xref: /linux/mm/percpu.c (revision a4818a8beb158f719581352f80d5b88f938f5457)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/percpu.c - percpu memory allocator
4  *
5  * Copyright (C) 2009		SUSE Linux Products GmbH
6  * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
7  *
8  * Copyright (C) 2017		Facebook Inc.
9  * Copyright (C) 2017		Dennis Zhou <dennis@kernel.org>
10  *
11  * The percpu allocator handles both static and dynamic areas.  Percpu
12  * areas are allocated in chunks which are divided into units.  There is
13  * a 1-to-1 mapping for units to possible cpus.  These units are grouped
14  * based on NUMA properties of the machine.
15  *
16  *  c0                           c1                         c2
17  *  -------------------          -------------------        ------------
18  * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
19  *  -------------------  ......  -------------------  ....  ------------
20  *
21  * Allocation is done by offsets into a unit's address space.  Ie., an
22  * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
23  * c1:u1, c1:u2, etc.  On NUMA machines, the mapping may be non-linear
24  * and even sparse.  Access is handled by configuring percpu base
25  * registers according to the cpu to unit mappings and offsetting the
26  * base address using pcpu_unit_size.
27  *
28  * There is special consideration for the first chunk which must handle
29  * the static percpu variables in the kernel image as allocation services
30  * are not online yet.  In short, the first chunk is structured like so:
31  *
32  *                  <Static | [Reserved] | Dynamic>
33  *
34  * The static data is copied from the original section managed by the
35  * linker.  The reserved section, if non-zero, primarily manages static
36  * percpu variables from kernel modules.  Finally, the dynamic section
37  * takes care of normal allocations.
38  *
39  * The allocator organizes chunks into lists according to free size and
40  * memcg-awareness.  To make a percpu allocation memcg-aware the __GFP_ACCOUNT
41  * flag should be passed.  All memcg-aware allocations are sharing one set
42  * of chunks and all unaccounted allocations and allocations performed
43  * by processes belonging to the root memory cgroup are using the second set.
44  *
45  * The allocator tries to allocate from the fullest chunk first. Each chunk
46  * is managed by a bitmap with metadata blocks.  The allocation map is updated
47  * on every allocation and free to reflect the current state while the boundary
48  * map is only updated on allocation.  Each metadata block contains
49  * information to help mitigate the need to iterate over large portions
50  * of the bitmap.  The reverse mapping from page to chunk is stored in
51  * the page's index.  Lastly, units are lazily backed and grow in unison.
52  *
53  * There is a unique conversion that goes on here between bytes and bits.
54  * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE.  The chunk
55  * tracks the number of pages it is responsible for in nr_pages.  Helper
56  * functions are used to convert from between the bytes, bits, and blocks.
57  * All hints are managed in bits unless explicitly stated.
58  *
59  * To use this allocator, arch code should do the following:
60  *
61  * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
62  *   regular address to percpu pointer and back if they need to be
63  *   different from the default
64  *
65  * - use pcpu_setup_first_chunk() during percpu area initialization to
66  *   setup the first chunk containing the kernel static percpu area
67  */
68 
69 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
70 
71 #include <linux/bitmap.h>
72 #include <linux/cpumask.h>
73 #include <linux/memblock.h>
74 #include <linux/err.h>
75 #include <linux/list.h>
76 #include <linux/log2.h>
77 #include <linux/mm.h>
78 #include <linux/module.h>
79 #include <linux/mutex.h>
80 #include <linux/percpu.h>
81 #include <linux/pfn.h>
82 #include <linux/slab.h>
83 #include <linux/spinlock.h>
84 #include <linux/vmalloc.h>
85 #include <linux/workqueue.h>
86 #include <linux/kmemleak.h>
87 #include <linux/sched.h>
88 #include <linux/sched/mm.h>
89 #include <linux/memcontrol.h>
90 
91 #include <asm/cacheflush.h>
92 #include <asm/sections.h>
93 #include <asm/tlbflush.h>
94 #include <asm/io.h>
95 
96 #define CREATE_TRACE_POINTS
97 #include <trace/events/percpu.h>
98 
99 #include "percpu-internal.h"
100 
101 /*
102  * The slots are sorted by the size of the biggest continuous free area.
103  * 1-31 bytes share the same slot.
104  */
105 #define PCPU_SLOT_BASE_SHIFT		5
106 /* chunks in slots below this are subject to being sidelined on failed alloc */
107 #define PCPU_SLOT_FAIL_THRESHOLD	3
108 
109 #define PCPU_EMPTY_POP_PAGES_LOW	2
110 #define PCPU_EMPTY_POP_PAGES_HIGH	4
111 
112 #ifdef CONFIG_SMP
113 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
114 #ifndef __addr_to_pcpu_ptr
115 #define __addr_to_pcpu_ptr(addr)					\
116 	(void __percpu *)((unsigned long)(addr) -			\
117 			  (unsigned long)pcpu_base_addr	+		\
118 			  (unsigned long)__per_cpu_start)
119 #endif
120 #ifndef __pcpu_ptr_to_addr
121 #define __pcpu_ptr_to_addr(ptr)						\
122 	(void __force *)((unsigned long)(ptr) +				\
123 			 (unsigned long)pcpu_base_addr -		\
124 			 (unsigned long)__per_cpu_start)
125 #endif
126 #else	/* CONFIG_SMP */
127 /* on UP, it's always identity mapped */
128 #define __addr_to_pcpu_ptr(addr)	(void __percpu *)(addr)
129 #define __pcpu_ptr_to_addr(ptr)		(void __force *)(ptr)
130 #endif	/* CONFIG_SMP */
131 
132 static int pcpu_unit_pages __ro_after_init;
133 static int pcpu_unit_size __ro_after_init;
134 static int pcpu_nr_units __ro_after_init;
135 static int pcpu_atom_size __ro_after_init;
136 int pcpu_nr_slots __ro_after_init;
137 static int pcpu_free_slot __ro_after_init;
138 int pcpu_sidelined_slot __ro_after_init;
139 int pcpu_to_depopulate_slot __ro_after_init;
140 static size_t pcpu_chunk_struct_size __ro_after_init;
141 
142 /* cpus with the lowest and highest unit addresses */
143 static unsigned int pcpu_low_unit_cpu __ro_after_init;
144 static unsigned int pcpu_high_unit_cpu __ro_after_init;
145 
146 /* the address of the first chunk which starts with the kernel static area */
147 void *pcpu_base_addr __ro_after_init;
148 
149 static const int *pcpu_unit_map __ro_after_init;		/* cpu -> unit */
150 const unsigned long *pcpu_unit_offsets __ro_after_init;	/* cpu -> unit offset */
151 
152 /* group information, used for vm allocation */
153 static int pcpu_nr_groups __ro_after_init;
154 static const unsigned long *pcpu_group_offsets __ro_after_init;
155 static const size_t *pcpu_group_sizes __ro_after_init;
156 
157 /*
158  * The first chunk which always exists.  Note that unlike other
159  * chunks, this one can be allocated and mapped in several different
160  * ways and thus often doesn't live in the vmalloc area.
161  */
162 struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
163 
164 /*
165  * Optional reserved chunk.  This chunk reserves part of the first
166  * chunk and serves it for reserved allocations.  When the reserved
167  * region doesn't exist, the following variable is NULL.
168  */
169 struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
170 
171 DEFINE_SPINLOCK(pcpu_lock);	/* all internal data structures */
172 static DEFINE_MUTEX(pcpu_alloc_mutex);	/* chunk create/destroy, [de]pop, map ext */
173 
174 struct list_head *pcpu_chunk_lists __ro_after_init; /* chunk list slots */
175 
176 /*
177  * The number of empty populated pages, protected by pcpu_lock.
178  * The reserved chunk doesn't contribute to the count.
179  */
180 int pcpu_nr_empty_pop_pages;
181 
182 /*
183  * The number of populated pages in use by the allocator, protected by
184  * pcpu_lock.  This number is kept per a unit per chunk (i.e. when a page gets
185  * allocated/deallocated, it is allocated/deallocated in all units of a chunk
186  * and increments/decrements this count by 1).
187  */
188 static unsigned long pcpu_nr_populated;
189 
190 /*
191  * Balance work is used to populate or destroy chunks asynchronously.  We
192  * try to keep the number of populated free pages between
193  * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
194  * empty chunk.
195  */
196 static void pcpu_balance_workfn(struct work_struct *work);
197 static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
198 static bool pcpu_async_enabled __read_mostly;
199 static bool pcpu_atomic_alloc_failed;
200 
201 static void pcpu_schedule_balance_work(void)
202 {
203 	if (pcpu_async_enabled)
204 		schedule_work(&pcpu_balance_work);
205 }
206 
207 /**
208  * pcpu_addr_in_chunk - check if the address is served from this chunk
209  * @chunk: chunk of interest
210  * @addr: percpu address
211  *
212  * RETURNS:
213  * True if the address is served from this chunk.
214  */
215 static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
216 {
217 	void *start_addr, *end_addr;
218 
219 	if (!chunk)
220 		return false;
221 
222 	start_addr = chunk->base_addr + chunk->start_offset;
223 	end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
224 		   chunk->end_offset;
225 
226 	return addr >= start_addr && addr < end_addr;
227 }
228 
229 static int __pcpu_size_to_slot(int size)
230 {
231 	int highbit = fls(size);	/* size is in bytes */
232 	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
233 }
234 
235 static int pcpu_size_to_slot(int size)
236 {
237 	if (size == pcpu_unit_size)
238 		return pcpu_free_slot;
239 	return __pcpu_size_to_slot(size);
240 }
241 
242 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
243 {
244 	const struct pcpu_block_md *chunk_md = &chunk->chunk_md;
245 
246 	if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE ||
247 	    chunk_md->contig_hint == 0)
248 		return 0;
249 
250 	return pcpu_size_to_slot(chunk_md->contig_hint * PCPU_MIN_ALLOC_SIZE);
251 }
252 
253 /* set the pointer to a chunk in a page struct */
254 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
255 {
256 	page->private = (unsigned long)pcpu;
257 }
258 
259 /* obtain pointer to a chunk from a page struct */
260 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
261 {
262 	return (struct pcpu_chunk *)page->private;
263 }
264 
265 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
266 {
267 	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
268 }
269 
270 static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
271 {
272 	return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
273 }
274 
275 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
276 				     unsigned int cpu, int page_idx)
277 {
278 	return (unsigned long)chunk->base_addr +
279 	       pcpu_unit_page_offset(cpu, page_idx);
280 }
281 
282 /*
283  * The following are helper functions to help access bitmaps and convert
284  * between bitmap offsets to address offsets.
285  */
286 static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index)
287 {
288 	return chunk->alloc_map +
289 	       (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG);
290 }
291 
292 static unsigned long pcpu_off_to_block_index(int off)
293 {
294 	return off / PCPU_BITMAP_BLOCK_BITS;
295 }
296 
297 static unsigned long pcpu_off_to_block_off(int off)
298 {
299 	return off & (PCPU_BITMAP_BLOCK_BITS - 1);
300 }
301 
302 static unsigned long pcpu_block_off_to_off(int index, int off)
303 {
304 	return index * PCPU_BITMAP_BLOCK_BITS + off;
305 }
306 
307 /**
308  * pcpu_check_block_hint - check against the contig hint
309  * @block: block of interest
310  * @bits: size of allocation
311  * @align: alignment of area (max PAGE_SIZE)
312  *
313  * Check to see if the allocation can fit in the block's contig hint.
314  * Note, a chunk uses the same hints as a block so this can also check against
315  * the chunk's contig hint.
316  */
317 static bool pcpu_check_block_hint(struct pcpu_block_md *block, int bits,
318 				  size_t align)
319 {
320 	int bit_off = ALIGN(block->contig_hint_start, align) -
321 		block->contig_hint_start;
322 
323 	return bit_off + bits <= block->contig_hint;
324 }
325 
326 /*
327  * pcpu_next_hint - determine which hint to use
328  * @block: block of interest
329  * @alloc_bits: size of allocation
330  *
331  * This determines if we should scan based on the scan_hint or first_free.
332  * In general, we want to scan from first_free to fulfill allocations by
333  * first fit.  However, if we know a scan_hint at position scan_hint_start
334  * cannot fulfill an allocation, we can begin scanning from there knowing
335  * the contig_hint will be our fallback.
336  */
337 static int pcpu_next_hint(struct pcpu_block_md *block, int alloc_bits)
338 {
339 	/*
340 	 * The three conditions below determine if we can skip past the
341 	 * scan_hint.  First, does the scan hint exist.  Second, is the
342 	 * contig_hint after the scan_hint (possibly not true iff
343 	 * contig_hint == scan_hint).  Third, is the allocation request
344 	 * larger than the scan_hint.
345 	 */
346 	if (block->scan_hint &&
347 	    block->contig_hint_start > block->scan_hint_start &&
348 	    alloc_bits > block->scan_hint)
349 		return block->scan_hint_start + block->scan_hint;
350 
351 	return block->first_free;
352 }
353 
354 /**
355  * pcpu_next_md_free_region - finds the next hint free area
356  * @chunk: chunk of interest
357  * @bit_off: chunk offset
358  * @bits: size of free area
359  *
360  * Helper function for pcpu_for_each_md_free_region.  It checks
361  * block->contig_hint and performs aggregation across blocks to find the
362  * next hint.  It modifies bit_off and bits in-place to be consumed in the
363  * loop.
364  */
365 static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off,
366 				     int *bits)
367 {
368 	int i = pcpu_off_to_block_index(*bit_off);
369 	int block_off = pcpu_off_to_block_off(*bit_off);
370 	struct pcpu_block_md *block;
371 
372 	*bits = 0;
373 	for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
374 	     block++, i++) {
375 		/* handles contig area across blocks */
376 		if (*bits) {
377 			*bits += block->left_free;
378 			if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
379 				continue;
380 			return;
381 		}
382 
383 		/*
384 		 * This checks three things.  First is there a contig_hint to
385 		 * check.  Second, have we checked this hint before by
386 		 * comparing the block_off.  Third, is this the same as the
387 		 * right contig hint.  In the last case, it spills over into
388 		 * the next block and should be handled by the contig area
389 		 * across blocks code.
390 		 */
391 		*bits = block->contig_hint;
392 		if (*bits && block->contig_hint_start >= block_off &&
393 		    *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) {
394 			*bit_off = pcpu_block_off_to_off(i,
395 					block->contig_hint_start);
396 			return;
397 		}
398 		/* reset to satisfy the second predicate above */
399 		block_off = 0;
400 
401 		*bits = block->right_free;
402 		*bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free;
403 	}
404 }
405 
406 /**
407  * pcpu_next_fit_region - finds fit areas for a given allocation request
408  * @chunk: chunk of interest
409  * @alloc_bits: size of allocation
410  * @align: alignment of area (max PAGE_SIZE)
411  * @bit_off: chunk offset
412  * @bits: size of free area
413  *
414  * Finds the next free region that is viable for use with a given size and
415  * alignment.  This only returns if there is a valid area to be used for this
416  * allocation.  block->first_free is returned if the allocation request fits
417  * within the block to see if the request can be fulfilled prior to the contig
418  * hint.
419  */
420 static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits,
421 				 int align, int *bit_off, int *bits)
422 {
423 	int i = pcpu_off_to_block_index(*bit_off);
424 	int block_off = pcpu_off_to_block_off(*bit_off);
425 	struct pcpu_block_md *block;
426 
427 	*bits = 0;
428 	for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
429 	     block++, i++) {
430 		/* handles contig area across blocks */
431 		if (*bits) {
432 			*bits += block->left_free;
433 			if (*bits >= alloc_bits)
434 				return;
435 			if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
436 				continue;
437 		}
438 
439 		/* check block->contig_hint */
440 		*bits = ALIGN(block->contig_hint_start, align) -
441 			block->contig_hint_start;
442 		/*
443 		 * This uses the block offset to determine if this has been
444 		 * checked in the prior iteration.
