1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 *
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6 * David Mosberger-Tang
7 *
8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9 */
10
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/pci_hotplug.h>
30 #include <linux/vmalloc.h>
31 #include <asm/dma.h>
32 #include <linux/aer.h>
33 #include <linux/bitfield.h>
34 #include "pci.h"
35
36 DEFINE_MUTEX(pci_slot_mutex);
37
38 const char *pci_power_names[] = {
39 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
40 };
41 EXPORT_SYMBOL_GPL(pci_power_names);
42
43 #ifdef CONFIG_X86_32
44 int isa_dma_bridge_buggy;
45 EXPORT_SYMBOL(isa_dma_bridge_buggy);
46 #endif
47
48 int pci_pci_problems;
49 EXPORT_SYMBOL(pci_pci_problems);
50
51 unsigned int pci_pm_d3hot_delay;
52
53 static void pci_pme_list_scan(struct work_struct *work);
54
55 static LIST_HEAD(pci_pme_list);
56 static DEFINE_MUTEX(pci_pme_list_mutex);
57 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
58
59 struct pci_pme_device {
60 struct list_head list;
61 struct pci_dev *dev;
62 };
63
64 #define PME_TIMEOUT 1000 /* How long between PME checks */
65
66 /*
67 * Following exit from Conventional Reset, devices must be ready within 1 sec
68 * (PCIe r6.0 sec 6.6.1). A D3cold to D0 transition implies a Conventional
69 * Reset (PCIe r6.0 sec 5.8).
70 */
71 #define PCI_RESET_WAIT 1000 /* msec */
72
73 /*
74 * Devices may extend the 1 sec period through Request Retry Status
75 * completions (PCIe r6.0 sec 2.3.1). The spec does not provide an upper
76 * limit, but 60 sec ought to be enough for any device to become
77 * responsive.
78 */
79 #define PCIE_RESET_READY_POLL_MS 60000 /* msec */
80
pci_dev_d3_sleep(struct pci_dev * dev)81 static void pci_dev_d3_sleep(struct pci_dev *dev)
82 {
83 unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
84 unsigned int upper;
85
86 if (delay_ms) {
87 /* Use a 20% upper bound, 1ms minimum */
88 upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
89 usleep_range(delay_ms * USEC_PER_MSEC,
90 (delay_ms + upper) * USEC_PER_MSEC);
91 }
92 }
93
pci_reset_supported(struct pci_dev * dev)94 bool pci_reset_supported(struct pci_dev *dev)
95 {
96 return dev->reset_methods[0] != 0;
97 }
98
99 #ifdef CONFIG_PCI_DOMAINS
100 int pci_domains_supported = 1;
101 #endif
102
103 #define DEFAULT_CARDBUS_IO_SIZE (256)
104 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
105 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
106 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
107 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
108
109 #define DEFAULT_HOTPLUG_IO_SIZE (256)
110 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024)
111 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024)
112 /* hpiosize=nn can override this */
113 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
114 /*
115 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
116 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
117 * pci=hpmemsize=nnM overrides both
118 */
119 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
120 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
121
122 #define DEFAULT_HOTPLUG_BUS_SIZE 1
123 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
124
125
126 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
127 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
128 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
129 #elif defined CONFIG_PCIE_BUS_SAFE
130 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
131 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
132 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
133 #elif defined CONFIG_PCIE_BUS_PEER2PEER
134 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
135 #else
136 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
137 #endif
138
139 /*
140 * The default CLS is used if arch didn't set CLS explicitly and not
141 * all pci devices agree on the same value. Arch can override either
142 * the dfl or actual value as it sees fit. Don't forget this is
143 * measured in 32-bit words, not bytes.
144 */
145 u8 pci_dfl_cache_line_size __ro_after_init = L1_CACHE_BYTES >> 2;
146 u8 pci_cache_line_size __ro_after_init ;
147
148 /*
149 * If we set up a device for bus mastering, we need to check the latency
150 * timer as certain BIOSes forget to set it properly.
151 */
152 unsigned int pcibios_max_latency = 255;
153
154 /* If set, the PCIe ARI capability will not be used. */
155 static bool pcie_ari_disabled;
156
157 /* If set, the PCIe ATS capability will not be used. */
158 static bool pcie_ats_disabled;
159
160 /* If set, the PCI config space of each device is printed during boot. */
161 bool pci_early_dump;
162
pci_ats_disabled(void)163 bool pci_ats_disabled(void)
164 {
165 return pcie_ats_disabled;
166 }
167 EXPORT_SYMBOL_GPL(pci_ats_disabled);
168
169 /* Disable bridge_d3 for all PCIe ports */
170 static bool pci_bridge_d3_disable;
171 /* Force bridge_d3 for all PCIe ports */
172 static bool pci_bridge_d3_force;
173
pcie_port_pm_setup(char * str)174 static int __init pcie_port_pm_setup(char *str)
175 {
176 if (!strcmp(str, "off"))
177 pci_bridge_d3_disable = true;
178 else if (!strcmp(str, "force"))
179 pci_bridge_d3_force = true;
180 return 1;
181 }
182 __setup("pcie_port_pm=", pcie_port_pm_setup);
183
184 /**
185 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
186 * @bus: pointer to PCI bus structure to search
187 *
188 * Given a PCI bus, returns the highest PCI bus number present in the set
189 * including the given PCI bus and its list of child PCI buses.
190 */
pci_bus_max_busnr(struct pci_bus * bus)191 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
192 {
193 struct pci_bus *tmp;
194 unsigned char max, n;
195
196 max = bus->busn_res.end;
197 list_for_each_entry(tmp, &bus->children, node) {
198 n = pci_bus_max_busnr(tmp);
199 if (n > max)
200 max = n;
201 }
202 return max;
203 }
204 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
205
206 /**
207 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
208 * @pdev: the PCI device
209 *
210 * Returns error bits set in PCI_STATUS and clears them.
211 */
pci_status_get_and_clear_errors(struct pci_dev * pdev)212 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
213 {
214 u16 status;
215 int ret;
216
217 ret = pci_read_config_word(pdev, PCI_STATUS, &status);
218 if (ret != PCIBIOS_SUCCESSFUL)
219 return -EIO;
220
221 status &= PCI_STATUS_ERROR_BITS;
222 if (status)
223 pci_write_config_word(pdev, PCI_STATUS, status);
224
225 return status;
226 }
227 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
228
229 #ifdef CONFIG_HAS_IOMEM
__pci_ioremap_resource(struct pci_dev * pdev,int bar,bool write_combine)230 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
231 bool write_combine)
232 {
233 struct resource *res = &pdev->resource[bar];
234 resource_size_t start = res->start;
235 resource_size_t size = resource_size(res);
236
237 /*
238 * Make sure the BAR is actually a memory resource, not an IO resource
239 */
240 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
241 pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
242 return NULL;
243 }
244
245 if (write_combine)
246 return ioremap_wc(start, size);
247
248 return ioremap(start, size);
249 }
250
pci_ioremap_bar(struct pci_dev * pdev,int bar)251 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
252 {
253 return __pci_ioremap_resource(pdev, bar, false);
254 }
255 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
256
pci_ioremap_wc_bar(struct pci_dev * pdev,int bar)257 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
258 {
259 return __pci_ioremap_resource(pdev, bar, true);
260 }
261 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
262 #endif
263
264 /**
265 * pci_dev_str_match_path - test if a path string matches a device
266 * @dev: the PCI device to test
267 * @path: string to match the device against
268 * @endptr: pointer to the string after the match
269 *
270 * Test if a string (typically from a kernel parameter) formatted as a
271 * path of device/function addresses matches a PCI device. The string must
272 * be of the form:
273 *
274 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
275 *
276 * A path for a device can be obtained using 'lspci -t'. Using a path
277 * is more robust against bus renumbering than using only a single bus,
278 * device and function address.
279 *
280 * Returns 1 if the string matches the device, 0 if it does not and
281 * a negative error code if it fails to parse the string.
282 */
pci_dev_str_match_path(struct pci_dev * dev,const char * path,const char ** endptr)283 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
284 const char **endptr)
285 {
286 int ret;
287 unsigned int seg, bus, slot, func;
288 char *wpath, *p;
289 char end;
290
291 *endptr = strchrnul(path, ';');
292
293 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
294 if (!wpath)
295 return -ENOMEM;
296
297 while (1) {
298 p = strrchr(wpath, '/');
299 if (!p)
300 break;
301 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
302 if (ret != 2) {
303 ret = -EINVAL;
304 goto free_and_exit;
305 }
306
307 if (dev->devfn != PCI_DEVFN(slot, func)) {
308 ret = 0;
309 goto free_and_exit;
310 }
311
312 /*
313 * Note: we don't need to get a reference to the upstream
314 * bridge because we hold a reference to the top level
315 * device which should hold a reference to the bridge,
316 * and so on.
317 */
318 dev = pci_upstream_bridge(dev);
319 if (!dev) {
320 ret = 0;
321 goto free_and_exit;
322 }
323
324 *p = 0;
325 }
326
327 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
328 &func, &end);
329 if (ret != 4) {
330 seg = 0;
331 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
332 if (ret != 3) {
333 ret = -EINVAL;
334 goto free_and_exit;
335 }
336 }
337
338 ret = (seg == pci_domain_nr(dev->bus) &&
339 bus == dev->bus->number &&
340 dev->devfn == PCI_DEVFN(slot, func));
341
342 free_and_exit:
343 kfree(wpath);
344 return ret;
345 }
346
347 /**
348 * pci_dev_str_match - test if a string matches a device
349 * @dev: the PCI device to test
350 * @p: string to match the device against
351 * @endptr: pointer to the string after the match
352 *
353 * Test if a string (typically from a kernel parameter) matches a specified
354 * PCI device. The string may be of one of the following formats:
355 *
356 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
357 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
358 *
359 * The first format specifies a PCI bus/device/function address which
360 * may change if new hardware is inserted, if motherboard firmware changes,
361 * or due to changes caused in kernel parameters. If the domain is
362 * left unspecified, it is taken to be 0. In order to be robust against
363 * bus renumbering issues, a path of PCI device/function numbers may be used
364 * to address the specific device. The path for a device can be determined
365 * through the use of 'lspci -t'.
366 *
367 * The second format matches devices using IDs in the configuration
368 * space which may match multiple devices in the system. A value of 0
369 * for any field will match all devices. (Note: this differs from
370 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
371 * legacy reasons and convenience so users don't have to specify
372 * FFFFFFFFs on the command line.)
373 *
374 * Returns 1 if the string matches the device, 0 if it does not and
375 * a negative error code if the string cannot be parsed.
376 */
pci_dev_str_match(struct pci_dev * dev,const char * p,const char ** endptr)377 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
378 const char **endptr)
379 {
380 int ret;
381 int count;
382 unsigned short vendor, device, subsystem_vendor, subsystem_device;
383
384 if (strncmp(p, "pci:", 4) == 0) {
385 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
386 p += 4;
387 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
388 &subsystem_vendor, &subsystem_device, &count);
389 if (ret != 4) {
390 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
391 if (ret != 2)
392 return -EINVAL;
393
394 subsystem_vendor = 0;
395 subsystem_device = 0;
396 }
397
398 p += count;
399
400 if ((!vendor || vendor == dev->vendor) &&
401 (!device || device == dev->device) &&
402 (!subsystem_vendor ||
403 subsystem_vendor == dev->subsystem_vendor) &&
404 (!subsystem_device ||
405 subsystem_device == dev->subsystem_device))
406 goto found;
407 } else {
408 /*
409 * PCI Bus, Device, Function IDs are specified
410 * (optionally, may include a path of devfns following it)
411 */
412 ret = pci_dev_str_match_path(dev, p, &p);
413 if (ret < 0)
414 return ret;
415 else if (ret)
416 goto found;
417 }
418
419 *endptr = p;
420 return 0;
421
422 found:
423 *endptr = p;
424 return 1;
425 }
426
__pci_find_next_cap_ttl(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap,int * ttl)427 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
428 u8 pos, int cap, int *ttl)
429 {
430 u8 id;
431 u16 ent;
432
433 pci_bus_read_config_byte(bus, devfn, pos, &pos);
434
435 while ((*ttl)--) {
436 if (pos < 0x40)
437 break;
438 pos &= ~3;
439 pci_bus_read_config_word(bus, devfn, pos, &ent);
440
441 id = ent & 0xff;
442 if (id == 0xff)
443 break;
444 if (id == cap)
445 return pos;
446 pos = (ent >> 8);
447 }
448 return 0;
449 }
450
__pci_find_next_cap(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap)451 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
452 u8 pos, int cap)
453 {
454 int ttl = PCI_FIND_CAP_TTL;
455
456 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
457 }
458
pci_find_next_capability(struct pci_dev * dev,u8 pos,int cap)459 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
460 {
461 return __pci_find_next_cap(dev->bus, dev->devfn,
462 pos + PCI_CAP_LIST_NEXT, cap);
463 }
464 EXPORT_SYMBOL_GPL(pci_find_next_capability);
465
__pci_bus_find_cap_start(struct pci_bus * bus,unsigned int devfn,u8 hdr_type)466 static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
467 unsigned int devfn, u8 hdr_type)
468 {
469 u16 status;
470
471 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
472 if (!(status & PCI_STATUS_CAP_LIST))
473 return 0;
474
475 switch (hdr_type) {
476 case PCI_HEADER_TYPE_NORMAL:
477 case PCI_HEADER_TYPE_BRIDGE:
478 return PCI_CAPABILITY_LIST;
479 case PCI_HEADER_TYPE_CARDBUS:
480 return PCI_CB_CAPABILITY_LIST;
481 }
482
483 return 0;
484 }
485
486 /**
487 * pci_find_capability - query for devices' capabilities
488 * @dev: PCI device to query
489 * @cap: capability code
490 *
491 * Tell if a device supports a given PCI capability.
492 * Returns the address of the requested capability structure within the
493 * device's PCI configuration space or 0 in case the device does not
494 * support it. Possible values for @cap include:
495 *
496 * %PCI_CAP_ID_PM Power Management
497 * %PCI_CAP_ID_AGP Accelerated Graphics Port
498 * %PCI_CAP_ID_VPD Vital Product Data
499 * %PCI_CAP_ID_SLOTID Slot Identification
500 * %PCI_CAP_ID_MSI Message Signalled Interrupts
501 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
502 * %PCI_CAP_ID_PCIX PCI-X
503 * %PCI_CAP_ID_EXP PCI Express
504 */
pci_find_capability(struct pci_dev * dev,int cap)505 u8 pci_find_capability(struct pci_dev *dev, int cap)
506 {
507 u8 pos;
508
509 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
510 if (pos)
511 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
512
513 return pos;
514 }
515 EXPORT_SYMBOL(pci_find_capability);
516
517 /**
518 * pci_bus_find_capability - query for devices' capabilities
519 * @bus: the PCI bus to query
520 * @devfn: PCI device to query
521 * @cap: capability code
522 *
523 * Like pci_find_capability() but works for PCI devices that do not have a
524 * pci_dev structure set up yet.
525 *
526 * Returns the address of the requested capability structure within the
527 * device's PCI configuration space or 0 in case the device does not
528 * support it.
529 */
pci_bus_find_capability(struct pci_bus * bus,unsigned int devfn,int cap)530 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
531 {
532 u8 hdr_type, pos;
533
534 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
535
536 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & PCI_HEADER_TYPE_MASK);
537 if (pos)
538 pos = __pci_find_next_cap(bus, devfn, pos, cap);
539
540 return pos;
541 }
542 EXPORT_SYMBOL(pci_bus_find_capability);
543
544 /**
545 * pci_find_next_ext_capability - Find an extended capability
546 * @dev: PCI device to query
547 * @start: address at which to start looking (0 to start at beginning of list)
548 * @cap: capability code
549 *
550 * Returns the address of the next matching extended capability structure
551 * within the device's PCI configuration space or 0 if the device does
552 * not support it. Some capabilities can occur several times, e.g., the
553 * vendor-specific capability, and this provides a way to find them all.
554 */
pci_find_next_ext_capability(struct pci_dev * dev,u16 start,int cap)555 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
556 {
557 u32 header;
558 int ttl;
559 u16 pos = PCI_CFG_SPACE_SIZE;
560
561 /* minimum 8 bytes per capability */
562 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
563
564 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
565 return 0;
566
567 if (start)
568 pos = start;
569
570 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
571 return 0;
572
573 /*
574 * If we have no capabilities, this is indicated by cap ID,
575 * cap version and next pointer all being 0.
576 */
577 if (header == 0)
578 return 0;
579
580 while (ttl-- > 0) {
581 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
582 return pos;
583
584 pos = PCI_EXT_CAP_NEXT(header);
585 if (pos < PCI_CFG_SPACE_SIZE)
586 break;
587
588 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
589 break;
590 }
591
592 return 0;
593 }
594 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
595
596 /**
597 * pci_find_ext_capability - Find an extended capability
598 * @dev: PCI device to query
599 * @cap: capability code
600 *
601 * Returns the address of the requested extended capability structure
602 * within the device's PCI configuration space or 0 if the device does
603 * not support it. Possible values for @cap include:
604 *
605 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
606 * %PCI_EXT_CAP_ID_VC Virtual Channel
607 * %PCI_EXT_CAP_ID_DSN Device Serial Number
608 * %PCI_EXT_CAP_ID_PWR Power Budgeting
609 */
pci_find_ext_capability(struct pci_dev * dev,int cap)610 u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
611 {
612 return pci_find_next_ext_capability(dev, 0, cap);
613 }
614 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
615
616 /**
617 * pci_get_dsn - Read and return the 8-byte Device Serial Number
618 * @dev: PCI device to query
619 *
620 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
621 * Number.
622 *
623 * Returns the DSN, or zero if the capability does not exist.
624 */
pci_get_dsn(struct pci_dev * dev)625 u64 pci_get_dsn(struct pci_dev *dev)
626 {
627 u32 dword;
628 u64 dsn;
629 int pos;
630
631 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
632 if (!pos)
633 return 0;
634
635 /*
636 * The Device Serial Number is two dwords offset 4 bytes from the
637 * capability position. The specification says that the first dword is
638 * the lower half, and the second dword is the upper half.
639 */
640 pos += 4;
641 pci_read_config_dword(dev, pos, &dword);
642 dsn = (u64)dword;
643 pci_read_config_dword(dev, pos + 4, &dword);
644 dsn |= ((u64)dword) << 32;
645
646 return dsn;
647 }
648 EXPORT_SYMBOL_GPL(pci_get_dsn);
649
__pci_find_next_ht_cap(struct pci_dev * dev,u8 pos,int ht_cap)650 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
651 {
652 int rc, ttl = PCI_FIND_CAP_TTL;
653 u8 cap, mask;
654
655 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
656 mask = HT_3BIT_CAP_MASK;
657 else
658 mask = HT_5BIT_CAP_MASK;
659
660 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
661 PCI_CAP_ID_HT, &ttl);
662 while (pos) {
663 rc = pci_read_config_byte(dev, pos + 3, &cap);
664 if (rc != PCIBIOS_SUCCESSFUL)
665 return 0;
666
667 if ((cap & mask) == ht_cap)
668 return pos;
669
670 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
671 pos + PCI_CAP_LIST_NEXT,
672 PCI_CAP_ID_HT, &ttl);
673 }
674
675 return 0;
676 }
677
678 /**
679 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
680 * @dev: PCI device to query
681 * @pos: Position from which to continue searching
682 * @ht_cap: HyperTransport capability code
683 *
684 * To be used in conjunction with pci_find_ht_capability() to search for
685 * all capabilities matching @ht_cap. @pos should always be a value returned
686 * from pci_find_ht_capability().
687 *
688 * NB. To be 100% safe against broken PCI devices, the caller should take
689 * steps to avoid an infinite loop.
690 */
pci_find_next_ht_capability(struct pci_dev * dev,u8 pos,int ht_cap)691 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
692 {
693 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
694 }
695 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
696
697 /**
698 * pci_find_ht_capability - query a device's HyperTransport capabilities
699 * @dev: PCI device to query
700 * @ht_cap: HyperTransport capability code
701 *
702 * Tell if a device supports a given HyperTransport capability.
703 * Returns an address within the device's PCI configuration space
704 * or 0 in case the device does not support the request capability.
705 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
706 * which has a HyperTransport capability matching @ht_cap.
707 */
pci_find_ht_capability(struct pci_dev * dev,int ht_cap)708 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
709 {
710 u8 pos;
711
712 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
713 if (pos)
714 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
715
716 return pos;
717 }
718 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
719
720 /**
721 * pci_find_vsec_capability - Find a vendor-specific extended capability
722 * @dev: PCI device to query
723 * @vendor: Vendor ID for which capability is defined
724 * @cap: Vendor-specific capability ID
725 *
726 * If @dev has Vendor ID @vendor, search for a VSEC capability with
727 * VSEC ID @cap. If found, return the capability offset in
728 * config space; otherwise return 0.
729 */
pci_find_vsec_capability(struct pci_dev * dev,u16 vendor,int cap)730 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
731 {
732 u16 vsec = 0;
733 u32 header;
734 int ret;
735
736 if (vendor != dev->vendor)
737 return 0;
738
739 while ((vsec = pci_find_next_ext_capability(dev, vsec,
740 PCI_EXT_CAP_ID_VNDR))) {
741 ret = pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, &header);
742 if (ret != PCIBIOS_SUCCESSFUL)
743 continue;
744
745 if (PCI_VNDR_HEADER_ID(header) == cap)
746 return vsec;
747 }
748
749 return 0;
750 }
751 EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
752
753 /**
754 * pci_find_dvsec_capability - Find DVSEC for vendor
755 * @dev: PCI device to query
756 * @vendor: Vendor ID to match for the DVSEC
757 * @dvsec: Designated Vendor-specific capability ID
758 *
759 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
760 * offset in config space; otherwise return 0.
761 */
pci_find_dvsec_capability(struct pci_dev * dev,u16 vendor,u16 dvsec)762 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
763 {
764 int pos;
765
766 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
767 if (!pos)
768 return 0;
769
770 while (pos) {
771 u16 v, id;
772
773 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
774 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
775 if (vendor == v && dvsec == id)
776 return pos;
777
778 pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
779 }
780
781 return 0;
782 }
783 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
784
785 /**
786 * pci_find_parent_resource - return resource region of parent bus of given
787 * region
788 * @dev: PCI device structure contains resources to be searched
789 * @res: child resource record for which parent is sought
790 *
791 * For given resource region of given device, return the resource region of
792 * parent bus the given region is contained in.
793 */
pci_find_parent_resource(const struct pci_dev * dev,struct resource * res)794 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
795 struct resource *res)
796 {
797 const struct pci_bus *bus = dev->bus;
798 struct resource *r;
799
800 pci_bus_for_each_resource(bus, r) {
801 if (!r)
802 continue;
803 if (resource_contains(r, res)) {
804
805 /*
806 * If the window is prefetchable but the BAR is
807 * not, the allocator made a mistake.
808 */
809 if (r->flags & IORESOURCE_PREFETCH &&
810 !(res->flags & IORESOURCE_PREFETCH))
811 return NULL;
812
813 /*
814 * If we're below a transparent bridge, there may
815 * be both a positively-decoded aperture and a
816 * subtractively-decoded region that contain the BAR.
817 * We want the positively-decoded one, so this depends
818 * on pci_bus_for_each_resource() giving us those
819 * first.
820 */
821 return r;
822 }
823 }
824 return NULL;
825 }
826 EXPORT_SYMBOL(pci_find_parent_resource);
827
828 /**
829 * pci_find_resource - Return matching PCI device resource
830 * @dev: PCI device to query
831 * @res: Resource to look for
832 *
833 * Goes over standard PCI resources (BARs) and checks if the given resource
834 * is partially or fully contained in any of them. In that case the
835 * matching resource is returned, %NULL otherwise.
836 */
pci_find_resource(struct pci_dev * dev,struct resource * res)837 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
838 {
839 int i;
840
841 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
842 struct resource *r = &dev->resource[i];
843
844 if (r->start && resource_contains(r, res))
845 return r;
846 }
847
848 return NULL;
849 }
850 EXPORT_SYMBOL(pci_find_resource);
851
852 /**
853 * pci_resource_name - Return the name of the PCI resource
854 * @dev: PCI device to query
855 * @i: index of the resource
856 *
857 * Return the standard PCI resource (BAR) name according to their index.
