xref: /linux/drivers/ata/libata-core.c (revision 096571bb893b3777ae1d752b7e1d5679bcf4edfc)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  libata-core.c - helper library for ATA
4  *
5  *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
6  *  Copyright 2003-2004 Jeff Garzik
7  *
8  *  libata documentation is available via 'make {ps|pdf}docs',
9  *  as Documentation/driver-api/libata.rst
10  *
11  *  Hardware documentation available from http://www.t13.org/ and
12  *  http://www.sata-io.org/
13  *
14  *  Standards documents from:
15  *	http://www.t13.org (ATA standards, PCI DMA IDE spec)
16  *	http://www.t10.org (SCSI MMC - for ATAPI MMC)
17  *	http://www.sata-io.org (SATA)
18  *	http://www.compactflash.org (CF)
19  *	http://www.qic.org (QIC157 - Tape and DSC)
20  *	http://www.ce-ata.org (CE-ATA: not supported)
21  *
22  * libata is essentially a library of internal helper functions for
23  * low-level ATA host controller drivers.  As such, the API/ABI is
24  * likely to change as new drivers are added and updated.
25  * Do not depend on ABI/API stability.
26  */
27 
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/pci.h>
31 #include <linux/init.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/spinlock.h>
35 #include <linux/blkdev.h>
36 #include <linux/delay.h>
37 #include <linux/timer.h>
38 #include <linux/time.h>
39 #include <linux/interrupt.h>
40 #include <linux/completion.h>
41 #include <linux/suspend.h>
42 #include <linux/workqueue.h>
43 #include <linux/scatterlist.h>
44 #include <linux/io.h>
45 #include <linux/log2.h>
46 #include <linux/slab.h>
47 #include <linux/glob.h>
48 #include <scsi/scsi.h>
49 #include <scsi/scsi_cmnd.h>
50 #include <scsi/scsi_host.h>
51 #include <linux/libata.h>
52 #include <asm/byteorder.h>
53 #include <linux/unaligned.h>
54 #include <linux/cdrom.h>
55 #include <linux/ratelimit.h>
56 #include <linux/leds.h>
57 #include <linux/pm_runtime.h>
58 #include <linux/platform_device.h>
59 #include <asm/setup.h>
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/libata.h>
63 
64 #include "libata.h"
65 #include "libata-transport.h"
66 
67 const struct ata_port_operations ata_base_port_ops = {
68 	.reset.prereset		= ata_std_prereset,
69 	.reset.postreset	= ata_std_postreset,
70 	.error_handler		= ata_std_error_handler,
71 	.sched_eh		= ata_std_sched_eh,
72 	.end_eh			= ata_std_end_eh,
73 };
74 
75 static unsigned int ata_dev_init_params(struct ata_device *dev,
76 					u16 heads, u16 sectors);
77 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
78 static void ata_dev_xfermask(struct ata_device *dev);
79 static unsigned int ata_dev_quirks(const struct ata_device *dev);
80 
81 static DEFINE_IDA(ata_ida);
82 
83 #ifdef CONFIG_ATA_FORCE
84 struct ata_force_param {
85 	const char	*name;
86 	u8		cbl;
87 	u8		spd_limit;
88 	unsigned int	xfer_mask;
89 	unsigned int	quirk_on;
90 	unsigned int	quirk_off;
91 	unsigned int	pflags_on;
92 	u16		lflags_on;
93 	u16		lflags_off;
94 };
95 
96 struct ata_force_ent {
97 	int			port;
98 	int			device;
99 	struct ata_force_param	param;
100 };
101 
102 static struct ata_force_ent *ata_force_tbl;
103 static int ata_force_tbl_size;
104 
105 static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata;
106 /* param_buf is thrown away after initialization, disallow read */
107 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
108 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
109 #endif
110 
111 static int atapi_enabled = 1;
112 module_param(atapi_enabled, int, 0444);
113 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
114 
115 static int atapi_dmadir = 0;
116 module_param(atapi_dmadir, int, 0444);
117 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
118 
119 int atapi_passthru16 = 1;
120 module_param(atapi_passthru16, int, 0444);
121 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
122 
123 int libata_fua = 0;
124 module_param_named(fua, libata_fua, int, 0444);
125 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
126 
127 static int ata_ignore_hpa;
128 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
129 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
130 
131 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
132 module_param_named(dma, libata_dma_mask, int, 0444);
133 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
134 
135 static int ata_probe_timeout;
136 module_param(ata_probe_timeout, int, 0444);
137 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
138 
139 int libata_noacpi = 0;
140 module_param_named(noacpi, libata_noacpi, int, 0444);
141 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
142 
143 int libata_allow_tpm = 0;
144 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
145 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
146 
147 static int atapi_an;
148 module_param(atapi_an, int, 0444);
149 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
150 
151 MODULE_AUTHOR("Jeff Garzik");
152 MODULE_DESCRIPTION("Library module for ATA devices");
153 MODULE_LICENSE("GPL");
154 MODULE_VERSION(DRV_VERSION);
155 
ata_dev_print_info(const struct ata_device * dev)156 static inline bool ata_dev_print_info(const struct ata_device *dev)
157 {
158 	struct ata_eh_context *ehc = &dev->link->eh_context;
159 
160 	return ehc->i.flags & ATA_EHI_PRINTINFO;
161 }
162 
163 /**
164  *	ata_link_next - link iteration helper
165  *	@link: the previous link, NULL to start
166  *	@ap: ATA port containing links to iterate
167  *	@mode: iteration mode, one of ATA_LITER_*
168  *
169  *	LOCKING:
170  *	Host lock or EH context.
171  *
172  *	RETURNS:
173  *	Pointer to the next link.
174  */
ata_link_next(struct ata_link * link,struct ata_port * ap,enum ata_link_iter_mode mode)175 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
176 			       enum ata_link_iter_mode mode)
177 {
178 	BUG_ON(mode != ATA_LITER_EDGE &&
179 	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
180 
181 	/* NULL link indicates start of iteration */
182 	if (!link)
183 		switch (mode) {
184 		case ATA_LITER_EDGE:
185 		case ATA_LITER_PMP_FIRST:
186 			if (sata_pmp_attached(ap))
187 				return ap->pmp_link;
188 			fallthrough;
189 		case ATA_LITER_HOST_FIRST:
190 			return &ap->link;
191 		}
192 
193 	/* we just iterated over the host link, what's next? */
194 	if (link == &ap->link)
195 		switch (mode) {
196 		case ATA_LITER_HOST_FIRST:
197 			if (sata_pmp_attached(ap))
198 				return ap->pmp_link;
199 			fallthrough;
200 		case ATA_LITER_PMP_FIRST:
201 			if (unlikely(ap->slave_link))
202 				return ap->slave_link;
203 			fallthrough;
204 		case ATA_LITER_EDGE:
205 			return NULL;
206 		}
207 
208 	/* slave_link excludes PMP */
209 	if (unlikely(link == ap->slave_link))
210 		return NULL;
211 
212 	/* we were over a PMP link */
213 	if (++link < ap->pmp_link + ap->nr_pmp_links)
214 		return link;
215 
216 	if (mode == ATA_LITER_PMP_FIRST)
217 		return &ap->link;
218 
219 	return NULL;
220 }
221 EXPORT_SYMBOL_GPL(ata_link_next);
222 
223 /**
224  *	ata_dev_next - device iteration helper
225  *	@dev: the previous device, NULL to start
226  *	@link: ATA link containing devices to iterate
227  *	@mode: iteration mode, one of ATA_DITER_*
228  *
229  *	LOCKING:
230  *	Host lock or EH context.
231  *
232  *	RETURNS:
233  *	Pointer to the next device.
234  */
ata_dev_next(struct ata_device * dev,struct ata_link * link,enum ata_dev_iter_mode mode)235 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
236 				enum ata_dev_iter_mode mode)
237 {
238 	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
239 	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
240 
241 	/* NULL dev indicates start of iteration */
242 	if (!dev)
243 		switch (mode) {
244 		case ATA_DITER_ENABLED:
245 		case ATA_DITER_ALL:
246 			dev = link->device;
247 			goto check;
248 		case ATA_DITER_ENABLED_REVERSE:
249 		case ATA_DITER_ALL_REVERSE:
250 			dev = link->device + ata_link_max_devices(link) - 1;
251 			goto check;
252 		}
253 
254  next:
255 	/* move to the next one */
256 	switch (mode) {
257 	case ATA_DITER_ENABLED:
258 	case ATA_DITER_ALL:
259 		if (++dev < link->device + ata_link_max_devices(link))
260 			goto check;
261 		return NULL;
262 	case ATA_DITER_ENABLED_REVERSE:
263 	case ATA_DITER_ALL_REVERSE:
264 		if (--dev >= link->device)
265 			goto check;
266 		return NULL;
267 	}
268 
269  check:
270 	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
271 	    !ata_dev_enabled(dev))
272 		goto next;
273 	return dev;
274 }
275 EXPORT_SYMBOL_GPL(ata_dev_next);
276 
277 /**
278  *	ata_dev_phys_link - find physical link for a device
279  *	@dev: ATA device to look up physical link for
280  *
281  *	Look up physical link which @dev is attached to.  Note that
282  *	this is different from @dev->link only when @dev is on slave
283  *	link.  For all other cases, it's the same as @dev->link.
284  *
285  *	LOCKING:
286  *	Don't care.
287  *
288  *	RETURNS:
289  *	Pointer to the found physical link.
290  */
ata_dev_phys_link(struct ata_device * dev)291 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
292 {
293 	struct ata_port *ap = dev->link->ap;
294 
295 	if (!ap->slave_link)
296 		return dev->link;
297 	if (!dev->devno)
298 		return &ap->link;
299 	return ap->slave_link;
300 }
301 
302 #ifdef CONFIG_ATA_FORCE
303 /**
304  *	ata_force_cbl - force cable type according to libata.force
305  *	@ap: ATA port of interest
306  *
307  *	Force cable type according to libata.force and whine about it.
308  *	The last entry which has matching port number is used, so it
309  *	can be specified as part of device force parameters.  For
310  *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
311  *	same effect.
312  *
313  *	LOCKING:
314  *	EH context.
315  */
ata_force_cbl(struct ata_port * ap)316 void ata_force_cbl(struct ata_port *ap)
317 {
318 	int i;
319 
320 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
321 		const struct ata_force_ent *fe = &ata_force_tbl[i];
322 
323 		if (fe->port != -1 && fe->port != ap->print_id)
324 			continue;
325 
326 		if (fe->param.cbl == ATA_CBL_NONE)
327 			continue;
328 
329 		ap->cbl = fe->param.cbl;
330 		ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
331 		return;
332 	}
333 }
334 
335 /**
336  *	ata_force_pflags - force port flags according to libata.force
337  *	@ap: ATA port of interest
338  *
339  *	Force port flags according to libata.force and whine about it.
340  *
341  *	LOCKING:
342  *	EH context.
343  */
ata_force_pflags(struct ata_port * ap)344 static void ata_force_pflags(struct ata_port *ap)
345 {
346 	int i;
347 
348 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
349 		const struct ata_force_ent *fe = &ata_force_tbl[i];
350 
351 		if (fe->port != -1 && fe->port != ap->print_id)
352 			continue;
353 
354 		/* let pflags stack */
355 		if (fe->param.pflags_on) {
356 			ap->pflags |= fe->param.pflags_on;
357 			ata_port_notice(ap,
358 					"FORCE: port flag 0x%x forced -> 0x%x\n",
359 					fe->param.pflags_on, ap->pflags);
360 		}
361 	}
362 }
363 
364 /**
365  *	ata_force_link_limits - force link limits according to libata.force
366  *	@link: ATA link of interest
367  *
368  *	Force link flags and SATA spd limit according to libata.force
369  *	and whine about it.  When only the port part is specified
370  *	(e.g. 1:), the limit applies to all links connected to both
371  *	the host link and all fan-out ports connected via PMP.  If the
372  *	device part is specified as 0 (e.g. 1.00:), it specifies the
373  *	first fan-out link not the host link.  Device number 15 always
374  *	points to the host link whether PMP is attached or not.  If the
375  *	controller has slave link, device number 16 points to it.
376  *
377  *	LOCKING:
378  *	EH context.
379  */
ata_force_link_limits(struct ata_link * link)380 static void ata_force_link_limits(struct ata_link *link)
381 {
382 	bool did_spd = false;
383 	int linkno = link->pmp;
384 	int i;
385 
386 	if (ata_is_host_link(link))
387 		linkno += 15;
388 
389 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
390 		const struct ata_force_ent *fe = &ata_force_tbl[i];
391 
392 		if (fe->port != -1 && fe->port != link->ap->print_id)
393 			continue;
394 
395 		if (fe->device != -1 && fe->device != linkno)
396 			continue;
397 
398 		/* only honor the first spd limit */
399 		if (!did_spd && fe->param.spd_limit) {
400 			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
401 			ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
402 					fe->param.name);
403 			did_spd = true;
404 		}
405 
406 		/* let lflags stack */
407 		if (fe->param.lflags_on) {
408 			link->flags |= fe->param.lflags_on;
409 			ata_link_notice(link,
410 					"FORCE: link flag 0x%x forced -> 0x%x\n",
411 					fe->param.lflags_on, link->flags);
412 		}
413 		if (fe->param.lflags_off) {
414 			link->flags &= ~fe->param.lflags_off;
415 			ata_link_notice(link,
416 				"FORCE: link flag 0x%x cleared -> 0x%x\n",
417 				fe->param.lflags_off, link->flags);
418 		}
419 	}
420 }
421 
422 /**
423  *	ata_force_xfermask - force xfermask according to libata.force
424  *	@dev: ATA device of interest
425  *
426  *	Force xfer_mask according to libata.force and whine about it.
427  *	For consistency with link selection, device number 15 selects
428  *	the first device connected to the host link.
429  *
430  *	LOCKING:
431  *	EH context.