445 		 */
446 		if (block->contig_hint &&
447 		    block->contig_hint_start >= block_off &&
448 		    block->contig_hint >= *bits + alloc_bits) {
449 			int start = pcpu_next_hint(block, alloc_bits);
450 
451 			*bits += alloc_bits + block->contig_hint_start -
452 				 start;
453 			*bit_off = pcpu_block_off_to_off(i, start);
454 			return;
455 		}
456 		/* reset to satisfy the second predicate above */
457 		block_off = 0;
458 
459 		*bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free,
460 				 align);
461 		*bits = PCPU_BITMAP_BLOCK_BITS - *bit_off;
462 		*bit_off = pcpu_block_off_to_off(i, *bit_off);
463 		if (*bits >= alloc_bits)
464 			return;
465 	}
466 
467 	/* no valid offsets were found - fail condition */
468 	*bit_off = pcpu_chunk_map_bits(chunk);
469 }
470 
471 /*
472  * Metadata free area iterators.  These perform aggregation of free areas
473  * based on the metadata blocks and return the offset @bit_off and size in
474  * bits of the free area @bits.  pcpu_for_each_fit_region only returns when
475  * a fit is found for the allocation request.
476  */
477 #define pcpu_for_each_md_free_region(chunk, bit_off, bits)		\
478 	for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits));	\
479 	     (bit_off) < pcpu_chunk_map_bits((chunk));			\
480 	     (bit_off) += (bits) + 1,					\
481 	     pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))
482 
483 #define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits)     \
484 	for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
485 				  &(bits));				      \
486 	     (bit_off) < pcpu_chunk_map_bits((chunk));			      \
487 	     (bit_off) += (bits),					      \
488 	     pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
489 				  &(bits)))
490 
491 /**
492  * pcpu_mem_zalloc - allocate memory
493  * @size: bytes to allocate
494  * @gfp: allocation flags
495  *
496  * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
497  * kzalloc() is used; otherwise, the equivalent of vzalloc() is used.
498  * This is to facilitate passing through whitelisted flags.  The
499  * returned memory is always zeroed.
500  *
501  * RETURNS:
502  * Pointer to the allocated area on success, NULL on failure.
503  */
504 static void *pcpu_mem_zalloc(size_t size, gfp_t gfp)
505 {
506 	if (WARN_ON_ONCE(!slab_is_available()))
507 		return NULL;
508 
509 	if (size <= PAGE_SIZE)
510 		return kzalloc(size, gfp);
511 	else
512 		return __vmalloc(size, gfp | __GFP_ZERO);
513 }
514 
515 /**
516  * pcpu_mem_free - free memory
517  * @ptr: memory to free
518  *
519  * Free @ptr.  @ptr should have been allocated using pcpu_mem_zalloc().
520  */
521 static void pcpu_mem_free(void *ptr)
522 {
523 	kvfree(ptr);
524 }
525 
526 static void __pcpu_chunk_move(struct pcpu_chunk *chunk, int slot,
527 			      bool move_front)
528 {
529 	if (chunk != pcpu_reserved_chunk) {
530 		if (move_front)
531 			list_move(&chunk->list, &pcpu_chunk_lists[slot]);
532 		else
533 			list_move_tail(&chunk->list, &pcpu_chunk_lists[slot]);
534 	}
535 }
536 
537 static void pcpu_chunk_move(struct pcpu_chunk *chunk, int slot)
538 {
539 	__pcpu_chunk_move(chunk, slot, true);
540 }
541 
542 /**
543  * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
544  * @chunk: chunk of interest
545  * @oslot: the previous slot it was on
546  *
547  * This function is called after an allocation or free changed @chunk.
548  * New slot according to the changed state is determined and @chunk is
549  * moved to the slot.  Note that the reserved chunk is never put on
550  * chunk slots.
551  *
552  * CONTEXT:
553  * pcpu_lock.
554  */
555 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
556 {
557 	int nslot = pcpu_chunk_slot(chunk);
558 
559 	/* leave isolated chunks in-place */
560 	if (chunk->isolated)
561 		return;
562 
563 	if (oslot != nslot)
564 		__pcpu_chunk_move(chunk, nslot, oslot < nslot);
565 }
566 
567 static void pcpu_isolate_chunk(struct pcpu_chunk *chunk)
568 {
569 	lockdep_assert_held(&pcpu_lock);
570 
571 	if (!chunk->isolated) {
572 		chunk->isolated = true;
573 		pcpu_nr_empty_pop_pages -= chunk->nr_empty_pop_pages;
574 	}
575 	list_move(&chunk->list, &pcpu_chunk_lists[pcpu_to_depopulate_slot]);
576 }
577 
578 static void pcpu_reintegrate_chunk(struct pcpu_chunk *chunk)
579 {
580 	lockdep_assert_held(&pcpu_lock);
581 
582 	if (chunk->isolated) {
583 		chunk->isolated = false;
584 		pcpu_nr_empty_pop_pages += chunk->nr_empty_pop_pages;
585 		pcpu_chunk_relocate(chunk, -1);
586 	}
587 }
588 
589 /*
590  * pcpu_update_empty_pages - update empty page counters
591  * @chunk: chunk of interest
592  * @nr: nr of empty pages
593  *
594  * This is used to keep track of the empty pages now based on the premise
595  * a md_block covers a page.  The hint update functions recognize if a block
596  * is made full or broken to calculate deltas for keeping track of free pages.
597  */
598 static inline void pcpu_update_empty_pages(struct pcpu_chunk *chunk, int nr)
599 {
600 	chunk->nr_empty_pop_pages += nr;
601 	if (chunk != pcpu_reserved_chunk && !chunk->isolated)
602 		pcpu_nr_empty_pop_pages += nr;
603 }
604 
605 /*
606  * pcpu_region_overlap - determines if two regions overlap
607  * @a: start of first region, inclusive
608  * @b: end of first region, exclusive
609  * @x: start of second region, inclusive
610  * @y: end of second region, exclusive
611  *
612  * This is used to determine if the hint region [a, b) overlaps with the
613  * allocated region [x, y).
614  */
615 static inline bool pcpu_region_overlap(int a, int b, int x, int y)
616 {
617 	return (a < y) && (x < b);
618 }
619 
620 /**
621  * pcpu_block_update - updates a block given a free area
622  * @block: block of interest
623  * @start: start offset in block
624  * @end: end offset in block
625  *
626  * Updates a block given a known free area.  The region [start, end) is
627  * expected to be the entirety of the free area within a block.  Chooses
628  * the best starting offset if the contig hints are equal.
629  */
630 static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
631 {
632 	int contig = end - start;
633 
634 	block->first_free = min(block->first_free, start);
635 	if (start == 0)
636 		block->left_free = contig;
637 
638 	if (end == block->nr_bits)
639 		block->right_free = contig;
640 
641 	if (contig > block->contig_hint) {
642 		/* promote the old contig_hint to be the new scan_hint */
643 		if (start > block->contig_hint_start) {
644 			if (block->contig_hint > block->scan_hint) {
645 				block->scan_hint_start =
646 					block->contig_hint_start;
647 				block->scan_hint = block->contig_hint;
648 			} else if (start < block->scan_hint_start) {
649 				/*
650 				 * The old contig_hint == scan_hint.  But, the
651 				 * new contig is larger so hold the invariant
652 				 * scan_hint_start < contig_hint_start.
653 				 */
654 				block->scan_hint = 0;
655 			}
656 		} else {
657 			block->scan_hint = 0;
658 		}
659 		block->contig_hint_start = start;
660 		block->contig_hint = contig;
661 	} else if (contig == block->contig_hint) {
662 		if (block->contig_hint_start &&
663 		    (!start ||
664 		     __ffs(start) > __ffs(block->contig_hint_start))) {
665 			/* start has a better alignment so use it */
666 			block->contig_hint_start = start;
667 			if (start < block->scan_hint_start &&
668 			    block->contig_hint > block->scan_hint)
669 				block->scan_hint = 0;
670 		} else if (start > block->scan_hint_start ||
671 			   block->contig_hint > block->scan_hint) {
672 			/*
673 			 * Knowing contig == contig_hint, update the scan_hint
674 			 * if it is farther than or larger than the current
675 			 * scan_hint.
676 			 */
677 			block->scan_hint_start = start;
678 			block->scan_hint = contig;
679 		}
680 	} else {
681 		/*
682 		 * The region is smaller than the contig_hint.  So only update
683 		 * the scan_hint if it is larger than or equal and farther than
684 		 * the current scan_hint.
685 		 */
686 		if ((start < block->contig_hint_start &&
687 		     (contig > block->scan_hint ||
688 		      (contig == block->scan_hint &&
689 		       start > block->scan_hint_start)))) {
690 			block->scan_hint_start = start;
691 			block->scan_hint = contig;
692 		}
693 	}
694 }
695 
696 /*
697  * pcpu_block_update_scan - update a block given a free area from a scan
698  * @chunk: chunk of interest
699  * @bit_off: chunk offset
700  * @bits: size of free area
701  *
702  * Finding the final allocation spot first goes through pcpu_find_block_fit()
703  * to find a block that can hold the allocation and then pcpu_alloc_area()
704  * where a scan is used.  When allocations require specific alignments,
705  * we can inadvertently create holes which will not be seen in the alloc
706  * or free paths.
707  *
708  * This takes a given free area hole and updates a block as it may change the
709  * scan_hint.  We need to scan backwards to ensure we don't miss free bits
710  * from alignment.
711  */
712 static void pcpu_block_update_scan(struct pcpu_chunk *chunk, int bit_off,
713 				   int bits)
714 {
715 	int s_off = pcpu_off_to_block_off(bit_off);
716 	int e_off = s_off + bits;
717 	int s_index, l_bit;
718 	struct pcpu_block_md *block;
719 
720 	if (e_off > PCPU_BITMAP_BLOCK_BITS)
721 		return;
722 
723 	s_index = pcpu_off_to_block_index(bit_off);
724 	block = chunk->md_blocks + s_index;
725 
726 	/* scan backwards in case of alignment skipping free bits */
727 	l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), s_off);
728 	s_off = (s_off == l_bit) ? 0 : l_bit + 1;
729 
730 	pcpu_block_update(block, s_off, e_off);
731 }
732 
733 /**
734  * pcpu_chunk_refresh_hint - updates metadata about a chunk
735  * @chunk: chunk of interest
736  * @full_scan: if we should scan from the beginning
737  *
738  * Iterates over the metadata blocks to find the largest contig area.
739  * A full scan can be avoided on the allocation path as this is triggered
740  * if we broke the contig_hint.  In doing so, the scan_hint will be before
741  * the contig_hint or after if the scan_hint == contig_hint.  This cannot
742  * be prevented on freeing as we want to find the largest area possibly
743  * spanning blocks.
744  */
745 static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk, bool full_scan)
746 {
747 	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
748 	int bit_off, bits;
749 
750 	/* promote scan_hint to contig_hint */
751 	if (!full_scan && chunk_md->scan_hint) {
752 		bit_off = chunk_md->scan_hint_start + chunk_md->scan_hint;
753 		chunk_md->contig_hint_start = chunk_md->scan_hint_start;
754 		chunk_md->contig_hint = chunk_md->scan_hint;
755 		chunk_md->scan_hint = 0;
756 	} else {
757 		bit_off = chunk_md->first_free;
758 		chunk_md->contig_hint = 0;
759 	}
760 
761 	bits = 0;
762 	pcpu_for_each_md_free_region(chunk, bit_off, bits)
763 		pcpu_block_update(chunk_md, bit_off, bit_off + bits);
764 }
765 
766 /**
767  * pcpu_block_refresh_hint
768  * @chunk: chunk of interest
769  * @index: index of the metadata block
770  *
771  * Scans over the block beginning at first_free and updates the block
772  * metadata accordingly.
773  */
774 static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
775 {
776 	struct pcpu_block_md *block = chunk->md_blocks + index;
777 	unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
778 	unsigned int start, end;	/* region start, region end */
779 
780 	/* promote scan_hint to contig_hint */
781 	if (block->scan_hint) {
782 		start = block->scan_hint_start + block->scan_hint;
783 		block->contig_hint_start = block->scan_hint_start;
784 		block->contig_hint = block->scan_hint;
785 		block->scan_hint = 0;
786 	} else {
787 		start = block->first_free;
788 		block->contig_hint = 0;
789 	}
790 
791 	block->right_free = 0;
792 
793 	/* iterate over free areas and update the contig hints */
794 	for_each_clear_bitrange_from(start, end, alloc_map, PCPU_BITMAP_BLOCK_BITS)
795 		pcpu_block_update(block, start, end);
796 }
797 
798 /**
799  * pcpu_block_update_hint_alloc - update hint on allocation path
800  * @chunk: chunk of interest
801  * @bit_off: chunk offset
802  * @bits: size of request
803  *
804  * Updates metadata for the allocation path.  The metadata only has to be
805  * refreshed by a full scan iff the chunk's contig hint is broken.  Block level
806  * scans are required if the block's contig hint is broken.
807  */
808 static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
809 					 int bits)
810 {
811 	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
812 	int nr_empty_pages = 0;
813 	struct pcpu_block_md *s_block, *e_block, *block;
814 	int s_index, e_index;	/* block indexes of the freed allocation */
815 	int s_off, e_off;	/* block offsets of the freed allocation */
816 
817 	/*
818 	 * Calculate per block offsets.
819 	 * The calculation uses an inclusive range, but the resulting offsets
820 	 * are [start, end).  e_index always points to the last block in the
821 	 * range.
822 	 */
823 	s_index = pcpu_off_to_block_index(bit_off);
824 	e_index = pcpu_off_to_block_index(bit_off + bits - 1);
825 	s_off = pcpu_off_to_block_off(bit_off);
826 	e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
827 
828 	s_block = chunk->md_blocks + s_index;
829 	e_block = chunk->md_blocks + e_index;
830 
831 	/*
832 	 * Update s_block.
833 	 */
834 	if (s_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
835 		nr_empty_pages++;
836 
837 	/*
838 	 * block->first_free must be updated if the allocation takes its place.
839 	 * If the allocation breaks the contig_hint, a scan is required to
840 	 * restore this hint.
841 	 */
842 	if (s_off == s_block->first_free)
843 		s_block->first_free = find_next_zero_bit(
844 					pcpu_index_alloc_map(chunk, s_index),
845 					PCPU_BITMAP_BLOCK_BITS,
846 					s_off + bits);
847 
848 	if (pcpu_region_overlap(s_block->scan_hint_start,
849 				s_block->scan_hint_start + s_block->scan_hint,
850 				s_off,
851 				s_off + bits))
852 		s_block->scan_hint = 0;
853 
854 	if (pcpu_region_overlap(s_block->contig_hint_start,
855 				s_block->contig_hint_start +
856 				s_block->contig_hint,
857 				s_off,
858 				s_off + bits)) {
859 		/* block contig hint is broken - scan to fix it */
860 		if (!s_off)
861 			s_block->left_free = 0;
862 		pcpu_block_refresh_hint(chunk, s_index);
863 	} else {
864 		/* update left and right contig manually */
865 		s_block->left_free = min(s_block->left_free, s_off);
866 		if (s_index == e_index)
867 			s_block->right_free = min_t(int, s_block->right_free,
868 					PCPU_BITMAP_BLOCK_BITS - e_off);
869 		else
870 			s_block->right_free = 0;
871 	}
872 
873 	/*
874 	 * Update e_block.
875 	 */
876 	if (s_index != e_index) {
877 		if (e_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
878 			nr_empty_pages++;
879 
880 		/*
881 		 * When the allocation is across blocks, the end is along
882 		 * the left part of the e_block.
