1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 *
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6 * David Mosberger-Tang
7 *
8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9 */
10
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/pci_hotplug.h>
30 #include <linux/vmalloc.h>
31 #include <asm/dma.h>
32 #include <linux/aer.h>
33 #include <linux/bitfield.h>
34 #include "pci.h"
35
36 DEFINE_MUTEX(pci_slot_mutex);
37
38 const char *pci_power_names[] = {
39 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
40 };
41 EXPORT_SYMBOL_GPL(pci_power_names);
42
43 #ifdef CONFIG_X86_32
44 int isa_dma_bridge_buggy;
45 EXPORT_SYMBOL(isa_dma_bridge_buggy);
46 #endif
47
48 int pci_pci_problems;
49 EXPORT_SYMBOL(pci_pci_problems);
50
51 unsigned int pci_pm_d3hot_delay;
52
53 static void pci_pme_list_scan(struct work_struct *work);
54
55 static LIST_HEAD(pci_pme_list);
56 static DEFINE_MUTEX(pci_pme_list_mutex);
57 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
58
59 struct pci_pme_device {
60 struct list_head list;
61 struct pci_dev *dev;
62 };
63
64 #define PME_TIMEOUT 1000 /* How long between PME checks */
65
66 /*
67 * Following exit from Conventional Reset, devices must be ready within 1 sec
68 * (PCIe r6.0 sec 6.6.1). A D3cold to D0 transition implies a Conventional
69 * Reset (PCIe r6.0 sec 5.8).
70 */
71 #define PCI_RESET_WAIT 1000 /* msec */
72
73 /*
74 * Devices may extend the 1 sec period through Request Retry Status
75 * completions (PCIe r6.0 sec 2.3.1). The spec does not provide an upper
76 * limit, but 60 sec ought to be enough for any device to become
77 * responsive.
78 */
79 #define PCIE_RESET_READY_POLL_MS 60000 /* msec */
80
pci_dev_d3_sleep(struct pci_dev * dev)81 static void pci_dev_d3_sleep(struct pci_dev *dev)
82 {
83 unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
84 unsigned int upper;
85
86 if (delay_ms) {
87 /* Use a 20% upper bound, 1ms minimum */
88 upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
89 usleep_range(delay_ms * USEC_PER_MSEC,
90 (delay_ms + upper) * USEC_PER_MSEC);
91 }
92 }
93
pci_reset_supported(struct pci_dev * dev)94 bool pci_reset_supported(struct pci_dev *dev)
95 {
96 return dev->reset_methods[0] != 0;
97 }
98
99 #ifdef CONFIG_PCI_DOMAINS
100 int pci_domains_supported = 1;
101 #endif
102
103 #define DEFAULT_CARDBUS_IO_SIZE (256)
104 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
105 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
106 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
107 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
108
109 #define DEFAULT_HOTPLUG_IO_SIZE (256)
110 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024)
111 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024)
112 /* hpiosize=nn can override this */
113 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
114 /*
115 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
116 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
117 * pci=hpmemsize=nnM overrides both
118 */
119 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
120 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
121
122 #define DEFAULT_HOTPLUG_BUS_SIZE 1
123 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
124
125
126 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
127 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
128 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
129 #elif defined CONFIG_PCIE_BUS_SAFE
130 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
131 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
132 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
133 #elif defined CONFIG_PCIE_BUS_PEER2PEER
134 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
135 #else
136 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
137 #endif
138
139 /*
140 * The default CLS is used if arch didn't set CLS explicitly and not
141 * all pci devices agree on the same value. Arch can override either
142 * the dfl or actual value as it sees fit. Don't forget this is
143 * measured in 32-bit words, not bytes.
144 */
145 u8 pci_dfl_cache_line_size __ro_after_init = L1_CACHE_BYTES >> 2;
146 u8 pci_cache_line_size __ro_after_init ;
147
148 /*
149 * If we set up a device for bus mastering, we need to check the latency
150 * timer as certain BIOSes forget to set it properly.
151 */
152 unsigned int pcibios_max_latency = 255;
153
154 /* If set, the PCIe ARI capability will not be used. */
155 static bool pcie_ari_disabled;
156
157 /* If set, the PCIe ATS capability will not be used. */
158 static bool pcie_ats_disabled;
159
160 /* If set, the PCI config space of each device is printed during boot. */
161 bool pci_early_dump;
162
pci_ats_disabled(void)163 bool pci_ats_disabled(void)
164 {
165 return pcie_ats_disabled;
166 }
167 EXPORT_SYMBOL_GPL(pci_ats_disabled);
168
169 /* Disable bridge_d3 for all PCIe ports */
170 static bool pci_bridge_d3_disable;
171 /* Force bridge_d3 for all PCIe ports */
172 static bool pci_bridge_d3_force;
173
pcie_port_pm_setup(char * str)174 static int __init pcie_port_pm_setup(char *str)
175 {
176 if (!strcmp(str, "off"))
177 pci_bridge_d3_disable = true;
178 else if (!strcmp(str, "force"))
179 pci_bridge_d3_force = true;
180 return 1;
181 }
182 __setup("pcie_port_pm=", pcie_port_pm_setup);
183
184 /**
185 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
186 * @bus: pointer to PCI bus structure to search
187 *
188 * Given a PCI bus, returns the highest PCI bus number present in the set
189 * including the given PCI bus and its list of child PCI buses.
190 */
pci_bus_max_busnr(struct pci_bus * bus)191 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
192 {
193 struct pci_bus *tmp;
194 unsigned char max, n;
195
196 max = bus->busn_res.end;
197 list_for_each_entry(tmp, &bus->children, node) {
198 n = pci_bus_max_busnr(tmp);
199 if (n > max)
200 max = n;
201 }
202 return max;
203 }
204 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
205
206 /**
207 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
208 * @pdev: the PCI device
209 *
210 * Returns error bits set in PCI_STATUS and clears them.
211 */
pci_status_get_and_clear_errors(struct pci_dev * pdev)212 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
213 {
214 u16 status;
215 int ret;
216
217 ret = pci_read_config_word(pdev, PCI_STATUS, &status);
218 if (ret != PCIBIOS_SUCCESSFUL)
219 return -EIO;
220
221 status &= PCI_STATUS_ERROR_BITS;
222 if (status)
223 pci_write_config_word(pdev, PCI_STATUS, status);
224
225 return status;
226 }
227 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
228
229 #ifdef CONFIG_HAS_IOMEM
__pci_ioremap_resource(struct pci_dev * pdev,int bar,bool write_combine)230 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
231 bool write_combine)
232 {
233 struct resource *res = &pdev->resource[bar];
234 resource_size_t start = res->start;
235 resource_size_t size = resource_size(res);
236
237 /*
238 * Make sure the BAR is actually a memory resource, not an IO resource
239 */
240 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
241 pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
242 return NULL;
243 }
244
245 if (write_combine)
246 return ioremap_wc(start, size);
247
248 return ioremap(start, size);
249 }
250
pci_ioremap_bar(struct pci_dev * pdev,int bar)251 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
252 {
253 return __pci_ioremap_resource(pdev, bar, false);
254 }
255 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
256
pci_ioremap_wc_bar(struct pci_dev * pdev,int bar)257 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
258 {
259 return __pci_ioremap_resource(pdev, bar, true);
260 }
261 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
262 #endif
263
264 /**
265 * pci_dev_str_match_path - test if a path string matches a device
266 * @dev: the PCI device to test
267 * @path: string to match the device against
268 * @endptr: pointer to the string after the match
269 *
270 * Test if a string (typically from a kernel parameter) formatted as a
271 * path of device/function addresses matches a PCI device. The string must
272 * be of the form:
273 *
274 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
275 *
276 * A path for a device can be obtained using 'lspci -t'. Using a path
277 * is more robust against bus renumbering than using only a single bus,
278 * device and function address.
279 *
280 * Returns 1 if the string matches the device, 0 if it does not and
281 * a negative error code if it fails to parse the string.
282 */
pci_dev_str_match_path(struct pci_dev * dev,const char * path,const char ** endptr)283 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
284 const char **endptr)
285 {
286 int ret;
287 unsigned int seg, bus, slot, func;
288 char *wpath, *p;
289 char end;
290
291 *endptr = strchrnul(path, ';');
292
293 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
294 if (!wpath)
295 return -ENOMEM;
296
297 while (1) {
298 p = strrchr(wpath, '/');
299 if (!p)
300 break;
301 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
302 if (ret != 2) {
303 ret = -EINVAL;
304 goto free_and_exit;
305 }
306
307 if (dev->devfn != PCI_DEVFN(slot, func)) {
308 ret = 0;
309 goto free_and_exit;
310 }
311
312 /*
313 * Note: we don't need to get a reference to the upstream
314 * bridge because we hold a reference to the top level
315 * device which should hold a reference to the bridge,
316 * and so on.
317 */
318 dev = pci_upstream_bridge(dev);
319 if (!dev) {
320 ret = 0;
321 goto free_and_exit;
322 }
323
324 *p = 0;
325 }
326
327 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
328 &func, &end);
329 if (ret != 4) {
330 seg = 0;
331 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
332 if (ret != 3) {
333 ret = -EINVAL;
334 goto free_and_exit;
335 }
336 }
337
338 ret = (seg == pci_domain_nr(dev->bus) &&
339 bus == dev->bus->number &&
340 dev->devfn == PCI_DEVFN(slot, func));
341
342 free_and_exit:
343 kfree(wpath);
344 return ret;
345 }
346
347 /**
348 * pci_dev_str_match - test if a string matches a device
349 * @dev: the PCI device to test
350 * @p: string to match the device against
351 * @endptr: pointer to the string after the match
352 *
353 * Test if a string (typically from a kernel parameter) matches a specified
354 * PCI device. The string may be of one of the following formats:
355 *
356 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
357 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
358 *
359 * The first format specifies a PCI bus/device/function address which
360 * may change if new hardware is inserted, if motherboard firmware changes,
361 * or due to changes caused in kernel parameters. If the domain is
362 * left unspecified, it is taken to be 0. In order to be robust against
363 * bus renumbering issues, a path of PCI device/function numbers may be used
364 * to address the specific device. The path for a device can be determined
365 * through the use of 'lspci -t'.
366 *
367 * The second format matches devices using IDs in the configuration
368 * space which may match multiple devices in the system. A value of 0
369 * for any field will match all devices. (Note: this differs from
370 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
371 * legacy reasons and convenience so users don't have to specify
372 * FFFFFFFFs on the command line.)
373 *
374 * Returns 1 if the string matches the device, 0 if it does not and
375 * a negative error code if the string cannot be parsed.
376 */
pci_dev_str_match(struct pci_dev * dev,const char * p,const char ** endptr)377 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
378 const char **endptr)
379 {
380 int ret;
381 int count;
382 unsigned short vendor, device, subsystem_vendor, subsystem_device;
383
384 if (strncmp(p, "pci:", 4) == 0) {
385 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
386 p += 4;
387 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
388 &subsystem_vendor, &subsystem_device, &count);
389 if (ret != 4) {
390 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
391 if (ret != 2)
392 return -EINVAL;
393
394 subsystem_vendor = 0;
395 subsystem_device = 0;
396 }
397
398 p += count;
399
400 if ((!vendor || vendor == dev->vendor) &&
401 (!device || device == dev->device) &&
402 (!subsystem_vendor ||
403 subsystem_vendor == dev->subsystem_vendor) &&
404 (!subsystem_device ||
405 subsystem_device == dev->subsystem_device))
406 goto found;
407 } else {
408 /*
409 * PCI Bus, Device, Function IDs are specified
410 * (optionally, may include a path of devfns following it)
411 */
412 ret = pci_dev_str_match_path(dev, p, &p);
413 if (ret < 0)
414 return ret;
415 else if (ret)
416 goto found;
417 }
418
419 *endptr = p;
420 return 0;
421
422 found:
423 *endptr = p;
424 return 1;
425 }
426
__pci_find_next_cap_ttl(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap,int * ttl)427 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
428 u8 pos, int cap, int *ttl)
429 {
430 u8 id;
431 u16 ent;
432
433 pci_bus_read_config_byte(bus, devfn, pos, &pos);
434
435 while ((*ttl)--) {
436 if (pos < 0x40)
437 break;
438 pos &= ~3;
439 pci_bus_read_config_word(bus, devfn, pos, &ent);
440
441 id = ent & 0xff;
442 if (id == 0xff)
443 break;
444 if (id == cap)
445 return pos;
446 pos = (ent >> 8);
447 }
448 return 0;
449 }
450
__pci_find_next_cap(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap)451 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
452 u8 pos, int cap)
453 {
454 int ttl = PCI_FIND_CAP_TTL;
455
456 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
457 }
458
pci_find_next_capability(struct pci_dev * dev,u8 pos,int cap)459 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
460 {
461 return __pci_find_next_cap(dev->bus, dev->devfn,
462 pos + PCI_CAP_LIST_NEXT, cap);
463 }
464 EXPORT_SYMBOL_GPL(pci_find_next_capability);
465
__pci_bus_find_cap_start(struct pci_bus * bus,unsigned int devfn,u8 hdr_type)466 static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
467 unsigned int devfn, u8 hdr_type)
468 {
469 u16 status;
470
471 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
472 if (!(status & PCI_STATUS_CAP_LIST))
473 return 0;
474
475 switch (hdr_type) {
476 case PCI_HEADER_TYPE_NORMAL:
477 case PCI_HEADER_TYPE_BRIDGE:
478 return PCI_CAPABILITY_LIST;
479 case PCI_HEADER_TYPE_CARDBUS:
480 return PCI_CB_CAPABILITY_LIST;
481 }
482
483 return 0;
484 }
485
486 /**
487 * pci_find_capability - query for devices' capabilities
488 * @dev: PCI device to query
489 * @cap: capability code
490 *
491 * Tell if a device supports a given PCI capability.
492 * Returns the address of the requested capability structure within the
493 * device's PCI configuration space or 0 in case the device does not
494 * support it. Possible values for @cap include:
495 *
496 * %PCI_CAP_ID_PM Power Management
497 * %PCI_CAP_ID_AGP Accelerated Graphics Port
498 * %PCI_CAP_ID_VPD Vital Product Data
499 * %PCI_CAP_ID_SLOTID Slot Identification
500 * %PCI_CAP_ID_MSI Message Signalled Interrupts
501 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
502 * %PCI_CAP_ID_PCIX PCI-X
503 * %PCI_CAP_ID_EXP PCI Express
504 */
pci_find_capability(struct pci_dev * dev,int cap)505 u8 pci_find_capability(struct pci_dev *dev, int cap)
506 {
507 u8 pos;
508
509 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
510 if (pos)
511 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
512
513 return pos;
514 }
515 EXPORT_SYMBOL(pci_find_capability);
516
517 /**
518 * pci_bus_find_capability - query for devices' capabilities
519 * @bus: the PCI bus to query
520 * @devfn: PCI device to query
521 * @cap: capability code
522 *
523 * Like pci_find_capability() but works for PCI devices that do not have a
524 * pci_dev structure set up yet.
525 *
526 * Returns the address of the requested capability structure within the
527 * device's PCI configuration space or 0 in case the device does not
528 * support it.
529 */
pci_bus_find_capability(struct pci_bus * bus,unsigned int devfn,int cap)530 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
531 {
532 u8 hdr_type, pos;
533
534 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
535
536 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & PCI_HEADER_TYPE_MASK);
537 if (pos)
538 pos = __pci_find_next_cap(bus, devfn, pos, cap);
539
540 return pos;
541 }
542 EXPORT_SYMBOL(pci_bus_find_capability);
543
544 /**
545 * pci_find_next_ext_capability - Find an extended capability
546 * @dev: PCI device to query
547 * @start: address at which to start looking (0 to start at beginning of list)
548 * @cap: capability code
549 *
550 * Returns the address of the next matching extended capability structure
551 * within the device's PCI configuration space or 0 if the device does
552 * not support it. Some capabilities can occur several times, e.g., the
553 * vendor-specific capability, and this provides a way to find them all.
554 */
pci_find_next_ext_capability(struct pci_dev * dev,u16 start,int cap)555 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
556 {
557 u32 header;
558 int ttl;
559 u16 pos = PCI_CFG_SPACE_SIZE;
560
561 /* minimum 8 bytes per capability */
562 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
563
564 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
565 return 0;
566
567 if (start)
568 pos = start;
569
570 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
571 return 0;
572
573 /*
574 * If we have no capabilities, this is indicated by cap ID,
575 * cap version and next pointer all being 0.
576 */
577 if (header == 0)
578 return 0;
579
580 while (ttl-- > 0) {
581 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
582 return pos;
583
584 pos = PCI_EXT_CAP_NEXT(header);
585 if (pos < PCI_CFG_SPACE_SIZE)
586 break;
587
588 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
589 break;
590 }
591
592 return 0;
593 }
594 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
595
596 /**
597 * pci_find_ext_capability - Find an extended capability
598 * @dev: PCI device to query
599 * @cap: capability code
600 *
601 * Returns the address of the requested extended capability structure
602 * within the device's PCI configuration space or 0 if the device does
603 * not support it. Possible values for @cap include:
604 *
605 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
606 * %PCI_EXT_CAP_ID_VC Virtual Channel
607 * %PCI_EXT_CAP_ID_DSN Device Serial Number
608 * %PCI_EXT_CAP_ID_PWR Power Budgeting
609 */
pci_find_ext_capability(struct pci_dev * dev,int cap)610 u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
611 {
612 return pci_find_next_ext_capability(dev, 0, cap);
613 }
614 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
615
616 /**
617 * pci_get_dsn - Read and return the 8-byte Device Serial Number
618 * @dev: PCI device to query
619 *
620 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
621 * Number.
622 *
623 * Returns the DSN, or zero if the capability does not exist.
624 */
pci_get_dsn(struct pci_dev * dev)625 u64 pci_get_dsn(struct pci_dev *dev)
626 {
627 u32 dword;
628 u64 dsn;
629 int pos;
630
631 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
632 if (!pos)
633 return 0;
634
635 /*
636 * The Device Serial Number is two dwords offset 4 bytes from the
637 * capability position. The specification says that the first dword is
638 * the lower half, and the second dword is the upper half.
639 */
640 pos += 4;
641 pci_read_config_dword(dev, pos, &dword);
642 dsn = (u64)dword;
643 pci_read_config_dword(dev, pos + 4, &dword);
644 dsn |= ((u64)dword) << 32;
645
646 return dsn;
647 }
648 EXPORT_SYMBOL_GPL(pci_get_dsn);
649
__pci_find_next_ht_cap(struct pci_dev * dev,u8 pos,int ht_cap)650 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
651 {
652 int rc, ttl = PCI_FIND_CAP_TTL;
653 u8 cap, mask;
654
655 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
656 mask = HT_3BIT_CAP_MASK;
657 else
658 mask = HT_5BIT_CAP_MASK;
659
660 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
661 PCI_CAP_ID_HT, &ttl);
662 while (pos) {
663 rc = pci_read_config_byte(dev, pos + 3, &cap);
664 if (rc != PCIBIOS_SUCCESSFUL)
665 return 0;
666
667 if ((cap & mask) == ht_cap)
668 return pos;
669
670 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
671 pos + PCI_CAP_LIST_NEXT,
672 PCI_CAP_ID_HT, &ttl);
673 }
674
675 return 0;
676 }
677
678 /**
679 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
680 * @dev: PCI device to query
681 * @pos: Position from which to continue searching
682 * @ht_cap: HyperTransport capability code
683 *
684 * To be used in conjunction with pci_find_ht_capability() to search for
685 * all capabilities matching @ht_cap. @pos should always be a value returned
686 * from pci_find_ht_capability().
687 *
688 * NB. To be 100% safe against broken PCI devices, the caller should take
689 * steps to avoid an infinite loop.
690 */
pci_find_next_ht_capability(struct pci_dev * dev,u8 pos,int ht_cap)691 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
692 {
693 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
694 }
695 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
696
697 /**
698 * pci_find_ht_capability - query a device's HyperTransport capabilities
699 * @dev: PCI device to query
700 * @ht_cap: HyperTransport capability code
701 *
702 * Tell if a device supports a given HyperTransport capability.
703 * Returns an address within the device's PCI configuration space
704 * or 0 in case the device does not support the request capability.
705 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
706 * which has a HyperTransport capability matching @ht_cap.
707 */
pci_find_ht_capability(struct pci_dev * dev,int ht_cap)708 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
709 {
710 u8 pos;
711
712 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
713 if (pos)
714 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
715
716 return pos;
717 }
718 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
719
720 /**
721 * pci_find_vsec_capability - Find a vendor-specific extended capability
722 * @dev: PCI device to query
723 * @vendor: Vendor ID for which capability is defined
724 * @cap: Vendor-specific capability ID
725 *
726 * If @dev has Vendor ID @vendor, search for a VSEC capability with
727 * VSEC ID @cap. If found, return the capability offset in
728 * config space; otherwise return 0.
729 */
pci_find_vsec_capability(struct pci_dev * dev,u16 vendor,int cap)730 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
731 {
732 u16 vsec = 0;
733 u32 header;
734 int ret;
735
736 if (vendor != dev->vendor)
737 return 0;
738
739 while ((vsec = pci_find_next_ext_capability(dev, vsec,
740 PCI_EXT_CAP_ID_VNDR))) {
741 ret = pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, &header);
742 if (ret != PCIBIOS_SUCCESSFUL)
743 continue;
744
745 if (PCI_VNDR_HEADER_ID(header) == cap)
746 return vsec;
747 }
748
749 return 0;
750 }
751 EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
752
753 /**
754 * pci_find_dvsec_capability - Find DVSEC for vendor
755 * @dev: PCI device to query
756 * @vendor: Vendor ID to match for the DVSEC
757 * @dvsec: Designated Vendor-specific capability ID
758 *
759 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
760 * offset in config space; otherwise return 0.
761 */
pci_find_dvsec_capability(struct pci_dev * dev,u16 vendor,u16 dvsec)762 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
763 {
764 int pos;
765
766 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
767 if (!pos)
768 return 0;
769
770 while (pos) {
771 u16 v, id;
772
773 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
774 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
775 if (vendor == v && dvsec == id)
776 return pos;
777
778 pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
779 }
780
781 return 0;
782 }
783 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
784
785 /**
786 * pci_find_parent_resource - return resource region of parent bus of given
787 * region
788 * @dev: PCI device structure contains resources to be searched
789 * @res: child resource record for which parent is sought
790 *
791 * For given resource region of given device, return the resource region of
792 * parent bus the given region is contained in.
793 */
pci_find_parent_resource(const struct pci_dev * dev,struct resource * res)794 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
795 struct resource *res)
796 {
797 const struct pci_bus *bus = dev->bus;
798 struct resource *r;
799
800 pci_bus_for_each_resource(bus, r) {
801 if (!r)
802 continue;
803 if (resource_contains(r, res)) {
804
805 /*
806 * If the window is prefetchable but the BAR is
807 * not, the allocator made a mistake.
808 */
809 if (r->flags & IORESOURCE_PREFETCH &&
810 !(res->flags & IORESOURCE_PREFETCH))
811 return NULL;
812
813 /*
814 * If we're below a transparent bridge, there may
815 * be both a positively-decoded aperture and a
816 * subtractively-decoded region that contain the BAR.
817 * We want the positively-decoded one, so this depends
818 * on pci_bus_for_each_resource() giving us those
819 * first.
820 */
821 return r;
822 }
823 }
824 return NULL;
825 }
826 EXPORT_SYMBOL(pci_find_parent_resource);
827
828 /**
829 * pci_find_resource - Return matching PCI device resource
830 * @dev: PCI device to query
831 * @res: Resource to look for
832 *
833 * Goes over standard PCI resources (BARs) and checks if the given resource
834 * is partially or fully contained in any of them. In that case the
835 * matching resource is returned, %NULL otherwise.
836 */
pci_find_resource(struct pci_dev * dev,struct resource * res)837 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
838 {
839 int i;
840
841 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
842 struct resource *r = &dev->resource[i];
843
844 if (r->start && resource_contains(r, res))
845 return r;
846 }
847
848 return NULL;
849 }
850 EXPORT_SYMBOL(pci_find_resource);
851
852 /**
853 * pci_resource_name - Return the name of the PCI resource
854 * @dev: PCI device to query
855 * @i: index of the resource
856 *
857 * Return the standard PCI resource (BAR) name according to their index.