432  */
ata_force_xfermask(struct ata_device * dev)433 static void ata_force_xfermask(struct ata_device *dev)
434 {
435 	int devno = dev->link->pmp + dev->devno;
436 	int alt_devno = devno;
437 	int i;
438 
439 	/* allow n.15/16 for devices attached to host port */
440 	if (ata_is_host_link(dev->link))
441 		alt_devno += 15;
442 
443 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
444 		const struct ata_force_ent *fe = &ata_force_tbl[i];
445 		unsigned int pio_mask, mwdma_mask, udma_mask;
446 
447 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
448 			continue;
449 
450 		if (fe->device != -1 && fe->device != devno &&
451 		    fe->device != alt_devno)
452 			continue;
453 
454 		if (!fe->param.xfer_mask)
455 			continue;
456 
457 		ata_unpack_xfermask(fe->param.xfer_mask,
458 				    &pio_mask, &mwdma_mask, &udma_mask);
459 		if (udma_mask)
460 			dev->udma_mask = udma_mask;
461 		else if (mwdma_mask) {
462 			dev->udma_mask = 0;
463 			dev->mwdma_mask = mwdma_mask;
464 		} else {
465 			dev->udma_mask = 0;
466 			dev->mwdma_mask = 0;
467 			dev->pio_mask = pio_mask;
468 		}
469 
470 		ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
471 			       fe->param.name);
472 		return;
473 	}
474 }
475 
476 /**
477  *	ata_force_quirks - force quirks according to libata.force
478  *	@dev: ATA device of interest
479  *
480  *	Force quirks according to libata.force and whine about it.
481  *	For consistency with link selection, device number 15 selects
482  *	the first device connected to the host link.
483  *
484  *	LOCKING:
485  *	EH context.
486  */
ata_force_quirks(struct ata_device * dev)487 static void ata_force_quirks(struct ata_device *dev)
488 {
489 	int devno = dev->link->pmp + dev->devno;
490 	int alt_devno = devno;
491 	int i;
492 
493 	/* allow n.15/16 for devices attached to host port */
494 	if (ata_is_host_link(dev->link))
495 		alt_devno += 15;
496 
497 	for (i = 0; i < ata_force_tbl_size; i++) {
498 		const struct ata_force_ent *fe = &ata_force_tbl[i];
499 
500 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
501 			continue;
502 
503 		if (fe->device != -1 && fe->device != devno &&
504 		    fe->device != alt_devno)
505 			continue;
506 
507 		if (!(~dev->quirks & fe->param.quirk_on) &&
508 		    !(dev->quirks & fe->param.quirk_off))
509 			continue;
510 
511 		dev->quirks |= fe->param.quirk_on;
512 		dev->quirks &= ~fe->param.quirk_off;
513 
514 		ata_dev_notice(dev, "FORCE: modified (%s)\n",
515 			       fe->param.name);
516 	}
517 }
518 #else
ata_force_pflags(struct ata_port * ap)519 static inline void ata_force_pflags(struct ata_port *ap) { }
ata_force_link_limits(struct ata_link * link)520 static inline void ata_force_link_limits(struct ata_link *link) { }
ata_force_xfermask(struct ata_device * dev)521 static inline void ata_force_xfermask(struct ata_device *dev) { }
ata_force_quirks(struct ata_device * dev)522 static inline void ata_force_quirks(struct ata_device *dev) { }
523 #endif
524 
525 /**
526  *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode
527  *	@opcode: SCSI opcode
528  *
529  *	Determine ATAPI command type from @opcode.
530  *
531  *	LOCKING:
532  *	None.
533  *
534  *	RETURNS:
535  *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
536  */
atapi_cmd_type(u8 opcode)537 int atapi_cmd_type(u8 opcode)
538 {
539 	switch (opcode) {
540 	case GPCMD_READ_10:
541 	case GPCMD_READ_12:
542 		return ATAPI_READ;
543 
544 	case GPCMD_WRITE_10:
545 	case GPCMD_WRITE_12:
546 	case GPCMD_WRITE_AND_VERIFY_10:
547 		return ATAPI_WRITE;
548 
549 	case GPCMD_READ_CD:
550 	case GPCMD_READ_CD_MSF:
551 		return ATAPI_READ_CD;
552 
553 	case ATA_16:
554 	case ATA_12:
555 		if (atapi_passthru16)
556 			return ATAPI_PASS_THRU;
557 		fallthrough;
558 	default:
559 		return ATAPI_MISC;
560 	}
561 }
562 EXPORT_SYMBOL_GPL(atapi_cmd_type);
563 
564 static const u8 ata_rw_cmds[] = {
565 	/* pio multi */
566 	ATA_CMD_READ_MULTI,
567 	ATA_CMD_WRITE_MULTI,
568 	ATA_CMD_READ_MULTI_EXT,
569 	ATA_CMD_WRITE_MULTI_EXT,
570 	0,
571 	0,
572 	0,
573 	0,
574 	/* pio */
575 	ATA_CMD_PIO_READ,
576 	ATA_CMD_PIO_WRITE,
577 	ATA_CMD_PIO_READ_EXT,
578 	ATA_CMD_PIO_WRITE_EXT,
579 	0,
580 	0,
581 	0,
582 	0,
583 	/* dma */
584 	ATA_CMD_READ,
585 	ATA_CMD_WRITE,
586 	ATA_CMD_READ_EXT,
587 	ATA_CMD_WRITE_EXT,
588 	0,
589 	0,
590 	0,
591 	ATA_CMD_WRITE_FUA_EXT
592 };
593 
594 /**
595  *	ata_set_rwcmd_protocol - set taskfile r/w command and protocol
596  *	@dev: target device for the taskfile
597  *	@tf: taskfile to examine and configure
598  *
599  *	Examine the device configuration and tf->flags to determine
600  *	the proper read/write command and protocol to use for @tf.
601  *
602  *	LOCKING:
603  *	caller.
604  */
ata_set_rwcmd_protocol(struct ata_device * dev,struct ata_taskfile * tf)605 static bool ata_set_rwcmd_protocol(struct ata_device *dev,
606 				   struct ata_taskfile *tf)
607 {
608 	u8 cmd;
609 
610 	int index, fua, lba48, write;
611 
612 	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
613 	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
614 	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
615 
616 	if (dev->flags & ATA_DFLAG_PIO) {
617 		tf->protocol = ATA_PROT_PIO;
618 		index = dev->multi_count ? 0 : 8;
619 	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
620 		/* Unable to use DMA due to host limitation */
621 		tf->protocol = ATA_PROT_PIO;
622 		index = dev->multi_count ? 0 : 8;
623 	} else {
624 		tf->protocol = ATA_PROT_DMA;
625 		index = 16;
626 	}
627 
628 	cmd = ata_rw_cmds[index + fua + lba48 + write];
629 	if (!cmd)
630 		return false;
631 
632 	tf->command = cmd;
633 
634 	return true;
635 }
636 
637 /**
638  *	ata_tf_read_block - Read block address from ATA taskfile
639  *	@tf: ATA taskfile of interest
640  *	@dev: ATA device @tf belongs to
641  *
642  *	LOCKING:
643  *	None.
644  *
645  *	Read block address from @tf.  This function can handle all
646  *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
647  *	flags select the address format to use.
648  *
649  *	RETURNS:
650  *	Block address read from @tf.
651  */
ata_tf_read_block(const struct ata_taskfile * tf,struct ata_device * dev)652 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
653 {
654 	u64 block = 0;
655 
656 	if (tf->flags & ATA_TFLAG_LBA) {
657 		if (tf->flags & ATA_TFLAG_LBA48) {
658 			block |= (u64)tf->hob_lbah << 40;
659 			block |= (u64)tf->hob_lbam << 32;
660 			block |= (u64)tf->hob_lbal << 24;
661 		} else
662 			block |= (tf->device & 0xf) << 24;
663 
664 		block |= tf->lbah << 16;
665 		block |= tf->lbam << 8;
666 		block |= tf->lbal;
667 	} else {
668 		u32 cyl, head, sect;
669 
670 		cyl = tf->lbam | (tf->lbah << 8);
671 		head = tf->device & 0xf;
672 		sect = tf->lbal;
673 
674 		if (!sect) {
675 			ata_dev_warn(dev,
676 				     "device reported invalid CHS sector 0\n");
677 			return U64_MAX;
678 		}
679 
680 		block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
681 	}
682 
683 	return block;
684 }
685 
686 /*
687  * Set a taskfile command duration limit index.
688  */
ata_set_tf_cdl(struct ata_queued_cmd * qc,int cdl)689 static inline void ata_set_tf_cdl(struct ata_queued_cmd *qc, int cdl)
690 {
691 	struct ata_taskfile *tf = &qc->tf;
692 
693 	if (tf->protocol == ATA_PROT_NCQ)
694 		tf->auxiliary |= cdl;
695 	else
696 		tf->feature |= cdl;
697 
698 	/*
699 	 * Mark this command as having a CDL and request the result
700 	 * task file so that we can inspect the sense data available
701 	 * bit on completion.
702 	 */
703 	qc->flags |= ATA_QCFLAG_HAS_CDL | ATA_QCFLAG_RESULT_TF;
704 }
705 
706 /**
707  *	ata_build_rw_tf - Build ATA taskfile for given read/write request
708  *	@qc: Metadata associated with the taskfile to build
709  *	@block: Block address
710  *	@n_block: Number of blocks
711  *	@tf_flags: RW/FUA etc...
712  *	@cdl: Command duration limit index
713  *	@class: IO priority class
714  *
715  *	LOCKING:
716  *	None.
717  *
718  *	Build ATA taskfile for the command @qc for read/write request described
719  *	by @block, @n_block, @tf_flags and @class.
720  *
721  *	RETURNS:
722  *
723  *	0 on success, -ERANGE if the request is too large for @dev,
724  *	-EINVAL if the request is invalid.
725  */
ata_build_rw_tf(struct ata_queued_cmd * qc,u64 block,u32 n_block,unsigned int tf_flags,int cdl,int class)726 int ata_build_rw_tf(struct ata_queued_cmd *qc, u64 block, u32 n_block,
727 		    unsigned int tf_flags, int cdl, int class)
728 {
729 	struct ata_taskfile *tf = &qc->tf;
730 	struct ata_device *dev = qc->dev;
731 
732 	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
733 	tf->flags |= tf_flags;
734 
735 	if (ata_ncq_enabled(dev)) {
736 		/* yay, NCQ */
737 		if (!lba_48_ok(block, n_block))
738 			return -ERANGE;
739 
740 		tf->protocol = ATA_PROT_NCQ;
741 		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
742 
743 		if (tf->flags & ATA_TFLAG_WRITE)
744 			tf->command = ATA_CMD_FPDMA_WRITE;
745 		else
746 			tf->command = ATA_CMD_FPDMA_READ;
747 
748 		tf->nsect = qc->hw_tag << 3;
749 		tf->hob_feature = (n_block >> 8) & 0xff;
750 		tf->feature = n_block & 0xff;
751 
752 		tf->hob_lbah = (block >> 40) & 0xff;
753 		tf->hob_lbam = (block >> 32) & 0xff;
754 		tf->hob_lbal = (block >> 24) & 0xff;
755 		tf->lbah = (block >> 16) & 0xff;
756 		tf->lbam = (block >> 8) & 0xff;
757 		tf->lbal = block & 0xff;
758 
759 		tf->device = ATA_LBA;
760 		if (tf->flags & ATA_TFLAG_FUA)
761 			tf->device |= 1 << 7;
762 
763 		if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLED &&
764 		    class == IOPRIO_CLASS_RT)
765 			tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO;
766 
767 		if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl)
768 			ata_set_tf_cdl(qc, cdl);
769 
770 	} else if (dev->flags & ATA_DFLAG_LBA) {
771 		tf->flags |= ATA_TFLAG_LBA;
772 
773 		if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl)
774 			ata_set_tf_cdl(qc, cdl);
775 
776 		/* Both FUA writes and a CDL index require 48-bit commands */
777 		if (!(tf->flags & ATA_TFLAG_FUA) &&
778 		    !(qc->flags & ATA_QCFLAG_HAS_CDL) &&
779 		    lba_28_ok(block, n_block)) {
780 			/* use LBA28 */
781 			tf->device |= (block >> 24) & 0xf;
782 		} else if (lba_48_ok(block, n_block)) {
783 			if (!(dev->flags & ATA_DFLAG_LBA48))
784 				return -ERANGE;
785 
786 			/* use LBA48 */
787 			tf->flags |= ATA_TFLAG_LBA48;
788 
789 			tf->hob_nsect = (n_block >> 8) & 0xff;
790 
791 			tf->hob_lbah = (block >> 40) & 0xff;
792 			tf->hob_lbam = (block >> 32) & 0xff;
793 			tf->hob_lbal = (block >> 24) & 0xff;
794 		} else {
795 			/* request too large even for LBA48 */
796 			return -ERANGE;
797 		}
798 
799 		if (unlikely(!ata_set_rwcmd_protocol(dev, tf)))
800 			return -EINVAL;
801 
802 		tf->nsect = n_block & 0xff;
803 
804 		tf->lbah = (block >> 16) & 0xff;
805 		tf->lbam = (block >> 8) & 0xff;
806 		tf->lbal = block & 0xff;
807 
808 		tf->device |= ATA_LBA;
809 	} else {
810 		/* CHS */
811 		u32 sect, head, cyl, track;
812 
813 		/* The request -may- be too large for CHS addressing. */
814 		if (!lba_28_ok(block, n_block))
815 			return -ERANGE;
816 
817 		if (unlikely(!ata_set_rwcmd_protocol(dev, tf)))
818 			return -EINVAL;
819 
820 		/* Convert LBA to CHS */
821 		track = (u32)block / dev->sectors;
822 		cyl   = track / dev->heads;
823 		head  = track % dev->heads;
824 		sect  = (u32)block % dev->sectors + 1;
825 
826 		/* Check whether the converted CHS can fit.
827 		   Cylinder: 0-65535
828 		   Head: 0-15
829 		   Sector: 1-255*/
830 		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
831 			return -ERANGE;
832 
833 		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
834 		tf->lbal = sect;
835 		tf->lbam = cyl;
836 		tf->lbah = cyl >> 8;
837 		tf->device |= head;
838 	}
839 
840 	return 0;
841 }
842 
843 /**
844  *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
845  *	@pio_mask: pio_mask
846  *	@mwdma_mask: mwdma_mask
847  *	@udma_mask: udma_mask
848  *
849  *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
850  *	unsigned int xfer_mask.