883 		 */
884 		e_block->first_free = find_next_zero_bit(
885 				pcpu_index_alloc_map(chunk, e_index),
886 				PCPU_BITMAP_BLOCK_BITS, e_off);
887 
888 		if (e_off == PCPU_BITMAP_BLOCK_BITS) {
889 			/* reset the block */
890 			e_block++;
891 		} else {
892 			if (e_off > e_block->scan_hint_start)
893 				e_block->scan_hint = 0;
894 
895 			e_block->left_free = 0;
896 			if (e_off > e_block->contig_hint_start) {
897 				/* contig hint is broken - scan to fix it */
898 				pcpu_block_refresh_hint(chunk, e_index);
899 			} else {
900 				e_block->right_free =
901 					min_t(int, e_block->right_free,
902 					      PCPU_BITMAP_BLOCK_BITS - e_off);
903 			}
904 		}
905 
906 		/* update in-between md_blocks */
907 		nr_empty_pages += (e_index - s_index - 1);
908 		for (block = s_block + 1; block < e_block; block++) {
909 			block->scan_hint = 0;
910 			block->contig_hint = 0;
911 			block->left_free = 0;
912 			block->right_free = 0;
913 		}
914 	}
915 
916 	/*
917 	 * If the allocation is not atomic, some blocks may not be
918 	 * populated with pages, while we account it here.  The number
919 	 * of pages will be added back with pcpu_chunk_populated()
920 	 * when populating pages.
921 	 */
922 	if (nr_empty_pages)
923 		pcpu_update_empty_pages(chunk, -nr_empty_pages);
924 
925 	if (pcpu_region_overlap(chunk_md->scan_hint_start,
926 				chunk_md->scan_hint_start +
927 				chunk_md->scan_hint,
928 				bit_off,
929 				bit_off + bits))
930 		chunk_md->scan_hint = 0;
931 
932 	/*
933 	 * The only time a full chunk scan is required is if the chunk
934 	 * contig hint is broken.  Otherwise, it means a smaller space
935 	 * was used and therefore the chunk contig hint is still correct.
936 	 */
937 	if (pcpu_region_overlap(chunk_md->contig_hint_start,
938 				chunk_md->contig_hint_start +
939 				chunk_md->contig_hint,
940 				bit_off,
941 				bit_off + bits))
942 		pcpu_chunk_refresh_hint(chunk, false);
943 }
944 
945 /**
946  * pcpu_block_update_hint_free - updates the block hints on the free path
947  * @chunk: chunk of interest
948  * @bit_off: chunk offset
949  * @bits: size of request
950  *
951  * Updates metadata for the allocation path.  This avoids a blind block
952  * refresh by making use of the block contig hints.  If this fails, it scans
953  * forward and backward to determine the extent of the free area.  This is
954  * capped at the boundary of blocks.
955  *
956  * A chunk update is triggered if a page becomes free, a block becomes free,
957  * or the free spans across blocks.  This tradeoff is to minimize iterating
958  * over the block metadata to update chunk_md->contig_hint.
959  * chunk_md->contig_hint may be off by up to a page, but it will never be more
960  * than the available space.  If the contig hint is contained in one block, it
961  * will be accurate.
962  */
963 static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
964 					int bits)
965 {
966 	int nr_empty_pages = 0;
967 	struct pcpu_block_md *s_block, *e_block, *block;
968 	int s_index, e_index;	/* block indexes of the freed allocation */
969 	int s_off, e_off;	/* block offsets of the freed allocation */
970 	int start, end;		/* start and end of the whole free area */
971 
972 	/*
973 	 * Calculate per block offsets.
974 	 * The calculation uses an inclusive range, but the resulting offsets
975 	 * are [start, end).  e_index always points to the last block in the
976 	 * range.
977 	 */
978 	s_index = pcpu_off_to_block_index(bit_off);
979 	e_index = pcpu_off_to_block_index(bit_off + bits - 1);
980 	s_off = pcpu_off_to_block_off(bit_off);
981 	e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
982 
983 	s_block = chunk->md_blocks + s_index;
984 	e_block = chunk->md_blocks + e_index;
985 
986 	/*
987 	 * Check if the freed area aligns with the block->contig_hint.
988 	 * If it does, then the scan to find the beginning/end of the
989 	 * larger free area can be avoided.
990 	 *
991 	 * start and end refer to beginning and end of the free area
992 	 * within each their respective blocks.  This is not necessarily
993 	 * the entire free area as it may span blocks past the beginning
994 	 * or end of the block.
995 	 */
996 	start = s_off;
997 	if (s_off == s_block->contig_hint + s_block->contig_hint_start) {
998 		start = s_block->contig_hint_start;
999 	} else {
1000 		/*
1001 		 * Scan backwards to find the extent of the free area.
1002 		 * find_last_bit returns the starting bit, so if the start bit
1003 		 * is returned, that means there was no last bit and the
1004 		 * remainder of the chunk is free.
1005 		 */
1006 		int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index),
1007 					  start);
1008 		start = (start == l_bit) ? 0 : l_bit + 1;
1009 	}
1010 
1011 	end = e_off;
1012 	if (e_off == e_block->contig_hint_start)
1013 		end = e_block->contig_hint_start + e_block->contig_hint;
1014 	else
1015 		end = find_next_bit(pcpu_index_alloc_map(chunk, e_index),
1016 				    PCPU_BITMAP_BLOCK_BITS, end);
1017 
1018 	/* update s_block */
1019 	e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS;
1020 	if (!start && e_off == PCPU_BITMAP_BLOCK_BITS)
1021 		nr_empty_pages++;
1022 	pcpu_block_update(s_block, start, e_off);
1023 
1024 	/* freeing in the same block */
1025 	if (s_index != e_index) {
1026 		/* update e_block */
1027 		if (end == PCPU_BITMAP_BLOCK_BITS)
1028 			nr_empty_pages++;
1029 		pcpu_block_update(e_block, 0, end);
1030 
1031 		/* reset md_blocks in the middle */
1032 		nr_empty_pages += (e_index - s_index - 1);
1033 		for (block = s_block + 1; block < e_block; block++) {
1034 			block->first_free = 0;
1035 			block->scan_hint = 0;
1036 			block->contig_hint_start = 0;
1037 			block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
1038 			block->left_free = PCPU_BITMAP_BLOCK_BITS;
1039 			block->right_free = PCPU_BITMAP_BLOCK_BITS;
1040 		}
1041 	}
1042 
1043 	if (nr_empty_pages)
1044 		pcpu_update_empty_pages(chunk, nr_empty_pages);
1045 
1046 	/*
1047 	 * Refresh chunk metadata when the free makes a block free or spans
1048 	 * across blocks.  The contig_hint may be off by up to a page, but if
1049 	 * the contig_hint is contained in a block, it will be accurate with
1050 	 * the else condition below.
1051 	 */
1052 	if (((end - start) >= PCPU_BITMAP_BLOCK_BITS) || s_index != e_index)
1053 		pcpu_chunk_refresh_hint(chunk, true);
1054 	else
1055 		pcpu_block_update(&chunk->chunk_md,
1056 				  pcpu_block_off_to_off(s_index, start),
1057 				  end);
1058 }
1059 
1060 /**
1061  * pcpu_is_populated - determines if the region is populated
1062  * @chunk: chunk of interest
1063  * @bit_off: chunk offset
1064  * @bits: size of area
1065  * @next_off: return value for the next offset to start searching
1066  *
1067  * For atomic allocations, check if the backing pages are populated.
1068  *
1069  * RETURNS:
1070  * Bool if the backing pages are populated.
1071  * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
1072  */
1073 static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
1074 			      int *next_off)
1075 {
1076 	unsigned int start, end;
1077 
1078 	start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
1079 	end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
1080 
1081 	start = find_next_zero_bit(chunk->populated, end, start);
1082 	if (start >= end)
1083 		return true;
1084 
1085 	end = find_next_bit(chunk->populated, end, start + 1);
1086 
1087 	*next_off = end * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
1088 	return false;
1089 }
1090 
1091 /**
1092  * pcpu_find_block_fit - finds the block index to start searching
1093  * @chunk: chunk of interest
1094  * @alloc_bits: size of request in allocation units
1095  * @align: alignment of area (max PAGE_SIZE bytes)
1096  * @pop_only: use populated regions only
1097  *
1098  * Given a chunk and an allocation spec, find the offset to begin searching
1099  * for a free region.  This iterates over the bitmap metadata blocks to
1100  * find an offset that will be guaranteed to fit the requirements.  It is
1101  * not quite first fit as if the allocation does not fit in the contig hint
1102  * of a block or chunk, it is skipped.  This errs on the side of caution
1103  * to prevent excess iteration.  Poor alignment can cause the allocator to
1104  * skip over blocks and chunks that have valid free areas.
1105  *
1106  * RETURNS:
1107  * The offset in the bitmap to begin searching.
1108  * -1 if no offset is found.
1109  */
1110 static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
1111 			       size_t align, bool pop_only)
1112 {
1113 	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1114 	int bit_off, bits, next_off;
1115 
1116 	/*
1117 	 * This is an optimization to prevent scanning by assuming if the
1118 	 * allocation cannot fit in the global hint, there is memory pressure
1119 	 * and creating a new chunk would happen soon.
1120 	 */
1121 	if (!pcpu_check_block_hint(chunk_md, alloc_bits, align))
1122 		return -1;
1123 
1124 	bit_off = pcpu_next_hint(chunk_md, alloc_bits);
1125 	bits = 0;
1126 	pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) {
1127 		if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
1128 						   &next_off))
1129 			break;
1130 
1131 		bit_off = next_off;
1132 		bits = 0;
1133 	}
1134 
1135 	if (bit_off == pcpu_chunk_map_bits(chunk))
1136 		return -1;
1137 
1138 	return bit_off;
1139 }
1140 
1141 /*
1142  * pcpu_find_zero_area - modified from bitmap_find_next_zero_area_off()
1143  * @map: the address to base the search on
1144  * @size: the bitmap size in bits
1145  * @start: the bitnumber to start searching at
1146  * @nr: the number of zeroed bits we're looking for
1147  * @align_mask: alignment mask for zero area
1148  * @largest_off: offset of the largest area skipped
1149  * @largest_bits: size of the largest area skipped
1150  *
1151  * The @align_mask should be one less than a power of 2.
1152  *
1153  * This is a modified version of bitmap_find_next_zero_area_off() to remember
1154  * the largest area that was skipped.  This is imperfect, but in general is
1155  * good enough.  The largest remembered region is the largest failed region
1156  * seen.  This does not include anything we possibly skipped due to alignment.
1157  * pcpu_block_update_scan() does scan backwards to try and recover what was
1158  * lost to alignment.  While this can cause scanning to miss earlier possible
1159  * free areas, smaller allocations will eventually fill those holes.
1160  */
1161 static unsigned long pcpu_find_zero_area(unsigned long *map,
1162 					 unsigned long size,
1163 					 unsigned long start,
1164 					 unsigned long nr,
1165 					 unsigned long align_mask,
1166 					 unsigned long *largest_off,
1167 					 unsigned long *largest_bits)
1168 {
1169 	unsigned long index, end, i, area_off, area_bits;
1170 again:
1171 	index = find_next_zero_bit(map, size, start);
1172 
1173 	/* Align allocation */
1174 	index = __ALIGN_MASK(index, align_mask);
1175 	area_off = index;
1176 
1177 	end = index + nr;
1178 	if (end > size)
1179 		return end;
1180 	i = find_next_bit(map, end, index);
1181 	if (i < end) {
1182 		area_bits = i - area_off;
1183 		/* remember largest unused area with best alignment */
1184 		if (area_bits > *largest_bits ||
1185 		    (area_bits == *largest_bits && *largest_off &&
1186 		     (!area_off || __ffs(area_off) > __ffs(*largest_off)))) {
1187 			*largest_off = area_off;
1188 			*largest_bits = area_bits;
1189 		}
1190 
1191 		start = i + 1;
1192 		goto again;
1193 	}
1194 	return index;
1195 }
1196 
1197 /**
1198  * pcpu_alloc_area - allocates an area from a pcpu_chunk
1199  * @chunk: chunk of interest
1200  * @alloc_bits: size of request in allocation units
1201  * @align: alignment of area (max PAGE_SIZE)
1202  * @start: bit_off to start searching
1203  *
1204  * This function takes in a @start offset to begin searching to fit an
1205  * allocation of @alloc_bits with alignment @align.  It needs to scan
1206  * the allocation map because if it fits within the block's contig hint,
1207  * @start will be block->first_free. This is an attempt to fill the
1208  * allocation prior to breaking the contig hint.  The allocation and
1209  * boundary maps are updated accordingly if it confirms a valid
1210  * free area.
1211  *
1212  * RETURNS:
1213  * Allocated addr offset in @chunk on success.
1214  * -1 if no matching area is found.
1215  */
1216 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
1217 			   size_t align, int start)
1218 {
1219 	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1220 	size_t align_mask = (align) ? (align - 1) : 0;
1221 	unsigned long area_off = 0, area_bits = 0;
1222 	int bit_off, end, oslot;
1223 
1224 	lockdep_assert_held(&pcpu_lock);
1225 
1226 	oslot = pcpu_chunk_slot(chunk);
1227 
1228 	/*
1229 	 * Search to find a fit.
1230 	 */
1231 	end = min_t(int, start + alloc_bits + PCPU_BITMAP_BLOCK_BITS,
1232 		    pcpu_chunk_map_bits(chunk));
1233 	bit_off = pcpu_find_zero_area(chunk->alloc_map, end, start, alloc_bits,
1234 				      align_mask, &area_off, &area_bits);
1235 	if (bit_off >= end)
1236 		return -1;
1237 
1238 	if (area_bits)
1239 		pcpu_block_update_scan(chunk, area_off, area_bits);
1240 
1241 	/* update alloc map */
1242 	bitmap_set(chunk->alloc_map, bit_off, alloc_bits);
1243 
1244 	/* update boundary map */
1245 	set_bit(bit_off, chunk->bound_map);
1246 	bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1);
1247 	set_bit(bit_off + alloc_bits, chunk->bound_map);
1248 
1249 	chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;
1250 
1251 	/* update first free bit */
1252 	if (bit_off == chunk_md->first_free)
1253 		chunk_md->first_free = find_next_zero_bit(
1254 					chunk->alloc_map,
1255 					pcpu_chunk_map_bits(chunk),
1256 					bit_off + alloc_bits);
1257 
1258 	pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits);
1259 
1260 	pcpu_chunk_relocate(chunk, oslot);
1261 
1262 	return bit_off * PCPU_MIN_ALLOC_SIZE;
1263 }
1264 
1265 /**
1266  * pcpu_free_area - frees the corresponding offset
1267  * @chunk: chunk of interest
1268  * @off: addr offset into chunk
1269  *
1270  * This function determines the size of an allocation to free using
1271  * the boundary bitmap and clears the allocation map.
1272  *
1273  * RETURNS:
1274  * Number of freed bytes.
1275  */
1276 static int pcpu_free_area(struct pcpu_chunk *chunk, int off)
1277 {
1278 	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1279 	int bit_off, bits, end, oslot, freed;
1280 
1281 	lockdep_assert_held(&pcpu_lock);
1282 
1283 	oslot = pcpu_chunk_slot(chunk);
1284 
1285 	bit_off = off / PCPU_MIN_ALLOC_SIZE;
1286 
1287 	/* check invalid free */
1288 	if (!test_bit(bit_off, chunk->alloc_map) ||
1289 	    !test_bit(bit_off, chunk->bound_map))
1290 		return 0;
1291 
1292 	/* find end index */
1293 	end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk),
1294 			    bit_off + 1);
1295 	bits = end - bit_off;
1296 	bitmap_clear(chunk->alloc_map, bit_off, bits);
1297 
1298 	freed = bits * PCPU_MIN_ALLOC_SIZE;
1299 
1300 	/* update metadata */
1301 	chunk->free_bytes += freed;
1302 
1303 	/* update first free bit */
1304 	chunk_md->first_free = min(chunk_md->first_free, bit_off);
1305 
1306 	pcpu_block_update_hint_free(chunk, bit_off, bits);
1307 
1308 	pcpu_chunk_relocate(chunk, oslot);
1309 
1310 	pcpu_stats_area_dealloc(chunk);
1311 
1312 	return freed;
1313 }
1314 
1315 static void pcpu_init_md_block(struct pcpu_block_md *block, int nr_bits)
1316 {
1317 	block->scan_hint = 0;
1318 	block->contig_hint = nr_bits;
1319 	block->left_free = nr_bits;
1320 	block->right_free = nr_bits;
1321 	block->first_free = 0;
1322 	block->nr_bits = nr_bits;
1323 }
1324 
1325 static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
1326 {
1327 	struct pcpu_block_md *md_block;
1328 
1329 	/* init the chunk's block */
1330 	pcpu_init_md_block(&chunk->chunk_md, pcpu_chunk_map_bits(chunk));
1331 
1332 	for (md_block = chunk->md_blocks;
1333 	     md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
1334 	     md_block++)
1335 		pcpu_init_md_block(md_block, PCPU_BITMAP_BLOCK_BITS);
1336 }
1337 
1338 /**
1339  * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
1340  * @tmp_addr: the start of the region served
1341  * @map_size: size of the region served
1342  *
1343  * This is responsible for creating the chunks that serve the first chunk.  The
1344  * base_addr is page aligned down of @tmp_addr while the region end is page
1345  * aligned up.  Offsets are kept track of to determine the region served. All
1346  * this is done to appease the bitmap allocator in avoiding partial blocks.