858 */
pci_resource_name(struct pci_dev * dev,unsigned int i)859 const char *pci_resource_name(struct pci_dev *dev, unsigned int i)
860 {
861 static const char * const bar_name[] = {
862 "BAR 0",
863 "BAR 1",
864 "BAR 2",
865 "BAR 3",
866 "BAR 4",
867 "BAR 5",
868 "ROM",
869 #ifdef CONFIG_PCI_IOV
870 "VF BAR 0",
871 "VF BAR 1",
872 "VF BAR 2",
873 "VF BAR 3",
874 "VF BAR 4",
875 "VF BAR 5",
876 #endif
877 "bridge window", /* "io" included in %pR */
878 "bridge window", /* "mem" included in %pR */
879 "bridge window", /* "mem pref" included in %pR */
880 };
881 static const char * const cardbus_name[] = {
882 "BAR 1",
883 "unknown",
884 "unknown",
885 "unknown",
886 "unknown",
887 "unknown",
888 #ifdef CONFIG_PCI_IOV
889 "unknown",
890 "unknown",
891 "unknown",
892 "unknown",
893 "unknown",
894 "unknown",
895 #endif
896 "CardBus bridge window 0", /* I/O */
897 "CardBus bridge window 1", /* I/O */
898 "CardBus bridge window 0", /* mem */
899 "CardBus bridge window 1", /* mem */
900 };
901
902 if (dev->hdr_type == PCI_HEADER_TYPE_CARDBUS &&
903 i < ARRAY_SIZE(cardbus_name))
904 return cardbus_name[i];
905
906 if (i < ARRAY_SIZE(bar_name))
907 return bar_name[i];
908
909 return "unknown";
910 }
911
912 /**
913 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
914 * @dev: the PCI device to operate on
915 * @pos: config space offset of status word
916 * @mask: mask of bit(s) to care about in status word
917 *
918 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
919 */
pci_wait_for_pending(struct pci_dev * dev,int pos,u16 mask)920 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
921 {
922 int i;
923
924 /* Wait for Transaction Pending bit clean */
925 for (i = 0; i < 4; i++) {
926 u16 status;
927 if (i)
928 msleep((1 << (i - 1)) * 100);
929
930 pci_read_config_word(dev, pos, &status);
931 if (!(status & mask))
932 return 1;
933 }
934
935 return 0;
936 }
937
938 static int pci_acs_enable;
939
940 /**
941 * pci_request_acs - ask for ACS to be enabled if supported
942 */
pci_request_acs(void)943 void pci_request_acs(void)
944 {
945 pci_acs_enable = 1;
946 }
947
948 static const char *disable_acs_redir_param;
949 static const char *config_acs_param;
950
951 struct pci_acs {
952 u16 cap;
953 u16 ctrl;
954 u16 fw_ctrl;
955 };
956
__pci_config_acs(struct pci_dev * dev,struct pci_acs * caps,const char * p,u16 mask,u16 flags)957 static void __pci_config_acs(struct pci_dev *dev, struct pci_acs *caps,
958 const char *p, u16 mask, u16 flags)
959 {
960 char *delimit;
961 int ret = 0;
962
963 if (!p)
964 return;
965
966 while (*p) {
967 if (!mask) {
968 /* Check for ACS flags */
969 delimit = strstr(p, "@");
970 if (delimit) {
971 int end;
972 u32 shift = 0;
973
974 end = delimit - p - 1;
975
976 while (end > -1) {
977 if (*(p + end) == '0') {
978 mask |= 1 << shift;
979 shift++;
980 end--;
981 } else if (*(p + end) == '1') {
982 mask |= 1 << shift;
983 flags |= 1 << shift;
984 shift++;
985 end--;
986 } else if ((*(p + end) == 'x') || (*(p + end) == 'X')) {
987 shift++;
988 end--;
989 } else {
990 pci_err(dev, "Invalid ACS flags... Ignoring\n");
991 return;
992 }
993 }
994 p = delimit + 1;
995 } else {
996 pci_err(dev, "ACS Flags missing\n");
997 return;
998 }
999 }
1000
1001 if (mask & ~(PCI_ACS_SV | PCI_ACS_TB | PCI_ACS_RR | PCI_ACS_CR |
1002 PCI_ACS_UF | PCI_ACS_EC | PCI_ACS_DT)) {
1003 pci_err(dev, "Invalid ACS flags specified\n");
1004 return;
1005 }
1006
1007 ret = pci_dev_str_match(dev, p, &p);
1008 if (ret < 0) {
1009 pr_info_once("PCI: Can't parse ACS command line parameter\n");
1010 break;
1011 } else if (ret == 1) {
1012 /* Found a match */
1013 break;
1014 }
1015
1016 if (*p != ';' && *p != ',') {
1017 /* End of param or invalid format */
1018 break;
1019 }
1020 p++;
1021 }
1022
1023 if (ret != 1)
1024 return;
1025
1026 if (!pci_dev_specific_disable_acs_redir(dev))
1027 return;
1028
1029 pci_dbg(dev, "ACS mask = %#06x\n", mask);
1030 pci_dbg(dev, "ACS flags = %#06x\n", flags);
1031
1032 /* If mask is 0 then we copy the bit from the firmware setting. */
1033 caps->ctrl = (caps->ctrl & ~mask) | (caps->fw_ctrl & mask);
1034 caps->ctrl |= flags;
1035
1036 pci_info(dev, "Configured ACS to %#06x\n", caps->ctrl);
1037 }
1038
1039 /**
1040 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
1041 * @dev: the PCI device
1042 * @caps: default ACS controls
1043 */
pci_std_enable_acs(struct pci_dev * dev,struct pci_acs * caps)1044 static void pci_std_enable_acs(struct pci_dev *dev, struct pci_acs *caps)
1045 {
1046 /* Source Validation */
1047 caps->ctrl |= (caps->cap & PCI_ACS_SV);
1048
1049 /* P2P Request Redirect */
1050 caps->ctrl |= (caps->cap & PCI_ACS_RR);
1051
1052 /* P2P Completion Redirect */
1053 caps->ctrl |= (caps->cap & PCI_ACS_CR);
1054
1055 /* Upstream Forwarding */
1056 caps->ctrl |= (caps->cap & PCI_ACS_UF);
1057
1058 /* Enable Translation Blocking for external devices and noats */
1059 if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
1060 caps->ctrl |= (caps->cap & PCI_ACS_TB);
1061 }
1062
1063 /**
1064 * pci_enable_acs - enable ACS if hardware support it
1065 * @dev: the PCI device
1066 */
pci_enable_acs(struct pci_dev * dev)1067 static void pci_enable_acs(struct pci_dev *dev)
1068 {
1069 struct pci_acs caps;
1070 bool enable_acs = false;
1071 int pos;
1072
1073 /* If an iommu is present we start with kernel default caps */
1074 if (pci_acs_enable) {
1075 if (pci_dev_specific_enable_acs(dev))
1076 enable_acs = true;
1077 }
1078
1079 pos = dev->acs_cap;
1080 if (!pos)
1081 return;
1082
1083 pci_read_config_word(dev, pos + PCI_ACS_CAP, &caps.cap);
1084 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &caps.ctrl);
1085 caps.fw_ctrl = caps.ctrl;
1086
1087 if (enable_acs)
1088 pci_std_enable_acs(dev, &caps);
1089
1090 /*
1091 * Always apply caps from the command line, even if there is no iommu.
1092 * Trust that the admin has a reason to change the ACS settings.
1093 */
1094 __pci_config_acs(dev, &caps, disable_acs_redir_param,
1095 PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC,
1096 ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC));
1097 __pci_config_acs(dev, &caps, config_acs_param, 0, 0);
1098
1099 pci_write_config_word(dev, pos + PCI_ACS_CTRL, caps.ctrl);
1100 }
1101
1102 /**
1103 * pcie_read_tlp_log - read TLP Header Log
1104 * @dev: PCIe device
1105 * @where: PCI Config offset of TLP Header Log
1106 * @tlp_log: TLP Log structure to fill
1107 *
1108 * Fill @tlp_log from TLP Header Log registers, e.g., AER or DPC.
1109 *
1110 * Return: 0 on success and filled TLP Log structure, <0 on error.
1111 */
pcie_read_tlp_log(struct pci_dev * dev,int where,struct pcie_tlp_log * tlp_log)1112 int pcie_read_tlp_log(struct pci_dev *dev, int where,
1113 struct pcie_tlp_log *tlp_log)
1114 {
1115 int i, ret;
1116
1117 memset(tlp_log, 0, sizeof(*tlp_log));
1118
1119 for (i = 0; i < 4; i++) {
1120 ret = pci_read_config_dword(dev, where + i * 4,
1121 &tlp_log->dw[i]);
1122 if (ret)
1123 return pcibios_err_to_errno(ret);
1124 }
1125
1126 return 0;
1127 }
1128 EXPORT_SYMBOL_GPL(pcie_read_tlp_log);
1129
1130 /**
1131 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
1132 * @dev: PCI device to have its BARs restored
1133 *
1134 * Restore the BAR values for a given device, so as to make it
1135 * accessible by its driver.
1136 */
pci_restore_bars(struct pci_dev * dev)1137 static void pci_restore_bars(struct pci_dev *dev)
1138 {
1139 int i;
1140
1141 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1142 pci_update_resource(dev, i);
1143 }
1144
platform_pci_power_manageable(struct pci_dev * dev)1145 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1146 {
1147 if (pci_use_mid_pm())
1148 return true;
1149
1150 return acpi_pci_power_manageable(dev);
1151 }
1152
platform_pci_set_power_state(struct pci_dev * dev,pci_power_t t)1153 static inline int platform_pci_set_power_state(struct pci_dev *dev,
1154 pci_power_t t)
1155 {
1156 if (pci_use_mid_pm())
1157 return mid_pci_set_power_state(dev, t);
1158
1159 return acpi_pci_set_power_state(dev, t);
1160 }
1161
platform_pci_get_power_state(struct pci_dev * dev)1162 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1163 {
1164 if (pci_use_mid_pm())
1165 return mid_pci_get_power_state(dev);
1166
1167 return acpi_pci_get_power_state(dev);
1168 }
1169
platform_pci_refresh_power_state(struct pci_dev * dev)1170 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1171 {
1172 if (!pci_use_mid_pm())
1173 acpi_pci_refresh_power_state(dev);
1174 }
1175
platform_pci_choose_state(struct pci_dev * dev)1176 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1177 {
1178 if (pci_use_mid_pm())
1179 return PCI_POWER_ERROR;
1180
1181 return acpi_pci_choose_state(dev);
1182 }
1183
platform_pci_set_wakeup(struct pci_dev * dev,bool enable)1184 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1185 {
1186 if (pci_use_mid_pm())
1187 return PCI_POWER_ERROR;
1188
1189 return acpi_pci_wakeup(dev, enable);
1190 }
1191
platform_pci_need_resume(struct pci_dev * dev)1192 static inline bool platform_pci_need_resume(struct pci_dev *dev)
1193 {
1194 if (pci_use_mid_pm())
1195 return false;
1196
1197 return acpi_pci_need_resume(dev);
1198 }
1199
platform_pci_bridge_d3(struct pci_dev * dev)1200 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1201 {
1202 if (pci_use_mid_pm())
1203 return false;
1204
1205 return acpi_pci_bridge_d3(dev);
1206 }
1207
1208 /**
1209 * pci_update_current_state - Read power state of given device and cache it
1210 * @dev: PCI device to handle.
1211 * @state: State to cache in case the device doesn't have the PM capability
1212 *
1213 * The power state is read from the PMCSR register, which however is
1214 * inaccessible in D3cold. The platform firmware is therefore queried first
1215 * to detect accessibility of the register. In case the platform firmware
1216 * reports an incorrect state or the device isn't power manageable by the
1217 * platform at all, we try to detect D3cold by testing accessibility of the
1218 * vendor ID in config space.
1219 */
pci_update_current_state(struct pci_dev * dev,pci_power_t state)1220 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1221 {
1222 if (platform_pci_get_power_state(dev) == PCI_D3cold) {
1223 dev->current_state = PCI_D3cold;
1224 } else if (dev->pm_cap) {
1225 u16 pmcsr;
1226
1227 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1228 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1229 dev->current_state = PCI_D3cold;
1230 return;
1231 }
1232 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1233 } else {
1234 dev->current_state = state;
1235 }
1236 }
1237
1238 /**
1239 * pci_refresh_power_state - Refresh the given device's power state data
1240 * @dev: Target PCI device.
1241 *
1242 * Ask the platform to refresh the devices power state information and invoke
1243 * pci_update_current_state() to update its current PCI power state.
1244 */
pci_refresh_power_state(struct pci_dev * dev)1245 void pci_refresh_power_state(struct pci_dev *dev)
1246 {
1247 platform_pci_refresh_power_state(dev);
1248 pci_update_current_state(dev, dev->current_state);
1249 }
1250
1251 /**
1252 * pci_platform_power_transition - Use platform to change device power state
1253 * @dev: PCI device to handle.
1254 * @state: State to put the device into.
1255 */
pci_platform_power_transition(struct pci_dev * dev,pci_power_t state)1256 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1257 {
1258 int error;
1259
1260 error = platform_pci_set_power_state(dev, state);
1261 if (!error)
1262 pci_update_current_state(dev, state);
1263 else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1264 dev->current_state = PCI_D0;
1265
1266 return error;
1267 }
1268 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1269
pci_resume_one(struct pci_dev * pci_dev,void * ign)1270 static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1271 {
1272 pm_request_resume(&pci_dev->dev);
1273 return 0;
1274 }
1275
1276 /**
1277 * pci_resume_bus - Walk given bus and runtime resume devices on it
1278 * @bus: Top bus of the subtree to walk.
1279 */
pci_resume_bus(struct pci_bus * bus)1280 void pci_resume_bus(struct pci_bus *bus)
1281 {
1282 if (bus)
1283 pci_walk_bus(bus, pci_resume_one, NULL);
1284 }
1285
pci_dev_wait(struct pci_dev * dev,char * reset_type,int timeout)1286 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1287 {
1288 int delay = 1;
1289 bool retrain = false;
1290 struct pci_dev *root, *bridge;
1291
1292 root = pcie_find_root_port(dev);
1293
1294 if (pci_is_pcie(dev)) {
1295 bridge = pci_upstream_bridge(dev);
1296 if (bridge)
1297 retrain = true;
1298 }
1299
1300 /*
1301 * The caller has already waited long enough after a reset that the
1302 * device should respond to config requests, but it may respond
1303 * with Request Retry Status (RRS) if it needs more time to
1304 * initialize.
1305 *
1306 * If the device is below a Root Port with Configuration RRS
1307 * Software Visibility enabled, reading the Vendor ID returns a
1308 * special data value if the device responded with RRS. Read the
1309 * Vendor ID until we get non-RRS status.
1310 *
1311 * If there's no Root Port or Configuration RRS Software Visibility
1312 * is not enabled, the device may still respond with RRS, but
1313 * hardware may retry the config request. If no retries receive
1314 * Successful Completion, hardware generally synthesizes ~0
1315 * (PCI_ERROR_RESPONSE) data to complete the read. Reading Vendor
1316 * ID for VFs and non-existent devices also returns ~0, so read the
1317 * Command register until it returns something other than ~0.
1318 */
1319 for (;;) {
1320 u32 id;
1321
1322 if (pci_dev_is_disconnected(dev)) {
1323 pci_dbg(dev, "disconnected; not waiting\n");
1324 return -ENOTTY;
1325 }
1326
1327 if (root && root->config_rrs_sv) {
1328 pci_read_config_dword(dev, PCI_VENDOR_ID, &id);
1329 if (!pci_bus_rrs_vendor_id(id))
1330 break;
1331 } else {
1332 pci_read_config_dword(dev, PCI_COMMAND, &id);
1333 if (!PCI_POSSIBLE_ERROR(id))
1334 break;
1335 }
1336
1337 if (delay > timeout) {
1338 pci_warn(dev, "not ready %dms after %s; giving up\n",
1339 delay - 1, reset_type);
1340 return -ENOTTY;
1341 }
1342
1343 if (delay > PCI_RESET_WAIT) {
1344 if (retrain) {
1345 retrain = false;
1346 if (pcie_failed_link_retrain(bridge) == 0) {
1347 delay = 1;
1348 continue;
1349 }
1350 }
1351 pci_info(dev, "not ready %dms after %s; waiting\n",
1352 delay - 1, reset_type);
1353 }
1354
1355 msleep(delay);
1356 delay *= 2;
1357 }
1358
1359 if (delay > PCI_RESET_WAIT)
1360 pci_info(dev, "ready %dms after %s\n", delay - 1,
1361 reset_type);
1362 else
1363 pci_dbg(dev, "ready %dms after %s\n", delay - 1,
1364 reset_type);
1365
1366 return 0;
1367 }
1368
1369 /**
1370 * pci_power_up - Put the given device into D0
1371 * @dev: PCI device to power up
1372 *
1373 * On success, return 0 or 1, depending on whether or not it is necessary to
1374 * restore the device's BARs subsequently (1 is returned in that case).
1375 *
1376 * On failure, return a negative error code. Always return failure if @dev
1377 * lacks a Power Management Capability, even if the platform was able to
1378 * put the device in D0 via non-PCI means.
1379 */
pci_power_up(struct pci_dev * dev)1380 int pci_power_up(struct pci_dev *dev)
1381 {
1382 bool need_restore;
1383 pci_power_t state;
1384 u16 pmcsr;
1385
1386 platform_pci_set_power_state(dev, PCI_D0);
1387
1388 if (!dev->pm_cap) {
1389 state = platform_pci_get_power_state(dev);
1390 if (state == PCI_UNKNOWN)
1391 dev->current_state = PCI_D0;
1392 else
1393 dev->current_state = state;
1394
1395 return -EIO;
1396 }
1397
1398 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1399 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1400 pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1401 pci_power_name(dev->current_state));
1402 dev->current_state = PCI_D3cold;
1403 return -EIO;
1404 }
1405
1406 state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1407
1408 need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1409 !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1410
1411 if (state == PCI_D0)
1412 goto end;
1413
1414 /*
1415 * Force the entire word to 0. This doesn't affect PME_Status, disables
1416 * PME_En, and sets PowerState to 0.
1417 */
1418 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1419
1420 /* Mandatory transition delays; see PCI PM 1.2. */
1421 if (state == PCI_D3hot)
1422 pci_dev_d3_sleep(dev);
1423 else if (state == PCI_D2)
1424 udelay(PCI_PM_D2_DELAY);
1425
1426 end:
1427 dev->current_state = PCI_D0;
1428 if (need_restore)
1429 return 1;
1430
1431 return 0;
1432 }
1433
1434 /**
1435 * pci_set_full_power_state - Put a PCI device into D0 and update its state
1436 * @dev: PCI device to power up
1437 * @locked: whether pci_bus_sem is held
1438 *
1439 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1440 * to confirm the state change, restore its BARs if they might be lost and
1441 * reconfigure ASPM in accordance with the new power state.
1442 *
1443 * If pci_restore_state() is going to be called right after a power state change
1444 * to D0, it is more efficient to use pci_power_up() directly instead of this
1445 * function.
1446 */
pci_set_full_power_state(struct pci_dev * dev,bool locked)1447 static int pci_set_full_power_state(struct pci_dev *dev, bool locked)
1448 {
1449 u16 pmcsr;
1450 int ret;
1451
1452 ret = pci_power_up(dev);
1453 if (ret < 0) {
1454 if (dev->current_state == PCI_D0)
1455 return 0;
1456
1457 return ret;
1458 }
1459
1460 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1461 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1462 if (dev->current_state != PCI_D0) {
1463 pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1464 pci_power_name(dev->current_state));
1465 } else if (ret > 0) {
1466 /*
1467 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1468 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1469 * from D3hot to D0 _may_ perform an internal reset, thereby
1470 * going to "D0 Uninitialized" rather than "D0 Initialized".
1471 * For example, at least some versions of the 3c905B and the
1472 * 3c556B exhibit this behaviour.
1473 *
1474 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1475 * devices in a D3hot state at boot. Consequently, we need to
1476 * restore at least the BARs so that the device will be
1477 * accessible to its driver.
1478 */
1479 pci_restore_bars(dev);
1480 }
1481
1482 if (dev->bus->self)
1483 pcie_aspm_pm_state_change(dev->bus->self, locked);
1484
1485 return 0;
1486 }
1487
1488 /**
1489 * __pci_dev_set_current_state - Set current state of a PCI device
1490 * @dev: Device to handle
1491 * @data: pointer to state to be set
1492 */
__pci_dev_set_current_state(struct pci_dev * dev,void * data)1493 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1494 {
1495 pci_power_t state = *(pci_power_t *)data;
1496
1497 dev->current_state = state;
1498 return 0;
1499 }
1500
1501 /**
1502 * pci_bus_set_current_state - Walk given bus and set current state of devices
1503 * @bus: Top bus of the subtree to walk.
1504 * @state: state to be set
1505 */
pci_bus_set_current_state(struct pci_bus * bus,pci_power_t state)1506 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1507 {
1508 if (bus)
1509 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1510 }
1511
__pci_bus_set_current_state(struct pci_bus * bus,pci_power_t state,bool locked)1512 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state, bool locked)
1513 {
1514 if (!bus)
1515 return;
1516
1517 if (locked)
1518 pci_walk_bus_locked(bus, __pci_dev_set_current_state, &state);
1519 else
1520 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1521 }
1522
1523 /**
1524 * pci_set_low_power_state - Put a PCI device into a low-power state.
1525 * @dev: PCI device to handle.
1526 * @state: PCI power state (D1, D2, D3hot) to put the device into.
1527 * @locked: whether pci_bus_sem is held
1528 *
1529 * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1530 *
1531 * RETURN VALUE:
1532 * -EINVAL if the requested state is invalid.
1533 * -EIO if device does not support PCI PM or its PM capabilities register has a
1534 * wrong version, or device doesn't support the requested state.
1535 * 0 if device already is in the requested state.
1536 * 0 if device's power state has been successfully changed.
1537 */
pci_set_low_power_state(struct pci_dev * dev,pci_power_t state,bool locked)1538 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1539 {
1540 u16 pmcsr;
1541
1542 if (!dev->pm_cap)
1543 return -EIO;
1544
1545 /*
1546 * Validate transition: We can enter D0 from any state, but if
1547 * we're already in a low-power state, we can only go deeper. E.g.,
1548 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1549 * we'd have to go from D3 to D0, then to D1.
1550 */
1551 if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1552 pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1553 pci_power_name(dev->current_state),
1554 pci_power_name(state));
1555 return -EINVAL;
1556 }
1557
1558 /* Check if this device supports the desired state */
1559 if ((state == PCI_D1 && !dev->d1_support)
1560 || (state == PCI_D2 && !dev->d2_support))
1561 return -EIO;
1562
1563 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1564 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1565 pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1566 pci_power_name(dev->current_state),
1567 pci_power_name(state));
1568 dev->current_state = PCI_D3cold;
1569 return -EIO;
1570 }
1571
1572 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1573 pmcsr |= state;
1574
1575 /* Enter specified state */
1576 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1577
1578 /* Mandatory power management transition delays; see PCI PM 1.2. */
1579 if (state == PCI_D3hot)
1580 pci_dev_d3_sleep(dev);
1581 else if (state == PCI_D2)
1582 udelay(PCI_PM_D2_DELAY);
1583
1584 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1585 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1586 if (dev->current_state != state)
1587 pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1588 pci_power_name(dev->current_state),
1589 pci_power_name(state));
1590
1591 if (dev->bus->self)
1592 pcie_aspm_pm_state_change(dev->bus->self, locked);
1593
1594 return 0;
1595 }
1596
__pci_set_power_state(struct pci_dev * dev,pci_power_t state,bool locked)1597 static int __pci_set_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1598 {
1599 int error;
1600
1601 /* Bound the state we're entering */
1602 if (state > PCI_D3cold)
1603 state = PCI_D3cold;
1604 else if (state < PCI_D0)
1605 state = PCI_D0;
1606 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1607
1608 /*
1609 * If the device or the parent bridge do not support PCI
1610 * PM, ignore the request if we're doing anything other
1611 * than putting it into D0 (which would only happen on
1612 * boot).
1613 */
1614 return 0;
1615
1616 /* Check if we're already there */
1617 if (dev->current_state == state)
1618 return 0;
1619
1620 if (state == PCI_D0)
1621 return pci_set_full_power_state(dev, locked);
1622
1623 /*
1624 * This device is quirked not to be put into D3, so don't put it in
1625 * D3
1626 */
1627 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1628 return 0;
1629
1630 if (state == PCI_D3cold) {
1631 /*
1632 * To put the device in D3cold, put it into D3hot in the native
1633 * way, then put it into D3cold using platform ops.
1634 */
1635 error = pci_set_low_power_state(dev, PCI_D3hot, locked);
1636
1637 if (pci_platform_power_transition(dev, PCI_D3cold))
1638 return error;
1639
1640 /* Powering off a bridge may power off the whole hierarchy */
1641 if (dev->current_state == PCI_D3cold)
1642 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold, locked);
1643 } else {
1644 error = pci_set_low_power_state(dev, state, locked);
1645
1646 if (pci_platform_power_transition(dev, state))
1647 return error;
1648 }
1649
1650 return 0;
1651 }
1652
1653 /**
1654 * pci_set_power_state - Set the power state of a PCI device
1655 * @dev: PCI device to handle.
1656 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1657 *
1658 * Transition a device to a new power state, using the platform firmware and/or
1659 * the device's PCI PM registers.
1660 *
1661 * RETURN VALUE:
1662 * -EINVAL if the requested state is invalid.
1663 * -EIO if device does not support PCI PM or its PM capabilities register has a
1664 * wrong version, or device doesn't support the requested state.
1665 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1666 * 0 if device already is in the requested state.
1667 * 0 if the transition is to D3 but D3 is not supported.
1668 * 0 if device's power state has been successfully changed.
1669 */
pci_set_power_state(struct pci_dev * dev,pci_power_t state)1670 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1671 {
1672 return __pci_set_power_state(dev, state, false);
1673 }
1674 EXPORT_SYMBOL(pci_set_power_state);
1675
pci_set_power_state_locked(struct pci_dev * dev,pci_power_t state)1676 int pci_set_power_state_locked(struct pci_dev *dev, pci_power_t state)
1677 {
1678 lockdep_assert_held(&pci_bus_sem);
1679
1680 return __pci_set_power_state(dev, state, true);
1681 }
1682 EXPORT_SYMBOL(pci_set_power_state_locked);
1683
1684 #define PCI_EXP_SAVE_REGS 7
1685
_pci_find_saved_cap(struct pci_dev * pci_dev,u16 cap,bool extended)1686 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1687 u16 cap, bool extended)
1688 {
1689 struct pci_cap_saved_state *tmp;
1690
1691 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1692 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1693 return tmp;
1694 }
1695 return NULL;
1696 }
1697
pci_find_saved_cap(struct pci_dev * dev,char cap)1698 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1699 {
1700 return _pci_find_saved_cap(dev, cap, false);
1701 }
1702
pci_find_saved_ext_cap(struct pci_dev * dev,u16 cap)1703 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1704 {
1705 return _pci_find_saved_cap(dev, cap, true);
1706 }
1707
pci_save_pcie_state(struct pci_dev * dev)1708 static int pci_save_pcie_state(struct pci_dev *dev)
1709 {
1710 int i = 0;
1711 struct pci_cap_saved_state *save_state;
1712 u16 *cap;
1713
1714 if (!pci_is_pcie(dev))
1715 return 0;
1716
1717 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1718 if (!save_state) {
1719 pci_err(dev, "buffer not found in %s\n", __func__);
1720 return -ENOMEM;
1721 }
1722
1723 cap = (u16 *)&save_state->cap.data[0];
1724 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1725 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1726 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1727 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1728 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1729 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1730 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1731
1732 pci_save_aspm_l1ss_state(dev);
1733 pci_save_ltr_state(dev);
1734
1735 return 0;
1736 }
1737
pci_restore_pcie_state(struct pci_dev * dev)1738 static void pci_restore_pcie_state(struct pci_dev *dev)
1739 {
1740 int i = 0;
1741 struct pci_cap_saved_state *save_state;
1742 u16 *cap;
1743
1744 /*
1745 * Restore max latencies (in the LTR capability) before enabling
1746 * LTR itself in PCI_EXP_DEVCTL2.
1747 */
1748 pci_restore_ltr_state(dev);
1749 pci_restore_aspm_l1ss_state(dev);
1750
1751 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1752 if (!save_state)
1753 return;
1754
1755 /*
1756 * Downstream ports reset the LTR enable bit when link goes down.
1757 * Check and re-configure the bit here before restoring device.
1758 * PCIe r5.0, sec 7.5.3.16.
1759 */
1760 pci_bridge_reconfigure_ltr(dev);
1761
1762 cap = (u16 *)&save_state->cap.data[0];
1763 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1764 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1765 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1766 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1767 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1768 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1769 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1770 }
1771
pci_save_pcix_state(struct pci_dev * dev)1772 static int pci_save_pcix_state(struct pci_dev *dev)
1773 {
1774 int pos;
1775 struct pci_cap_saved_state *save_state;
1776
1777 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1778 if (!pos)
1779 return 0;
1780
1781 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1782 if (!save_state) {
1783 pci_err(dev, "buffer not found in %s\n", __func__);
1784 return -ENOMEM;
1785 }
1786
1787 pci_read_config_word(dev, pos + PCI_X_CMD,
1788 (u16 *)save_state->cap.data);
1789
1790 return 0;
1791 }
1792
pci_restore_pcix_state(struct pci_dev * dev)1793 static void pci_restore_pcix_state(struct pci_dev *dev)
1794 {
1795 int i = 0, pos;
1796 struct pci_cap_saved_state *save_state;
1797 u16 *cap;
1798
1799 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1800 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1801 if (!save_state || !pos)
1802 return;
1803 cap = (u16 *)&save_state->cap.data[0];
1804
1805 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1806 }
1807
1808 /**
1809 * pci_save_state - save the PCI configuration space of a device before
1810 * suspending
1811 * @dev: PCI device that we're dealing with
1812 */
pci_save_state(struct pci_dev * dev)1813 int pci_save_state(struct pci_dev *dev)
1814 {
1815 int i;
1816 /* XXX: 100% dword access ok here? */
1817 for (i = 0; i < 16; i++) {
1818 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1819 pci_dbg(dev, "save config %#04x: %#010x\n",
1820 i * 4, dev->saved_config_space[i]);
1821 }
1822 dev->state_saved = true;
1823
1824 i = pci_save_pcie_state(dev);
1825 if (i != 0)
1826 return i;
1827
1828 i = pci_save_pcix_state(dev);
1829 if (i != 0)
1830 return i;
1831
1832 pci_save_dpc_state(dev);
1833 pci_save_aer_state(dev);
1834 pci_save_ptm_state(dev);
1835 pci_save_tph_state(dev);
1836 return pci_save_vc_state(dev);
1837 }
1838 EXPORT_SYMBOL(pci_save_state);
1839
pci_restore_config_dword(struct pci_dev * pdev,int offset,u32 saved_val,int retry,bool force)1840 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1841 u32 saved_val, int retry, bool force)
1842 {
1843 u32 val;
1844
1845 pci_read_config_dword(pdev, offset, &val);
1846 if (!force && val == saved_val)
1847 return;
1848
1849 for (;;) {
1850 pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n",
1851 offset, val, saved_val);
1852 pci_write_config_dword(pdev, offset, saved_val);
1853 if (retry-- <= 0)
1854 return;
1855
1856 pci_read_config_dword(pdev, offset, &val);
1857 if (val == saved_val)
1858 return;
1859
1860 mdelay(1);
1861 }
1862 }
1863
pci_restore_config_space_range(struct pci_dev * pdev,int start,int end,int retry,bool force)1864 static void pci_restore_config_space_range(struct pci_dev *pdev,
1865 int start, int end, int retry,
1866 bool force)
1867 {
1868 int index;
1869
1870 for (index = end; index >= start; index--)
1871 pci_restore_config_dword(pdev, 4 * index,
1872 pdev->saved_config_space[index],
1873 retry, force);
1874 }
1875
pci_restore_config_space(struct pci_dev * pdev)1876 static void pci_restore_config_space(struct pci_dev *pdev)
1877 {
1878 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1879 pci_restore_config_space_range(pdev, 10, 15, 0, false);
1880 /* Restore BARs before the command register. */
1881 pci_restore_config_space_range(pdev, 4, 9, 10, false);
1882 pci_restore_config_space_range(pdev, 0, 3, 0, false);
1883 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1884 pci_restore_config_space_range(pdev, 12, 15, 0, false);
1885
1886 /*
1887 * Force rewriting of prefetch registers to avoid S3 resume
1888 * issues on Intel PCI bridges that occur when these
1889 * registers are not explicitly written.