851  *
852  *	LOCKING:
853  *	None.
854  *
855  *	RETURNS:
856  *	Packed xfer_mask.
857  */
ata_pack_xfermask(unsigned int pio_mask,unsigned int mwdma_mask,unsigned int udma_mask)858 unsigned int ata_pack_xfermask(unsigned int pio_mask,
859 			       unsigned int mwdma_mask,
860 			       unsigned int udma_mask)
861 {
862 	return	((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
863 		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
864 		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
865 }
866 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
867 
868 /**
869  *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
870  *	@xfer_mask: xfer_mask to unpack
871  *	@pio_mask: resulting pio_mask
872  *	@mwdma_mask: resulting mwdma_mask
873  *	@udma_mask: resulting udma_mask
874  *
875  *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
876  *	Any NULL destination masks will be ignored.
877  */
ata_unpack_xfermask(unsigned int xfer_mask,unsigned int * pio_mask,unsigned int * mwdma_mask,unsigned int * udma_mask)878 void ata_unpack_xfermask(unsigned int xfer_mask, unsigned int *pio_mask,
879 			 unsigned int *mwdma_mask, unsigned int *udma_mask)
880 {
881 	if (pio_mask)
882 		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
883 	if (mwdma_mask)
884 		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
885 	if (udma_mask)
886 		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
887 }
888 
889 static const struct ata_xfer_ent {
890 	int shift, bits;
891 	u8 base;
892 } ata_xfer_tbl[] = {
893 	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
894 	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
895 	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
896 	{ -1, },
897 };
898 
899 /**
900  *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
901  *	@xfer_mask: xfer_mask of interest
902  *
903  *	Return matching XFER_* value for @xfer_mask.  Only the highest
904  *	bit of @xfer_mask is considered.
905  *
906  *	LOCKING:
907  *	None.
908  *
909  *	RETURNS:
910  *	Matching XFER_* value, 0xff if no match found.
911  */
ata_xfer_mask2mode(unsigned int xfer_mask)912 u8 ata_xfer_mask2mode(unsigned int xfer_mask)
913 {
914 	int highbit = fls(xfer_mask) - 1;
915 	const struct ata_xfer_ent *ent;
916 
917 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
918 		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
919 			return ent->base + highbit - ent->shift;
920 	return 0xff;
921 }
922 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
923 
924 /**
925  *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
926  *	@xfer_mode: XFER_* of interest
927  *
928  *	Return matching xfer_mask for @xfer_mode.
929  *
930  *	LOCKING:
931  *	None.
932  *
933  *	RETURNS:
934  *	Matching xfer_mask, 0 if no match found.
935  */
ata_xfer_mode2mask(u8 xfer_mode)936 unsigned int ata_xfer_mode2mask(u8 xfer_mode)
937 {
938 	const struct ata_xfer_ent *ent;
939 
940 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
941 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
942 			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
943 				& ~((1 << ent->shift) - 1);
944 	return 0;
945 }
946 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
947 
948 /**
949  *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
950  *	@xfer_mode: XFER_* of interest
951  *
952  *	Return matching xfer_shift for @xfer_mode.
953  *
954  *	LOCKING:
955  *	None.
956  *
957  *	RETURNS:
958  *	Matching xfer_shift, -1 if no match found.
959  */
ata_xfer_mode2shift(u8 xfer_mode)960 int ata_xfer_mode2shift(u8 xfer_mode)
961 {
962 	const struct ata_xfer_ent *ent;
963 
964 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
965 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
966 			return ent->shift;
967 	return -1;
968 }
969 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
970 
971 /**
972  *	ata_mode_string - convert xfer_mask to string
973  *	@xfer_mask: mask of bits supported; only highest bit counts.
974  *
975  *	Determine string which represents the highest speed
976  *	(highest bit in @modemask).
977  *
978  *	LOCKING:
979  *	None.
980  *
981  *	RETURNS:
982  *	Constant C string representing highest speed listed in
983  *	@mode_mask, or the constant C string "<n/a>".
984  */
ata_mode_string(unsigned int xfer_mask)985 const char *ata_mode_string(unsigned int xfer_mask)
986 {
987 	static const char * const xfer_mode_str[] = {
988 		"PIO0",
989 		"PIO1",
990 		"PIO2",
991 		"PIO3",
992 		"PIO4",
993 		"PIO5",
994 		"PIO6",
995 		"MWDMA0",
996 		"MWDMA1",
997 		"MWDMA2",
998 		"MWDMA3",
999 		"MWDMA4",
1000 		"UDMA/16",
1001 		"UDMA/25",
1002 		"UDMA/33",
1003 		"UDMA/44",
1004 		"UDMA/66",
1005 		"UDMA/100",
1006 		"UDMA/133",
1007 		"UDMA7",
1008 	};
1009 	int highbit;
1010 
1011 	highbit = fls(xfer_mask) - 1;
1012 	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1013 		return xfer_mode_str[highbit];
1014 	return "<n/a>";
1015 }
1016 EXPORT_SYMBOL_GPL(ata_mode_string);
1017 
sata_spd_string(unsigned int spd)1018 const char *sata_spd_string(unsigned int spd)
1019 {
1020 	static const char * const spd_str[] = {
1021 		"1.5 Gbps",
1022 		"3.0 Gbps",
1023 		"6.0 Gbps",
1024 	};
1025 
1026 	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1027 		return "<unknown>";
1028 	return spd_str[spd - 1];
1029 }
1030 
1031 /**
1032  *	ata_dev_classify - determine device type based on ATA-spec signature
1033  *	@tf: ATA taskfile register set for device to be identified
1034  *
1035  *	Determine from taskfile register contents whether a device is
1036  *	ATA or ATAPI, as per "Signature and persistence" section
1037  *	of ATA/PI spec (volume 1, sect 5.14).
1038  *
1039  *	LOCKING:
1040  *	None.
1041  *
1042  *	RETURNS:
1043  *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1044  *	%ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1045  */
ata_dev_classify(const struct ata_taskfile * tf)1046 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1047 {
1048 	/* Apple's open source Darwin code hints that some devices only
1049 	 * put a proper signature into the LBA mid/high registers,
1050 	 * So, we only check those.  It's sufficient for uniqueness.
1051 	 *
1052 	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1053 	 * signatures for ATA and ATAPI devices attached on SerialATA,
1054 	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1055 	 * spec has never mentioned about using different signatures
1056 	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1057 	 * Multiplier specification began to use 0x69/0x96 to identify
1058 	 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1059 	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1060 	 * 0x69/0x96 shortly and described them as reserved for
1061 	 * SerialATA.
1062 	 *
1063 	 * We follow the current spec and consider that 0x69/0x96
1064 	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1065 	 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1066 	 * SEMB signature.  This is worked around in
1067 	 * ata_dev_read_id().
1068 	 */
1069 	if (tf->lbam == 0 && tf->lbah == 0)
1070 		return ATA_DEV_ATA;
1071 
1072 	if (tf->lbam == 0x14 && tf->lbah == 0xeb)
1073 		return ATA_DEV_ATAPI;
1074 
1075 	if (tf->lbam == 0x69 && tf->lbah == 0x96)
1076 		return ATA_DEV_PMP;
1077 
1078 	if (tf->lbam == 0x3c && tf->lbah == 0xc3)
1079 		return ATA_DEV_SEMB;
1080 
1081 	if (tf->lbam == 0xcd && tf->lbah == 0xab)
1082 		return ATA_DEV_ZAC;
1083 
1084 	return ATA_DEV_UNKNOWN;
1085 }
1086 EXPORT_SYMBOL_GPL(ata_dev_classify);
1087 
1088 /**
1089  *	ata_id_string - Convert IDENTIFY DEVICE page into string
1090  *	@id: IDENTIFY DEVICE results we will examine
1091  *	@s: string into which data is output
1092  *	@ofs: offset into identify device page
1093  *	@len: length of string to return. must be an even number.
1094  *
1095  *	The strings in the IDENTIFY DEVICE page are broken up into
1096  *	16-bit chunks.  Run through the string, and output each
1097  *	8-bit chunk linearly, regardless of platform.
1098  *
1099  *	LOCKING:
1100  *	caller.
1101  */
1102 
ata_id_string(const u16 * id,unsigned char * s,unsigned int ofs,unsigned int len)1103 void ata_id_string(const u16 *id, unsigned char *s,
1104 		   unsigned int ofs, unsigned int len)
1105 {
1106 	unsigned int c;
1107 
1108 	BUG_ON(len & 1);
1109 
1110 	while (len > 0) {
1111 		c = id[ofs] >> 8;
1112 		*s = c;
1113 		s++;
1114 
1115 		c = id[ofs] & 0xff;
1116 		*s = c;
1117 		s++;
1118 
1119 		ofs++;
1120 		len -= 2;
1121 	}
1122 }
1123 EXPORT_SYMBOL_GPL(ata_id_string);
1124 
1125 /**
1126  *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1127  *	@id: IDENTIFY DEVICE results we will examine
1128  *	@s: string into which data is output
1129  *	@ofs: offset into identify device page
1130  *	@len: length of string to return. must be an odd number.
1131  *
1132  *	This function is identical to ata_id_string except that it
1133  *	trims trailing spaces and terminates the resulting string with
1134  *	null.  @len must be actual maximum length (even number) + 1.
1135  *
1136  *	LOCKING:
1137  *	caller.
1138  */
ata_id_c_string(const u16 * id,unsigned char * s,unsigned int ofs,unsigned int len)1139 void ata_id_c_string(const u16 *id, unsigned char *s,
1140 		     unsigned int ofs, unsigned int len)
1141 {
1142 	unsigned char *p;
1143 
1144 	ata_id_string(id, s, ofs, len - 1);
1145 
1146 	p = s + strnlen(s, len - 1);
1147 	while (p > s && p[-1] == ' ')
1148 		p--;
1149 	*p = '\0';
1150 }
1151 EXPORT_SYMBOL_GPL(ata_id_c_string);
1152 
ata_id_n_sectors(const u16 * id)1153 static u64 ata_id_n_sectors(const u16 *id)
1154 {
1155 	if (ata_id_has_lba(id)) {
1156 		if (ata_id_has_lba48(id))
1157 			return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1158 
1159 		return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1160 	}
1161 
1162 	if (ata_id_current_chs_valid(id))
1163 		return (u32)id[ATA_ID_CUR_CYLS] * (u32)id[ATA_ID_CUR_HEADS] *
1164 		       (u32)id[ATA_ID_CUR_SECTORS];
1165 
1166 	return (u32)id[ATA_ID_CYLS] * (u32)id[ATA_ID_HEADS] *
1167 	       (u32)id[ATA_ID_SECTORS];
1168 }
1169 
ata_tf_to_lba48(const struct ata_taskfile * tf)1170 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1171 {
1172 	u64 sectors = 0;
1173 
1174 	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1175 	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1176 	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1177 	sectors |= (tf->lbah & 0xff) << 16;
1178 	sectors |= (tf->lbam & 0xff) << 8;
1179 	sectors |= (tf->lbal & 0xff);
1180 
1181 	return sectors;
1182 }
1183 
ata_tf_to_lba(const struct ata_taskfile * tf)1184 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1185 {
1186 	u64 sectors = 0;
1187 
1188 	sectors |= (tf->device & 0x0f) << 24;
1189 	sectors |= (tf->lbah & 0xff) << 16;
1190 	sectors |= (tf->lbam & 0xff) << 8;
1191 	sectors |= (tf->lbal & 0xff);
1192 
1193 	return sectors;
1194 }
1195 
1196 /**
1197  *	ata_read_native_max_address - Read native max address
1198  *	@dev: target device
1199  *	@max_sectors: out parameter for the result native max address
1200  *
1201  *	Perform an LBA48 or LBA28 native size query upon the device in
1202  *	question.
1203  *
1204  *	RETURNS:
1205  *	0 on success, -EACCES if command is aborted by the drive.
1206  *	-EIO on other errors.
1207  */
ata_read_native_max_address(struct ata_device * dev,u64 * max_sectors)1208 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1209 {
1210 	unsigned int err_mask;
1211 	struct ata_taskfile tf;
1212 	int lba48 = ata_id_has_lba48(dev->id);
1213 
1214 	ata_tf_init(dev, &tf);
1215 
1216 	/* always clear all address registers */
1217 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1218 
1219 	if (lba48) {
1220 		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1221 		tf.flags |= ATA_TFLAG_LBA48;
1222 	} else
1223 		tf.command = ATA_CMD_READ_NATIVE_MAX;
1224 
1225 	tf.protocol = ATA_PROT_NODATA;
1226 	tf.device |= ATA_LBA;
1227 
1228 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1229 	if (err_mask) {
1230 		ata_dev_warn(dev,
1231 			     "failed to read native max address (err_mask=0x%x)\n",
1232 			     err_mask);
1233 		if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
1234 			return -EACCES;
1235 		return -EIO;
1236 	}
1237 
1238 	if (lba48)
1239 		*max_sectors = ata_tf_to_lba48(&tf) + 1;
1240 	else
1241 		*max_sectors = ata_tf_to_lba(&tf) + 1;
1242 	if (dev->quirks & ATA_QUIRK_HPA_SIZE)
1243 		(*max_sectors)--;
1244 	return 0;
1245 }
1246 
1247 /**
1248  *	ata_set_max_sectors - Set max sectors
1249  *	@dev: target device
1250  *	@new_sectors: new max sectors value to set for the device
1251  *
1252  *	Set max sectors of @dev to @new_sectors.
1253  *
1254  *	RETURNS:
1255  *	0 on success, -EACCES if command is aborted or denied (due to
1256  *	previous non-volatile SET_MAX) by the drive.  -EIO on other
1257  *	errors.