1347  *
1348  * RETURNS:
1349  * Chunk serving the region at @tmp_addr of @map_size.
1350  */
1351 static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
1352 							 int map_size)
1353 {
1354 	struct pcpu_chunk *chunk;
1355 	unsigned long aligned_addr;
1356 	int start_offset, offset_bits, region_size, region_bits;
1357 	size_t alloc_size;
1358 
1359 	/* region calculations */
1360 	aligned_addr = tmp_addr & PAGE_MASK;
1361 
1362 	start_offset = tmp_addr - aligned_addr;
1363 	region_size = ALIGN(start_offset + map_size, PAGE_SIZE);
1364 
1365 	/* allocate chunk */
1366 	alloc_size = struct_size(chunk, populated,
1367 				 BITS_TO_LONGS(region_size >> PAGE_SHIFT));
1368 	chunk = memblock_alloc_or_panic(alloc_size, SMP_CACHE_BYTES);
1369 
1370 	INIT_LIST_HEAD(&chunk->list);
1371 
1372 	chunk->base_addr = (void *)aligned_addr;
1373 	chunk->start_offset = start_offset;
1374 	chunk->end_offset = region_size - chunk->start_offset - map_size;
1375 
1376 	chunk->nr_pages = region_size >> PAGE_SHIFT;
1377 	region_bits = pcpu_chunk_map_bits(chunk);
1378 
1379 	alloc_size = BITS_TO_LONGS(region_bits) * sizeof(chunk->alloc_map[0]);
1380 	chunk->alloc_map = memblock_alloc_or_panic(alloc_size, SMP_CACHE_BYTES);
1381 
1382 	alloc_size =
1383 		BITS_TO_LONGS(region_bits + 1) * sizeof(chunk->bound_map[0]);
1384 	chunk->bound_map = memblock_alloc_or_panic(alloc_size, SMP_CACHE_BYTES);
1385 
1386 	alloc_size = pcpu_chunk_nr_blocks(chunk) * sizeof(chunk->md_blocks[0]);
1387 	chunk->md_blocks = memblock_alloc_or_panic(alloc_size, SMP_CACHE_BYTES);
1388 #ifdef NEED_PCPUOBJ_EXT
1389 	/* first chunk is free to use */
1390 	chunk->obj_exts = NULL;
1391 #endif
1392 	pcpu_init_md_blocks(chunk);
1393 
1394 	/* manage populated page bitmap */
1395 	chunk->immutable = true;
1396 	bitmap_fill(chunk->populated, chunk->nr_pages);
1397 	chunk->nr_populated = chunk->nr_pages;
1398 	chunk->nr_empty_pop_pages = chunk->nr_pages;
1399 
1400 	chunk->free_bytes = map_size;
1401 
1402 	if (chunk->start_offset) {
1403 		/* hide the beginning of the bitmap */
1404 		offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
1405 		bitmap_set(chunk->alloc_map, 0, offset_bits);
1406 		set_bit(0, chunk->bound_map);
1407 		set_bit(offset_bits, chunk->bound_map);
1408 
1409 		chunk->chunk_md.first_free = offset_bits;
1410 
1411 		pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
1412 	}
1413 
1414 	if (chunk->end_offset) {
1415 		/* hide the end of the bitmap */
1416 		offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE;
1417 		bitmap_set(chunk->alloc_map,
1418 			   pcpu_chunk_map_bits(chunk) - offset_bits,
1419 			   offset_bits);
1420 		set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE,
1421 			chunk->bound_map);
1422 		set_bit(region_bits, chunk->bound_map);
1423 
1424 		pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk)
1425 					     - offset_bits, offset_bits);
1426 	}
1427 
1428 	return chunk;
1429 }
1430 
1431 static struct pcpu_chunk *pcpu_alloc_chunk(gfp_t gfp)
1432 {
1433 	struct pcpu_chunk *chunk;
1434 	int region_bits;
1435 
1436 	chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp);
1437 	if (!chunk)
1438 		return NULL;
1439 
1440 	INIT_LIST_HEAD(&chunk->list);
1441 	chunk->nr_pages = pcpu_unit_pages;
1442 	region_bits = pcpu_chunk_map_bits(chunk);
1443 
1444 	chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) *
1445 					   sizeof(chunk->alloc_map[0]), gfp);
1446 	if (!chunk->alloc_map)
1447 		goto alloc_map_fail;
1448 
1449 	chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) *
1450 					   sizeof(chunk->bound_map[0]), gfp);
1451 	if (!chunk->bound_map)
1452 		goto bound_map_fail;
1453 
1454 	chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) *
1455 					   sizeof(chunk->md_blocks[0]), gfp);
1456 	if (!chunk->md_blocks)
1457 		goto md_blocks_fail;
1458 
1459 #ifdef NEED_PCPUOBJ_EXT
1460 	if (need_pcpuobj_ext()) {
1461 		chunk->obj_exts =
1462 			pcpu_mem_zalloc(pcpu_chunk_map_bits(chunk) *
1463 					sizeof(struct pcpuobj_ext), gfp);
1464 		if (!chunk->obj_exts)
1465 			goto objcg_fail;
1466 	}
1467 #endif
1468 
1469 	pcpu_init_md_blocks(chunk);
1470 
1471 	/* init metadata */
1472 	chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;
1473 
1474 	return chunk;
1475 
1476 #ifdef NEED_PCPUOBJ_EXT
1477 objcg_fail:
1478 	pcpu_mem_free(chunk->md_blocks);
1479 #endif
1480 md_blocks_fail:
1481 	pcpu_mem_free(chunk->bound_map);
1482 bound_map_fail:
1483 	pcpu_mem_free(chunk->alloc_map);
1484 alloc_map_fail:
1485 	pcpu_mem_free(chunk);
1486 
1487 	return NULL;
1488 }
1489 
1490 static void pcpu_free_chunk(struct pcpu_chunk *chunk)
1491 {
1492 	if (!chunk)
1493 		return;
1494 #ifdef NEED_PCPUOBJ_EXT
1495 	pcpu_mem_free(chunk->obj_exts);
1496 #endif
1497 	pcpu_mem_free(chunk->md_blocks);
1498 	pcpu_mem_free(chunk->bound_map);
1499 	pcpu_mem_free(chunk->alloc_map);
1500 	pcpu_mem_free(chunk);
1501 }
1502 
1503 /**
1504  * pcpu_chunk_populated - post-population bookkeeping
1505  * @chunk: pcpu_chunk which got populated
1506  * @page_start: the start page
1507  * @page_end: the end page
1508  *
1509  * Pages in [@page_start,@page_end) have been populated to @chunk.  Update
1510  * the bookkeeping information accordingly.  Must be called after each
1511  * successful population.
1512  */
1513 static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
1514 				 int page_end)
1515 {
1516 	int nr = page_end - page_start;
1517 
1518 	lockdep_assert_held(&pcpu_lock);
1519 
1520 	bitmap_set(chunk->populated, page_start, nr);
1521 	chunk->nr_populated += nr;
1522 	pcpu_nr_populated += nr;
1523 
1524 	pcpu_update_empty_pages(chunk, nr);
1525 }
1526 
1527 /**
1528  * pcpu_chunk_depopulated - post-depopulation bookkeeping
1529  * @chunk: pcpu_chunk which got depopulated
1530  * @page_start: the start page
1531  * @page_end: the end page
1532  *
1533  * Pages in [@page_start,@page_end) have been depopulated from @chunk.
1534  * Update the bookkeeping information accordingly.  Must be called after
1535  * each successful depopulation.
1536  */
1537 static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
1538 				   int page_start, int page_end)
1539 {
1540 	int nr = page_end - page_start;
1541 
1542 	lockdep_assert_held(&pcpu_lock);
1543 
1544 	bitmap_clear(chunk->populated, page_start, nr);
1545 	chunk->nr_populated -= nr;
1546 	pcpu_nr_populated -= nr;
1547 
1548 	pcpu_update_empty_pages(chunk, -nr);
1549 }
1550 
1551 /*
1552  * Chunk management implementation.
1553  *
1554  * To allow different implementations, chunk alloc/free and
1555  * [de]population are implemented in a separate file which is pulled
1556  * into this file and compiled together.  The following functions
1557  * should be implemented.
1558  *
1559  * pcpu_populate_chunk		- populate the specified range of a chunk
1560  * pcpu_depopulate_chunk	- depopulate the specified range of a chunk
1561  * pcpu_post_unmap_tlb_flush	- flush tlb for the specified range of a chunk
1562  * pcpu_create_chunk		- create a new chunk
1563  * pcpu_destroy_chunk		- destroy a chunk, always preceded by full depop
1564  * pcpu_addr_to_page		- translate address to physical address
1565  * pcpu_verify_alloc_info	- check alloc_info is acceptable during init
1566  */
1567 static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
1568 			       int page_start, int page_end, gfp_t gfp);
1569 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
1570 				  int page_start, int page_end);
1571 static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
1572 				      int page_start, int page_end);
1573 static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp);
1574 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
1575 static struct page *pcpu_addr_to_page(void *addr);
1576 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
1577 
1578 #ifdef CONFIG_NEED_PER_CPU_KM
1579 #include "percpu-km.c"
1580 #else
1581 #include "percpu-vm.c"
1582 #endif
1583 
1584 /**
1585  * pcpu_chunk_addr_search - determine chunk containing specified address
1586  * @addr: address for which the chunk needs to be determined.
1587  *
1588  * This is an internal function that handles all but static allocations.
1589  * Static percpu address values should never be passed into the allocator.
1590  *
1591  * RETURNS:
1592  * The address of the found chunk.
1593  */
1594 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
1595 {
1596 	/* is it in the dynamic region (first chunk)? */
1597 	if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
1598 		return pcpu_first_chunk;
1599 
1600 	/* is it in the reserved region? */
1601 	if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
1602 		return pcpu_reserved_chunk;
1603 
1604 	/*
1605 	 * The address is relative to unit0 which might be unused and
1606 	 * thus unmapped.  Offset the address to the unit space of the
1607 	 * current processor before looking it up in the vmalloc
1608 	 * space.  Note that any possible cpu id can be used here, so
1609 	 * there's no need to worry about preemption or cpu hotplug.
1610 	 */
1611 	addr += pcpu_unit_offsets[raw_smp_processor_id()];
1612 	return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
1613 }
1614 
1615 #ifdef CONFIG_MEMCG
1616 static bool pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp,
1617 				      struct obj_cgroup **objcgp)
1618 {
1619 	struct obj_cgroup *objcg;
1620 
1621 	if (!memcg_kmem_online() || !(gfp & __GFP_ACCOUNT))
1622 		return true;
1623 
1624 	objcg = current_obj_cgroup();
1625 	if (!objcg)
1626 		return true;
1627 
1628 	if (obj_cgroup_charge(objcg, gfp, pcpu_obj_full_size(size)))
1629 		return false;
1630 
1631 	*objcgp = objcg;
1632 	return true;
1633 }
1634 
1635 static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg,
1636 				       struct pcpu_chunk *chunk, int off,
1637 				       size_t size)
1638 {
1639 	if (!objcg)
1640 		return;
1641 
1642 	if (likely(chunk && chunk->obj_exts)) {
1643 		obj_cgroup_get(objcg);
1644 		chunk->obj_exts[off >> PCPU_MIN_ALLOC_SHIFT].cgroup = objcg;
1645 
1646 		rcu_read_lock();
1647 		mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B,
1648 				pcpu_obj_full_size(size));
1649 		rcu_read_unlock();
1650 	} else {
1651 		obj_cgroup_uncharge(objcg, pcpu_obj_full_size(size));
1652 	}
1653 }
1654 
1655 static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size)
1656 {
1657 	struct obj_cgroup *objcg;
1658 
1659 	if (unlikely(!chunk->obj_exts))
1660 		return;
1661 
1662 	objcg = chunk->obj_exts[off >> PCPU_MIN_ALLOC_SHIFT].cgroup;
1663 	if (!objcg)
1664 		return;
1665 	chunk->obj_exts[off >> PCPU_MIN_ALLOC_SHIFT].cgroup = NULL;
1666 
1667 	obj_cgroup_uncharge(objcg, pcpu_obj_full_size(size));
1668 
1669 	rcu_read_lock();
1670 	mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B,
1671 			-pcpu_obj_full_size(size));
1672 	rcu_read_unlock();
1673 
1674 	obj_cgroup_put(objcg);
1675 }
1676 
1677 #else /* CONFIG_MEMCG */
1678 static bool
1679 pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp, struct obj_cgroup **objcgp)
1680 {
1681 	return true;
1682 }
1683 
1684 static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg,
1685 				       struct pcpu_chunk *chunk, int off,
1686 				       size_t size)
1687 {
1688 }
1689 
1690 static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size)
1691 {
1692 }
1693 #endif /* CONFIG_MEMCG */
1694 
1695 #ifdef CONFIG_MEM_ALLOC_PROFILING
1696 static void pcpu_alloc_tag_alloc_hook(struct pcpu_chunk *chunk, int off,
1697 				      size_t size)
1698 {
1699 	if (mem_alloc_profiling_enabled() && likely(chunk->obj_exts)) {
1700 		alloc_tag_add(&chunk->obj_exts[off >> PCPU_MIN_ALLOC_SHIFT].tag,
1701 			      current->alloc_tag, size);
1702 	}
1703 }
1704 
1705 static void pcpu_alloc_tag_free_hook(struct pcpu_chunk *chunk, int off, size_t size)
1706 {
1707 	if (mem_alloc_profiling_enabled() && likely(chunk->obj_exts))
1708 		alloc_tag_sub(&chunk->obj_exts[off >> PCPU_MIN_ALLOC_SHIFT].tag, size);
1709 }
1710 #else
1711 static void pcpu_alloc_tag_alloc_hook(struct pcpu_chunk *chunk, int off,
1712 				      size_t size)
1713 {
1714 }
1715 
1716 static void pcpu_alloc_tag_free_hook(struct pcpu_chunk *chunk, int off, size_t size)
1717 {
1718 }
1719 #endif
1720 
1721 /**
1722  * pcpu_alloc - the percpu allocator
1723  * @size: size of area to allocate in bytes
1724  * @align: alignment of area (max PAGE_SIZE)
1725  * @reserved: allocate from the reserved chunk if available
1726  * @gfp: allocation flags
1727  *
1728  * Allocate percpu area of @size bytes aligned at @align.  If @gfp doesn't
1729  * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN
1730  * then no warning will be triggered on invalid or failed allocation
1731  * requests.
1732  *
1733  * RETURNS:
1734  * Percpu pointer to the allocated area on success, NULL on failure.
1735  */
1736 void __percpu *pcpu_alloc_noprof(size_t size, size_t align, bool reserved,
1737 				 gfp_t gfp)
1738 {
1739 	gfp_t pcpu_gfp;
1740 	bool is_atomic;
1741 	bool do_warn;
1742 	struct obj_cgroup *objcg = NULL;
1743 	static atomic_t warn_limit = ATOMIC_INIT(10);
1744 	struct pcpu_chunk *chunk, *next;
1745 	const char *err;
1746 	int slot, off, cpu, ret;
1747 	unsigned long flags;
1748 	void __percpu *ptr;
1749 	size_t bits, bit_align;
1750 
1751 	gfp = current_gfp_context(gfp);
1752 	/* whitelisted flags that can be passed to the backing allocators */
1753 	pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN);
1754 	is_atomic = !gfpflags_allow_blocking(gfp);
1755 	do_warn = !(gfp & __GFP_NOWARN);
1756 
1757 	/*
1758 	 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
1759 	 * therefore alignment must be a minimum of that many bytes.