1890 */
1891 pci_restore_config_space_range(pdev, 9, 11, 0, true);
1892 pci_restore_config_space_range(pdev, 0, 8, 0, false);
1893 } else {
1894 pci_restore_config_space_range(pdev, 0, 15, 0, false);
1895 }
1896 }
1897
pci_restore_rebar_state(struct pci_dev * pdev)1898 static void pci_restore_rebar_state(struct pci_dev *pdev)
1899 {
1900 unsigned int pos, nbars, i;
1901 u32 ctrl;
1902
1903 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1904 if (!pos)
1905 return;
1906
1907 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1908 nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
1909
1910 for (i = 0; i < nbars; i++, pos += 8) {
1911 struct resource *res;
1912 int bar_idx, size;
1913
1914 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1915 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1916 res = pdev->resource + bar_idx;
1917 size = pci_rebar_bytes_to_size(resource_size(res));
1918 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1919 ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
1920 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1921 }
1922 }
1923
1924 /**
1925 * pci_restore_state - Restore the saved state of a PCI device
1926 * @dev: PCI device that we're dealing with
1927 */
pci_restore_state(struct pci_dev * dev)1928 void pci_restore_state(struct pci_dev *dev)
1929 {
1930 if (!dev->state_saved)
1931 return;
1932
1933 pci_restore_pcie_state(dev);
1934 pci_restore_pasid_state(dev);
1935 pci_restore_pri_state(dev);
1936 pci_restore_ats_state(dev);
1937 pci_restore_vc_state(dev);
1938 pci_restore_rebar_state(dev);
1939 pci_restore_dpc_state(dev);
1940 pci_restore_ptm_state(dev);
1941 pci_restore_tph_state(dev);
1942
1943 pci_aer_clear_status(dev);
1944 pci_restore_aer_state(dev);
1945
1946 pci_restore_config_space(dev);
1947
1948 pci_restore_pcix_state(dev);
1949 pci_restore_msi_state(dev);
1950
1951 /* Restore ACS and IOV configuration state */
1952 pci_enable_acs(dev);
1953 pci_restore_iov_state(dev);
1954
1955 dev->state_saved = false;
1956 }
1957 EXPORT_SYMBOL(pci_restore_state);
1958
1959 struct pci_saved_state {
1960 u32 config_space[16];
1961 struct pci_cap_saved_data cap[];
1962 };
1963
1964 /**
1965 * pci_store_saved_state - Allocate and return an opaque struct containing
1966 * the device saved state.
1967 * @dev: PCI device that we're dealing with
1968 *
1969 * Return NULL if no state or error.
1970 */
pci_store_saved_state(struct pci_dev * dev)1971 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1972 {
1973 struct pci_saved_state *state;
1974 struct pci_cap_saved_state *tmp;
1975 struct pci_cap_saved_data *cap;
1976 size_t size;
1977
1978 if (!dev->state_saved)
1979 return NULL;
1980
1981 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1982
1983 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1984 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1985
1986 state = kzalloc(size, GFP_KERNEL);
1987 if (!state)
1988 return NULL;
1989
1990 memcpy(state->config_space, dev->saved_config_space,
1991 sizeof(state->config_space));
1992
1993 cap = state->cap;
1994 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1995 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1996 memcpy(cap, &tmp->cap, len);
1997 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1998 }
1999 /* Empty cap_save terminates list */
2000
2001 return state;
2002 }
2003 EXPORT_SYMBOL_GPL(pci_store_saved_state);
2004
2005 /**
2006 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
2007 * @dev: PCI device that we're dealing with
2008 * @state: Saved state returned from pci_store_saved_state()
2009 */
pci_load_saved_state(struct pci_dev * dev,struct pci_saved_state * state)2010 int pci_load_saved_state(struct pci_dev *dev,
2011 struct pci_saved_state *state)
2012 {
2013 struct pci_cap_saved_data *cap;
2014
2015 dev->state_saved = false;
2016
2017 if (!state)
2018 return 0;
2019
2020 memcpy(dev->saved_config_space, state->config_space,
2021 sizeof(state->config_space));
2022
2023 cap = state->cap;
2024 while (cap->size) {
2025 struct pci_cap_saved_state *tmp;
2026
2027 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
2028 if (!tmp || tmp->cap.size != cap->size)
2029 return -EINVAL;
2030
2031 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
2032 cap = (struct pci_cap_saved_data *)((u8 *)cap +
2033 sizeof(struct pci_cap_saved_data) + cap->size);
2034 }
2035
2036 dev->state_saved = true;
2037 return 0;
2038 }
2039 EXPORT_SYMBOL_GPL(pci_load_saved_state);
2040
2041 /**
2042 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
2043 * and free the memory allocated for it.
2044 * @dev: PCI device that we're dealing with
2045 * @state: Pointer to saved state returned from pci_store_saved_state()
2046 */
pci_load_and_free_saved_state(struct pci_dev * dev,struct pci_saved_state ** state)2047 int pci_load_and_free_saved_state(struct pci_dev *dev,
2048 struct pci_saved_state **state)
2049 {
2050 int ret = pci_load_saved_state(dev, *state);
2051 kfree(*state);
2052 *state = NULL;
2053 return ret;
2054 }
2055 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
2056
pcibios_enable_device(struct pci_dev * dev,int bars)2057 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
2058 {
2059 return pci_enable_resources(dev, bars);
2060 }
2061
do_pci_enable_device(struct pci_dev * dev,int bars)2062 static int do_pci_enable_device(struct pci_dev *dev, int bars)
2063 {
2064 int err;
2065 struct pci_dev *bridge;
2066 u16 cmd;
2067 u8 pin;
2068
2069 err = pci_set_power_state(dev, PCI_D0);
2070 if (err < 0 && err != -EIO)
2071 return err;
2072
2073 bridge = pci_upstream_bridge(dev);
2074 if (bridge)
2075 pcie_aspm_powersave_config_link(bridge);
2076
2077 err = pcibios_enable_device(dev, bars);
2078 if (err < 0)
2079 return err;
2080 pci_fixup_device(pci_fixup_enable, dev);
2081
2082 if (dev->msi_enabled || dev->msix_enabled)
2083 return 0;
2084
2085 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
2086 if (pin) {
2087 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2088 if (cmd & PCI_COMMAND_INTX_DISABLE)
2089 pci_write_config_word(dev, PCI_COMMAND,
2090 cmd & ~PCI_COMMAND_INTX_DISABLE);
2091 }
2092
2093 return 0;
2094 }
2095
2096 /**
2097 * pci_reenable_device - Resume abandoned device
2098 * @dev: PCI device to be resumed
2099 *
2100 * NOTE: This function is a backend of pci_default_resume() and is not supposed
2101 * to be called by normal code, write proper resume handler and use it instead.
2102 */
pci_reenable_device(struct pci_dev * dev)2103 int pci_reenable_device(struct pci_dev *dev)
2104 {
2105 if (pci_is_enabled(dev))
2106 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
2107 return 0;
2108 }
2109 EXPORT_SYMBOL(pci_reenable_device);
2110
pci_enable_bridge(struct pci_dev * dev)2111 static void pci_enable_bridge(struct pci_dev *dev)
2112 {
2113 struct pci_dev *bridge;
2114 int retval;
2115
2116 bridge = pci_upstream_bridge(dev);
2117 if (bridge)
2118 pci_enable_bridge(bridge);
2119
2120 if (pci_is_enabled(dev)) {
2121 if (!dev->is_busmaster)
2122 pci_set_master(dev);
2123 return;
2124 }
2125
2126 retval = pci_enable_device(dev);
2127 if (retval)
2128 pci_err(dev, "Error enabling bridge (%d), continuing\n",
2129 retval);
2130 pci_set_master(dev);
2131 }
2132
pci_enable_device_flags(struct pci_dev * dev,unsigned long flags)2133 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
2134 {
2135 struct pci_dev *bridge;
2136 int err;
2137 int i, bars = 0;
2138
2139 /*
2140 * Power state could be unknown at this point, either due to a fresh
2141 * boot or a device removal call. So get the current power state
2142 * so that things like MSI message writing will behave as expected
2143 * (e.g. if the device really is in D0 at enable time).
2144 */
2145 pci_update_current_state(dev, dev->current_state);
2146
2147 if (atomic_inc_return(&dev->enable_cnt) > 1)
2148 return 0; /* already enabled */
2149
2150 bridge = pci_upstream_bridge(dev);
2151 if (bridge)
2152 pci_enable_bridge(bridge);
2153
2154 /* only skip sriov related */
2155 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2156 if (dev->resource[i].flags & flags)
2157 bars |= (1 << i);
2158 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2159 if (dev->resource[i].flags & flags)
2160 bars |= (1 << i);
2161
2162 err = do_pci_enable_device(dev, bars);
2163 if (err < 0)
2164 atomic_dec(&dev->enable_cnt);
2165 return err;
2166 }
2167
2168 /**
2169 * pci_enable_device_mem - Initialize a device for use with Memory space
2170 * @dev: PCI device to be initialized
2171 *
2172 * Initialize device before it's used by a driver. Ask low-level code
2173 * to enable Memory resources. Wake up the device if it was suspended.
2174 * Beware, this function can fail.
2175 */
pci_enable_device_mem(struct pci_dev * dev)2176 int pci_enable_device_mem(struct pci_dev *dev)
2177 {
2178 return pci_enable_device_flags(dev, IORESOURCE_MEM);
2179 }
2180 EXPORT_SYMBOL(pci_enable_device_mem);
2181
2182 /**
2183 * pci_enable_device - Initialize device before it's used by a driver.
2184 * @dev: PCI device to be initialized
2185 *
2186 * Initialize device before it's used by a driver. Ask low-level code
2187 * to enable I/O and memory. Wake up the device if it was suspended.
2188 * Beware, this function can fail.
2189 *
2190 * Note we don't actually enable the device many times if we call
2191 * this function repeatedly (we just increment the count).
2192 */
pci_enable_device(struct pci_dev * dev)2193 int pci_enable_device(struct pci_dev *dev)
2194 {
2195 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2196 }
2197 EXPORT_SYMBOL(pci_enable_device);
2198
2199 /*
2200 * pcibios_device_add - provide arch specific hooks when adding device dev
2201 * @dev: the PCI device being added
2202 *
2203 * Permits the platform to provide architecture specific functionality when
2204 * devices are added. This is the default implementation. Architecture
2205 * implementations can override this.
2206 */
pcibios_device_add(struct pci_dev * dev)2207 int __weak pcibios_device_add(struct pci_dev *dev)
2208 {
2209 return 0;
2210 }
2211
2212 /**
2213 * pcibios_release_device - provide arch specific hooks when releasing
2214 * device dev
2215 * @dev: the PCI device being released
2216 *
2217 * Permits the platform to provide architecture specific functionality when
2218 * devices are released. This is the default implementation. Architecture
2219 * implementations can override this.
2220 */
pcibios_release_device(struct pci_dev * dev)2221 void __weak pcibios_release_device(struct pci_dev *dev) {}
2222
2223 /**
2224 * pcibios_disable_device - disable arch specific PCI resources for device dev
2225 * @dev: the PCI device to disable
2226 *
2227 * Disables architecture specific PCI resources for the device. This
2228 * is the default implementation. Architecture implementations can
2229 * override this.
2230 */
pcibios_disable_device(struct pci_dev * dev)2231 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2232
do_pci_disable_device(struct pci_dev * dev)2233 static void do_pci_disable_device(struct pci_dev *dev)
2234 {
2235 u16 pci_command;
2236
2237 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2238 if (pci_command & PCI_COMMAND_MASTER) {
2239 pci_command &= ~PCI_COMMAND_MASTER;
2240 pci_write_config_word(dev, PCI_COMMAND, pci_command);
2241 }
2242
2243 pcibios_disable_device(dev);
2244 }
2245
2246 /**
2247 * pci_disable_enabled_device - Disable device without updating enable_cnt
2248 * @dev: PCI device to disable
2249 *
2250 * NOTE: This function is a backend of PCI power management routines and is
2251 * not supposed to be called drivers.
2252 */
pci_disable_enabled_device(struct pci_dev * dev)2253 void pci_disable_enabled_device(struct pci_dev *dev)
2254 {
2255 if (pci_is_enabled(dev))
2256 do_pci_disable_device(dev);
2257 }
2258
2259 /**
2260 * pci_disable_device - Disable PCI device after use
2261 * @dev: PCI device to be disabled
2262 *
2263 * Signal to the system that the PCI device is not in use by the system
2264 * anymore. This only involves disabling PCI bus-mastering, if active.
2265 *
2266 * Note we don't actually disable the device until all callers of
2267 * pci_enable_device() have called pci_disable_device().
2268 */
pci_disable_device(struct pci_dev * dev)2269 void pci_disable_device(struct pci_dev *dev)
2270 {
2271 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2272 "disabling already-disabled device");
2273
2274 if (atomic_dec_return(&dev->enable_cnt) != 0)
2275 return;
2276
2277 do_pci_disable_device(dev);
2278
2279 dev->is_busmaster = 0;
2280 }
2281 EXPORT_SYMBOL(pci_disable_device);
2282
2283 /**
2284 * pcibios_set_pcie_reset_state - set reset state for device dev
2285 * @dev: the PCIe device reset
2286 * @state: Reset state to enter into
2287 *
2288 * Set the PCIe reset state for the device. This is the default
2289 * implementation. Architecture implementations can override this.
2290 */
pcibios_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)2291 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2292 enum pcie_reset_state state)
2293 {
2294 return -EINVAL;
2295 }
2296
2297 /**
2298 * pci_set_pcie_reset_state - set reset state for device dev
2299 * @dev: the PCIe device reset
2300 * @state: Reset state to enter into
2301 *
2302 * Sets the PCI reset state for the device.
2303 */
pci_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)2304 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2305 {
2306 return pcibios_set_pcie_reset_state(dev, state);
2307 }
2308 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2309
2310 #ifdef CONFIG_PCIEAER
pcie_clear_device_status(struct pci_dev * dev)2311 void pcie_clear_device_status(struct pci_dev *dev)
2312 {
2313 u16 sta;
2314
2315 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2316 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2317 }
2318 #endif
2319
2320 /**
2321 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2322 * @dev: PCIe root port or event collector.
2323 */
pcie_clear_root_pme_status(struct pci_dev * dev)2324 void pcie_clear_root_pme_status(struct pci_dev *dev)
2325 {
2326 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2327 }
2328
2329 /**
2330 * pci_check_pme_status - Check if given device has generated PME.
2331 * @dev: Device to check.
2332 *
2333 * Check the PME status of the device and if set, clear it and clear PME enable
2334 * (if set). Return 'true' if PME status and PME enable were both set or
2335 * 'false' otherwise.
2336 */
pci_check_pme_status(struct pci_dev * dev)2337 bool pci_check_pme_status(struct pci_dev *dev)
2338 {
2339 int pmcsr_pos;
2340 u16 pmcsr;
2341 bool ret = false;
2342
2343 if (!dev->pm_cap)
2344 return false;
2345
2346 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2347 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2348 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2349 return false;
2350
2351 /* Clear PME status. */
2352 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2353 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2354 /* Disable PME to avoid interrupt flood. */
2355 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2356 ret = true;
2357 }
2358
2359 pci_write_config_word(dev, pmcsr_pos, pmcsr);
2360
2361 return ret;
2362 }
2363
2364 /**
2365 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2366 * @dev: Device to handle.
2367 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2368 *
2369 * Check if @dev has generated PME and queue a resume request for it in that
2370 * case.
2371 */
pci_pme_wakeup(struct pci_dev * dev,void * pme_poll_reset)2372 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2373 {
2374 if (pme_poll_reset && dev->pme_poll)
2375 dev->pme_poll = false;
2376
2377 if (pci_check_pme_status(dev)) {
2378 pci_wakeup_event(dev);
2379 pm_request_resume(&dev->dev);
2380 }
2381 return 0;
2382 }
2383
2384 /**
2385 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2386 * @bus: Top bus of the subtree to walk.
2387 */
pci_pme_wakeup_bus(struct pci_bus * bus)2388 void pci_pme_wakeup_bus(struct pci_bus *bus)
2389 {
2390 if (bus)
2391 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2392 }
2393
2394
2395 /**
2396 * pci_pme_capable - check the capability of PCI device to generate PME#
2397 * @dev: PCI device to handle.
2398 * @state: PCI state from which device will issue PME#.
2399 */
pci_pme_capable(struct pci_dev * dev,pci_power_t state)2400 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2401 {
2402 if (!dev->pm_cap)
2403 return false;
2404
2405 return !!(dev->pme_support & (1 << state));
2406 }
2407 EXPORT_SYMBOL(pci_pme_capable);
2408
pci_pme_list_scan(struct work_struct * work)2409 static void pci_pme_list_scan(struct work_struct *work)
2410 {
2411 struct pci_pme_device *pme_dev, *n;
2412
2413 mutex_lock(&pci_pme_list_mutex);
2414 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2415 struct pci_dev *pdev = pme_dev->dev;
2416
2417 if (pdev->pme_poll) {
2418 struct pci_dev *bridge = pdev->bus->self;
2419 struct device *dev = &pdev->dev;
2420 struct device *bdev = bridge ? &bridge->dev : NULL;
2421 int bref = 0;
2422
2423 /*
2424 * If we have a bridge, it should be in an active/D0
2425 * state or the configuration space of subordinate
2426 * devices may not be accessible or stable over the
2427 * course of the call.
2428 */
2429 if (bdev) {
2430 bref = pm_runtime_get_if_active(bdev);
2431 if (!bref)
2432 continue;
2433
2434 if (bridge->current_state != PCI_D0)
2435 goto put_bridge;
2436 }
2437
2438 /*
2439 * The device itself should be suspended but config
2440 * space must be accessible, therefore it cannot be in
2441 * D3cold.
2442 */
2443 if (pm_runtime_suspended(dev) &&
2444 pdev->current_state != PCI_D3cold)
2445 pci_pme_wakeup(pdev, NULL);
2446
2447 put_bridge:
2448 if (bref > 0)
2449 pm_runtime_put(bdev);
2450 } else {
2451 list_del(&pme_dev->list);
2452 kfree(pme_dev);
2453 }
2454 }
2455 if (!list_empty(&pci_pme_list))
2456 queue_delayed_work(system_freezable_wq, &pci_pme_work,
2457 msecs_to_jiffies(PME_TIMEOUT));
2458 mutex_unlock(&pci_pme_list_mutex);
2459 }
2460
__pci_pme_active(struct pci_dev * dev,bool enable)2461 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2462 {
2463 u16 pmcsr;
2464
2465 if (!dev->pme_support)
2466 return;
2467
2468 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2469 /* Clear PME_Status by writing 1 to it and enable PME# */
2470 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2471 if (!enable)
2472 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2473
2474 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2475 }
2476
2477 /**
2478 * pci_pme_restore - Restore PME configuration after config space restore.
2479 * @dev: PCI device to update.
2480 */
pci_pme_restore(struct pci_dev * dev)2481 void pci_pme_restore(struct pci_dev *dev)
2482 {
2483 u16 pmcsr;
2484
2485 if (!dev->pme_support)
2486 return;
2487
2488 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2489 if (dev->wakeup_prepared) {
2490 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2491 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2492 } else {
2493 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2494 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2495 }
2496 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2497 }
2498
2499 /**
2500 * pci_pme_active - enable or disable PCI device's PME# function
2501 * @dev: PCI device to handle.
2502 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2503 *
2504 * The caller must verify that the device is capable of generating PME# before
2505 * calling this function with @enable equal to 'true'.
2506 */
pci_pme_active(struct pci_dev * dev,bool enable)2507 void pci_pme_active(struct pci_dev *dev, bool enable)
2508 {
2509 __pci_pme_active(dev, enable);
2510
2511 /*
2512 * PCI (as opposed to PCIe) PME requires that the device have
2513 * its PME# line hooked up correctly. Not all hardware vendors
2514 * do this, so the PME never gets delivered and the device
2515 * remains asleep. The easiest way around this is to
2516 * periodically walk the list of suspended devices and check
2517 * whether any have their PME flag set. The assumption is that
2518 * we'll wake up often enough anyway that this won't be a huge
2519 * hit, and the power savings from the devices will still be a
2520 * win.
2521 *
2522 * Although PCIe uses in-band PME message instead of PME# line
2523 * to report PME, PME does not work for some PCIe devices in
2524 * reality. For example, there are devices that set their PME
2525 * status bits, but don't really bother to send a PME message;
2526 * there are PCI Express Root Ports that don't bother to
2527 * trigger interrupts when they receive PME messages from the
2528 * devices below. So PME poll is used for PCIe devices too.
2529 */
2530
2531 if (dev->pme_poll) {
2532 struct pci_pme_device *pme_dev;
2533 if (enable) {
2534 pme_dev = kmalloc(sizeof(struct pci_pme_device),
2535 GFP_KERNEL);
2536 if (!pme_dev) {
2537 pci_warn(dev, "can't enable PME#\n");
2538 return;
2539 }
2540 pme_dev->dev = dev;
2541 mutex_lock(&pci_pme_list_mutex);
2542 list_add(&pme_dev->list, &pci_pme_list);
2543 if (list_is_singular(&pci_pme_list))
2544 queue_delayed_work(system_freezable_wq,
2545 &pci_pme_work,
2546 msecs_to_jiffies(PME_TIMEOUT));
2547 mutex_unlock(&pci_pme_list_mutex);
2548 } else {
2549 mutex_lock(&pci_pme_list_mutex);
2550 list_for_each_entry(pme_dev, &pci_pme_list, list) {
2551 if (pme_dev->dev == dev) {
2552 list_del(&pme_dev->list);
2553 kfree(pme_dev);
2554 break;
2555 }
2556 }
2557 mutex_unlock(&pci_pme_list_mutex);
2558 }
2559 }
2560
2561 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2562 }
2563 EXPORT_SYMBOL(pci_pme_active);
2564
2565 /**
2566 * __pci_enable_wake - enable PCI device as wakeup event source
2567 * @dev: PCI device affected
2568 * @state: PCI state from which device will issue wakeup events
2569 * @enable: True to enable event generation; false to disable
2570 *
2571 * This enables the device as a wakeup event source, or disables it.
2572 * When such events involves platform-specific hooks, those hooks are
2573 * called automatically by this routine.
2574 *
2575 * Devices with legacy power management (no standard PCI PM capabilities)
2576 * always require such platform hooks.
2577 *
2578 * RETURN VALUE:
2579 * 0 is returned on success
2580 * -EINVAL is returned if device is not supposed to wake up the system
2581 * Error code depending on the platform is returned if both the platform and
2582 * the native mechanism fail to enable the generation of wake-up events
2583 */
__pci_enable_wake(struct pci_dev * dev,pci_power_t state,bool enable)2584 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2585 {
2586 int ret = 0;
2587
2588 /*
2589 * Bridges that are not power-manageable directly only signal
2590 * wakeup on behalf of subordinate devices which is set up
2591 * elsewhere, so skip them. However, bridges that are
2592 * power-manageable may signal wakeup for themselves (for example,
2593 * on a hotplug event) and they need to be covered here.
2594 */
2595 if (!pci_power_manageable(dev))
2596 return 0;
2597
2598 /* Don't do the same thing twice in a row for one device. */
2599 if (!!enable == !!dev->wakeup_prepared)
2600 return 0;
2601
2602 /*
2603 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2604 * Anderson we should be doing PME# wake enable followed by ACPI wake
2605 * enable. To disable wake-up we call the platform first, for symmetry.
2606 */
2607
2608 if (enable) {
2609 int error;
2610
2611 /*
2612 * Enable PME signaling if the device can signal PME from
2613 * D3cold regardless of whether or not it can signal PME from
2614 * the current target state, because that will allow it to
2615 * signal PME when the hierarchy above it goes into D3cold and
2616 * the device itself ends up in D3cold as a result of that.
2617 */
2618 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2619 pci_pme_active(dev, true);
2620 else
2621 ret = 1;
2622 error = platform_pci_set_wakeup(dev, true);
2623 if (ret)
2624 ret = error;
2625 if (!ret)
2626 dev->wakeup_prepared = true;
2627 } else {
2628 platform_pci_set_wakeup(dev, false);
2629 pci_pme_active(dev, false);
2630 dev->wakeup_prepared = false;
2631 }
2632
2633 return ret;
2634 }
2635
2636 /**
2637 * pci_enable_wake - change wakeup settings for a PCI device
2638 * @pci_dev: Target device
2639 * @state: PCI state from which device will issue wakeup events
2640 * @enable: Whether or not to enable event generation
2641 *
2642 * If @enable is set, check device_may_wakeup() for the device before calling
2643 * __pci_enable_wake() for it.
2644 */
pci_enable_wake(struct pci_dev * pci_dev,pci_power_t state,bool enable)2645 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2646 {
2647 if (enable && !device_may_wakeup(&pci_dev->dev))
2648 return -EINVAL;
2649
2650 return __pci_enable_wake(pci_dev, state, enable);
2651 }
2652 EXPORT_SYMBOL(pci_enable_wake);
2653
2654 /**
2655 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2656 * @dev: PCI device to prepare
2657 * @enable: True to enable wake-up event generation; false to disable
2658 *
2659 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2660 * and this function allows them to set that up cleanly - pci_enable_wake()
2661 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2662 * ordering constraints.
2663 *
2664 * This function only returns error code if the device is not allowed to wake
2665 * up the system from sleep or it is not capable of generating PME# from both
2666 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2667 */
pci_wake_from_d3(struct pci_dev * dev,bool enable)2668 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2669 {
2670 return pci_pme_capable(dev, PCI_D3cold) ?
2671 pci_enable_wake(dev, PCI_D3cold, enable) :
2672 pci_enable_wake(dev, PCI_D3hot, enable);
2673 }
2674 EXPORT_SYMBOL(pci_wake_from_d3);
2675
2676 /**
2677 * pci_target_state - find an appropriate low power state for a given PCI dev
2678 * @dev: PCI device
2679 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2680 *
2681 * Use underlying platform code to find a supported low power state for @dev.
2682 * If the platform can't manage @dev, return the deepest state from which it
2683 * can generate wake events, based on any available PME info.
2684 */
pci_target_state(struct pci_dev * dev,bool wakeup)2685 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2686 {
2687 if (platform_pci_power_manageable(dev)) {
2688 /*
2689 * Call the platform to find the target state for the device.
