eoffset = last_pfn = 0;
474 }
475
476 mutex_lock(&vm->mutex);
477 soffset /= RADEON_GPU_PAGE_SIZE;
478 eoffset /= RADEON_GPU_PAGE_SIZE;
479 if (soffset || eoffset) {
480 struct interval_tree_node *it;
481 it = interval_tree_iter_first(&vm->va, soffset, eoffset);
482 if (it && it != &bo_va->it) {
483 struct radeon_bo_va *tmp;
484 tmp = container_of(it, struct radeon_bo_va, it);
485 /* bo and tmp overlap, invalid offset */
486 dev_err(rdev->dev, "bo %p va 0x%010Lx conflict with "
487 "(bo %p 0x%010lx 0x%010lx)\n", bo_va->bo,
488 soffset, tmp->bo, tmp->it.start, tmp->it.last);
489 mutex_unlock(&vm->mutex);
490 r = -EINVAL;
491 goto error_unreserve;
492 }
493 }
494
495 if (bo_va->it.start || bo_va->it.last) {
496 /* add a clone of the bo_va to clear the old address */
497 struct radeon_bo_va *tmp;
498 tmp = kzalloc(sizeof(struct radeon_bo_va), GFP_KERNEL);
499 if (!tmp) {
500 mutex_unlock(&vm->mutex);
501 r = -ENOMEM;
502 goto error_unreserve;
503 }
504 tmp->it.start = bo_va->it.start;
505 tmp->it.last = bo_va->it.last;
506 tmp->vm = vm;
507 tmp->bo = radeon_bo_ref(bo_va->bo);
508
509 interval_tree_remove(&bo_va->it, &vm->va);
510 spin_lock(&vm->status_lock);
511 bo_va->it.start = 0;
512 bo_va->it.last = 0;
513 list_del_init(&bo_va->vm_status);
514 list_add(&tmp->vm_status, &vm->freed);
515 spin_unlock(&vm->status_lock);
516 }
517
518 if (soffset || eoffset) {
519 spin_lock(&vm->status_lock);
520 bo_va->it.start = soffset;
521 bo_va->it.last = eoffset;
522 list_add(&bo_va->vm_status, &vm->cleared);
523 spin_unlock(&vm->status_lock);
524 interval_tree_insert(&bo_va->it, &vm->va);
525 }
526
527 bo_va->flags = flags;
528
529 soffset >>= radeon_vm_block_size;
530 eoffset >>= radeon_vm_block_size;
531
532 BUG_ON(eoffset >= radeon_vm_num_pdes(rdev));
533
534 if (eoffset > vm->max_pde_used)
535 vm->max_pde_used = eoffset;
536
537 radeon_bo_unreserve(bo_va->bo);
538
539 /* walk over the address space and allocate the page tables */
540 for (pt_idx = soffset; pt_idx <= eoffset; ++pt_idx) {
541 struct radeon_bo *pt;
542
543 if (vm->page_tables[pt_idx].bo)
544 continue;
545
546 /* drop mutex to allocate and clear page table */
547 mutex_unlock(&vm->mutex);
548
549 r = radeon_bo_create(rdev, RADEON_VM_PTE_COUNT * 8,
550 RADEON_GPU_PAGE_SIZE, true,
551 RADEON_GEM_DOMAIN_VRAM, 0,
552 NULL, NULL, &pt);
553 if (r)
554 return r;
555
556 r = radeon_vm_clear_bo(rdev, pt);
557 if (r) {
558 radeon_bo_unref(&pt);
559 return r;
560 }
561
562 /* aquire mutex again */
563 mutex_lock(&vm->mutex);
564 if (vm->page_tables[pt_idx].bo) {
565 /* someone else allocated the pt in the meantime */
566 mutex_unlock(&vm->mutex);
567 radeon_bo_unref(&pt);
568 mutex_lock(&vm->mutex);
569 continue;
570 }
571
572 vm->page_tables[pt_idx].addr = 0;
573 vm->page_tables[pt_idx].bo = pt;
574 }
575
576 mutex_unlock(&vm->mutex);
577 return 0;
578
579 error_unreserve:
580 radeon_bo_unreserve(bo_va->bo);
581 return r;
582 }
583
584 /**
585 * radeon_vm_map_gart - get the physical address of a gart page
586 *
587 * @rdev: radeon_device pointer
588 * @addr: the unmapped addr
589 *
590 * Look up the physical address of the page that the pte resolves
591 * to (cayman+).