1760 	 * An allocation may have internal fragmentation from rounding up
1761 	 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
1762 	 */
1763 	if (unlikely(align < PCPU_MIN_ALLOC_SIZE))
1764 		align = PCPU_MIN_ALLOC_SIZE;
1765 
1766 	size = ALIGN(size, PCPU_MIN_ALLOC_SIZE);
1767 	bits = size >> PCPU_MIN_ALLOC_SHIFT;
1768 	bit_align = align >> PCPU_MIN_ALLOC_SHIFT;
1769 
1770 	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
1771 		     !is_power_of_2(align))) {
1772 		WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n",
1773 		     size, align);
1774 		return NULL;
1775 	}
1776 
1777 	if (unlikely(!pcpu_memcg_pre_alloc_hook(size, gfp, &objcg)))
1778 		return NULL;
1779 
1780 	if (!is_atomic) {
1781 		/*
1782 		 * pcpu_balance_workfn() allocates memory under this mutex,
1783 		 * and it may wait for memory reclaim. Allow current task
1784 		 * to become OOM victim, in case of memory pressure.
1785 		 */
1786 		if (gfp & __GFP_NOFAIL) {
1787 			mutex_lock(&pcpu_alloc_mutex);
1788 		} else if (mutex_lock_killable(&pcpu_alloc_mutex)) {
1789 			pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size);
1790 			return NULL;
1791 		}
1792 	}
1793 
1794 	spin_lock_irqsave(&pcpu_lock, flags);
1795 
1796 	/* serve reserved allocations from the reserved chunk if available */
1797 	if (reserved && pcpu_reserved_chunk) {
1798 		chunk = pcpu_reserved_chunk;
1799 
1800 		off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic);
1801 		if (off < 0) {
1802 			err = "alloc from reserved chunk failed";
1803 			goto fail_unlock;
1804 		}
1805 
1806 		off = pcpu_alloc_area(chunk, bits, bit_align, off);
1807 		if (off >= 0)
1808 			goto area_found;
1809 
1810 		err = "alloc from reserved chunk failed";
1811 		goto fail_unlock;
1812 	}
1813 
1814 restart:
1815 	/* search through normal chunks */
1816 	for (slot = pcpu_size_to_slot(size); slot <= pcpu_free_slot; slot++) {
1817 		list_for_each_entry_safe(chunk, next, &pcpu_chunk_lists[slot],
1818 					 list) {
1819 			off = pcpu_find_block_fit(chunk, bits, bit_align,
1820 						  is_atomic);
1821 			if (off < 0) {
1822 				if (slot < PCPU_SLOT_FAIL_THRESHOLD)
1823 					pcpu_chunk_move(chunk, 0);
1824 				continue;
1825 			}
1826 
1827 			off = pcpu_alloc_area(chunk, bits, bit_align, off);
1828 			if (off >= 0) {
1829 				pcpu_reintegrate_chunk(chunk);
1830 				goto area_found;
1831 			}
1832 		}
1833 	}
1834 
1835 	spin_unlock_irqrestore(&pcpu_lock, flags);
1836 
1837 	if (is_atomic) {
1838 		err = "atomic alloc failed, no space left";
1839 		goto fail;
1840 	}
1841 
1842 	/* No space left.  Create a new chunk. */
1843 	if (list_empty(&pcpu_chunk_lists[pcpu_free_slot])) {
1844 		chunk = pcpu_create_chunk(pcpu_gfp);
1845 		if (!chunk) {
1846 			err = "failed to allocate new chunk";
1847 			goto fail;
1848 		}
1849 
1850 		spin_lock_irqsave(&pcpu_lock, flags);
1851 		pcpu_chunk_relocate(chunk, -1);
1852 	} else {
1853 		spin_lock_irqsave(&pcpu_lock, flags);
1854 	}
1855 
1856 	goto restart;
1857 
1858 area_found:
1859 	pcpu_stats_area_alloc(chunk, size);
1860 
1861 	if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1862 		pcpu_schedule_balance_work();
1863 
1864 	spin_unlock_irqrestore(&pcpu_lock, flags);
1865 
1866 	/* populate if not all pages are already there */
1867 	if (!is_atomic) {
1868 		unsigned int page_end, rs, re;
1869 
1870 		rs = PFN_DOWN(off);
1871 		page_end = PFN_UP(off + size);
1872 
1873 		for_each_clear_bitrange_from(rs, re, chunk->populated, page_end) {
1874 			WARN_ON(chunk->immutable);
1875 
1876 			ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp);
1877 
1878 			spin_lock_irqsave(&pcpu_lock, flags);
1879 			if (ret) {
1880 				pcpu_free_area(chunk, off);
1881 				err = "failed to populate";
1882 				goto fail_unlock;
1883 			}
1884 			pcpu_chunk_populated(chunk, rs, re);
1885 			spin_unlock_irqrestore(&pcpu_lock, flags);
1886 		}
1887 
1888 		mutex_unlock(&pcpu_alloc_mutex);
1889 	}
1890 
1891 	/* clear the areas and return address relative to base address */
1892 	for_each_possible_cpu(cpu)
1893 		memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1894 
1895 	ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1896 	kmemleak_alloc_percpu(ptr, size, gfp);
1897 
1898 	trace_percpu_alloc_percpu(_RET_IP_, reserved, is_atomic, size, align,
1899 				  chunk->base_addr, off, ptr,
1900 				  pcpu_obj_full_size(size), gfp);
1901 
1902 	pcpu_memcg_post_alloc_hook(objcg, chunk, off, size);
1903 
1904 	pcpu_alloc_tag_alloc_hook(chunk, off, size);
1905 
1906 	return ptr;
1907 
1908 fail_unlock:
1909 	spin_unlock_irqrestore(&pcpu_lock, flags);
1910 fail:
1911 	trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
1912 
1913 	if (do_warn) {
1914 		int remaining = atomic_dec_if_positive(&warn_limit);
1915 
1916 		if (remaining >= 0) {
1917 			pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1918 				size, align, is_atomic, err);
1919 			if (!is_atomic)
1920 				dump_stack();
1921 			if (remaining == 0)
1922 				pr_info("limit reached, disable warning\n");
1923 		}
1924 	}
1925 
1926 	if (is_atomic) {
1927 		/* see the flag handling in pcpu_balance_workfn() */
1928 		pcpu_atomic_alloc_failed = true;
1929 		pcpu_schedule_balance_work();
1930 	} else {
1931 		mutex_unlock(&pcpu_alloc_mutex);
1932 	}
1933 
1934 	pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size);
1935 
1936 	return NULL;
1937 }
1938 EXPORT_SYMBOL_GPL(pcpu_alloc_noprof);
1939 
1940 /**
1941  * pcpu_balance_free - manage the amount of free chunks
1942  * @empty_only: free chunks only if there are no populated pages
1943  *
1944  * If empty_only is %false, reclaim all fully free chunks regardless of the
1945  * number of populated pages.  Otherwise, only reclaim chunks that have no
1946  * populated pages.
1947  *
1948  * CONTEXT:
1949  * pcpu_lock (can be dropped temporarily)
1950  */
1951 static void pcpu_balance_free(bool empty_only)
1952 {
1953 	LIST_HEAD(to_free);
1954 	struct list_head *free_head = &pcpu_chunk_lists[pcpu_free_slot];
1955 	struct pcpu_chunk *chunk, *next;
1956 
1957 	lockdep_assert_held(&pcpu_lock);
1958 
1959 	/*
1960 	 * There's no reason to keep around multiple unused chunks and VM
1961 	 * areas can be scarce.  Destroy all free chunks except for one.
1962 	 */
1963 	list_for_each_entry_safe(chunk, next, free_head, list) {
1964 		WARN_ON(chunk->immutable);
1965 
1966 		/* spare the first one */
1967 		if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1968 			continue;
1969 
1970 		if (!empty_only || chunk->nr_empty_pop_pages == 0)
1971 			list_move(&chunk->list, &to_free);
1972 	}
1973 
1974 	if (list_empty(&to_free))
1975 		return;
1976 
1977 	spin_unlock_irq(&pcpu_lock);
1978 	list_for_each_entry_safe(chunk, next, &to_free, list) {
1979 		unsigned int rs, re;
1980 
1981 		for_each_set_bitrange(rs, re, chunk->populated, chunk->nr_pages) {
1982 			pcpu_depopulate_chunk(chunk, rs, re);
1983 			spin_lock_irq(&pcpu_lock);
1984 			pcpu_chunk_depopulated(chunk, rs, re);
1985 			spin_unlock_irq(&pcpu_lock);
1986 		}
1987 		pcpu_destroy_chunk(chunk);
1988 		cond_resched();
1989 	}
1990 	spin_lock_irq(&pcpu_lock);
1991 }
1992 
1993 /**
1994  * pcpu_balance_populated - manage the amount of populated pages
1995  *
1996  * Maintain a certain amount of populated pages to satisfy atomic allocations.
1997  * It is possible that this is called when physical memory is scarce causing
1998  * OOM killer to be triggered.  We should avoid doing so until an actual
1999  * allocation causes the failure as it is possible that requests can be
2000  * serviced from already backed regions.
2001  *
2002  * CONTEXT:
2003  * pcpu_lock (can be dropped temporarily)
2004  */
2005 static void pcpu_balance_populated(void)
2006 {
2007 	/* gfp flags passed to underlying allocators */
2008 	const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
2009 	struct pcpu_chunk *chunk;
2010 	int slot, nr_to_pop, ret;
2011 
2012 	lockdep_assert_held(&pcpu_lock);
2013 
2014 	/*
2015 	 * Ensure there are certain number of free populated pages for
2016 	 * atomic allocs.  Fill up from the most packed so that atomic
2017 	 * allocs don't increase fragmentation.  If atomic allocation
2018 	 * failed previously, always populate the maximum amount.  This
2019 	 * should prevent atomic allocs larger than PAGE_SIZE from keeping
2020 	 * failing indefinitely; however, large atomic allocs are not
2021 	 * something we support properly and can be highly unreliable and
2022 	 * inefficient.
2023 	 */
2024 retry_pop:
2025 	if (pcpu_atomic_alloc_failed) {
2026 		nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
2027 		/* best effort anyway, don't worry about synchronization */
2028 		pcpu_atomic_alloc_failed = false;
2029 	} else {
2030 		nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
2031 				  pcpu_nr_empty_pop_pages,
2032 				  0, PCPU_EMPTY_POP_PAGES_HIGH);
2033 	}
2034 
2035 	for (slot = pcpu_size_to_slot(PAGE_SIZE); slot <= pcpu_free_slot; slot++) {
2036 		unsigned int nr_unpop = 0, rs, re;
2037 
2038 		if (!nr_to_pop)
2039 			break;
2040 
2041 		list_for_each_entry(chunk, &pcpu_chunk_lists[slot], list) {
2042 			nr_unpop = chunk->nr_pages - chunk->nr_populated;
2043 			if (nr_unpop)
2044 				break;
2045 		}
2046 
2047 		if (!nr_unpop)
2048 			continue;
2049 
2050 		/* @chunk can't go away while pcpu_alloc_mutex is held */
2051 		for_each_clear_bitrange(rs, re, chunk->populated, chunk->nr_pages) {
2052 			int nr = min_t(int, re - rs, nr_to_pop);
2053 
2054 			spin_unlock_irq(&pcpu_lock);
2055 			ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp);
2056 			cond_resched();
2057 			spin_lock_irq(&pcpu_lock);
2058 			if (!ret) {
2059 				nr_to_pop -= nr;
2060 				pcpu_chunk_populated(chunk, rs, rs + nr);
2061 			} else {
2062 				nr_to_pop = 0;
2063 			}
2064 
2065 			if (!nr_to_pop)
2066 				break;
2067 		}
2068 	}
2069 
2070 	if (nr_to_pop) {
2071 		/* ran out of chunks to populate, create a new one and retry */
2072 		spin_unlock_irq(&pcpu_lock);
2073 		chunk = pcpu_create_chunk(gfp);
2074 		cond_resched();
2075 		spin_lock_irq(&pcpu_lock);
2076 		if (chunk) {
2077 			pcpu_chunk_relocate(chunk, -1);
2078 			goto retry_pop;
2079 		}
2080 	}
2081 }
2082 
2083 /**
2084  * pcpu_reclaim_populated - scan over to_depopulate chunks and free empty pages
2085  *
2086  * Scan over chunks in the depopulate list and try to release unused populated
2087  * pages back to the system.  Depopulated chunks are sidelined to prevent
2088  * repopulating these pages unless required.  Fully free chunks are reintegrated
2089  * and freed accordingly (1 is kept around).  If we drop below the empty
2090  * populated pages threshold, reintegrate the chunk if it has empty free pages.
2091  * Each chunk is scanned in the reverse order to keep populated pages close to
2092  * the beginning of the chunk.
2093  *
2094  * CONTEXT:
2095  * pcpu_lock (can be dropped temporarily)
2096  *
2097  */
2098 static void pcpu_reclaim_populated(void)
2099 {
2100 	struct pcpu_chunk *chunk;
2101 	struct pcpu_block_md *block;
2102 	int freed_page_start, freed_page_end;
2103 	int i, end;
2104 	bool reintegrate;
2105 
2106 	lockdep_assert_held(&pcpu_lock);
2107 
2108 	/*
2109 	 * Once a chunk is isolated to the to_depopulate list, the chunk is no
2110 	 * longer discoverable to allocations whom may populate pages.  The only
2111 	 * other accessor is the free path which only returns area back to the
2112 	 * allocator not touching the populated bitmap.
2113 	 */
2114 	while ((chunk = list_first_entry_or_null(
2115 			&pcpu_chunk_lists[pcpu_to_depopulate_slot],
2116 			struct pcpu_chunk, list))) {
2117 		WARN_ON(chunk->immutable);
2118 
2119 		/*
2120 		 * Scan chunk's pages in the reverse order to keep populated
2121 		 * pages close to the beginning of the chunk.
2122 		 */
2123 		freed_page_start = chunk->nr_pages;
2124 		freed_page_end = 0;
2125 		reintegrate = false;
2126 		for (i = chunk->nr_pages - 1, end = -1; i >= 0; i--) {
2127 			/* no more work to do */
2128 			if (chunk->nr_empty_pop_pages == 0)
2129 				break;
2130 
2131 			/* reintegrate chunk to prevent atomic alloc failures */
2132 			if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_HIGH) {
2133 				reintegrate = true;
2134 				break;
2135 			}
2136 
2137 			/*
2138 			 * If the page is empty and populated, start or
2139 			 * extend the (i, end) range.  If i == 0, decrease
2140 			 * i and perform the depopulation to cover the last
2141 			 * (first) page in the chunk.
2142 			 */
2143 			block = chunk->md_blocks + i;
2144 			if (block->contig_hint == PCPU_BITMAP_BLOCK_BITS &&
2145 			    test_bit(i, chunk->populated)) {
2146 				if (end == -1)
2147 					end = i;
2148 				if (i > 0)
2149 					continue;
2150 				i--;
2151 			}
2152 
2153 			/* depopulate if there is an active range */
2154 			if (end == -1)
2155 				continue;
2156 
2157 			spin_unlock_irq(&pcpu_lock);
2158 			pcpu_depopulate_chunk(chunk, i + 1, end + 1);
2159 			cond_resched();
2160 			spin_lock_irq(&pcpu_lock);
2161 
2162 			pcpu_chunk_depopulated(chunk, i + 1, end + 1);
2163 			freed_page_start = min(freed_page_start, i + 1);
2164 			freed_page_end = max(freed_page_end, end + 1);
2165 
2166 			/* reset the range and continue */
2167 			end = -1;
2168 		}
2169 
2170 		/* batch tlb flush per chunk to amortize cost */
2171 		if (freed_page_start < freed_page_end) {
2172 			spin_unlock_irq(&pcpu_lock);
2173 			pcpu_post_unmap_tlb_flush(chunk,
2174 						  freed_page_start,
2175 						  freed_page_end);
2176 			cond_resched();
2177 			spin_lock_irq(&pcpu_lock);
2178 		}
2179 
2180 		if (reintegrate || chunk->free_bytes == pcpu_unit_size)
2181 			pcpu_reintegrate_chunk(chunk);
2182 		else
2183 			list_move_tail(&chunk->list,
2184 				       &pcpu_chunk_lists[pcpu_sidelined_slot]);
2185 	}
2186 }
2187 
2188 /**
2189  * pcpu_balance_workfn - manage the amount of free chunks and populated pages
2190  * @work: unused
2191  *
2192  * For each chunk type, manage the number of fully free chunks and the number of
2193  * populated pages.  An important thing to consider is when pages are freed and
2194  * how they contribute to the global counts.