858 */
pci_resource_name(struct pci_dev * dev,unsigned int i)859 const char *pci_resource_name(struct pci_dev *dev, unsigned int i)
860 {
861 static const char * const bar_name[] = {
862 "BAR 0",
863 "BAR 1",
864 "BAR 2",
865 "BAR 3",
866 "BAR 4",
867 "BAR 5",
868 "ROM",
869 #ifdef CONFIG_PCI_IOV
870 "VF BAR 0",
871 "VF BAR 1",
872 "VF BAR 2",
873 "VF BAR 3",
874 "VF BAR 4",
875 "VF BAR 5",
876 #endif
877 "bridge window", /* "io" included in %pR */
878 "bridge window", /* "mem" included in %pR */
879 "bridge window", /* "mem pref" included in %pR */
880 };
881 static const char * const cardbus_name[] = {
882 "BAR 1",
883 "unknown",
884 "unknown",
885 "unknown",
886 "unknown",
887 "unknown",
888 #ifdef CONFIG_PCI_IOV
889 "unknown",
890 "unknown",
891 "unknown",
892 "unknown",
893 "unknown",
894 "unknown",
895 #endif
896 "CardBus bridge window 0", /* I/O */
897 "CardBus bridge window 1", /* I/O */
898 "CardBus bridge window 0", /* mem */
899 "CardBus bridge window 1", /* mem */
900 };
901
902 if (dev->hdr_type == PCI_HEADER_TYPE_CARDBUS &&
903 i < ARRAY_SIZE(cardbus_name))
904 return cardbus_name[i];
905
906 if (i < ARRAY_SIZE(bar_name))
907 return bar_name[i];
908
909 return "unknown";
910 }
911
912 /**
913 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
914 * @dev: the PCI device to operate on
915 * @pos: config space offset of status word
916 * @mask: mask of bit(s) to care about in status word
917 *
918 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
919 */
pci_wait_for_pending(struct pci_dev * dev,int pos,u16 mask)920 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
921 {
922 int i;
923
924 /* Wait for Transaction Pending bit clean */
925 for (i = 0; i < 4; i++) {
926 u16 status;
927 if (i)
928 msleep((1 << (i - 1)) * 100);
929
930 pci_read_config_word(dev, pos, &status);
931 if (!(status & mask))
932 return 1;
933 }
934
935 return 0;
936 }
937
938 static int pci_acs_enable;
939
940 /**
941 * pci_request_acs - ask for ACS to be enabled if supported
942 */
pci_request_acs(void)943 void pci_request_acs(void)
944 {
945 pci_acs_enable = 1;
946 }
947
948 static const char *disable_acs_redir_param;
949 static const char *config_acs_param;
950
951 struct pci_acs {
952 u16 cap;
953 u16 ctrl;
954 u16 fw_ctrl;
955 };
956
__pci_config_acs(struct pci_dev * dev,struct pci_acs * caps,const char * p,u16 mask,u16 flags)957 static void __pci_config_acs(struct pci_dev *dev, struct pci_acs *caps,
958 const char *p, u16 mask, u16 flags)
959 {
960 char *delimit;
961 int ret = 0;
962
963 if (!p)
964 return;
965
966 while (*p) {
967 if (!mask) {
968 /* Check for ACS flags */
969 delimit = strstr(p, "@");
970 if (delimit) {
971 int end;
972 u32 shift = 0;
973
974 end = delimit - p - 1;
975
976 while (end > -1) {
977 if (*(p + end) == '0') {
978 mask |= 1 << shift;
979 shift++;
980 end--;
981 } else if (*(p + end) == '1') {
982 mask |= 1 << shift;
983 flags |= 1 << shift;
984 shift++;
985 end--;
986 } else if ((*(p + end) == 'x') || (*(p + end) == 'X')) {
987 shift++;
988 end--;
989 } else {
990 pci_err(dev, "Invalid ACS flags... Ignoring\n");
991 return;
992 }
993 }
994 p = delimit + 1;
995 } else {
996 pci_err(dev, "ACS Flags missing\n");
997 return;
998 }
999 }
1000
1001 if (mask & ~(PCI_ACS_SV | PCI_ACS_TB | PCI_ACS_RR | PCI_ACS_CR |
1002 PCI_ACS_UF | PCI_ACS_EC | PCI_ACS_DT)) {
1003 pci_err(dev, "Invalid ACS flags specified\n");
1004 return;
1005 }
1006
1007 ret = pci_dev_str_match(dev, p, &p);
1008 if (ret < 0) {
1009 pr_info_once("PCI: Can't parse ACS command line parameter\n");
1010 break;
1011 } else if (ret == 1) {
1012 /* Found a match */
1013 break;
1014 }
1015
1016 if (*p != ';' && *p != ',') {
1017 /* End of param or invalid format */
1018 break;
1019 }
1020 p++;
1021 }
1022
1023 if (ret != 1)
1024 return;
1025
1026 if (!pci_dev_specific_disable_acs_redir(dev))
1027 return;
1028
1029 pci_dbg(dev, "ACS mask = %#06x\n", mask);
1030 pci_dbg(dev, "ACS flags = %#06x\n", flags);
1031
1032 /* If mask is 0 then we copy the bit from the firmware setting. */
1033 caps->ctrl = (caps->ctrl & ~mask) | (caps->fw_ctrl & mask);
1034 caps->ctrl |= flags;
1035
1036 pci_info(dev, "Configured ACS to %#06x\n", caps->ctrl);
1037 }
1038
1039 /**
1040 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
1041 * @dev: the PCI device
1042 * @caps: default ACS controls
1043 */
pci_std_enable_acs(struct pci_dev * dev,struct pci_acs * caps)1044 static void pci_std_enable_acs(struct pci_dev *dev, struct pci_acs *caps)
1045 {
1046 /* Source Validation */
1047 caps->ctrl |= (caps->cap & PCI_ACS_SV);
1048
1049 /* P2P Request Redirect */
1050 caps->ctrl |= (caps->cap & PCI_ACS_RR);
1051
1052 /* P2P Completion Redirect */
1053 caps->ctrl |= (caps->cap & PCI_ACS_CR);
1054
1055 /* Upstream Forwarding */
1056 caps->ctrl |= (caps->cap & PCI_ACS_UF);
1057
1058 /* Enable Translation Blocking for external devices and noats */
1059 if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
1060 caps->ctrl |= (caps->cap & PCI_ACS_TB);
1061 }
1062
1063 /**
1064 * pci_enable_acs - enable ACS if hardware support it
1065 * @dev: the PCI device
1066 */
pci_enable_acs(struct pci_dev * dev)1067 static void pci_enable_acs(struct pci_dev *dev)
1068 {
1069 struct pci_acs caps;
1070 bool enable_acs = false;
1071 int pos;
1072
1073 /* If an iommu is present we start with kernel default caps */
1074 if (pci_acs_enable) {
1075 if (pci_dev_specific_enable_acs(dev))
1076 enable_acs = true;
1077 }
1078
1079 pos = dev->acs_cap;
1080 if (!pos)
1081 return;
1082
1083 pci_read_config_word(dev, pos + PCI_ACS_CAP, &caps.cap);
1084 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &caps.ctrl);
1085 caps.fw_ctrl = caps.ctrl;
1086
1087 if (enable_acs)
1088 pci_std_enable_acs(dev, &caps);
1089
1090 /*
1091 * Always apply caps from the command line, even if there is no iommu.
1092 * Trust that the admin has a reason to change the ACS settings.
1093 */
1094 __pci_config_acs(dev, &caps, disable_acs_redir_param,
1095 PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC,
1096 ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC));
1097 __pci_config_acs(dev, &caps, config_acs_param, 0, 0);
1098
1099 pci_write_config_word(dev, pos + PCI_ACS_CTRL, caps.ctrl);
1100 }
1101
1102 /**
1103 * pcie_read_tlp_log - read TLP Header Log
1104 * @dev: PCIe device
1105 * @where: PCI Config offset of TLP Header Log
1106 * @tlp_log: TLP Log structure to fill
1107 *
1108 * Fill @tlp_log from TLP Header Log registers, e.g., AER or DPC.
1109 *
1110 * Return: 0 on success and filled TLP Log structure, <0 on error.
1111 */
pcie_read_tlp_log(struct pci_dev * dev,int where,struct pcie_tlp_log * tlp_log)1112 int pcie_read_tlp_log(struct pci_dev *dev, int where,
1113 struct pcie_tlp_log *tlp_log)
1114 {
1115 int i, ret;
1116
1117 memset(tlp_log, 0, sizeof(*tlp_log));
1118
1119 for (i = 0; i < 4; i++) {
1120 ret = pci_read_config_dword(dev, where + i * 4,
1121 &tlp_log->dw[i]);
1122 if (ret)
1123 return pcibios_err_to_errno(ret);
1124 }
1125
1126 return 0;
1127 }
1128 EXPORT_SYMBOL_GPL(pcie_read_tlp_log);
1129
1130 /**
1131 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
1132 * @dev: PCI device to have its BARs restored
1133 *
1134 * Restore the BAR values for a given device, so as to make it
1135 * accessible by its driver.
1136 */
pci_restore_bars(struct pci_dev * dev)1137 static void pci_restore_bars(struct pci_dev *dev)
1138 {
1139 int i;
1140
1141 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1142 pci_update_resource(dev, i);
1143 }
1144
platform_pci_power_manageable(struct pci_dev * dev)1145 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1146 {
1147 if (pci_use_mid_pm())
1148 return true;
1149
1150 return acpi_pci_power_manageable(dev);
1151 }
1152
platform_pci_set_power_state(struct pci_dev * dev,pci_power_t t)1153 static inline int platform_pci_set_power_state(struct pci_dev *dev,
1154 pci_power_t t)
1155 {
1156 if (pci_use_mid_pm())
1157 return mid_pci_set_power_state(dev, t);
1158
1159 return acpi_pci_set_power_state(dev, t);
1160 }
1161
platform_pci_get_power_state(struct pci_dev * dev)1162 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1163 {
1164 if (pci_use_mid_pm())
1165 return mid_pci_get_power_state(dev);
1166
1167 return acpi_pci_get_power_state(dev);
1168 }
1169
platform_pci_refresh_power_state(struct pci_dev * dev)1170 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1171 {
1172 if (!pci_use_mid_pm())
1173 acpi_pci_refresh_power_state(dev);
1174 }
1175
platform_pci_choose_state(struct pci_dev * dev)1176 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1177 {
1178 if (pci_use_mid_pm())
1179 return PCI_POWER_ERROR;
1180
1181 return acpi_pci_choose_state(dev);
1182 }
1183
platform_pci_set_wakeup(struct pci_dev * dev,bool enable)1184 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1185 {
1186 if (pci_use_mid_pm())
1187 return PCI_POWER_ERROR;
1188
1189 return acpi_pci_wakeup(dev, enable);
1190 }
1191
platform_pci_need_resume(struct pci_dev * dev)1192 static inline bool platform_pci_need_resume(struct pci_dev *dev)
1193 {
1194 if (pci_use_mid_pm())
1195 return false;
1196
1197 return acpi_pci_need_resume(dev);
1198 }
1199
platform_pci_bridge_d3(struct pci_dev * dev)1200 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1201 {
1202 if (pci_use_mid_pm())
1203 return false;
1204
1205 return acpi_pci_bridge_d3(dev);
1206 }
1207
1208 /**
1209 * pci_update_current_state - Read power state of given device and cache it
1210 * @dev: PCI device to handle.
1211 * @state: State to cache in case the device doesn't have the PM capability
1212 *
1213 * The power state is read from the PMCSR register, which however is
1214 * inaccessible in D3cold. The platform firmware is therefore queried first
1215 * to detect accessibility of the register. In case the platform firmware
1216 * reports an incorrect state or the device isn't power manageable by the
1217 * platform at all, we try to detect D3cold by testing accessibility of the
1218 * vendor ID in config space.
1219 */
pci_update_current_state(struct pci_dev * dev,pci_power_t state)1220 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1221 {
1222 if (platform_pci_get_power_state(dev) == PCI_D3cold) {
1223 dev->current_state = PCI_D3cold;
1224 } else if (dev->pm_cap) {
1225 u16 pmcsr;
1226
1227 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1228 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1229 dev->current_state = PCI_D3cold;
1230 return;
1231 }
1232 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1233 } else {
1234 dev->current_state = state;
1235 }
1236 }
1237
1238 /**
1239 * pci_refresh_power_state - Refresh the given device's power state data
1240 * @dev: Target PCI device.
1241 *
1242 * Ask the platform to refresh the devices power state information and invoke
1243 * pci_update_current_state() to update its current PCI power state.
1244 */
pci_refresh_power_state(struct pci_dev * dev)1245 void pci_refresh_power_state(struct pci_dev *dev)
1246 {
1247 platform_pci_refresh_power_state(dev);
1248 pci_update_current_state(dev, dev->current_state);
1249 }
1250
1251 /**
1252 * pci_platform_power_transition - Use platform to change device power state
1253 * @dev: PCI device to handle.
1254 * @state: State to put the device into.
1255 */
pci_platform_power_transition(struct pci_dev * dev,pci_power_t state)1256 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1257 {
1258 int error;
1259
1260 error = platform_pci_set_power_state(dev, state);
1261 if (!error)
1262 pci_update_current_state(dev, state);
1263 else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1264 dev->current_state = PCI_D0;
1265
1266 return error;
1267 }
1268 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1269
pci_resume_one(struct pci_dev * pci_dev,void * ign)1270 static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1271 {
1272 pm_request_resume(&pci_dev->dev);
1273 return 0;
1274 }
1275
1276 /**
1277 * pci_resume_bus - Walk given bus and runtime resume devices on it
1278 * @bus: Top bus of the subtree to walk.
1279 */
pci_resume_bus(struct pci_bus * bus)1280 void pci_resume_bus(struct pci_bus *bus)
1281 {
1282 if (bus)
1283 pci_walk_bus(bus, pci_resume_one, NULL);
1284 }
1285
pci_dev_wait(struct pci_dev * dev,char * reset_type,int timeout)1286 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1287 {
1288 int delay = 1;
1289 bool retrain = false;
1290 struct pci_dev *root, *bridge;
1291
1292 root = pcie_find_root_port(dev);
1293
1294 if (pci_is_pcie(dev)) {
1295 bridge = pci_upstream_bridge(dev);
1296 if (bridge)
1297 retrain = true;
1298 }
1299
1300 /*
1301 * The caller has already waited long enough after a reset that the
1302 * device should respond to config requests, but it may respond
1303 * with Request Retry Status (RRS) if it needs more time to
1304 * initialize.
1305 *
1306 * If the device is below a Root Port with Configuration RRS
1307 * Software Visibility enabled, reading the Vendor ID returns a
1308 * special data value if the device responded with RRS. Read the
1309 * Vendor ID until we get non-RRS status.
1310 *
1311 * If there's no Root Port or Configuration RRS Software Visibility
1312 * is not enabled, the device may still respond with RRS, but
1313 * hardware may retry the config request. If no retries receive
1314 * Successful Completion, hardware generally synthesizes ~0
1315 * (PCI_ERROR_RESPONSE) data to complete the read. Reading Vendor
1316 * ID for VFs and non-existent devices also returns ~0, so read the
1317 * Command register until it returns something other than ~0.
1318 */
1319 for (;;) {
1320 u32 id;
1321
1322 if (pci_dev_is_disconnected(dev)) {
1323 pci_dbg(dev, "disconnected; not waiting\n");
1324 return -ENOTTY;
1325 }
1326
1327 if (root && root->config_rrs_sv) {
1328 pci_read_config_dword(dev, PCI_VENDOR_ID, &id);
1329 if (!pci_bus_rrs_vendor_id(id))
1330 break;
1331 } else {
1332 pci_read_config_dword(dev, PCI_COMMAND, &id);
1333 if (!PCI_POSSIBLE_ERROR(id))
1334 break;
1335 }
1336
1337 if (delay > timeout) {
1338 pci_warn(dev, "not ready %dms after %s; giving up\n",
1339 delay - 1, reset_type);
1340 return -ENOTTY;
1341 }
1342
1343 if (delay > PCI_RESET_WAIT) {
1344 if (retrain) {
1345 retrain = false;
1346 if (pcie_failed_link_retrain(bridge) == 0) {
1347 delay = 1;
1348 continue;
1349 }
1350 }
1351 pci_info(dev, "not ready %dms after %s; waiting\n",
1352 delay - 1, reset_type);
1353 }
1354
1355 msleep(delay);
1356 delay *= 2;
1357 }
1358
1359 if (delay > PCI_RESET_WAIT)
1360 pci_info(dev, "ready %dms after %s\n", delay - 1,
1361 reset_type);
1362 else
1363 pci_dbg(dev, "ready %dms after %s\n", delay - 1,
1364 reset_type);
1365
1366 return 0;
1367 }
1368
1369 /**
1370 * pci_power_up - Put the given device into D0
1371 * @dev: PCI device to power up
1372 *
1373 * On success, return 0 or 1, depending on whether or not it is necessary to
1374 * restore the device's BARs subsequently (1 is returned in that case).
1375 *
1376 * On failure, return a negative error code. Always return failure if @dev
1377 * lacks a Power Management Capability, even if the platform was able to
1378 * put the device in D0 via non-PCI means.
1379 */
pci_power_up(struct pci_dev * dev)1380 int pci_power_up(struct pci_dev *dev)
1381 {
1382 bool need_restore;
1383 pci_power_t state;
1384 u16 pmcsr;
1385
1386 platform_pci_set_power_state(dev, PCI_D0);
1387
1388 if (!dev->pm_cap) {
1389 state = platform_pci_get_power_state(dev);
1390 if (state == PCI_UNKNOWN)
1391 dev->current_state = PCI_D0;
1392 else
1393 dev->current_state = state;
1394
1395 return -EIO;
1396 }
1397
1398 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1399 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1400 pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1401 pci_power_name(dev->current_state));
1402 dev->current_state = PCI_D3cold;
1403 return -EIO;
1404 }
1405
1406 state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1407
1408 need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1409 !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1410
1411 if (state == PCI_D0)
1412 goto end;
1413
1414 /*
1415 * Force the entire word to 0. This doesn't affect PME_Status, disables
1416 * PME_En, and sets PowerState to 0.
1417 */
1418 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1419
1420 /* Mandatory transition delays; see PCI PM 1.2. */
1421 if (state == PCI_D3hot)
1422 pci_dev_d3_sleep(dev);
1423 else if (state == PCI_D2)
1424 udelay(PCI_PM_D2_DELAY);
1425
1426 end:
1427 dev->current_state = PCI_D0;
1428 if (need_restore)
1429 return 1;
1430
1431 return 0;
1432 }
1433
1434 /**
1435 * pci_set_full_power_state - Put a PCI device into D0 and update its state
1436 * @dev: PCI device to power up
1437 * @locked: whether pci_bus_sem is held
1438 *
1439 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1440 * to confirm the state change, restore its BARs if they might be lost and
1441 * reconfigure ASPM in accordance with the new power state.
1442 *
1443 * If pci_restore_state() is going to be called right after a power state change
1444 * to D0, it is more efficient to use pci_power_up() directly instead of this
1445 * function.
1446 */
pci_set_full_power_state(struct pci_dev * dev,bool locked)1447 static int pci_set_full_power_state(struct pci_dev *dev, bool locked)
1448 {
1449 u16 pmcsr;
1450 int ret;
1451
1452 ret = pci_power_up(dev);
1453 if (ret < 0) {
1454 if (dev->current_state == PCI_D0)
1455 return 0;
1456
1457 return ret;
1458 }
1459
1460 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1461 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1462 if (dev->current_state != PCI_D0) {
1463 pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1464 pci_power_name(dev->current_state));
1465 } else if (ret > 0) {
1466 /*
1467 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1468 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1469 * from D3hot to D0 _may_ perform an internal reset, thereby
1470 * going to "D0 Uninitialized" rather than "D0 Initialized".
1471 * For example, at least some versions of the 3c905B and the
1472 * 3c556B exhibit this behaviour.
1473 *
1474 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1475 * devices in a D3hot state at boot. Consequently, we need to
1476 * restore at least the BARs so that the device will be
1477 * accessible to its driver.
1478 */
1479 pci_restore_bars(dev);
1480 }
1481
1482 if (dev->bus->self)
1483 pcie_aspm_pm_state_change(dev->bus->self, locked);
1484
1485 return 0;
1486 }
1487
1488 /**
1489 * __pci_dev_set_current_state - Set current state of a PCI device
1490 * @dev: Device to handle
1491 * @data: pointer to state to be set
1492 */
__pci_dev_set_current_state(struct pci_dev * dev,void * data)1493 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1494 {
1495 pci_power_t state = *(pci_power_t *)data;
1496
1497 dev->current_state = state;
1498 return 0;
1499 }
1500
1501 /**
1502 * pci_bus_set_current_state - Walk given bus and set current state of devices
1503 * @bus: Top bus of the subtree to walk.
1504 * @state: state to be set
1505 */
pci_bus_set_current_state(struct pci_bus * bus,pci_power_t state)1506 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1507 {
1508 if (bus)
1509 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1510 }
1511
__pci_bus_set_current_state(struct pci_bus * bus,pci_power_t state,bool locked)1512 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state, bool locked)
1513 {
1514 if (!bus)
1515 return;
1516
1517 if (locked)
1518 pci_walk_bus_locked(bus, __pci_dev_set_current_state, &state);
1519 else
1520 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1521 }
1522
1523 /**
1524 * pci_set_low_power_state - Put a PCI device into a low-power state.
1525 * @dev: PCI device to handle.
1526 * @state: PCI power state (D1, D2, D3hot) to put the device into.
1527 * @locked: whether pci_bus_sem is held
1528 *
1529 * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1530 *
1531 * RETURN VALUE:
1532 * -EINVAL if the requested state is invalid.
1533 * -EIO if device does not support PCI PM or its PM capabilities register has a
1534 * wrong version, or device doesn't support the requested state.
1535 * 0 if device already is in the requested state.
1536 * 0 if device's power state has been successfully changed.
1537 */
pci_set_low_power_state(struct pci_dev * dev,pci_power_t state,bool locked)1538 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1539 {
1540 u16 pmcsr;
1541
1542 if (!dev->pm_cap)
1543 return -EIO;
1544
1545 /*
1546 * Validate transition: We can enter D0 from any state, but if
1547 * we're already in a low-power state, we can only go deeper. E.g.,
1548 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1549 * we'd have to go from D3 to D0, then to D1.
1550 */
1551 if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1552 pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1553 pci_power_name(dev->current_state),
1554 pci_power_name(state));
1555 return -EINVAL;
1556 }
1557
1558 /* Check if this device supports the desired state */
1559 if ((state == PCI_D1 && !dev->d1_support)
1560 || (state == PCI_D2 && !dev->d2_support))
1561 return -EIO;
1562
1563 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1564 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1565 pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1566 pci_power_name(dev->current_state),
1567 pci_power_name(state));
1568 dev->current_state = PCI_D3cold;
1569 return -EIO;
1570 }
1571
1572 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1573 pmcsr |= state;
1574
1575 /* Enter specified state */
1576 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1577
1578 /* Mandatory power management transition delays; see PCI PM 1.2. */
1579 if (state == PCI_D3hot)
1580 pci_dev_d3_sleep(dev);
1581 else if (state == PCI_D2)
1582 udelay(PCI_PM_D2_DELAY);
1583
1584 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1585 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1586 if (dev->current_state != state)
1587 pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1588 pci_power_name(dev->current_state),
1589 pci_power_name(state));
1590
1591 if (dev->bus->self)
1592 pcie_aspm_pm_state_change(dev->bus->self, locked);
1593
1594 return 0;
1595 }
1596
__pci_set_power_state(struct pci_dev * dev,pci_power_t state,bool locked)1597 static int __pci_set_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1598 {
1599 int error;
1600
1601 /* Bound the state we're entering */
1602 if (state > PCI_D3cold)
1603 state = PCI_D3cold;
1604 else if (state < PCI_D0)
1605 state = PCI_D0;
1606 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1607
1608 /*
1609 * If the device or the parent bridge do not support PCI
1610 * PM, ignore the request if we're doing anything other
1611 * than putting it into D0 (which would only happen on
1612 * boot).
1613 */
1614 return 0;
1615
1616 /* Check if we're already there */
1617 if (dev->current_state == state)
1618 return 0;
1619
1620 if (state == PCI_D0)
1621 return pci_set_full_power_state(dev, locked);
1622
1623 /*
1624 * This device is quirked not to be put into D3, so don't put it in
1625 * D3
1626 */
1627 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1628 return 0;
1629
1630 if (state == PCI_D3cold) {
1631 /*
1632 * To put the device in D3cold, put it into D3hot in the native
1633 * way, then put it into D3cold using platform ops.
1634 */
1635 error = pci_set_low_power_state(dev, PCI_D3hot, locked);
1636
1637 if (pci_platform_power_transition(dev, PCI_D3cold))
1638 return error;
1639
1640 /* Powering off a bridge may power off the whole hierarchy */
1641 if (dev->current_state == PCI_D3cold)
1642 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold, locked);
1643 } else {
1644 error = pci_set_low_power_state(dev, state, locked);
1645
1646 if (pci_platform_power_transition(dev, state))
1647 return error;
1648 }
1649
1650 return 0;
1651 }
1652
1653 /**
1654 * pci_set_power_state - Set the power state of a PCI device
1655 * @dev: PCI device to handle.
1656 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1657 *
1658 * Transition a device to a new power state, using the platform firmware and/or
1659 * the device's PCI PM registers.
1660 *
1661 * RETURN VALUE:
1662 * -EINVAL if the requested state is invalid.
1663 * -EIO if device does not support PCI PM or its PM capabilities register has a
1664 * wrong version, or device doesn't support the requested state.
1665 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1666 * 0 if device already is in the requested state.
1667 * 0 if the transition is to D3 but D3 is not supported.
1668 * 0 if device's power state has been successfully changed.
1669 */
pci_set_power_state(struct pci_dev * dev,pci_power_t state)1670 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1671 {
1672 return __pci_set_power_state(dev, state, false);
1673 }
1674 EXPORT_SYMBOL(pci_set_power_state);
1675
pci_set_power_state_locked(struct pci_dev * dev,pci_power_t state)1676 int pci_set_power_state_locked(struct pci_dev *dev, pci_power_t state)
1677 {
1678 lockdep_assert_held(&pci_bus_sem);
1679
1680 return __pci_set_power_state(dev, state, true);
1681 }
1682 EXPORT_SYMBOL(pci_set_power_state_locked);
1683
1684 #define PCI_EXP_SAVE_REGS 7
1685
_pci_find_saved_cap(struct pci_dev * pci_dev,u16 cap,bool extended)1686 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1687 u16 cap, bool extended)
1688 {
1689 struct pci_cap_saved_state *tmp;
1690
1691 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1692 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1693 return tmp;
1694 }
1695 return NULL;
1696 }
1697
pci_find_saved_cap(struct pci_dev * dev,char cap)1698 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1699 {
1700 return _pci_find_saved_cap(dev, cap, false);
1701 }
1702
pci_find_saved_ext_cap(struct pci_dev * dev,u16 cap)1703 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1704 {
1705 return _pci_find_saved_cap(dev, cap, true);
1706 }
1707
pci_save_pcie_state(struct pci_dev * dev)1708 static int pci_save_pcie_state(struct pci_dev *dev)
1709 {
1710 int i = 0;
1711 struct pci_cap_saved_state *save_state;
1712 u16 *cap;
1713
1714 if (!pci_is_pcie(dev))
1715 return 0;
1716
1717 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1718 if (!save_state) {
1719 pci_err(dev, "buffer not found in %s\n", __func__);
1720 return -ENOMEM;
1721 }
1722
1723 cap = (u16 *)&save_state->cap.data[0];
1724 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1725 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1726 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1727 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1728 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1729 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1730 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1731
1732 pci_save_aspm_l1ss_state(dev);
1733 pci_save_ltr_state(dev);
1734
1735 return 0;
1736 }
1737
pci_restore_pcie_state(struct pci_dev * dev)1738 static void pci_restore_pcie_state(struct pci_dev *dev)
1739 {
1740 int i = 0;
1741 struct pci_cap_saved_state *save_state;
1742 u16 *cap;
1743
1744 /*
1745 * Restore max latencies (in the LTR capability) before enabling
1746 * LTR itself in PCI_EXP_DEVCTL2.
1747 */
1748 pci_restore_ltr_state(dev);
1749 pci_restore_aspm_l1ss_state(dev);
1750
1751 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1752 if (!save_state)
1753 return;
1754
1755 /*
1756 * Downstream ports reset the LTR enable bit when link goes down.
1757 * Check and re-configure the bit here before restoring device.
1758 * PCIe r5.0, sec 7.5.3.16.
1759 */
1760 pci_bridge_reconfigure_ltr(dev);
1761
1762 cap = (u16 *)&save_state->cap.data[0];
1763 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1764 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1765 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1766 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1767 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1768 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1769 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1770 }
1771
pci_save_pcix_state(struct pci_dev * dev)1772 static int pci_save_pcix_state(struct pci_dev *dev)
1773 {
1774 int pos;
1775 struct pci_cap_saved_state *save_state;
1776
1777 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1778 if (!pos)
1779 return 0;
1780
1781 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1782 if (!save_state) {
1783 pci_err(dev, "buffer not found in %s\n", __func__);
1784 return -ENOMEM;
1785 }
1786
1787 pci_read_config_word(dev, pos + PCI_X_CMD,
1788 (u16 *)save_state->cap.data);
1789
1790 return 0;
1791 }
1792
pci_restore_pcix_state(struct pci_dev * dev)1793 static void pci_restore_pcix_state(struct pci_dev *dev)
1794 {
1795 int i = 0, pos;
1796 struct pci_cap_saved_state *save_state;
1797 u16 *cap;
1798
1799 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1800 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1801 if (!save_state || !pos)
1802 return;
1803 cap = (u16 *)&save_state->cap.data[0];
1804
1805 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1806 }
1807
1808 /**
1809 * pci_save_state - save the PCI configuration space of a device before
1810 * suspending
1811 * @dev: PCI device that we're dealing with
1812 */
pci_save_state(struct pci_dev * dev)1813 int pci_save_state(struct pci_dev *dev)
1814 {
1815 int i;
1816 /* XXX: 100% dword access ok here? */
1817 for (i = 0; i < 16; i++) {
1818 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1819 pci_dbg(dev, "save config %#04x: %#010x\n",
1820 i * 4, dev->saved_config_space[i]);
1821 }
1822 dev->state_saved = true;
1823
1824 i = pci_save_pcie_state(dev);
1825 if (i != 0)
1826 return i;
1827
1828 i = pci_save_pcix_state(dev);
1829 if (i != 0)
1830 return i;
1831
1832 pci_save_dpc_state(dev);
1833 pci_save_aer_state(dev);
1834 pci_save_ptm_state(dev);
1835 return pci_save_vc_state(dev);
1836 }
1837 EXPORT_SYMBOL(pci_save_state);
1838
pci_restore_config_dword(struct pci_dev * pdev,int offset,u32 saved_val,int retry,bool force)1839 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1840 u32 saved_val, int retry, bool force)
1841 {
1842 u32 val;
1843
1844 pci_read_config_dword(pdev, offset, &val);
1845 if (!force && val == saved_val)
1846 return;
1847
1848 for (;;) {
1849 pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n",
1850 offset, val, saved_val);
1851 pci_write_config_dword(pdev, offset, saved_val);
1852 if (retry-- <= 0)
1853 return;
1854
1855 pci_read_config_dword(pdev, offset, &val);
1856 if (val == saved_val)
1857 return;
1858
1859 mdelay(1);
1860 }
1861 }
1862
pci_restore_config_space_range(struct pci_dev * pdev,int start,int end,int retry,bool force)1863 static void pci_restore_config_space_range(struct pci_dev *pdev,
1864 int start, int end, int retry,
1865 bool force)
1866 {
1867 int index;
1868
1869 for (index = end; index >= start; index--)
1870 pci_restore_config_dword(pdev, 4 * index,
1871 pdev->saved_config_space[index],
1872 retry, force);
1873 }
1874
pci_restore_config_space(struct pci_dev * pdev)1875 static void pci_restore_config_space(struct pci_dev *pdev)
1876 {
1877 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1878 pci_restore_config_space_range(pdev, 10, 15, 0, false);
1879 /* Restore BARs before the command register. */
1880 pci_restore_config_space_range(pdev, 4, 9, 10, false);
1881 pci_restore_config_space_range(pdev, 0, 3, 0, false);
1882 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1883 pci_restore_config_space_range(pdev, 12, 15, 0, false);
1884
1885 /*
1886 * Force rewriting of prefetch registers to avoid S3 resume
1887 * issues on Intel PCI bridges that occur when these
1888 * registers are not explicitly written.