1258  */
ata_set_max_sectors(struct ata_device * dev,u64 new_sectors)1259 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1260 {
1261 	unsigned int err_mask;
1262 	struct ata_taskfile tf;
1263 	int lba48 = ata_id_has_lba48(dev->id);
1264 
1265 	new_sectors--;
1266 
1267 	ata_tf_init(dev, &tf);
1268 
1269 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1270 
1271 	if (lba48) {
1272 		tf.command = ATA_CMD_SET_MAX_EXT;
1273 		tf.flags |= ATA_TFLAG_LBA48;
1274 
1275 		tf.hob_lbal = (new_sectors >> 24) & 0xff;
1276 		tf.hob_lbam = (new_sectors >> 32) & 0xff;
1277 		tf.hob_lbah = (new_sectors >> 40) & 0xff;
1278 	} else {
1279 		tf.command = ATA_CMD_SET_MAX;
1280 
1281 		tf.device |= (new_sectors >> 24) & 0xf;
1282 	}
1283 
1284 	tf.protocol = ATA_PROT_NODATA;
1285 	tf.device |= ATA_LBA;
1286 
1287 	tf.lbal = (new_sectors >> 0) & 0xff;
1288 	tf.lbam = (new_sectors >> 8) & 0xff;
1289 	tf.lbah = (new_sectors >> 16) & 0xff;
1290 
1291 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1292 	if (err_mask) {
1293 		ata_dev_warn(dev,
1294 			     "failed to set max address (err_mask=0x%x)\n",
1295 			     err_mask);
1296 		if (err_mask == AC_ERR_DEV &&
1297 		    (tf.error & (ATA_ABORTED | ATA_IDNF)))
1298 			return -EACCES;
1299 		return -EIO;
1300 	}
1301 
1302 	return 0;
1303 }
1304 
1305 /**
1306  *	ata_hpa_resize		-	Resize a device with an HPA set
1307  *	@dev: Device to resize
1308  *
1309  *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
1310  *	it if required to the full size of the media. The caller must check
1311  *	the drive has the HPA feature set enabled.
1312  *
1313  *	RETURNS:
1314  *	0 on success, -errno on failure.
1315  */
ata_hpa_resize(struct ata_device * dev)1316 static int ata_hpa_resize(struct ata_device *dev)
1317 {
1318 	bool print_info = ata_dev_print_info(dev);
1319 	bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1320 	u64 sectors = ata_id_n_sectors(dev->id);
1321 	u64 native_sectors;
1322 	int rc;
1323 
1324 	/* do we need to do it? */
1325 	if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1326 	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1327 	    (dev->quirks & ATA_QUIRK_BROKEN_HPA))
1328 		return 0;
1329 
1330 	/* read native max address */
1331 	rc = ata_read_native_max_address(dev, &native_sectors);
1332 	if (rc) {
1333 		/* If device aborted the command or HPA isn't going to
1334 		 * be unlocked, skip HPA resizing.
1335 		 */
1336 		if (rc == -EACCES || !unlock_hpa) {
1337 			ata_dev_warn(dev,
1338 				     "HPA support seems broken, skipping HPA handling\n");
1339 			dev->quirks |= ATA_QUIRK_BROKEN_HPA;
1340 
1341 			/* we can continue if device aborted the command */
1342 			if (rc == -EACCES)
1343 				rc = 0;
1344 		}
1345 
1346 		return rc;
1347 	}
1348 	dev->n_native_sectors = native_sectors;
1349 
1350 	/* nothing to do? */
1351 	if (native_sectors <= sectors || !unlock_hpa) {
1352 		if (!print_info || native_sectors == sectors)
1353 			return 0;
1354 
1355 		if (native_sectors > sectors)
1356 			ata_dev_info(dev,
1357 				"HPA detected: current %llu, native %llu\n",
1358 				(unsigned long long)sectors,
1359 				(unsigned long long)native_sectors);
1360 		else if (native_sectors < sectors)
1361 			ata_dev_warn(dev,
1362 				"native sectors (%llu) is smaller than sectors (%llu)\n",
1363 				(unsigned long long)native_sectors,
1364 				(unsigned long long)sectors);
1365 		return 0;
1366 	}
1367 
1368 	/* let's unlock HPA */
1369 	rc = ata_set_max_sectors(dev, native_sectors);
1370 	if (rc == -EACCES) {
1371 		/* if device aborted the command, skip HPA resizing */
1372 		ata_dev_warn(dev,
1373 			     "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1374 			     (unsigned long long)sectors,
1375 			     (unsigned long long)native_sectors);
1376 		dev->quirks |= ATA_QUIRK_BROKEN_HPA;
1377 		return 0;
1378 	} else if (rc)
1379 		return rc;
1380 
1381 	/* re-read IDENTIFY data */
1382 	rc = ata_dev_reread_id(dev, 0);
1383 	if (rc) {
1384 		ata_dev_err(dev,
1385 			    "failed to re-read IDENTIFY data after HPA resizing\n");
1386 		return rc;
1387 	}
1388 
1389 	if (print_info) {
1390 		u64 new_sectors = ata_id_n_sectors(dev->id);
1391 		ata_dev_info(dev,
1392 			"HPA unlocked: %llu -> %llu, native %llu\n",
1393 			(unsigned long long)sectors,
1394 			(unsigned long long)new_sectors,
1395 			(unsigned long long)native_sectors);
1396 	}
1397 
1398 	return 0;
1399 }
1400 
1401 /**
1402  *	ata_dump_id - IDENTIFY DEVICE info debugging output
1403  *	@dev: device from which the information is fetched
1404  *	@id: IDENTIFY DEVICE page to dump
1405  *
1406  *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1407  *	page.
1408  *
1409  *	LOCKING:
1410  *	caller.
1411  */
1412 
ata_dump_id(struct ata_device * dev,const u16 * id)1413 static inline void ata_dump_id(struct ata_device *dev, const u16 *id)
1414 {
1415 	ata_dev_dbg(dev,
1416 		"49==0x%04x  53==0x%04x  63==0x%04x  64==0x%04x  75==0x%04x\n"
1417 		"80==0x%04x  81==0x%04x  82==0x%04x  83==0x%04x  84==0x%04x\n"
1418 		"88==0x%04x  93==0x%04x\n",
1419 		id[49], id[53], id[63], id[64], id[75], id[80],
1420 		id[81], id[82], id[83], id[84], id[88], id[93]);
1421 }
1422 
1423 /**
1424  *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1425  *	@id: IDENTIFY data to compute xfer mask from
1426  *
1427  *	Compute the xfermask for this device. This is not as trivial
1428  *	as it seems if we must consider early devices correctly.
1429  *
1430  *	FIXME: pre IDE drive timing (do we care ?).
1431  *
1432  *	LOCKING:
1433  *	None.
1434  *
1435  *	RETURNS:
1436  *	Computed xfermask
1437  */
ata_id_xfermask(const u16 * id)1438 unsigned int ata_id_xfermask(const u16 *id)
1439 {
1440 	unsigned int pio_mask, mwdma_mask, udma_mask;
1441 
1442 	/* Usual case. Word 53 indicates word 64 is valid */
1443 	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1444 		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1445 		pio_mask <<= 3;
1446 		pio_mask |= 0x7;
1447 	} else {
1448 		/* If word 64 isn't valid then Word 51 high byte holds
1449 		 * the PIO timing number for the maximum. Turn it into
1450 		 * a mask.
1451 		 */
1452 		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1453 		if (mode < 5)	/* Valid PIO range */
1454 			pio_mask = (2 << mode) - 1;
1455 		else
1456 			pio_mask = 1;
1457 
1458 		/* But wait.. there's more. Design your standards by
1459 		 * committee and you too can get a free iordy field to
1460 		 * process. However it is the speeds not the modes that
1461 		 * are supported... Note drivers using the timing API
1462 		 * will get this right anyway
1463 		 */
1464 	}
1465 
1466 	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1467 
1468 	if (ata_id_is_cfa(id)) {
1469 		/*
1470 		 *	Process compact flash extended modes
1471 		 */
1472 		int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1473 		int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1474 
1475 		if (pio)
1476 			pio_mask |= (1 << 5);
1477 		if (pio > 1)
1478 			pio_mask |= (1 << 6);
1479 		if (dma)
1480 			mwdma_mask |= (1 << 3);
1481 		if (dma > 1)
1482 			mwdma_mask |= (1 << 4);
1483 	}
1484 
1485 	udma_mask = 0;
1486 	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1487 		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1488 
1489 	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1490 }
1491 EXPORT_SYMBOL_GPL(ata_id_xfermask);
1492 
ata_qc_complete_internal(struct ata_queued_cmd * qc)1493 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1494 {
1495 	struct completion *waiting = qc->private_data;
1496 
1497 	complete(waiting);
1498 }
1499 
1500 /**
1501  *	ata_exec_internal - execute libata internal command
1502  *	@dev: Device to which the command is sent
1503  *	@tf: Taskfile registers for the command and the result
1504  *	@cdb: CDB for packet command
1505  *	@dma_dir: Data transfer direction of the command
1506  *	@buf: Data buffer of the command
1507  *	@buflen: Length of data buffer
1508  *	@timeout: Timeout in msecs (0 for default)
1509  *
1510  *	Executes libata internal command with timeout. @tf contains
1511  *	the command on entry and the result on return. Timeout and error
1512  *	conditions are reported via the return value. No recovery action
1513  *	is taken after a command times out. It is the caller's duty to
1514  *	clean up after timeout.
1515  *
1516  *	LOCKING:
1517  *	None.  Should be called with kernel context, might sleep.
1518  *
1519  *	RETURNS:
1520  *	Zero on success, AC_ERR_* mask on failure
1521  */
ata_exec_internal(struct ata_device * dev,struct ata_taskfile * tf,const u8 * cdb,enum dma_data_direction dma_dir,void * buf,unsigned int buflen,unsigned int timeout)1522 unsigned int ata_exec_internal(struct ata_device *dev, struct ata_taskfile *tf,
1523 			       const u8 *cdb, enum dma_data_direction dma_dir,
1524 			       void *buf, unsigned int buflen,
1525 			       unsigned int timeout)
1526 {
1527 	struct ata_link *link = dev->link;
1528 	struct ata_port *ap = link->ap;
1529 	u8 command = tf->command;
1530 	struct ata_queued_cmd *qc;
1531 	struct scatterlist sgl;
1532 	unsigned int preempted_tag;
1533 	u32 preempted_sactive;
1534 	u64 preempted_qc_active;
1535 	int preempted_nr_active_links;
1536 	bool auto_timeout = false;
1537 	DECLARE_COMPLETION_ONSTACK(wait);
1538 	unsigned long flags;
1539 	unsigned int err_mask;
1540 	int rc;
1541 
1542 	if (WARN_ON(dma_dir != DMA_NONE && !buf))
1543 		return AC_ERR_INVALID;
1544 
1545 	spin_lock_irqsave(ap->lock, flags);
1546 
1547 	/* No internal command while frozen */
1548 	if (ata_port_is_frozen(ap)) {
1549 		spin_unlock_irqrestore(ap->lock, flags);
1550 		return AC_ERR_SYSTEM;
1551 	}
1552 
1553 	/* Initialize internal qc */
1554 	qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL);
1555 
1556 	qc->tag = ATA_TAG_INTERNAL;
1557 	qc->hw_tag = 0;
1558 	qc->scsicmd = NULL;
1559 	qc->ap = ap;
1560 	qc->dev = dev;
1561 	ata_qc_reinit(qc);
1562 
1563 	preempted_tag = link->active_tag;
1564 	preempted_sactive = link->sactive;
1565 	preempted_qc_active = ap->qc_active;
1566 	preempted_nr_active_links = ap->nr_active_links;
1567 	link->active_tag = ATA_TAG_POISON;
1568 	link->sactive = 0;
1569 	ap->qc_active = 0;
1570 	ap->nr_active_links = 0;
1571 
1572 	/* Prepare and issue qc */
1573 	qc->tf = *tf;
1574 	if (cdb)
1575 		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1576 
1577 	/* Some SATA bridges need us to indicate data xfer direction */
1578 	if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1579 	    dma_dir == DMA_FROM_DEVICE)
1580 		qc->tf.feature |= ATAPI_DMADIR;
1581 
1582 	qc->flags |= ATA_QCFLAG_RESULT_TF;
1583 	qc->dma_dir = dma_dir;
1584 	if (dma_dir != DMA_NONE) {
1585 		sg_init_one(&sgl, buf, buflen);
1586 		ata_sg_init(qc, &sgl, 1);
1587 		qc->nbytes = buflen;
1588 	}
1589 
1590 	qc->private_data = &wait;
1591 	qc->complete_fn = ata_qc_complete_internal;
1592 
1593 	ata_qc_issue(qc);
1594 
1595 	spin_unlock_irqrestore(ap->lock, flags);
1596 
1597 	if (!timeout) {
1598 		if (ata_probe_timeout) {
1599 			timeout = ata_probe_timeout * 1000;
1600 		} else {
1601 			timeout = ata_internal_cmd_timeout(dev, command);
1602 			auto_timeout = true;
1603 		}
1604 	}
1605 
1606 	ata_eh_release(ap);
1607 
1608 	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1609 
1610 	ata_eh_acquire(ap);
1611 
1612 	ata_sff_flush_pio_task(ap);
1613 
1614 	if (!rc) {
1615 		/*
1616 		 * We are racing with irq here. If we lose, the following test
1617 		 * prevents us from completing the qc twice. If we win, the port
1618 		 * is frozen and will be cleaned up by ->post_internal_cmd().
1619 		 */
1620 		spin_lock_irqsave(ap->lock, flags);
1621 		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1622 			qc->err_mask |= AC_ERR_TIMEOUT;
1623 			ata_port_freeze(ap);
1624 			ata_dev_warn(dev, "qc timeout after %u msecs (cmd 0x%x)\n",
1625 				     timeout, command);
1626 		}
1627 		spin_unlock_irqrestore(ap->lock, flags);
1628 	}
1629 
1630 	if (ap->ops->post_internal_cmd)
1631 		ap->ops->post_internal_cmd(qc);
1632 
1633 	/* Perform minimal error analysis */
1634 	if (qc->flags & ATA_QCFLAG_EH) {
1635 		if (qc->result_tf.status & (ATA_ERR | ATA_DF))
1636 			qc->err_mask |= AC_ERR_DEV;
1637 
1638 		if (!qc->err_mask)
1639 			qc->err_mask |= AC_ERR_OTHER;
1640 
1641 		if (qc->err_mask & ~AC_ERR_OTHER)
1642 			qc->err_mask &= ~AC_ERR_OTHER;
1643 	} else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1644 		qc->result_tf.status |= ATA_SENSE;
1645 	}
1646 
1647 	/* Finish up */
1648 	spin_lock_irqsave(ap->lock, flags);
1649 
1650 	*tf = qc->result_tf;
1651 	err_mask = qc->err_mask;
1652 
1653 	ata_qc_free(qc);
1654 	link->active_tag = preempted_tag;
1655 	link->sactive = preempted_sactive;
1656 	ap->qc_active = preempted_qc_active;
1657 	ap->nr_active_links = preempted_nr_active_links;
1658 
1659 	spin_unlock_irqrestore(ap->lock, flags);
1660 
1661 	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1662 		ata_internal_cmd_timed_out(dev, command);
1663 
1664 	return err_mask;
1665 }
1666 
1667 /**
1668  *	ata_pio_need_iordy	-	check if iordy needed
1669  *	@adev: ATA device
1670  *
1671  *	Check if the current speed of the device requires IORDY. Used
1672  *	by various controllers for chip configuration.