2195  */
2196 static void pcpu_balance_workfn(struct work_struct *work)
2197 {
2198 	/*
2199 	 * pcpu_balance_free() is called twice because the first time we may
2200 	 * trim pages in the active pcpu_nr_empty_pop_pages which may cause us
2201 	 * to grow other chunks.  This then gives pcpu_reclaim_populated() time
2202 	 * to move fully free chunks to the active list to be freed if
2203 	 * appropriate.
2204 	 *
2205 	 * Enforce GFP_NOIO allocations because we have pcpu_alloc users
2206 	 * constrained to GFP_NOIO/NOFS contexts and they could form lock
2207 	 * dependency through pcpu_alloc_mutex
2208 	 */
2209 	unsigned int flags = memalloc_noio_save();
2210 	mutex_lock(&pcpu_alloc_mutex);
2211 	spin_lock_irq(&pcpu_lock);
2212 
2213 	pcpu_balance_free(false);
2214 	pcpu_reclaim_populated();
2215 	pcpu_balance_populated();
2216 	pcpu_balance_free(true);
2217 
2218 	spin_unlock_irq(&pcpu_lock);
2219 	mutex_unlock(&pcpu_alloc_mutex);
2220 	memalloc_noio_restore(flags);
2221 }
2222 
2223 /**
2224  * free_percpu - free percpu area
2225  * @ptr: pointer to area to free
2226  *
2227  * Free percpu area @ptr.
2228  *
2229  * CONTEXT:
2230  * Can be called from atomic context.
2231  */
2232 void free_percpu(void __percpu *ptr)
2233 {
2234 	void *addr;
2235 	struct pcpu_chunk *chunk;
2236 	unsigned long flags;
2237 	int size, off;
2238 	bool need_balance = false;
2239 
2240 	if (!ptr)
2241 		return;
2242 
2243 	kmemleak_free_percpu(ptr);
2244 
2245 	addr = __pcpu_ptr_to_addr(ptr);
2246 	chunk = pcpu_chunk_addr_search(addr);
2247 	off = addr - chunk->base_addr;
2248 
2249 	spin_lock_irqsave(&pcpu_lock, flags);
2250 	size = pcpu_free_area(chunk, off);
2251 	if (size == 0) {
2252 		spin_unlock_irqrestore(&pcpu_lock, flags);
2253 
2254 		/* invalid percpu free */
2255 		WARN_ON_ONCE(1);
2256 		return;
2257 	}
2258 
2259 	pcpu_alloc_tag_free_hook(chunk, off, size);
2260 
2261 	pcpu_memcg_free_hook(chunk, off, size);
2262 
2263 	/*
2264 	 * If there are more than one fully free chunks, wake up grim reaper.
2265 	 * If the chunk is isolated, it may be in the process of being
2266 	 * reclaimed.  Let reclaim manage cleaning up of that chunk.
2267 	 */
2268 	if (!chunk->isolated && chunk->free_bytes == pcpu_unit_size) {
2269 		struct pcpu_chunk *pos;
2270 
2271 		list_for_each_entry(pos, &pcpu_chunk_lists[pcpu_free_slot], list)
2272 			if (pos != chunk) {
2273 				need_balance = true;
2274 				break;
2275 			}
2276 	} else if (pcpu_should_reclaim_chunk(chunk)) {
2277 		pcpu_isolate_chunk(chunk);
2278 		need_balance = true;
2279 	}
2280 
2281 	trace_percpu_free_percpu(chunk->base_addr, off, ptr);
2282 
2283 	spin_unlock_irqrestore(&pcpu_lock, flags);
2284 
2285 	if (need_balance)
2286 		pcpu_schedule_balance_work();
2287 }
2288 EXPORT_SYMBOL_GPL(free_percpu);
2289 
2290 bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
2291 {
2292 #ifdef CONFIG_SMP
2293 	const size_t static_size = __per_cpu_end - __per_cpu_start;
2294 	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
2295 	unsigned int cpu;
2296 
2297 	for_each_possible_cpu(cpu) {
2298 		void *start = per_cpu_ptr(base, cpu);
2299 		void *va = (void *)addr;
2300 
2301 		if (va >= start && va < start + static_size) {
2302 			if (can_addr) {
2303 				*can_addr = (unsigned long) (va - start);
2304 				*can_addr += (unsigned long)
2305 					per_cpu_ptr(base, get_boot_cpu_id());
2306 			}
2307 			return true;
2308 		}
2309 	}
2310 #endif
2311 	/* on UP, can't distinguish from other static vars, always false */
2312 	return false;
2313 }
2314 
2315 /**
2316  * is_kernel_percpu_address - test whether address is from static percpu area
2317  * @addr: address to test
2318  *
2319  * Test whether @addr belongs to in-kernel static percpu area.  Module
2320  * static percpu areas are not considered.  For those, use
2321  * is_module_percpu_address().
2322  *
2323  * RETURNS:
2324  * %true if @addr is from in-kernel static percpu area, %false otherwise.
2325  */
2326 bool is_kernel_percpu_address(unsigned long addr)
2327 {
2328 	return __is_kernel_percpu_address(addr, NULL);
2329 }
2330 
2331 /**
2332  * per_cpu_ptr_to_phys - convert translated percpu address to physical address
2333  * @addr: the address to be converted to physical address
2334  *
2335  * Given @addr which is dereferenceable address obtained via one of
2336  * percpu access macros, this function translates it into its physical
2337  * address.  The caller is responsible for ensuring @addr stays valid
2338  * until this function finishes.
2339  *
2340  * percpu allocator has special setup for the first chunk, which currently
2341  * supports either embedding in linear address space or vmalloc mapping,
2342  * and, from the second one, the backing allocator (currently either vm or
2343  * km) provides translation.
2344  *
2345  * The addr can be translated simply without checking if it falls into the
2346  * first chunk. But the current code reflects better how percpu allocator
2347  * actually works, and the verification can discover both bugs in percpu
2348  * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
2349  * code.
2350  *
2351  * RETURNS:
2352  * The physical address for @addr.
2353  */
2354 phys_addr_t per_cpu_ptr_to_phys(void *addr)
2355 {
2356 	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
2357 	bool in_first_chunk = false;
2358 	unsigned long first_low, first_high;
2359 	unsigned int cpu;
2360 
2361 	/*
2362 	 * The following test on unit_low/high isn't strictly
2363 	 * necessary but will speed up lookups of addresses which
2364 	 * aren't in the first chunk.
2365 	 *
2366 	 * The address check is against full chunk sizes.  pcpu_base_addr
2367 	 * points to the beginning of the first chunk including the
2368 	 * static region.  Assumes good intent as the first chunk may
2369 	 * not be full (ie. < pcpu_unit_pages in size).
2370 	 */
2371 	first_low = (unsigned long)pcpu_base_addr +
2372 		    pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
2373 	first_high = (unsigned long)pcpu_base_addr +
2374 		     pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
2375 	if ((unsigned long)addr >= first_low &&
2376 	    (unsigned long)addr < first_high) {
2377 		for_each_possible_cpu(cpu) {
2378 			void *start = per_cpu_ptr(base, cpu);
2379 
2380 			if (addr >= start && addr < start + pcpu_unit_size) {
2381 				in_first_chunk = true;
2382 				break;
2383 			}
2384 		}
2385 	}
2386 
2387 	if (in_first_chunk) {
2388 		if (!is_vmalloc_addr(addr))
2389 			return __pa(addr);
2390 		else
2391 			return page_to_phys(vmalloc_to_page(addr)) +
2392 			       offset_in_page(addr);
2393 	} else
2394 		return page_to_phys(pcpu_addr_to_page(addr)) +
2395 		       offset_in_page(addr);
2396 }
2397 
2398 /**
2399  * pcpu_alloc_alloc_info - allocate percpu allocation info
2400  * @nr_groups: the number of groups
2401  * @nr_units: the number of units
2402  *
2403  * Allocate ai which is large enough for @nr_groups groups containing
2404  * @nr_units units.  The returned ai's groups[0].cpu_map points to the
2405  * cpu_map array which is long enough for @nr_units and filled with
2406  * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
2407  * pointer of other groups.
2408  *
2409  * RETURNS:
2410  * Pointer to the allocated pcpu_alloc_info on success, NULL on
2411  * failure.
2412  */
2413 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
2414 						      int nr_units)
2415 {
2416 	struct pcpu_alloc_info *ai;
2417 	size_t base_size, ai_size;
2418 	void *ptr;
2419 	int unit;
2420 
2421 	base_size = ALIGN(struct_size(ai, groups, nr_groups),
2422 			  __alignof__(ai->groups[0].cpu_map[0]));
2423 	ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
2424 
2425 	ptr = memblock_alloc(PFN_ALIGN(ai_size), PAGE_SIZE);
2426 	if (!ptr)
2427 		return NULL;
2428 	ai = ptr;
2429 	ptr += base_size;
2430 
2431 	ai->groups[0].cpu_map = ptr;
2432 
2433 	for (unit = 0; unit < nr_units; unit++)
2434 		ai->groups[0].cpu_map[unit] = NR_CPUS;
2435 
2436 	ai->nr_groups = nr_groups;
2437 	ai->__ai_size = PFN_ALIGN(ai_size);
2438 
2439 	return ai;
2440 }
2441 
2442 /**
2443  * pcpu_free_alloc_info - free percpu allocation info
2444  * @ai: pcpu_alloc_info to free
2445  *
2446  * Free @ai which was allocated by pcpu_alloc_alloc_info().
2447  */
2448 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
2449 {
2450 	memblock_free(ai, ai->__ai_size);
2451 }
2452 
2453 /**
2454  * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
2455  * @lvl: loglevel
2456  * @ai: allocation info to dump
2457  *
2458  * Print out information about @ai using loglevel @lvl.
2459  */
2460 static void pcpu_dump_alloc_info(const char *lvl,
2461 				 const struct pcpu_alloc_info *ai)
2462 {
2463 	int group_width = 1, cpu_width = 1, width;
2464 	char empty_str[] = "--------";
2465 	int alloc = 0, alloc_end = 0;
2466 	int group, v;
2467 	int upa, apl;	/* units per alloc, allocs per line */
2468 
2469 	v = ai->nr_groups;
2470 	while (v /= 10)
2471 		group_width++;
2472 
2473 	v = num_possible_cpus();
2474 	while (v /= 10)
2475 		cpu_width++;
2476 	empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
2477 
2478 	upa = ai->alloc_size / ai->unit_size;
2479 	width = upa * (cpu_width + 1) + group_width + 3;
2480 	apl = rounddown_pow_of_two(max(60 / width, 1));
2481 
2482 	printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
2483 	       lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
2484 	       ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
2485 
2486 	for (group = 0; group < ai->nr_groups; group++) {
2487 		const struct pcpu_group_info *gi = &ai->groups[group];
2488 		int unit = 0, unit_end = 0;
2489 
2490 		BUG_ON(gi->nr_units % upa);
2491 		for (alloc_end += gi->nr_units / upa;
2492 		     alloc < alloc_end; alloc++) {
2493 			if (!(alloc % apl)) {
2494 				pr_cont("\n");
2495 				printk("%spcpu-alloc: ", lvl);
2496 			}
2497 			pr_cont("[%0*d] ", group_width, group);
2498 
2499 			for (unit_end += upa; unit < unit_end; unit++)
2500 				if (gi->cpu_map[unit] != NR_CPUS)
2501 					pr_cont("%0*d ",
2502 						cpu_width, gi->cpu_map[unit]);
2503 				else
2504 					pr_cont("%s ", empty_str);
2505 		}
2506 	}
2507 	pr_cont("\n");
2508 }
2509 
2510 /**
2511  * pcpu_setup_first_chunk - initialize the first percpu chunk
2512  * @ai: pcpu_alloc_info describing how to percpu area is shaped
2513  * @base_addr: mapped address
2514  *
2515  * Initialize the first percpu chunk which contains the kernel static
2516  * percpu area.  This function is to be called from arch percpu area
2517  * setup path.
2518  *
2519  * @ai contains all information necessary to initialize the first
2520  * chunk and prime the dynamic percpu allocator.
2521  *
2522  * @ai->static_size is the size of static percpu area.
2523  *
2524  * @ai->reserved_size, if non-zero, specifies the amount of bytes to
2525  * reserve after the static area in the first chunk.  This reserves
2526  * the first chunk such that it's available only through reserved
2527  * percpu allocation.  This is primarily used to serve module percpu
2528  * static areas on architectures where the addressing model has
2529  * limited offset range for symbol relocations to guarantee module
2530  * percpu symbols fall inside the relocatable range.
2531  *
2532  * @ai->dyn_size determines the number of bytes available for dynamic
2533  * allocation in the first chunk.  The area between @ai->static_size +
2534  * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
2535  *
2536  * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
2537  * and equal to or larger than @ai->static_size + @ai->reserved_size +
2538  * @ai->dyn_size.
2539  *
2540  * @ai->atom_size is the allocation atom size and used as alignment
2541  * for vm areas.
2542  *
2543  * @ai->alloc_size is the allocation size and always multiple of
2544  * @ai->atom_size.  This is larger than @ai->atom_size if
2545  * @ai->unit_size is larger than @ai->atom_size.
2546  *
2547  * @ai->nr_groups and @ai->groups describe virtual memory layout of
2548  * percpu areas.  Units which should be colocated are put into the
2549  * same group.  Dynamic VM areas will be allocated according to these
2550  * groupings.  If @ai->nr_groups is zero, a single group containing
2551  * all units is assumed.
2552  *
2553  * The caller should have mapped the first chunk at @base_addr and
2554  * copied static data to each unit.
2555  *
2556  * The first chunk will always contain a static and a dynamic region.
2557  * However, the static region is not managed by any chunk.  If the first
2558  * chunk also contains a reserved region, it is served by two chunks -
2559  * one for the reserved region and one for the dynamic region.  They
2560  * share the same vm, but use offset regions in the area allocation map.
2561  * The chunk serving the dynamic region is circulated in the chunk slots
2562  * and available for dynamic allocation like any other chunk.