2690 */
2691 pci_power_t state = platform_pci_choose_state(dev);
2692
2693 switch (state) {
2694 case PCI_POWER_ERROR:
2695 case PCI_UNKNOWN:
2696 return PCI_D3hot;
2697
2698 case PCI_D1:
2699 case PCI_D2:
2700 if (pci_no_d1d2(dev))
2701 return PCI_D3hot;
2702 }
2703
2704 return state;
2705 }
2706
2707 /*
2708 * If the device is in D3cold even though it's not power-manageable by
2709 * the platform, it may have been powered down by non-standard means.
2710 * Best to let it slumber.
2711 */
2712 if (dev->current_state == PCI_D3cold)
2713 return PCI_D3cold;
2714 else if (!dev->pm_cap)
2715 return PCI_D0;
2716
2717 if (wakeup && dev->pme_support) {
2718 pci_power_t state = PCI_D3hot;
2719
2720 /*
2721 * Find the deepest state from which the device can generate
2722 * PME#.
2723 */
2724 while (state && !(dev->pme_support & (1 << state)))
2725 state--;
2726
2727 if (state)
2728 return state;
2729 else if (dev->pme_support & 1)
2730 return PCI_D0;
2731 }
2732
2733 return PCI_D3hot;
2734 }
2735
2736 /**
2737 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2738 * into a sleep state
2739 * @dev: Device to handle.
2740 *
2741 * Choose the power state appropriate for the device depending on whether
2742 * it can wake up the system and/or is power manageable by the platform
2743 * (PCI_D3hot is the default) and put the device into that state.
2744 */
pci_prepare_to_sleep(struct pci_dev * dev)2745 int pci_prepare_to_sleep(struct pci_dev *dev)
2746 {
2747 bool wakeup = device_may_wakeup(&dev->dev);
2748 pci_power_t target_state = pci_target_state(dev, wakeup);
2749 int error;
2750
2751 if (target_state == PCI_POWER_ERROR)
2752 return -EIO;
2753
2754 pci_enable_wake(dev, target_state, wakeup);
2755
2756 error = pci_set_power_state(dev, target_state);
2757
2758 if (error)
2759 pci_enable_wake(dev, target_state, false);
2760
2761 return error;
2762 }
2763 EXPORT_SYMBOL(pci_prepare_to_sleep);
2764
2765 /**
2766 * pci_back_from_sleep - turn PCI device on during system-wide transition
2767 * into working state
2768 * @dev: Device to handle.
2769 *
2770 * Disable device's system wake-up capability and put it into D0.
2771 */
pci_back_from_sleep(struct pci_dev * dev)2772 int pci_back_from_sleep(struct pci_dev *dev)
2773 {
2774 int ret = pci_set_power_state(dev, PCI_D0);
2775
2776 if (ret)
2777 return ret;
2778
2779 pci_enable_wake(dev, PCI_D0, false);
2780 return 0;
2781 }
2782 EXPORT_SYMBOL(pci_back_from_sleep);
2783
2784 /**
2785 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2786 * @dev: PCI device being suspended.
2787 *
2788 * Prepare @dev to generate wake-up events at run time and put it into a low
2789 * power state.
2790 */
pci_finish_runtime_suspend(struct pci_dev * dev)2791 int pci_finish_runtime_suspend(struct pci_dev *dev)
2792 {
2793 pci_power_t target_state;
2794 int error;
2795
2796 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2797 if (target_state == PCI_POWER_ERROR)
2798 return -EIO;
2799
2800 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2801
2802 error = pci_set_power_state(dev, target_state);
2803
2804 if (error)
2805 pci_enable_wake(dev, target_state, false);
2806
2807 return error;
2808 }
2809
2810 /**
2811 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2812 * @dev: Device to check.
2813 *
2814 * Return true if the device itself is capable of generating wake-up events
2815 * (through the platform or using the native PCIe PME) or if the device supports
2816 * PME and one of its upstream bridges can generate wake-up events.
2817 */
pci_dev_run_wake(struct pci_dev * dev)2818 bool pci_dev_run_wake(struct pci_dev *dev)
2819 {
2820 struct pci_bus *bus = dev->bus;
2821
2822 if (!dev->pme_support)
2823 return false;
2824
2825 /* PME-capable in principle, but not from the target power state */
2826 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2827 return false;
2828
2829 if (device_can_wakeup(&dev->dev))
2830 return true;
2831
2832 while (bus->parent) {
2833 struct pci_dev *bridge = bus->self;
2834
2835 if (device_can_wakeup(&bridge->dev))
2836 return true;
2837
2838 bus = bus->parent;
2839 }
2840
2841 /* We have reached the root bus. */
2842 if (bus->bridge)
2843 return device_can_wakeup(bus->bridge);
2844
2845 return false;
2846 }
2847 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2848
2849 /**
2850 * pci_dev_need_resume - Check if it is necessary to resume the device.
2851 * @pci_dev: Device to check.
2852 *
2853 * Return 'true' if the device is not runtime-suspended or it has to be
2854 * reconfigured due to wakeup settings difference between system and runtime
2855 * suspend, or the current power state of it is not suitable for the upcoming
2856 * (system-wide) transition.
2857 */
pci_dev_need_resume(struct pci_dev * pci_dev)2858 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2859 {
2860 struct device *dev = &pci_dev->dev;
2861 pci_power_t target_state;
2862
2863 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2864 return true;
2865
2866 target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2867
2868 /*
2869 * If the earlier platform check has not triggered, D3cold is just power
2870 * removal on top of D3hot, so no need to resume the device in that
2871 * case.
2872 */
2873 return target_state != pci_dev->current_state &&
2874 target_state != PCI_D3cold &&
2875 pci_dev->current_state != PCI_D3hot;
2876 }
2877
2878 /**
2879 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2880 * @pci_dev: Device to check.
2881 *
2882 * If the device is suspended and it is not configured for system wakeup,
2883 * disable PME for it to prevent it from waking up the system unnecessarily.
2884 *
2885 * Note that if the device's power state is D3cold and the platform check in
2886 * pci_dev_need_resume() has not triggered, the device's configuration need not
2887 * be changed.
2888 */
pci_dev_adjust_pme(struct pci_dev * pci_dev)2889 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2890 {
2891 struct device *dev = &pci_dev->dev;
2892
2893 spin_lock_irq(&dev->power.lock);
2894
2895 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2896 pci_dev->current_state < PCI_D3cold)
2897 __pci_pme_active(pci_dev, false);
2898
2899 spin_unlock_irq(&dev->power.lock);
2900 }
2901
2902 /**
2903 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2904 * @pci_dev: Device to handle.
2905 *
2906 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2907 * it might have been disabled during the prepare phase of system suspend if
2908 * the device was not configured for system wakeup.
2909 */
pci_dev_complete_resume(struct pci_dev * pci_dev)2910 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2911 {
2912 struct device *dev = &pci_dev->dev;
2913
2914 if (!pci_dev_run_wake(pci_dev))
2915 return;
2916
2917 spin_lock_irq(&dev->power.lock);
2918
2919 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2920 __pci_pme_active(pci_dev, true);
2921
2922 spin_unlock_irq(&dev->power.lock);
2923 }
2924
2925 /**
2926 * pci_choose_state - Choose the power state of a PCI device.
2927 * @dev: Target PCI device.
2928 * @state: Target state for the whole system.
2929 *
2930 * Returns PCI power state suitable for @dev and @state.
2931 */
pci_choose_state(struct pci_dev * dev,pm_message_t state)2932 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2933 {
2934 if (state.event == PM_EVENT_ON)
2935 return PCI_D0;
2936
2937 return pci_target_state(dev, false);
2938 }
2939 EXPORT_SYMBOL(pci_choose_state);
2940
pci_config_pm_runtime_get(struct pci_dev * pdev)2941 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2942 {
2943 struct device *dev = &pdev->dev;
2944 struct device *parent = dev->parent;
2945
2946 if (parent)
2947 pm_runtime_get_sync(parent);
2948 pm_runtime_get_noresume(dev);
2949 /*
2950 * pdev->current_state is set to PCI_D3cold during suspending,
2951 * so wait until suspending completes
2952 */
2953 pm_runtime_barrier(dev);
2954 /*
2955 * Only need to resume devices in D3cold, because config
2956 * registers are still accessible for devices suspended but
2957 * not in D3cold.
2958 */
2959 if (pdev->current_state == PCI_D3cold)
2960 pm_runtime_resume(dev);
2961 }
2962
pci_config_pm_runtime_put(struct pci_dev * pdev)2963 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2964 {
2965 struct device *dev = &pdev->dev;
2966 struct device *parent = dev->parent;
2967
2968 pm_runtime_put(dev);
2969 if (parent)
2970 pm_runtime_put_sync(parent);
2971 }
2972
2973 static const struct dmi_system_id bridge_d3_blacklist[] = {
2974 #ifdef CONFIG_X86
2975 {
2976 /*
2977 * Gigabyte X299 root port is not marked as hotplug capable
2978 * which allows Linux to power manage it. However, this
2979 * confuses the BIOS SMI handler so don't power manage root
2980 * ports on that system.
2981 */
2982 .ident = "X299 DESIGNARE EX-CF",
2983 .matches = {
2984 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2985 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2986 },
2987 },
2988 {
2989 /*
2990 * Downstream device is not accessible after putting a root port
2991 * into D3cold and back into D0 on Elo Continental Z2 board
2992 */
2993 .ident = "Elo Continental Z2",
2994 .matches = {
2995 DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"),
2996 DMI_MATCH(DMI_BOARD_NAME, "Geminilake"),
2997 DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"),
2998 },
2999 },
3000 {
3001 /*
3002 * Changing power state of root port dGPU is connected fails
3003 * https://gitlab.freedesktop.org/drm/amd/-/issues/3229
3004 */
3005 .ident = "Hewlett-Packard HP Pavilion 17 Notebook PC/1972",
3006 .matches = {
3007 DMI_MATCH(DMI_BOARD_VENDOR, "Hewlett-Packard"),
3008 DMI_MATCH(DMI_BOARD_NAME, "1972"),
3009 DMI_MATCH(DMI_BOARD_VERSION, "95.33"),
3010 },
3011 },
3012 #endif
3013 { }
3014 };
3015
3016 /**
3017 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
3018 * @bridge: Bridge to check
3019 *
3020 * This function checks if it is possible to move the bridge to D3.
3021 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
3022 */
pci_bridge_d3_possible(struct pci_dev * bridge)3023 bool pci_bridge_d3_possible(struct pci_dev *bridge)
3024 {
3025 if (!pci_is_pcie(bridge))
3026 return false;
3027
3028 switch (pci_pcie_type(bridge)) {
3029 case PCI_EXP_TYPE_ROOT_PORT:
3030 case PCI_EXP_TYPE_UPSTREAM:
3031 case PCI_EXP_TYPE_DOWNSTREAM:
3032 if (pci_bridge_d3_disable)
3033 return false;
3034
3035 /*
3036 * Hotplug ports handled by firmware in System Management Mode
3037 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
3038 */
3039 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
3040 return false;
3041
3042 if (pci_bridge_d3_force)
3043 return true;
3044
3045 /* Even the oldest 2010 Thunderbolt controller supports D3. */
3046 if (bridge->is_thunderbolt)
3047 return true;
3048
3049 /* Platform might know better if the bridge supports D3 */
3050 if (platform_pci_bridge_d3(bridge))
3051 return true;
3052
3053 /*
3054 * Hotplug ports handled natively by the OS were not validated
3055 * by vendors for runtime D3 at least until 2018 because there
3056 * was no OS support.
3057 */
3058 if (bridge->is_hotplug_bridge)
3059 return false;
3060
3061 if (dmi_check_system(bridge_d3_blacklist))
3062 return false;
3063
3064 /*
3065 * It should be safe to put PCIe ports from 2015 or newer
3066 * to D3.
3067 */
3068 if (dmi_get_bios_year() >= 2015)
3069 return true;
3070 break;
3071 }
3072
3073 return false;
3074 }
3075
pci_dev_check_d3cold(struct pci_dev * dev,void * data)3076 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3077 {
3078 bool *d3cold_ok = data;
3079
3080 if (/* The device needs to be allowed to go D3cold ... */
3081 dev->no_d3cold || !dev->d3cold_allowed ||
3082
3083 /* ... and if it is wakeup capable to do so from D3cold. */
3084 (device_may_wakeup(&dev->dev) &&
3085 !pci_pme_capable(dev, PCI_D3cold)) ||
3086
3087 /* If it is a bridge it must be allowed to go to D3. */
3088 !pci_power_manageable(dev))
3089
3090 *d3cold_ok = false;
3091
3092 return !*d3cold_ok;
3093 }
3094
3095 /*
3096 * pci_bridge_d3_update - Update bridge D3 capabilities
3097 * @dev: PCI device which is changed
3098 *
3099 * Update upstream bridge PM capabilities accordingly depending on if the
3100 * device PM configuration was changed or the device is being removed. The
3101 * change is also propagated upstream.
3102 */
pci_bridge_d3_update(struct pci_dev * dev)3103 void pci_bridge_d3_update(struct pci_dev *dev)
3104 {
3105 bool remove = !device_is_registered(&dev->dev);
3106 struct pci_dev *bridge;
3107 bool d3cold_ok = true;
3108
3109 bridge = pci_upstream_bridge(dev);
3110 if (!bridge || !pci_bridge_d3_possible(bridge))
3111 return;
3112
3113 /*
3114 * If D3 is currently allowed for the bridge, removing one of its
3115 * children won't change that.
3116 */
3117 if (remove && bridge->bridge_d3)
3118 return;
3119
3120 /*
3121 * If D3 is currently allowed for the bridge and a child is added or
3122 * changed, disallowance of D3 can only be caused by that child, so
3123 * we only need to check that single device, not any of its siblings.
3124 *
3125 * If D3 is currently not allowed for the bridge, checking the device
3126 * first may allow us to skip checking its siblings.
3127 */
3128 if (!remove)
3129 pci_dev_check_d3cold(dev, &d3cold_ok);
3130
3131 /*
3132 * If D3 is currently not allowed for the bridge, this may be caused
3133 * either by the device being changed/removed or any of its siblings,
3134 * so we need to go through all children to find out if one of them
3135 * continues to block D3.
3136 */
3137 if (d3cold_ok && !bridge->bridge_d3)
3138 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3139 &d3cold_ok);
3140
3141 if (bridge->bridge_d3 != d3cold_ok) {
3142 bridge->bridge_d3 = d3cold_ok;
3143 /* Propagate change to upstream bridges */
3144 pci_bridge_d3_update(bridge);
3145 }
3146 }
3147
3148 /**
3149 * pci_d3cold_enable - Enable D3cold for device
3150 * @dev: PCI device to handle
3151 *
3152 * This function can be used in drivers to enable D3cold from the device
3153 * they handle. It also updates upstream PCI bridge PM capabilities
3154 * accordingly.
3155 */
pci_d3cold_enable(struct pci_dev * dev)3156 void pci_d3cold_enable(struct pci_dev *dev)
3157 {
3158 if (dev->no_d3cold) {
3159 dev->no_d3cold = false;
3160 pci_bridge_d3_update(dev);
3161 }
3162 }
3163 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3164
3165 /**
3166 * pci_d3cold_disable - Disable D3cold for device
3167 * @dev: PCI device to handle
3168 *
3169 * This function can be used in drivers to disable D3cold from the device
3170 * they handle. It also updates upstream PCI bridge PM capabilities
3171 * accordingly.
3172 */
pci_d3cold_disable(struct pci_dev * dev)3173 void pci_d3cold_disable(struct pci_dev *dev)
3174 {
3175 if (!dev->no_d3cold) {
3176 dev->no_d3cold = true;
3177 pci_bridge_d3_update(dev);
3178 }
3179 }
3180 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3181
3182 /**
3183 * pci_pm_init - Initialize PM functions of given PCI device
3184 * @dev: PCI device to handle.
3185 */
pci_pm_init(struct pci_dev * dev)3186 void pci_pm_init(struct pci_dev *dev)
3187 {
3188 int pm;
3189 u16 status;
3190 u16 pmc;
3191
3192 pm_runtime_forbid(&dev->dev);
3193 pm_runtime_set_active(&dev->dev);
3194 pm_runtime_enable(&dev->dev);
3195 device_enable_async_suspend(&dev->dev);
3196 dev->wakeup_prepared = false;
3197
3198 dev->pm_cap = 0;
3199 dev->pme_support = 0;
3200
3201 /* find PCI PM capability in list */
3202 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3203 if (!pm)
3204 return;
3205 /* Check device's ability to generate PME# */
3206 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3207
3208 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3209 pci_err(dev, "unsupported PM cap regs version (%u)\n",
3210 pmc & PCI_PM_CAP_VER_MASK);
3211 return;
3212 }
3213
3214 dev->pm_cap = pm;
3215 dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3216 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3217 dev->bridge_d3 = pci_bridge_d3_possible(dev);
3218 dev->d3cold_allowed = true;
3219
3220 dev->d1_support = false;
3221 dev->d2_support = false;
3222 if (!pci_no_d1d2(dev)) {
3223 if (pmc & PCI_PM_CAP_D1)
3224 dev->d1_support = true;
3225 if (pmc & PCI_PM_CAP_D2)
3226 dev->d2_support = true;
3227
3228 if (dev->d1_support || dev->d2_support)
3229 pci_info(dev, "supports%s%s\n",
3230 dev->d1_support ? " D1" : "",
3231 dev->d2_support ? " D2" : "");
3232 }
3233
3234 pmc &= PCI_PM_CAP_PME_MASK;
3235 if (pmc) {
3236 pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3237 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3238 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3239 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3240 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3241 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3242 dev->pme_support = FIELD_GET(PCI_PM_CAP_PME_MASK, pmc);
3243 dev->pme_poll = true;
3244 /*
3245 * Make device's PM flags reflect the wake-up capability, but
3246 * let the user space enable it to wake up the system as needed.
3247 */
3248 device_set_wakeup_capable(&dev->dev, true);
3249 /* Disable the PME# generation functionality */
3250 pci_pme_active(dev, false);
3251 }
3252
3253 pci_read_config_word(dev, PCI_STATUS, &status);
3254 if (status & PCI_STATUS_IMM_READY)
3255 dev->imm_ready = 1;
3256 }
3257
pci_ea_flags(struct pci_dev * dev,u8 prop)3258 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3259 {
3260 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3261
3262 switch (prop) {
3263 case PCI_EA_P_MEM:
3264 case PCI_EA_P_VF_MEM:
3265 flags |= IORESOURCE_MEM;
3266 break;
3267 case PCI_EA_P_MEM_PREFETCH:
3268 case PCI_EA_P_VF_MEM_PREFETCH:
3269 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3270 break;
3271 case PCI_EA_P_IO:
3272 flags |= IORESOURCE_IO;
3273 break;
3274 default:
3275 return 0;
3276 }
3277
3278 return flags;
3279 }
3280
pci_ea_get_resource(struct pci_dev * dev,u8 bei,u8 prop)3281 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3282 u8 prop)
3283 {
3284 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3285 return &dev->resource[bei];
3286 #ifdef CONFIG_PCI_IOV
3287 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3288 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3289 return &dev->resource[PCI_IOV_RESOURCES +
3290 bei - PCI_EA_BEI_VF_BAR0];
3291 #endif
3292 else if (bei == PCI_EA_BEI_ROM)
3293 return &dev->resource[PCI_ROM_RESOURCE];
3294 else
3295 return NULL;
3296 }
3297
3298 /* Read an Enhanced Allocation (EA) entry */
pci_ea_read(struct pci_dev * dev,int offset)3299 static int pci_ea_read(struct pci_dev *dev, int offset)
3300 {
3301 struct resource *res;
3302 const char *res_name;
3303 int ent_size, ent_offset = offset;
3304 resource_size_t start, end;
3305 unsigned long flags;
3306 u32 dw0, bei, base, max_offset;
3307 u8 prop;
3308 bool support_64 = (sizeof(resource_size_t) >= 8);
3309
3310 pci_read_config_dword(dev, ent_offset, &dw0);
3311 ent_offset += 4;
3312
3313 /* Entry size field indicates DWORDs after 1st */
3314 ent_size = (FIELD_GET(PCI_EA_ES, dw0) + 1) << 2;
3315
3316 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3317 goto out;
3318
3319 bei = FIELD_GET(PCI_EA_BEI, dw0);
3320 prop = FIELD_GET(PCI_EA_PP, dw0);
3321
3322 /*
3323 * If the Property is in the reserved range, try the Secondary
3324 * Property instead.
3325 */
3326 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3327 prop = FIELD_GET(PCI_EA_SP, dw0);
3328 if (prop > PCI_EA_P_BRIDGE_IO)
3329 goto out;
3330
3331 res = pci_ea_get_resource(dev, bei, prop);
3332 res_name = pci_resource_name(dev, bei);
3333 if (!res) {
3334 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3335 goto out;
3336 }
3337
3338 flags = pci_ea_flags(dev, prop);
3339 if (!flags) {
3340 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3341 goto out;
3342 }
3343
3344 /* Read Base */
3345 pci_read_config_dword(dev, ent_offset, &base);
3346 start = (base & PCI_EA_FIELD_MASK);
3347 ent_offset += 4;
3348
3349 /* Read MaxOffset */
3350 pci_read_config_dword(dev, ent_offset, &max_offset);
3351 ent_offset += 4;
3352
3353 /* Read Base MSBs (if 64-bit entry) */
3354 if (base & PCI_EA_IS_64) {
3355 u32 base_upper;
3356
3357 pci_read_config_dword(dev, ent_offset, &base_upper);
3358 ent_offset += 4;
3359
3360 flags |= IORESOURCE_MEM_64;
3361
3362 /* entry starts above 32-bit boundary, can't use */
3363 if (!support_64 && base_upper)
3364 goto out;
3365
3366 if (support_64)
3367 start |= ((u64)base_upper << 32);
3368 }
3369
3370 end = start + (max_offset | 0x03);
3371
3372 /* Read MaxOffset MSBs (if 64-bit entry) */
3373 if (max_offset & PCI_EA_IS_64) {
3374 u32 max_offset_upper;
3375
3376 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3377 ent_offset += 4;
3378
3379 flags |= IORESOURCE_MEM_64;
3380
3381 /* entry too big, can't use */
3382 if (!support_64 && max_offset_upper)
3383 goto out;
3384
3385 if (support_64)
3386 end += ((u64)max_offset_upper << 32);
3387 }
3388
3389 if (end < start) {
3390 pci_err(dev, "EA Entry crosses address boundary\n");
3391 goto out;
3392 }
3393
3394 if (ent_size != ent_offset - offset) {
3395 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3396 ent_size, ent_offset - offset);
3397 goto out;
3398 }
3399
3400 res->name = pci_name(dev);
3401 res->start = start;
3402 res->end = end;
3403 res->flags = flags;
3404
3405 if (bei <= PCI_EA_BEI_BAR5)
3406 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3407 res_name, res, prop);
3408 else if (bei == PCI_EA_BEI_ROM)
3409 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3410 res_name, res, prop);
3411 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3412 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3413 res_name, res, prop);
3414 else
3415 pci_info(dev, "BEI %d %pR: from Enhanced Allocation, properties %#02x\n",
3416 bei, res, prop);
3417
3418 out:
3419 return offset + ent_size;
3420 }
3421
3422 /* Enhanced Allocation Initialization */
pci_ea_init(struct pci_dev * dev)3423 void pci_ea_init(struct pci_dev *dev)
3424 {
3425 int ea;
3426 u8 num_ent;
3427 int offset;
3428 int i;
3429
3430 /* find PCI EA capability in list */
3431 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3432 if (!ea)
3433 return;
3434
3435 /* determine the number of entries */
3436 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3437 &num_ent);
3438 num_ent &= PCI_EA_NUM_ENT_MASK;
3439
3440 offset = ea + PCI_EA_FIRST_ENT;
3441
3442 /* Skip DWORD 2 for type 1 functions */
3443 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3444 offset += 4;
3445
3446 /* parse each EA entry */
3447 for (i = 0; i < num_ent; ++i)
3448 offset = pci_ea_read(dev, offset);
3449 }
3450
pci_add_saved_cap(struct pci_dev * pci_dev,struct pci_cap_saved_state * new_cap)3451 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3452 struct pci_cap_saved_state *new_cap)
3453 {
3454 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3455 }
3456
3457 /**
3458 * _pci_add_cap_save_buffer - allocate buffer for saving given
3459 * capability registers
3460 * @dev: the PCI device
3461 * @cap: the capability to allocate the buffer for
3462 * @extended: Standard or Extended capability ID
3463 * @size: requested size of the buffer
3464 */
_pci_add_cap_save_buffer(struct pci_dev * dev,u16 cap,bool extended,unsigned int size)3465 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3466 bool extended, unsigned int size)
3467 {
3468 int pos;
3469 struct pci_cap_saved_state *save_state;
3470
3471 if (extended)
3472 pos = pci_find_ext_capability(dev, cap);
3473 else
3474 pos = pci_find_capability(dev, cap);
3475
3476 if (!pos)
3477 return 0;
3478
3479 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3480 if (!save_state)
3481 return -ENOMEM;
3482
3483 save_state->cap.cap_nr = cap;
3484 save_state->cap.cap_extended = extended;
3485 save_state->cap.size = size;
3486 pci_add_saved_cap(dev, save_state);
3487
3488 return 0;
3489 }
3490
pci_add_cap_save_buffer(struct pci_dev * dev,char cap,unsigned int size)3491 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3492 {
3493 return _pci_add_cap_save_buffer(dev, cap, false, size);
3494 }
3495
pci_add_ext_cap_save_buffer(struct pci_dev * dev,u16 cap,unsigned int size)3496 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3497 {
3498 return _pci_add_cap_save_buffer(dev, cap, true, size);
3499 }
3500
3501 /**
3502 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3503 * @dev: the PCI device
3504 */
pci_allocate_cap_save_buffers(struct pci_dev * dev)3505 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3506 {
3507 int error;
3508
3509 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3510 PCI_EXP_SAVE_REGS * sizeof(u16));
3511 if (error)
3512 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3513
3514 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3515 if (error)
3516 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3517
3518 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3519 2 * sizeof(u16));
3520 if (error)
3521 pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3522
3523 pci_allocate_vc_save_buffers(dev);
3524 }
3525
pci_free_cap_save_buffers(struct pci_dev * dev)3526 void pci_free_cap_save_buffers(struct pci_dev *dev)
3527 {
3528 struct pci_cap_saved_state *tmp;
3529 struct hlist_node *n;
3530
3531 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3532 kfree(tmp);
3533 }
3534
3535 /**
3536 * pci_configure_ari - enable or disable ARI forwarding
3537 * @dev: the PCI device
3538 *
3539 * If @dev and its upstream bridge both support ARI, enable ARI in the
3540 * bridge. Otherwise, disable ARI in the bridge.
3541 */
pci_configure_ari(struct pci_dev * dev)3542 void pci_configure_ari(struct pci_dev *dev)
3543 {
3544 u32 cap;
3545 struct pci_dev *bridge;
3546
3547 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3548 return;
3549
3550 bridge = dev->bus->self;
3551 if (!bridge)
3552 return;
3553
3554 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3555 if (!(cap & PCI_EXP_DEVCAP2_ARI))
3556 return;
3557
3558 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3559 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3560 PCI_EXP_DEVCTL2_ARI);
3561 bridge->ari_enabled = 1;
3562 } else {
3563 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3564 PCI_EXP_DEVCTL2_ARI);
3565 bridge->ari_enabled = 0;
3566 }
3567 }
3568
pci_acs_flags_enabled(struct pci_dev * pdev,u16 acs_flags)3569 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3570 {
3571 int pos;
3572 u16 cap, ctrl;
3573
3574 pos = pdev->acs_cap;
3575 if (!pos)
3576 return false;
3577
3578 /*
3579 * Except for egress control, capabilities are either required
3580 * or only required if controllable. Features missing from the
3581 * capability field can therefore be assumed as hard-wired enabled.