1673  */
ata_pio_need_iordy(const struct ata_device * adev)1674 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1675 {
1676 	/* Don't set IORDY if we're preparing for reset.  IORDY may
1677 	 * lead to controller lock up on certain controllers if the
1678 	 * port is not occupied.  See bko#11703 for details.
1679 	 */
1680 	if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1681 		return 0;
1682 	/* Controller doesn't support IORDY.  Probably a pointless
1683 	 * check as the caller should know this.
1684 	 */
1685 	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1686 		return 0;
1687 	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1688 	if (ata_id_is_cfa(adev->id)
1689 	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1690 		return 0;
1691 	/* PIO3 and higher it is mandatory */
1692 	if (adev->pio_mode > XFER_PIO_2)
1693 		return 1;
1694 	/* We turn it on when possible */
1695 	if (ata_id_has_iordy(adev->id))
1696 		return 1;
1697 	return 0;
1698 }
1699 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
1700 
1701 /**
1702  *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
1703  *	@adev: ATA device
1704  *
1705  *	Compute the highest mode possible if we are not using iordy. Return
1706  *	-1 if no iordy mode is available.
1707  */
ata_pio_mask_no_iordy(const struct ata_device * adev)1708 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1709 {
1710 	/* If we have no drive specific rule, then PIO 2 is non IORDY */
1711 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
1712 		u16 pio = adev->id[ATA_ID_EIDE_PIO];
1713 		/* Is the speed faster than the drive allows non IORDY ? */
1714 		if (pio) {
1715 			/* This is cycle times not frequency - watch the logic! */
1716 			if (pio > 240)	/* PIO2 is 240nS per cycle */
1717 				return 3 << ATA_SHIFT_PIO;
1718 			return 7 << ATA_SHIFT_PIO;
1719 		}
1720 	}
1721 	return 3 << ATA_SHIFT_PIO;
1722 }
1723 
1724 /**
1725  *	ata_do_dev_read_id		-	default ID read method
1726  *	@dev: device
1727  *	@tf: proposed taskfile
1728  *	@id: data buffer
1729  *
1730  *	Issue the identify taskfile and hand back the buffer containing
1731  *	identify data. For some RAID controllers and for pre ATA devices
1732  *	this function is wrapped or replaced by the driver
1733  */
ata_do_dev_read_id(struct ata_device * dev,struct ata_taskfile * tf,__le16 * id)1734 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1735 				struct ata_taskfile *tf, __le16 *id)
1736 {
1737 	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1738 				     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1739 }
1740 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1741 
1742 /**
1743  *	ata_dev_read_id - Read ID data from the specified device
1744  *	@dev: target device
1745  *	@p_class: pointer to class of the target device (may be changed)
1746  *	@flags: ATA_READID_* flags
1747  *	@id: buffer to read IDENTIFY data into
1748  *
1749  *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
1750  *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1751  *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1752  *	for pre-ATA4 drives.
1753  *
1754  *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1755  *	now we abort if we hit that case.
1756  *
1757  *	LOCKING:
1758  *	Kernel thread context (may sleep)
1759  *
1760  *	RETURNS:
1761  *	0 on success, -errno otherwise.
1762  */
ata_dev_read_id(struct ata_device * dev,unsigned int * p_class,unsigned int flags,u16 * id)1763 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1764 		    unsigned int flags, u16 *id)
1765 {
1766 	struct ata_port *ap = dev->link->ap;
1767 	unsigned int class = *p_class;
1768 	struct ata_taskfile tf;
1769 	unsigned int err_mask = 0;
1770 	const char *reason;
1771 	bool is_semb = class == ATA_DEV_SEMB;
1772 	int may_fallback = 1, tried_spinup = 0;
1773 	int rc;
1774 
1775 retry:
1776 	ata_tf_init(dev, &tf);
1777 
1778 	switch (class) {
1779 	case ATA_DEV_SEMB:
1780 		class = ATA_DEV_ATA;	/* some hard drives report SEMB sig */
1781 		fallthrough;
1782 	case ATA_DEV_ATA:
1783 	case ATA_DEV_ZAC:
1784 		tf.command = ATA_CMD_ID_ATA;
1785 		break;
1786 	case ATA_DEV_ATAPI:
1787 		tf.command = ATA_CMD_ID_ATAPI;
1788 		break;
1789 	default:
1790 		rc = -ENODEV;
1791 		reason = "unsupported class";
1792 		goto err_out;
1793 	}
1794 
1795 	tf.protocol = ATA_PROT_PIO;
1796 
1797 	/* Some devices choke if TF registers contain garbage.  Make
1798 	 * sure those are properly initialized.
1799 	 */
1800 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1801 
1802 	/* Device presence detection is unreliable on some
1803 	 * controllers.  Always poll IDENTIFY if available.
1804 	 */
1805 	tf.flags |= ATA_TFLAG_POLLING;
1806 
1807 	if (ap->ops->read_id)
1808 		err_mask = ap->ops->read_id(dev, &tf, (__le16 *)id);
1809 	else
1810 		err_mask = ata_do_dev_read_id(dev, &tf, (__le16 *)id);
1811 
1812 	if (err_mask) {
1813 		if (err_mask & AC_ERR_NODEV_HINT) {
1814 			ata_dev_dbg(dev, "NODEV after polling detection\n");
1815 			return -ENOENT;
1816 		}
1817 
1818 		if (is_semb) {
1819 			ata_dev_info(dev,
1820 		     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1821 			/* SEMB is not supported yet */
1822 			*p_class = ATA_DEV_SEMB_UNSUP;
1823 			return 0;
1824 		}
1825 
1826 		if ((err_mask == AC_ERR_DEV) && (tf.error & ATA_ABORTED)) {
1827 			/* Device or controller might have reported
1828 			 * the wrong device class.  Give a shot at the
1829 			 * other IDENTIFY if the current one is
1830 			 * aborted by the device.
1831 			 */
1832 			if (may_fallback) {
1833 				may_fallback = 0;
1834 
1835 				if (class == ATA_DEV_ATA)
1836 					class = ATA_DEV_ATAPI;
1837 				else
1838 					class = ATA_DEV_ATA;
1839 				goto retry;
1840 			}
1841 
1842 			/* Control reaches here iff the device aborted
1843 			 * both flavors of IDENTIFYs which happens
1844 			 * sometimes with phantom devices.
1845 			 */
1846 			ata_dev_dbg(dev,
1847 				    "both IDENTIFYs aborted, assuming NODEV\n");
1848 			return -ENOENT;
1849 		}
1850 
1851 		rc = -EIO;
1852 		reason = "I/O error";
1853 		goto err_out;
1854 	}
1855 
1856 	if (dev->quirks & ATA_QUIRK_DUMP_ID) {
1857 		ata_dev_info(dev, "dumping IDENTIFY data, "
1858 			    "class=%d may_fallback=%d tried_spinup=%d\n",
1859 			    class, may_fallback, tried_spinup);
1860 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET,
1861 			       16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1862 	}
1863 
1864 	/* Falling back doesn't make sense if ID data was read
1865 	 * successfully at least once.
1866 	 */
1867 	may_fallback = 0;
1868 
1869 	swap_buf_le16(id, ATA_ID_WORDS);
1870 
1871 	/* sanity check */
1872 	rc = -EINVAL;
1873 	reason = "device reports invalid type";
1874 
1875 	if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1876 		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1877 			goto err_out;
1878 		if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1879 							ata_id_is_ata(id)) {
1880 			ata_dev_dbg(dev,
1881 				"host indicates ignore ATA devices, ignored\n");
1882 			return -ENOENT;
1883 		}
1884 	} else {
1885 		if (ata_id_is_ata(id))
1886 			goto err_out;
1887 	}
1888 
1889 	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1890 		tried_spinup = 1;
1891 		/*
1892 		 * Drive powered-up in standby mode, and requires a specific
1893 		 * SET_FEATURES spin-up subcommand before it will accept
1894 		 * anything other than the original IDENTIFY command.
1895 		 */
1896 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1897 		if (err_mask && id[2] != 0x738c) {
1898 			rc = -EIO;
1899 			reason = "SPINUP failed";
1900 			goto err_out;
1901 		}
1902 		/*
1903 		 * If the drive initially returned incomplete IDENTIFY info,
1904 		 * we now must reissue the IDENTIFY command.
1905 		 */
1906 		if (id[2] == 0x37c8)
1907 			goto retry;
1908 	}
1909 
1910 	if ((flags & ATA_READID_POSTRESET) &&
1911 	    (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
1912 		/*
1913 		 * The exact sequence expected by certain pre-ATA4 drives is:
1914 		 * SRST RESET
1915 		 * IDENTIFY (optional in early ATA)
1916 		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1917 		 * anything else..
1918 		 * Some drives were very specific about that exact sequence.
1919 		 *
1920 		 * Note that ATA4 says lba is mandatory so the second check
1921 		 * should never trigger.
1922 		 */
1923 		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1924 			err_mask = ata_dev_init_params(dev, id[3], id[6]);
1925 			if (err_mask) {
1926 				rc = -EIO;
1927 				reason = "INIT_DEV_PARAMS failed";
1928 				goto err_out;
1929 			}
1930 
1931 			/* current CHS translation info (id[53-58]) might be
1932 			 * changed. reread the identify device info.
1933 			 */
1934 			flags &= ~ATA_READID_POSTRESET;
1935 			goto retry;
1936 		}
1937 	}
1938 
1939 	*p_class = class;
1940 
1941 	return 0;
1942 
1943  err_out:
1944 	ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
1945 		     reason, err_mask);
1946 	return rc;
1947 }
1948 
ata_dev_power_init_tf(struct ata_device * dev,struct ata_taskfile * tf,bool set_active)1949 bool ata_dev_power_init_tf(struct ata_device *dev, struct ata_taskfile *tf,
1950 			   bool set_active)
1951 {
1952 	/* Only applies to ATA and ZAC devices */
1953 	if (dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC)
1954 		return false;
1955 
1956 	ata_tf_init(dev, tf);
1957 	tf->flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1958 	tf->protocol = ATA_PROT_NODATA;
1959 
1960 	if (set_active) {
1961 		/* VERIFY for 1 sector at lba=0 */
1962 		tf->command = ATA_CMD_VERIFY;
1963 		tf->nsect = 1;
1964 		if (dev->flags & ATA_DFLAG_LBA) {
1965 			tf->flags |= ATA_TFLAG_LBA;
1966 			tf->device |= ATA_LBA;
1967 		} else {
1968 			/* CHS */
1969 			tf->lbal = 0x1; /* sect */
1970 		}
1971 	} else {
1972 		tf->command = ATA_CMD_STANDBYNOW1;
1973 	}
1974 
1975 	return true;
1976 }
1977 
ata_dev_power_is_active(struct ata_device * dev)1978 static bool ata_dev_power_is_active(struct ata_device *dev)
1979 {
1980 	struct ata_taskfile tf;
1981 	unsigned int err_mask;
1982 
1983 	ata_tf_init(dev, &tf);
1984 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1985 	tf.protocol = ATA_PROT_NODATA;
1986 	tf.command = ATA_CMD_CHK_POWER;
1987 
1988 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1989 	if (err_mask) {
1990 		ata_dev_err(dev, "Check power mode failed (err_mask=0x%x)\n",
1991 			    err_mask);
1992 		/*
1993 		 * Assume we are in standby mode so that we always force a
1994 		 * spinup in ata_dev_power_set_active().
1995 		 */
1996 		return false;
1997 	}
1998 
1999 	ata_dev_dbg(dev, "Power mode: 0x%02x\n", tf.nsect);
2000 
2001 	/* Active or idle */
2002 	return tf.nsect == 0xff;
2003 }
2004 
2005 /**
2006  *	ata_dev_power_set_standby - Set a device power mode to standby
2007  *	@dev: target device
2008  *
2009  *	Issue a STANDBY IMMEDIATE command to set a device power mode to standby.
2010  *	For an HDD device, this spins down the disks.
2011  *
2012  *	LOCKING:
2013  *	Kernel thread context (may sleep).
2014  */
ata_dev_power_set_standby(struct ata_device * dev)2015 void ata_dev_power_set_standby(struct ata_device *dev)
2016 {
2017 	unsigned long ap_flags = dev->link->ap->flags;
2018 	struct ata_taskfile tf;
2019 	unsigned int err_mask;
2020 
2021 	/* If the device is already sleeping or in standby, do nothing. */
2022 	if ((dev->flags & ATA_DFLAG_SLEEPING) ||
2023 	    !ata_dev_power_is_active(dev))
2024 		return;
2025 
2026 	/*
2027 	 * Some odd clown BIOSes issue spindown on power off (ACPI S4 or S5)
2028 	 * causing some drives to spin up and down again. For these, do nothing
2029 	 * if we are being called on shutdown.
2030 	 */
2031 	if ((ap_flags & ATA_FLAG_NO_POWEROFF_SPINDOWN) &&
2032 	    system_state == SYSTEM_POWER_OFF)
2033 		return;
2034 
2035 	if ((ap_flags & ATA_FLAG_NO_HIBERNATE_SPINDOWN) &&
2036 	    system_entering_hibernation())
2037 		return;
2038 
2039 	/* Issue STANDBY IMMEDIATE command only if supported by the device */
2040 	if (!ata_dev_power_init_tf(dev, &tf, false))
2041 		return;
2042 
2043 	ata_dev_notice(dev, "Entering standby power mode\n");
2044 
2045 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
2046 	if (err_mask)
2047 		ata_dev_err(dev, "STANDBY IMMEDIATE failed (err_mask=0x%x)\n",
2048 			    err_mask);
2049 }
2050 
2051 /**
2052  *	ata_dev_power_set_active -  Set a device power mode to active
2053  *	@dev: target device
2054  *
2055  *	Issue a VERIFY command to enter to ensure that the device is in the
2056  *	active power mode. For a spun-down HDD (standby or idle power mode),
2057  *	the VERIFY command will complete after the disk spins up.