1889 */
1890 pci_restore_config_space_range(pdev, 9, 11, 0, true);
1891 pci_restore_config_space_range(pdev, 0, 8, 0, false);
1892 } else {
1893 pci_restore_config_space_range(pdev, 0, 15, 0, false);
1894 }
1895 }
1896
pci_restore_rebar_state(struct pci_dev * pdev)1897 static void pci_restore_rebar_state(struct pci_dev *pdev)
1898 {
1899 unsigned int pos, nbars, i;
1900 u32 ctrl;
1901
1902 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1903 if (!pos)
1904 return;
1905
1906 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1907 nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
1908
1909 for (i = 0; i < nbars; i++, pos += 8) {
1910 struct resource *res;
1911 int bar_idx, size;
1912
1913 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1914 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1915 res = pdev->resource + bar_idx;
1916 size = pci_rebar_bytes_to_size(resource_size(res));
1917 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1918 ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
1919 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1920 }
1921 }
1922
1923 /**
1924 * pci_restore_state - Restore the saved state of a PCI device
1925 * @dev: PCI device that we're dealing with
1926 */
pci_restore_state(struct pci_dev * dev)1927 void pci_restore_state(struct pci_dev *dev)
1928 {
1929 if (!dev->state_saved)
1930 return;
1931
1932 pci_restore_pcie_state(dev);
1933 pci_restore_pasid_state(dev);
1934 pci_restore_pri_state(dev);
1935 pci_restore_ats_state(dev);
1936 pci_restore_vc_state(dev);
1937 pci_restore_rebar_state(dev);
1938 pci_restore_dpc_state(dev);
1939 pci_restore_ptm_state(dev);
1940
1941 pci_aer_clear_status(dev);
1942 pci_restore_aer_state(dev);
1943
1944 pci_restore_config_space(dev);
1945
1946 pci_restore_pcix_state(dev);
1947 pci_restore_msi_state(dev);
1948
1949 /* Restore ACS and IOV configuration state */
1950 pci_enable_acs(dev);
1951 pci_restore_iov_state(dev);
1952
1953 dev->state_saved = false;
1954 }
1955 EXPORT_SYMBOL(pci_restore_state);
1956
1957 struct pci_saved_state {
1958 u32 config_space[16];
1959 struct pci_cap_saved_data cap[];
1960 };
1961
1962 /**
1963 * pci_store_saved_state - Allocate and return an opaque struct containing
1964 * the device saved state.
1965 * @dev: PCI device that we're dealing with
1966 *
1967 * Return NULL if no state or error.
1968 */
pci_store_saved_state(struct pci_dev * dev)1969 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1970 {
1971 struct pci_saved_state *state;
1972 struct pci_cap_saved_state *tmp;
1973 struct pci_cap_saved_data *cap;
1974 size_t size;
1975
1976 if (!dev->state_saved)
1977 return NULL;
1978
1979 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1980
1981 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1982 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1983
1984 state = kzalloc(size, GFP_KERNEL);
1985 if (!state)
1986 return NULL;
1987
1988 memcpy(state->config_space, dev->saved_config_space,
1989 sizeof(state->config_space));
1990
1991 cap = state->cap;
1992 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1993 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1994 memcpy(cap, &tmp->cap, len);
1995 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1996 }
1997 /* Empty cap_save terminates list */
1998
1999 return state;
2000 }
2001 EXPORT_SYMBOL_GPL(pci_store_saved_state);
2002
2003 /**
2004 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
2005 * @dev: PCI device that we're dealing with
2006 * @state: Saved state returned from pci_store_saved_state()
2007 */
pci_load_saved_state(struct pci_dev * dev,struct pci_saved_state * state)2008 int pci_load_saved_state(struct pci_dev *dev,
2009 struct pci_saved_state *state)
2010 {
2011 struct pci_cap_saved_data *cap;
2012
2013 dev->state_saved = false;
2014
2015 if (!state)
2016 return 0;
2017
2018 memcpy(dev->saved_config_space, state->config_space,
2019 sizeof(state->config_space));
2020
2021 cap = state->cap;
2022 while (cap->size) {
2023 struct pci_cap_saved_state *tmp;
2024
2025 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
2026 if (!tmp || tmp->cap.size != cap->size)
2027 return -EINVAL;
2028
2029 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
2030 cap = (struct pci_cap_saved_data *)((u8 *)cap +
2031 sizeof(struct pci_cap_saved_data) + cap->size);
2032 }
2033
2034 dev->state_saved = true;
2035 return 0;
2036 }
2037 EXPORT_SYMBOL_GPL(pci_load_saved_state);
2038
2039 /**
2040 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
2041 * and free the memory allocated for it.
2042 * @dev: PCI device that we're dealing with
2043 * @state: Pointer to saved state returned from pci_store_saved_state()
2044 */
pci_load_and_free_saved_state(struct pci_dev * dev,struct pci_saved_state ** state)2045 int pci_load_and_free_saved_state(struct pci_dev *dev,
2046 struct pci_saved_state **state)
2047 {
2048 int ret = pci_load_saved_state(dev, *state);
2049 kfree(*state);
2050 *state = NULL;
2051 return ret;
2052 }
2053 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
2054
pcibios_enable_device(struct pci_dev * dev,int bars)2055 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
2056 {
2057 return pci_enable_resources(dev, bars);
2058 }
2059
do_pci_enable_device(struct pci_dev * dev,int bars)2060 static int do_pci_enable_device(struct pci_dev *dev, int bars)
2061 {
2062 int err;
2063 struct pci_dev *bridge;
2064 u16 cmd;
2065 u8 pin;
2066
2067 err = pci_set_power_state(dev, PCI_D0);
2068 if (err < 0 && err != -EIO)
2069 return err;
2070
2071 bridge = pci_upstream_bridge(dev);
2072 if (bridge)
2073 pcie_aspm_powersave_config_link(bridge);
2074
2075 err = pcibios_enable_device(dev, bars);
2076 if (err < 0)
2077 return err;
2078 pci_fixup_device(pci_fixup_enable, dev);
2079
2080 if (dev->msi_enabled || dev->msix_enabled)
2081 return 0;
2082
2083 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
2084 if (pin) {
2085 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2086 if (cmd & PCI_COMMAND_INTX_DISABLE)
2087 pci_write_config_word(dev, PCI_COMMAND,
2088 cmd & ~PCI_COMMAND_INTX_DISABLE);
2089 }
2090
2091 return 0;
2092 }
2093
2094 /**
2095 * pci_reenable_device - Resume abandoned device
2096 * @dev: PCI device to be resumed
2097 *
2098 * NOTE: This function is a backend of pci_default_resume() and is not supposed
2099 * to be called by normal code, write proper resume handler and use it instead.
2100 */
pci_reenable_device(struct pci_dev * dev)2101 int pci_reenable_device(struct pci_dev *dev)
2102 {
2103 if (pci_is_enabled(dev))
2104 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
2105 return 0;
2106 }
2107 EXPORT_SYMBOL(pci_reenable_device);
2108
pci_enable_bridge(struct pci_dev * dev)2109 static void pci_enable_bridge(struct pci_dev *dev)
2110 {
2111 struct pci_dev *bridge;
2112 int retval;
2113
2114 bridge = pci_upstream_bridge(dev);
2115 if (bridge)
2116 pci_enable_bridge(bridge);
2117
2118 if (pci_is_enabled(dev)) {
2119 if (!dev->is_busmaster)
2120 pci_set_master(dev);
2121 return;
2122 }
2123
2124 retval = pci_enable_device(dev);
2125 if (retval)
2126 pci_err(dev, "Error enabling bridge (%d), continuing\n",
2127 retval);
2128 pci_set_master(dev);
2129 }
2130
pci_enable_device_flags(struct pci_dev * dev,unsigned long flags)2131 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
2132 {
2133 struct pci_dev *bridge;
2134 int err;
2135 int i, bars = 0;
2136
2137 /*
2138 * Power state could be unknown at this point, either due to a fresh
2139 * boot or a device removal call. So get the current power state
2140 * so that things like MSI message writing will behave as expected
2141 * (e.g. if the device really is in D0 at enable time).
2142 */
2143 pci_update_current_state(dev, dev->current_state);
2144
2145 if (atomic_inc_return(&dev->enable_cnt) > 1)
2146 return 0; /* already enabled */
2147
2148 bridge = pci_upstream_bridge(dev);
2149 if (bridge)
2150 pci_enable_bridge(bridge);
2151
2152 /* only skip sriov related */
2153 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2154 if (dev->resource[i].flags & flags)
2155 bars |= (1 << i);
2156 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2157 if (dev->resource[i].flags & flags)
2158 bars |= (1 << i);
2159
2160 err = do_pci_enable_device(dev, bars);
2161 if (err < 0)
2162 atomic_dec(&dev->enable_cnt);
2163 return err;
2164 }
2165
2166 /**
2167 * pci_enable_device_mem - Initialize a device for use with Memory space
2168 * @dev: PCI device to be initialized
2169 *
2170 * Initialize device before it's used by a driver. Ask low-level code
2171 * to enable Memory resources. Wake up the device if it was suspended.
2172 * Beware, this function can fail.
2173 */
pci_enable_device_mem(struct pci_dev * dev)2174 int pci_enable_device_mem(struct pci_dev *dev)
2175 {
2176 return pci_enable_device_flags(dev, IORESOURCE_MEM);
2177 }
2178 EXPORT_SYMBOL(pci_enable_device_mem);
2179
2180 /**
2181 * pci_enable_device - Initialize device before it's used by a driver.
2182 * @dev: PCI device to be initialized
2183 *
2184 * Initialize device before it's used by a driver. Ask low-level code
2185 * to enable I/O and memory. Wake up the device if it was suspended.
2186 * Beware, this function can fail.
2187 *
2188 * Note we don't actually enable the device many times if we call
2189 * this function repeatedly (we just increment the count).
2190 */
pci_enable_device(struct pci_dev * dev)2191 int pci_enable_device(struct pci_dev *dev)
2192 {
2193 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2194 }
2195 EXPORT_SYMBOL(pci_enable_device);
2196
2197 /*
2198 * pcibios_device_add - provide arch specific hooks when adding device dev
2199 * @dev: the PCI device being added
2200 *
2201 * Permits the platform to provide architecture specific functionality when
2202 * devices are added. This is the default implementation. Architecture
2203 * implementations can override this.
2204 */
pcibios_device_add(struct pci_dev * dev)2205 int __weak pcibios_device_add(struct pci_dev *dev)
2206 {
2207 return 0;
2208 }
2209
2210 /**
2211 * pcibios_release_device - provide arch specific hooks when releasing
2212 * device dev
2213 * @dev: the PCI device being released
2214 *
2215 * Permits the platform to provide architecture specific functionality when
2216 * devices are released. This is the default implementation. Architecture
2217 * implementations can override this.
2218 */
pcibios_release_device(struct pci_dev * dev)2219 void __weak pcibios_release_device(struct pci_dev *dev) {}
2220
2221 /**
2222 * pcibios_disable_device - disable arch specific PCI resources for device dev
2223 * @dev: the PCI device to disable
2224 *
2225 * Disables architecture specific PCI resources for the device. This
2226 * is the default implementation. Architecture implementations can
2227 * override this.
2228 */
pcibios_disable_device(struct pci_dev * dev)2229 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2230
do_pci_disable_device(struct pci_dev * dev)2231 static void do_pci_disable_device(struct pci_dev *dev)
2232 {
2233 u16 pci_command;
2234
2235 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2236 if (pci_command & PCI_COMMAND_MASTER) {
2237 pci_command &= ~PCI_COMMAND_MASTER;
2238 pci_write_config_word(dev, PCI_COMMAND, pci_command);
2239 }
2240
2241 pcibios_disable_device(dev);
2242 }
2243
2244 /**
2245 * pci_disable_enabled_device - Disable device without updating enable_cnt
2246 * @dev: PCI device to disable
2247 *
2248 * NOTE: This function is a backend of PCI power management routines and is
2249 * not supposed to be called drivers.
2250 */
pci_disable_enabled_device(struct pci_dev * dev)2251 void pci_disable_enabled_device(struct pci_dev *dev)
2252 {
2253 if (pci_is_enabled(dev))
2254 do_pci_disable_device(dev);
2255 }
2256
2257 /**
2258 * pci_disable_device - Disable PCI device after use
2259 * @dev: PCI device to be disabled
2260 *
2261 * Signal to the system that the PCI device is not in use by the system
2262 * anymore. This only involves disabling PCI bus-mastering, if active.
2263 *
2264 * Note we don't actually disable the device until all callers of
2265 * pci_enable_device() have called pci_disable_device().
2266 */
pci_disable_device(struct pci_dev * dev)2267 void pci_disable_device(struct pci_dev *dev)
2268 {
2269 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2270 "disabling already-disabled device");
2271
2272 if (atomic_dec_return(&dev->enable_cnt) != 0)
2273 return;
2274
2275 do_pci_disable_device(dev);
2276
2277 dev->is_busmaster = 0;
2278 }
2279 EXPORT_SYMBOL(pci_disable_device);
2280
2281 /**
2282 * pcibios_set_pcie_reset_state - set reset state for device dev
2283 * @dev: the PCIe device reset
2284 * @state: Reset state to enter into
2285 *
2286 * Set the PCIe reset state for the device. This is the default
2287 * implementation. Architecture implementations can override this.
2288 */
pcibios_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)2289 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2290 enum pcie_reset_state state)
2291 {
2292 return -EINVAL;
2293 }
2294
2295 /**
2296 * pci_set_pcie_reset_state - set reset state for device dev
2297 * @dev: the PCIe device reset
2298 * @state: Reset state to enter into
2299 *
2300 * Sets the PCI reset state for the device.
2301 */
pci_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)2302 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2303 {
2304 return pcibios_set_pcie_reset_state(dev, state);
2305 }
2306 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2307
2308 #ifdef CONFIG_PCIEAER
pcie_clear_device_status(struct pci_dev * dev)2309 void pcie_clear_device_status(struct pci_dev *dev)
2310 {
2311 u16 sta;
2312
2313 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2314 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2315 }
2316 #endif
2317
2318 /**
2319 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2320 * @dev: PCIe root port or event collector.
2321 */
pcie_clear_root_pme_status(struct pci_dev * dev)2322 void pcie_clear_root_pme_status(struct pci_dev *dev)
2323 {
2324 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2325 }
2326
2327 /**
2328 * pci_check_pme_status - Check if given device has generated PME.
2329 * @dev: Device to check.
2330 *
2331 * Check the PME status of the device and if set, clear it and clear PME enable
2332 * (if set). Return 'true' if PME status and PME enable were both set or
2333 * 'false' otherwise.
2334 */
pci_check_pme_status(struct pci_dev * dev)2335 bool pci_check_pme_status(struct pci_dev *dev)
2336 {
2337 int pmcsr_pos;
2338 u16 pmcsr;
2339 bool ret = false;
2340
2341 if (!dev->pm_cap)
2342 return false;
2343
2344 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2345 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2346 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2347 return false;
2348
2349 /* Clear PME status. */
2350 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2351 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2352 /* Disable PME to avoid interrupt flood. */
2353 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2354 ret = true;
2355 }
2356
2357 pci_write_config_word(dev, pmcsr_pos, pmcsr);
2358
2359 return ret;
2360 }
2361
2362 /**
2363 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2364 * @dev: Device to handle.
2365 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2366 *
2367 * Check if @dev has generated PME and queue a resume request for it in that
2368 * case.
2369 */
pci_pme_wakeup(struct pci_dev * dev,void * pme_poll_reset)2370 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2371 {
2372 if (pme_poll_reset && dev->pme_poll)
2373 dev->pme_poll = false;
2374
2375 if (pci_check_pme_status(dev)) {
2376 pci_wakeup_event(dev);
2377 pm_request_resume(&dev->dev);
2378 }
2379 return 0;
2380 }
2381
2382 /**
2383 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2384 * @bus: Top bus of the subtree to walk.
2385 */
pci_pme_wakeup_bus(struct pci_bus * bus)2386 void pci_pme_wakeup_bus(struct pci_bus *bus)
2387 {
2388 if (bus)
2389 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2390 }
2391
2392
2393 /**
2394 * pci_pme_capable - check the capability of PCI device to generate PME#
2395 * @dev: PCI device to handle.
2396 * @state: PCI state from which device will issue PME#.
2397 */
pci_pme_capable(struct pci_dev * dev,pci_power_t state)2398 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2399 {
2400 if (!dev->pm_cap)
2401 return false;
2402
2403 return !!(dev->pme_support & (1 << state));
2404 }
2405 EXPORT_SYMBOL(pci_pme_capable);
2406
pci_pme_list_scan(struct work_struct * work)2407 static void pci_pme_list_scan(struct work_struct *work)
2408 {
2409 struct pci_pme_device *pme_dev, *n;
2410
2411 mutex_lock(&pci_pme_list_mutex);
2412 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2413 struct pci_dev *pdev = pme_dev->dev;
2414
2415 if (pdev->pme_poll) {
2416 struct pci_dev *bridge = pdev->bus->self;
2417 struct device *dev = &pdev->dev;
2418 struct device *bdev = bridge ? &bridge->dev : NULL;
2419 int bref = 0;
2420
2421 /*
2422 * If we have a bridge, it should be in an active/D0
2423 * state or the configuration space of subordinate
2424 * devices may not be accessible or stable over the
2425 * course of the call.
2426 */
2427 if (bdev) {
2428 bref = pm_runtime_get_if_active(bdev);
2429 if (!bref)
2430 continue;
2431
2432 if (bridge->current_state != PCI_D0)
2433 goto put_bridge;
2434 }
2435
2436 /*
2437 * The device itself should be suspended but config
2438 * space must be accessible, therefore it cannot be in
2439 * D3cold.
2440 */
2441 if (pm_runtime_suspended(dev) &&
2442 pdev->current_state != PCI_D3cold)
2443 pci_pme_wakeup(pdev, NULL);
2444
2445 put_bridge:
2446 if (bref > 0)
2447 pm_runtime_put(bdev);
2448 } else {
2449 list_del(&pme_dev->list);
2450 kfree(pme_dev);
2451 }
2452 }
2453 if (!list_empty(&pci_pme_list))
2454 queue_delayed_work(system_freezable_wq, &pci_pme_work,
2455 msecs_to_jiffies(PME_TIMEOUT));
2456 mutex_unlock(&pci_pme_list_mutex);
2457 }
2458
__pci_pme_active(struct pci_dev * dev,bool enable)2459 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2460 {
2461 u16 pmcsr;
2462
2463 if (!dev->pme_support)
2464 return;
2465
2466 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2467 /* Clear PME_Status by writing 1 to it and enable PME# */
2468 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2469 if (!enable)
2470 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2471
2472 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2473 }
2474
2475 /**
2476 * pci_pme_restore - Restore PME configuration after config space restore.
2477 * @dev: PCI device to update.
2478 */
pci_pme_restore(struct pci_dev * dev)2479 void pci_pme_restore(struct pci_dev *dev)
2480 {
2481 u16 pmcsr;
2482
2483 if (!dev->pme_support)
2484 return;
2485
2486 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2487 if (dev->wakeup_prepared) {
2488 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2489 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2490 } else {
2491 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2492 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2493 }
2494 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2495 }
2496
2497 /**
2498 * pci_pme_active - enable or disable PCI device's PME# function
2499 * @dev: PCI device to handle.
2500 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2501 *
2502 * The caller must verify that the device is capable of generating PME# before
2503 * calling this function with @enable equal to 'true'.
2504 */
pci_pme_active(struct pci_dev * dev,bool enable)2505 void pci_pme_active(struct pci_dev *dev, bool enable)
2506 {
2507 __pci_pme_active(dev, enable);
2508
2509 /*
2510 * PCI (as opposed to PCIe) PME requires that the device have
2511 * its PME# line hooked up correctly. Not all hardware vendors
2512 * do this, so the PME never gets delivered and the device
2513 * remains asleep. The easiest way around this is to
2514 * periodically walk the list of suspended devices and check
2515 * whether any have their PME flag set. The assumption is that
2516 * we'll wake up often enough anyway that this won't be a huge
2517 * hit, and the power savings from the devices will still be a
2518 * win.
2519 *
2520 * Although PCIe uses in-band PME message instead of PME# line
2521 * to report PME, PME does not work for some PCIe devices in
2522 * reality. For example, there are devices that set their PME
2523 * status bits, but don't really bother to send a PME message;
2524 * there are PCI Express Root Ports that don't bother to
2525 * trigger interrupts when they receive PME messages from the
2526 * devices below. So PME poll is used for PCIe devices too.
2527 */
2528
2529 if (dev->pme_poll) {
2530 struct pci_pme_device *pme_dev;
2531 if (enable) {
2532 pme_dev = kmalloc(sizeof(struct pci_pme_device),
2533 GFP_KERNEL);
2534 if (!pme_dev) {
2535 pci_warn(dev, "can't enable PME#\n");
2536 return;
2537 }
2538 pme_dev->dev = dev;
2539 mutex_lock(&pci_pme_list_mutex);
2540 list_add(&pme_dev->list, &pci_pme_list);
2541 if (list_is_singular(&pci_pme_list))
2542 queue_delayed_work(system_freezable_wq,
2543 &pci_pme_work,
2544 msecs_to_jiffies(PME_TIMEOUT));
2545 mutex_unlock(&pci_pme_list_mutex);
2546 } else {
2547 mutex_lock(&pci_pme_list_mutex);
2548 list_for_each_entry(pme_dev, &pci_pme_list, list) {
2549 if (pme_dev->dev == dev) {
2550 list_del(&pme_dev->list);
2551 kfree(pme_dev);
2552 break;
2553 }
2554 }
2555 mutex_unlock(&pci_pme_list_mutex);
2556 }
2557 }
2558
2559 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2560 }
2561 EXPORT_SYMBOL(pci_pme_active);
2562
2563 /**
2564 * __pci_enable_wake - enable PCI device as wakeup event source
2565 * @dev: PCI device affected
2566 * @state: PCI state from which device will issue wakeup events
2567 * @enable: True to enable event generation; false to disable
2568 *
2569 * This enables the device as a wakeup event source, or disables it.
2570 * When such events involves platform-specific hooks, those hooks are
2571 * called automatically by this routine.
2572 *
2573 * Devices with legacy power management (no standard PCI PM capabilities)
2574 * always require such platform hooks.
2575 *
2576 * RETURN VALUE:
2577 * 0 is returned on success
2578 * -EINVAL is returned if device is not supposed to wake up the system
2579 * Error code depending on the platform is returned if both the platform and
2580 * the native mechanism fail to enable the generation of wake-up events
2581 */
__pci_enable_wake(struct pci_dev * dev,pci_power_t state,bool enable)2582 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2583 {
2584 int ret = 0;
2585
2586 /*
2587 * Bridges that are not power-manageable directly only signal
2588 * wakeup on behalf of subordinate devices which is set up
2589 * elsewhere, so skip them. However, bridges that are
2590 * power-manageable may signal wakeup for themselves (for example,
2591 * on a hotplug event) and they need to be covered here.
2592 */
2593 if (!pci_power_manageable(dev))
2594 return 0;
2595
2596 /* Don't do the same thing twice in a row for one device. */
2597 if (!!enable == !!dev->wakeup_prepared)
2598 return 0;
2599
2600 /*
2601 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2602 * Anderson we should be doing PME# wake enable followed by ACPI wake
2603 * enable. To disable wake-up we call the platform first, for symmetry.
2604 */
2605
2606 if (enable) {
2607 int error;
2608
2609 /*
2610 * Enable PME signaling if the device can signal PME from
2611 * D3cold regardless of whether or not it can signal PME from
2612 * the current target state, because that will allow it to
2613 * signal PME when the hierarchy above it goes into D3cold and
2614 * the device itself ends up in D3cold as a result of that.
2615 */
2616 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2617 pci_pme_active(dev, true);
2618 else
2619 ret = 1;
2620 error = platform_pci_set_wakeup(dev, true);
2621 if (ret)
2622 ret = error;
2623 if (!ret)
2624 dev->wakeup_prepared = true;
2625 } else {
2626 platform_pci_set_wakeup(dev, false);
2627 pci_pme_active(dev, false);
2628 dev->wakeup_prepared = false;
2629 }
2630
2631 return ret;
2632 }
2633
2634 /**
2635 * pci_enable_wake - change wakeup settings for a PCI device
2636 * @pci_dev: Target device
2637 * @state: PCI state from which device will issue wakeup events
2638 * @enable: Whether or not to enable event generation
2639 *
2640 * If @enable is set, check device_may_wakeup() for the device before calling
2641 * __pci_enable_wake() for it.
2642 */
pci_enable_wake(struct pci_dev * pci_dev,pci_power_t state,bool enable)2643 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2644 {
2645 if (enable && !device_may_wakeup(&pci_dev->dev))
2646 return -EINVAL;
2647
2648 return __pci_enable_wake(pci_dev, state, enable);
2649 }
2650 EXPORT_SYMBOL(pci_enable_wake);
2651
2652 /**
2653 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2654 * @dev: PCI device to prepare
2655 * @enable: True to enable wake-up event generation; false to disable
2656 *
2657 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2658 * and this function allows them to set that up cleanly - pci_enable_wake()
2659 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2660 * ordering constraints.
2661 *
2662 * This function only returns error code if the device is not allowed to wake
2663 * up the system from sleep or it is not capable of generating PME# from both
2664 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2665 */
pci_wake_from_d3(struct pci_dev * dev,bool enable)2666 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2667 {
2668 return pci_pme_capable(dev, PCI_D3cold) ?