3582 */
3583 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3584 acs_flags &= (cap | PCI_ACS_EC);
3585
3586 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3587 return (ctrl & acs_flags) == acs_flags;
3588 }
3589
3590 /**
3591 * pci_acs_enabled - test ACS against required flags for a given device
3592 * @pdev: device to test
3593 * @acs_flags: required PCI ACS flags
3594 *
3595 * Return true if the device supports the provided flags. Automatically
3596 * filters out flags that are not implemented on multifunction devices.
3597 *
3598 * Note that this interface checks the effective ACS capabilities of the
3599 * device rather than the actual capabilities. For instance, most single
3600 * function endpoints are not required to support ACS because they have no
3601 * opportunity for peer-to-peer access. We therefore return 'true'
3602 * regardless of whether the device exposes an ACS capability. This makes
3603 * it much easier for callers of this function to ignore the actual type
3604 * or topology of the device when testing ACS support.
3605 */
pci_acs_enabled(struct pci_dev * pdev,u16 acs_flags)3606 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3607 {
3608 int ret;
3609
3610 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3611 if (ret >= 0)
3612 return ret > 0;
3613
3614 /*
3615 * Conventional PCI and PCI-X devices never support ACS, either
3616 * effectively or actually. The shared bus topology implies that
3617 * any device on the bus can receive or snoop DMA.
3618 */
3619 if (!pci_is_pcie(pdev))
3620 return false;
3621
3622 switch (pci_pcie_type(pdev)) {
3623 /*
3624 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3625 * but since their primary interface is PCI/X, we conservatively
3626 * handle them as we would a non-PCIe device.
3627 */
3628 case PCI_EXP_TYPE_PCIE_BRIDGE:
3629 /*
3630 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3631 * applicable... must never implement an ACS Extended Capability...".
3632 * This seems arbitrary, but we take a conservative interpretation
3633 * of this statement.
3634 */
3635 case PCI_EXP_TYPE_PCI_BRIDGE:
3636 case PCI_EXP_TYPE_RC_EC:
3637 return false;
3638 /*
3639 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3640 * implement ACS in order to indicate their peer-to-peer capabilities,
3641 * regardless of whether they are single- or multi-function devices.
3642 */
3643 case PCI_EXP_TYPE_DOWNSTREAM:
3644 case PCI_EXP_TYPE_ROOT_PORT:
3645 return pci_acs_flags_enabled(pdev, acs_flags);
3646 /*
3647 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3648 * implemented by the remaining PCIe types to indicate peer-to-peer
3649 * capabilities, but only when they are part of a multifunction
3650 * device. The footnote for section 6.12 indicates the specific
3651 * PCIe types included here.
3652 */
3653 case PCI_EXP_TYPE_ENDPOINT:
3654 case PCI_EXP_TYPE_UPSTREAM:
3655 case PCI_EXP_TYPE_LEG_END:
3656 case PCI_EXP_TYPE_RC_END:
3657 if (!pdev->multifunction)
3658 break;
3659
3660 return pci_acs_flags_enabled(pdev, acs_flags);
3661 }
3662
3663 /*
3664 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3665 * to single function devices with the exception of downstream ports.
3666 */
3667 return true;
3668 }
3669
3670 /**
3671 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3672 * @start: starting downstream device
3673 * @end: ending upstream device or NULL to search to the root bus
3674 * @acs_flags: required flags
3675 *
3676 * Walk up a device tree from start to end testing PCI ACS support. If
3677 * any step along the way does not support the required flags, return false.
3678 */
pci_acs_path_enabled(struct pci_dev * start,struct pci_dev * end,u16 acs_flags)3679 bool pci_acs_path_enabled(struct pci_dev *start,
3680 struct pci_dev *end, u16 acs_flags)
3681 {
3682 struct pci_dev *pdev, *parent = start;
3683
3684 do {
3685 pdev = parent;
3686
3687 if (!pci_acs_enabled(pdev, acs_flags))
3688 return false;
3689
3690 if (pci_is_root_bus(pdev->bus))
3691 return (end == NULL);
3692
3693 parent = pdev->bus->self;
3694 } while (pdev != end);
3695
3696 return true;
3697 }
3698
3699 /**
3700 * pci_acs_init - Initialize ACS if hardware supports it
3701 * @dev: the PCI device
3702 */
pci_acs_init(struct pci_dev * dev)3703 void pci_acs_init(struct pci_dev *dev)
3704 {
3705 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3706
3707 /*
3708 * Attempt to enable ACS regardless of capability because some Root
3709 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3710 * the standard ACS capability but still support ACS via those
3711 * quirks.
3712 */
3713 pci_enable_acs(dev);
3714 }
3715
3716 /**
3717 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3718 * @pdev: PCI device
3719 * @bar: BAR to find
3720 *
3721 * Helper to find the position of the ctrl register for a BAR.
3722 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3723 * Returns -ENOENT if no ctrl register for the BAR could be found.
3724 */
pci_rebar_find_pos(struct pci_dev * pdev,int bar)3725 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3726 {
3727 unsigned int pos, nbars, i;
3728 u32 ctrl;
3729
3730 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3731 if (!pos)
3732 return -ENOTSUPP;
3733
3734 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3735 nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
3736
3737 for (i = 0; i < nbars; i++, pos += 8) {
3738 int bar_idx;
3739
3740 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3741 bar_idx = FIELD_GET(PCI_REBAR_CTRL_BAR_IDX, ctrl);
3742 if (bar_idx == bar)
3743 return pos;
3744 }
3745
3746 return -ENOENT;
3747 }
3748
3749 /**
3750 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3751 * @pdev: PCI device
3752 * @bar: BAR to query
3753 *
3754 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3755 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3756 */
pci_rebar_get_possible_sizes(struct pci_dev * pdev,int bar)3757 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3758 {
3759 int pos;
3760 u32 cap;
3761
3762 pos = pci_rebar_find_pos(pdev, bar);
3763 if (pos < 0)
3764 return 0;
3765
3766 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3767 cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap);
3768
3769 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3770 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3771 bar == 0 && cap == 0x700)
3772 return 0x3f00;
3773
3774 return cap;
3775 }
3776 EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3777
3778 /**
3779 * pci_rebar_get_current_size - get the current size of a BAR
3780 * @pdev: PCI device
3781 * @bar: BAR to set size to
3782 *
3783 * Read the size of a BAR from the resizable BAR config.
3784 * Returns size if found or negative error code.
3785 */
pci_rebar_get_current_size(struct pci_dev * pdev,int bar)3786 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3787 {
3788 int pos;
3789 u32 ctrl;
3790
3791 pos = pci_rebar_find_pos(pdev, bar);
3792 if (pos < 0)
3793 return pos;
3794
3795 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3796 return FIELD_GET(PCI_REBAR_CTRL_BAR_SIZE, ctrl);
3797 }
3798
3799 /**
3800 * pci_rebar_set_size - set a new size for a BAR
3801 * @pdev: PCI device
3802 * @bar: BAR to set size to
3803 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3804 *
3805 * Set the new size of a BAR as defined in the spec.
3806 * Returns zero if resizing was successful, error code otherwise.
3807 */
pci_rebar_set_size(struct pci_dev * pdev,int bar,int size)3808 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3809 {
3810 int pos;
3811 u32 ctrl;
3812
3813 pos = pci_rebar_find_pos(pdev, bar);
3814 if (pos < 0)
3815 return pos;
3816
3817 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3818 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3819 ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
3820 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3821 return 0;
3822 }
3823
3824 /**
3825 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3826 * @dev: the PCI device
3827 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3828 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3829 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3830 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3831 *
3832 * Return 0 if all upstream bridges support AtomicOp routing, egress
3833 * blocking is disabled on all upstream ports, and the root port supports
3834 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3835 * AtomicOp completion), or negative otherwise.
3836 */
pci_enable_atomic_ops_to_root(struct pci_dev * dev,u32 cap_mask)3837 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3838 {
3839 struct pci_bus *bus = dev->bus;
3840 struct pci_dev *bridge;
3841 u32 cap, ctl2;
3842
3843 /*
3844 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3845 * in Device Control 2 is reserved in VFs and the PF value applies
3846 * to all associated VFs.
3847 */
3848 if (dev->is_virtfn)
3849 return -EINVAL;
3850
3851 if (!pci_is_pcie(dev))
3852 return -EINVAL;
3853
3854 /*
3855 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3856 * AtomicOp requesters. For now, we only support endpoints as
3857 * requesters and root ports as completers. No endpoints as
3858 * completers, and no peer-to-peer.
3859 */
3860
3861 switch (pci_pcie_type(dev)) {
3862 case PCI_EXP_TYPE_ENDPOINT:
3863 case PCI_EXP_TYPE_LEG_END:
3864 case PCI_EXP_TYPE_RC_END:
3865 break;
3866 default:
3867 return -EINVAL;
3868 }
3869
3870 while (bus->parent) {
3871 bridge = bus->self;
3872
3873 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3874
3875 switch (pci_pcie_type(bridge)) {
3876 /* Ensure switch ports support AtomicOp routing */
3877 case PCI_EXP_TYPE_UPSTREAM:
3878 case PCI_EXP_TYPE_DOWNSTREAM:
3879 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3880 return -EINVAL;
3881 break;
3882
3883 /* Ensure root port supports all the sizes we care about */
3884 case PCI_EXP_TYPE_ROOT_PORT:
3885 if ((cap & cap_mask) != cap_mask)
3886 return -EINVAL;
3887 break;
3888 }
3889
3890 /* Ensure upstream ports don't block AtomicOps on egress */
3891 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3892 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3893 &ctl2);
3894 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3895 return -EINVAL;
3896 }
3897
3898 bus = bus->parent;
3899 }
3900
3901 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3902 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3903 return 0;
3904 }
3905 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3906
3907 /**
3908 * pci_release_region - Release a PCI bar
3909 * @pdev: PCI device whose resources were previously reserved by
3910 * pci_request_region()
3911 * @bar: BAR to release
3912 *
3913 * Releases the PCI I/O and memory resources previously reserved by a
3914 * successful call to pci_request_region(). Call this function only
3915 * after all use of the PCI regions has ceased.
3916 */
pci_release_region(struct pci_dev * pdev,int bar)3917 void pci_release_region(struct pci_dev *pdev, int bar)
3918 {
3919 /*
3920 * This is done for backwards compatibility, because the old PCI devres
3921 * API had a mode in which the function became managed if it had been
3922 * enabled with pcim_enable_device() instead of pci_enable_device().
3923 */
3924 if (pci_is_managed(pdev)) {
3925 pcim_release_region(pdev, bar);
3926 return;
3927 }
3928
3929 if (pci_resource_len(pdev, bar) == 0)
3930 return;
3931 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3932 release_region(pci_resource_start(pdev, bar),
3933 pci_resource_len(pdev, bar));
3934 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3935 release_mem_region(pci_resource_start(pdev, bar),
3936 pci_resource_len(pdev, bar));
3937 }
3938 EXPORT_SYMBOL(pci_release_region);
3939
3940 /**
3941 * __pci_request_region - Reserved PCI I/O and memory resource
3942 * @pdev: PCI device whose resources are to be reserved
3943 * @bar: BAR to be reserved
3944 * @res_name: Name to be associated with resource.
3945 * @exclusive: whether the region access is exclusive or not
3946 *
3947 * Returns: 0 on success, negative error code on failure.
3948 *
3949 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3950 * being reserved by owner @res_name. Do not access any
3951 * address inside the PCI regions unless this call returns
3952 * successfully.
3953 *
3954 * If @exclusive is set, then the region is marked so that userspace
3955 * is explicitly not allowed to map the resource via /dev/mem or
3956 * sysfs MMIO access.
3957 *
3958 * Returns 0 on success, or %EBUSY on error. A warning
3959 * message is also printed on failure.
3960 */
__pci_request_region(struct pci_dev * pdev,int bar,const char * res_name,int exclusive)3961 static int __pci_request_region(struct pci_dev *pdev, int bar,
3962 const char *res_name, int exclusive)
3963 {
3964 if (pci_is_managed(pdev)) {
3965 if (exclusive == IORESOURCE_EXCLUSIVE)
3966 return pcim_request_region_exclusive(pdev, bar, res_name);
3967
3968 return pcim_request_region(pdev, bar, res_name);
3969 }
3970
3971 if (pci_resource_len(pdev, bar) == 0)
3972 return 0;
3973
3974 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3975 if (!request_region(pci_resource_start(pdev, bar),
3976 pci_resource_len(pdev, bar), res_name))
3977 goto err_out;
3978 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3979 if (!__request_mem_region(pci_resource_start(pdev, bar),
3980 pci_resource_len(pdev, bar), res_name,
3981 exclusive))
3982 goto err_out;
3983 }
3984
3985 return 0;
3986
3987 err_out:
3988 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3989 &pdev->resource[bar]);
3990 return -EBUSY;
3991 }
3992
3993 /**
3994 * pci_request_region - Reserve PCI I/O and memory resource
3995 * @pdev: PCI device whose resources are to be reserved
3996 * @bar: BAR to be reserved
3997 * @res_name: Name to be associated with resource
3998 *
3999 * Returns: 0 on success, negative error code on failure.
4000 *
4001 * Mark the PCI region associated with PCI device @pdev BAR @bar as
4002 * being reserved by owner @res_name. Do not access any
4003 * address inside the PCI regions unless this call returns
4004 * successfully.
4005 *
4006 * Returns 0 on success, or %EBUSY on error. A warning
4007 * message is also printed on failure.
4008 *
4009 * NOTE:
4010 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4011 * when pcim_enable_device() has been called in advance. This hybrid feature is
4012 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4013 */
pci_request_region(struct pci_dev * pdev,int bar,const char * res_name)4014 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
4015 {
4016 return __pci_request_region(pdev, bar, res_name, 0);
4017 }
4018 EXPORT_SYMBOL(pci_request_region);
4019
4020 /**
4021 * pci_release_selected_regions - Release selected PCI I/O and memory resources
4022 * @pdev: PCI device whose resources were previously reserved
4023 * @bars: Bitmask of BARs to be released
4024 *
4025 * Release selected PCI I/O and memory resources previously reserved.
4026 * Call this function only after all use of the PCI regions has ceased.
4027 */
pci_release_selected_regions(struct pci_dev * pdev,int bars)4028 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
4029 {
4030 int i;
4031
4032 for (i = 0; i < PCI_STD_NUM_BARS; i++)
4033 if (bars & (1 << i))
4034 pci_release_region(pdev, i);
4035 }
4036 EXPORT_SYMBOL(pci_release_selected_regions);
4037
__pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * res_name,int excl)4038 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4039 const char *res_name, int excl)
4040 {
4041 int i;
4042
4043 for (i = 0; i < PCI_STD_NUM_BARS; i++)
4044 if (bars & (1 << i))
4045 if (__pci_request_region(pdev, i, res_name, excl))
4046 goto err_out;
4047 return 0;
4048
4049 err_out:
4050 while (--i >= 0)
4051 if (bars & (1 << i))
4052 pci_release_region(pdev, i);
4053
4054 return -EBUSY;
4055 }
4056
4057
4058 /**
4059 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4060 * @pdev: PCI device whose resources are to be reserved
4061 * @bars: Bitmask of BARs to be requested
4062 * @res_name: Name to be associated with resource
4063 *
4064 * Returns: 0 on success, negative error code on failure.
4065 *
4066 * NOTE:
4067 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4068 * when pcim_enable_device() has been called in advance. This hybrid feature is
4069 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4070 */
pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * res_name)4071 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4072 const char *res_name)
4073 {
4074 return __pci_request_selected_regions(pdev, bars, res_name, 0);
4075 }
4076 EXPORT_SYMBOL(pci_request_selected_regions);
4077
4078 /**
4079 * pci_request_selected_regions_exclusive - Request regions exclusively
4080 * @pdev: PCI device to request regions from
4081 * @bars: bit mask of BARs to request
4082 * @res_name: name to be associated with the requests
4083 *
4084 * Returns: 0 on success, negative error code on failure.
4085 *
4086 * NOTE:
4087 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4088 * when pcim_enable_device() has been called in advance. This hybrid feature is
4089 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4090 */
pci_request_selected_regions_exclusive(struct pci_dev * pdev,int bars,const char * res_name)4091 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4092 const char *res_name)
4093 {
4094 return __pci_request_selected_regions(pdev, bars, res_name,
4095 IORESOURCE_EXCLUSIVE);
4096 }
4097 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4098
4099 /**
4100 * pci_release_regions - Release reserved PCI I/O and memory resources
4101 * @pdev: PCI device whose resources were previously reserved by
4102 * pci_request_regions()
4103 *
4104 * Releases all PCI I/O and memory resources previously reserved by a
4105 * successful call to pci_request_regions(). Call this function only
4106 * after all use of the PCI regions has ceased.
4107 */
pci_release_regions(struct pci_dev * pdev)4108 void pci_release_regions(struct pci_dev *pdev)
4109 {
4110 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4111 }
4112 EXPORT_SYMBOL(pci_release_regions);
4113
4114 /**
4115 * pci_request_regions - Reserve PCI I/O and memory resources
4116 * @pdev: PCI device whose resources are to be reserved
4117 * @res_name: Name to be associated with resource.
4118 *
4119 * Mark all PCI regions associated with PCI device @pdev as
4120 * being reserved by owner @res_name. Do not access any
4121 * address inside the PCI regions unless this call returns
4122 * successfully.
4123 *
4124 * Returns 0 on success, or %EBUSY on error. A warning
4125 * message is also printed on failure.
4126 *
4127 * NOTE:
4128 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4129 * when pcim_enable_device() has been called in advance. This hybrid feature is
4130 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4131 */
pci_request_regions(struct pci_dev * pdev,const char * res_name)4132 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4133 {
4134 return pci_request_selected_regions(pdev,
4135 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4136 }
4137 EXPORT_SYMBOL(pci_request_regions);
4138
4139 /**
4140 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4141 * @pdev: PCI device whose resources are to be reserved
4142 * @res_name: Name to be associated with resource.
4143 *
4144 * Returns: 0 on success, negative error code on failure.
4145 *
4146 * Mark all PCI regions associated with PCI device @pdev as being reserved
4147 * by owner @res_name. Do not access any address inside the PCI regions
4148 * unless this call returns successfully.
4149 *
4150 * pci_request_regions_exclusive() will mark the region so that /dev/mem
4151 * and the sysfs MMIO access will not be allowed.
4152 *
4153 * Returns 0 on success, or %EBUSY on error. A warning message is also
4154 * printed on failure.
4155 *
4156 * NOTE:
4157 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4158 * when pcim_enable_device() has been called in advance. This hybrid feature is
4159 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4160 */
pci_request_regions_exclusive(struct pci_dev * pdev,const char * res_name)4161 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4162 {
4163 return pci_request_selected_regions_exclusive(pdev,
4164 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4165 }
4166 EXPORT_SYMBOL(pci_request_regions_exclusive);
4167
4168 /*
4169 * Record the PCI IO range (expressed as CPU physical address + size).
4170 * Return a negative value if an error has occurred, zero otherwise
4171 */
pci_register_io_range(const struct fwnode_handle * fwnode,phys_addr_t addr,resource_size_t size)4172 int pci_register_io_range(const struct fwnode_handle *fwnode, phys_addr_t addr,
4173 resource_size_t size)
4174 {
4175 int ret = 0;
4176 #ifdef PCI_IOBASE
4177 struct logic_pio_hwaddr *range;
4178
4179 if (!size || addr + size < addr)
4180 return -EINVAL;
4181
4182 range = kzalloc(sizeof(*range), GFP_ATOMIC);
4183 if (!range)
4184 return -ENOMEM;
4185
4186 range->fwnode = fwnode;
4187 range->size = size;
4188 range->hw_start = addr;
4189 range->flags = LOGIC_PIO_CPU_MMIO;
4190
4191 ret = logic_pio_register_range(range);
4192 if (ret)
4193 kfree(range);
4194
4195 /* Ignore duplicates due to deferred probing */
4196 if (ret == -EEXIST)
4197 ret = 0;
4198 #endif
4199
4200 return ret;
4201 }
4202
pci_pio_to_address(unsigned long pio)4203 phys_addr_t pci_pio_to_address(unsigned long pio)
4204 {
4205 #ifdef PCI_IOBASE
4206 if (pio < MMIO_UPPER_LIMIT)
4207 return logic_pio_to_hwaddr(pio);
4208 #endif
4209
4210 return (phys_addr_t) OF_BAD_ADDR;
4211 }
4212 EXPORT_SYMBOL_GPL(pci_pio_to_address);
4213
pci_address_to_pio(phys_addr_t address)4214 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4215 {
4216 #ifdef PCI_IOBASE
4217 return logic_pio_trans_cpuaddr(address);
4218 #else
4219 if (address > IO_SPACE_LIMIT)
4220 return (unsigned long)-1;
4221
4222 return (unsigned long) address;
4223 #endif
4224 }
4225
4226 /**
4227 * pci_remap_iospace - Remap the memory mapped I/O space
4228 * @res: Resource describing the I/O space
4229 * @phys_addr: physical address of range to be mapped
4230 *
4231 * Remap the memory mapped I/O space described by the @res and the CPU
4232 * physical address @phys_addr into virtual address space. Only
4233 * architectures that have memory mapped IO functions defined (and the
4234 * PCI_IOBASE value defined) should call this function.
4235 */
4236 #ifndef pci_remap_iospace
pci_remap_iospace(const struct resource * res,phys_addr_t phys_addr)4237 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4238 {
4239 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4240 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4241
4242 if (!(res->flags & IORESOURCE_IO))
4243 return -EINVAL;
4244
4245 if (res->end > IO_SPACE_LIMIT)
4246 return -EINVAL;
4247
4248 return vmap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4249 pgprot_device(PAGE_KERNEL));
4250 #else
4251 /*
4252 * This architecture does not have memory mapped I/O space,
4253 * so this function should never be called
4254 */
4255 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4256 return -ENODEV;
4257 #endif
4258 }
4259 EXPORT_SYMBOL(pci_remap_iospace);
4260 #endif
4261
4262 /**
4263 * pci_unmap_iospace - Unmap the memory mapped I/O space
4264 * @res: resource to be unmapped
4265 *
4266 * Unmap the CPU virtual address @res from virtual address space. Only
4267 * architectures that have memory mapped IO functions defined (and the
4268 * PCI_IOBASE value defined) should call this function.
4269 */
pci_unmap_iospace(struct resource * res)4270 void pci_unmap_iospace(struct resource *res)
4271 {
4272 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4273 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4274
4275 vunmap_range(vaddr, vaddr + resource_size(res));
4276 #endif
4277 }
4278 EXPORT_SYMBOL(pci_unmap_iospace);
4279
__pci_set_master(struct pci_dev * dev,bool enable)4280 static void __pci_set_master(struct pci_dev *dev, bool enable)
4281 {
4282 u16 old_cmd, cmd;
4283
4284 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4285 if (enable)
4286 cmd = old_cmd | PCI_COMMAND_MASTER;
4287 else
4288 cmd = old_cmd & ~PCI_COMMAND_MASTER;
4289 if (cmd != old_cmd) {
4290 pci_dbg(dev, "%s bus mastering\n",
4291 enable ? "enabling" : "disabling");
4292 pci_write_config_word(dev, PCI_COMMAND, cmd);
4293 }
4294 dev->is_busmaster = enable;
4295 }
4296
4297 /**
4298 * pcibios_setup - process "pci=" kernel boot arguments
4299 * @str: string used to pass in "pci=" kernel boot arguments
4300 *
4301 * Process kernel boot arguments. This is the default implementation.
4302 * Architecture specific implementations can override this as necessary.
4303 */
pcibios_setup(char * str)4304 char * __weak __init pcibios_setup(char *str)
4305 {
4306 return str;
4307 }
4308
4309 /**
4310 * pcibios_set_master - enable PCI bus-mastering for device dev
4311 * @dev: the PCI device to enable
4312 *
4313 * Enables PCI bus-mastering for the device. This is the default
4314 * implementation. Architecture specific implementations can override
4315 * this if necessary.
4316 */
pcibios_set_master(struct pci_dev * dev)4317 void __weak pcibios_set_master(struct pci_dev *dev)
4318 {
4319 u8 lat;
4320
4321 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4322 if (pci_is_pcie(dev))
4323 return;
4324
4325 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4326 if (lat < 16)
4327 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4328 else if (lat > pcibios_max_latency)
4329 lat = pcibios_max_latency;
4330 else
4331 return;
4332
4333 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4334 }
4335
4336 /**
4337 * pci_set_master - enables bus-mastering for device dev
4338 * @dev: the PCI device to enable
4339 *
4340 * Enables bus-mastering on the device and calls pcibios_set_master()
4341 * to do the needed arch specific settings.
4342 */
pci_set_master(struct pci_dev * dev)4343 void pci_set_master(struct pci_dev *dev)
4344 {
4345 __pci_set_master(dev, true);
4346 pcibios_set_master(dev);
4347 }
4348 EXPORT_SYMBOL(pci_set_master);
4349
4350 /**
4351 * pci_clear_master - disables bus-mastering for device dev
4352 * @dev: the PCI device to disable
4353 */
pci_clear_master(struct pci_dev * dev)4354 void pci_clear_master(struct pci_dev *dev)
4355 {
4356 __pci_set_master(dev, false);
4357 }
4358 EXPORT_SYMBOL(pci_clear_master);
4359
4360 /**
4361 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4362 * @dev: the PCI device for which MWI is to be enabled
4363 *
4364 * Helper function for pci_set_mwi.
4365 * Originally copied from drivers/net/acenic.c.
4366 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4367 *
4368 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4369 */
pci_set_cacheline_size(struct pci_dev * dev)4370 int pci_set_cacheline_size(struct pci_dev *dev)
4371 {
4372 u8 cacheline_size;
4373
4374 if (!pci_cache_line_size)
4375 return -EINVAL;
4376
4377 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4378 equal to or multiple of the right value. */
4379 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4380 if (cacheline_size >= pci_cache_line_size &&
4381 (cacheline_size % pci_cache_line_size) == 0)
4382 return 0;
4383
4384 /* Write the correct value. */
4385 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4386 /* Read it back. */
4387 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4388 if (cacheline_size == pci_cache_line_size)
4389 return 0;
4390
4391 pci_dbg(dev, "cache line size of %d is not supported\n",
4392 pci_cache_line_size << 2);
4393
4394 return -EINVAL;
4395 }
4396 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4397
4398 /**
4399 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4400 * @dev: the PCI device for which MWI is enabled
4401 *
4402 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4403 *
4404 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4405 */
pci_set_mwi(struct pci_dev * dev)4406 int pci_set_mwi(struct pci_dev *dev)
4407 {
4408 #ifdef PCI_DISABLE_MWI
4409 return 0;
4410 #else
4411 int rc;
4412 u16 cmd;
4413
4414 rc = pci_set_cacheline_size(dev);
4415 if (rc)
4416 return rc;
4417
4418 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4419 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4420 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4421 cmd |= PCI_COMMAND_INVALIDATE;
4422 pci_write_config_word(dev, PCI_COMMAND, cmd);
4423 }
4424 return 0;
4425 #endif
4426 }
4427 EXPORT_SYMBOL(pci_set_mwi);
4428
4429 /**
4430 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4431 * @dev: the PCI device for which MWI is enabled
4432 *
4433 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4434 * Callers are not required to check the return value.