2563  */
2564 void __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
2565 				   void *base_addr)
2566 {
2567 	size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2568 	size_t static_size, dyn_size;
2569 	unsigned long *group_offsets;
2570 	size_t *group_sizes;
2571 	unsigned long *unit_off;
2572 	unsigned int cpu;
2573 	int *unit_map;
2574 	int group, unit, i;
2575 	unsigned long tmp_addr;
2576 	size_t alloc_size;
2577 
2578 #define PCPU_SETUP_BUG_ON(cond)	do {					\
2579 	if (unlikely(cond)) {						\
2580 		pr_emerg("failed to initialize, %s\n", #cond);		\
2581 		pr_emerg("cpu_possible_mask=%*pb\n",			\
2582 			 cpumask_pr_args(cpu_possible_mask));		\
2583 		pcpu_dump_alloc_info(KERN_EMERG, ai);			\
2584 		BUG();							\
2585 	}								\
2586 } while (0)
2587 
2588 	/* sanity checks */
2589 	PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
2590 #ifdef CONFIG_SMP
2591 	PCPU_SETUP_BUG_ON(!ai->static_size);
2592 	PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
2593 #endif
2594 	PCPU_SETUP_BUG_ON(!base_addr);
2595 	PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
2596 	PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
2597 	PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
2598 	PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
2599 	PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE));
2600 	PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
2601 	PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
2602 	PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) ||
2603 			    IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE)));
2604 	PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
2605 
2606 	/* process group information and build config tables accordingly */
2607 	alloc_size = ai->nr_groups * sizeof(group_offsets[0]);
2608 	group_offsets = memblock_alloc_or_panic(alloc_size, SMP_CACHE_BYTES);
2609 
2610 	alloc_size = ai->nr_groups * sizeof(group_sizes[0]);
2611 	group_sizes = memblock_alloc_or_panic(alloc_size, SMP_CACHE_BYTES);
2612 
2613 	alloc_size = nr_cpu_ids * sizeof(unit_map[0]);
2614 	unit_map = memblock_alloc_or_panic(alloc_size, SMP_CACHE_BYTES);
2615 
2616 	alloc_size = nr_cpu_ids * sizeof(unit_off[0]);
2617 	unit_off = memblock_alloc_or_panic(alloc_size, SMP_CACHE_BYTES);
2618 
2619 	for (cpu = 0; cpu < nr_cpu_ids; cpu++)
2620 		unit_map[cpu] = UINT_MAX;
2621 
2622 	pcpu_low_unit_cpu = NR_CPUS;
2623 	pcpu_high_unit_cpu = NR_CPUS;
2624 
2625 	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
2626 		const struct pcpu_group_info *gi = &ai->groups[group];
2627 
2628 		group_offsets[group] = gi->base_offset;
2629 		group_sizes[group] = gi->nr_units * ai->unit_size;
2630 
2631 		for (i = 0; i < gi->nr_units; i++) {
2632 			cpu = gi->cpu_map[i];
2633 			if (cpu == NR_CPUS)
2634 				continue;
2635 
2636 			PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
2637 			PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
2638 			PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
2639 
2640 			unit_map[cpu] = unit + i;
2641 			unit_off[cpu] = gi->base_offset + i * ai->unit_size;
2642 
2643 			/* determine low/high unit_cpu */
2644 			if (pcpu_low_unit_cpu == NR_CPUS ||
2645 			    unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
2646 				pcpu_low_unit_cpu = cpu;
2647 			if (pcpu_high_unit_cpu == NR_CPUS ||
2648 			    unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
2649 				pcpu_high_unit_cpu = cpu;
2650 		}
2651 	}
2652 	pcpu_nr_units = unit;
2653 
2654 	for_each_possible_cpu(cpu)
2655 		PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
2656 
2657 	/* we're done parsing the input, undefine BUG macro and dump config */
2658 #undef PCPU_SETUP_BUG_ON
2659 	pcpu_dump_alloc_info(KERN_DEBUG, ai);
2660 
2661 	pcpu_nr_groups = ai->nr_groups;
2662 	pcpu_group_offsets = group_offsets;
2663 	pcpu_group_sizes = group_sizes;
2664 	pcpu_unit_map = unit_map;
2665 	pcpu_unit_offsets = unit_off;
2666 
2667 	/* determine basic parameters */
2668 	pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
2669 	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
2670 	pcpu_atom_size = ai->atom_size;
2671 	pcpu_chunk_struct_size = struct_size((struct pcpu_chunk *)0, populated,
2672 					     BITS_TO_LONGS(pcpu_unit_pages));
2673 
2674 	pcpu_stats_save_ai(ai);
2675 
2676 	/*
2677 	 * Allocate chunk slots.  The slots after the active slots are:
2678 	 *   sidelined_slot - isolated, depopulated chunks
2679 	 *   free_slot - fully free chunks
2680 	 *   to_depopulate_slot - isolated, chunks to depopulate
2681 	 */
2682 	pcpu_sidelined_slot = __pcpu_size_to_slot(pcpu_unit_size) + 1;
2683 	pcpu_free_slot = pcpu_sidelined_slot + 1;
2684 	pcpu_to_depopulate_slot = pcpu_free_slot + 1;
2685 	pcpu_nr_slots = pcpu_to_depopulate_slot + 1;
2686 	pcpu_chunk_lists = memblock_alloc_or_panic(pcpu_nr_slots *
2687 					  sizeof(pcpu_chunk_lists[0]),
2688 					  SMP_CACHE_BYTES);
2689 
2690 	for (i = 0; i < pcpu_nr_slots; i++)
2691 		INIT_LIST_HEAD(&pcpu_chunk_lists[i]);
2692 
2693 	/*
2694 	 * The end of the static region needs to be aligned with the
2695 	 * minimum allocation size as this offsets the reserved and
2696 	 * dynamic region.  The first chunk ends page aligned by
2697 	 * expanding the dynamic region, therefore the dynamic region
2698 	 * can be shrunk to compensate while still staying above the
2699 	 * configured sizes.
2700 	 */
2701 	static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE);
2702 	dyn_size = ai->dyn_size - (static_size - ai->static_size);
2703 
2704 	/*
2705 	 * Initialize first chunk:
2706 	 * This chunk is broken up into 3 parts:
2707 	 *		< static | [reserved] | dynamic >
2708 	 * - static - there is no backing chunk because these allocations can
2709 	 *   never be freed.
2710 	 * - reserved (pcpu_reserved_chunk) - exists primarily to serve
2711 	 *   allocations from module load.
2712 	 * - dynamic (pcpu_first_chunk) - serves the dynamic part of the first
2713 	 *   chunk.
2714 	 */
2715 	tmp_addr = (unsigned long)base_addr + static_size;
2716 	if (ai->reserved_size)
2717 		pcpu_reserved_chunk = pcpu_alloc_first_chunk(tmp_addr,
2718 						ai->reserved_size);
2719 	tmp_addr = (unsigned long)base_addr + static_size + ai->reserved_size;
2720 	pcpu_first_chunk = pcpu_alloc_first_chunk(tmp_addr, dyn_size);
2721 
2722 	pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages;
2723 	pcpu_chunk_relocate(pcpu_first_chunk, -1);
2724 
2725 	/* include all regions of the first chunk */
2726 	pcpu_nr_populated += PFN_DOWN(size_sum);
2727 
2728 	pcpu_stats_chunk_alloc();
2729 	trace_percpu_create_chunk(base_addr);
2730 
2731 	/* we're done */
2732 	pcpu_base_addr = base_addr;
2733 }
2734 
2735 #ifdef CONFIG_SMP
2736 
2737 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
2738 	[PCPU_FC_AUTO]	= "auto",
2739 	[PCPU_FC_EMBED]	= "embed",
2740 	[PCPU_FC_PAGE]	= "page",
2741 };
2742 
2743 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
2744 
2745 static int __init percpu_alloc_setup(char *str)
2746 {
2747 	if (!str)
2748 		return -EINVAL;
2749 
2750 	if (0)
2751 		/* nada */;
2752 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
2753 	else if (!strcmp(str, "embed"))
2754 		pcpu_chosen_fc = PCPU_FC_EMBED;
2755 #endif
2756 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2757 	else if (!strcmp(str, "page"))
2758 		pcpu_chosen_fc = PCPU_FC_PAGE;
2759 #endif
2760 	else
2761 		pr_warn("unknown allocator %s specified\n", str);
2762 
2763 	return 0;
2764 }
2765 early_param("percpu_alloc", percpu_alloc_setup);
2766 
2767 /*
2768  * pcpu_embed_first_chunk() is used by the generic percpu setup.
2769  * Build it if needed by the arch config or the generic setup is going
2770  * to be used.
2771  */
2772 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
2773 	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
2774 #define BUILD_EMBED_FIRST_CHUNK
2775 #endif
2776 
2777 /* build pcpu_page_first_chunk() iff needed by the arch config */
2778 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
2779 #define BUILD_PAGE_FIRST_CHUNK
2780 #endif
2781 
2782 /* pcpu_build_alloc_info() is used by both embed and page first chunk */
2783 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
2784 /**
2785  * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
2786  * @reserved_size: the size of reserved percpu area in bytes
2787  * @dyn_size: minimum free size for dynamic allocation in bytes
2788  * @atom_size: allocation atom size
2789  * @cpu_distance_fn: callback to determine distance between cpus, optional
2790  *
2791  * This function determines grouping of units, their mappings to cpus
2792  * and other parameters considering needed percpu size, allocation
2793  * atom size and distances between CPUs.
2794  *
2795  * Groups are always multiples of atom size and CPUs which are of
2796  * LOCAL_DISTANCE both ways are grouped together and share space for
2797  * units in the same group.  The returned configuration is guaranteed
2798  * to have CPUs on different nodes on different groups and >=75% usage
2799  * of allocated virtual address space.
2800  *
2801  * RETURNS:
2802  * On success, pointer to the new allocation_info is returned.  On
2803  * failure, ERR_PTR value is returned.
2804  */
2805 static struct pcpu_alloc_info * __init __flatten pcpu_build_alloc_info(
2806 				size_t reserved_size, size_t dyn_size,
2807 				size_t atom_size,
2808 				pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
2809 {
2810 	static int group_map[NR_CPUS] __initdata;
2811 	static int group_cnt[NR_CPUS] __initdata;
2812 	static struct cpumask mask __initdata;
2813 	const size_t static_size = __per_cpu_end - __per_cpu_start;
2814 	int nr_groups = 1, nr_units = 0;
2815 	size_t size_sum, min_unit_size, alloc_size;
2816 	int upa, max_upa, best_upa;	/* units_per_alloc */
2817 	int last_allocs, group, unit;
2818 	unsigned int cpu, tcpu;
2819 	struct pcpu_alloc_info *ai;
2820 	unsigned int *cpu_map;
2821 
2822 	/* this function may be called multiple times */
2823 	memset(group_map, 0, sizeof(group_map));
2824 	memset(group_cnt, 0, sizeof(group_cnt));
2825 	cpumask_clear(&mask);
2826 
2827 	/* calculate size_sum and ensure dyn_size is enough for early alloc */
2828 	size_sum = PFN_ALIGN(static_size + reserved_size +
2829 			    max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
2830 	dyn_size = size_sum - static_size - reserved_size;
2831 
2832 	/*
2833 	 * Determine min_unit_size, alloc_size and max_upa such that
2834 	 * alloc_size is multiple of atom_size and is the smallest
2835 	 * which can accommodate 4k aligned segments which are equal to
2836 	 * or larger than min_unit_size.
2837 	 */
2838 	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
2839 
2840 	/* determine the maximum # of units that can fit in an allocation */
2841 	alloc_size = roundup(min_unit_size, atom_size);
2842 	upa = alloc_size / min_unit_size;
2843 	while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2844 		upa--;
2845 	max_upa = upa;
2846 
2847 	cpumask_copy(&mask, cpu_possible_mask);
2848 
2849 	/* group cpus according to their proximity */
2850 	for (group = 0; !cpumask_empty(&mask); group++) {
2851 		/* pop the group's first cpu */
2852 		cpu = cpumask_first(&mask);
2853 		group_map[cpu] = group;
2854 		group_cnt[group]++;
2855 		cpumask_clear_cpu(cpu, &mask);
2856 
2857 		for_each_cpu(tcpu, &mask) {
2858 			if (!cpu_distance_fn ||
2859 			    (cpu_distance_fn(cpu, tcpu) == LOCAL_DISTANCE &&
2860 			     cpu_distance_fn(tcpu, cpu) == LOCAL_DISTANCE)) {
2861 				group_map[tcpu] = group;
2862 				group_cnt[group]++;
2863 				cpumask_clear_cpu(tcpu, &mask);
2864 			}
2865 		}
2866 	}
2867 	nr_groups = group;
2868 
2869 	/*
2870 	 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
2871 	 * Expand the unit_size until we use >= 75% of the units allocated.
2872 	 * Related to atom_size, which could be much larger than the unit_size.
2873 	 */
2874 	last_allocs = INT_MAX;
2875 	best_upa = 0;
2876 	for (upa = max_upa; upa; upa--) {
2877 		int allocs = 0, wasted = 0;
2878 
2879 		if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2880 			continue;
2881 
2882 		for (group = 0; group < nr_groups; group++) {
2883 			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
2884 			allocs += this_allocs;
2885 			wasted += this_allocs * upa - group_cnt[group];
2886 		}
2887 
2888 		/*
2889 		 * Don't accept if wastage is over 1/3.  The
2890 		 * greater-than comparison ensures upa==1 always
2891 		 * passes the following check.
2892 		 */
2893 		if (wasted > num_possible_cpus() / 3)
2894 			continue;
2895 
2896 		/* and then don't consume more memory */
2897 		if (allocs > last_allocs)
2898 			break;
2899 		last_allocs = allocs;
2900 		best_upa = upa;
2901 	}
2902 	BUG_ON(!best_upa);
2903 	upa = best_upa;
2904 
2905 	/* allocate and fill alloc_info */
2906 	for (group = 0; group < nr_groups; group++)
2907 		nr_units += roundup(group_cnt[group], upa);
2908 
2909 	ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
2910 	if (!ai)
2911 		return ERR_PTR(-ENOMEM);
2912 	cpu_map = ai->groups[0].cpu_map;
2913 
2914 	for (group = 0; group < nr_groups; group++) {
2915 		ai->groups[group].cpu_map = cpu_map;
2916 		cpu_map += roundup(group_cnt[group], upa);
2917 	}
2918 
2919 	ai->static_size = static_size;
2920 	ai->reserved_size = reserved_size;
2921 	ai->dyn_size = dyn_size;
2922 	ai->unit_size = alloc_size / upa;
2923 	ai->atom_size = atom_size;
2924 	ai->alloc_size = alloc_size;
2925 
2926 	for (group = 0, unit = 0; group < nr_groups; group++) {
2927 		struct pcpu_group_info *gi = &ai->groups[group];
2928 
2929 		/*
2930 		 * Initialize base_offset as if all groups are located
2931 		 * back-to-back.  The caller should update this to
2932 		 * reflect actual allocation.
2933 		 */
2934 		gi->base_offset = unit * ai->unit_size;
2935 
2936 		for_each_possible_cpu(cpu)
2937 			if (group_map[cpu] == group)
2938 				gi->cpu_map[gi->nr_units++] = cpu;
2939 		gi->nr_units = roundup(gi->nr_units, upa);
2940 		unit += gi->nr_units;
2941 	}
2942 	BUG_ON(unit != nr_units);
2943 
2944 	return ai;
2945 }
2946 
2947 static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align,
2948 				   pcpu_fc_cpu_to_node_fn_t cpu_to_nd_fn)
2949 {
2950 	const unsigned long goal = __pa(MAX_DMA_ADDRESS);
2951 #ifdef CONFIG_NUMA
2952 	int node = NUMA_NO_NODE;
2953 	void *ptr;
2954 
2955 	if (cpu_to_nd_fn)
2956 		node = cpu_to_nd_fn(cpu);
2957 
2958 	if (node == NUMA_NO_NODE || !node_online(node) || !NODE_DATA(node)) {
2959 		ptr = memblock_alloc_from(size, align, goal);
2960 		pr_info("cpu %d has no node %d or node-local memory\n",
2961 			cpu, node);
2962 		pr_debug("per cpu data for cpu%d %zu bytes at 0x%llx\n",
2963 			 cpu, size, (u64)__pa(ptr));
2964 	} else {
2965 		ptr = memblock_alloc_try_nid(size, align, goal,
2966 					     MEMBLOCK_ALLOC_ACCESSIBLE,
2967 					     node);
2968 
2969 		pr_debug("per cpu data for cpu%d %zu bytes on node%d at 0x%llx\n",
2970 			 cpu, size, node, (u64)__pa(ptr));
2971 	}
2972 	return ptr;
2973 #else
2974 	return memblock_alloc_from(size, align, goal);
2975 #endif
2976 }
2977 
2978 static void __init pcpu_fc_free(void *ptr, size_t size)
2979 {
2980 	memblock_free(ptr, size);
2981 }
2982 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
2983 
2984 #if defined(BUILD_EMBED_FIRST_CHUNK)
2985 /**
2986  * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
2987  * @reserved_size: the size of reserved percpu area in bytes
2988  * @dyn_size: minimum free size for dynamic allocation in bytes
2989  * @atom_size: allocation atom size
2990  * @cpu_distance_fn: callback to determine distance between cpus, optional
2991  * @cpu_to_nd_fn: callback to convert cpu to it's node, optional
2992  *
2993  * This is a helper to ease setting up embedded first percpu chunk and
2994  * can be called where pcpu_setup_first_chunk() is expected.