592 * Returns the physical address of the page.
593 */
radeon_vm_map_gart(struct radeon_device * rdev,uint64_t addr)594 uint64_t radeon_vm_map_gart(struct radeon_device *rdev, uint64_t addr)
595 {
596 uint64_t result;
597
598 /* page table offset */
599 result = rdev->gart.pages_entry[addr >> RADEON_GPU_PAGE_SHIFT];
600 result &= ~RADEON_GPU_PAGE_MASK;
601
602 return result;
603 }
604
605 /**
606 * radeon_vm_page_flags - translate page flags to what the hw uses
607 *
608 * @flags: flags comming from userspace
609 *
610 * Translate the flags the userspace ABI uses to hw flags.
611 */
radeon_vm_page_flags(uint32_t flags)612 static uint32_t radeon_vm_page_flags(uint32_t flags)
613 {
614 uint32_t hw_flags = 0;
615
616 hw_flags |= (flags & RADEON_VM_PAGE_VALID) ? R600_PTE_VALID : 0;
617 hw_flags |= (flags & RADEON_VM_PAGE_READABLE) ? R600_PTE_READABLE : 0;
618 hw_flags |= (flags & RADEON_VM_PAGE_WRITEABLE) ? R600_PTE_WRITEABLE : 0;
619 if (flags & RADEON_VM_PAGE_SYSTEM) {
620 hw_flags |= R600_PTE_SYSTEM;
621 hw_flags |= (flags & RADEON_VM_PAGE_SNOOPED) ? R600_PTE_SNOOPED : 0;
622 }
623 return hw_flags;
624 }
625
626 /**
627 * radeon_vm_update_page_directory - make sure that page directory is valid
628 *
629 * @rdev: radeon_device pointer
630 * @vm: requested vm
631 *
632 * Allocates new page tables if necessary
633 * and updates the page directory (cayman+).
634 * Returns 0 for success, error for failure.
635 *
636 * Global and local mutex must be locked!
637 */
radeon_vm_update_page_directory(struct radeon_device * rdev,struct radeon_vm * vm)638 int radeon_vm_update_page_directory(struct radeon_device *rdev,
639 struct radeon_vm *vm)
640 {
641 struct radeon_bo *pd = vm->page_directory;
642 uint64_t pd_addr = radeon_bo_gpu_offset(pd);
643 uint32_t incr = RADEON_VM_PTE_COUNT * 8;
644 uint64_t last_pde = ~0, last_pt = ~0;
645 unsigned count = 0, pt_idx, ndw;
646 struct radeon_ib ib;
647 int r;
648
649 /* padding, etc. */
650 ndw = 64;
651
652 /* assume the worst case */
653 ndw += vm->max_pde_used * 6;
654
655 /* update too big for an IB */
656 if (ndw > 0xfffff)
657 return -ENOMEM;
658
659 r = radeon_ib_get(rdev, R600_RING_TYPE_DMA_INDEX, &ib, NULL, ndw * 4);
660 if (r)
661 return r;
662 ib.length_dw = 0;
663
664 /* walk over the address space and update the page directory */
665 for (pt_idx = 0; pt_idx <= vm->max_pde_used; ++pt_idx) {
666 struct radeon_bo *bo = vm->page_tables[pt_idx].bo;
667 uint64_t pde, pt;
668
669 if (bo == NULL)
670 continue;
671
672 pt = radeon_bo_gpu_offset(bo);
673 if (vm->page_tables[pt_idx].addr == pt)
674 continue;
675 vm->page_tables[pt_idx].addr = pt;