4435 *
4436 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4437 */
pci_try_set_mwi(struct pci_dev * dev)4438 int pci_try_set_mwi(struct pci_dev *dev)
4439 {
4440 #ifdef PCI_DISABLE_MWI
4441 return 0;
4442 #else
4443 return pci_set_mwi(dev);
4444 #endif
4445 }
4446 EXPORT_SYMBOL(pci_try_set_mwi);
4447
4448 /**
4449 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4450 * @dev: the PCI device to disable
4451 *
4452 * Disables PCI Memory-Write-Invalidate transaction on the device
4453 */
pci_clear_mwi(struct pci_dev * dev)4454 void pci_clear_mwi(struct pci_dev *dev)
4455 {
4456 #ifndef PCI_DISABLE_MWI
4457 u16 cmd;
4458
4459 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4460 if (cmd & PCI_COMMAND_INVALIDATE) {
4461 cmd &= ~PCI_COMMAND_INVALIDATE;
4462 pci_write_config_word(dev, PCI_COMMAND, cmd);
4463 }
4464 #endif
4465 }
4466 EXPORT_SYMBOL(pci_clear_mwi);
4467
4468 /**
4469 * pci_disable_parity - disable parity checking for device
4470 * @dev: the PCI device to operate on
4471 *
4472 * Disable parity checking for device @dev
4473 */
pci_disable_parity(struct pci_dev * dev)4474 void pci_disable_parity(struct pci_dev *dev)
4475 {
4476 u16 cmd;
4477
4478 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4479 if (cmd & PCI_COMMAND_PARITY) {
4480 cmd &= ~PCI_COMMAND_PARITY;
4481 pci_write_config_word(dev, PCI_COMMAND, cmd);
4482 }
4483 }
4484
4485 /**
4486 * pci_intx - enables/disables PCI INTx for device dev
4487 * @pdev: the PCI device to operate on
4488 * @enable: boolean: whether to enable or disable PCI INTx
4489 *
4490 * Enables/disables PCI INTx for device @pdev
4491 *
4492 * NOTE:
4493 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4494 * when pcim_enable_device() has been called in advance. This hybrid feature is
4495 * DEPRECATED! If you want managed cleanup, use pcim_intx() instead.
4496 */
pci_intx(struct pci_dev * pdev,int enable)4497 void pci_intx(struct pci_dev *pdev, int enable)
4498 {
4499 u16 pci_command, new;
4500
4501 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4502
4503 if (enable)
4504 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4505 else
4506 new = pci_command | PCI_COMMAND_INTX_DISABLE;
4507
4508 if (new != pci_command) {
4509 /* Preserve the "hybrid" behavior for backwards compatibility */
4510 if (pci_is_managed(pdev)) {
4511 WARN_ON_ONCE(pcim_intx(pdev, enable) != 0);
4512 return;
4513 }
4514
4515 pci_write_config_word(pdev, PCI_COMMAND, new);
4516 }
4517 }
4518 EXPORT_SYMBOL_GPL(pci_intx);
4519
4520 /**
4521 * pci_wait_for_pending_transaction - wait for pending transaction
4522 * @dev: the PCI device to operate on
4523 *
4524 * Return 0 if transaction is pending 1 otherwise.
4525 */
pci_wait_for_pending_transaction(struct pci_dev * dev)4526 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4527 {
4528 if (!pci_is_pcie(dev))
4529 return 1;
4530
4531 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4532 PCI_EXP_DEVSTA_TRPND);
4533 }
4534 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4535
4536 /**
4537 * pcie_flr - initiate a PCIe function level reset
4538 * @dev: device to reset
4539 *
4540 * Initiate a function level reset unconditionally on @dev without
4541 * checking any flags and DEVCAP
4542 */
pcie_flr(struct pci_dev * dev)4543 int pcie_flr(struct pci_dev *dev)
4544 {
4545 if (!pci_wait_for_pending_transaction(dev))
4546 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4547
4548 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4549
4550 if (dev->imm_ready)
4551 return 0;
4552
4553 /*
4554 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4555 * 100ms, but may silently discard requests while the FLR is in
4556 * progress. Wait 100ms before trying to access the device.
4557 */
4558 msleep(100);
4559
4560 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4561 }
4562 EXPORT_SYMBOL_GPL(pcie_flr);
4563
4564 /**
4565 * pcie_reset_flr - initiate a PCIe function level reset
4566 * @dev: device to reset
4567 * @probe: if true, return 0 if device can be reset this way
4568 *
4569 * Initiate a function level reset on @dev.
4570 */
pcie_reset_flr(struct pci_dev * dev,bool probe)4571 int pcie_reset_flr(struct pci_dev *dev, bool probe)
4572 {
4573 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4574 return -ENOTTY;
4575
4576 if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4577 return -ENOTTY;
4578
4579 if (probe)
4580 return 0;
4581
4582 return pcie_flr(dev);
4583 }
4584 EXPORT_SYMBOL_GPL(pcie_reset_flr);
4585
pci_af_flr(struct pci_dev * dev,bool probe)4586 static int pci_af_flr(struct pci_dev *dev, bool probe)
4587 {
4588 int pos;
4589 u8 cap;
4590
4591 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4592 if (!pos)
4593 return -ENOTTY;
4594
4595 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4596 return -ENOTTY;
4597
4598 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4599 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4600 return -ENOTTY;
4601
4602 if (probe)
4603 return 0;
4604
4605 /*
4606 * Wait for Transaction Pending bit to clear. A word-aligned test
4607 * is used, so we use the control offset rather than status and shift
4608 * the test bit to match.
4609 */
4610 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4611 PCI_AF_STATUS_TP << 8))
4612 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4613
4614 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4615
4616 if (dev->imm_ready)
4617 return 0;
4618
4619 /*
4620 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4621 * updated 27 July 2006; a device must complete an FLR within
4622 * 100ms, but may silently discard requests while the FLR is in
4623 * progress. Wait 100ms before trying to access the device.
4624 */
4625 msleep(100);
4626
4627 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4628 }
4629
4630 /**
4631 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4632 * @dev: Device to reset.
4633 * @probe: if true, return 0 if the device can be reset this way.
4634 *
4635 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4636 * unset, it will be reinitialized internally when going from PCI_D3hot to
4637 * PCI_D0. If that's the case and the device is not in a low-power state
4638 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4639 *
4640 * NOTE: This causes the caller to sleep for twice the device power transition
4641 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4642 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4643 * Moreover, only devices in D0 can be reset by this function.
4644 */
pci_pm_reset(struct pci_dev * dev,bool probe)4645 static int pci_pm_reset(struct pci_dev *dev, bool probe)
4646 {
4647 u16 csr;
4648
4649 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4650 return -ENOTTY;
4651
4652 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4653 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4654 return -ENOTTY;
4655
4656 if (probe)
4657 return 0;
4658
4659 if (dev->current_state != PCI_D0)
4660 return -EINVAL;
4661
4662 csr &= ~PCI_PM_CTRL_STATE_MASK;
4663 csr |= PCI_D3hot;
4664 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4665 pci_dev_d3_sleep(dev);
4666
4667 csr &= ~PCI_PM_CTRL_STATE_MASK;
4668 csr |= PCI_D0;
4669 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4670 pci_dev_d3_sleep(dev);
4671
4672 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4673 }
4674
4675 /**
4676 * pcie_wait_for_link_status - Wait for link status change
4677 * @pdev: Device whose link to wait for.
4678 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE.
4679 * @active: Waiting for active or inactive?
4680 *
4681 * Return 0 if successful, or -ETIMEDOUT if status has not changed within
4682 * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4683 */
pcie_wait_for_link_status(struct pci_dev * pdev,bool use_lt,bool active)4684 static int pcie_wait_for_link_status(struct pci_dev *pdev,
4685 bool use_lt, bool active)
4686 {
4687 u16 lnksta_mask, lnksta_match;
4688 unsigned long end_jiffies;
4689 u16 lnksta;
4690
4691 lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA;
4692 lnksta_match = active ? lnksta_mask : 0;
4693
4694 end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS);
4695 do {
4696 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
4697 if ((lnksta & lnksta_mask) == lnksta_match)
4698 return 0;
4699 msleep(1);
4700 } while (time_before(jiffies, end_jiffies));
4701
4702 return -ETIMEDOUT;
4703 }
4704
4705 /**
4706 * pcie_retrain_link - Request a link retrain and wait for it to complete
4707 * @pdev: Device whose link to retrain.
4708 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status.
4709 *
4710 * Retrain completion status is retrieved from the Link Status Register
4711 * according to @use_lt. It is not verified whether the use of the DLLLA
4712 * bit is valid.
4713 *
4714 * Return 0 if successful, or -ETIMEDOUT if training has not completed
4715 * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4716 */
pcie_retrain_link(struct pci_dev * pdev,bool use_lt)4717 int pcie_retrain_link(struct pci_dev *pdev, bool use_lt)
4718 {
4719 int rc;
4720
4721 /*
4722 * Ensure the updated LNKCTL parameters are used during link
4723 * training by checking that there is no ongoing link training that
4724 * may have started before link parameters were changed, so as to
4725 * avoid LTSSM race as recommended in Implementation Note at the end
4726 * of PCIe r6.1 sec 7.5.3.7.
4727 */
4728 rc = pcie_wait_for_link_status(pdev, true, false);
4729 if (rc)
4730 return rc;
4731
4732 pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4733 if (pdev->clear_retrain_link) {
4734 /*
4735 * Due to an erratum in some devices the Retrain Link bit
4736 * needs to be cleared again manually to allow the link
4737 * training to succeed.
4738 */
4739 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4740 }
4741
4742 rc = pcie_wait_for_link_status(pdev, use_lt, !use_lt);
4743
4744 /*
4745 * Clear LBMS after a manual retrain so that the bit can be used
4746 * to track link speed or width changes made by hardware itself
4747 * in attempt to correct unreliable link operation.
4748 */
4749 pcie_reset_lbms_count(pdev);
4750 return rc;
4751 }
4752
4753 /**
4754 * pcie_wait_for_link_delay - Wait until link is active or inactive
4755 * @pdev: Bridge device
4756 * @active: waiting for active or inactive?
4757 * @delay: Delay to wait after link has become active (in ms)
4758 *
4759 * Use this to wait till link becomes active or inactive.
4760 */
pcie_wait_for_link_delay(struct pci_dev * pdev,bool active,int delay)4761 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4762 int delay)
4763 {
4764 int rc;
4765
4766 /*
4767 * Some controllers might not implement link active reporting. In this
4768 * case, we wait for 1000 ms + any delay requested by the caller.
4769 */
4770 if (!pdev->link_active_reporting) {
4771 msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay);
4772 return true;
4773 }
4774
4775 /*
4776 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4777 * after which we should expect an link active if the reset was
4778 * successful. If so, software must wait a minimum 100ms before sending
4779 * configuration requests to devices downstream this port.
4780 *
4781 * If the link fails to activate, either the device was physically
4782 * removed or the link is permanently failed.
4783 */
4784 if (active)
4785 msleep(20);
4786 rc = pcie_wait_for_link_status(pdev, false, active);
4787 if (active) {
4788 if (rc)
4789 rc = pcie_failed_link_retrain(pdev);
4790 if (rc)
4791 return false;
4792
4793 msleep(delay);
4794 return true;
4795 }
4796
4797 if (rc)
4798 return false;
4799
4800 return true;
4801 }
4802
4803 /**
4804 * pcie_wait_for_link - Wait until link is active or inactive
4805 * @pdev: Bridge device
4806 * @active: waiting for active or inactive?
4807 *
4808 * Use this to wait till link becomes active or inactive.
4809 */
pcie_wait_for_link(struct pci_dev * pdev,bool active)4810 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4811 {
4812 return pcie_wait_for_link_delay(pdev, active, 100);
4813 }
4814
4815 /*
4816 * Find maximum D3cold delay required by all the devices on the bus. The
4817 * spec says 100 ms, but firmware can lower it and we allow drivers to
4818 * increase it as well.
4819 *
4820 * Called with @pci_bus_sem locked for reading.
4821 */
pci_bus_max_d3cold_delay(const struct pci_bus * bus)4822 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4823 {
4824 const struct pci_dev *pdev;
4825 int min_delay = 100;
4826 int max_delay = 0;
4827
4828 list_for_each_entry(pdev, &bus->devices, bus_list) {
4829 if (pdev->d3cold_delay < min_delay)
4830 min_delay = pdev->d3cold_delay;
4831 if (pdev->d3cold_delay > max_delay)
4832 max_delay = pdev->d3cold_delay;
4833 }
4834
4835 return max(min_delay, max_delay);
4836 }
4837
4838 /**
4839 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4840 * @dev: PCI bridge
4841 * @reset_type: reset type in human-readable form
4842 *
4843 * Handle necessary delays before access to the devices on the secondary
4844 * side of the bridge are permitted after D3cold to D0 transition
4845 * or Conventional Reset.
4846 *
4847 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4848 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4849 * 4.3.2.
4850 *
4851 * Return 0 on success or -ENOTTY if the first device on the secondary bus
4852 * failed to become accessible.
4853 */
pci_bridge_wait_for_secondary_bus(struct pci_dev * dev,char * reset_type)4854 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type)
4855 {
4856 struct pci_dev *child __free(pci_dev_put) = NULL;
4857 int delay;
4858
4859 if (pci_dev_is_disconnected(dev))
4860 return 0;
4861
4862 if (!pci_is_bridge(dev))
4863 return 0;
4864
4865 down_read(&pci_bus_sem);
4866
4867 /*
4868 * We only deal with devices that are present currently on the bus.
4869 * For any hot-added devices the access delay is handled in pciehp
4870 * board_added(). In case of ACPI hotplug the firmware is expected
4871 * to configure the devices before OS is notified.
4872 */
4873 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4874 up_read(&pci_bus_sem);
4875 return 0;
4876 }
4877
4878 /* Take d3cold_delay requirements into account */
4879 delay = pci_bus_max_d3cold_delay(dev->subordinate);
4880 if (!delay) {
4881 up_read(&pci_bus_sem);
4882 return 0;
4883 }
4884
4885 child = pci_dev_get(list_first_entry(&dev->subordinate->devices,
4886 struct pci_dev, bus_list));
4887 up_read(&pci_bus_sem);
4888
4889 /*
4890 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4891 * accessing the device after reset (that is 1000 ms + 100 ms).
4892 */
4893 if (!pci_is_pcie(dev)) {
4894 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4895 msleep(1000 + delay);
4896 return 0;
4897 }
4898
4899 /*
4900 * For PCIe downstream and root ports that do not support speeds
4901 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4902 * speeds (gen3) we need to wait first for the data link layer to
4903 * become active.
4904 *
4905 * However, 100 ms is the minimum and the PCIe spec says the
4906 * software must allow at least 1s before it can determine that the
4907 * device that did not respond is a broken device. Also device can
4908 * take longer than that to respond if it indicates so through Request
4909 * Retry Status completions.
4910 *
4911 * Therefore we wait for 100 ms and check for the device presence
4912 * until the timeout expires.
4913 */
4914 if (!pcie_downstream_port(dev))
4915 return 0;
4916
4917 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4918 u16 status;
4919
4920 pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4921 msleep(delay);
4922
4923 if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay))
4924 return 0;
4925
4926 /*
4927 * If the port supports active link reporting we now check
4928 * whether the link is active and if not bail out early with
4929 * the assumption that the device is not present anymore.
4930 */
4931 if (!dev->link_active_reporting)
4932 return -ENOTTY;
4933
4934 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status);
4935 if (!(status & PCI_EXP_LNKSTA_DLLLA))
4936 return -ENOTTY;
4937
4938 return pci_dev_wait(child, reset_type,
4939 PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT);
4940 }
4941
4942 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4943 delay);
4944 if (!pcie_wait_for_link_delay(dev, true, delay)) {
4945 /* Did not train, no need to wait any further */
4946 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
4947 return -ENOTTY;
4948 }
4949
4950 return pci_dev_wait(child, reset_type,
4951 PCIE_RESET_READY_POLL_MS - delay);
4952 }
4953
pci_reset_secondary_bus(struct pci_dev * dev)4954 void pci_reset_secondary_bus(struct pci_dev *dev)
4955 {
4956 u16 ctrl;
4957
4958 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4959 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4960 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4961
4962 /*
4963 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
4964 * this to 2ms to ensure that we meet the minimum requirement.
4965 */
4966 msleep(2);
4967
4968 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4969 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4970 }
4971
pcibios_reset_secondary_bus(struct pci_dev * dev)4972 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4973 {
4974 pci_reset_secondary_bus(dev);
4975 }
4976
4977 /**
4978 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4979 * @dev: Bridge device
4980 *
4981 * Use the bridge control register to assert reset on the secondary bus.
4982 * Devices on the secondary bus are left in power-on state.
4983 */
pci_bridge_secondary_bus_reset(struct pci_dev * dev)4984 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4985 {
4986 if (!dev->block_cfg_access)
4987 pci_warn_once(dev, "unlocked secondary bus reset via: %pS\n",
4988 __builtin_return_address(0));
4989 pcibios_reset_secondary_bus(dev);
4990
4991 return pci_bridge_wait_for_secondary_bus(dev, "bus reset");
4992 }
4993 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4994
pci_parent_bus_reset(struct pci_dev * dev,bool probe)4995 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
4996 {
4997 struct pci_dev *pdev;
4998
4999 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5000 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5001 return -ENOTTY;
5002
5003 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5004 if (pdev != dev)
5005 return -ENOTTY;
5006
5007 if (probe)
5008 return 0;
5009
5010 return pci_bridge_secondary_bus_reset(dev->bus->self);
5011 }
5012
pci_reset_hotplug_slot(struct hotplug_slot * hotplug,bool probe)5013 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5014 {
5015 int rc = -ENOTTY;
5016
5017 if (!hotplug || !try_module_get(hotplug->owner))
5018 return rc;
5019
5020 if (hotplug->ops->reset_slot)
5021 rc = hotplug->ops->reset_slot(hotplug, probe);
5022
5023 module_put(hotplug->owner);
5024
5025 return rc;
5026 }
5027
pci_dev_reset_slot_function(struct pci_dev * dev,bool probe)5028 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5029 {
5030 if (dev->multifunction || dev->subordinate || !dev->slot ||
5031 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5032 return -ENOTTY;
5033
5034 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5035 }
5036
cxl_port_dvsec(struct pci_dev * dev)5037 static u16 cxl_port_dvsec(struct pci_dev *dev)
5038 {
5039 return pci_find_dvsec_capability(dev, PCI_VENDOR_ID_CXL,
5040 PCI_DVSEC_CXL_PORT);
5041 }
5042
cxl_sbr_masked(struct pci_dev * dev)5043 static bool cxl_sbr_masked(struct pci_dev *dev)
5044 {
5045 u16 dvsec, reg;
5046 int rc;
5047
5048 dvsec = cxl_port_dvsec(dev);
5049 if (!dvsec)
5050 return false;
5051
5052 rc = pci_read_config_word(dev, dvsec + PCI_DVSEC_CXL_PORT_CTL, ®);
5053 if (rc || PCI_POSSIBLE_ERROR(reg))
5054 return false;
5055
5056 /*
5057 * Per CXL spec r3.1, sec 8.1.5.2, when "Unmask SBR" is 0, the SBR
5058 * bit in Bridge Control has no effect. When 1, the Port generates
5059 * hot reset when the SBR bit is set to 1.
5060 */
5061 if (reg & PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR)
5062 return false;
5063
5064 return true;
5065 }
5066
pci_reset_bus_function(struct pci_dev * dev,bool probe)5067 static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5068 {
5069 struct pci_dev *bridge = pci_upstream_bridge(dev);
5070 int rc;
5071
5072 /*
5073 * If "dev" is below a CXL port that has SBR control masked, SBR
5074 * won't do anything, so return error.
5075 */
5076 if (bridge && cxl_sbr_masked(bridge)) {
5077 if (probe)
5078 return 0;
5079
5080 return -ENOTTY;
5081 }
5082
5083 rc = pci_dev_reset_slot_function(dev, probe);
5084 if (rc != -ENOTTY)
5085 return rc;
5086 return pci_parent_bus_reset(dev, probe);
5087 }
5088
cxl_reset_bus_function(struct pci_dev * dev,bool probe)5089 static int cxl_reset_bus_function(struct pci_dev *dev, bool probe)
5090 {
5091 struct pci_dev *bridge;
5092 u16 dvsec, reg, val;
5093 int rc;
5094
5095 bridge = pci_upstream_bridge(dev);
5096 if (!bridge)
5097 return -ENOTTY;
5098
5099 dvsec = cxl_port_dvsec(bridge);
5100 if (!dvsec)
5101 return -ENOTTY;
5102
5103 if (probe)
5104 return 0;
5105
5106 rc = pci_read_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL, ®);
5107 if (rc)
5108 return -ENOTTY;
5109
5110 if (reg & PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR) {
5111 val = reg;
5112 } else {
5113 val = reg | PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR;
5114 pci_write_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL,
5115 val);
5116 }
5117
5118 rc = pci_reset_bus_function(dev, probe);
5119
5120 if (reg != val)
5121 pci_write_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL,
5122 reg);
5123
5124 return rc;
5125 }
5126
pci_dev_lock(struct pci_dev * dev)5127 void pci_dev_lock(struct pci_dev *dev)
5128 {
5129 /* block PM suspend, driver probe, etc. */
5130 device_lock(&dev->dev);
5131 pci_cfg_access_lock(dev);
5132 }
5133 EXPORT_SYMBOL_GPL(pci_dev_lock);
5134
5135 /* Return 1 on successful lock, 0 on contention */
pci_dev_trylock(struct pci_dev * dev)5136 int pci_dev_trylock(struct pci_dev *dev)
5137 {
5138 if (device_trylock(&dev->dev)) {
5139 if (pci_cfg_access_trylock(dev))
5140 return 1;
5141 device_unlock(&dev->dev);
5142 }
5143
5144 return 0;
5145 }
5146 EXPORT_SYMBOL_GPL(pci_dev_trylock);
5147
pci_dev_unlock(struct pci_dev * dev)5148 void pci_dev_unlock(struct pci_dev *dev)
5149 {
5150 pci_cfg_access_unlock(dev);
5151 device_unlock(&dev->dev);
5152 }
5153 EXPORT_SYMBOL_GPL(pci_dev_unlock);
5154
pci_dev_save_and_disable(struct pci_dev * dev)5155 static void pci_dev_save_and_disable(struct pci_dev *dev)
5156 {
5157 const struct pci_error_handlers *err_handler =
5158 dev->driver ? dev->driver->err_handler : NULL;
5159
5160 /*
5161 * dev->driver->err_handler->reset_prepare() is protected against
5162 * races with ->remove() by the device lock, which must be held by
5163 * the caller.
5164 */
5165 if (err_handler && err_handler->reset_prepare)
5166 err_handler->reset_prepare(dev);
5167 else if (dev->driver)
5168 pci_warn(dev, "resetting");
5169
5170 /*
5171 * Wake-up device prior to save. PM registers default to D0 after
5172 * reset and a simple register restore doesn't reliably return
5173 * to a non-D0 state anyway.
5174 */
5175 pci_set_power_state(dev, PCI_D0);
5176
5177 pci_save_state(dev);
5178 /*
5179 * Disable the device by clearing the Command register, except for
5180 * INTx-disable which is set. This not only disables MMIO and I/O port
5181 * BARs, but also prevents the device from being Bus Master, preventing
5182 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
5183 * compliant devices, INTx-disable prevents legacy interrupts.
5184 */
5185 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5186 }
5187
pci_dev_restore(struct pci_dev * dev)5188 static void pci_dev_restore(struct pci_dev *dev)
5189 {
5190 const struct pci_error_handlers *err_handler =
5191 dev->driver ? dev->driver->err_handler : NULL;
5192
5193 pci_restore_state(dev);
5194
5195 /*
5196 * dev->driver->err_handler->reset_done() is protected against
5197 * races with ->remove() by the device lock, which must be held by
5198 * the caller.
5199 */
5200 if (err_handler && err_handler->reset_done)
5201 err_handler->reset_done(dev);
5202 else if (dev->driver)
5203 pci_warn(dev, "reset done");
5204 }
5205
5206 /* dev->reset_methods[] is a 0-terminated list of indices into this array */
5207 static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5208 { },
5209 { pci_dev_specific_reset, .name = "device_specific" },
5210 { pci_dev_acpi_reset, .name = "acpi" },
5211 { pcie_reset_flr, .name = "flr" },
5212 { pci_af_flr, .name = "af_flr" },
5213 { pci_pm_reset, .name = "pm" },
5214 { pci_reset_bus_function, .name = "bus" },
5215 { cxl_reset_bus_function, .name = "cxl_bus" },
5216 };
5217
reset_method_show(struct device * dev,struct device_attribute * attr,char * buf)5218 static ssize_t reset_method_show(struct device *dev,
5219 struct device_attribute *attr, char *buf)
5220 {
5221 struct pci_dev *pdev = to_pci_dev(dev);
5222 ssize_t len = 0;
5223 int i, m;
5224
5225 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5226 m = pdev->reset_methods[i];
5227 if (!m)
5228 break;
5229
5230 len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5231 pci_reset_fn_methods[m].name);
5232 }
5233
5234 if (len)
5235 len += sysfs_emit_at(buf, len, "\n");
5236
5237 return len;
5238 }
5239
reset_method_lookup(const char * name)5240 static int reset_method_lookup(const char *name)
5241 {
5242 int m;
5243
5244 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5245 if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5246 return m;
5247 }
5248
5249 return 0; /* not found */
5250 }
5251
reset_method_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5252 static ssize_t reset_method_store(struct device *dev,
5253 struct device_attribute *attr,
5254 const char *buf, size_t count)
5255 {
5256 struct pci_dev *pdev = to_pci_dev(dev);
5257 char *options, *tmp_options, *name;
5258 int m, n;
5259 u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5260
5261 if (sysfs_streq(buf, "")) {
5262 pdev->reset_methods[0] = 0;
5263 pci_warn(pdev, "All device reset methods disabled by user");
5264 return count;
5265 }
5266
5267 if (sysfs_streq(buf, "default")) {
5268 pci_init_reset_methods(pdev);
5269 return count;
5270 }
5271
5272 options = kstrndup(buf, count, GFP_KERNEL);
5273 if (!options)
5274 return -ENOMEM;
5275
5276 n = 0;
5277 tmp_options = options;
5278 while ((name = strsep(&tmp_options, " ")) != NULL) {
5279 if (sysfs_streq(name, ""))
5280 continue;
5281
5282 name = strim(name);
5283
5284 m = reset_method_lookup(name);
5285 if (!m) {
5286 pci_err(pdev, "Invalid reset method '%s'", name);
5287 goto error;
5288 }
5289
5290 if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5291 pci_err(pdev, "Unsupported reset method '%s'", name);
5292 goto error;
5293 }
5294
5295 if (n == PCI_NUM_RESET_METHODS - 1) {
5296 pci_err(pdev, "Too many reset methods\n");
5297 goto error;
5298 }
5299
5300 reset_methods[n++] = m;
5301 }
5302
5303 reset_methods[n] = 0;
5304
5305 /* Warn if dev-specific supported but not highest priority */
5306 if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5307 reset_methods[0] != 1)
5308 pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5309 memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5310 kfree(options);
5311 return count;
5312
5313 error:
5314 /* Leave previous methods unchanged */
5315 kfree(options);
5316 return -EINVAL;
5317 }
5318 static DEVICE_ATTR_RW(reset_method);
5319
5320 static struct attribute *pci_dev_reset_method_attrs[] = {
5321 &dev_attr_reset_method.attr,
5322 NULL,
5323 };
5324
pci_dev_reset_method_attr_is_visible(struct kobject * kobj,struct attribute * a,int n)5325 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5326 struct attribute *a, int n)
5327 {
5328 struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5329
5330 if (!pci_reset_supported(pdev))
5331 return 0;
5332
5333 return a->mode;
5334 }
5335
5336 const struct attribute_group pci_dev_reset_method_attr_group = {
5337 .attrs = pci_dev_reset_method_attrs,
5338 .is_visible = pci_dev_reset_method_attr_is_visible,
5339 };
5340
5341 /**
5342 * __pci_reset_function_locked - reset a PCI device function while holding
5343 * the @dev mutex lock.