2058  *
2059  *	LOCKING:
2060  *	Kernel thread context (may sleep).
2061  */
ata_dev_power_set_active(struct ata_device * dev)2062 void ata_dev_power_set_active(struct ata_device *dev)
2063 {
2064 	struct ata_taskfile tf;
2065 	unsigned int err_mask;
2066 
2067 	/*
2068 	 * Issue READ VERIFY SECTORS command for 1 sector at lba=0 only
2069 	 * if supported by the device.
2070 	 */
2071 	if (!ata_dev_power_init_tf(dev, &tf, true))
2072 		return;
2073 
2074 	/*
2075 	 * Check the device power state & condition and force a spinup with
2076 	 * VERIFY command only if the drive is not already ACTIVE or IDLE.
2077 	 */
2078 	if (ata_dev_power_is_active(dev))
2079 		return;
2080 
2081 	ata_dev_notice(dev, "Entering active power mode\n");
2082 
2083 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
2084 	if (err_mask)
2085 		ata_dev_err(dev, "VERIFY failed (err_mask=0x%x)\n",
2086 			    err_mask);
2087 }
2088 
2089 /**
2090  *	ata_read_log_page - read a specific log page
2091  *	@dev: target device
2092  *	@log: log to read
2093  *	@page: page to read
2094  *	@buf: buffer to store read page
2095  *	@sectors: number of sectors to read
2096  *
2097  *	Read log page using READ_LOG_EXT command.
2098  *
2099  *	LOCKING:
2100  *	Kernel thread context (may sleep).
2101  *
2102  *	RETURNS:
2103  *	0 on success, AC_ERR_* mask otherwise.
2104  */
ata_read_log_page(struct ata_device * dev,u8 log,u8 page,void * buf,unsigned int sectors)2105 unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
2106 			       u8 page, void *buf, unsigned int sectors)
2107 {
2108 	unsigned long ap_flags = dev->link->ap->flags;
2109 	struct ata_taskfile tf;
2110 	unsigned int err_mask;
2111 	bool dma = false;
2112 
2113 	ata_dev_dbg(dev, "read log page - log 0x%x, page 0x%x\n", log, page);
2114 
2115 	/*
2116 	 * Return error without actually issuing the command on controllers
2117 	 * which e.g. lockup on a read log page.
2118 	 */
2119 	if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2120 		return AC_ERR_DEV;
2121 
2122 retry:
2123 	ata_tf_init(dev, &tf);
2124 	if (ata_dma_enabled(dev) && ata_id_has_read_log_dma_ext(dev->id) &&
2125 	    !(dev->quirks & ATA_QUIRK_NO_DMA_LOG)) {
2126 		tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2127 		tf.protocol = ATA_PROT_DMA;
2128 		dma = true;
2129 	} else {
2130 		tf.command = ATA_CMD_READ_LOG_EXT;
2131 		tf.protocol = ATA_PROT_PIO;
2132 		dma = false;
2133 	}
2134 	tf.lbal = log;
2135 	tf.lbam = page;
2136 	tf.nsect = sectors;
2137 	tf.hob_nsect = sectors >> 8;
2138 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2139 
2140 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2141 				     buf, sectors * ATA_SECT_SIZE, 0);
2142 
2143 	if (err_mask) {
2144 		if (dma) {
2145 			dev->quirks |= ATA_QUIRK_NO_DMA_LOG;
2146 			if (!ata_port_is_frozen(dev->link->ap))
2147 				goto retry;
2148 		}
2149 		ata_dev_err(dev,
2150 			    "Read log 0x%02x page 0x%02x failed, Emask 0x%x\n",
2151 			    (unsigned int)log, (unsigned int)page, err_mask);
2152 	}
2153 
2154 	return err_mask;
2155 }
2156 
ata_clear_log_directory(struct ata_device * dev)2157 static inline void ata_clear_log_directory(struct ata_device *dev)
2158 {
2159 	memset(dev->gp_log_dir, 0, ATA_SECT_SIZE);
2160 }
2161 
ata_read_log_directory(struct ata_device * dev)2162 static int ata_read_log_directory(struct ata_device *dev)
2163 {
2164 	u16 version;
2165 
2166 	/* If the log page is already cached, do nothing. */
2167 	version = get_unaligned_le16(&dev->gp_log_dir[0]);
2168 	if (version == 0x0001)
2169 		return 0;
2170 
2171 	if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, dev->gp_log_dir, 1)) {
2172 		ata_clear_log_directory(dev);
2173 		return -EIO;
2174 	}
2175 
2176 	version = get_unaligned_le16(&dev->gp_log_dir[0]);
2177 	if (version != 0x0001)
2178 		ata_dev_warn_once(dev,
2179 				  "Invalid log directory version 0x%04x\n",
2180 				  version);
2181 
2182 	return 0;
2183 }
2184 
ata_log_supported(struct ata_device * dev,u8 log)2185 static int ata_log_supported(struct ata_device *dev, u8 log)
2186 {
2187 	if (dev->quirks & ATA_QUIRK_NO_LOG_DIR)
2188 		return 0;
2189 
2190 	if (ata_read_log_directory(dev))
2191 		return 0;
2192 
2193 	return get_unaligned_le16(&dev->gp_log_dir[log * 2]);
2194 }
2195 
ata_identify_page_supported(struct ata_device * dev,u8 page)2196 static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2197 {
2198 	unsigned int err, i;
2199 
2200 	if (dev->quirks & ATA_QUIRK_NO_ID_DEV_LOG)
2201 		return false;
2202 
2203 	if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2204 		/*
2205 		 * IDENTIFY DEVICE data log is defined as mandatory starting
2206 		 * with ACS-3 (ATA version 10). Warn about the missing log
2207 		 * for drives which implement this ATA level or above.
2208 		 */
2209 		if (ata_id_major_version(dev->id) >= 10)
2210 			ata_dev_warn(dev,
2211 				"ATA Identify Device Log not supported\n");
2212 		dev->quirks |= ATA_QUIRK_NO_ID_DEV_LOG;
2213 		return false;
2214 	}
2215 
2216 	/*
2217 	 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2218 	 * supported.
2219 	 */
2220 	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0,
2221 				dev->sector_buf, 1);
2222 	if (err)
2223 		return false;
2224 
2225 	for (i = 0; i < dev->sector_buf[8]; i++) {
2226 		if (dev->sector_buf[9 + i] == page)
2227 			return true;
2228 	}
2229 
2230 	return false;
2231 }
2232 
ata_do_link_spd_quirk(struct ata_device * dev)2233 static int ata_do_link_spd_quirk(struct ata_device *dev)
2234 {
2235 	struct ata_link *plink = ata_dev_phys_link(dev);
2236 	u32 target, target_limit;
2237 
2238 	if (!sata_scr_valid(plink))
2239 		return 0;
2240 
2241 	if (dev->quirks & ATA_QUIRK_1_5_GBPS)
2242 		target = 1;
2243 	else
2244 		return 0;
2245 
2246 	target_limit = (1 << target) - 1;
2247 
2248 	/* if already on stricter limit, no need to push further */
2249 	if (plink->sata_spd_limit <= target_limit)
2250 		return 0;
2251 
2252 	plink->sata_spd_limit = target_limit;
2253 
2254 	/* Request another EH round by returning -EAGAIN if link is
2255 	 * going faster than the target speed.  Forward progress is
2256 	 * guaranteed by setting sata_spd_limit to target_limit above.
2257 	 */
2258 	if (plink->sata_spd > target) {
2259 		ata_dev_info(dev, "applying link speed limit quirk to %s\n",
2260 			     sata_spd_string(target));
2261 		return -EAGAIN;
2262 	}
2263 	return 0;
2264 }
2265 
ata_dev_knobble(struct ata_device * dev)2266 static inline bool ata_dev_knobble(struct ata_device *dev)
2267 {
2268 	struct ata_port *ap = dev->link->ap;
2269 
2270 	if (ata_dev_quirks(dev) & ATA_QUIRK_BRIDGE_OK)
2271 		return false;
2272 
2273 	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2274 }
2275 
ata_dev_config_ncq_send_recv(struct ata_device * dev)2276 static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2277 {
2278 	unsigned int err_mask;
2279 
2280 	if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2281 		ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2282 		return;
2283 	}
2284 	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2285 				     0, dev->sector_buf, 1);
2286 	if (!err_mask) {
2287 		u8 *cmds = dev->ncq_send_recv_cmds;
2288 
2289 		dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2290 		memcpy(cmds, dev->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2291 
2292 		if (dev->quirks & ATA_QUIRK_NO_NCQ_TRIM) {
2293 			ata_dev_dbg(dev, "disabling queued TRIM support\n");
2294 			cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2295 				~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2296 		}
2297 	}
2298 }
2299 
ata_dev_config_ncq_non_data(struct ata_device * dev)2300 static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2301 {
2302 	unsigned int err_mask;
2303 
2304 	if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2305 		ata_dev_warn(dev,
2306 			     "NCQ Non-Data Log not supported\n");
2307 		return;
2308 	}
2309 	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2310 				     0, dev->sector_buf, 1);
2311 	if (!err_mask)
2312 		memcpy(dev->ncq_non_data_cmds, dev->sector_buf,
2313 		       ATA_LOG_NCQ_NON_DATA_SIZE);
2314 }
2315 
ata_dev_config_ncq_prio(struct ata_device * dev)2316 static void ata_dev_config_ncq_prio(struct ata_device *dev)
2317 {
2318 	unsigned int err_mask;
2319 
2320 	if (!ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2321 		return;
2322 
2323 	err_mask = ata_read_log_page(dev,
2324 				     ATA_LOG_IDENTIFY_DEVICE,
2325 				     ATA_LOG_SATA_SETTINGS,
2326 				     dev->sector_buf, 1);
2327 	if (err_mask)
2328 		goto not_supported;
2329 
2330 	if (!(dev->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)))
2331 		goto not_supported;
2332 
2333 	dev->flags |= ATA_DFLAG_NCQ_PRIO;
2334 
2335 	return;
2336 
2337 not_supported:
2338 	dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLED;
2339 	dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2340 }
2341 
ata_dev_check_adapter(struct ata_device * dev,unsigned short vendor_id)2342 static bool ata_dev_check_adapter(struct ata_device *dev,
2343 				  unsigned short vendor_id)
2344 {
2345 	struct pci_dev *pcidev = NULL;
2346 	struct device *parent_dev = NULL;
2347 
2348 	for (parent_dev = dev->tdev.parent; parent_dev != NULL;
2349 	     parent_dev = parent_dev->parent) {
2350 		if (dev_is_pci(parent_dev)) {
2351 			pcidev = to_pci_dev(parent_dev);
2352 			if (pcidev->vendor == vendor_id)
2353 				return true;
2354 			break;
2355 		}
2356 	}
2357 
2358 	return false;
2359 }
2360 
ata_dev_config_ncq(struct ata_device * dev,char * desc,size_t desc_sz)2361 static int ata_dev_config_ncq(struct ata_device *dev,
2362 			       char *desc, size_t desc_sz)
2363 {
2364 	struct ata_port *ap = dev->link->ap;
2365 	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2366 	unsigned int err_mask;
2367 	char *aa_desc = "";
2368 
2369 	if (!ata_id_has_ncq(dev->id)) {
2370 		desc[0] = '\0';
2371 		return 0;
2372 	}
2373 	if (!IS_ENABLED(CONFIG_SATA_HOST))
2374 		return 0;
2375 	if (dev->quirks & ATA_QUIRK_NONCQ) {
2376 		snprintf(desc, desc_sz, "NCQ (not used)");
2377 		return 0;
2378 	}
2379 
2380 	if (dev->quirks & ATA_QUIRK_NO_NCQ_ON_ATI &&
2381 	    ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) {
2382 		snprintf(desc, desc_sz, "NCQ (not used)");
2383 		return 0;
2384 	}
2385 
2386 	if (ap->flags & ATA_FLAG_NCQ) {
2387 		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE);
2388 		dev->flags |= ATA_DFLAG_NCQ;
2389 	}
2390 
2391 	if (!(dev->quirks & ATA_QUIRK_BROKEN_FPDMA_AA) &&
2392 		(ap->flags & ATA_FLAG_FPDMA_AA) &&
2393 		ata_id_has_fpdma_aa(dev->id)) {
2394 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2395 			SATA_FPDMA_AA);
2396 		if (err_mask) {
2397 			ata_dev_err(dev,
2398 				    "failed to enable AA (error_mask=0x%x)\n",
2399 				    err_mask);
2400 			if (err_mask != AC_ERR_DEV) {
2401 				dev->quirks |= ATA_QUIRK_BROKEN_FPDMA_AA;
2402 				return -EIO;
2403 			}
2404 		} else
2405 			aa_desc = ", AA";
2406 	}
2407 
2408 	if (hdepth >= ddepth)
2409 		snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2410 	else
2411 		snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2412 			ddepth, aa_desc);
2413 
2414 	if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2415 		if (ata_id_has_ncq_send_and_recv(dev->id))
2416 			ata_dev_config_ncq_send_recv(dev);
2417 		if (ata_id_has_ncq_non_data(dev->id))
2418 			ata_dev_config_ncq_non_data(dev);
2419 		if (ata_id_has_ncq_prio(dev->id))
2420 			ata_dev_config_ncq_prio(dev);
2421 	}
2422 
2423 	return 0;
2424 }
2425 
ata_dev_config_sense_reporting(struct ata_device * dev)2426 static void ata_dev_config_sense_reporting(struct ata_device *dev)