676
677 pde = pd_addr + pt_idx * 8;
678 if (((last_pde + 8 * count) != pde) ||
679 ((last_pt + incr * count) != pt)) {
680
681 if (count) {
682 radeon_vm_set_pages(rdev, &ib, last_pde,
683 last_pt, count, incr,
684 R600_PTE_VALID);
685 }
686
687 count = 1;
688 last_pde = pde;
689 last_pt = pt;
690 } else {
691 ++count;
692 }
693 }
694
695 if (count)
696 radeon_vm_set_pages(rdev, &ib, last_pde, last_pt, count,
697 incr, R600_PTE_VALID);
698
699 if (ib.length_dw != 0) {
700 radeon_asic_vm_pad_ib(rdev, &ib);
701
702 radeon_sync_resv(rdev, &ib.sync, pd->tbo.base.resv, true);
703 WARN_ON(ib.length_dw > ndw);
704 r = radeon_ib_schedule(rdev, &ib, NULL, false);
705 if (r) {
706 radeon_ib_free(rdev, &ib);
707 return r;
708 }
709 ib.fence->is_vm_update = true;
710 radeon_bo_fence(pd, ib.fence, false);
711 }
712 radeon_ib_free(rdev, &ib);
713
714 return 0;
715 }
716
717 /**
718 * radeon_vm_frag_ptes - add fragment information to PTEs
719 *
720 * @rdev: radeon_device pointer
721 * @ib: IB for the update
722 * @pe_start: first PTE to handle
723 * @pe_end: last PTE to handle
724 * @addr: addr those PTEs should point to
725 * @flags: hw mapping flags
726 *
727 * Global and local mutex must be locked!
728 */
radeon_vm_frag_ptes(struct radeon_device * rdev,struct radeon_ib * ib,uint64_t pe_start,uint64_t pe_end,uint64_t addr,uint32_t flags)729 static void radeon_vm_frag_ptes(struct radeon_device *rdev,
730 struct radeon_ib *ib,
731 uint64_t pe_start, uint64_t pe_end,
732 uint64_t addr, uint32_t flags)
733 {
734 /**
735 * The MC L1 TLB supports variable sized pages, based on a fragment
736 * field in the PTE. When this field is set to a non-zero value, page
737 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
738 * flags are considered valid for all PTEs within the fragment range
739 * and corresponding mappings are assumed to be physically contiguous.
740 *
741 * The L1 TLB can store a single PTE for the whole fragment,
742 * significantly increasing the space available for translation
743 * caching. This leads to large improvements in throughput when the
744 * TLB is under pressure.
745 *
746 * The L2 TLB distributes small and large fragments into two
747 * asymmetric partitions. The large fragment cache is significantly
748 * larger. Thus, we try to use large fragments wherever possible.
749 * Userspace can support this by aligning virtual base address and
750 * allocation size to the fragment size.
751 */
752
753 /* NI is optimized for 256KB fragments, SI and newer for 64KB */
754 uint64_t frag_flags = ((rdev->family == CHIP_CAYMAN) ||
755 (rdev->family == CHIP_ARUBA)) ?