2669 pci_enable_wake(dev, PCI_D3cold, enable) :
2670 pci_enable_wake(dev, PCI_D3hot, enable);
2671 }
2672 EXPORT_SYMBOL(pci_wake_from_d3);
2673
2674 /**
2675 * pci_target_state - find an appropriate low power state for a given PCI dev
2676 * @dev: PCI device
2677 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2678 *
2679 * Use underlying platform code to find a supported low power state for @dev.
2680 * If the platform can't manage @dev, return the deepest state from which it
2681 * can generate wake events, based on any available PME info.
2682 */
pci_target_state(struct pci_dev * dev,bool wakeup)2683 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2684 {
2685 if (platform_pci_power_manageable(dev)) {
2686 /*
2687 * Call the platform to find the target state for the device.
2688 */
2689 pci_power_t state = platform_pci_choose_state(dev);
2690
2691 switch (state) {
2692 case PCI_POWER_ERROR:
2693 case PCI_UNKNOWN:
2694 return PCI_D3hot;
2695
2696 case PCI_D1:
2697 case PCI_D2:
2698 if (pci_no_d1d2(dev))
2699 return PCI_D3hot;
2700 }
2701
2702 return state;
2703 }
2704
2705 /*
2706 * If the device is in D3cold even though it's not power-manageable by
2707 * the platform, it may have been powered down by non-standard means.
2708 * Best to let it slumber.
2709 */
2710 if (dev->current_state == PCI_D3cold)
2711 return PCI_D3cold;
2712 else if (!dev->pm_cap)
2713 return PCI_D0;
2714
2715 if (wakeup && dev->pme_support) {
2716 pci_power_t state = PCI_D3hot;
2717
2718 /*
2719 * Find the deepest state from which the device can generate
2720 * PME#.
2721 */
2722 while (state && !(dev->pme_support & (1 << state)))
2723 state--;
2724
2725 if (state)
2726 return state;
2727 else if (dev->pme_support & 1)
2728 return PCI_D0;
2729 }
2730
2731 return PCI_D3hot;
2732 }
2733
2734 /**
2735 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2736 * into a sleep state
2737 * @dev: Device to handle.
2738 *
2739 * Choose the power state appropriate for the device depending on whether
2740 * it can wake up the system and/or is power manageable by the platform
2741 * (PCI_D3hot is the default) and put the device into that state.
2742 */
pci_prepare_to_sleep(struct pci_dev * dev)2743 int pci_prepare_to_sleep(struct pci_dev *dev)
2744 {
2745 bool wakeup = device_may_wakeup(&dev->dev);
2746 pci_power_t target_state = pci_target_state(dev, wakeup);
2747 int error;
2748
2749 if (target_state == PCI_POWER_ERROR)
2750 return -EIO;
2751
2752 pci_enable_wake(dev, target_state, wakeup);
2753
2754 error = pci_set_power_state(dev, target_state);
2755
2756 if (error)
2757 pci_enable_wake(dev, target_state, false);
2758
2759 return error;
2760 }
2761 EXPORT_SYMBOL(pci_prepare_to_sleep);
2762
2763 /**
2764 * pci_back_from_sleep - turn PCI device on during system-wide transition
2765 * into working state
2766 * @dev: Device to handle.
2767 *
2768 * Disable device's system wake-up capability and put it into D0.
2769 */
pci_back_from_sleep(struct pci_dev * dev)2770 int pci_back_from_sleep(struct pci_dev *dev)
2771 {
2772 int ret = pci_set_power_state(dev, PCI_D0);
2773
2774 if (ret)
2775 return ret;
2776
2777 pci_enable_wake(dev, PCI_D0, false);
2778 return 0;
2779 }
2780 EXPORT_SYMBOL(pci_back_from_sleep);
2781
2782 /**
2783 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2784 * @dev: PCI device being suspended.
2785 *
2786 * Prepare @dev to generate wake-up events at run time and put it into a low
2787 * power state.
2788 */
pci_finish_runtime_suspend(struct pci_dev * dev)2789 int pci_finish_runtime_suspend(struct pci_dev *dev)
2790 {
2791 pci_power_t target_state;
2792 int error;
2793
2794 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2795 if (target_state == PCI_POWER_ERROR)
2796 return -EIO;
2797
2798 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2799
2800 error = pci_set_power_state(dev, target_state);
2801
2802 if (error)
2803 pci_enable_wake(dev, target_state, false);
2804
2805 return error;
2806 }
2807
2808 /**
2809 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2810 * @dev: Device to check.
2811 *
2812 * Return true if the device itself is capable of generating wake-up events
2813 * (through the platform or using the native PCIe PME) or if the device supports
2814 * PME and one of its upstream bridges can generate wake-up events.
2815 */
pci_dev_run_wake(struct pci_dev * dev)2816 bool pci_dev_run_wake(struct pci_dev *dev)
2817 {
2818 struct pci_bus *bus = dev->bus;
2819
2820 if (!dev->pme_support)
2821 return false;
2822
2823 /* PME-capable in principle, but not from the target power state */
2824 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2825 return false;
2826
2827 if (device_can_wakeup(&dev->dev))
2828 return true;
2829
2830 while (bus->parent) {
2831 struct pci_dev *bridge = bus->self;
2832
2833 if (device_can_wakeup(&bridge->dev))
2834 return true;
2835
2836 bus = bus->parent;
2837 }
2838
2839 /* We have reached the root bus. */
2840 if (bus->bridge)
2841 return device_can_wakeup(bus->bridge);
2842
2843 return false;
2844 }
2845 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2846
2847 /**
2848 * pci_dev_need_resume - Check if it is necessary to resume the device.
2849 * @pci_dev: Device to check.
2850 *
2851 * Return 'true' if the device is not runtime-suspended or it has to be
2852 * reconfigured due to wakeup settings difference between system and runtime
2853 * suspend, or the current power state of it is not suitable for the upcoming
2854 * (system-wide) transition.
2855 */
pci_dev_need_resume(struct pci_dev * pci_dev)2856 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2857 {
2858 struct device *dev = &pci_dev->dev;
2859 pci_power_t target_state;
2860
2861 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2862 return true;
2863
2864 target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2865
2866 /*
2867 * If the earlier platform check has not triggered, D3cold is just power
2868 * removal on top of D3hot, so no need to resume the device in that
2869 * case.
2870 */
2871 return target_state != pci_dev->current_state &&
2872 target_state != PCI_D3cold &&
2873 pci_dev->current_state != PCI_D3hot;
2874 }
2875
2876 /**
2877 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2878 * @pci_dev: Device to check.
2879 *
2880 * If the device is suspended and it is not configured for system wakeup,
2881 * disable PME for it to prevent it from waking up the system unnecessarily.
2882 *
2883 * Note that if the device's power state is D3cold and the platform check in
2884 * pci_dev_need_resume() has not triggered, the device's configuration need not
2885 * be changed.
2886 */
pci_dev_adjust_pme(struct pci_dev * pci_dev)2887 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2888 {
2889 struct device *dev = &pci_dev->dev;
2890
2891 spin_lock_irq(&dev->power.lock);
2892
2893 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2894 pci_dev->current_state < PCI_D3cold)
2895 __pci_pme_active(pci_dev, false);
2896
2897 spin_unlock_irq(&dev->power.lock);
2898 }
2899
2900 /**
2901 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2902 * @pci_dev: Device to handle.
2903 *
2904 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2905 * it might have been disabled during the prepare phase of system suspend if
2906 * the device was not configured for system wakeup.
2907 */
pci_dev_complete_resume(struct pci_dev * pci_dev)2908 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2909 {
2910 struct device *dev = &pci_dev->dev;
2911
2912 if (!pci_dev_run_wake(pci_dev))
2913 return;
2914
2915 spin_lock_irq(&dev->power.lock);
2916
2917 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2918 __pci_pme_active(pci_dev, true);
2919
2920 spin_unlock_irq(&dev->power.lock);
2921 }
2922
2923 /**
2924 * pci_choose_state - Choose the power state of a PCI device.
2925 * @dev: Target PCI device.
2926 * @state: Target state for the whole system.
2927 *
2928 * Returns PCI power state suitable for @dev and @state.
2929 */
pci_choose_state(struct pci_dev * dev,pm_message_t state)2930 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2931 {
2932 if (state.event == PM_EVENT_ON)
2933 return PCI_D0;
2934
2935 return pci_target_state(dev, false);
2936 }
2937 EXPORT_SYMBOL(pci_choose_state);
2938
pci_config_pm_runtime_get(struct pci_dev * pdev)2939 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2940 {
2941 struct device *dev = &pdev->dev;
2942 struct device *parent = dev->parent;
2943
2944 if (parent)
2945 pm_runtime_get_sync(parent);
2946 pm_runtime_get_noresume(dev);
2947 /*
2948 * pdev->current_state is set to PCI_D3cold during suspending,
2949 * so wait until suspending completes
2950 */
2951 pm_runtime_barrier(dev);
2952 /*
2953 * Only need to resume devices in D3cold, because config
2954 * registers are still accessible for devices suspended but
2955 * not in D3cold.
2956 */
2957 if (pdev->current_state == PCI_D3cold)
2958 pm_runtime_resume(dev);
2959 }
2960
pci_config_pm_runtime_put(struct pci_dev * pdev)2961 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2962 {
2963 struct device *dev = &pdev->dev;
2964 struct device *parent = dev->parent;
2965
2966 pm_runtime_put(dev);
2967 if (parent)
2968 pm_runtime_put_sync(parent);
2969 }
2970
2971 static const struct dmi_system_id bridge_d3_blacklist[] = {
2972 #ifdef CONFIG_X86
2973 {
2974 /*
2975 * Gigabyte X299 root port is not marked as hotplug capable
2976 * which allows Linux to power manage it. However, this
2977 * confuses the BIOS SMI handler so don't power manage root
2978 * ports on that system.
2979 */
2980 .ident = "X299 DESIGNARE EX-CF",
2981 .matches = {
2982 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2983 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2984 },
2985 },
2986 {
2987 /*
2988 * Downstream device is not accessible after putting a root port
2989 * into D3cold and back into D0 on Elo Continental Z2 board
2990 */
2991 .ident = "Elo Continental Z2",
2992 .matches = {
2993 DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"),
2994 DMI_MATCH(DMI_BOARD_NAME, "Geminilake"),
2995 DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"),
2996 },
2997 },
2998 {
2999 /*
3000 * Changing power state of root port dGPU is connected fails
3001 * https://gitlab.freedesktop.org/drm/amd/-/issues/3229
3002 */
3003 .ident = "Hewlett-Packard HP Pavilion 17 Notebook PC/1972",
3004 .matches = {
3005 DMI_MATCH(DMI_BOARD_VENDOR, "Hewlett-Packard"),
3006 DMI_MATCH(DMI_BOARD_NAME, "1972"),
3007 DMI_MATCH(DMI_BOARD_VERSION, "95.33"),
3008 },
3009 },
3010 #endif
3011 { }
3012 };
3013
3014 /**
3015 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
3016 * @bridge: Bridge to check
3017 *
3018 * This function checks if it is possible to move the bridge to D3.
3019 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
3020 */
pci_bridge_d3_possible(struct pci_dev * bridge)3021 bool pci_bridge_d3_possible(struct pci_dev *bridge)
3022 {
3023 if (!pci_is_pcie(bridge))
3024 return false;
3025
3026 switch (pci_pcie_type(bridge)) {
3027 case PCI_EXP_TYPE_ROOT_PORT:
3028 case PCI_EXP_TYPE_UPSTREAM:
3029 case PCI_EXP_TYPE_DOWNSTREAM:
3030 if (pci_bridge_d3_disable)
3031 return false;
3032
3033 /*
3034 * Hotplug ports handled by firmware in System Management Mode
3035 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
3036 */
3037 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
3038 return false;
3039
3040 if (pci_bridge_d3_force)
3041 return true;
3042
3043 /* Even the oldest 2010 Thunderbolt controller supports D3. */
3044 if (bridge->is_thunderbolt)
3045 return true;
3046
3047 /* Platform might know better if the bridge supports D3 */
3048 if (platform_pci_bridge_d3(bridge))
3049 return true;
3050
3051 /*
3052 * Hotplug ports handled natively by the OS were not validated
3053 * by vendors for runtime D3 at least until 2018 because there
3054 * was no OS support.
3055 */
3056 if (bridge->is_hotplug_bridge)
3057 return false;
3058
3059 if (dmi_check_system(bridge_d3_blacklist))
3060 return false;
3061
3062 /*
3063 * It should be safe to put PCIe ports from 2015 or newer
3064 * to D3.
3065 */
3066 if (dmi_get_bios_year() >= 2015)
3067 return true;
3068 break;
3069 }
3070
3071 return false;
3072 }
3073
pci_dev_check_d3cold(struct pci_dev * dev,void * data)3074 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3075 {
3076 bool *d3cold_ok = data;
3077
3078 if (/* The device needs to be allowed to go D3cold ... */
3079 dev->no_d3cold || !dev->d3cold_allowed ||
3080
3081 /* ... and if it is wakeup capable to do so from D3cold. */
3082 (device_may_wakeup(&dev->dev) &&
3083 !pci_pme_capable(dev, PCI_D3cold)) ||
3084
3085 /* If it is a bridge it must be allowed to go to D3. */
3086 !pci_power_manageable(dev))
3087
3088 *d3cold_ok = false;
3089
3090 return !*d3cold_ok;
3091 }
3092
3093 /*
3094 * pci_bridge_d3_update - Update bridge D3 capabilities
3095 * @dev: PCI device which is changed
3096 *
3097 * Update upstream bridge PM capabilities accordingly depending on if the
3098 * device PM configuration was changed or the device is being removed. The
3099 * change is also propagated upstream.
3100 */
pci_bridge_d3_update(struct pci_dev * dev)3101 void pci_bridge_d3_update(struct pci_dev *dev)
3102 {
3103 bool remove = !device_is_registered(&dev->dev);
3104 struct pci_dev *bridge;
3105 bool d3cold_ok = true;
3106
3107 bridge = pci_upstream_bridge(dev);
3108 if (!bridge || !pci_bridge_d3_possible(bridge))
3109 return;
3110
3111 /*
3112 * If D3 is currently allowed for the bridge, removing one of its
3113 * children won't change that.
3114 */
3115 if (remove && bridge->bridge_d3)
3116 return;
3117
3118 /*
3119 * If D3 is currently allowed for the bridge and a child is added or
3120 * changed, disallowance of D3 can only be caused by that child, so
3121 * we only need to check that single device, not any of its siblings.
3122 *
3123 * If D3 is currently not allowed for the bridge, checking the device
3124 * first may allow us to skip checking its siblings.
3125 */
3126 if (!remove)
3127 pci_dev_check_d3cold(dev, &d3cold_ok);
3128
3129 /*
3130 * If D3 is currently not allowed for the bridge, this may be caused
3131 * either by the device being changed/removed or any of its siblings,
3132 * so we need to go through all children to find out if one of them
3133 * continues to block D3.
3134 */
3135 if (d3cold_ok && !bridge->bridge_d3)
3136 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3137 &d3cold_ok);
3138
3139 if (bridge->bridge_d3 != d3cold_ok) {
3140 bridge->bridge_d3 = d3cold_ok;
3141 /* Propagate change to upstream bridges */
3142 pci_bridge_d3_update(bridge);
3143 }
3144 }
3145
3146 /**
3147 * pci_d3cold_enable - Enable D3cold for device
3148 * @dev: PCI device to handle
3149 *
3150 * This function can be used in drivers to enable D3cold from the device
3151 * they handle. It also updates upstream PCI bridge PM capabilities
3152 * accordingly.
3153 */
pci_d3cold_enable(struct pci_dev * dev)3154 void pci_d3cold_enable(struct pci_dev *dev)
3155 {
3156 if (dev->no_d3cold) {
3157 dev->no_d3cold = false;
3158 pci_bridge_d3_update(dev);
3159 }
3160 }
3161 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3162
3163 /**
3164 * pci_d3cold_disable - Disable D3cold for device
3165 * @dev: PCI device to handle
3166 *
3167 * This function can be used in drivers to disable D3cold from the device
3168 * they handle. It also updates upstream PCI bridge PM capabilities
3169 * accordingly.
3170 */
pci_d3cold_disable(struct pci_dev * dev)3171 void pci_d3cold_disable(struct pci_dev *dev)
3172 {
3173 if (!dev->no_d3cold) {
3174 dev->no_d3cold = true;
3175 pci_bridge_d3_update(dev);
3176 }
3177 }
3178 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3179
3180 /**
3181 * pci_pm_init - Initialize PM functions of given PCI device
3182 * @dev: PCI device to handle.
3183 */
pci_pm_init(struct pci_dev * dev)3184 void pci_pm_init(struct pci_dev *dev)
3185 {
3186 int pm;
3187 u16 status;
3188 u16 pmc;
3189
3190 pm_runtime_forbid(&dev->dev);
3191 pm_runtime_set_active(&dev->dev);
3192 pm_runtime_enable(&dev->dev);
3193 device_enable_async_suspend(&dev->dev);
3194 dev->wakeup_prepared = false;
3195
3196 dev->pm_cap = 0;
3197 dev->pme_support = 0;
3198
3199 /* find PCI PM capability in list */
3200 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3201 if (!pm)
3202 return;
3203 /* Check device's ability to generate PME# */
3204 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3205
3206 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3207 pci_err(dev, "unsupported PM cap regs version (%u)\n",
3208 pmc & PCI_PM_CAP_VER_MASK);
3209 return;
3210 }
3211
3212 dev->pm_cap = pm;
3213 dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3214 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3215 dev->bridge_d3 = pci_bridge_d3_possible(dev);
3216 dev->d3cold_allowed = true;
3217
3218 dev->d1_support = false;
3219 dev->d2_support = false;
3220 if (!pci_no_d1d2(dev)) {
3221 if (pmc & PCI_PM_CAP_D1)
3222 dev->d1_support = true;
3223 if (pmc & PCI_PM_CAP_D2)
3224 dev->d2_support = true;
3225
3226 if (dev->d1_support || dev->d2_support)
3227 pci_info(dev, "supports%s%s\n",
3228 dev->d1_support ? " D1" : "",
3229 dev->d2_support ? " D2" : "");
3230 }
3231
3232 pmc &= PCI_PM_CAP_PME_MASK;
3233 if (pmc) {
3234 pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3235 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3236 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3237 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3238 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3239 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3240 dev->pme_support = FIELD_GET(PCI_PM_CAP_PME_MASK, pmc);
3241 dev->pme_poll = true;
3242 /*
3243 * Make device's PM flags reflect the wake-up capability, but
3244 * let the user space enable it to wake up the system as needed.
3245 */
3246 device_set_wakeup_capable(&dev->dev, true);
3247 /* Disable the PME# generation functionality */
3248 pci_pme_active(dev, false);
3249 }
3250
3251 pci_read_config_word(dev, PCI_STATUS, &status);
3252 if (status & PCI_STATUS_IMM_READY)
3253 dev->imm_ready = 1;
3254 }
3255
pci_ea_flags(struct pci_dev * dev,u8 prop)3256 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3257 {
3258 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3259
3260 switch (prop) {
3261 case PCI_EA_P_MEM:
3262 case PCI_EA_P_VF_MEM:
3263 flags |= IORESOURCE_MEM;
3264 break;
3265 case PCI_EA_P_MEM_PREFETCH:
3266 case PCI_EA_P_VF_MEM_PREFETCH:
3267 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3268 break;
3269 case PCI_EA_P_IO:
3270 flags |= IORESOURCE_IO;
3271 break;
3272 default:
3273 return 0;
3274 }
3275
3276 return flags;
3277 }
3278
pci_ea_get_resource(struct pci_dev * dev,u8 bei,u8 prop)3279 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3280 u8 prop)
3281 {
3282 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3283 return &dev->resource[bei];
3284 #ifdef CONFIG_PCI_IOV
3285 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3286 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3287 return &dev->resource[PCI_IOV_RESOURCES +
3288 bei - PCI_EA_BEI_VF_BAR0];
3289 #endif
3290 else if (bei == PCI_EA_BEI_ROM)
3291 return &dev->resource[PCI_ROM_RESOURCE];
3292 else
3293 return NULL;
3294 }
3295
3296 /* Read an Enhanced Allocation (EA) entry */
pci_ea_read(struct pci_dev * dev,int offset)3297 static int pci_ea_read(struct pci_dev *dev, int offset)
3298 {
3299 struct resource *res;
3300 const char *res_name;
3301 int ent_size, ent_offset = offset;
3302 resource_size_t start, end;
3303 unsigned long flags;
3304 u32 dw0, bei, base, max_offset;
3305 u8 prop;
3306 bool support_64 = (sizeof(resource_size_t) >= 8);
3307
3308 pci_read_config_dword(dev, ent_offset, &dw0);
3309 ent_offset += 4;
3310
3311 /* Entry size field indicates DWORDs after 1st */
3312 ent_size = (FIELD_GET(PCI_EA_ES, dw0) + 1) << 2;
3313
3314 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3315 goto out;
3316
3317 bei = FIELD_GET(PCI_EA_BEI, dw0);
3318 prop = FIELD_GET(PCI_EA_PP, dw0);
3319
3320 /*
3321 * If the Property is in the reserved range, try the Secondary
3322 * Property instead.
3323 */
3324 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3325 prop = FIELD_GET(PCI_EA_SP, dw0);
3326 if (prop > PCI_EA_P_BRIDGE_IO)
3327 goto out;
3328
3329 res = pci_ea_get_resource(dev, bei, prop);
3330 res_name = pci_resource_name(dev, bei);
3331 if (!res) {
3332 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3333 goto out;
3334 }
3335
3336 flags = pci_ea_flags(dev, prop);
3337 if (!flags) {
3338 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3339 goto out;
3340 }
3341
3342 /* Read Base */
3343 pci_read_config_dword(dev, ent_offset, &base);
3344 start = (base & PCI_EA_FIELD_MASK);
3345 ent_offset += 4;
3346
3347 /* Read MaxOffset */
3348 pci_read_config_dword(dev, ent_offset, &max_offset);
3349 ent_offset += 4;
3350
3351 /* Read Base MSBs (if 64-bit entry) */
3352 if (base & PCI_EA_IS_64) {
3353 u32 base_upper;
3354
3355 pci_read_config_dword(dev, ent_offset, &base_upper);
3356 ent_offset += 4;
3357
3358 flags |= IORESOURCE_MEM_64;
3359
3360 /* entry starts above 32-bit boundary, can't use */
3361 if (!support_64 && base_upper)
3362 goto out;
3363
3364 if (support_64)
3365 start |= ((u64)base_upper << 32);
3366 }
3367
3368 end = start + (max_offset | 0x03);
3369
3370 /* Read MaxOffset MSBs (if 64-bit entry) */
3371 if (max_offset & PCI_EA_IS_64) {
3372 u32 max_offset_upper;
3373
3374 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3375 ent_offset += 4;
3376
3377 flags |= IORESOURCE_MEM_64;
3378
3379 /* entry too big, can't use */
3380 if (!support_64 && max_offset_upper)
3381 goto out;
3382
3383 if (support_64)
3384 end += ((u64)max_offset_upper << 32);
3385 }
3386
3387 if (end < start) {
3388 pci_err(dev, "EA Entry crosses address boundary\n");
3389 goto out;
3390 }
3391
3392 if (ent_size != ent_offset - offset) {
3393 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3394 ent_size, ent_offset - offset);
3395 goto out;
3396 }
3397
3398 res->name = pci_name(dev);
3399 res->start = start;
3400 res->end = end;
3401 res->flags = flags;
3402
3403 if (bei <= PCI_EA_BEI_BAR5)
3404 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3405 res_name, res, prop);
3406 else if (bei == PCI_EA_BEI_ROM)
3407 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3408 res_name, res, prop);
3409 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3410 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3411 res_name, res, prop);
3412 else
3413 pci_info(dev, "BEI %d %pR: from Enhanced Allocation, properties %#02x\n",
3414 bei, res, prop);
3415
3416 out:
3417 return offset + ent_size;
3418 }
3419
3420 /* Enhanced Allocation Initialization */
pci_ea_init(struct pci_dev * dev)3421 void pci_ea_init(struct pci_dev *dev)
3422 {
3423 int ea;
3424 u8 num_ent;
3425 int offset;
3426 int i;
3427
3428 /* find PCI EA capability in list */
3429 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3430 if (!ea)
3431 return;
3432
3433 /* determine the number of entries */
3434 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3435 &num_ent);
3436 num_ent &= PCI_EA_NUM_ENT_MASK;
3437
3438 offset = ea + PCI_EA_FIRST_ENT;
3439
3440 /* Skip DWORD 2 for type 1 functions */
3441 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3442 offset += 4;
3443
3444 /* parse each EA entry */
3445 for (i = 0; i < num_ent; ++i)
3446 offset = pci_ea_read(dev, offset);
3447 }
3448
pci_add_saved_cap(struct pci_dev * pci_dev,struct pci_cap_saved_state * new_cap)3449 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3450 struct pci_cap_saved_state *new_cap)
3451 {
3452 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3453 }
3454
3455 /**
3456 * _pci_add_cap_save_buffer - allocate buffer for saving given
3457 * capability registers
3458 * @dev: the PCI device
3459 * @cap: the capability to allocate the buffer for
3460 * @extended: Standard or Extended capability ID
3461 * @size: requested size of the buffer
3462 */
_pci_add_cap_save_buffer(struct pci_dev * dev,u16 cap,bool extended,unsigned int size)3463 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3464 bool extended, unsigned int size)
3465 {
3466 int pos;
3467 struct pci_cap_saved_state *save_state;
3468
3469 if (extended)
3470 pos = pci_find_ext_capability(dev, cap);
3471 else
3472 pos = pci_find_capability(dev, cap);
3473
3474 if (!pos)
3475 return 0;
3476
3477 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3478 if (!save_state)
3479 return -ENOMEM;
3480
3481 save_state->cap.cap_nr = cap;
3482 save_state->cap.cap_extended = extended;
3483 save_state->cap.size = size;
3484 pci_add_saved_cap(dev, save_state);
3485
3486 return 0;
3487 }
3488
pci_add_cap_save_buffer(struct pci_dev * dev,char cap,unsigned int size)3489 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3490 {
3491 return _pci_add_cap_save_buffer(dev, cap, false, size);
3492 }
3493
pci_add_ext_cap_save_buffer(struct pci_dev * dev,u16 cap,unsigned int size)3494 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3495 {
3496 return _pci_add_cap_save_buffer(dev, cap, true, size);
3497 }
3498
3499 /**
3500 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3501 * @dev: the PCI device
3502 */
pci_allocate_cap_save_buffers(struct pci_dev * dev)3503 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3504 {
3505 int error;
3506
3507 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3508 PCI_EXP_SAVE_REGS * sizeof(u16));
3509 if (error)
3510 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3511
3512 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3513 if (error)
3514 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3515
3516 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3517 2 * sizeof(u16));
3518 if (error)
3519 pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3520
3521 pci_allocate_vc_save_buffers(dev);
3522 }
3523
pci_free_cap_save_buffers(struct pci_dev * dev)3524 void pci_free_cap_save_buffers(struct pci_dev *dev)
3525 {
3526 struct pci_cap_saved_state *tmp;
3527 struct hlist_node *n;
3528
3529 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3530 kfree(tmp);
3531 }
3532
3533 /**
3534 * pci_configure_ari - enable or disable ARI forwarding
3535 * @dev: the PCI device
3536 *
3537 * If @dev and its upstream bridge both support ARI, enable ARI in the
3538 * bridge. Otherwise, disable ARI in the bridge.