2995  *
2996  * If this function is used to setup the first chunk, it is allocated
2997  * by calling pcpu_fc_alloc and used as-is without being mapped into
2998  * vmalloc area.  Allocations are always whole multiples of @atom_size
2999  * aligned to @atom_size.
3000  *
3001  * This enables the first chunk to piggy back on the linear physical
3002  * mapping which often uses larger page size.  Please note that this
3003  * can result in very sparse cpu->unit mapping on NUMA machines thus
3004  * requiring large vmalloc address space.  Don't use this allocator if
3005  * vmalloc space is not orders of magnitude larger than distances
3006  * between node memory addresses (ie. 32bit NUMA machines).
3007  *
3008  * @dyn_size specifies the minimum dynamic area size.
3009  *
3010  * If the needed size is smaller than the minimum or specified unit
3011  * size, the leftover is returned using pcpu_fc_free.
3012  *
3013  * RETURNS:
3014  * 0 on success, -errno on failure.
3015  */
3016 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
3017 				  size_t atom_size,
3018 				  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
3019 				  pcpu_fc_cpu_to_node_fn_t cpu_to_nd_fn)
3020 {
3021 	void *base = (void *)ULONG_MAX;
3022 	void **areas = NULL;
3023 	struct pcpu_alloc_info *ai;
3024 	size_t size_sum, areas_size;
3025 	unsigned long max_distance;
3026 	int group, i, highest_group, rc = 0;
3027 
3028 	ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
3029 				   cpu_distance_fn);
3030 	if (IS_ERR(ai))
3031 		return PTR_ERR(ai);
3032 
3033 	size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
3034 	areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
3035 
3036 	areas = memblock_alloc(areas_size, SMP_CACHE_BYTES);
3037 	if (!areas) {
3038 		rc = -ENOMEM;
3039 		goto out_free;
3040 	}
3041 
3042 	/* allocate, copy and determine base address & max_distance */
3043 	highest_group = 0;
3044 	for (group = 0; group < ai->nr_groups; group++) {
3045 		struct pcpu_group_info *gi = &ai->groups[group];
3046 		unsigned int cpu = NR_CPUS;
3047 		void *ptr;
3048 
3049 		for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
3050 			cpu = gi->cpu_map[i];
3051 		BUG_ON(cpu == NR_CPUS);
3052 
3053 		/* allocate space for the whole group */
3054 		ptr = pcpu_fc_alloc(cpu, gi->nr_units * ai->unit_size, atom_size, cpu_to_nd_fn);
3055 		if (!ptr) {
3056 			rc = -ENOMEM;
3057 			goto out_free_areas;
3058 		}
3059 		/* kmemleak tracks the percpu allocations separately */
3060 		kmemleak_ignore_phys(__pa(ptr));
3061 		areas[group] = ptr;
3062 
3063 		base = min(ptr, base);
3064 		if (ptr > areas[highest_group])
3065 			highest_group = group;
3066 	}
3067 	max_distance = areas[highest_group] - base;
3068 	max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
3069 
3070 	/* warn if maximum distance is further than 75% of vmalloc space */
3071 	if (max_distance > VMALLOC_TOTAL * 3 / 4) {
3072 		pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
3073 				max_distance, VMALLOC_TOTAL);
3074 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
3075 		/* and fail if we have fallback */
3076 		rc = -EINVAL;
3077 		goto out_free_areas;
3078 #endif
3079 	}
3080 
3081 	/*
3082 	 * Copy data and free unused parts.  This should happen after all
3083 	 * allocations are complete; otherwise, we may end up with
3084 	 * overlapping groups.
3085 	 */
3086 	for (group = 0; group < ai->nr_groups; group++) {
3087 		struct pcpu_group_info *gi = &ai->groups[group];
3088 		void *ptr = areas[group];
3089 
3090 		for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
3091 			if (gi->cpu_map[i] == NR_CPUS) {
3092 				/* unused unit, free whole */
3093 				pcpu_fc_free(ptr, ai->unit_size);
3094 				continue;
3095 			}
3096 			/* copy and return the unused part */
3097 			memcpy(ptr, __per_cpu_start, ai->static_size);
3098 			pcpu_fc_free(ptr + size_sum, ai->unit_size - size_sum);
3099 		}
3100 	}
3101 
3102 	/* base address is now known, determine group base offsets */
3103 	for (group = 0; group < ai->nr_groups; group++) {
3104 		ai->groups[group].base_offset = areas[group] - base;
3105 	}
3106 
3107 	pr_info("Embedded %zu pages/cpu s%zu r%zu d%zu u%zu\n",
3108 		PFN_DOWN(size_sum), ai->static_size, ai->reserved_size,
3109 		ai->dyn_size, ai->unit_size);
3110 
3111 	pcpu_setup_first_chunk(ai, base);
3112 	goto out_free;
3113 
3114 out_free_areas:
3115 	for (group = 0; group < ai->nr_groups; group++)
3116 		if (areas[group])
3117 			pcpu_fc_free(areas[group],
3118 				ai->groups[group].nr_units * ai->unit_size);
3119 out_free:
3120 	pcpu_free_alloc_info(ai);
3121 	if (areas)
3122 		memblock_free(areas, areas_size);
3123 	return rc;
3124 }
3125 #endif /* BUILD_EMBED_FIRST_CHUNK */
3126 
3127 #ifdef BUILD_PAGE_FIRST_CHUNK
3128 #include <linux/pgalloc.h>
3129 
3130 #ifndef P4D_TABLE_SIZE
3131 #define P4D_TABLE_SIZE PAGE_SIZE
3132 #endif
3133 
3134 #ifndef PUD_TABLE_SIZE
3135 #define PUD_TABLE_SIZE PAGE_SIZE
3136 #endif
3137 
3138 #ifndef PMD_TABLE_SIZE
3139 #define PMD_TABLE_SIZE PAGE_SIZE
3140 #endif
3141 
3142 #ifndef PTE_TABLE_SIZE
3143 #define PTE_TABLE_SIZE PAGE_SIZE
3144 #endif
3145 void __init __weak pcpu_populate_pte(unsigned long addr)
3146 {
3147 	pgd_t *pgd = pgd_offset_k(addr);
3148 	p4d_t *p4d;
3149 	pud_t *pud;
3150 	pmd_t *pmd;
3151 
3152 	if (pgd_none(*pgd)) {
3153 		p4d = memblock_alloc_or_panic(P4D_TABLE_SIZE, P4D_TABLE_SIZE);
3154 		pgd_populate_kernel(addr, pgd, p4d);
3155 	}
3156 
3157 	p4d = p4d_offset(pgd, addr);
3158 	if (p4d_none(*p4d)) {
3159 		pud = memblock_alloc_or_panic(PUD_TABLE_SIZE, PUD_TABLE_SIZE);
3160 		p4d_populate_kernel(addr, p4d, pud);
3161 	}
3162 
3163 	pud = pud_offset(p4d, addr);
3164 	if (pud_none(*pud)) {
3165 		pmd = memblock_alloc_or_panic(PMD_TABLE_SIZE, PMD_TABLE_SIZE);
3166 		pud_populate(&init_mm, pud, pmd);
3167 	}
3168 
3169 	pmd = pmd_offset(pud, addr);
3170 	if (!pmd_present(*pmd)) {
3171 		pte_t *new;
3172 
3173 		new = memblock_alloc_or_panic(PTE_TABLE_SIZE, PTE_TABLE_SIZE);
3174 		pmd_populate_kernel(&init_mm, pmd, new);
3175 	}
3176 
3177 	return;
3178 }
3179 
3180 /**
3181  * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
3182  * @reserved_size: the size of reserved percpu area in bytes
3183  * @cpu_to_nd_fn: callback to convert cpu to it's node, optional
3184  *
3185  * This is a helper to ease setting up page-remapped first percpu
3186  * chunk and can be called where pcpu_setup_first_chunk() is expected.
3187  *
3188  * This is the basic allocator.  Static percpu area is allocated
3189  * page-by-page into vmalloc area.
3190  *
3191  * RETURNS:
3192  * 0 on success, -errno on failure.
3193  */
3194 int __init pcpu_page_first_chunk(size_t reserved_size, pcpu_fc_cpu_to_node_fn_t cpu_to_nd_fn)
3195 {
3196 	static struct vm_struct vm;
3197 	struct pcpu_alloc_info *ai;
3198 	char psize_str[16];
3199 	int unit_pages;
3200 	size_t pages_size;
3201 	struct page **pages;
3202 	int unit, i, j, rc = 0;
3203 	int upa;
3204 	int nr_g0_units;
3205 
3206 	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
3207 
3208 	ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
3209 	if (IS_ERR(ai))
3210 		return PTR_ERR(ai);
3211 	BUG_ON(ai->nr_groups != 1);
3212 	upa = ai->alloc_size/ai->unit_size;
3213 	nr_g0_units = roundup(num_possible_cpus(), upa);
3214 	if (WARN_ON(ai->groups[0].nr_units != nr_g0_units)) {
3215 		pcpu_free_alloc_info(ai);
3216 		return -EINVAL;
3217 	}
3218 
3219 	unit_pages = ai->unit_size >> PAGE_SHIFT;
3220 
3221 	/* unaligned allocations can't be freed, round up to page size */
3222 	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
3223 			       sizeof(pages[0]));
3224 	pages = memblock_alloc_or_panic(pages_size, SMP_CACHE_BYTES);
3225 
3226 	/* allocate pages */
3227 	j = 0;
3228 	for (unit = 0; unit < num_possible_cpus(); unit++) {
3229 		unsigned int cpu = ai->groups[0].cpu_map[unit];
3230 		for (i = 0; i < unit_pages; i++) {
3231 			void *ptr;
3232 
3233 			ptr = pcpu_fc_alloc(cpu, PAGE_SIZE, PAGE_SIZE, cpu_to_nd_fn);
3234 			if (!ptr) {
3235 				pr_warn("failed to allocate %s page for cpu%u\n",
3236 						psize_str, cpu);
3237 				goto enomem;
3238 			}
3239 			/* kmemleak tracks the percpu allocations separately */
3240 			kmemleak_ignore_phys(__pa(ptr));
3241 			pages[j++] = virt_to_page(ptr);
3242 		}
3243 	}
3244 
3245 	/* allocate vm area, map the pages and copy static data */
3246 	vm.flags = VM_ALLOC;
3247 	vm.size = num_possible_cpus() * ai->unit_size;
3248 	vm_area_register_early(&vm, PAGE_SIZE);
3249 
3250 	for (unit = 0; unit < num_possible_cpus(); unit++) {
3251 		unsigned long unit_addr =
3252 			(unsigned long)vm.addr + unit * ai->unit_size;
3253 
3254 		for (i = 0; i < unit_pages; i++)
3255 			pcpu_populate_pte(unit_addr + (i << PAGE_SHIFT));
3256 
3257 		/* pte already populated, the following shouldn't fail */
3258 		rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
3259 				      unit_pages);
3260 		if (rc < 0)
3261 			panic("failed to map percpu area, err=%d\n", rc);
3262 
3263 		flush_cache_vmap_early(unit_addr, unit_addr + ai->unit_size);
3264 
3265 		/* copy static data */
3266 		memcpy((void *)unit_addr, __per_cpu_start, ai->static_size);
3267 	}
3268 
3269 	/* we're ready, commit */
3270 	pr_info("%d %s pages/cpu s%zu r%zu d%zu\n",
3271 		unit_pages, psize_str, ai->static_size,
3272 		ai->reserved_size, ai->dyn_size);
3273 
3274 	pcpu_setup_first_chunk(ai, vm.addr);
3275 	goto out_free_ar;
3276 
3277 enomem:
3278 	while (--j >= 0)
3279 		pcpu_fc_free(page_address(pages[j]), PAGE_SIZE);
3280 	rc = -ENOMEM;
3281 out_free_ar:
3282 	memblock_free(pages, pages_size);
3283 	pcpu_free_alloc_info(ai);
3284 	return rc;
3285 }
3286 #endif /* BUILD_PAGE_FIRST_CHUNK */
3287 
3288 #ifndef	CONFIG_HAVE_SETUP_PER_CPU_AREA
3289 /*
3290  * Generic SMP percpu area setup.
3291  *
3292  * The embedding helper is used because its behavior closely resembles
3293  * the original non-dynamic generic percpu area setup.  This is
3294  * important because many archs have addressing restrictions and might
3295  * fail if the percpu area is located far away from the previous
3296  * location.  As an added bonus, in non-NUMA cases, embedding is
3297  * generally a good idea TLB-wise because percpu area can piggy back
3298  * on the physical linear memory mapping which uses large page
3299  * mappings on applicable archs.
3300  */
3301 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
3302 EXPORT_SYMBOL(__per_cpu_offset);
3303 
3304 void __init setup_per_cpu_areas(void)
3305 {
3306 	unsigned long delta;
3307 	unsigned int cpu;
3308 	int rc;
3309 
3310 	/*
3311 	 * Always reserve area for module percpu variables.  That's
3312 	 * what the legacy allocator did.
3313 	 */
3314 	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, PERCPU_DYNAMIC_RESERVE,
3315 				    PAGE_SIZE, NULL, NULL);
3316 	if (rc < 0)
3317 		panic("Failed to initialize percpu areas.");
3318 
3319 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
3320 	for_each_possible_cpu(cpu)
3321 		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
3322 }
3323 #endif	/* CONFIG_HAVE_SETUP_PER_CPU_AREA */
3324 
3325 #else	/* CONFIG_SMP */
3326 
3327 /*
3328  * UP percpu area setup.
3329  *
3330  * UP always uses km-based percpu allocator with identity mapping.
3331  * Static percpu variables are indistinguishable from the usual static
3332  * variables and don't require any special preparation.
3333  */
3334 void __init setup_per_cpu_areas(void)
3335 {
3336 	const size_t unit_size =
3337 		roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
3338 					 PERCPU_DYNAMIC_RESERVE));
3339 	struct pcpu_alloc_info *ai;
3340 	void *fc;
3341 
3342 	ai = pcpu_alloc_alloc_info(1, 1);
3343 	fc = memblock_alloc_from(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
3344 	if (!ai || !fc)
3345 		panic("Failed to allocate memory for percpu areas.");
3346 	/* kmemleak tracks the percpu allocations separately */
3347 	kmemleak_ignore_phys(__pa(fc));
3348 
3349 	ai->dyn_size = unit_size;
3350 	ai->unit_size = unit_size;
3351 	ai->atom_size = unit_size;
3352 	ai->alloc_size = unit_size;
3353 	ai->groups[0].nr_units = 1;
3354 	ai->groups[0].cpu_map[0] = 0;
3355 
3356 	pcpu_setup_first_chunk(ai, fc);
3357 	pcpu_free_alloc_info(ai);
3358 }
3359 
3360 #endif	/* CONFIG_SMP */
3361 
3362 /*
3363  * pcpu_nr_pages - calculate total number of populated backing pages
3364  *
3365  * This reflects the number of pages populated to back chunks.  Metadata is
3366  * excluded in the number exposed in meminfo as the number of backing pages
3367  * scales with the number of cpus and can quickly outweigh the memory used for
3368  * metadata.  It also keeps this calculation nice and simple.
3369  *
3370  * RETURNS:
3371  * Total number of populated backing pages in use by the allocator.
3372  */
3373 unsigned long pcpu_nr_pages(void)
3374 {
3375 	return data_race(READ_ONCE(pcpu_nr_populated)) * pcpu_nr_units;
3376 }
3377 
3378 /*
3379  * Percpu allocator is initialized early during boot when neither slab or
3380  * workqueue is available.  Plug async management until everything is up
3381  * and running.
3382  */
3383 static int __init percpu_enable_async(void)
3384 {
3385 	pcpu_async_enabled = true;
3386 	return 0;
3387 }
3388 subsys_initcall(percpu_enable_async);
3389