756 R600_PTE_FRAG_256KB : R600_PTE_FRAG_64KB;
757 uint64_t frag_align = ((rdev->family == CHIP_CAYMAN) ||
758 (rdev->family == CHIP_ARUBA)) ? 0x200 : 0x80;
759
760 uint64_t frag_start = ALIGN(pe_start, frag_align);
761 uint64_t frag_end = pe_end & ~(frag_align - 1);
762
763 unsigned count;
764
765 /* system pages are non continuously */
766 if ((flags & R600_PTE_SYSTEM) || !(flags & R600_PTE_VALID) ||
767 (frag_start >= frag_end)) {
768
769 count = (pe_end - pe_start) / 8;
770 radeon_vm_set_pages(rdev, ib, pe_start, addr, count,
771 RADEON_GPU_PAGE_SIZE, flags);
772 return;
773 }
774
775 /* handle the 4K area at the beginning */
776 if (pe_start != frag_start) {
777 count = (frag_start - pe_start) / 8;
778 radeon_vm_set_pages(rdev, ib, pe_start, addr, count,
779 RADEON_GPU_PAGE_SIZE, flags);
780 addr += RADEON_GPU_PAGE_SIZE * count;
781 }
782
783 /* handle the area in the middle */
784 count = (frag_end - frag_start) / 8;
785 radeon_vm_set_pages(rdev, ib, frag_start, addr, count,
786 RADEON_GPU_PAGE_SIZE, flags | frag_flags);
787
788 /* handle the 4K area at the end */
789 if (frag_end != pe_end) {
790 addr += RADEON_GPU_PAGE_SIZE * count;
791 count = (pe_end - frag_end) / 8;
792 radeon_vm_set_pages(rdev, ib, frag_end, addr, count,
793 RADEON_GPU_PAGE_SIZE, flags);
794 }
795 }
796
797 /**
798 * radeon_vm_update_ptes - make sure that page tables are valid
799 *
800 * @rdev: radeon_device pointer
801 * @vm: requested vm
802 * @ib: indirect buffer to use for the update
803 * @start: start of GPU address range
804 * @end: end of GPU address range
805 * @dst: destination address to map to
806 * @flags: mapping flags
807 *
808 * Update the page tables in the range @start - @end (cayman+).
809 *
810 * Global and local mutex must be locked!
811 */
radeon_vm_update_ptes(struct radeon_device * rdev,struct radeon_vm * vm,struct radeon_ib * ib,uint64_t start,uint64_t end,uint64_t dst,uint32_t flags)812 static int radeon_vm_update_ptes(struct radeon_device *rdev,
813 struct radeon_vm *vm,
814 struct radeon_ib *ib,
815 uint64_t start, uint64_t end,
816 uint64_t dst, uint32_t flags)
817 {
818 uint64_t mask = RADEON_VM_PTE_COUNT - 1;
819 uint64_t last_pte = ~0, last_dst = ~0;
820 unsigned count = 0;
821 uint64_t addr;
822
823 /* walk over the address space and update the page tables */
824 for (addr = start; addr < end; ) {
825 uint64_t pt_idx = addr >> radeon_vm_block_size;
826 struct radeon_bo *pt = vm->page_tables[pt_idx].bo;
827 unsigned nptes;
828 uint64_t pte;
829 int r;
830
831 radeon_sync_resv(rdev, &ib->sync, pt->tbo.base.resv, true);
832 r = dma_resv_reserve_fences(pt->tbo.base.resv, 1);
833 if (r)
834 return r;
835
836 if ((addr & ~mask) == (end & ~mask))
837 nptes = end - addr;
838 else
839 nptes = RADEON_VM_PTE_COUNT - (addr & mask);
840
841 pte = radeon_bo_gpu_offset(pt);
842 pte += (addr & mask) * 8;
843
844 if ((last_pte + 8 * count) != pte) {
845
846 if (count) {
847 radeon_vm_frag_ptes(rdev, ib, last_pte,
848 last_pte + 8 * count,
849 last_dst, flags);
850 }
851
852 count = nptes;
853 last_pte = pte;
854 last_dst = dst;
855 } else {
856 count += nptes;
857 }
858
859 addr += nptes;
860 dst += nptes * RADEON_GPU_PAGE_SIZE;
861 }
862
863 if (count) {
864 radeon_vm_frag_ptes(rdev, ib, last_pte,
865 last_pte + 8 * count,
866 last_dst, flags);
867 }
868
869 return 0;
870 }
871
872 /**
873 * radeon_vm_fence_pts - fence page tables after an update
874 *
875 * @vm: requested vm
876 * @start: start of GPU address range
877 * @end: end of GPU address range
878 * @fence: fence to use
879 *
880 * Fence the page tables in the range @start - @end (cayman+).