3539 */
pci_configure_ari(struct pci_dev * dev)3540 void pci_configure_ari(struct pci_dev *dev)
3541 {
3542 u32 cap;
3543 struct pci_dev *bridge;
3544
3545 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3546 return;
3547
3548 bridge = dev->bus->self;
3549 if (!bridge)
3550 return;
3551
3552 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3553 if (!(cap & PCI_EXP_DEVCAP2_ARI))
3554 return;
3555
3556 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3557 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3558 PCI_EXP_DEVCTL2_ARI);
3559 bridge->ari_enabled = 1;
3560 } else {
3561 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3562 PCI_EXP_DEVCTL2_ARI);
3563 bridge->ari_enabled = 0;
3564 }
3565 }
3566
pci_acs_flags_enabled(struct pci_dev * pdev,u16 acs_flags)3567 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3568 {
3569 int pos;
3570 u16 cap, ctrl;
3571
3572 pos = pdev->acs_cap;
3573 if (!pos)
3574 return false;
3575
3576 /*
3577 * Except for egress control, capabilities are either required
3578 * or only required if controllable. Features missing from the
3579 * capability field can therefore be assumed as hard-wired enabled.
3580 */
3581 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3582 acs_flags &= (cap | PCI_ACS_EC);
3583
3584 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3585 return (ctrl & acs_flags) == acs_flags;
3586 }
3587
3588 /**
3589 * pci_acs_enabled - test ACS against required flags for a given device
3590 * @pdev: device to test
3591 * @acs_flags: required PCI ACS flags
3592 *
3593 * Return true if the device supports the provided flags. Automatically
3594 * filters out flags that are not implemented on multifunction devices.
3595 *
3596 * Note that this interface checks the effective ACS capabilities of the
3597 * device rather than the actual capabilities. For instance, most single
3598 * function endpoints are not required to support ACS because they have no
3599 * opportunity for peer-to-peer access. We therefore return 'true'
3600 * regardless of whether the device exposes an ACS capability. This makes
3601 * it much easier for callers of this function to ignore the actual type
3602 * or topology of the device when testing ACS support.
3603 */
pci_acs_enabled(struct pci_dev * pdev,u16 acs_flags)3604 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3605 {
3606 int ret;
3607
3608 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3609 if (ret >= 0)
3610 return ret > 0;
3611
3612 /*
3613 * Conventional PCI and PCI-X devices never support ACS, either
3614 * effectively or actually. The shared bus topology implies that
3615 * any device on the bus can receive or snoop DMA.
3616 */
3617 if (!pci_is_pcie(pdev))
3618 return false;
3619
3620 switch (pci_pcie_type(pdev)) {
3621 /*
3622 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3623 * but since their primary interface is PCI/X, we conservatively
3624 * handle them as we would a non-PCIe device.
3625 */
3626 case PCI_EXP_TYPE_PCIE_BRIDGE:
3627 /*
3628 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3629 * applicable... must never implement an ACS Extended Capability...".
3630 * This seems arbitrary, but we take a conservative interpretation
3631 * of this statement.
3632 */
3633 case PCI_EXP_TYPE_PCI_BRIDGE:
3634 case PCI_EXP_TYPE_RC_EC:
3635 return false;
3636 /*
3637 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3638 * implement ACS in order to indicate their peer-to-peer capabilities,
3639 * regardless of whether they are single- or multi-function devices.
3640 */
3641 case PCI_EXP_TYPE_DOWNSTREAM:
3642 case PCI_EXP_TYPE_ROOT_PORT:
3643 return pci_acs_flags_enabled(pdev, acs_flags);
3644 /*
3645 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3646 * implemented by the remaining PCIe types to indicate peer-to-peer
3647 * capabilities, but only when they are part of a multifunction
3648 * device. The footnote for section 6.12 indicates the specific
3649 * PCIe types included here.
3650 */
3651 case PCI_EXP_TYPE_ENDPOINT:
3652 case PCI_EXP_TYPE_UPSTREAM:
3653 case PCI_EXP_TYPE_LEG_END:
3654 case PCI_EXP_TYPE_RC_END:
3655 if (!pdev->multifunction)
3656 break;
3657
3658 return pci_acs_flags_enabled(pdev, acs_flags);
3659 }
3660
3661 /*
3662 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3663 * to single function devices with the exception of downstream ports.
3664 */
3665 return true;
3666 }
3667
3668 /**
3669 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3670 * @start: starting downstream device
3671 * @end: ending upstream device or NULL to search to the root bus
3672 * @acs_flags: required flags
3673 *
3674 * Walk up a device tree from start to end testing PCI ACS support. If
3675 * any step along the way does not support the required flags, return false.
3676 */
pci_acs_path_enabled(struct pci_dev * start,struct pci_dev * end,u16 acs_flags)3677 bool pci_acs_path_enabled(struct pci_dev *start,
3678 struct pci_dev *end, u16 acs_flags)
3679 {
3680 struct pci_dev *pdev, *parent = start;
3681
3682 do {
3683 pdev = parent;
3684
3685 if (!pci_acs_enabled(pdev, acs_flags))
3686 return false;
3687
3688 if (pci_is_root_bus(pdev->bus))
3689 return (end == NULL);
3690
3691 parent = pdev->bus->self;
3692 } while (pdev != end);
3693
3694 return true;
3695 }
3696
3697 /**
3698 * pci_acs_init - Initialize ACS if hardware supports it
3699 * @dev: the PCI device
3700 */
pci_acs_init(struct pci_dev * dev)3701 void pci_acs_init(struct pci_dev *dev)
3702 {
3703 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3704
3705 /*
3706 * Attempt to enable ACS regardless of capability because some Root
3707 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3708 * the standard ACS capability but still support ACS via those
3709 * quirks.
3710 */
3711 pci_enable_acs(dev);
3712 }
3713
3714 /**
3715 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3716 * @pdev: PCI device
3717 * @bar: BAR to find
3718 *
3719 * Helper to find the position of the ctrl register for a BAR.
3720 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3721 * Returns -ENOENT if no ctrl register for the BAR could be found.
3722 */
pci_rebar_find_pos(struct pci_dev * pdev,int bar)3723 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3724 {
3725 unsigned int pos, nbars, i;
3726 u32 ctrl;
3727
3728 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3729 if (!pos)
3730 return -ENOTSUPP;
3731
3732 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3733 nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
3734
3735 for (i = 0; i < nbars; i++, pos += 8) {
3736 int bar_idx;
3737
3738 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3739 bar_idx = FIELD_GET(PCI_REBAR_CTRL_BAR_IDX, ctrl);
3740 if (bar_idx == bar)
3741 return pos;
3742 }
3743
3744 return -ENOENT;
3745 }
3746
3747 /**
3748 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3749 * @pdev: PCI device
3750 * @bar: BAR to query
3751 *
3752 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3753 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3754 */
pci_rebar_get_possible_sizes(struct pci_dev * pdev,int bar)3755 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3756 {
3757 int pos;
3758 u32 cap;
3759
3760 pos = pci_rebar_find_pos(pdev, bar);
3761 if (pos < 0)
3762 return 0;
3763
3764 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3765 cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap);
3766
3767 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3768 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3769 bar == 0 && cap == 0x700)
3770 return 0x3f00;
3771
3772 return cap;
3773 }
3774 EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3775
3776 /**
3777 * pci_rebar_get_current_size - get the current size of a BAR
3778 * @pdev: PCI device
3779 * @bar: BAR to set size to
3780 *
3781 * Read the size of a BAR from the resizable BAR config.
3782 * Returns size if found or negative error code.
3783 */
pci_rebar_get_current_size(struct pci_dev * pdev,int bar)3784 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3785 {
3786 int pos;
3787 u32 ctrl;
3788
3789 pos = pci_rebar_find_pos(pdev, bar);
3790 if (pos < 0)
3791 return pos;
3792
3793 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3794 return FIELD_GET(PCI_REBAR_CTRL_BAR_SIZE, ctrl);
3795 }
3796
3797 /**
3798 * pci_rebar_set_size - set a new size for a BAR
3799 * @pdev: PCI device
3800 * @bar: BAR to set size to
3801 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3802 *
3803 * Set the new size of a BAR as defined in the spec.
3804 * Returns zero if resizing was successful, error code otherwise.
3805 */
pci_rebar_set_size(struct pci_dev * pdev,int bar,int size)3806 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3807 {
3808 int pos;
3809 u32 ctrl;
3810
3811 pos = pci_rebar_find_pos(pdev, bar);
3812 if (pos < 0)
3813 return pos;
3814
3815 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3816 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3817 ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
3818 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3819 return 0;
3820 }
3821
3822 /**
3823 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3824 * @dev: the PCI device
3825 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3826 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3827 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3828 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3829 *
3830 * Return 0 if all upstream bridges support AtomicOp routing, egress
3831 * blocking is disabled on all upstream ports, and the root port supports
3832 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3833 * AtomicOp completion), or negative otherwise.
3834 */
pci_enable_atomic_ops_to_root(struct pci_dev * dev,u32 cap_mask)3835 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3836 {
3837 struct pci_bus *bus = dev->bus;
3838 struct pci_dev *bridge;
3839 u32 cap, ctl2;
3840
3841 /*
3842 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3843 * in Device Control 2 is reserved in VFs and the PF value applies
3844 * to all associated VFs.
3845 */
3846 if (dev->is_virtfn)
3847 return -EINVAL;
3848
3849 if (!pci_is_pcie(dev))
3850 return -EINVAL;
3851
3852 /*
3853 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3854 * AtomicOp requesters. For now, we only support endpoints as
3855 * requesters and root ports as completers. No endpoints as
3856 * completers, and no peer-to-peer.
3857 */
3858
3859 switch (pci_pcie_type(dev)) {
3860 case PCI_EXP_TYPE_ENDPOINT:
3861 case PCI_EXP_TYPE_LEG_END:
3862 case PCI_EXP_TYPE_RC_END:
3863 break;
3864 default:
3865 return -EINVAL;
3866 }
3867
3868 while (bus->parent) {
3869 bridge = bus->self;
3870
3871 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3872
3873 switch (pci_pcie_type(bridge)) {
3874 /* Ensure switch ports support AtomicOp routing */
3875 case PCI_EXP_TYPE_UPSTREAM:
3876 case PCI_EXP_TYPE_DOWNSTREAM:
3877 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3878 return -EINVAL;
3879 break;
3880
3881 /* Ensure root port supports all the sizes we care about */
3882 case PCI_EXP_TYPE_ROOT_PORT:
3883 if ((cap & cap_mask) != cap_mask)
3884 return -EINVAL;
3885 break;
3886 }
3887
3888 /* Ensure upstream ports don't block AtomicOps on egress */
3889 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3890 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3891 &ctl2);
3892 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3893 return -EINVAL;
3894 }
3895
3896 bus = bus->parent;
3897 }
3898
3899 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3900 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3901 return 0;
3902 }
3903 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3904
3905 /**
3906 * pci_release_region - Release a PCI bar
3907 * @pdev: PCI device whose resources were previously reserved by
3908 * pci_request_region()
3909 * @bar: BAR to release
3910 *
3911 * Releases the PCI I/O and memory resources previously reserved by a
3912 * successful call to pci_request_region(). Call this function only
3913 * after all use of the PCI regions has ceased.
3914 */
pci_release_region(struct pci_dev * pdev,int bar)3915 void pci_release_region(struct pci_dev *pdev, int bar)
3916 {
3917 /*
3918 * This is done for backwards compatibility, because the old PCI devres
3919 * API had a mode in which the function became managed if it had been
3920 * enabled with pcim_enable_device() instead of pci_enable_device().
3921 */
3922 if (pci_is_managed(pdev)) {
3923 pcim_release_region(pdev, bar);
3924 return;
3925 }
3926
3927 if (pci_resource_len(pdev, bar) == 0)
3928 return;
3929 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3930 release_region(pci_resource_start(pdev, bar),
3931 pci_resource_len(pdev, bar));
3932 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3933 release_mem_region(pci_resource_start(pdev, bar),
3934 pci_resource_len(pdev, bar));
3935 }
3936 EXPORT_SYMBOL(pci_release_region);
3937
3938 /**
3939 * __pci_request_region - Reserved PCI I/O and memory resource
3940 * @pdev: PCI device whose resources are to be reserved
3941 * @bar: BAR to be reserved
3942 * @res_name: Name to be associated with resource.
3943 * @exclusive: whether the region access is exclusive or not
3944 *
3945 * Returns: 0 on success, negative error code on failure.
3946 *
3947 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3948 * being reserved by owner @res_name. Do not access any
3949 * address inside the PCI regions unless this call returns
3950 * successfully.
3951 *
3952 * If @exclusive is set, then the region is marked so that userspace
3953 * is explicitly not allowed to map the resource via /dev/mem or
3954 * sysfs MMIO access.
3955 *
3956 * Returns 0 on success, or %EBUSY on error. A warning
3957 * message is also printed on failure.
3958 */
__pci_request_region(struct pci_dev * pdev,int bar,const char * res_name,int exclusive)3959 static int __pci_request_region(struct pci_dev *pdev, int bar,
3960 const char *res_name, int exclusive)
3961 {
3962 if (pci_is_managed(pdev)) {
3963 if (exclusive == IORESOURCE_EXCLUSIVE)
3964 return pcim_request_region_exclusive(pdev, bar, res_name);
3965
3966 return pcim_request_region(pdev, bar, res_name);
3967 }
3968
3969 if (pci_resource_len(pdev, bar) == 0)
3970 return 0;
3971
3972 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3973 if (!request_region(pci_resource_start(pdev, bar),
3974 pci_resource_len(pdev, bar), res_name))
3975 goto err_out;
3976 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3977 if (!__request_mem_region(pci_resource_start(pdev, bar),
3978 pci_resource_len(pdev, bar), res_name,
3979 exclusive))
3980 goto err_out;
3981 }
3982
3983 return 0;
3984
3985 err_out:
3986 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3987 &pdev->resource[bar]);
3988 return -EBUSY;
3989 }
3990
3991 /**
3992 * pci_request_region - Reserve PCI I/O and memory resource
3993 * @pdev: PCI device whose resources are to be reserved
3994 * @bar: BAR to be reserved
3995 * @res_name: Name to be associated with resource
3996 *
3997 * Returns: 0 on success, negative error code on failure.
3998 *
3999 * Mark the PCI region associated with PCI device @pdev BAR @bar as
4000 * being reserved by owner @res_name. Do not access any
4001 * address inside the PCI regions unless this call returns
4002 * successfully.
4003 *
4004 * Returns 0 on success, or %EBUSY on error. A warning
4005 * message is also printed on failure.
4006 *
4007 * NOTE:
4008 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4009 * when pcim_enable_device() has been called in advance. This hybrid feature is
4010 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4011 */
pci_request_region(struct pci_dev * pdev,int bar,const char * res_name)4012 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
4013 {
4014 return __pci_request_region(pdev, bar, res_name, 0);
4015 }
4016 EXPORT_SYMBOL(pci_request_region);
4017
4018 /**
4019 * pci_release_selected_regions - Release selected PCI I/O and memory resources
4020 * @pdev: PCI device whose resources were previously reserved
4021 * @bars: Bitmask of BARs to be released
4022 *
4023 * Release selected PCI I/O and memory resources previously reserved.
4024 * Call this function only after all use of the PCI regions has ceased.
4025 */
pci_release_selected_regions(struct pci_dev * pdev,int bars)4026 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
4027 {
4028 int i;
4029
4030 for (i = 0; i < PCI_STD_NUM_BARS; i++)
4031 if (bars & (1 << i))
4032 pci_release_region(pdev, i);
4033 }
4034 EXPORT_SYMBOL(pci_release_selected_regions);
4035
__pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * res_name,int excl)4036 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4037 const char *res_name, int excl)
4038 {
4039 int i;
4040
4041 for (i = 0; i < PCI_STD_NUM_BARS; i++)
4042 if (bars & (1 << i))
4043 if (__pci_request_region(pdev, i, res_name, excl))
4044 goto err_out;
4045 return 0;
4046
4047 err_out:
4048 while (--i >= 0)
4049 if (bars & (1 << i))
4050 pci_release_region(pdev, i);
4051
4052 return -EBUSY;
4053 }
4054
4055
4056 /**
4057 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4058 * @pdev: PCI device whose resources are to be reserved
4059 * @bars: Bitmask of BARs to be requested
4060 * @res_name: Name to be associated with resource
4061 *
4062 * Returns: 0 on success, negative error code on failure.
4063 *
4064 * NOTE:
4065 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4066 * when pcim_enable_device() has been called in advance. This hybrid feature is
4067 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4068 */
pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * res_name)4069 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4070 const char *res_name)
4071 {
4072 return __pci_request_selected_regions(pdev, bars, res_name, 0);
4073 }
4074 EXPORT_SYMBOL(pci_request_selected_regions);
4075
4076 /**
4077 * pci_request_selected_regions_exclusive - Request regions exclusively
4078 * @pdev: PCI device to request regions from
4079 * @bars: bit mask of BARs to request
4080 * @res_name: name to be associated with the requests
4081 *
4082 * Returns: 0 on success, negative error code on failure.
4083 *
4084 * NOTE:
4085 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4086 * when pcim_enable_device() has been called in advance. This hybrid feature is
4087 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4088 */
pci_request_selected_regions_exclusive(struct pci_dev * pdev,int bars,const char * res_name)4089 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4090 const char *res_name)
4091 {
4092 return __pci_request_selected_regions(pdev, bars, res_name,
4093 IORESOURCE_EXCLUSIVE);
4094 }
4095 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4096
4097 /**
4098 * pci_release_regions - Release reserved PCI I/O and memory resources
4099 * @pdev: PCI device whose resources were previously reserved by
4100 * pci_request_regions()
4101 *
4102 * Releases all PCI I/O and memory resources previously reserved by a
4103 * successful call to pci_request_regions(). Call this function only
4104 * after all use of the PCI regions has ceased.
4105 */
pci_release_regions(struct pci_dev * pdev)4106 void pci_release_regions(struct pci_dev *pdev)
4107 {
4108 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4109 }
4110 EXPORT_SYMBOL(pci_release_regions);
4111
4112 /**
4113 * pci_request_regions - Reserve PCI I/O and memory resources
4114 * @pdev: PCI device whose resources are to be reserved
4115 * @res_name: Name to be associated with resource.
4116 *
4117 * Mark all PCI regions associated with PCI device @pdev as
4118 * being reserved by owner @res_name. Do not access any
4119 * address inside the PCI regions unless this call returns
4120 * successfully.
4121 *
4122 * Returns 0 on success, or %EBUSY on error. A warning
4123 * message is also printed on failure.
4124 *
4125 * NOTE:
4126 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4127 * when pcim_enable_device() has been called in advance. This hybrid feature is
4128 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4129 */
pci_request_regions(struct pci_dev * pdev,const char * res_name)4130 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4131 {
4132 return pci_request_selected_regions(pdev,
4133 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4134 }
4135 EXPORT_SYMBOL(pci_request_regions);
4136
4137 /**
4138 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4139 * @pdev: PCI device whose resources are to be reserved
4140 * @res_name: Name to be associated with resource.
4141 *
4142 * Returns: 0 on success, negative error code on failure.
4143 *
4144 * Mark all PCI regions associated with PCI device @pdev as being reserved
4145 * by owner @res_name. Do not access any address inside the PCI regions
4146 * unless this call returns successfully.
4147 *
4148 * pci_request_regions_exclusive() will mark the region so that /dev/mem
4149 * and the sysfs MMIO access will not be allowed.
4150 *
4151 * Returns 0 on success, or %EBUSY on error. A warning message is also
4152 * printed on failure.
4153 *
4154 * NOTE:
4155 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4156 * when pcim_enable_device() has been called in advance. This hybrid feature is
4157 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4158 */
pci_request_regions_exclusive(struct pci_dev * pdev,const char * res_name)4159 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4160 {
4161 return pci_request_selected_regions_exclusive(pdev,
4162 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4163 }
4164 EXPORT_SYMBOL(pci_request_regions_exclusive);
4165
4166 /*
4167 * Record the PCI IO range (expressed as CPU physical address + size).
4168 * Return a negative value if an error has occurred, zero otherwise
4169 */
pci_register_io_range(struct fwnode_handle * fwnode,phys_addr_t addr,resource_size_t size)4170 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4171 resource_size_t size)
4172 {
4173 int ret = 0;
4174 #ifdef PCI_IOBASE
4175 struct logic_pio_hwaddr *range;
4176
4177 if (!size || addr + size < addr)
4178 return -EINVAL;
4179
4180 range = kzalloc(sizeof(*range), GFP_ATOMIC);
4181 if (!range)
4182 return -ENOMEM;
4183
4184 range->fwnode = fwnode;
4185 range->size = size;
4186 range->hw_start = addr;
4187 range->flags = LOGIC_PIO_CPU_MMIO;
4188
4189 ret = logic_pio_register_range(range);
4190 if (ret)
4191 kfree(range);
4192
4193 /* Ignore duplicates due to deferred probing */
4194 if (ret == -EEXIST)
4195 ret = 0;
4196 #endif
4197
4198 return ret;
4199 }
4200
pci_pio_to_address(unsigned long pio)4201 phys_addr_t pci_pio_to_address(unsigned long pio)
4202 {
4203 #ifdef PCI_IOBASE
4204 if (pio < MMIO_UPPER_LIMIT)
4205 return logic_pio_to_hwaddr(pio);
4206 #endif
4207
4208 return (phys_addr_t) OF_BAD_ADDR;
4209 }
4210 EXPORT_SYMBOL_GPL(pci_pio_to_address);
4211
pci_address_to_pio(phys_addr_t address)4212 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4213 {
4214 #ifdef PCI_IOBASE
4215 return logic_pio_trans_cpuaddr(address);
4216 #else
4217 if (address > IO_SPACE_LIMIT)
4218 return (unsigned long)-1;
4219
4220 return (unsigned long) address;
4221 #endif
4222 }
4223
4224 /**
4225 * pci_remap_iospace - Remap the memory mapped I/O space
4226 * @res: Resource describing the I/O space
4227 * @phys_addr: physical address of range to be mapped
4228 *
4229 * Remap the memory mapped I/O space described by the @res and the CPU
4230 * physical address @phys_addr into virtual address space. Only
4231 * architectures that have memory mapped IO functions defined (and the
4232 * PCI_IOBASE value defined) should call this function.
4233 */
4234 #ifndef pci_remap_iospace
pci_remap_iospace(const struct resource * res,phys_addr_t phys_addr)4235 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4236 {
4237 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4238 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4239
4240 if (!(res->flags & IORESOURCE_IO))
4241 return -EINVAL;
4242
4243 if (res->end > IO_SPACE_LIMIT)
4244 return -EINVAL;
4245
4246 return vmap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4247 pgprot_device(PAGE_KERNEL));
4248 #else
4249 /*
4250 * This architecture does not have memory mapped I/O space,
4251 * so this function should never be called
4252 */
4253 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4254 return -ENODEV;
4255 #endif
4256 }
4257 EXPORT_SYMBOL(pci_remap_iospace);
4258 #endif
4259
4260 /**
4261 * pci_unmap_iospace - Unmap the memory mapped I/O space
4262 * @res: resource to be unmapped
4263 *
4264 * Unmap the CPU virtual address @res from virtual address space. Only
4265 * architectures that have memory mapped IO functions defined (and the
4266 * PCI_IOBASE value defined) should call this function.
4267 */
pci_unmap_iospace(struct resource * res)4268 void pci_unmap_iospace(struct resource *res)
4269 {
4270 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4271 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4272
4273 vunmap_range(vaddr, vaddr + resource_size(res));
4274 #endif
4275 }
4276 EXPORT_SYMBOL(pci_unmap_iospace);
4277
__pci_set_master(struct pci_dev * dev,bool enable)4278 static void __pci_set_master(struct pci_dev *dev, bool enable)
4279 {
4280 u16 old_cmd, cmd;
4281
4282 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4283 if (enable)
4284 cmd = old_cmd | PCI_COMMAND_MASTER;
4285 else
4286 cmd = old_cmd & ~PCI_COMMAND_MASTER;
4287 if (cmd != old_cmd) {
4288 pci_dbg(dev, "%s bus mastering\n",
4289 enable ? "enabling" : "disabling");
4290 pci_write_config_word(dev, PCI_COMMAND, cmd);
4291 }
4292 dev->is_busmaster = enable;
4293 }
4294
4295 /**
4296 * pcibios_setup - process "pci=" kernel boot arguments
4297 * @str: string used to pass in "pci=" kernel boot arguments
4298 *
4299 * Process kernel boot arguments. This is the default implementation.
4300 * Architecture specific implementations can override this as necessary.
4301 */
pcibios_setup(char * str)4302 char * __weak __init pcibios_setup(char *str)
4303 {
4304 return str;
4305 }
4306
4307 /**
4308 * pcibios_set_master - enable PCI bus-mastering for device dev
4309 * @dev: the PCI device to enable
4310 *
4311 * Enables PCI bus-mastering for the device. This is the default
4312 * implementation. Architecture specific implementations can override
4313 * this if necessary.
4314 */
pcibios_set_master(struct pci_dev * dev)4315 void __weak pcibios_set_master(struct pci_dev *dev)
4316 {
4317 u8 lat;
4318
4319 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4320 if (pci_is_pcie(dev))
4321 return;
4322
4323 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4324 if (lat < 16)
4325 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4326 else if (lat > pcibios_max_latency)
4327 lat = pcibios_max_latency;
4328 else
4329 return;
4330
4331 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4332 }
4333
4334 /**
4335 * pci_set_master - enables bus-mastering for device dev
4336 * @dev: the PCI device to enable
4337 *
4338 * Enables bus-mastering on the device and calls pcibios_set_master()
4339 * to do the needed arch specific settings.
4340 */
pci_set_master(struct pci_dev * dev)4341 void pci_set_master(struct pci_dev *dev)
4342 {
4343 __pci_set_master(dev, true);
4344 pcibios_set_master(dev);
4345 }
4346 EXPORT_SYMBOL(pci_set_master);
4347
4348 /**
4349 * pci_clear_master - disables bus-mastering for device dev
4350 * @dev: the PCI device to disable
4351 */
pci_clear_master(struct pci_dev * dev)4352 void pci_clear_master(struct pci_dev *dev)
4353 {
4354 __pci_set_master(dev, false);
4355 }
4356 EXPORT_SYMBOL(pci_clear_master);
4357
4358 /**
4359 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4360 * @dev: the PCI device for which MWI is to be enabled
4361 *
4362 * Helper function for pci_set_mwi.
4363 * Originally copied from drivers/net/acenic.c.
4364 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4365 *
4366 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4367 */
pci_set_cacheline_size(struct pci_dev * dev)4368 int pci_set_cacheline_size(struct pci_dev *dev)
4369 {
4370 u8 cacheline_size;
4371
4372 if (!pci_cache_line_size)
4373 return -EINVAL;
4374
4375 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4376 equal to or multiple of the right value. */
4377 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4378 if (cacheline_size >= pci_cache_line_size &&
4379 (cacheline_size % pci_cache_line_size) == 0)
4380 return 0;
4381
4382 /* Write the correct value. */
4383 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4384 /* Read it back. */
4385 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4386 if (cacheline_size == pci_cache_line_size)
4387 return 0;
4388
4389 pci_dbg(dev, "cache line size of %d is not supported\n",
4390 pci_cache_line_size << 2);
4391
4392 return -EINVAL;
4393 }
4394 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4395
4396 /**
4397 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4398 * @dev: the PCI device for which MWI is enabled
4399 *
4400 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4401 *
4402 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4403 */
pci_set_mwi(struct pci_dev * dev)4404 int pci_set_mwi(struct pci_dev *dev)
4405 {
4406 #ifdef PCI_DISABLE_MWI
4407 return 0;
4408 #else
4409 int rc;
4410 u16 cmd;
4411
4412 rc = pci_set_cacheline_size(dev);
4413 if (rc)
4414 return rc;
4415
4416 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4417 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4418 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4419 cmd |= PCI_COMMAND_INVALIDATE;
4420 pci_write_config_word(dev, PCI_COMMAND, cmd);
4421 }
4422 return 0;
4423 #endif
4424 }
4425 EXPORT_SYMBOL(pci_set_mwi);
4426
4427 /**
4428 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4429 * @dev: the PCI device for which MWI is enabled
4430 *
4431 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4432 * Callers are not required to check the return value.