2427 {
2428 	unsigned int err_mask;
2429 
2430 	if (!ata_id_has_sense_reporting(dev->id))
2431 		return;
2432 
2433 	if (ata_id_sense_reporting_enabled(dev->id))
2434 		return;
2435 
2436 	err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2437 	if (err_mask) {
2438 		ata_dev_dbg(dev,
2439 			    "failed to enable Sense Data Reporting, Emask 0x%x\n",
2440 			    err_mask);
2441 	}
2442 }
2443 
ata_dev_config_zac(struct ata_device * dev)2444 static void ata_dev_config_zac(struct ata_device *dev)
2445 {
2446 	unsigned int err_mask;
2447 	u8 *identify_buf = dev->sector_buf;
2448 
2449 	dev->zac_zones_optimal_open = U32_MAX;
2450 	dev->zac_zones_optimal_nonseq = U32_MAX;
2451 	dev->zac_zones_max_open = U32_MAX;
2452 
2453 	if (!ata_dev_is_zac(dev))
2454 		return;
2455 
2456 	if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2457 		ata_dev_warn(dev,
2458 			     "ATA Zoned Information Log not supported\n");
2459 		return;
2460 	}
2461 
2462 	/*
2463 	 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2464 	 */
2465 	err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2466 				     ATA_LOG_ZONED_INFORMATION,
2467 				     identify_buf, 1);
2468 	if (!err_mask) {
2469 		u64 zoned_cap, opt_open, opt_nonseq, max_open;
2470 
2471 		zoned_cap = get_unaligned_le64(&identify_buf[8]);
2472 		if ((zoned_cap >> 63))
2473 			dev->zac_zoned_cap = (zoned_cap & 1);
2474 		opt_open = get_unaligned_le64(&identify_buf[24]);
2475 		if ((opt_open >> 63))
2476 			dev->zac_zones_optimal_open = (u32)opt_open;
2477 		opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2478 		if ((opt_nonseq >> 63))
2479 			dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2480 		max_open = get_unaligned_le64(&identify_buf[40]);
2481 		if ((max_open >> 63))
2482 			dev->zac_zones_max_open = (u32)max_open;
2483 	}
2484 }
2485 
ata_dev_config_trusted(struct ata_device * dev)2486 static void ata_dev_config_trusted(struct ata_device *dev)
2487 {
2488 	u64 trusted_cap;
2489 	unsigned int err;
2490 
2491 	if (!ata_id_has_trusted(dev->id))
2492 		return;
2493 
2494 	if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2495 		ata_dev_warn(dev,
2496 			     "Security Log not supported\n");
2497 		return;
2498 	}
2499 
2500 	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2501 				dev->sector_buf, 1);
2502 	if (err)
2503 		return;
2504 
2505 	trusted_cap = get_unaligned_le64(&dev->sector_buf[40]);
2506 	if (!(trusted_cap & (1ULL << 63))) {
2507 		ata_dev_dbg(dev,
2508 			    "Trusted Computing capability qword not valid!\n");
2509 		return;
2510 	}
2511 
2512 	if (trusted_cap & (1 << 0))
2513 		dev->flags |= ATA_DFLAG_TRUSTED;
2514 }
2515 
ata_dev_cleanup_cdl_resources(struct ata_device * dev)2516 static void ata_dev_cleanup_cdl_resources(struct ata_device *dev)
2517 {
2518 	kfree(dev->cdl);
2519 	dev->cdl = NULL;
2520 }
2521 
ata_dev_init_cdl_resources(struct ata_device * dev)2522 static int ata_dev_init_cdl_resources(struct ata_device *dev)
2523 {
2524 	struct ata_cdl *cdl = dev->cdl;
2525 	unsigned int err_mask;
2526 
2527 	if (!cdl) {
2528 		cdl = kzalloc(sizeof(*cdl), GFP_KERNEL);
2529 		if (!cdl)
2530 			return -ENOMEM;
2531 		dev->cdl = cdl;
2532 	}
2533 
2534 	err_mask = ata_read_log_page(dev, ATA_LOG_CDL, 0, cdl->desc_log_buf,
2535 				     ATA_LOG_CDL_SIZE / ATA_SECT_SIZE);
2536 	if (err_mask) {
2537 		ata_dev_warn(dev, "Read Command Duration Limits log failed\n");
2538 		ata_dev_cleanup_cdl_resources(dev);
2539 		return -EIO;
2540 	}
2541 
2542 	return 0;
2543 }
2544 
ata_dev_config_cdl(struct ata_device * dev)2545 static void ata_dev_config_cdl(struct ata_device *dev)
2546 {
2547 	unsigned int err_mask;
2548 	bool cdl_enabled;
2549 	u64 val;
2550 	int ret;
2551 
2552 	if (ata_id_major_version(dev->id) < 11)
2553 		goto not_supported;
2554 
2555 	if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE) ||
2556 	    !ata_identify_page_supported(dev, ATA_LOG_SUPPORTED_CAPABILITIES) ||
2557 	    !ata_identify_page_supported(dev, ATA_LOG_CURRENT_SETTINGS))
2558 		goto not_supported;
2559 
2560 	err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2561 				     ATA_LOG_SUPPORTED_CAPABILITIES,
2562 				     dev->sector_buf, 1);
2563 	if (err_mask)
2564 		goto not_supported;
2565 
2566 	/* Check Command Duration Limit Supported bits */
2567 	val = get_unaligned_le64(&dev->sector_buf[168]);
2568 	if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(0)))
2569 		goto not_supported;
2570 
2571 	/* Warn the user if command duration guideline is not supported */
2572 	if (!(val & BIT_ULL(1)))
2573 		ata_dev_warn(dev,
2574 			"Command duration guideline is not supported\n");
2575 
2576 	/*
2577 	 * We must have support for the sense data for successful NCQ commands
2578 	 * log indicated by the successful NCQ command sense data supported bit.
2579 	 */
2580 	val = get_unaligned_le64(&dev->sector_buf[8]);
2581 	if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(47))) {
2582 		ata_dev_warn(dev,
2583 			"CDL supported but Successful NCQ Command Sense Data is not supported\n");
2584 		goto not_supported;
2585 	}
2586 
2587 	/* Without NCQ autosense, the successful NCQ commands log is useless. */
2588 	if (!ata_id_has_ncq_autosense(dev->id)) {
2589 		ata_dev_warn(dev,
2590 			"CDL supported but NCQ autosense is not supported\n");
2591 		goto not_supported;
2592 	}
2593 
2594 	/*
2595 	 * If CDL is marked as enabled, make sure the feature is enabled too.
2596 	 * Conversely, if CDL is disabled, make sure the feature is turned off.
2597 	 */
2598 	err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2599 				     ATA_LOG_CURRENT_SETTINGS,
2600 				     dev->sector_buf, 1);
2601 	if (err_mask)
2602 		goto not_supported;
2603 
2604 	val = get_unaligned_le64(&dev->sector_buf[8]);
2605 	cdl_enabled = val & BIT_ULL(63) && val & BIT_ULL(21);
2606 	if (dev->flags & ATA_DFLAG_CDL_ENABLED) {
2607 		if (!cdl_enabled) {
2608 			/* Enable CDL on the device */
2609 			err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 1);
2610 			if (err_mask) {
2611 				ata_dev_err(dev,
2612 					    "Enable CDL feature failed\n");
2613 				goto not_supported;
2614 			}
2615 		}
2616 	} else {
2617 		if (cdl_enabled) {
2618 			/* Disable CDL on the device */
2619 			err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 0);
2620 			if (err_mask) {
2621 				ata_dev_err(dev,
2622 					    "Disable CDL feature failed\n");
2623 				goto not_supported;
2624 			}
2625 		}
2626 	}
2627 
2628 	/*
2629 	 * While CDL itself has to be enabled using sysfs, CDL requires that
2630 	 * sense data for successful NCQ commands is enabled to work properly.
2631 	 * Just like ata_dev_config_sense_reporting(), enable it unconditionally
2632 	 * if supported.
2633 	 */
2634 	if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(18))) {
2635 		err_mask = ata_dev_set_feature(dev,
2636 					SETFEATURE_SENSE_DATA_SUCC_NCQ, 0x1);
2637 		if (err_mask) {
2638 			ata_dev_warn(dev,
2639 				     "failed to enable Sense Data for successful NCQ commands, Emask 0x%x\n",
2640 				     err_mask);
2641 			goto not_supported;
2642 		}
2643 	}
2644 
2645 	/* CDL is supported: allocate and initialize needed resources. */
2646 	ret = ata_dev_init_cdl_resources(dev);
2647 	if (ret) {
2648 		ata_dev_warn(dev, "Initialize CDL resources failed\n");
2649 		goto not_supported;
2650 	}
2651 
2652 	dev->flags |= ATA_DFLAG_CDL;
2653 
2654 	return;
2655 
2656 not_supported:
2657 	dev->flags &= ~(ATA_DFLAG_CDL | ATA_DFLAG_CDL_ENABLED);
2658 	ata_dev_cleanup_cdl_resources(dev);
2659 }
2660 
ata_dev_config_lba(struct ata_device * dev)2661 static int ata_dev_config_lba(struct ata_device *dev)
2662 {
2663 	const u16 *id = dev->id;
2664 	const char *lba_desc;
2665 	char ncq_desc[32];
2666 	int ret;
2667 
2668 	dev->flags |= ATA_DFLAG_LBA;
2669 
2670 	if (ata_id_has_lba48(id)) {
2671 		lba_desc = "LBA48";
2672 		dev->flags |= ATA_DFLAG_LBA48;
2673 		if (dev->n_sectors >= (1UL << 28) &&
2674 		    ata_id_has_flush_ext(id))
2675 			dev->flags |= ATA_DFLAG_FLUSH_EXT;
2676 	} else {
2677 		lba_desc = "LBA";
2678 	}
2679 
2680 	/* config NCQ */
2681 	ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2682 
2683 	/* print device info to dmesg */
2684 	if (ata_dev_print_info(dev))
2685 		ata_dev_info(dev,
2686 			     "%llu sectors, multi %u: %s %s\n",
2687 			     (unsigned long long)dev->n_sectors,
2688 			     dev->multi_count, lba_desc, ncq_desc);
2689 
2690 	return ret;
2691 }
2692 
ata_dev_config_chs(struct ata_device * dev)2693 static void ata_dev_config_chs(struct ata_device *dev)
2694 {
2695 	const u16 *id = dev->id;
2696 
2697 	if (ata_id_current_chs_valid(id)) {
2698 		/* Current CHS translation is valid. */
2699 		dev->cylinders = id[54];
2700 		dev->heads     = id[55];
2701 		dev->sectors   = id[56];
2702 	} else {
2703 		/* Default translation */
2704 		dev->cylinders	= id[1];
2705 		dev->heads	= id[3];
2706 		dev->sectors	= id[6];
2707 	}
2708 
2709 	/* print device info to dmesg */
2710 	if (ata_dev_print_info(dev))
2711 		ata_dev_info(dev,
2712 			     "%llu sectors, multi %u, CHS %u/%u/%u\n",
2713 			     (unsigned long long)dev->n_sectors,
2714 			     dev->multi_count, dev->cylinders,
2715 			     dev->heads, dev->sectors);
2716 }
2717 
ata_dev_config_fua(struct ata_device * dev)2718 static void ata_dev_config_fua(struct ata_device *dev)
2719 {
2720 	/* Ignore FUA support if its use is disabled globally */
2721 	if (!libata_fua)
2722 		goto nofua;
2723 
2724 	/* Ignore devices without support for WRITE DMA FUA EXT */
2725 	if (!(dev->flags & ATA_DFLAG_LBA48) || !ata_id_has_fua(dev->id))
2726 		goto nofua;
2727 
2728 	/* Ignore known bad devices and devices that lack NCQ support */
2729 	if (!ata_ncq_supported(dev) || (dev->quirks & ATA_QUIRK_NO_FUA))
2730 		goto nofua;
2731 
2732 	dev->flags |= ATA_DFLAG_FUA;
2733 
2734 	return;
2735 
2736 nofua:
2737 	dev->flags &= ~ATA_DFLAG_FUA;
2738 }
2739 
ata_dev_config_devslp(struct ata_device * dev)2740 static void ata_dev_config_devslp(struct ata_device *dev)
2741 {
2742 	u8 *sata_setting = dev->sector_buf;
2743 	unsigned int err_mask;
2744 	int i, j;
2745 
2746 	/*
2747 	 * Check device sleep capability. Get DevSlp timing variables
2748 	 * from SATA Settings page of Identify Device Data Log.
2749 	 */
2750 	if (!ata_id_has_devslp(dev->id) ||
2751 	    !ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2752 		return;
2753 
2754 	err_mask = ata_read_log_page(dev,
2755 				     ATA_LOG_IDENTIFY_DEVICE,
2756 				     ATA_LOG_SATA_SETTINGS,
2757 				     sata_setting, 1);
2758 	if (err_mask)
2759 		return;
2760 
2761 	dev->flags |= ATA_DFLAG_DEVSLP;
2762 	for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2763 		j = ATA_LOG_DEVSLP_OFFSET + i;
2764 		dev->devslp_timing[i] = sata_setting[j];
2765 	}
2766 }
2767 
ata_dev_config_cpr(struct ata_device * dev)2768 static void ata_dev_config_cpr(struct ata_device *dev)
2769 {
2770 	unsigned int err_mask;
2771 	size_t buf_len;
2772 	int i, nr_cpr = 0;
2773 	struct ata_cpr_log *cpr_log = NULL;
2774 	u8 *desc, *buf = NULL;
2775 
2776 	if (ata_id_major_version(dev->id) < 11)
2777 		goto out;
2778 
2779 	buf_len = ata_log_supported(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES);
2780 	if (buf_len == 0)
2781 		goto out;
2782 
2783 	/*
2784 	 * Read the concurrent positioning ranges log (0x47). We can have at
2785 	 * most 255 32B range descriptors plus a 64B header. This log varies in
2786 	 * size, so use the size reported in the GPL directory. Reading beyond
2787 	 * the supported length will result in an error.