881 *
882 * Global and local mutex must be locked!
883 */
radeon_vm_fence_pts(struct radeon_vm * vm,uint64_t start,uint64_t end,struct radeon_fence * fence)884 static void radeon_vm_fence_pts(struct radeon_vm *vm,
885 uint64_t start, uint64_t end,
886 struct radeon_fence *fence)
887 {
888 unsigned i;
889
890 start >>= radeon_vm_block_size;
891 end = (end - 1) >> radeon_vm_block_size;
892
893 for (i = start; i <= end; ++i)
894 radeon_bo_fence(vm->page_tables[i].bo, fence, true);
895 }
896
897 /**
898 * radeon_vm_bo_update - map a bo into the vm page table
899 *
900 * @rdev: radeon_device pointer
901 * @bo_va: radeon buffer virtual address object
902 * @mem: ttm mem
903 *
904 * Fill in the page table entries for @bo (cayman+).
905 * Returns 0 for success, -EINVAL for failure.
906 *
907 * Object have to be reserved and mutex must be locked!
908 */
radeon_vm_bo_update(struct radeon_device * rdev,struct radeon_bo_va * bo_va,struct ttm_resource * mem)909 int radeon_vm_bo_update(struct radeon_device *rdev,
910 struct radeon_bo_va *bo_va,
911 struct ttm_resource *mem)
912 {
913 struct radeon_vm *vm = bo_va->vm;
914 struct radeon_ib ib;
915 unsigned nptes, ncmds, ndw;
916 uint64_t addr;
917 uint32_t flags;
918 int r;
919
920 if (!bo_va->it.start) {
921 dev_err(rdev->dev, "bo %p don't has a mapping in vm %p\n",
922 bo_va->bo, vm);
923 return -EINVAL;
924 }
925
926 spin_lock(&vm->status_lock);
927 if (mem) {
928 if (list_empty(&bo_va->vm_status)) {
929 spin_unlock(&vm->status_lock);
930 return 0;
931 }
932 list_del_init(&bo_va->vm_status);
933 } else {
934 list_del(&bo_va->vm_status);
935 list_add(&bo_va->vm_status, &vm->cleared);
936 }
937 spin_unlock(&vm->status_lock);
938
939 bo_va->flags &= ~RADEON_VM_PAGE_VALID;
940 bo_va->flags &= ~RADEON_VM_PAGE_SYSTEM;
941 bo_va->flags &= ~RADEON_VM_PAGE_SNOOPED;
942 if (bo_va->bo && radeon_ttm_tt_is_readonly(rdev, bo_va->bo->tbo.ttm))
943 bo_va->flags &= ~RADEON_VM_PAGE_WRITEABLE;
944
945 if (mem) {
946 addr = (u64)mem->start << PAGE_SHIFT;
947 if (mem->mem_type != TTM_PL_SYSTEM)
948 bo_va->flags |= RADEON_VM_PAGE_VALID;
949
950 if (mem->mem_type == TTM_PL_TT) {
951 bo_va->flags |= RADEON_VM_PAGE_SYSTEM;
952 if (!(bo_va->bo->flags & (RADEON_GEM_GTT_WC | RADEON_GEM_GTT_UC)))
953 bo_va->flags |= RADEON_VM_PAGE_SNOOPED;
954
955 } else {
956 addr += rdev->vm_manager.vram_base_offset;
957 }
958 } else {
959 addr = 0;
960 }
961
962 trace_radeon_vm_bo_update(bo_va);
963
964 nptes = bo_va->it.last - bo_va->it.start + 1;
965
966 /* reserve space for one command every (1 << BLOCK_SIZE) entries
967 or 2k dwords (whatever is smaller) */
968 ncmds = (nptes >> min(radeon_vm_block_size, 11)) + 1;
969
970 /* padding, etc. */
971 ndw = 64;
972
973 flags = radeon_vm_page_flags(bo_va->flags);