4433 *
4434 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4435 */
pci_try_set_mwi(struct pci_dev * dev)4436 int pci_try_set_mwi(struct pci_dev *dev)
4437 {
4438 #ifdef PCI_DISABLE_MWI
4439 return 0;
4440 #else
4441 return pci_set_mwi(dev);
4442 #endif
4443 }
4444 EXPORT_SYMBOL(pci_try_set_mwi);
4445
4446 /**
4447 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4448 * @dev: the PCI device to disable
4449 *
4450 * Disables PCI Memory-Write-Invalidate transaction on the device
4451 */
pci_clear_mwi(struct pci_dev * dev)4452 void pci_clear_mwi(struct pci_dev *dev)
4453 {
4454 #ifndef PCI_DISABLE_MWI
4455 u16 cmd;
4456
4457 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4458 if (cmd & PCI_COMMAND_INVALIDATE) {
4459 cmd &= ~PCI_COMMAND_INVALIDATE;
4460 pci_write_config_word(dev, PCI_COMMAND, cmd);
4461 }
4462 #endif
4463 }
4464 EXPORT_SYMBOL(pci_clear_mwi);
4465
4466 /**
4467 * pci_disable_parity - disable parity checking for device
4468 * @dev: the PCI device to operate on
4469 *
4470 * Disable parity checking for device @dev
4471 */
pci_disable_parity(struct pci_dev * dev)4472 void pci_disable_parity(struct pci_dev *dev)
4473 {
4474 u16 cmd;
4475
4476 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4477 if (cmd & PCI_COMMAND_PARITY) {
4478 cmd &= ~PCI_COMMAND_PARITY;
4479 pci_write_config_word(dev, PCI_COMMAND, cmd);
4480 }
4481 }
4482
4483 /**
4484 * pci_intx - enables/disables PCI INTx for device dev
4485 * @pdev: the PCI device to operate on
4486 * @enable: boolean: whether to enable or disable PCI INTx
4487 *
4488 * Enables/disables PCI INTx for device @pdev
4489 *
4490 * NOTE:
4491 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4492 * when pcim_enable_device() has been called in advance. This hybrid feature is
4493 * DEPRECATED! If you want managed cleanup, use pcim_intx() instead.
4494 */
pci_intx(struct pci_dev * pdev,int enable)4495 void pci_intx(struct pci_dev *pdev, int enable)
4496 {
4497 u16 pci_command, new;
4498
4499 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4500
4501 if (enable)
4502 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4503 else
4504 new = pci_command | PCI_COMMAND_INTX_DISABLE;
4505
4506 if (new != pci_command) {
4507 /* Preserve the "hybrid" behavior for backwards compatibility */
4508 if (pci_is_managed(pdev)) {
4509 WARN_ON_ONCE(pcim_intx(pdev, enable) != 0);
4510 return;
4511 }
4512
4513 pci_write_config_word(pdev, PCI_COMMAND, new);
4514 }
4515 }
4516 EXPORT_SYMBOL_GPL(pci_intx);
4517
4518 /**
4519 * pci_wait_for_pending_transaction - wait for pending transaction
4520 * @dev: the PCI device to operate on
4521 *
4522 * Return 0 if transaction is pending 1 otherwise.
4523 */
pci_wait_for_pending_transaction(struct pci_dev * dev)4524 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4525 {
4526 if (!pci_is_pcie(dev))
4527 return 1;
4528
4529 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4530 PCI_EXP_DEVSTA_TRPND);
4531 }
4532 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4533
4534 /**
4535 * pcie_flr - initiate a PCIe function level reset
4536 * @dev: device to reset
4537 *
4538 * Initiate a function level reset unconditionally on @dev without
4539 * checking any flags and DEVCAP
4540 */
pcie_flr(struct pci_dev * dev)4541 int pcie_flr(struct pci_dev *dev)
4542 {
4543 if (!pci_wait_for_pending_transaction(dev))
4544 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4545
4546 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4547
4548 if (dev->imm_ready)
4549 return 0;
4550
4551 /*
4552 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4553 * 100ms, but may silently discard requests while the FLR is in
4554 * progress. Wait 100ms before trying to access the device.
4555 */
4556 msleep(100);
4557
4558 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4559 }
4560 EXPORT_SYMBOL_GPL(pcie_flr);
4561
4562 /**
4563 * pcie_reset_flr - initiate a PCIe function level reset
4564 * @dev: device to reset
4565 * @probe: if true, return 0 if device can be reset this way
4566 *
4567 * Initiate a function level reset on @dev.
4568 */
pcie_reset_flr(struct pci_dev * dev,bool probe)4569 int pcie_reset_flr(struct pci_dev *dev, bool probe)
4570 {
4571 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4572 return -ENOTTY;
4573
4574 if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4575 return -ENOTTY;
4576
4577 if (probe)
4578 return 0;
4579
4580 return pcie_flr(dev);
4581 }
4582 EXPORT_SYMBOL_GPL(pcie_reset_flr);
4583
pci_af_flr(struct pci_dev * dev,bool probe)4584 static int pci_af_flr(struct pci_dev *dev, bool probe)
4585 {
4586 int pos;
4587 u8 cap;
4588
4589 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4590 if (!pos)
4591 return -ENOTTY;
4592
4593 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4594 return -ENOTTY;
4595
4596 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4597 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4598 return -ENOTTY;
4599
4600 if (probe)
4601 return 0;
4602
4603 /*
4604 * Wait for Transaction Pending bit to clear. A word-aligned test
4605 * is used, so we use the control offset rather than status and shift
4606 * the test bit to match.
4607 */
4608 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4609 PCI_AF_STATUS_TP << 8))
4610 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4611
4612 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4613
4614 if (dev->imm_ready)
4615 return 0;
4616
4617 /*
4618 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4619 * updated 27 July 2006; a device must complete an FLR within
4620 * 100ms, but may silently discard requests while the FLR is in
4621 * progress. Wait 100ms before trying to access the device.
4622 */
4623 msleep(100);
4624
4625 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4626 }
4627
4628 /**
4629 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4630 * @dev: Device to reset.
4631 * @probe: if true, return 0 if the device can be reset this way.
4632 *
4633 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4634 * unset, it will be reinitialized internally when going from PCI_D3hot to
4635 * PCI_D0. If that's the case and the device is not in a low-power state
4636 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4637 *
4638 * NOTE: This causes the caller to sleep for twice the device power transition
4639 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4640 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4641 * Moreover, only devices in D0 can be reset by this function.
4642 */
pci_pm_reset(struct pci_dev * dev,bool probe)4643 static int pci_pm_reset(struct pci_dev *dev, bool probe)
4644 {
4645 u16 csr;
4646
4647 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4648 return -ENOTTY;
4649
4650 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4651 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4652 return -ENOTTY;
4653
4654 if (probe)
4655 return 0;
4656
4657 if (dev->current_state != PCI_D0)
4658 return -EINVAL;
4659
4660 csr &= ~PCI_PM_CTRL_STATE_MASK;
4661 csr |= PCI_D3hot;
4662 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4663 pci_dev_d3_sleep(dev);
4664
4665 csr &= ~PCI_PM_CTRL_STATE_MASK;
4666 csr |= PCI_D0;
4667 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4668 pci_dev_d3_sleep(dev);
4669
4670 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4671 }
4672
4673 /**
4674 * pcie_wait_for_link_status - Wait for link status change
4675 * @pdev: Device whose link to wait for.
4676 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE.
4677 * @active: Waiting for active or inactive?
4678 *
4679 * Return 0 if successful, or -ETIMEDOUT if status has not changed within
4680 * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4681 */
pcie_wait_for_link_status(struct pci_dev * pdev,bool use_lt,bool active)4682 static int pcie_wait_for_link_status(struct pci_dev *pdev,
4683 bool use_lt, bool active)
4684 {
4685 u16 lnksta_mask, lnksta_match;
4686 unsigned long end_jiffies;
4687 u16 lnksta;
4688
4689 lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA;
4690 lnksta_match = active ? lnksta_mask : 0;
4691
4692 end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS);
4693 do {
4694 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
4695 if ((lnksta & lnksta_mask) == lnksta_match)
4696 return 0;
4697 msleep(1);
4698 } while (time_before(jiffies, end_jiffies));
4699
4700 return -ETIMEDOUT;
4701 }
4702
4703 /**
4704 * pcie_retrain_link - Request a link retrain and wait for it to complete
4705 * @pdev: Device whose link to retrain.
4706 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status.
4707 *
4708 * Retrain completion status is retrieved from the Link Status Register
4709 * according to @use_lt. It is not verified whether the use of the DLLLA
4710 * bit is valid.
4711 *
4712 * Return 0 if successful, or -ETIMEDOUT if training has not completed
4713 * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4714 */
pcie_retrain_link(struct pci_dev * pdev,bool use_lt)4715 int pcie_retrain_link(struct pci_dev *pdev, bool use_lt)
4716 {
4717 int rc;
4718
4719 /*
4720 * Ensure the updated LNKCTL parameters are used during link
4721 * training by checking that there is no ongoing link training that
4722 * may have started before link parameters were changed, so as to
4723 * avoid LTSSM race as recommended in Implementation Note at the end
4724 * of PCIe r6.1 sec 7.5.3.7.
4725 */
4726 rc = pcie_wait_for_link_status(pdev, true, false);
4727 if (rc)
4728 return rc;
4729
4730 pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4731 if (pdev->clear_retrain_link) {
4732 /*
4733 * Due to an erratum in some devices the Retrain Link bit
4734 * needs to be cleared again manually to allow the link
4735 * training to succeed.
4736 */
4737 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4738 }
4739
4740 rc = pcie_wait_for_link_status(pdev, use_lt, !use_lt);
4741
4742 /*
4743 * Clear LBMS after a manual retrain so that the bit can be used
4744 * to track link speed or width changes made by hardware itself
4745 * in attempt to correct unreliable link operation.
4746 */
4747 pcie_capability_write_word(pdev, PCI_EXP_LNKSTA, PCI_EXP_LNKSTA_LBMS);
4748 return rc;
4749 }
4750
4751 /**
4752 * pcie_wait_for_link_delay - Wait until link is active or inactive
4753 * @pdev: Bridge device
4754 * @active: waiting for active or inactive?
4755 * @delay: Delay to wait after link has become active (in ms)
4756 *
4757 * Use this to wait till link becomes active or inactive.
4758 */
pcie_wait_for_link_delay(struct pci_dev * pdev,bool active,int delay)4759 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4760 int delay)
4761 {
4762 int rc;
4763
4764 /*
4765 * Some controllers might not implement link active reporting. In this
4766 * case, we wait for 1000 ms + any delay requested by the caller.
4767 */
4768 if (!pdev->link_active_reporting) {
4769 msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay);
4770 return true;
4771 }
4772
4773 /*
4774 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4775 * after which we should expect an link active if the reset was
4776 * successful. If so, software must wait a minimum 100ms before sending
4777 * configuration requests to devices downstream this port.
4778 *
4779 * If the link fails to activate, either the device was physically
4780 * removed or the link is permanently failed.
4781 */
4782 if (active)
4783 msleep(20);
4784 rc = pcie_wait_for_link_status(pdev, false, active);
4785 if (active) {
4786 if (rc)
4787 rc = pcie_failed_link_retrain(pdev);
4788 if (rc)
4789 return false;
4790
4791 msleep(delay);
4792 return true;
4793 }
4794
4795 if (rc)
4796 return false;
4797
4798 return true;
4799 }
4800
4801 /**
4802 * pcie_wait_for_link - Wait until link is active or inactive
4803 * @pdev: Bridge device
4804 * @active: waiting for active or inactive?
4805 *
4806 * Use this to wait till link becomes active or inactive.
4807 */
pcie_wait_for_link(struct pci_dev * pdev,bool active)4808 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4809 {
4810 return pcie_wait_for_link_delay(pdev, active, 100);
4811 }
4812
4813 /*
4814 * Find maximum D3cold delay required by all the devices on the bus. The
4815 * spec says 100 ms, but firmware can lower it and we allow drivers to
4816 * increase it as well.
4817 *
4818 * Called with @pci_bus_sem locked for reading.
4819 */
pci_bus_max_d3cold_delay(const struct pci_bus * bus)4820 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4821 {
4822 const struct pci_dev *pdev;
4823 int min_delay = 100;
4824 int max_delay = 0;
4825
4826 list_for_each_entry(pdev, &bus->devices, bus_list) {
4827 if (pdev->d3cold_delay < min_delay)
4828 min_delay = pdev->d3cold_delay;
4829 if (pdev->d3cold_delay > max_delay)
4830 max_delay = pdev->d3cold_delay;
4831 }
4832
4833 return max(min_delay, max_delay);
4834 }
4835
4836 /**
4837 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4838 * @dev: PCI bridge
4839 * @reset_type: reset type in human-readable form
4840 *
4841 * Handle necessary delays before access to the devices on the secondary
4842 * side of the bridge are permitted after D3cold to D0 transition
4843 * or Conventional Reset.
4844 *
4845 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4846 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4847 * 4.3.2.
4848 *
4849 * Return 0 on success or -ENOTTY if the first device on the secondary bus
4850 * failed to become accessible.
4851 */
pci_bridge_wait_for_secondary_bus(struct pci_dev * dev,char * reset_type)4852 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type)
4853 {
4854 struct pci_dev *child __free(pci_dev_put) = NULL;
4855 int delay;
4856
4857 if (pci_dev_is_disconnected(dev))
4858 return 0;
4859
4860 if (!pci_is_bridge(dev))
4861 return 0;
4862
4863 down_read(&pci_bus_sem);
4864
4865 /*
4866 * We only deal with devices that are present currently on the bus.
4867 * For any hot-added devices the access delay is handled in pciehp
4868 * board_added(). In case of ACPI hotplug the firmware is expected
4869 * to configure the devices before OS is notified.
4870 */
4871 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4872 up_read(&pci_bus_sem);
4873 return 0;
4874 }
4875
4876 /* Take d3cold_delay requirements into account */
4877 delay = pci_bus_max_d3cold_delay(dev->subordinate);
4878 if (!delay) {
4879 up_read(&pci_bus_sem);
4880 return 0;
4881 }
4882
4883 child = pci_dev_get(list_first_entry(&dev->subordinate->devices,
4884 struct pci_dev, bus_list));
4885 up_read(&pci_bus_sem);
4886
4887 /*
4888 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4889 * accessing the device after reset (that is 1000 ms + 100 ms).
4890 */
4891 if (!pci_is_pcie(dev)) {
4892 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4893 msleep(1000 + delay);
4894 return 0;
4895 }
4896
4897 /*
4898 * For PCIe downstream and root ports that do not support speeds
4899 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4900 * speeds (gen3) we need to wait first for the data link layer to
4901 * become active.
4902 *
4903 * However, 100 ms is the minimum and the PCIe spec says the
4904 * software must allow at least 1s before it can determine that the
4905 * device that did not respond is a broken device. Also device can
4906 * take longer than that to respond if it indicates so through Request
4907 * Retry Status completions.
4908 *
4909 * Therefore we wait for 100 ms and check for the device presence
4910 * until the timeout expires.
4911 */
4912 if (!pcie_downstream_port(dev))
4913 return 0;
4914
4915 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4916 u16 status;
4917
4918 pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4919 msleep(delay);
4920
4921 if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay))
4922 return 0;
4923
4924 /*
4925 * If the port supports active link reporting we now check
4926 * whether the link is active and if not bail out early with
4927 * the assumption that the device is not present anymore.
4928 */
4929 if (!dev->link_active_reporting)
4930 return -ENOTTY;
4931
4932 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status);
4933 if (!(status & PCI_EXP_LNKSTA_DLLLA))
4934 return -ENOTTY;
4935
4936 return pci_dev_wait(child, reset_type,
4937 PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT);
4938 }
4939
4940 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4941 delay);
4942 if (!pcie_wait_for_link_delay(dev, true, delay)) {
4943 /* Did not train, no need to wait any further */
4944 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
4945 return -ENOTTY;
4946 }
4947
4948 return pci_dev_wait(child, reset_type,
4949 PCIE_RESET_READY_POLL_MS - delay);
4950 }
4951
pci_reset_secondary_bus(struct pci_dev * dev)4952 void pci_reset_secondary_bus(struct pci_dev *dev)
4953 {
4954 u16 ctrl;
4955
4956 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4957 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4958 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4959
4960 /*
4961 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
4962 * this to 2ms to ensure that we meet the minimum requirement.
4963 */
4964 msleep(2);
4965
4966 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4967 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4968 }
4969
pcibios_reset_secondary_bus(struct pci_dev * dev)4970 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4971 {
4972 pci_reset_secondary_bus(dev);
4973 }
4974
4975 /**
4976 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4977 * @dev: Bridge device
4978 *
4979 * Use the bridge control register to assert reset on the secondary bus.
4980 * Devices on the secondary bus are left in power-on state.
4981 */
pci_bridge_secondary_bus_reset(struct pci_dev * dev)4982 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4983 {
4984 if (!dev->block_cfg_access)
4985 pci_warn_once(dev, "unlocked secondary bus reset via: %pS\n",
4986 __builtin_return_address(0));
4987 pcibios_reset_secondary_bus(dev);
4988
4989 return pci_bridge_wait_for_secondary_bus(dev, "bus reset");
4990 }
4991 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4992
pci_parent_bus_reset(struct pci_dev * dev,bool probe)4993 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
4994 {
4995 struct pci_dev *pdev;
4996
4997 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4998 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4999 return -ENOTTY;
5000
5001 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5002 if (pdev != dev)
5003 return -ENOTTY;
5004
5005 if (probe)
5006 return 0;
5007
5008 return pci_bridge_secondary_bus_reset(dev->bus->self);
5009 }
5010
pci_reset_hotplug_slot(struct hotplug_slot * hotplug,bool probe)5011 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5012 {
5013 int rc = -ENOTTY;
5014
5015 if (!hotplug || !try_module_get(hotplug->owner))
5016 return rc;
5017
5018 if (hotplug->ops->reset_slot)
5019 rc = hotplug->ops->reset_slot(hotplug, probe);
5020
5021 module_put(hotplug->owner);
5022
5023 return rc;
5024 }
5025
pci_dev_reset_slot_function(struct pci_dev * dev,bool probe)5026 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5027 {
5028 if (dev->multifunction || dev->subordinate || !dev->slot ||
5029 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5030 return -ENOTTY;
5031
5032 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5033 }
5034
cxl_port_dvsec(struct pci_dev * dev)5035 static u16 cxl_port_dvsec(struct pci_dev *dev)
5036 {
5037 return pci_find_dvsec_capability(dev, PCI_VENDOR_ID_CXL,
5038 PCI_DVSEC_CXL_PORT);
5039 }
5040
cxl_sbr_masked(struct pci_dev * dev)5041 static bool cxl_sbr_masked(struct pci_dev *dev)
5042 {
5043 u16 dvsec, reg;
5044 int rc;
5045
5046 dvsec = cxl_port_dvsec(dev);
5047 if (!dvsec)
5048 return false;
5049
5050 rc = pci_read_config_word(dev, dvsec + PCI_DVSEC_CXL_PORT_CTL, ®);
5051 if (rc || PCI_POSSIBLE_ERROR(reg))
5052 return false;
5053
5054 /*
5055 * Per CXL spec r3.1, sec 8.1.5.2, when "Unmask SBR" is 0, the SBR
5056 * bit in Bridge Control has no effect. When 1, the Port generates
5057 * hot reset when the SBR bit is set to 1.
5058 */
5059 if (reg & PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR)
5060 return false;
5061
5062 return true;
5063 }
5064
pci_reset_bus_function(struct pci_dev * dev,bool probe)5065 static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5066 {
5067 struct pci_dev *bridge = pci_upstream_bridge(dev);
5068 int rc;
5069
5070 /*
5071 * If "dev" is below a CXL port that has SBR control masked, SBR
5072 * won't do anything, so return error.
5073 */
5074 if (bridge && cxl_sbr_masked(bridge)) {
5075 if (probe)
5076 return 0;
5077
5078 return -ENOTTY;
5079 }
5080
5081 rc = pci_dev_reset_slot_function(dev, probe);
5082 if (rc != -ENOTTY)
5083 return rc;
5084 return pci_parent_bus_reset(dev, probe);
5085 }
5086
cxl_reset_bus_function(struct pci_dev * dev,bool probe)5087 static int cxl_reset_bus_function(struct pci_dev *dev, bool probe)
5088 {
5089 struct pci_dev *bridge;
5090 u16 dvsec, reg, val;
5091 int rc;
5092
5093 bridge = pci_upstream_bridge(dev);
5094 if (!bridge)
5095 return -ENOTTY;
5096
5097 dvsec = cxl_port_dvsec(bridge);
5098 if (!dvsec)
5099 return -ENOTTY;
5100
5101 if (probe)
5102 return 0;
5103
5104 rc = pci_read_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL, ®);
5105 if (rc)
5106 return -ENOTTY;
5107
5108 if (reg & PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR) {
5109 val = reg;
5110 } else {
5111 val = reg | PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR;
5112 pci_write_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL,
5113 val);
5114 }
5115
5116 rc = pci_reset_bus_function(dev, probe);
5117
5118 if (reg != val)
5119 pci_write_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL,
5120 reg);
5121
5122 return rc;
5123 }
5124
pci_dev_lock(struct pci_dev * dev)5125 void pci_dev_lock(struct pci_dev *dev)
5126 {
5127 /* block PM suspend, driver probe, etc. */
5128 device_lock(&dev->dev);
5129 pci_cfg_access_lock(dev);
5130 }
5131 EXPORT_SYMBOL_GPL(pci_dev_lock);
5132
5133 /* Return 1 on successful lock, 0 on contention */
pci_dev_trylock(struct pci_dev * dev)5134 int pci_dev_trylock(struct pci_dev *dev)
5135 {
5136 if (device_trylock(&dev->dev)) {
5137 if (pci_cfg_access_trylock(dev))
5138 return 1;
5139 device_unlock(&dev->dev);
5140 }
5141
5142 return 0;
5143 }
5144 EXPORT_SYMBOL_GPL(pci_dev_trylock);
5145
pci_dev_unlock(struct pci_dev * dev)5146 void pci_dev_unlock(struct pci_dev *dev)
5147 {
5148 pci_cfg_access_unlock(dev);
5149 device_unlock(&dev->dev);
5150 }
5151 EXPORT_SYMBOL_GPL(pci_dev_unlock);
5152
pci_dev_save_and_disable(struct pci_dev * dev)5153 static void pci_dev_save_and_disable(struct pci_dev *dev)
5154 {
5155 const struct pci_error_handlers *err_handler =
5156 dev->driver ? dev->driver->err_handler : NULL;
5157
5158 /*
5159 * dev->driver->err_handler->reset_prepare() is protected against
5160 * races with ->remove() by the device lock, which must be held by
5161 * the caller.
5162 */
5163 if (err_handler && err_handler->reset_prepare)
5164 err_handler->reset_prepare(dev);
5165
5166 /*
5167 * Wake-up device prior to save. PM registers default to D0 after
5168 * reset and a simple register restore doesn't reliably return
5169 * to a non-D0 state anyway.
5170 */
5171 pci_set_power_state(dev, PCI_D0);
5172
5173 pci_save_state(dev);
5174 /*
5175 * Disable the device by clearing the Command register, except for
5176 * INTx-disable which is set. This not only disables MMIO and I/O port
5177 * BARs, but also prevents the device from being Bus Master, preventing
5178 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
5179 * compliant devices, INTx-disable prevents legacy interrupts.
5180 */
5181 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5182 }
5183
pci_dev_restore(struct pci_dev * dev)5184 static void pci_dev_restore(struct pci_dev *dev)
5185 {
5186 const struct pci_error_handlers *err_handler =
5187 dev->driver ? dev->driver->err_handler : NULL;
5188
5189 pci_restore_state(dev);
5190
5191 /*
5192 * dev->driver->err_handler->reset_done() is protected against
5193 * races with ->remove() by the device lock, which must be held by
5194 * the caller.
5195 */
5196 if (err_handler && err_handler->reset_done)
5197 err_handler->reset_done(dev);
5198 }
5199
5200 /* dev->reset_methods[] is a 0-terminated list of indices into this array */
5201 static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5202 { },
5203 { pci_dev_specific_reset, .name = "device_specific" },
5204 { pci_dev_acpi_reset, .name = "acpi" },
5205 { pcie_reset_flr, .name = "flr" },
5206 { pci_af_flr, .name = "af_flr" },
5207 { pci_pm_reset, .name = "pm" },
5208 { pci_reset_bus_function, .name = "bus" },
5209 { cxl_reset_bus_function, .name = "cxl_bus" },
5210 };
5211
reset_method_show(struct device * dev,struct device_attribute * attr,char * buf)5212 static ssize_t reset_method_show(struct device *dev,
5213 struct device_attribute *attr, char *buf)
5214 {
5215 struct pci_dev *pdev = to_pci_dev(dev);
5216 ssize_t len = 0;
5217 int i, m;
5218
5219 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5220 m = pdev->reset_methods[i];
5221 if (!m)
5222 break;
5223
5224 len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5225 pci_reset_fn_methods[m].name);
5226 }
5227
5228 if (len)
5229 len += sysfs_emit_at(buf, len, "\n");
5230
5231 return len;
5232 }
5233
reset_method_lookup(const char * name)5234 static int reset_method_lookup(const char *name)
5235 {
5236 int m;
5237
5238 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5239 if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5240 return m;
5241 }
5242
5243 return 0; /* not found */
5244 }
5245
reset_method_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5246 static ssize_t reset_method_store(struct device *dev,
5247 struct device_attribute *attr,
5248 const char *buf, size_t count)
5249 {
5250 struct pci_dev *pdev = to_pci_dev(dev);
5251 char *options, *name;
5252 int m, n;
5253 u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5254
5255 if (sysfs_streq(buf, "")) {
5256 pdev->reset_methods[0] = 0;
5257 pci_warn(pdev, "All device reset methods disabled by user");
5258 return count;
5259 }
5260
5261 if (sysfs_streq(buf, "default")) {
5262 pci_init_reset_methods(pdev);
5263 return count;
5264 }
5265
5266 options = kstrndup(buf, count, GFP_KERNEL);
5267 if (!options)
5268 return -ENOMEM;
5269
5270 n = 0;
5271 while ((name = strsep(&options, " ")) != NULL) {
5272 if (sysfs_streq(name, ""))
5273 continue;
5274
5275 name = strim(name);
5276
5277 m = reset_method_lookup(name);
5278 if (!m) {
5279 pci_err(pdev, "Invalid reset method '%s'", name);
5280 goto error;
5281 }
5282
5283 if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5284 pci_err(pdev, "Unsupported reset method '%s'", name);
5285 goto error;
5286 }
5287
5288 if (n == PCI_NUM_RESET_METHODS - 1) {
5289 pci_err(pdev, "Too many reset methods\n");
5290 goto error;
5291 }
5292
5293 reset_methods[n++] = m;
5294 }
5295
5296 reset_methods[n] = 0;
5297
5298 /* Warn if dev-specific supported but not highest priority */
5299 if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5300 reset_methods[0] != 1)
5301 pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5302 memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5303 kfree(options);
5304 return count;
5305
5306 error:
5307 /* Leave previous methods unchanged */
5308 kfree(options);
5309 return -EINVAL;
5310 }
5311 static DEVICE_ATTR_RW(reset_method);
5312
5313 static struct attribute *pci_dev_reset_method_attrs[] = {
5314 &dev_attr_reset_method.attr,
5315 NULL,
5316 };
5317
pci_dev_reset_method_attr_is_visible(struct kobject * kobj,struct attribute * a,int n)5318 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5319 struct attribute *a, int n)
5320 {
5321 struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5322
5323 if (!pci_reset_supported(pdev))
5324 return 0;
5325
5326 return a->mode;
5327 }
5328
5329 const struct attribute_group pci_dev_reset_method_attr_group = {
5330 .attrs = pci_dev_reset_method_attrs,
5331 .is_visible = pci_dev_reset_method_attr_is_visible,
5332 };
5333
5334 /**
5335 * __pci_reset_function_locked - reset a PCI device function while holding
5336 * the @dev mutex lock.