5344 * @dev: PCI device to reset
5345 *
5346 * Some devices allow an individual function to be reset without affecting
5347 * other functions in the same device. The PCI device must be responsive
5348 * to PCI config space in order to use this function.
5349 *
5350 * The device function is presumed to be unused and the caller is holding
5351 * the device mutex lock when this function is called.
5352 *
5353 * Resetting the device will make the contents of PCI configuration space
5354 * random, so any caller of this must be prepared to reinitialise the
5355 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5356 * etc.
5357 *
5358 * Returns 0 if the device function was successfully reset or negative if the
5359 * device doesn't support resetting a single function.
5360 */
__pci_reset_function_locked(struct pci_dev * dev)5361 int __pci_reset_function_locked(struct pci_dev *dev)
5362 {
5363 int i, m, rc;
5364
5365 might_sleep();
5366
5367 /*
5368 * A reset method returns -ENOTTY if it doesn't support this device and
5369 * we should try the next method.
5370 *
5371 * If it returns 0 (success), we're finished. If it returns any other
5372 * error, we're also finished: this indicates that further reset
5373 * mechanisms might be broken on the device.
5374 */
5375 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5376 m = dev->reset_methods[i];
5377 if (!m)
5378 return -ENOTTY;
5379
5380 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5381 if (!rc)
5382 return 0;
5383 if (rc != -ENOTTY)
5384 return rc;
5385 }
5386
5387 return -ENOTTY;
5388 }
5389 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5390
5391 /**
5392 * pci_init_reset_methods - check whether device can be safely reset
5393 * and store supported reset mechanisms.
5394 * @dev: PCI device to check for reset mechanisms
5395 *
5396 * Some devices allow an individual function to be reset without affecting
5397 * other functions in the same device. The PCI device must be in D0-D3hot
5398 * state.
5399 *
5400 * Stores reset mechanisms supported by device in reset_methods byte array
5401 * which is a member of struct pci_dev.
5402 */
pci_init_reset_methods(struct pci_dev * dev)5403 void pci_init_reset_methods(struct pci_dev *dev)
5404 {
5405 int m, i, rc;
5406
5407 BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5408
5409 might_sleep();
5410
5411 i = 0;
5412 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5413 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5414 if (!rc)
5415 dev->reset_methods[i++] = m;
5416 else if (rc != -ENOTTY)
5417 break;
5418 }
5419
5420 dev->reset_methods[i] = 0;
5421 }
5422
5423 /**
5424 * pci_reset_function - quiesce and reset a PCI device function
5425 * @dev: PCI device to reset
5426 *
5427 * Some devices allow an individual function to be reset without affecting
5428 * other functions in the same device. The PCI device must be responsive
5429 * to PCI config space in order to use this function.
5430 *
5431 * This function does not just reset the PCI portion of a device, but
5432 * clears all the state associated with the device. This function differs
5433 * from __pci_reset_function_locked() in that it saves and restores device state
5434 * over the reset and takes the PCI device lock.
5435 *
5436 * Returns 0 if the device function was successfully reset or negative if the
5437 * device doesn't support resetting a single function.
5438 */
pci_reset_function(struct pci_dev * dev)5439 int pci_reset_function(struct pci_dev *dev)
5440 {
5441 struct pci_dev *bridge;
5442 int rc;
5443
5444 if (!pci_reset_supported(dev))
5445 return -ENOTTY;
5446
5447 /*
5448 * If there's no upstream bridge, no locking is needed since there is
5449 * no upstream bridge configuration to hold consistent.
5450 */
5451 bridge = pci_upstream_bridge(dev);
5452 if (bridge)
5453 pci_dev_lock(bridge);
5454
5455 pci_dev_lock(dev);
5456 pci_dev_save_and_disable(dev);
5457
5458 rc = __pci_reset_function_locked(dev);
5459
5460 pci_dev_restore(dev);
5461 pci_dev_unlock(dev);
5462
5463 if (bridge)
5464 pci_dev_unlock(bridge);
5465
5466 return rc;
5467 }
5468 EXPORT_SYMBOL_GPL(pci_reset_function);
5469
5470 /**
5471 * pci_reset_function_locked - quiesce and reset a PCI device function
5472 * @dev: PCI device to reset
5473 *
5474 * Some devices allow an individual function to be reset without affecting
5475 * other functions in the same device. The PCI device must be responsive
5476 * to PCI config space in order to use this function.
5477 *
5478 * This function does not just reset the PCI portion of a device, but
5479 * clears all the state associated with the device. This function differs
5480 * from __pci_reset_function_locked() in that it saves and restores device state
5481 * over the reset. It also differs from pci_reset_function() in that it
5482 * requires the PCI device lock to be held.
5483 *
5484 * Returns 0 if the device function was successfully reset or negative if the
5485 * device doesn't support resetting a single function.
5486 */
pci_reset_function_locked(struct pci_dev * dev)5487 int pci_reset_function_locked(struct pci_dev *dev)
5488 {
5489 int rc;
5490
5491 if (!pci_reset_supported(dev))
5492 return -ENOTTY;
5493
5494 pci_dev_save_and_disable(dev);
5495
5496 rc = __pci_reset_function_locked(dev);
5497
5498 pci_dev_restore(dev);
5499
5500 return rc;
5501 }
5502 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5503
5504 /**
5505 * pci_try_reset_function - quiesce and reset a PCI device function
5506 * @dev: PCI device to reset
5507 *
5508 * Same as above, except return -EAGAIN if unable to lock device.
5509 */
pci_try_reset_function(struct pci_dev * dev)5510 int pci_try_reset_function(struct pci_dev *dev)
5511 {
5512 int rc;
5513
5514 if (!pci_reset_supported(dev))
5515 return -ENOTTY;
5516
5517 if (!pci_dev_trylock(dev))
5518 return -EAGAIN;
5519
5520 pci_dev_save_and_disable(dev);
5521 rc = __pci_reset_function_locked(dev);
5522 pci_dev_restore(dev);
5523 pci_dev_unlock(dev);
5524
5525 return rc;
5526 }
5527 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5528
5529 /* Do any devices on or below this bus prevent a bus reset? */
pci_bus_resettable(struct pci_bus * bus)5530 static bool pci_bus_resettable(struct pci_bus *bus)
5531 {
5532 struct pci_dev *dev;
5533
5534
5535 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5536 return false;
5537
5538 list_for_each_entry(dev, &bus->devices, bus_list) {
5539 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5540 (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5541 return false;
5542 }
5543
5544 return true;
5545 }
5546
5547 /* Lock devices from the top of the tree down */
pci_bus_lock(struct pci_bus * bus)5548 static void pci_bus_lock(struct pci_bus *bus)
5549 {
5550 struct pci_dev *dev;
5551
5552 pci_dev_lock(bus->self);
5553 list_for_each_entry(dev, &bus->devices, bus_list) {
5554 if (dev->subordinate)
5555 pci_bus_lock(dev->subordinate);
5556 else
5557 pci_dev_lock(dev);
5558 }
5559 }
5560
5561 /* Unlock devices from the bottom of the tree up */
pci_bus_unlock(struct pci_bus * bus)5562 static void pci_bus_unlock(struct pci_bus *bus)
5563 {
5564 struct pci_dev *dev;
5565
5566 list_for_each_entry(dev, &bus->devices, bus_list) {
5567 if (dev->subordinate)
5568 pci_bus_unlock(dev->subordinate);
5569 else
5570 pci_dev_unlock(dev);
5571 }
5572 pci_dev_unlock(bus->self);
5573 }
5574
5575 /* Return 1 on successful lock, 0 on contention */
pci_bus_trylock(struct pci_bus * bus)5576 static int pci_bus_trylock(struct pci_bus *bus)
5577 {
5578 struct pci_dev *dev;
5579
5580 if (!pci_dev_trylock(bus->self))
5581 return 0;
5582
5583 list_for_each_entry(dev, &bus->devices, bus_list) {
5584 if (dev->subordinate) {
5585 if (!pci_bus_trylock(dev->subordinate))
5586 goto unlock;
5587 } else if (!pci_dev_trylock(dev))
5588 goto unlock;
5589 }
5590 return 1;
5591
5592 unlock:
5593 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5594 if (dev->subordinate)
5595 pci_bus_unlock(dev->subordinate);
5596 else
5597 pci_dev_unlock(dev);
5598 }
5599 pci_dev_unlock(bus->self);
5600 return 0;
5601 }
5602
5603 /* Do any devices on or below this slot prevent a bus reset? */
pci_slot_resettable(struct pci_slot * slot)5604 static bool pci_slot_resettable(struct pci_slot *slot)
5605 {
5606 struct pci_dev *dev;
5607
5608 if (slot->bus->self &&
5609 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5610 return false;
5611
5612 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5613 if (!dev->slot || dev->slot != slot)
5614 continue;
5615 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5616 (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5617 return false;
5618 }
5619
5620 return true;
5621 }
5622
5623 /* Lock devices from the top of the tree down */
pci_slot_lock(struct pci_slot * slot)5624 static void pci_slot_lock(struct pci_slot *slot)
5625 {
5626 struct pci_dev *dev;
5627
5628 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5629 if (!dev->slot || dev->slot != slot)
5630 continue;
5631 if (dev->subordinate)
5632 pci_bus_lock(dev->subordinate);
5633 else
5634 pci_dev_lock(dev);
5635 }
5636 }
5637
5638 /* Unlock devices from the bottom of the tree up */
pci_slot_unlock(struct pci_slot * slot)5639 static void pci_slot_unlock(struct pci_slot *slot)
5640 {
5641 struct pci_dev *dev;
5642
5643 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5644 if (!dev->slot || dev->slot != slot)
5645 continue;
5646 if (dev->subordinate)
5647 pci_bus_unlock(dev->subordinate);
5648 pci_dev_unlock(dev);
5649 }
5650 }
5651
5652 /* Return 1 on successful lock, 0 on contention */
pci_slot_trylock(struct pci_slot * slot)5653 static int pci_slot_trylock(struct pci_slot *slot)
5654 {
5655 struct pci_dev *dev;
5656
5657 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5658 if (!dev->slot || dev->slot != slot)
5659 continue;
5660 if (dev->subordinate) {
5661 if (!pci_bus_trylock(dev->subordinate)) {
5662 pci_dev_unlock(dev);
5663 goto unlock;
5664 }
5665 } else if (!pci_dev_trylock(dev))
5666 goto unlock;
5667 }
5668 return 1;
5669
5670 unlock:
5671 list_for_each_entry_continue_reverse(dev,
5672 &slot->bus->devices, bus_list) {
5673 if (!dev->slot || dev->slot != slot)
5674 continue;
5675 if (dev->subordinate)
5676 pci_bus_unlock(dev->subordinate);
5677 else
5678 pci_dev_unlock(dev);
5679 }
5680 return 0;
5681 }
5682
5683 /*
5684 * Save and disable devices from the top of the tree down while holding
5685 * the @dev mutex lock for the entire tree.
5686 */
pci_bus_save_and_disable_locked(struct pci_bus * bus)5687 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5688 {
5689 struct pci_dev *dev;
5690
5691 list_for_each_entry(dev, &bus->devices, bus_list) {
5692 pci_dev_save_and_disable(dev);
5693 if (dev->subordinate)
5694 pci_bus_save_and_disable_locked(dev->subordinate);
5695 }
5696 }
5697
5698 /*
5699 * Restore devices from top of the tree down while holding @dev mutex lock
5700 * for the entire tree. Parent bridges need to be restored before we can
5701 * get to subordinate devices.
5702 */
pci_bus_restore_locked(struct pci_bus * bus)5703 static void pci_bus_restore_locked(struct pci_bus *bus)
5704 {
5705 struct pci_dev *dev;
5706
5707 list_for_each_entry(dev, &bus->devices, bus_list) {
5708 pci_dev_restore(dev);
5709 if (dev->subordinate) {
5710 pci_bridge_wait_for_secondary_bus(dev, "bus reset");
5711 pci_bus_restore_locked(dev->subordinate);
5712 }
5713 }
5714 }
5715
5716 /*
5717 * Save and disable devices from the top of the tree down while holding
5718 * the @dev mutex lock for the entire tree.
5719 */
pci_slot_save_and_disable_locked(struct pci_slot * slot)5720 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5721 {
5722 struct pci_dev *dev;
5723
5724 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5725 if (!dev->slot || dev->slot != slot)
5726 continue;
5727 pci_dev_save_and_disable(dev);
5728 if (dev->subordinate)
5729 pci_bus_save_and_disable_locked(dev->subordinate);
5730 }
5731 }
5732
5733 /*
5734 * Restore devices from top of the tree down while holding @dev mutex lock
5735 * for the entire tree. Parent bridges need to be restored before we can
5736 * get to subordinate devices.
5737 */
pci_slot_restore_locked(struct pci_slot * slot)5738 static void pci_slot_restore_locked(struct pci_slot *slot)
5739 {
5740 struct pci_dev *dev;
5741
5742 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5743 if (!dev->slot || dev->slot != slot)
5744 continue;
5745 pci_dev_restore(dev);
5746 if (dev->subordinate) {
5747 pci_bridge_wait_for_secondary_bus(dev, "slot reset");
5748 pci_bus_restore_locked(dev->subordinate);
5749 }
5750 }
5751 }
5752
pci_slot_reset(struct pci_slot * slot,bool probe)5753 static int pci_slot_reset(struct pci_slot *slot, bool probe)
5754 {
5755 int rc;
5756
5757 if (!slot || !pci_slot_resettable(slot))
5758 return -ENOTTY;
5759
5760 if (!probe)
5761 pci_slot_lock(slot);
5762
5763 might_sleep();
5764
5765 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5766
5767 if (!probe)
5768 pci_slot_unlock(slot);
5769
5770 return rc;
5771 }
5772
5773 /**
5774 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5775 * @slot: PCI slot to probe
5776 *
5777 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5778 */
pci_probe_reset_slot(struct pci_slot * slot)5779 int pci_probe_reset_slot(struct pci_slot *slot)
5780 {
5781 return pci_slot_reset(slot, PCI_RESET_PROBE);
5782 }
5783 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5784
5785 /**
5786 * __pci_reset_slot - Try to reset a PCI slot
5787 * @slot: PCI slot to reset
5788 *
5789 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5790 * independent of other slots. For instance, some slots may support slot power
5791 * control. In the case of a 1:1 bus to slot architecture, this function may
5792 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5793 * Generally a slot reset should be attempted before a bus reset. All of the
5794 * function of the slot and any subordinate buses behind the slot are reset
5795 * through this function. PCI config space of all devices in the slot and
5796 * behind the slot is saved before and restored after reset.
5797 *
5798 * Same as above except return -EAGAIN if the slot cannot be locked
5799 */
__pci_reset_slot(struct pci_slot * slot)5800 static int __pci_reset_slot(struct pci_slot *slot)
5801 {
5802 int rc;
5803
5804 rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5805 if (rc)
5806 return rc;
5807
5808 if (pci_slot_trylock(slot)) {
5809 pci_slot_save_and_disable_locked(slot);
5810 might_sleep();
5811 rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5812 pci_slot_restore_locked(slot);
5813 pci_slot_unlock(slot);
5814 } else
5815 rc = -EAGAIN;
5816
5817 return rc;
5818 }
5819
pci_bus_reset(struct pci_bus * bus,bool probe)5820 static int pci_bus_reset(struct pci_bus *bus, bool probe)
5821 {
5822 int ret;
5823
5824 if (!bus->self || !pci_bus_resettable(bus))
5825 return -ENOTTY;
5826
5827 if (probe)
5828 return 0;
5829
5830 pci_bus_lock(bus);
5831
5832 might_sleep();
5833
5834 ret = pci_bridge_secondary_bus_reset(bus->self);
5835
5836 pci_bus_unlock(bus);
5837
5838 return ret;
5839 }
5840
5841 /**
5842 * pci_bus_error_reset - reset the bridge's subordinate bus
5843 * @bridge: The parent device that connects to the bus to reset
5844 *
5845 * This function will first try to reset the slots on this bus if the method is
5846 * available. If slot reset fails or is not available, this will fall back to a
5847 * secondary bus reset.
5848 */
pci_bus_error_reset(struct pci_dev * bridge)5849 int pci_bus_error_reset(struct pci_dev *bridge)
5850 {
5851 struct pci_bus *bus = bridge->subordinate;
5852 struct pci_slot *slot;
5853
5854 if (!bus)
5855 return -ENOTTY;
5856
5857 mutex_lock(&pci_slot_mutex);
5858 if (list_empty(&bus->slots))
5859 goto bus_reset;
5860
5861 list_for_each_entry(slot, &bus->slots, list)
5862 if (pci_probe_reset_slot(slot))
5863 goto bus_reset;
5864
5865 list_for_each_entry(slot, &bus->slots, list)
5866 if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5867 goto bus_reset;
5868
5869 mutex_unlock(&pci_slot_mutex);
5870 return 0;
5871 bus_reset:
5872 mutex_unlock(&pci_slot_mutex);
5873 return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5874 }
5875
5876 /**
5877 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5878 * @bus: PCI bus to probe
5879 *
5880 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5881 */
pci_probe_reset_bus(struct pci_bus * bus)5882 int pci_probe_reset_bus(struct pci_bus *bus)
5883 {
5884 return pci_bus_reset(bus, PCI_RESET_PROBE);
5885 }
5886 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5887
5888 /**
5889 * __pci_reset_bus - Try to reset a PCI bus
5890 * @bus: top level PCI bus to reset
5891 *
5892 * Same as above except return -EAGAIN if the bus cannot be locked
5893 */
__pci_reset_bus(struct pci_bus * bus)5894 int __pci_reset_bus(struct pci_bus *bus)
5895 {
5896 int rc;
5897
5898 rc = pci_bus_reset(bus, PCI_RESET_PROBE);
5899 if (rc)
5900 return rc;
5901
5902 if (pci_bus_trylock(bus)) {
5903 pci_bus_save_and_disable_locked(bus);
5904 might_sleep();
5905 rc = pci_bridge_secondary_bus_reset(bus->self);
5906 pci_bus_restore_locked(bus);
5907 pci_bus_unlock(bus);
5908 } else
5909 rc = -EAGAIN;
5910
5911 return rc;
5912 }
5913
5914 /**
5915 * pci_reset_bus - Try to reset a PCI bus
5916 * @pdev: top level PCI device to reset via slot/bus
5917 *
5918 * Same as above except return -EAGAIN if the bus cannot be locked
5919 */
pci_reset_bus(struct pci_dev * pdev)5920 int pci_reset_bus(struct pci_dev *pdev)
5921 {
5922 return (!pci_probe_reset_slot(pdev->slot)) ?
5923 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5924 }
5925 EXPORT_SYMBOL_GPL(pci_reset_bus);
5926
5927 /**
5928 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5929 * @dev: PCI device to query
5930 *
5931 * Returns mmrbc: maximum designed memory read count in bytes or
5932 * appropriate error value.
5933 */
pcix_get_max_mmrbc(struct pci_dev * dev)5934 int pcix_get_max_mmrbc(struct pci_dev *dev)
5935 {
5936 int cap;
5937 u32 stat;
5938
5939 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5940 if (!cap)
5941 return -EINVAL;
5942
5943 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5944 return -EINVAL;
5945
5946 return 512 << FIELD_GET(PCI_X_STATUS_MAX_READ, stat);
5947 }
5948 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5949
5950 /**
5951 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5952 * @dev: PCI device to query
5953 *
5954 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5955 * value.
5956 */
pcix_get_mmrbc(struct pci_dev * dev)5957 int pcix_get_mmrbc(struct pci_dev *dev)
5958 {
5959 int cap;
5960 u16 cmd;
5961
5962 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5963 if (!cap)
5964 return -EINVAL;
5965
5966 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5967 return -EINVAL;
5968
5969 return 512 << FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
5970 }
5971 EXPORT_SYMBOL(pcix_get_mmrbc);
5972
5973 /**
5974 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5975 * @dev: PCI device to query
5976 * @mmrbc: maximum memory read count in bytes
5977 * valid values are 512, 1024, 2048, 4096
5978 *
5979 * If possible sets maximum memory read byte count, some bridges have errata
5980 * that prevent this.
5981 */
pcix_set_mmrbc(struct pci_dev * dev,int mmrbc)5982 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5983 {
5984 int cap;
5985 u32 stat, v, o;
5986 u16 cmd;
5987
5988 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5989 return -EINVAL;
5990
5991 v = ffs(mmrbc) - 10;
5992
5993 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5994 if (!cap)
5995 return -EINVAL;
5996
5997 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5998 return -EINVAL;
5999
6000 if (v > FIELD_GET(PCI_X_STATUS_MAX_READ, stat))
6001 return -E2BIG;
6002
6003 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
6004 return -EINVAL;
6005
6006 o = FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
6007 if (o != v) {
6008 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
6009 return -EIO;
6010
6011 cmd &= ~PCI_X_CMD_MAX_READ;
6012 cmd |= FIELD_PREP(PCI_X_CMD_MAX_READ, v);
6013 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
6014 return -EIO;
6015 }
6016 return 0;
6017 }
6018 EXPORT_SYMBOL(pcix_set_mmrbc);
6019
6020 /**
6021 * pcie_get_readrq - get PCI Express read request size
6022 * @dev: PCI device to query
6023 *
6024 * Returns maximum memory read request in bytes or appropriate error value.
6025 */
pcie_get_readrq(struct pci_dev * dev)6026 int pcie_get_readrq(struct pci_dev *dev)
6027 {
6028 u16 ctl;
6029
6030 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6031
6032 return 128 << FIELD_GET(PCI_EXP_DEVCTL_READRQ, ctl);
6033 }
6034 EXPORT_SYMBOL(pcie_get_readrq);
6035
6036 /**
6037 * pcie_set_readrq - set PCI Express maximum memory read request
6038 * @dev: PCI device to query
6039 * @rq: maximum memory read count in bytes
6040 * valid values are 128, 256, 512, 1024, 2048, 4096
6041 *
6042 * If possible sets maximum memory read request in bytes
6043 */
pcie_set_readrq(struct pci_dev * dev,int rq)6044 int pcie_set_readrq(struct pci_dev *dev, int rq)
6045 {
6046 u16 v;
6047 int ret;
6048 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
6049
6050 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
6051 return -EINVAL;
6052
6053 /*
6054 * If using the "performance" PCIe config, we clamp the read rq
6055 * size to the max packet size to keep the host bridge from
6056 * generating requests larger than we can cope with.
6057 */
6058 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
6059 int mps = pcie_get_mps(dev);
6060
6061 if (mps < rq)
6062 rq = mps;
6063 }
6064
6065 v = FIELD_PREP(PCI_EXP_DEVCTL_READRQ, ffs(rq) - 8);
6066
6067 if (bridge->no_inc_mrrs) {
6068 int max_mrrs = pcie_get_readrq(dev);
6069
6070 if (rq > max_mrrs) {
6071 pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs);
6072 return -EINVAL;
6073 }
6074 }
6075
6076 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6077 PCI_EXP_DEVCTL_READRQ, v);
6078
6079 return pcibios_err_to_errno(ret);
6080 }
6081 EXPORT_SYMBOL(pcie_set_readrq);
6082
6083 /**
6084 * pcie_get_mps - get PCI Express maximum payload size
6085 * @dev: PCI device to query
6086 *
6087 * Returns maximum payload size in bytes
6088 */
pcie_get_mps(struct pci_dev * dev)6089 int pcie_get_mps(struct pci_dev *dev)
6090 {
6091 u16 ctl;
6092
6093 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6094
6095 return 128 << FIELD_GET(PCI_EXP_DEVCTL_PAYLOAD, ctl);
6096 }
6097 EXPORT_SYMBOL(pcie_get_mps);
6098
6099 /**
6100 * pcie_set_mps - set PCI Express maximum payload size
6101 * @dev: PCI device to query
6102 * @mps: maximum payload size in bytes
6103 * valid values are 128, 256, 512, 1024, 2048, 4096
6104 *
6105 * If possible sets maximum payload size
6106 */
pcie_set_mps(struct pci_dev * dev,int mps)6107 int pcie_set_mps(struct pci_dev *dev, int mps)
6108 {
6109 u16 v;
6110 int ret;
6111
6112 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6113 return -EINVAL;
6114
6115 v = ffs(mps) - 8;
6116 if (v > dev->pcie_mpss)
6117 return -EINVAL;
6118 v = FIELD_PREP(PCI_EXP_DEVCTL_PAYLOAD, v);
6119
6120 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6121 PCI_EXP_DEVCTL_PAYLOAD, v);
6122
6123 return pcibios_err_to_errno(ret);
6124 }
6125 EXPORT_SYMBOL(pcie_set_mps);
6126
to_pcie_link_speed(u16 lnksta)6127 static enum pci_bus_speed to_pcie_link_speed(u16 lnksta)
6128 {
6129 return pcie_link_speed[FIELD_GET(PCI_EXP_LNKSTA_CLS, lnksta)];
6130 }
6131
pcie_link_speed_mbps(struct pci_dev * pdev)6132 int pcie_link_speed_mbps(struct pci_dev *pdev)
6133 {
6134 u16 lnksta;
6135 int err;
6136
6137 err = pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
6138 if (err)
6139 return err;
6140
6141 return pcie_dev_speed_mbps(to_pcie_link_speed(lnksta));
6142 }
6143 EXPORT_SYMBOL(pcie_link_speed_mbps);
6144
6145 /**
6146 * pcie_bandwidth_available - determine minimum link settings of a PCIe
6147 * device and its bandwidth limitation
6148 * @dev: PCI device to query
6149 * @limiting_dev: storage for device causing the bandwidth limitation
6150 * @speed: storage for speed of limiting device
6151 * @width: storage for width of limiting device
6152 *
6153 * Walk up the PCI device chain and find the point where the minimum
6154 * bandwidth is available. Return the bandwidth available there and (if
6155 * limiting_dev, speed, and width pointers are supplied) information about
6156 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
6157 * raw bandwidth.
6158 */
pcie_bandwidth_available(struct pci_dev * dev,struct pci_dev ** limiting_dev,enum pci_bus_speed * speed,enum pcie_link_width * width)6159 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6160 enum pci_bus_speed *speed,
6161 enum pcie_link_width *width)
6162 {
6163 u16 lnksta;
6164 enum pci_bus_speed next_speed;
6165 enum pcie_link_width next_width;
6166 u32 bw, next_bw;
6167
6168 if (speed)
6169 *speed = PCI_SPEED_UNKNOWN;
6170 if (width)
6171 *width = PCIE_LNK_WIDTH_UNKNOWN;
6172
6173 bw = 0;
6174
6175 while (dev) {
6176 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6177
6178 next_speed = to_pcie_link_speed(lnksta);
6179 next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta);
6180
6181 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6182
6183 /* Check if current device limits the total bandwidth */
6184 if (!bw || next_bw <= bw) {
6185 bw = next_bw;
6186
6187 if (limiting_dev)
6188 *limiting_dev = dev;
6189 if (speed)
6190 *speed = next_speed;
6191 if (width)
6192 *width = next_width;
6193 }
6194
6195 dev = pci_upstream_bridge(dev);
6196 }
6197
6198 return bw;
6199 }
6200 EXPORT_SYMBOL(pcie_bandwidth_available);
6201
6202 /**
6203 * pcie_get_supported_speeds - query Supported Link Speed Vector
6204 * @dev: PCI device to query
6205 *
6206 * Query @dev supported link speeds.
6207 *
6208 * Implementation Note in PCIe r6.0 sec 7.5.3.18 recommends determining
6209 * supported link speeds using the Supported Link Speeds Vector in the Link
6210 * Capabilities 2 Register (when available).
6211 *
6212 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.
6213 *
6214 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, Supported Link
6215 * Speeds field in Link Capabilities is used and only 2.5 GT/s and 5.0 GT/s
6216 * speeds were defined.