974 if ((flags & R600_PTE_GART_MASK) == R600_PTE_GART_MASK) {
975 /* only copy commands needed */
976 ndw += ncmds * 7;
977
978 } else if (flags & R600_PTE_SYSTEM) {
979 /* header for write data commands */
980 ndw += ncmds * 4;
981
982 /* body of write data command */
983 ndw += nptes * 2;
984
985 } else {
986 /* set page commands needed */
987 ndw += ncmds * 10;
988
989 /* two extra commands for begin/end of fragment */
990 ndw += 2 * 10;
991 }
992
993 /* update too big for an IB */
994 if (ndw > 0xfffff)
995 return -ENOMEM;
996
997 r = radeon_ib_get(rdev, R600_RING_TYPE_DMA_INDEX, &ib, NULL, ndw * 4);
998 if (r)
999 return r;
1000 ib.length_dw = 0;
1001
1002 if (!(bo_va->flags & RADEON_VM_PAGE_VALID)) {
1003 unsigned i;
1004
1005 for (i = 0; i < RADEON_NUM_RINGS; ++i)
1006 radeon_sync_fence(&ib.sync, vm->ids[i].last_id_use);
1007 }
1008
1009 r = radeon_vm_update_ptes(rdev, vm, &ib, bo_va->it.start,
1010 bo_va->it.last + 1, addr,
1011 radeon_vm_page_flags(bo_va->flags));
1012 if (r) {
1013 radeon_ib_free(rdev, &ib);
1014 return r;
1015 }
1016
1017 radeon_asic_vm_pad_ib(rdev, &ib);
1018 WARN_ON(ib.length_dw > ndw);
1019
1020 r = radeon_ib_schedule(rdev, &ib, NULL, false);
1021 if (r) {
1022 radeon_ib_free(rdev, &ib);
1023 return r;
1024 }
1025 ib.fence->is_vm_update = true;
1026 radeon_vm_fence_pts(vm, bo_va->it.start, bo_va->it.last + 1, ib.fence);
1027 radeon_fence_unref(&bo_va->last_pt_update);
1028 bo_va->last_pt_update = radeon_fence_ref(ib.fence);
1029 radeon_ib_free(rdev, &ib);
1030
1031 return 0;
1032 }
1033
1034 /**
1035 * radeon_vm_clear_freed - clear freed BOs in the PT
1036 *
1037 * @rdev: radeon_device pointer
1038 * @vm: requested vm
1039 *
1040 * Make sure all freed BOs are cleared in the PT.
1041 * Returns 0 for success.
1042 *
1043 * PTs have to be reserved and mutex must be locked!
1044 */
radeon_vm_clear_freed(struct radeon_device * rdev,struct radeon_vm * vm)1045 int radeon_vm_clear_freed(struct radeon_device *rdev,
1046 struct radeon_vm *vm)
1047 {
1048 struct radeon_bo_va *bo_va;
1049 int r = 0;
1050
1051 spin_lock(&vm->status_lock);
1052 while (!list_empty(&vm->freed)) {
1053 bo_va = list_first_entry(&vm->freed,
1054 struct radeon_bo_va, vm_status);
1055 spin_unlock(&vm->status_lock);
1056
1057 r = radeon_vm_bo_update(rdev, bo_va, NULL);
1058 radeon_bo_unref(&bo_va->bo);
1059 radeon_fence_unref(&bo_va->last_pt_update);
1060 spin_lock(&vm->status_lock);
1061 list_del(&bo_va->vm_status);
1062 kfree(bo_va);
1063 if (r)
1064 break;
1065
1066 }
1067 spin_unlock(&vm->status_lock);
1068 return r;
1069
1070 }
1071
1072 /**
1073 * radeon_vm_clear_invalids - clear invalidated BOs in the PT
1074 *
1075 * @rdev: radeon_device pointer
1076 * @vm: requested vm
1077 *
1078 * Make sure all invalidated BOs are cleared in the PT.