5337 * @dev: PCI device to reset
5338 *
5339 * Some devices allow an individual function to be reset without affecting
5340 * other functions in the same device. The PCI device must be responsive
5341 * to PCI config space in order to use this function.
5342 *
5343 * The device function is presumed to be unused and the caller is holding
5344 * the device mutex lock when this function is called.
5345 *
5346 * Resetting the device will make the contents of PCI configuration space
5347 * random, so any caller of this must be prepared to reinitialise the
5348 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5349 * etc.
5350 *
5351 * Returns 0 if the device function was successfully reset or negative if the
5352 * device doesn't support resetting a single function.
5353 */
__pci_reset_function_locked(struct pci_dev * dev)5354 int __pci_reset_function_locked(struct pci_dev *dev)
5355 {
5356 int i, m, rc;
5357
5358 might_sleep();
5359
5360 /*
5361 * A reset method returns -ENOTTY if it doesn't support this device and
5362 * we should try the next method.
5363 *
5364 * If it returns 0 (success), we're finished. If it returns any other
5365 * error, we're also finished: this indicates that further reset
5366 * mechanisms might be broken on the device.
5367 */
5368 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5369 m = dev->reset_methods[i];
5370 if (!m)
5371 return -ENOTTY;
5372
5373 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5374 if (!rc)
5375 return 0;
5376 if (rc != -ENOTTY)
5377 return rc;
5378 }
5379
5380 return -ENOTTY;
5381 }
5382 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5383
5384 /**
5385 * pci_init_reset_methods - check whether device can be safely reset
5386 * and store supported reset mechanisms.
5387 * @dev: PCI device to check for reset mechanisms
5388 *
5389 * Some devices allow an individual function to be reset without affecting
5390 * other functions in the same device. The PCI device must be in D0-D3hot
5391 * state.
5392 *
5393 * Stores reset mechanisms supported by device in reset_methods byte array
5394 * which is a member of struct pci_dev.
5395 */
pci_init_reset_methods(struct pci_dev * dev)5396 void pci_init_reset_methods(struct pci_dev *dev)
5397 {
5398 int m, i, rc;
5399
5400 BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5401
5402 might_sleep();
5403
5404 i = 0;
5405 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5406 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5407 if (!rc)
5408 dev->reset_methods[i++] = m;
5409 else if (rc != -ENOTTY)
5410 break;
5411 }
5412
5413 dev->reset_methods[i] = 0;
5414 }
5415
5416 /**
5417 * pci_reset_function - quiesce and reset a PCI device function
5418 * @dev: PCI device to reset
5419 *
5420 * Some devices allow an individual function to be reset without affecting
5421 * other functions in the same device. The PCI device must be responsive
5422 * to PCI config space in order to use this function.
5423 *
5424 * This function does not just reset the PCI portion of a device, but
5425 * clears all the state associated with the device. This function differs
5426 * from __pci_reset_function_locked() in that it saves and restores device state
5427 * over the reset and takes the PCI device lock.
5428 *
5429 * Returns 0 if the device function was successfully reset or negative if the
5430 * device doesn't support resetting a single function.
5431 */
pci_reset_function(struct pci_dev * dev)5432 int pci_reset_function(struct pci_dev *dev)
5433 {
5434 struct pci_dev *bridge;
5435 int rc;
5436
5437 if (!pci_reset_supported(dev))
5438 return -ENOTTY;
5439
5440 /*
5441 * If there's no upstream bridge, no locking is needed since there is
5442 * no upstream bridge configuration to hold consistent.
5443 */
5444 bridge = pci_upstream_bridge(dev);
5445 if (bridge)
5446 pci_dev_lock(bridge);
5447
5448 pci_dev_lock(dev);
5449 pci_dev_save_and_disable(dev);
5450
5451 rc = __pci_reset_function_locked(dev);
5452
5453 pci_dev_restore(dev);
5454 pci_dev_unlock(dev);
5455
5456 if (bridge)
5457 pci_dev_unlock(bridge);
5458
5459 return rc;
5460 }
5461 EXPORT_SYMBOL_GPL(pci_reset_function);
5462
5463 /**
5464 * pci_reset_function_locked - quiesce and reset a PCI device function
5465 * @dev: PCI device to reset
5466 *
5467 * Some devices allow an individual function to be reset without affecting
5468 * other functions in the same device. The PCI device must be responsive
5469 * to PCI config space in order to use this function.
5470 *
5471 * This function does not just reset the PCI portion of a device, but
5472 * clears all the state associated with the device. This function differs
5473 * from __pci_reset_function_locked() in that it saves and restores device state
5474 * over the reset. It also differs from pci_reset_function() in that it
5475 * requires the PCI device lock to be held.
5476 *
5477 * Returns 0 if the device function was successfully reset or negative if the
5478 * device doesn't support resetting a single function.
5479 */
pci_reset_function_locked(struct pci_dev * dev)5480 int pci_reset_function_locked(struct pci_dev *dev)
5481 {
5482 int rc;
5483
5484 if (!pci_reset_supported(dev))
5485 return -ENOTTY;
5486
5487 pci_dev_save_and_disable(dev);
5488
5489 rc = __pci_reset_function_locked(dev);
5490
5491 pci_dev_restore(dev);
5492
5493 return rc;
5494 }
5495 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5496
5497 /**
5498 * pci_try_reset_function - quiesce and reset a PCI device function
5499 * @dev: PCI device to reset
5500 *
5501 * Same as above, except return -EAGAIN if unable to lock device.
5502 */
pci_try_reset_function(struct pci_dev * dev)5503 int pci_try_reset_function(struct pci_dev *dev)
5504 {
5505 int rc;
5506
5507 if (!pci_reset_supported(dev))
5508 return -ENOTTY;
5509
5510 if (!pci_dev_trylock(dev))
5511 return -EAGAIN;
5512
5513 pci_dev_save_and_disable(dev);
5514 rc = __pci_reset_function_locked(dev);
5515 pci_dev_restore(dev);
5516 pci_dev_unlock(dev);
5517
5518 return rc;
5519 }
5520 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5521
5522 /* Do any devices on or below this bus prevent a bus reset? */
pci_bus_resettable(struct pci_bus * bus)5523 static bool pci_bus_resettable(struct pci_bus *bus)
5524 {
5525 struct pci_dev *dev;
5526
5527
5528 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5529 return false;
5530
5531 list_for_each_entry(dev, &bus->devices, bus_list) {
5532 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5533 (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5534 return false;
5535 }
5536
5537 return true;
5538 }
5539
5540 /* Lock devices from the top of the tree down */
pci_bus_lock(struct pci_bus * bus)5541 static void pci_bus_lock(struct pci_bus *bus)
5542 {
5543 struct pci_dev *dev;
5544
5545 pci_dev_lock(bus->self);
5546 list_for_each_entry(dev, &bus->devices, bus_list) {
5547 if (dev->subordinate)
5548 pci_bus_lock(dev->subordinate);
5549 else
5550 pci_dev_lock(dev);
5551 }
5552 }
5553
5554 /* Unlock devices from the bottom of the tree up */
pci_bus_unlock(struct pci_bus * bus)5555 static void pci_bus_unlock(struct pci_bus *bus)
5556 {
5557 struct pci_dev *dev;
5558
5559 list_for_each_entry(dev, &bus->devices, bus_list) {
5560 if (dev->subordinate)
5561 pci_bus_unlock(dev->subordinate);
5562 else
5563 pci_dev_unlock(dev);
5564 }
5565 pci_dev_unlock(bus->self);
5566 }
5567
5568 /* Return 1 on successful lock, 0 on contention */
pci_bus_trylock(struct pci_bus * bus)5569 static int pci_bus_trylock(struct pci_bus *bus)
5570 {
5571 struct pci_dev *dev;
5572
5573 if (!pci_dev_trylock(bus->self))
5574 return 0;
5575
5576 list_for_each_entry(dev, &bus->devices, bus_list) {
5577 if (dev->subordinate) {
5578 if (!pci_bus_trylock(dev->subordinate))
5579 goto unlock;
5580 } else if (!pci_dev_trylock(dev))
5581 goto unlock;
5582 }
5583 return 1;
5584
5585 unlock:
5586 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5587 if (dev->subordinate)
5588 pci_bus_unlock(dev->subordinate);
5589 else
5590 pci_dev_unlock(dev);
5591 }
5592 pci_dev_unlock(bus->self);
5593 return 0;
5594 }
5595
5596 /* Do any devices on or below this slot prevent a bus reset? */
pci_slot_resettable(struct pci_slot * slot)5597 static bool pci_slot_resettable(struct pci_slot *slot)
5598 {
5599 struct pci_dev *dev;
5600
5601 if (slot->bus->self &&
5602 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5603 return false;
5604
5605 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5606 if (!dev->slot || dev->slot != slot)
5607 continue;
5608 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5609 (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5610 return false;
5611 }
5612
5613 return true;
5614 }
5615
5616 /* Lock devices from the top of the tree down */
pci_slot_lock(struct pci_slot * slot)5617 static void pci_slot_lock(struct pci_slot *slot)
5618 {
5619 struct pci_dev *dev;
5620
5621 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5622 if (!dev->slot || dev->slot != slot)
5623 continue;
5624 if (dev->subordinate)
5625 pci_bus_lock(dev->subordinate);
5626 else
5627 pci_dev_lock(dev);
5628 }
5629 }
5630
5631 /* Unlock devices from the bottom of the tree up */
pci_slot_unlock(struct pci_slot * slot)5632 static void pci_slot_unlock(struct pci_slot *slot)
5633 {
5634 struct pci_dev *dev;
5635
5636 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5637 if (!dev->slot || dev->slot != slot)
5638 continue;
5639 if (dev->subordinate)
5640 pci_bus_unlock(dev->subordinate);
5641 pci_dev_unlock(dev);
5642 }
5643 }
5644
5645 /* Return 1 on successful lock, 0 on contention */
pci_slot_trylock(struct pci_slot * slot)5646 static int pci_slot_trylock(struct pci_slot *slot)
5647 {
5648 struct pci_dev *dev;
5649
5650 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5651 if (!dev->slot || dev->slot != slot)
5652 continue;
5653 if (dev->subordinate) {
5654 if (!pci_bus_trylock(dev->subordinate)) {
5655 pci_dev_unlock(dev);
5656 goto unlock;
5657 }
5658 } else if (!pci_dev_trylock(dev))
5659 goto unlock;
5660 }
5661 return 1;
5662
5663 unlock:
5664 list_for_each_entry_continue_reverse(dev,
5665 &slot->bus->devices, bus_list) {
5666 if (!dev->slot || dev->slot != slot)
5667 continue;
5668 if (dev->subordinate)
5669 pci_bus_unlock(dev->subordinate);
5670 else
5671 pci_dev_unlock(dev);
5672 }
5673 return 0;
5674 }
5675
5676 /*
5677 * Save and disable devices from the top of the tree down while holding
5678 * the @dev mutex lock for the entire tree.
5679 */
pci_bus_save_and_disable_locked(struct pci_bus * bus)5680 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5681 {
5682 struct pci_dev *dev;
5683
5684 list_for_each_entry(dev, &bus->devices, bus_list) {
5685 pci_dev_save_and_disable(dev);
5686 if (dev->subordinate)
5687 pci_bus_save_and_disable_locked(dev->subordinate);
5688 }
5689 }
5690
5691 /*
5692 * Restore devices from top of the tree down while holding @dev mutex lock
5693 * for the entire tree. Parent bridges need to be restored before we can
5694 * get to subordinate devices.
5695 */
pci_bus_restore_locked(struct pci_bus * bus)5696 static void pci_bus_restore_locked(struct pci_bus *bus)
5697 {
5698 struct pci_dev *dev;
5699
5700 list_for_each_entry(dev, &bus->devices, bus_list) {
5701 pci_dev_restore(dev);
5702 if (dev->subordinate) {
5703 pci_bridge_wait_for_secondary_bus(dev, "bus reset");
5704 pci_bus_restore_locked(dev->subordinate);
5705 }
5706 }
5707 }
5708
5709 /*
5710 * Save and disable devices from the top of the tree down while holding
5711 * the @dev mutex lock for the entire tree.
5712 */
pci_slot_save_and_disable_locked(struct pci_slot * slot)5713 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5714 {
5715 struct pci_dev *dev;
5716
5717 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5718 if (!dev->slot || dev->slot != slot)
5719 continue;
5720 pci_dev_save_and_disable(dev);
5721 if (dev->subordinate)
5722 pci_bus_save_and_disable_locked(dev->subordinate);
5723 }
5724 }
5725
5726 /*
5727 * Restore devices from top of the tree down while holding @dev mutex lock
5728 * for the entire tree. Parent bridges need to be restored before we can
5729 * get to subordinate devices.
5730 */
pci_slot_restore_locked(struct pci_slot * slot)5731 static void pci_slot_restore_locked(struct pci_slot *slot)
5732 {
5733 struct pci_dev *dev;
5734
5735 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5736 if (!dev->slot || dev->slot != slot)
5737 continue;
5738 pci_dev_restore(dev);
5739 if (dev->subordinate) {
5740 pci_bridge_wait_for_secondary_bus(dev, "slot reset");
5741 pci_bus_restore_locked(dev->subordinate);
5742 }
5743 }
5744 }
5745
pci_slot_reset(struct pci_slot * slot,bool probe)5746 static int pci_slot_reset(struct pci_slot *slot, bool probe)
5747 {
5748 int rc;
5749
5750 if (!slot || !pci_slot_resettable(slot))
5751 return -ENOTTY;
5752
5753 if (!probe)
5754 pci_slot_lock(slot);
5755
5756 might_sleep();
5757
5758 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5759
5760 if (!probe)
5761 pci_slot_unlock(slot);
5762
5763 return rc;
5764 }
5765
5766 /**
5767 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5768 * @slot: PCI slot to probe
5769 *
5770 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5771 */
pci_probe_reset_slot(struct pci_slot * slot)5772 int pci_probe_reset_slot(struct pci_slot *slot)
5773 {
5774 return pci_slot_reset(slot, PCI_RESET_PROBE);
5775 }
5776 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5777
5778 /**
5779 * __pci_reset_slot - Try to reset a PCI slot
5780 * @slot: PCI slot to reset
5781 *
5782 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5783 * independent of other slots. For instance, some slots may support slot power
5784 * control. In the case of a 1:1 bus to slot architecture, this function may
5785 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5786 * Generally a slot reset should be attempted before a bus reset. All of the
5787 * function of the slot and any subordinate buses behind the slot are reset
5788 * through this function. PCI config space of all devices in the slot and
5789 * behind the slot is saved before and restored after reset.
5790 *
5791 * Same as above except return -EAGAIN if the slot cannot be locked
5792 */
__pci_reset_slot(struct pci_slot * slot)5793 static int __pci_reset_slot(struct pci_slot *slot)
5794 {
5795 int rc;
5796
5797 rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5798 if (rc)
5799 return rc;
5800
5801 if (pci_slot_trylock(slot)) {
5802 pci_slot_save_and_disable_locked(slot);
5803 might_sleep();
5804 rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5805 pci_slot_restore_locked(slot);
5806 pci_slot_unlock(slot);
5807 } else
5808 rc = -EAGAIN;
5809
5810 return rc;
5811 }
5812
pci_bus_reset(struct pci_bus * bus,bool probe)5813 static int pci_bus_reset(struct pci_bus *bus, bool probe)
5814 {
5815 int ret;
5816
5817 if (!bus->self || !pci_bus_resettable(bus))
5818 return -ENOTTY;
5819
5820 if (probe)
5821 return 0;
5822
5823 pci_bus_lock(bus);
5824
5825 might_sleep();
5826
5827 ret = pci_bridge_secondary_bus_reset(bus->self);
5828
5829 pci_bus_unlock(bus);
5830
5831 return ret;
5832 }
5833
5834 /**
5835 * pci_bus_error_reset - reset the bridge's subordinate bus
5836 * @bridge: The parent device that connects to the bus to reset
5837 *
5838 * This function will first try to reset the slots on this bus if the method is
5839 * available. If slot reset fails or is not available, this will fall back to a
5840 * secondary bus reset.
5841 */
pci_bus_error_reset(struct pci_dev * bridge)5842 int pci_bus_error_reset(struct pci_dev *bridge)
5843 {
5844 struct pci_bus *bus = bridge->subordinate;
5845 struct pci_slot *slot;
5846
5847 if (!bus)
5848 return -ENOTTY;
5849
5850 mutex_lock(&pci_slot_mutex);
5851 if (list_empty(&bus->slots))
5852 goto bus_reset;
5853
5854 list_for_each_entry(slot, &bus->slots, list)
5855 if (pci_probe_reset_slot(slot))
5856 goto bus_reset;
5857
5858 list_for_each_entry(slot, &bus->slots, list)
5859 if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5860 goto bus_reset;
5861
5862 mutex_unlock(&pci_slot_mutex);
5863 return 0;
5864 bus_reset:
5865 mutex_unlock(&pci_slot_mutex);
5866 return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5867 }
5868
5869 /**
5870 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5871 * @bus: PCI bus to probe
5872 *
5873 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5874 */
pci_probe_reset_bus(struct pci_bus * bus)5875 int pci_probe_reset_bus(struct pci_bus *bus)
5876 {
5877 return pci_bus_reset(bus, PCI_RESET_PROBE);
5878 }
5879 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5880
5881 /**
5882 * __pci_reset_bus - Try to reset a PCI bus
5883 * @bus: top level PCI bus to reset
5884 *
5885 * Same as above except return -EAGAIN if the bus cannot be locked
5886 */
__pci_reset_bus(struct pci_bus * bus)5887 static int __pci_reset_bus(struct pci_bus *bus)
5888 {
5889 int rc;
5890
5891 rc = pci_bus_reset(bus, PCI_RESET_PROBE);
5892 if (rc)
5893 return rc;
5894
5895 if (pci_bus_trylock(bus)) {
5896 pci_bus_save_and_disable_locked(bus);
5897 might_sleep();
5898 rc = pci_bridge_secondary_bus_reset(bus->self);
5899 pci_bus_restore_locked(bus);
5900 pci_bus_unlock(bus);
5901 } else
5902 rc = -EAGAIN;
5903
5904 return rc;
5905 }
5906
5907 /**
5908 * pci_reset_bus - Try to reset a PCI bus
5909 * @pdev: top level PCI device to reset via slot/bus
5910 *
5911 * Same as above except return -EAGAIN if the bus cannot be locked
5912 */
pci_reset_bus(struct pci_dev * pdev)5913 int pci_reset_bus(struct pci_dev *pdev)
5914 {
5915 return (!pci_probe_reset_slot(pdev->slot)) ?
5916 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5917 }
5918 EXPORT_SYMBOL_GPL(pci_reset_bus);
5919
5920 /**
5921 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5922 * @dev: PCI device to query
5923 *
5924 * Returns mmrbc: maximum designed memory read count in bytes or
5925 * appropriate error value.
5926 */
pcix_get_max_mmrbc(struct pci_dev * dev)5927 int pcix_get_max_mmrbc(struct pci_dev *dev)
5928 {
5929 int cap;
5930 u32 stat;
5931
5932 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5933 if (!cap)
5934 return -EINVAL;
5935
5936 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5937 return -EINVAL;
5938
5939 return 512 << FIELD_GET(PCI_X_STATUS_MAX_READ, stat);
5940 }
5941 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5942
5943 /**
5944 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5945 * @dev: PCI device to query
5946 *
5947 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5948 * value.
5949 */
pcix_get_mmrbc(struct pci_dev * dev)5950 int pcix_get_mmrbc(struct pci_dev *dev)
5951 {
5952 int cap;
5953 u16 cmd;
5954
5955 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5956 if (!cap)
5957 return -EINVAL;
5958
5959 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5960 return -EINVAL;
5961
5962 return 512 << FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
5963 }
5964 EXPORT_SYMBOL(pcix_get_mmrbc);
5965
5966 /**
5967 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5968 * @dev: PCI device to query
5969 * @mmrbc: maximum memory read count in bytes
5970 * valid values are 512, 1024, 2048, 4096
5971 *
5972 * If possible sets maximum memory read byte count, some bridges have errata
5973 * that prevent this.
5974 */
pcix_set_mmrbc(struct pci_dev * dev,int mmrbc)5975 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5976 {
5977 int cap;
5978 u32 stat, v, o;
5979 u16 cmd;
5980
5981 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5982 return -EINVAL;
5983
5984 v = ffs(mmrbc) - 10;
5985
5986 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5987 if (!cap)
5988 return -EINVAL;
5989
5990 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5991 return -EINVAL;
5992
5993 if (v > FIELD_GET(PCI_X_STATUS_MAX_READ, stat))
5994 return -E2BIG;
5995
5996 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5997 return -EINVAL;
5998
5999 o = FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
6000 if (o != v) {
6001 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
6002 return -EIO;
6003
6004 cmd &= ~PCI_X_CMD_MAX_READ;
6005 cmd |= FIELD_PREP(PCI_X_CMD_MAX_READ, v);
6006 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
6007 return -EIO;
6008 }
6009 return 0;
6010 }
6011 EXPORT_SYMBOL(pcix_set_mmrbc);
6012
6013 /**
6014 * pcie_get_readrq - get PCI Express read request size
6015 * @dev: PCI device to query
6016 *
6017 * Returns maximum memory read request in bytes or appropriate error value.
6018 */
pcie_get_readrq(struct pci_dev * dev)6019 int pcie_get_readrq(struct pci_dev *dev)
6020 {
6021 u16 ctl;
6022
6023 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6024
6025 return 128 << FIELD_GET(PCI_EXP_DEVCTL_READRQ, ctl);
6026 }
6027 EXPORT_SYMBOL(pcie_get_readrq);
6028
6029 /**
6030 * pcie_set_readrq - set PCI Express maximum memory read request
6031 * @dev: PCI device to query
6032 * @rq: maximum memory read count in bytes
6033 * valid values are 128, 256, 512, 1024, 2048, 4096
6034 *
6035 * If possible sets maximum memory read request in bytes
6036 */
pcie_set_readrq(struct pci_dev * dev,int rq)6037 int pcie_set_readrq(struct pci_dev *dev, int rq)
6038 {
6039 u16 v;
6040 int ret;
6041 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
6042
6043 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
6044 return -EINVAL;
6045
6046 /*
6047 * If using the "performance" PCIe config, we clamp the read rq
6048 * size to the max packet size to keep the host bridge from
6049 * generating requests larger than we can cope with.
6050 */
6051 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
6052 int mps = pcie_get_mps(dev);
6053
6054 if (mps < rq)
6055 rq = mps;
6056 }
6057
6058 v = FIELD_PREP(PCI_EXP_DEVCTL_READRQ, ffs(rq) - 8);
6059
6060 if (bridge->no_inc_mrrs) {
6061 int max_mrrs = pcie_get_readrq(dev);
6062
6063 if (rq > max_mrrs) {
6064 pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs);
6065 return -EINVAL;
6066 }
6067 }
6068
6069 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6070 PCI_EXP_DEVCTL_READRQ, v);
6071
6072 return pcibios_err_to_errno(ret);
6073 }
6074 EXPORT_SYMBOL(pcie_set_readrq);
6075
6076 /**
6077 * pcie_get_mps - get PCI Express maximum payload size
6078 * @dev: PCI device to query
6079 *
6080 * Returns maximum payload size in bytes
6081 */
pcie_get_mps(struct pci_dev * dev)6082 int pcie_get_mps(struct pci_dev *dev)
6083 {
6084 u16 ctl;
6085
6086 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6087
6088 return 128 << FIELD_GET(PCI_EXP_DEVCTL_PAYLOAD, ctl);
6089 }
6090 EXPORT_SYMBOL(pcie_get_mps);
6091
6092 /**
6093 * pcie_set_mps - set PCI Express maximum payload size
6094 * @dev: PCI device to query
6095 * @mps: maximum payload size in bytes
6096 * valid values are 128, 256, 512, 1024, 2048, 4096
6097 *
6098 * If possible sets maximum payload size
6099 */
pcie_set_mps(struct pci_dev * dev,int mps)6100 int pcie_set_mps(struct pci_dev *dev, int mps)
6101 {
6102 u16 v;
6103 int ret;
6104
6105 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6106 return -EINVAL;
6107
6108 v = ffs(mps) - 8;
6109 if (v > dev->pcie_mpss)
6110 return -EINVAL;
6111 v = FIELD_PREP(PCI_EXP_DEVCTL_PAYLOAD, v);
6112
6113 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6114 PCI_EXP_DEVCTL_PAYLOAD, v);
6115
6116 return pcibios_err_to_errno(ret);
6117 }
6118 EXPORT_SYMBOL(pcie_set_mps);
6119
to_pcie_link_speed(u16 lnksta)6120 static enum pci_bus_speed to_pcie_link_speed(u16 lnksta)
6121 {
6122 return pcie_link_speed[FIELD_GET(PCI_EXP_LNKSTA_CLS, lnksta)];
6123 }
6124
pcie_link_speed_mbps(struct pci_dev * pdev)6125 int pcie_link_speed_mbps(struct pci_dev *pdev)
6126 {
6127 u16 lnksta;
6128 int err;
6129
6130 err = pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
6131 if (err)
6132 return err;
6133
6134 return pcie_dev_speed_mbps(to_pcie_link_speed(lnksta));
6135 }
6136 EXPORT_SYMBOL(pcie_link_speed_mbps);
6137
6138 /**
6139 * pcie_bandwidth_available - determine minimum link settings of a PCIe
6140 * device and its bandwidth limitation
6141 * @dev: PCI device to query
6142 * @limiting_dev: storage for device causing the bandwidth limitation
6143 * @speed: storage for speed of limiting device
6144 * @width: storage for width of limiting device
6145 *
6146 * Walk up the PCI device chain and find the point where the minimum
6147 * bandwidth is available. Return the bandwidth available there and (if
6148 * limiting_dev, speed, and width pointers are supplied) information about
6149 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
6150 * raw bandwidth.