6217 *
6218 * For @dev without Supported Link Speed Vector, the field is synthesized
6219 * from the Max Link Speed field in the Link Capabilities Register.
6220 *
6221 * Return: Supported Link Speeds Vector (+ reserved 0 at LSB).
6222 */
pcie_get_supported_speeds(struct pci_dev * dev)6223 u8 pcie_get_supported_speeds(struct pci_dev *dev)
6224 {
6225 u32 lnkcap2, lnkcap;
6226 u8 speeds;
6227
6228 /*
6229 * Speeds retain the reserved 0 at LSB before PCIe Supported Link
6230 * Speeds Vector to allow using SLS Vector bit defines directly.
6231 */
6232 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6233 speeds = lnkcap2 & PCI_EXP_LNKCAP2_SLS;
6234
6235 /* Ignore speeds higher than Max Link Speed */
6236 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6237 speeds &= GENMASK(lnkcap & PCI_EXP_LNKCAP_SLS, 0);
6238
6239 /* PCIe r3.0-compliant */
6240 if (speeds)
6241 return speeds;
6242
6243 /* Synthesize from the Max Link Speed field */
6244 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6245 speeds = PCI_EXP_LNKCAP2_SLS_5_0GB | PCI_EXP_LNKCAP2_SLS_2_5GB;
6246 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6247 speeds = PCI_EXP_LNKCAP2_SLS_2_5GB;
6248
6249 return speeds;
6250 }
6251
6252 /**
6253 * pcie_get_speed_cap - query for the PCI device's link speed capability
6254 * @dev: PCI device to query
6255 *
6256 * Query the PCI device speed capability.
6257 *
6258 * Return: the maximum link speed supported by the device.
6259 */
pcie_get_speed_cap(struct pci_dev * dev)6260 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6261 {
6262 return PCIE_LNKCAP2_SLS2SPEED(dev->supported_speeds);
6263 }
6264 EXPORT_SYMBOL(pcie_get_speed_cap);
6265
6266 /**
6267 * pcie_get_width_cap - query for the PCI device's link width capability
6268 * @dev: PCI device to query
6269 *
6270 * Query the PCI device width capability. Return the maximum link width
6271 * supported by the device.
6272 */
pcie_get_width_cap(struct pci_dev * dev)6273 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6274 {
6275 u32 lnkcap;
6276
6277 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6278 if (lnkcap)
6279 return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap);
6280
6281 return PCIE_LNK_WIDTH_UNKNOWN;
6282 }
6283 EXPORT_SYMBOL(pcie_get_width_cap);
6284
6285 /**
6286 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6287 * @dev: PCI device
6288 * @speed: storage for link speed
6289 * @width: storage for link width
6290 *
6291 * Calculate a PCI device's link bandwidth by querying for its link speed
6292 * and width, multiplying them, and applying encoding overhead. The result
6293 * is in Mb/s, i.e., megabits/second of raw bandwidth.
6294 */
pcie_bandwidth_capable(struct pci_dev * dev,enum pci_bus_speed * speed,enum pcie_link_width * width)6295 static u32 pcie_bandwidth_capable(struct pci_dev *dev,
6296 enum pci_bus_speed *speed,
6297 enum pcie_link_width *width)
6298 {
6299 *speed = pcie_get_speed_cap(dev);
6300 *width = pcie_get_width_cap(dev);
6301
6302 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6303 return 0;
6304
6305 return *width * PCIE_SPEED2MBS_ENC(*speed);
6306 }
6307
6308 /**
6309 * __pcie_print_link_status - Report the PCI device's link speed and width
6310 * @dev: PCI device to query
6311 * @verbose: Print info even when enough bandwidth is available
6312 *
6313 * If the available bandwidth at the device is less than the device is
6314 * capable of, report the device's maximum possible bandwidth and the
6315 * upstream link that limits its performance. If @verbose, always print
6316 * the available bandwidth, even if the device isn't constrained.
6317 */
__pcie_print_link_status(struct pci_dev * dev,bool verbose)6318 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6319 {
6320 enum pcie_link_width width, width_cap;
6321 enum pci_bus_speed speed, speed_cap;
6322 struct pci_dev *limiting_dev = NULL;
6323 u32 bw_avail, bw_cap;
6324
6325 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6326 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6327
6328 if (bw_avail >= bw_cap && verbose)
6329 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6330 bw_cap / 1000, bw_cap % 1000,
6331 pci_speed_string(speed_cap), width_cap);
6332 else if (bw_avail < bw_cap)
6333 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6334 bw_avail / 1000, bw_avail % 1000,
6335 pci_speed_string(speed), width,
6336 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6337 bw_cap / 1000, bw_cap % 1000,
6338 pci_speed_string(speed_cap), width_cap);
6339 }
6340
6341 /**
6342 * pcie_print_link_status - Report the PCI device's link speed and width
6343 * @dev: PCI device to query
6344 *
6345 * Report the available bandwidth at the device.
6346 */
pcie_print_link_status(struct pci_dev * dev)6347 void pcie_print_link_status(struct pci_dev *dev)
6348 {
6349 __pcie_print_link_status(dev, true);
6350 }
6351 EXPORT_SYMBOL(pcie_print_link_status);
6352
6353 /**
6354 * pci_select_bars - Make BAR mask from the type of resource
6355 * @dev: the PCI device for which BAR mask is made
6356 * @flags: resource type mask to be selected
6357 *
6358 * This helper routine makes bar mask from the type of resource.
6359 */
pci_select_bars(struct pci_dev * dev,unsigned long flags)6360 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6361 {
6362 int i, bars = 0;
6363 for (i = 0; i < PCI_NUM_RESOURCES; i++)
6364 if (pci_resource_flags(dev, i) & flags)
6365 bars |= (1 << i);
6366 return bars;
6367 }
6368 EXPORT_SYMBOL(pci_select_bars);
6369
6370 /* Some architectures require additional programming to enable VGA */
6371 static arch_set_vga_state_t arch_set_vga_state;
6372
pci_register_set_vga_state(arch_set_vga_state_t func)6373 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6374 {
6375 arch_set_vga_state = func; /* NULL disables */
6376 }
6377
pci_set_vga_state_arch(struct pci_dev * dev,bool decode,unsigned int command_bits,u32 flags)6378 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6379 unsigned int command_bits, u32 flags)
6380 {
6381 if (arch_set_vga_state)
6382 return arch_set_vga_state(dev, decode, command_bits,
6383 flags);
6384 return 0;
6385 }
6386
6387 /**
6388 * pci_set_vga_state - set VGA decode state on device and parents if requested
6389 * @dev: the PCI device
6390 * @decode: true = enable decoding, false = disable decoding
6391 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6392 * @flags: traverse ancestors and change bridges
6393 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6394 */
pci_set_vga_state(struct pci_dev * dev,bool decode,unsigned int command_bits,u32 flags)6395 int pci_set_vga_state(struct pci_dev *dev, bool decode,
6396 unsigned int command_bits, u32 flags)
6397 {
6398 struct pci_bus *bus;
6399 struct pci_dev *bridge;
6400 u16 cmd;
6401 int rc;
6402
6403 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6404
6405 /* ARCH specific VGA enables */
6406 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6407 if (rc)
6408 return rc;
6409
6410 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6411 pci_read_config_word(dev, PCI_COMMAND, &cmd);
6412 if (decode)
6413 cmd |= command_bits;
6414 else
6415 cmd &= ~command_bits;
6416 pci_write_config_word(dev, PCI_COMMAND, cmd);
6417 }
6418
6419 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6420 return 0;
6421
6422 bus = dev->bus;
6423 while (bus) {
6424 bridge = bus->self;
6425 if (bridge) {
6426 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6427 &cmd);
6428 if (decode)
6429 cmd |= PCI_BRIDGE_CTL_VGA;
6430 else
6431 cmd &= ~PCI_BRIDGE_CTL_VGA;
6432 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6433 cmd);
6434 }
6435 bus = bus->parent;
6436 }
6437 return 0;
6438 }
6439
6440 #ifdef CONFIG_ACPI
pci_pr3_present(struct pci_dev * pdev)6441 bool pci_pr3_present(struct pci_dev *pdev)
6442 {
6443 struct acpi_device *adev;
6444
6445 if (acpi_disabled)
6446 return false;
6447
6448 adev = ACPI_COMPANION(&pdev->dev);
6449 if (!adev)
6450 return false;
6451
6452 return adev->power.flags.power_resources &&
6453 acpi_has_method(adev->handle, "_PR3");
6454 }
6455 EXPORT_SYMBOL_GPL(pci_pr3_present);
6456 #endif
6457
6458 /**
6459 * pci_add_dma_alias - Add a DMA devfn alias for a device
6460 * @dev: the PCI device for which alias is added
6461 * @devfn_from: alias slot and function
6462 * @nr_devfns: number of subsequent devfns to alias
6463 *
6464 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6465 * which is used to program permissible bus-devfn source addresses for DMA
6466 * requests in an IOMMU. These aliases factor into IOMMU group creation
6467 * and are useful for devices generating DMA requests beyond or different
6468 * from their logical bus-devfn. Examples include device quirks where the
6469 * device simply uses the wrong devfn, as well as non-transparent bridges
6470 * where the alias may be a proxy for devices in another domain.
6471 *
6472 * IOMMU group creation is performed during device discovery or addition,
6473 * prior to any potential DMA mapping and therefore prior to driver probing
6474 * (especially for userspace assigned devices where IOMMU group definition
6475 * cannot be left as a userspace activity). DMA aliases should therefore
6476 * be configured via quirks, such as the PCI fixup header quirk.
6477 */
pci_add_dma_alias(struct pci_dev * dev,u8 devfn_from,unsigned int nr_devfns)6478 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6479 unsigned int nr_devfns)
6480 {
6481 int devfn_to;
6482
6483 nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6484 devfn_to = devfn_from + nr_devfns - 1;
6485
6486 if (!dev->dma_alias_mask)
6487 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6488 if (!dev->dma_alias_mask) {
6489 pci_warn(dev, "Unable to allocate DMA alias mask\n");
6490 return;
6491 }
6492
6493 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6494
6495 if (nr_devfns == 1)
6496 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6497 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6498 else if (nr_devfns > 1)
6499 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6500 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6501 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6502 }
6503
pci_devs_are_dma_aliases(struct pci_dev * dev1,struct pci_dev * dev2)6504 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6505 {
6506 return (dev1->dma_alias_mask &&
6507 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6508 (dev2->dma_alias_mask &&
6509 test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6510 pci_real_dma_dev(dev1) == dev2 ||
6511 pci_real_dma_dev(dev2) == dev1;
6512 }
6513
pci_device_is_present(struct pci_dev * pdev)6514 bool pci_device_is_present(struct pci_dev *pdev)
6515 {
6516 u32 v;
6517
6518 /* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6519 pdev = pci_physfn(pdev);
6520 if (pci_dev_is_disconnected(pdev))
6521 return false;
6522 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6523 }
6524 EXPORT_SYMBOL_GPL(pci_device_is_present);
6525
pci_ignore_hotplug(struct pci_dev * dev)6526 void pci_ignore_hotplug(struct pci_dev *dev)
6527 {
6528 struct pci_dev *bridge = dev->bus->self;
6529
6530 dev->ignore_hotplug = 1;
6531 /* Propagate the "ignore hotplug" setting to the parent bridge. */
6532 if (bridge)
6533 bridge->ignore_hotplug = 1;
6534 }
6535 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6536
6537 /**
6538 * pci_real_dma_dev - Get PCI DMA device for PCI device
6539 * @dev: the PCI device that may have a PCI DMA alias
6540 *
6541 * Permits the platform to provide architecture-specific functionality to
6542 * devices needing to alias DMA to another PCI device on another PCI bus. If
6543 * the PCI device is on the same bus, it is recommended to use
6544 * pci_add_dma_alias(). This is the default implementation. Architecture
6545 * implementations can override this.
6546 */
pci_real_dma_dev(struct pci_dev * dev)6547 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6548 {
6549 return dev;
6550 }
6551
pcibios_default_alignment(void)6552 resource_size_t __weak pcibios_default_alignment(void)
6553 {
6554 return 0;
6555 }
6556
6557 /*
6558 * Arches that don't want to expose struct resource to userland as-is in
6559 * sysfs and /proc can implement their own pci_resource_to_user().
6560 */
pci_resource_to_user(const struct pci_dev * dev,int bar,const struct resource * rsrc,resource_size_t * start,resource_size_t * end)6561 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6562 const struct resource *rsrc,
6563 resource_size_t *start, resource_size_t *end)
6564 {
6565 *start = rsrc->start;
6566 *end = rsrc->end;
6567 }
6568
6569 static char *resource_alignment_param;
6570 static DEFINE_SPINLOCK(resource_alignment_lock);
6571
6572 /**
6573 * pci_specified_resource_alignment - get resource alignment specified by user.
6574 * @dev: the PCI device to get
6575 * @resize: whether or not to change resources' size when reassigning alignment
6576 *
6577 * RETURNS: Resource alignment if it is specified.
6578 * Zero if it is not specified.
6579 */
pci_specified_resource_alignment(struct pci_dev * dev,bool * resize)6580 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6581 bool *resize)
6582 {
6583 int align_order, count;
6584 resource_size_t align = pcibios_default_alignment();
6585 const char *p;
6586 int ret;
6587
6588 spin_lock(&resource_alignment_lock);
6589 p = resource_alignment_param;
6590 if (!p || !*p)
6591 goto out;
6592 if (pci_has_flag(PCI_PROBE_ONLY)) {
6593 align = 0;
6594 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6595 goto out;
6596 }
6597
6598 while (*p) {
6599 count = 0;
6600 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6601 p[count] == '@') {
6602 p += count + 1;
6603 if (align_order > 63) {
6604 pr_err("PCI: Invalid requested alignment (order %d)\n",
6605 align_order);
6606 align_order = PAGE_SHIFT;
6607 }
6608 } else {
6609 align_order = PAGE_SHIFT;
6610 }
6611
6612 ret = pci_dev_str_match(dev, p, &p);
6613 if (ret == 1) {
6614 *resize = true;
6615 align = 1ULL << align_order;
6616 break;
6617 } else if (ret < 0) {
6618 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6619 p);
6620 break;
6621 }
6622
6623 if (*p != ';' && *p != ',') {
6624 /* End of param or invalid format */
6625 break;
6626 }
6627 p++;
6628 }
6629 out:
6630 spin_unlock(&resource_alignment_lock);
6631 return align;
6632 }
6633
pci_request_resource_alignment(struct pci_dev * dev,int bar,resource_size_t align,bool resize)6634 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6635 resource_size_t align, bool resize)
6636 {
6637 struct resource *r = &dev->resource[bar];
6638 const char *r_name = pci_resource_name(dev, bar);
6639 resource_size_t size;
6640
6641 if (!(r->flags & IORESOURCE_MEM))
6642 return;
6643
6644 if (r->flags & IORESOURCE_PCI_FIXED) {
6645 pci_info(dev, "%s %pR: ignoring requested alignment %#llx\n",
6646 r_name, r, (unsigned long long)align);
6647 return;
6648 }
6649
6650 size = resource_size(r);
6651 if (size >= align)
6652 return;
6653
6654 /*
6655 * Increase the alignment of the resource. There are two ways we
6656 * can do this:
6657 *
6658 * 1) Increase the size of the resource. BARs are aligned on their
6659 * size, so when we reallocate space for this resource, we'll
6660 * allocate it with the larger alignment. This also prevents
6661 * assignment of any other BARs inside the alignment region, so
6662 * if we're requesting page alignment, this means no other BARs
6663 * will share the page.
6664 *
6665 * The disadvantage is that this makes the resource larger than
6666 * the hardware BAR, which may break drivers that compute things
6667 * based on the resource size, e.g., to find registers at a
6668 * fixed offset before the end of the BAR.
6669 *
6670 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6671 * set r->start to the desired alignment. By itself this
6672 * doesn't prevent other BARs being put inside the alignment
6673 * region, but if we realign *every* resource of every device in
6674 * the system, none of them will share an alignment region.
6675 *
6676 * When the user has requested alignment for only some devices via
6677 * the "pci=resource_alignment" argument, "resize" is true and we
6678 * use the first method. Otherwise we assume we're aligning all
6679 * devices and we use the second.
6680 */
6681
6682 pci_info(dev, "%s %pR: requesting alignment to %#llx\n",
6683 r_name, r, (unsigned long long)align);
6684
6685 if (resize) {
6686 r->start = 0;
6687 r->end = align - 1;
6688 } else {
6689 r->flags &= ~IORESOURCE_SIZEALIGN;
6690 r->flags |= IORESOURCE_STARTALIGN;
6691 resource_set_range(r, align, size);
6692 }
6693 r->flags |= IORESOURCE_UNSET;
6694 }
6695
6696 /*
6697 * This function disables memory decoding and releases memory resources
6698 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6699 * It also rounds up size to specified alignment.
6700 * Later on, the kernel will assign page-aligned memory resource back
6701 * to the device.
6702 */
pci_reassigndev_resource_alignment(struct pci_dev * dev)6703 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6704 {
6705 int i;
6706 struct resource *r;
6707 resource_size_t align;
6708 u16 command;
6709 bool resize = false;
6710
6711 /*
6712 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6713 * 3.4.1.11. Their resources are allocated from the space
6714 * described by the VF BARx register in the PF's SR-IOV capability.
6715 * We can't influence their alignment here.
6716 */
6717 if (dev->is_virtfn)
6718 return;
6719
6720 /* check if specified PCI is target device to reassign */
6721 align = pci_specified_resource_alignment(dev, &resize);
6722 if (!align)
6723 return;
6724
6725 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6726 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6727 pci_warn(dev, "Can't reassign resources to host bridge\n");
6728 return;
6729 }
6730
6731 pci_read_config_word(dev, PCI_COMMAND, &command);
6732 command &= ~PCI_COMMAND_MEMORY;
6733 pci_write_config_word(dev, PCI_COMMAND, command);
6734
6735 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6736 pci_request_resource_alignment(dev, i, align, resize);
6737
6738 /*
6739 * Need to disable bridge's resource window,
6740 * to enable the kernel to reassign new resource
6741 * window later on.
6742 */
6743 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6744 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6745 r = &dev->resource[i];
6746 if (!(r->flags & IORESOURCE_MEM))
6747 continue;
6748 r->flags |= IORESOURCE_UNSET;
6749 r->end = resource_size(r) - 1;
6750 r->start = 0;
6751 }
6752 pci_disable_bridge_window(dev);
6753 }
6754 }
6755
resource_alignment_show(const struct bus_type * bus,char * buf)6756 static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf)
6757 {
6758 size_t count = 0;
6759
6760 spin_lock(&resource_alignment_lock);
6761 if (resource_alignment_param)
6762 count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6763 spin_unlock(&resource_alignment_lock);
6764
6765 return count;
6766 }
6767
resource_alignment_store(const struct bus_type * bus,const char * buf,size_t count)6768 static ssize_t resource_alignment_store(const struct bus_type *bus,
6769 const char *buf, size_t count)
6770 {
6771 char *param, *old, *end;
6772
6773 if (count >= (PAGE_SIZE - 1))
6774 return -EINVAL;
6775
6776 param = kstrndup(buf, count, GFP_KERNEL);
6777 if (!param)
6778 return -ENOMEM;
6779
6780 end = strchr(param, '\n');
6781 if (end)
6782 *end = '\0';
6783
6784 spin_lock(&resource_alignment_lock);
6785 old = resource_alignment_param;
6786 if (strlen(param)) {
6787 resource_alignment_param = param;
6788 } else {
6789 kfree(param);
6790 resource_alignment_param = NULL;
6791 }
6792 spin_unlock(&resource_alignment_lock);
6793
6794 kfree(old);
6795
6796 return count;
6797 }
6798
6799 static BUS_ATTR_RW(resource_alignment);
6800
pci_resource_alignment_sysfs_init(void)6801 static int __init pci_resource_alignment_sysfs_init(void)
6802 {
6803 return bus_create_file(&pci_bus_type,
6804 &bus_attr_resource_alignment);
6805 }
6806 late_initcall(pci_resource_alignment_sysfs_init);
6807
pci_no_domains(void)6808 static void pci_no_domains(void)
6809 {
6810 #ifdef CONFIG_PCI_DOMAINS
6811 pci_domains_supported = 0;
6812 #endif
6813 }
6814
6815 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6816 static DEFINE_IDA(pci_domain_nr_static_ida);
6817 static DEFINE_IDA(pci_domain_nr_dynamic_ida);
6818
of_pci_reserve_static_domain_nr(void)6819 static void of_pci_reserve_static_domain_nr(void)
6820 {
6821 struct device_node *np;
6822 int domain_nr;
6823
6824 for_each_node_by_type(np, "pci") {
6825 domain_nr = of_get_pci_domain_nr(np);
6826 if (domain_nr < 0)
6827 continue;
6828 /*
6829 * Permanently allocate domain_nr in dynamic_ida
6830 * to prevent it from dynamic allocation.
6831 */
6832 ida_alloc_range(&pci_domain_nr_dynamic_ida,
6833 domain_nr, domain_nr, GFP_KERNEL);
6834 }
6835 }
6836
of_pci_bus_find_domain_nr(struct device * parent)6837 static int of_pci_bus_find_domain_nr(struct device *parent)
6838 {
6839 static bool static_domains_reserved = false;
6840 int domain_nr;
6841
6842 /* On the first call scan device tree for static allocations. */
6843 if (!static_domains_reserved) {
6844 of_pci_reserve_static_domain_nr();
6845 static_domains_reserved = true;
6846 }
6847
6848 if (parent) {
6849 /*
6850 * If domain is in DT, allocate it in static IDA. This
6851 * prevents duplicate static allocations in case of errors
6852 * in DT.
6853 */
6854 domain_nr = of_get_pci_domain_nr(parent->of_node);
6855 if (domain_nr >= 0)
6856 return ida_alloc_range(&pci_domain_nr_static_ida,
6857 domain_nr, domain_nr,
6858 GFP_KERNEL);
6859 }
6860
6861 /*
6862 * If domain was not specified in DT, choose a free ID from dynamic
6863 * allocations. All domain numbers from DT are permanently in
6864 * dynamic allocations to prevent assigning them to other DT nodes
6865 * without static domain.
6866 */
6867 return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
6868 }
6869
of_pci_bus_release_domain_nr(struct device * parent,int domain_nr)6870 static void of_pci_bus_release_domain_nr(struct device *parent, int domain_nr)
6871 {
6872 if (domain_nr < 0)
6873 return;
6874
6875 /* Release domain from IDA where it was allocated. */
6876 if (of_get_pci_domain_nr(parent->of_node) == domain_nr)
6877 ida_free(&pci_domain_nr_static_ida, domain_nr);
6878 else
6879 ida_free(&pci_domain_nr_dynamic_ida, domain_nr);
6880 }
6881
pci_bus_find_domain_nr(struct pci_bus * bus,struct device * parent)6882 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6883 {
6884 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6885 acpi_pci_bus_find_domain_nr(bus);
6886 }
6887
pci_bus_release_domain_nr(struct device * parent,int domain_nr)6888 void pci_bus_release_domain_nr(struct device *parent, int domain_nr)
6889 {
6890 if (!acpi_disabled)
6891 return;
6892 of_pci_bus_release_domain_nr(parent, domain_nr);
6893 }
6894 #endif
6895
6896 /**
6897 * pci_ext_cfg_avail - can we access extended PCI config space?
6898 *
6899 * Returns 1 if we can access PCI extended config space (offsets
6900 * greater than 0xff). This is the default implementation. Architecture
6901 * implementations can override this.
6902 */
pci_ext_cfg_avail(void)6903 int __weak pci_ext_cfg_avail(void)
6904 {
6905 return 1;
6906 }
6907
pci_fixup_cardbus(struct pci_bus * bus)6908 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6909 {
6910 }
6911 EXPORT_SYMBOL(pci_fixup_cardbus);
6912
pci_setup(char * str)6913 static int __init pci_setup(char *str)
6914 {
6915 while (str) {
6916 char *k = strchr(str, ',');
6917 if (k)
6918 *k++ = 0;
6919 if (*str && (str = pcibios_setup(str)) && *str) {
6920 if (!strcmp(str, "nomsi")) {
6921 pci_no_msi();
6922 } else if (!strncmp(str, "noats", 5)) {
6923 pr_info("PCIe: ATS is disabled\n");
6924 pcie_ats_disabled = true;
6925 } else if (!strcmp(str, "noaer")) {
6926 pci_no_aer();
6927 } else if (!strcmp(str, "earlydump")) {
6928 pci_early_dump = true;
6929 } else if (!strncmp(str, "realloc=", 8)) {
6930 pci_realloc_get_opt(str + 8);
6931 } else if (!strncmp(str, "realloc", 7)) {
6932 pci_realloc_get_opt("on");
6933 } else if (!strcmp(str, "nodomains")) {
6934 pci_no_domains();
6935 } else if (!strncmp(str, "noari", 5)) {
6936 pcie_ari_disabled = true;
6937 } else if (!strncmp(str, "notph", 5)) {
6938 pci_no_tph();
6939 } else if (!strncmp(str, "cbiosize=", 9)) {
6940 pci_cardbus_io_size = memparse(str + 9, &str);
6941 } else if (!strncmp(str, "cbmemsize=", 10)) {
6942 pci_cardbus_mem_size = memparse(str + 10, &str);
6943 } else if (!strncmp(str, "resource_alignment=", 19)) {
6944 resource_alignment_param = str + 19;
6945 } else if (!strncmp(str, "ecrc=", 5)) {
6946 pcie_ecrc_get_policy(str + 5);
6947 } else if (!strncmp(str, "hpiosize=", 9)) {
6948 pci_hotplug_io_size = memparse(str + 9, &str);
6949 } else if (!strncmp(str, "hpmmiosize=", 11)) {
6950 pci_hotplug_mmio_size = memparse(str + 11, &str);
6951 } else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6952 pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6953 } else if (!strncmp(str, "hpmemsize=", 10)) {
6954 pci_hotplug_mmio_size = memparse(str + 10, &str);
6955 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6956 } else if (!strncmp(str, "hpbussize=", 10)) {
6957 pci_hotplug_bus_size =
6958 simple_strtoul(str + 10, &str, 0);
6959 if (pci_hotplug_bus_size > 0xff)
6960 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6961 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6962 pcie_bus_config = PCIE_BUS_TUNE_OFF;
6963 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
6964 pcie_bus_config = PCIE_BUS_SAFE;
6965 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
6966 pcie_bus_config = PCIE_BUS_PERFORMANCE;
6967 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6968 pcie_bus_config = PCIE_BUS_PEER2PEER;
6969 } else if (!strncmp(str, "pcie_scan_all", 13)) {
6970 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6971 } else if (!strncmp(str, "disable_acs_redir=", 18)) {
6972 disable_acs_redir_param = str + 18;
6973 } else if (!strncmp(str, "config_acs=", 11)) {
6974 config_acs_param = str + 11;
6975 } else {
6976 pr_err("PCI: Unknown option `%s'\n", str);
6977 }
6978 }
6979 str = k;
6980 }
6981 return 0;
6982 }
6983 early_param("pci", pci_setup);
6984
6985 /*
6986 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6987 * in pci_setup(), above, to point to data in the __initdata section which
6988 * will be freed after the init sequence is complete. We can't allocate memory
6989 * in pci_setup() because some architectures do not have any memory allocation
6990 * service available during an early_param() call. So we allocate memory and
6991 * copy the variable here before the init section is freed.
6992 *
6993 */
pci_realloc_setup_params(void)6994 static int __init pci_realloc_setup_params(void)
6995 {
6996 resource_alignment_param = kstrdup(resource_alignment_param,
6997 GFP_KERNEL);
6998 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6999 config_acs_param = kstrdup(config_acs_param, GFP_KERNEL);
7000
7001 return 0;
7002 }
7003 pure_initcall(pci_realloc_setup_params);
7004