1079 * Returns 0 for success.
1080 *
1081 * PTs have to be reserved and mutex must be locked!
1082 */
radeon_vm_clear_invalids(struct radeon_device * rdev,struct radeon_vm * vm)1083 int radeon_vm_clear_invalids(struct radeon_device *rdev,
1084 struct radeon_vm *vm)
1085 {
1086 struct radeon_bo_va *bo_va;
1087 int r;
1088
1089 spin_lock(&vm->status_lock);
1090 while (!list_empty(&vm->invalidated)) {
1091 bo_va = list_first_entry(&vm->invalidated,
1092 struct radeon_bo_va, vm_status);
1093 spin_unlock(&vm->status_lock);
1094
1095 r = radeon_vm_bo_update(rdev, bo_va, NULL);
1096 if (r)
1097 return r;
1098
1099 spin_lock(&vm->status_lock);
1100 }
1101 spin_unlock(&vm->status_lock);
1102
1103 return 0;
1104 }
1105
1106 /**
1107 * radeon_vm_bo_rmv - remove a bo to a specific vm
1108 *
1109 * @rdev: radeon_device pointer
1110 * @bo_va: requested bo_va
1111 *
1112 * Remove @bo_va->bo from the requested vm (cayman+).
1113 *
1114 * Object have to be reserved!
1115 */
radeon_vm_bo_rmv(struct radeon_device * rdev,struct radeon_bo_va * bo_va)1116 void radeon_vm_bo_rmv(struct radeon_device *rdev,
1117 struct radeon_bo_va *bo_va)
1118 {
1119 struct radeon_vm *vm = bo_va->vm;
1120
1121 list_del(&bo_va->bo_list);
1122
1123 mutex_lock(&vm->mutex);
1124 if (bo_va->it.start || bo_va->it.last)
1125 interval_tree_remove(&bo_va->it, &vm->va);
1126
1127 spin_lock(&vm->status_lock);
1128 list_del(&bo_va->vm_status);
1129 if (bo_va->it.start || bo_va->it.last) {
1130 bo_va->bo = radeon_bo_ref(bo_va->bo);
1131 list_add(&bo_va->vm_status, &vm->freed);
1132 } else {
1133 radeon_fence_unref(&bo_va->last_pt_update);
1134 kfree(bo_va);
1135 }
1136 spin_unlock(&vm->status_lock);
1137
1138 mutex_unlock(&vm->mutex);
1139 }
1140
1141 /**
1142 * radeon_vm_bo_invalidate - mark the bo as invalid
1143 *
1144 * @rdev: radeon_device pointer
1145 * @bo: radeon buffer object
1146 *
1147 * Mark @bo as invalid (cayman+).
1148 */
radeon_vm_bo_invalidate(struct radeon_device * rdev,struct radeon_bo * bo)1149 void radeon_vm_bo_invalidate(struct radeon_device *rdev,
1150 struct radeon_bo *bo)
1151 {
1152 struct radeon_bo_va *bo_va;
1153
1154 list_for_each_entry(bo_va, &bo->va, bo_list) {
1155 spin_lock(&bo_va->vm->status_lock);
1156 if (list_empty(&bo_va->vm_status) &&
1157 (bo_va->it.start || bo_va->it.last))
1158 list_add(&bo_va->vm_status, &bo_va->vm->invalidated);
1159 spin_unlock(&bo_va->vm->status_lock);
1160 }
1161 }
1162
1163 /**
1164 * radeon_vm_init - initialize a vm instance
1165 *
1166 * @rdev: radeon_device pointer
1167 * @vm: requested vm
1168 *
1169 * Init @vm fields (cayman+).