6151 */
pcie_bandwidth_available(struct pci_dev * dev,struct pci_dev ** limiting_dev,enum pci_bus_speed * speed,enum pcie_link_width * width)6152 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6153 enum pci_bus_speed *speed,
6154 enum pcie_link_width *width)
6155 {
6156 u16 lnksta;
6157 enum pci_bus_speed next_speed;
6158 enum pcie_link_width next_width;
6159 u32 bw, next_bw;
6160
6161 if (speed)
6162 *speed = PCI_SPEED_UNKNOWN;
6163 if (width)
6164 *width = PCIE_LNK_WIDTH_UNKNOWN;
6165
6166 bw = 0;
6167
6168 while (dev) {
6169 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6170
6171 next_speed = to_pcie_link_speed(lnksta);
6172 next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta);
6173
6174 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6175
6176 /* Check if current device limits the total bandwidth */
6177 if (!bw || next_bw <= bw) {
6178 bw = next_bw;
6179
6180 if (limiting_dev)
6181 *limiting_dev = dev;
6182 if (speed)
6183 *speed = next_speed;
6184 if (width)
6185 *width = next_width;
6186 }
6187
6188 dev = pci_upstream_bridge(dev);
6189 }
6190
6191 return bw;
6192 }
6193 EXPORT_SYMBOL(pcie_bandwidth_available);
6194
6195 /**
6196 * pcie_get_speed_cap - query for the PCI device's link speed capability
6197 * @dev: PCI device to query
6198 *
6199 * Query the PCI device speed capability. Return the maximum link speed
6200 * supported by the device.
6201 */
pcie_get_speed_cap(struct pci_dev * dev)6202 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6203 {
6204 u32 lnkcap2, lnkcap;
6205
6206 /*
6207 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The
6208 * implementation note there recommends using the Supported Link
6209 * Speeds Vector in Link Capabilities 2 when supported.
6210 *
6211 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6212 * should use the Supported Link Speeds field in Link Capabilities,
6213 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6214 */
6215 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6216
6217 /* PCIe r3.0-compliant */
6218 if (lnkcap2)
6219 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6220
6221 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6222 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6223 return PCIE_SPEED_5_0GT;
6224 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6225 return PCIE_SPEED_2_5GT;
6226
6227 return PCI_SPEED_UNKNOWN;
6228 }
6229 EXPORT_SYMBOL(pcie_get_speed_cap);
6230
6231 /**
6232 * pcie_get_width_cap - query for the PCI device's link width capability
6233 * @dev: PCI device to query
6234 *
6235 * Query the PCI device width capability. Return the maximum link width
6236 * supported by the device.
6237 */
pcie_get_width_cap(struct pci_dev * dev)6238 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6239 {
6240 u32 lnkcap;
6241
6242 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6243 if (lnkcap)
6244 return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap);
6245
6246 return PCIE_LNK_WIDTH_UNKNOWN;
6247 }
6248 EXPORT_SYMBOL(pcie_get_width_cap);
6249
6250 /**
6251 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6252 * @dev: PCI device
6253 * @speed: storage for link speed
6254 * @width: storage for link width
6255 *
6256 * Calculate a PCI device's link bandwidth by querying for its link speed
6257 * and width, multiplying them, and applying encoding overhead. The result
6258 * is in Mb/s, i.e., megabits/second of raw bandwidth.
6259 */
pcie_bandwidth_capable(struct pci_dev * dev,enum pci_bus_speed * speed,enum pcie_link_width * width)6260 static u32 pcie_bandwidth_capable(struct pci_dev *dev,
6261 enum pci_bus_speed *speed,
6262 enum pcie_link_width *width)
6263 {
6264 *speed = pcie_get_speed_cap(dev);
6265 *width = pcie_get_width_cap(dev);
6266
6267 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6268 return 0;
6269
6270 return *width * PCIE_SPEED2MBS_ENC(*speed);
6271 }
6272
6273 /**
6274 * __pcie_print_link_status - Report the PCI device's link speed and width
6275 * @dev: PCI device to query
6276 * @verbose: Print info even when enough bandwidth is available
6277 *
6278 * If the available bandwidth at the device is less than the device is
6279 * capable of, report the device's maximum possible bandwidth and the
6280 * upstream link that limits its performance. If @verbose, always print
6281 * the available bandwidth, even if the device isn't constrained.
6282 */
__pcie_print_link_status(struct pci_dev * dev,bool verbose)6283 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6284 {
6285 enum pcie_link_width width, width_cap;
6286 enum pci_bus_speed speed, speed_cap;
6287 struct pci_dev *limiting_dev = NULL;
6288 u32 bw_avail, bw_cap;
6289
6290 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6291 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6292
6293 if (bw_avail >= bw_cap && verbose)
6294 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6295 bw_cap / 1000, bw_cap % 1000,
6296 pci_speed_string(speed_cap), width_cap);
6297 else if (bw_avail < bw_cap)
6298 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6299 bw_avail / 1000, bw_avail % 1000,
6300 pci_speed_string(speed), width,
6301 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6302 bw_cap / 1000, bw_cap % 1000,
6303 pci_speed_string(speed_cap), width_cap);
6304 }
6305
6306 /**
6307 * pcie_print_link_status - Report the PCI device's link speed and width
6308 * @dev: PCI device to query
6309 *
6310 * Report the available bandwidth at the device.
6311 */
pcie_print_link_status(struct pci_dev * dev)6312 void pcie_print_link_status(struct pci_dev *dev)
6313 {
6314 __pcie_print_link_status(dev, true);
6315 }
6316 EXPORT_SYMBOL(pcie_print_link_status);
6317
6318 /**
6319 * pci_select_bars - Make BAR mask from the type of resource
6320 * @dev: the PCI device for which BAR mask is made
6321 * @flags: resource type mask to be selected
6322 *
6323 * This helper routine makes bar mask from the type of resource.
6324 */
pci_select_bars(struct pci_dev * dev,unsigned long flags)6325 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6326 {
6327 int i, bars = 0;
6328 for (i = 0; i < PCI_NUM_RESOURCES; i++)
6329 if (pci_resource_flags(dev, i) & flags)
6330 bars |= (1 << i);
6331 return bars;
6332 }
6333 EXPORT_SYMBOL(pci_select_bars);
6334
6335 /* Some architectures require additional programming to enable VGA */
6336 static arch_set_vga_state_t arch_set_vga_state;
6337
pci_register_set_vga_state(arch_set_vga_state_t func)6338 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6339 {
6340 arch_set_vga_state = func; /* NULL disables */
6341 }
6342
pci_set_vga_state_arch(struct pci_dev * dev,bool decode,unsigned int command_bits,u32 flags)6343 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6344 unsigned int command_bits, u32 flags)
6345 {
6346 if (arch_set_vga_state)
6347 return arch_set_vga_state(dev, decode, command_bits,
6348 flags);
6349 return 0;
6350 }
6351
6352 /**
6353 * pci_set_vga_state - set VGA decode state on device and parents if requested
6354 * @dev: the PCI device
6355 * @decode: true = enable decoding, false = disable decoding
6356 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6357 * @flags: traverse ancestors and change bridges
6358 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6359 */
pci_set_vga_state(struct pci_dev * dev,bool decode,unsigned int command_bits,u32 flags)6360 int pci_set_vga_state(struct pci_dev *dev, bool decode,
6361 unsigned int command_bits, u32 flags)
6362 {
6363 struct pci_bus *bus;
6364 struct pci_dev *bridge;
6365 u16 cmd;
6366 int rc;
6367
6368 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6369
6370 /* ARCH specific VGA enables */
6371 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6372 if (rc)
6373 return rc;
6374
6375 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6376 pci_read_config_word(dev, PCI_COMMAND, &cmd);
6377 if (decode)
6378 cmd |= command_bits;
6379 else
6380 cmd &= ~command_bits;
6381 pci_write_config_word(dev, PCI_COMMAND, cmd);
6382 }
6383
6384 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6385 return 0;
6386
6387 bus = dev->bus;
6388 while (bus) {
6389 bridge = bus->self;
6390 if (bridge) {
6391 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6392 &cmd);
6393 if (decode)
6394 cmd |= PCI_BRIDGE_CTL_VGA;
6395 else
6396 cmd &= ~PCI_BRIDGE_CTL_VGA;
6397 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6398 cmd);
6399 }
6400 bus = bus->parent;
6401 }
6402 return 0;
6403 }
6404
6405 #ifdef CONFIG_ACPI
pci_pr3_present(struct pci_dev * pdev)6406 bool pci_pr3_present(struct pci_dev *pdev)
6407 {
6408 struct acpi_device *adev;
6409
6410 if (acpi_disabled)
6411 return false;
6412
6413 adev = ACPI_COMPANION(&pdev->dev);
6414 if (!adev)
6415 return false;
6416
6417 return adev->power.flags.power_resources &&
6418 acpi_has_method(adev->handle, "_PR3");
6419 }
6420 EXPORT_SYMBOL_GPL(pci_pr3_present);
6421 #endif
6422
6423 /**
6424 * pci_add_dma_alias - Add a DMA devfn alias for a device
6425 * @dev: the PCI device for which alias is added
6426 * @devfn_from: alias slot and function
6427 * @nr_devfns: number of subsequent devfns to alias
6428 *
6429 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6430 * which is used to program permissible bus-devfn source addresses for DMA
6431 * requests in an IOMMU. These aliases factor into IOMMU group creation
6432 * and are useful for devices generating DMA requests beyond or different
6433 * from their logical bus-devfn. Examples include device quirks where the
6434 * device simply uses the wrong devfn, as well as non-transparent bridges
6435 * where the alias may be a proxy for devices in another domain.
6436 *
6437 * IOMMU group creation is performed during device discovery or addition,
6438 * prior to any potential DMA mapping and therefore prior to driver probing
6439 * (especially for userspace assigned devices where IOMMU group definition
6440 * cannot be left as a userspace activity). DMA aliases should therefore
6441 * be configured via quirks, such as the PCI fixup header quirk.
6442 */
pci_add_dma_alias(struct pci_dev * dev,u8 devfn_from,unsigned int nr_devfns)6443 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6444 unsigned int nr_devfns)
6445 {
6446 int devfn_to;
6447
6448 nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6449 devfn_to = devfn_from + nr_devfns - 1;
6450
6451 if (!dev->dma_alias_mask)
6452 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6453 if (!dev->dma_alias_mask) {
6454 pci_warn(dev, "Unable to allocate DMA alias mask\n");
6455 return;
6456 }
6457
6458 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6459
6460 if (nr_devfns == 1)
6461 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6462 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6463 else if (nr_devfns > 1)
6464 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6465 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6466 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6467 }
6468
pci_devs_are_dma_aliases(struct pci_dev * dev1,struct pci_dev * dev2)6469 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6470 {
6471 return (dev1->dma_alias_mask &&
6472 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6473 (dev2->dma_alias_mask &&
6474 test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6475 pci_real_dma_dev(dev1) == dev2 ||
6476 pci_real_dma_dev(dev2) == dev1;
6477 }
6478
pci_device_is_present(struct pci_dev * pdev)6479 bool pci_device_is_present(struct pci_dev *pdev)
6480 {
6481 u32 v;
6482
6483 /* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6484 pdev = pci_physfn(pdev);
6485 if (pci_dev_is_disconnected(pdev))
6486 return false;
6487 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6488 }
6489 EXPORT_SYMBOL_GPL(pci_device_is_present);
6490
pci_ignore_hotplug(struct pci_dev * dev)6491 void pci_ignore_hotplug(struct pci_dev *dev)
6492 {
6493 struct pci_dev *bridge = dev->bus->self;
6494
6495 dev->ignore_hotplug = 1;
6496 /* Propagate the "ignore hotplug" setting to the parent bridge. */
6497 if (bridge)
6498 bridge->ignore_hotplug = 1;
6499 }
6500 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6501
6502 /**
6503 * pci_real_dma_dev - Get PCI DMA device for PCI device
6504 * @dev: the PCI device that may have a PCI DMA alias
6505 *
6506 * Permits the platform to provide architecture-specific functionality to
6507 * devices needing to alias DMA to another PCI device on another PCI bus. If
6508 * the PCI device is on the same bus, it is recommended to use
6509 * pci_add_dma_alias(). This is the default implementation. Architecture
6510 * implementations can override this.
6511 */
pci_real_dma_dev(struct pci_dev * dev)6512 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6513 {
6514 return dev;
6515 }
6516
pcibios_default_alignment(void)6517 resource_size_t __weak pcibios_default_alignment(void)
6518 {
6519 return 0;
6520 }
6521
6522 /*
6523 * Arches that don't want to expose struct resource to userland as-is in
6524 * sysfs and /proc can implement their own pci_resource_to_user().
6525 */
pci_resource_to_user(const struct pci_dev * dev,int bar,const struct resource * rsrc,resource_size_t * start,resource_size_t * end)6526 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6527 const struct resource *rsrc,
6528 resource_size_t *start, resource_size_t *end)
6529 {
6530 *start = rsrc->start;
6531 *end = rsrc->end;
6532 }
6533
6534 static char *resource_alignment_param;
6535 static DEFINE_SPINLOCK(resource_alignment_lock);
6536
6537 /**
6538 * pci_specified_resource_alignment - get resource alignment specified by user.
6539 * @dev: the PCI device to get
6540 * @resize: whether or not to change resources' size when reassigning alignment
6541 *
6542 * RETURNS: Resource alignment if it is specified.
6543 * Zero if it is not specified.
6544 */
pci_specified_resource_alignment(struct pci_dev * dev,bool * resize)6545 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6546 bool *resize)
6547 {
6548 int align_order, count;
6549 resource_size_t align = pcibios_default_alignment();
6550 const char *p;
6551 int ret;
6552
6553 spin_lock(&resource_alignment_lock);
6554 p = resource_alignment_param;
6555 if (!p || !*p)
6556 goto out;
6557 if (pci_has_flag(PCI_PROBE_ONLY)) {
6558 align = 0;
6559 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6560 goto out;
6561 }
6562
6563 while (*p) {
6564 count = 0;
6565 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6566 p[count] == '@') {
6567 p += count + 1;
6568 if (align_order > 63) {
6569 pr_err("PCI: Invalid requested alignment (order %d)\n",
6570 align_order);
6571 align_order = PAGE_SHIFT;
6572 }
6573 } else {
6574 align_order = PAGE_SHIFT;
6575 }
6576
6577 ret = pci_dev_str_match(dev, p, &p);
6578 if (ret == 1) {
6579 *resize = true;
6580 align = 1ULL << align_order;
6581 break;
6582 } else if (ret < 0) {
6583 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6584 p);
6585 break;
6586 }
6587
6588 if (*p != ';' && *p != ',') {
6589 /* End of param or invalid format */
6590 break;
6591 }
6592 p++;
6593 }
6594 out:
6595 spin_unlock(&resource_alignment_lock);
6596 return align;
6597 }
6598
pci_request_resource_alignment(struct pci_dev * dev,int bar,resource_size_t align,bool resize)6599 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6600 resource_size_t align, bool resize)
6601 {
6602 struct resource *r = &dev->resource[bar];
6603 const char *r_name = pci_resource_name(dev, bar);
6604 resource_size_t size;
6605
6606 if (!(r->flags & IORESOURCE_MEM))
6607 return;
6608
6609 if (r->flags & IORESOURCE_PCI_FIXED) {
6610 pci_info(dev, "%s %pR: ignoring requested alignment %#llx\n",
6611 r_name, r, (unsigned long long)align);
6612 return;
6613 }
6614
6615 size = resource_size(r);
6616 if (size >= align)
6617 return;
6618
6619 /*
6620 * Increase the alignment of the resource. There are two ways we
6621 * can do this:
6622 *
6623 * 1) Increase the size of the resource. BARs are aligned on their
6624 * size, so when we reallocate space for this resource, we'll
6625 * allocate it with the larger alignment. This also prevents
6626 * assignment of any other BARs inside the alignment region, so
6627 * if we're requesting page alignment, this means no other BARs
6628 * will share the page.
6629 *
6630 * The disadvantage is that this makes the resource larger than
6631 * the hardware BAR, which may break drivers that compute things
6632 * based on the resource size, e.g., to find registers at a
6633 * fixed offset before the end of the BAR.
6634 *
6635 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6636 * set r->start to the desired alignment. By itself this
6637 * doesn't prevent other BARs being put inside the alignment
6638 * region, but if we realign *every* resource of every device in
6639 * the system, none of them will share an alignment region.
6640 *
6641 * When the user has requested alignment for only some devices via
6642 * the "pci=resource_alignment" argument, "resize" is true and we
6643 * use the first method. Otherwise we assume we're aligning all
6644 * devices and we use the second.
6645 */
6646
6647 pci_info(dev, "%s %pR: requesting alignment to %#llx\n",
6648 r_name, r, (unsigned long long)align);
6649
6650 if (resize) {
6651 r->start = 0;
6652 r->end = align - 1;
6653 } else {
6654 r->flags &= ~IORESOURCE_SIZEALIGN;
6655 r->flags |= IORESOURCE_STARTALIGN;
6656 r->start = align;
6657 r->end = r->start + size - 1;
6658 }
6659 r->flags |= IORESOURCE_UNSET;
6660 }
6661
6662 /*
6663 * This function disables memory decoding and releases memory resources
6664 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6665 * It also rounds up size to specified alignment.
6666 * Later on, the kernel will assign page-aligned memory resource back
6667 * to the device.
6668 */
pci_reassigndev_resource_alignment(struct pci_dev * dev)6669 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6670 {
6671 int i;
6672 struct resource *r;
6673 resource_size_t align;
6674 u16 command;
6675 bool resize = false;
6676
6677 /*
6678 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6679 * 3.4.1.11. Their resources are allocated from the space
6680 * described by the VF BARx register in the PF's SR-IOV capability.
6681 * We can't influence their alignment here.
6682 */
6683 if (dev->is_virtfn)
6684 return;
6685
6686 /* check if specified PCI is target device to reassign */
6687 align = pci_specified_resource_alignment(dev, &resize);
6688 if (!align)
6689 return;
6690
6691 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6692 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6693 pci_warn(dev, "Can't reassign resources to host bridge\n");
6694 return;
6695 }
6696
6697 pci_read_config_word(dev, PCI_COMMAND, &command);
6698 command &= ~PCI_COMMAND_MEMORY;
6699 pci_write_config_word(dev, PCI_COMMAND, command);
6700
6701 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6702 pci_request_resource_alignment(dev, i, align, resize);
6703
6704 /*
6705 * Need to disable bridge's resource window,
6706 * to enable the kernel to reassign new resource
6707 * window later on.
6708 */
6709 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6710 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6711 r = &dev->resource[i];
6712 if (!(r->flags & IORESOURCE_MEM))
6713 continue;
6714 r->flags |= IORESOURCE_UNSET;
6715 r->end = resource_size(r) - 1;
6716 r->start = 0;
6717 }
6718 pci_disable_bridge_window(dev);
6719 }
6720 }
6721
resource_alignment_show(const struct bus_type * bus,char * buf)6722 static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf)
6723 {
6724 size_t count = 0;
6725
6726 spin_lock(&resource_alignment_lock);
6727 if (resource_alignment_param)
6728 count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6729 spin_unlock(&resource_alignment_lock);
6730
6731 return count;
6732 }
6733
resource_alignment_store(const struct bus_type * bus,const char * buf,size_t count)6734 static ssize_t resource_alignment_store(const struct bus_type *bus,
6735 const char *buf, size_t count)
6736 {
6737 char *param, *old, *end;
6738
6739 if (count >= (PAGE_SIZE - 1))
6740 return -EINVAL;
6741
6742 param = kstrndup(buf, count, GFP_KERNEL);
6743 if (!param)
6744 return -ENOMEM;
6745
6746 end = strchr(param, '\n');
6747 if (end)
6748 *end = '\0';
6749
6750 spin_lock(&resource_alignment_lock);
6751 old = resource_alignment_param;
6752 if (strlen(param)) {
6753 resource_alignment_param = param;
6754 } else {
6755 kfree(param);
6756 resource_alignment_param = NULL;
6757 }
6758 spin_unlock(&resource_alignment_lock);
6759
6760 kfree(old);
6761
6762 return count;
6763 }
6764
6765 static BUS_ATTR_RW(resource_alignment);
6766
pci_resource_alignment_sysfs_init(void)6767 static int __init pci_resource_alignment_sysfs_init(void)
6768 {
6769 return bus_create_file(&pci_bus_type,
6770 &bus_attr_resource_alignment);
6771 }
6772 late_initcall(pci_resource_alignment_sysfs_init);
6773
pci_no_domains(void)6774 static void pci_no_domains(void)
6775 {
6776 #ifdef CONFIG_PCI_DOMAINS
6777 pci_domains_supported = 0;
6778 #endif
6779 }
6780
6781 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6782 static DEFINE_IDA(pci_domain_nr_static_ida);
6783 static DEFINE_IDA(pci_domain_nr_dynamic_ida);
6784
of_pci_reserve_static_domain_nr(void)6785 static void of_pci_reserve_static_domain_nr(void)
6786 {
6787 struct device_node *np;
6788 int domain_nr;
6789
6790 for_each_node_by_type(np, "pci") {
6791 domain_nr = of_get_pci_domain_nr(np);
6792 if (domain_nr < 0)
6793 continue;
6794 /*
6795 * Permanently allocate domain_nr in dynamic_ida
6796 * to prevent it from dynamic allocation.
6797 */
6798 ida_alloc_range(&pci_domain_nr_dynamic_ida,
6799 domain_nr, domain_nr, GFP_KERNEL);
6800 }
6801 }
6802
of_pci_bus_find_domain_nr(struct device * parent)6803 static int of_pci_bus_find_domain_nr(struct device *parent)
6804 {
6805 static bool static_domains_reserved = false;
6806 int domain_nr;
6807
6808 /* On the first call scan device tree for static allocations. */
6809 if (!static_domains_reserved) {
6810 of_pci_reserve_static_domain_nr();
6811 static_domains_reserved = true;
6812 }
6813
6814 if (parent) {
6815 /*
6816 * If domain is in DT, allocate it in static IDA. This
6817 * prevents duplicate static allocations in case of errors
6818 * in DT.
6819 */
6820 domain_nr = of_get_pci_domain_nr(parent->of_node);
6821 if (domain_nr >= 0)
6822 return ida_alloc_range(&pci_domain_nr_static_ida,
6823 domain_nr, domain_nr,
6824 GFP_KERNEL);
6825 }
6826
6827 /*
6828 * If domain was not specified in DT, choose a free ID from dynamic
6829 * allocations. All domain numbers from DT are permanently in
6830 * dynamic allocations to prevent assigning them to other DT nodes
6831 * without static domain.
6832 */
6833 return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
6834 }
6835
of_pci_bus_release_domain_nr(struct device * parent,int domain_nr)6836 static void of_pci_bus_release_domain_nr(struct device *parent, int domain_nr)
6837 {
6838 if (domain_nr < 0)
6839 return;
6840
6841 /* Release domain from IDA where it was allocated. */
6842 if (of_get_pci_domain_nr(parent->of_node) == domain_nr)
6843 ida_free(&pci_domain_nr_static_ida, domain_nr);
6844 else
6845 ida_free(&pci_domain_nr_dynamic_ida, domain_nr);
6846 }
6847
pci_bus_find_domain_nr(struct pci_bus * bus,struct device * parent)6848 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6849 {
6850 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6851 acpi_pci_bus_find_domain_nr(bus);
6852 }
6853
pci_bus_release_domain_nr(struct device * parent,int domain_nr)6854 void pci_bus_release_domain_nr(struct device *parent, int domain_nr)
6855 {
6856 if (!acpi_disabled)
6857 return;
6858 of_pci_bus_release_domain_nr(parent, domain_nr);
6859 }
6860 #endif
6861
6862 /**
6863 * pci_ext_cfg_avail - can we access extended PCI config space?
6864 *
6865 * Returns 1 if we can access PCI extended config space (offsets
6866 * greater than 0xff). This is the default implementation. Architecture
6867 * implementations can override this.
6868 */
pci_ext_cfg_avail(void)6869 int __weak pci_ext_cfg_avail(void)
6870 {
6871 return 1;
6872 }
6873
pci_fixup_cardbus(struct pci_bus * bus)6874 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6875 {
6876 }
6877 EXPORT_SYMBOL(pci_fixup_cardbus);
6878
pci_setup(char * str)6879 static int __init pci_setup(char *str)
6880 {
6881 while (str) {
6882 char *k = strchr(str, ',');
6883 if (k)
6884 *k++ = 0;
6885 if (*str && (str = pcibios_setup(str)) && *str) {
6886 if (!strcmp(str, "nomsi")) {
6887 pci_no_msi();
6888 } else if (!strncmp(str, "noats", 5)) {
6889 pr_info("PCIe: ATS is disabled\n");
6890 pcie_ats_disabled = true;
6891 } else if (!strcmp(str, "noaer")) {
6892 pci_no_aer();
6893 } else if (!strcmp(str, "earlydump")) {
6894 pci_early_dump = true;
6895 } else if (!strncmp(str, "realloc=", 8)) {
6896 pci_realloc_get_opt(str + 8);
6897 } else if (!strncmp(str, "realloc", 7)) {
6898 pci_realloc_get_opt("on");
6899 } else if (!strcmp(str, "nodomains")) {
6900 pci_no_domains();
6901 } else if (!strncmp(str, "noari", 5)) {
6902 pcie_ari_disabled = true;
6903 } else if (!strncmp(str, "cbiosize=", 9)) {
6904 pci_cardbus_io_size = memparse(str + 9, &str);
6905 } else if (!strncmp(str, "cbmemsize=", 10)) {
6906 pci_cardbus_mem_size = memparse(str + 10, &str);
6907 } else if (!strncmp(str, "resource_alignment=", 19)) {
6908 resource_alignment_param = str + 19;
6909 } else if (!strncmp(str, "ecrc=", 5)) {
6910 pcie_ecrc_get_policy(str + 5);
6911 } else if (!strncmp(str, "hpiosize=", 9)) {
6912 pci_hotplug_io_size = memparse(str + 9, &str);
6913 } else if (!strncmp(str, "hpmmiosize=", 11)) {
6914 pci_hotplug_mmio_size = memparse(str + 11, &str);
6915 } else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6916 pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6917 } else if (!strncmp(str, "hpmemsize=", 10)) {
6918 pci_hotplug_mmio_size = memparse(str + 10, &str);
6919 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6920 } else if (!strncmp(str, "hpbussize=", 10)) {
6921 pci_hotplug_bus_size =
6922 simple_strtoul(str + 10, &str, 0);
6923 if (pci_hotplug_bus_size > 0xff)
6924 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6925 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6926 pcie_bus_config = PCIE_BUS_TUNE_OFF;
6927 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
6928 pcie_bus_config = PCIE_BUS_SAFE;
6929 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
6930 pcie_bus_config = PCIE_BUS_PERFORMANCE;
6931 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6932 pcie_bus_config = PCIE_BUS_PEER2PEER;
6933 } else if (!strncmp(str, "pcie_scan_all", 13)) {
6934 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6935 } else if (!strncmp(str, "disable_acs_redir=", 18)) {
6936 disable_acs_redir_param = str + 18;
6937 } else if (!strncmp(str, "config_acs=", 11)) {
6938 config_acs_param = str + 11;
6939 } else {
6940 pr_err("PCI: Unknown option `%s'\n", str);
6941 }
6942 }
6943 str = k;
6944 }
6945 return 0;
6946 }
6947 early_param("pci", pci_setup);
6948
6949 /*
6950 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6951 * in pci_setup(), above, to point to data in the __initdata section which
6952 * will be freed after the init sequence is complete. We can't allocate memory
6953 * in pci_setup() because some architectures do not have any memory allocation
6954 * service available during an early_param() call. So we allocate memory and
6955 * copy the variable here before the init section is freed.
6956 *
6957 */
pci_realloc_setup_params(void)6958 static int __init pci_realloc_setup_params(void)
6959 {
6960 resource_alignment_param = kstrdup(resource_alignment_param,
6961 GFP_KERNEL);
6962 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6963 config_acs_param = kstrdup(config_acs_param, GFP_KERNEL);
6964
6965 return 0;
6966 }
6967 pure_initcall(pci_realloc_setup_params);
6968