1170 */
radeon_vm_init(struct radeon_device * rdev,struct radeon_vm * vm)1171 int radeon_vm_init(struct radeon_device *rdev, struct radeon_vm *vm)
1172 {
1173 const unsigned align = min(RADEON_VM_PTB_ALIGN_SIZE,
1174 RADEON_VM_PTE_COUNT * 8);
1175 unsigned pd_size, pd_entries, pts_size;
1176 int i, r;
1177
1178 vm->ib_bo_va = NULL;
1179 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
1180 vm->ids[i].id = 0;
1181 vm->ids[i].flushed_updates = NULL;
1182 vm->ids[i].last_id_use = NULL;
1183 }
1184 mutex_init(&vm->mutex);
1185 vm->va = RB_ROOT_CACHED;
1186 spin_lock_init(&vm->status_lock);
1187 INIT_LIST_HEAD(&vm->invalidated);
1188 INIT_LIST_HEAD(&vm->freed);
1189 INIT_LIST_HEAD(&vm->cleared);
1190
1191 pd_size = radeon_vm_directory_size(rdev);
1192 pd_entries = radeon_vm_num_pdes(rdev);
1193
1194 /* allocate page table array */
1195 pts_size = pd_entries * sizeof(struct radeon_vm_pt);
1196 vm->page_tables = kzalloc(pts_size, GFP_KERNEL);
1197 if (vm->page_tables == NULL) {
1198 DRM_ERROR("Cannot allocate memory for page table array\n");
1199 return -ENOMEM;
1200 }
1201
1202 r = radeon_bo_create(rdev, pd_size, align, true,
1203 RADEON_GEM_DOMAIN_VRAM, 0, NULL,
1204 NULL, &vm->page_directory);
1205 if (r) {
1206 kfree(vm->page_tables);
1207 vm->page_tables = NULL;
1208 return r;
1209 }
1210 r = radeon_vm_clear_bo(rdev, vm->page_directory);
1211 if (r) {
1212 radeon_bo_unref(&vm->page_directory);
1213 vm->page_directory = NULL;
1214 kfree(vm->page_tables);
1215 vm->page_tables = NULL;
1216 return r;
1217 }
1218
1219 return 0;
1220 }
1221
1222 /**
1223 * radeon_vm_fini - tear down a vm instance
1224 *
1225 * @rdev: radeon_device pointer
1226 * @vm: requested vm
1227 *
1228 * Tear down @vm (cayman+).
1229 * Unbind the VM and remove all bos from the vm bo list
1230 */
radeon_vm_fini(struct radeon_device * rdev,struct radeon_vm * vm)1231 void radeon_vm_fini(struct radeon_device *rdev, struct radeon_vm *vm)
1232 {
1233 struct radeon_bo_va *bo_va, *tmp;
1234 int i, r;
1235
1236 if (!RB_EMPTY_ROOT(&vm->va.rb_root))
1237 dev_err(rdev->dev, "still active bo inside vm\n");
1238
1239 rbtree_postorder_for_each_entry_safe(bo_va, tmp,
1240 &vm->va.rb_root, it.rb) {
1241 interval_tree_remove(&bo_va->it, &vm->va);
1242 r = radeon_bo_reserve(bo_va->bo, false);
1243 if (!r) {
1244 list_del_init(&bo_va->bo_list);
1245 radeon_bo_unreserve(bo_va->bo);
1246 radeon_fence_unref(&bo_va->last_pt_update);
1247 kfree(bo_va);
1248 }
1249 }
1250 list_for_each_entry_safe(bo_va, tmp, &vm->freed, vm_status) {
1251 radeon_bo_unref(&bo_va->bo);
1252 radeon_fence_unref(&bo_va->last_pt_update);
1253 kfree(bo_va);
1254 }
1255
1256 for (i = 0; i < radeon_vm_num_pdes(rdev); i++)
1257 radeon_bo_unref(&vm->page_tables[i].bo);
1258 kfree(vm->page_tables);
1259
1260 radeon_bo_unref(&vm->page_directory);
1261
1262 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
1263 radeon_fence_unref(&vm->ids[i].flushed_updates);
1264 radeon_fence_unref(&vm->ids[i].last_id_use);
1265 }
1266
1267 mutex_destroy(&vm->mutex);
1268 }
1269