2788 	 */
2789 	buf_len <<= 9;
2790 	buf = kzalloc(buf_len, GFP_KERNEL);
2791 	if (!buf)
2792 		goto out;
2793 
2794 	err_mask = ata_read_log_page(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES,
2795 				     0, buf, buf_len >> 9);
2796 	if (err_mask)
2797 		goto out;
2798 
2799 	nr_cpr = buf[0];
2800 	if (!nr_cpr)
2801 		goto out;
2802 
2803 	cpr_log = kzalloc(struct_size(cpr_log, cpr, nr_cpr), GFP_KERNEL);
2804 	if (!cpr_log)
2805 		goto out;
2806 
2807 	cpr_log->nr_cpr = nr_cpr;
2808 	desc = &buf[64];
2809 	for (i = 0; i < nr_cpr; i++, desc += 32) {
2810 		cpr_log->cpr[i].num = desc[0];
2811 		cpr_log->cpr[i].num_storage_elements = desc[1];
2812 		cpr_log->cpr[i].start_lba = get_unaligned_le64(&desc[8]);
2813 		cpr_log->cpr[i].num_lbas = get_unaligned_le64(&desc[16]);
2814 	}
2815 
2816 out:
2817 	swap(dev->cpr_log, cpr_log);
2818 	kfree(cpr_log);
2819 	kfree(buf);
2820 }
2821 
2822 /*
2823  * Configure features related to link power management.
2824  */
ata_dev_config_lpm(struct ata_device * dev)2825 static void ata_dev_config_lpm(struct ata_device *dev)
2826 {
2827 	struct ata_port *ap = dev->link->ap;
2828 	unsigned int err_mask;
2829 
2830 	if (ap->flags & ATA_FLAG_NO_LPM) {
2831 		/*
2832 		 * When the port does not support LPM, we cannot support it on
2833 		 * the device either.
2834 		 */
2835 		dev->quirks |= ATA_QUIRK_NOLPM;
2836 	} else {
2837 		/*
2838 		 * Some WD SATA-1 drives have issues with LPM, turn on NOLPM for
2839 		 * them.
2840 		 */
2841 		if ((dev->quirks & ATA_QUIRK_WD_BROKEN_LPM) &&
2842 		    (dev->id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2843 			dev->quirks |= ATA_QUIRK_NOLPM;
2844 
2845 		/* ATI specific quirk */
2846 		if ((dev->quirks & ATA_QUIRK_NO_LPM_ON_ATI) &&
2847 		    ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI))
2848 			dev->quirks |= ATA_QUIRK_NOLPM;
2849 	}
2850 
2851 	if (dev->quirks & ATA_QUIRK_NOLPM &&
2852 	    ap->target_lpm_policy != ATA_LPM_MAX_POWER) {
2853 		ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2854 		ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2855 	}
2856 
2857 	/*
2858 	 * Device Initiated Power Management (DIPM) is normally disabled by
2859 	 * default on a device. However, DIPM may have been enabled and that
2860 	 * setting kept even after COMRESET because of the Software Settings
2861 	 * Preservation feature. So if the port does not support DIPM and the
2862 	 * device does, disable DIPM on the device.
2863 	 */
2864 	if (ap->flags & ATA_FLAG_NO_DIPM && ata_id_has_dipm(dev->id)) {
2865 		err_mask = ata_dev_set_feature(dev,
2866 					SETFEATURES_SATA_DISABLE, SATA_DIPM);
2867 		if (err_mask && err_mask != AC_ERR_DEV)
2868 			ata_dev_err(dev, "Disable DIPM failed, Emask 0x%x\n",
2869 				    err_mask);
2870 	}
2871 }
2872 
ata_dev_print_features(struct ata_device * dev)2873 static void ata_dev_print_features(struct ata_device *dev)
2874 {
2875 	if (!(dev->flags & ATA_DFLAG_FEATURES_MASK))
2876 		return;
2877 
2878 	ata_dev_info(dev,
2879 		     "Features:%s%s%s%s%s%s%s%s%s%s\n",
2880 		     dev->flags & ATA_DFLAG_FUA ? " FUA" : "",
2881 		     dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "",
2882 		     dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "",
2883 		     dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "",
2884 		     ata_id_has_hipm(dev->id) ? " HIPM" : "",
2885 		     ata_id_has_dipm(dev->id) ? " DIPM" : "",
2886 		     dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "",
2887 		     dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "",
2888 		     dev->flags & ATA_DFLAG_CDL ? " CDL" : "",
2889 		     dev->cpr_log ? " CPR" : "");
2890 }
2891 
2892 /**
2893  *	ata_dev_configure - Configure the specified ATA/ATAPI device
2894  *	@dev: Target device to configure
2895  *
2896  *	Configure @dev according to @dev->id.  Generic and low-level
2897  *	driver specific fixups are also applied.
2898  *
2899  *	LOCKING:
2900  *	Kernel thread context (may sleep)
2901  *
2902  *	RETURNS:
2903  *	0 on success, -errno otherwise
2904  */
ata_dev_configure(struct ata_device * dev)2905 int ata_dev_configure(struct ata_device *dev)
2906 {
2907 	struct ata_port *ap = dev->link->ap;
2908 	bool print_info = ata_dev_print_info(dev);
2909 	const u16 *id = dev->id;
2910 	unsigned int xfer_mask;
2911 	unsigned int err_mask;
2912 	char revbuf[7];		/* XYZ-99\0 */
2913 	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2914 	char modelbuf[ATA_ID_PROD_LEN+1];
2915 	int rc;
2916 
2917 	if (!ata_dev_enabled(dev)) {
2918 		ata_dev_dbg(dev, "no device\n");
2919 		return 0;
2920 	}
2921 
2922 	/* Clear the general purpose log directory cache. */
2923 	ata_clear_log_directory(dev);
2924 
2925 	/* Set quirks */
2926 	dev->quirks |= ata_dev_quirks(dev);
2927 	ata_force_quirks(dev);
2928 
2929 	if (dev->quirks & ATA_QUIRK_DISABLE) {
2930 		ata_dev_info(dev, "unsupported device, disabling\n");
2931 		ata_dev_disable(dev);
2932 		return 0;
2933 	}
2934 
2935 	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2936 	    dev->class == ATA_DEV_ATAPI) {
2937 		ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2938 			     atapi_enabled ? "not supported with this driver"
2939 			     : "disabled");
2940 		ata_dev_disable(dev);
2941 		return 0;
2942 	}
2943 
2944 	rc = ata_do_link_spd_quirk(dev);
2945 	if (rc)
2946 		return rc;
2947 
2948 	/* let ACPI work its magic */
2949 	rc = ata_acpi_on_devcfg(dev);
2950 	if (rc)
2951 		return rc;
2952 
2953 	/* massage HPA, do it early as it might change IDENTIFY data */
2954 	rc = ata_hpa_resize(dev);
2955 	if (rc)
2956 		return rc;
2957 
2958 	/* print device capabilities */
2959 	ata_dev_dbg(dev,
2960 		    "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2961 		    "85:%04x 86:%04x 87:%04x 88:%04x\n",
2962 		    __func__,
2963 		    id[49], id[82], id[83], id[84],
2964 		    id[85], id[86], id[87], id[88]);
2965 
2966 	/* initialize to-be-configured parameters */
2967 	dev->flags &= ~ATA_DFLAG_CFG_MASK;
2968 	dev->max_sectors = 0;
2969 	dev->cdb_len = 0;
2970 	dev->n_sectors = 0;
2971 	dev->cylinders = 0;
2972 	dev->heads = 0;
2973 	dev->sectors = 0;
2974 	dev->multi_count = 0;
2975 
2976 	/*
2977 	 * common ATA, ATAPI feature tests
2978 	 */
2979 
2980 	/* find max transfer mode; for printk only */
2981 	xfer_mask = ata_id_xfermask(id);
2982 
2983 	ata_dump_id(dev, id);
2984 
2985 	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2986 	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2987 			sizeof(fwrevbuf));
2988 
2989 	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2990 			sizeof(modelbuf));
2991 
2992 	/* ATA-specific feature tests */
2993 	if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2994 		if (ata_id_is_cfa(id)) {
2995 			/* CPRM may make this media unusable */
2996 			if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2997 				ata_dev_warn(dev,
2998 	"supports DRM functions and may not be fully accessible\n");
2999 			snprintf(revbuf, 7, "CFA");
3000 		} else {
3001 			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
3002 			/* Warn the user if the device has TPM extensions */
3003 			if (ata_id_has_tpm(id))
3004 				ata_dev_warn(dev,
3005 	"supports DRM functions and may not be fully accessible\n");
3006 		}
3007 
3008 		dev->n_sectors = ata_id_n_sectors(id);
3009 		if (ata_id_is_locked(id)) {
3010 			/*
3011 			 * If Security locked, set capacity to zero to prevent
3012 			 * any I/O, e.g. partition scanning, as any I/O to a
3013 			 * locked drive will result in user visible errors.
3014 			 */
3015 			ata_dev_info(dev,
3016 				"Security locked, setting capacity to zero\n");
3017 			dev->n_sectors = 0;
3018 		}
3019 
3020 		/* get current R/W Multiple count setting */
3021 		if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
3022 			unsigned int max = dev->id[47] & 0xff;
3023 			unsigned int cnt = dev->id[59] & 0xff;
3024 			/* only recognize/allow powers of two here */
3025 			if (is_power_of_2(max) && is_power_of_2(cnt))
3026 				if (cnt <= max)
3027 					dev->multi_count = cnt;
3028 		}
3029 
3030 		/* print device info to dmesg */
3031 		if (print_info)
3032 			ata_dev_info(dev, "%s: %s, %s, max %s\n",
3033 				     revbuf, modelbuf, fwrevbuf,
3034 				     ata_mode_string(xfer_mask));
3035 
3036 		if (ata_id_has_lba(id)) {
3037 			rc = ata_dev_config_lba(dev);
3038 			if (rc)
3039 				return rc;
3040 		} else {
3041 			ata_dev_config_chs(dev);
3042 		}
3043 
3044 		ata_dev_config_lpm(dev);
3045 		ata_dev_config_fua(dev);
3046 		ata_dev_config_devslp(dev);
3047 		ata_dev_config_sense_reporting(dev);
3048 		ata_dev_config_zac(dev);
3049 		ata_dev_config_trusted(dev);
3050 		ata_dev_config_cpr(dev);
3051 		ata_dev_config_cdl(dev);
3052 		dev->cdb_len = 32;
3053 
3054 		if (print_info)
3055 			ata_dev_print_features(dev);
3056 	}
3057 
3058 	/* ATAPI-specific feature tests */
3059 	else if (dev->class == ATA_DEV_ATAPI) {
3060 		const char *cdb_intr_string = "";
3061 		const char *atapi_an_string = "";
3062 		const char *dma_dir_string = "";
3063 		u32 sntf;
3064 
3065 		rc = atapi_cdb_len(id);
3066 		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
3067 			ata_dev_warn(dev, "unsupported CDB len %d\n", rc);
3068 			rc = -EINVAL;
3069 			goto err_out_nosup;
3070 		}
3071 		dev->cdb_len = (unsigned int) rc;
3072 
3073 		/* Enable ATAPI AN if both the host and device have
3074 		 * the support.  If PMP is attached, SNTF is required
3075 		 * to enable ATAPI AN to discern between PHY status
3076 		 * changed notifications and ATAPI ANs.
3077 		 */
3078 		if (atapi_an &&
3079 		    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
3080 		    (!sata_pmp_attached(ap) ||
3081 		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
3082 			/* issue SET feature command to turn this on */
3083 			err_mask = ata_dev_set_feature(dev,
3084 					SETFEATURES_SATA_ENABLE, SATA_AN);
3085 			if (err_mask)
3086 				ata_dev_err(dev,
3087 					    "failed to enable ATAPI AN (err_mask=0x%x)\n",
3088 					    err_mask);
3089 			else {
3090 				dev->flags |= ATA_DFLAG_AN;
3091 				atapi_an_string = ", ATAPI AN";
3092 			}
3093 		}
3094 
3095 		if (ata_id_cdb_intr(dev->id)) {
3096 			dev->flags |= ATA_DFLAG_CDB_INTR;
3097 			cdb_intr_string = ", CDB intr";
3098 		}
3099 
3100 		if (atapi_dmadir || (dev->quirks & ATA_QUIRK_ATAPI_DMADIR) ||
3101 		    atapi_id_dmadir(dev->id)) {
3102 			dev->flags |= ATA_DFLAG_DMADIR;
3103 			dma_dir_string = ", DMADIR";
3104 		}
3105 
3106 		if (ata_id_has_da(dev->id)) {
3107 			dev->flags |= ATA_DFLAG_DA;
3108 			zpodd_init(dev);
3109 		}
3110 
3111 		/* print device info to dmesg */
3112 		if (print_info)
3113 			ata_dev_info(dev,
3114 				     "ATAPI: %s, %s, max %s%s%s%s\n",
3115 				     modelbuf, fwrevbuf,
3116 				     ata_mode_string(xfer_mask),
3117 				     cdb_intr_string, atapi_an_string,
3118 				     dma_dir_string);
3119 	}
3120 
3121 	/* determine max_sectors */
3122 	dev->max_sectors = ATA_MAX_SECTORS;
3123 	if (dev->flags & ATA_DFLAG_LBA48)
3124 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
3125 
3126 	/* Limit PATA drive on SATA cable bridge transfers to udma5,
3127 	   200 sectors */
3128 	if (ata_dev_knobble(dev)) {
3129 		if (print_info)
3130 			ata_dev_info(dev, "applying bridge limits\n");
3131 		dev->udma_mask &= ATA_UDMA5;
3132 		dev->max_sectors = ATA_MAX_SECTORS;
3133 	}
3134 
3135 	if ((dev->class == ATA_DEV_ATAPI) &&
3136 	    (atapi_command_packet_set(id) == TYPE_TAPE)) {
3137 		dev->max_sectors = ATA_MAX_SECTORS_TAPE;
3138 		dev->quirks |= ATA_QUIRK_STUCK_ERR;
3139 	}
3140 
3141 	if (dev->quirks & ATA_QUIRK_MAX_SEC_128)
3142 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
3143 					 dev->max_sectors);
3144 
3145 	if (dev->quirks & ATA_QUIRK_MAX_SEC_1024)
3146 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
3147 					 dev->max_sectors);
3148 
3149 	if (dev->quirks & ATA_QUIRK_MAX_SEC_8191)
3150 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_8191,
3151 					 dev->max_sectors);
3152 
3153 	if (dev->quirks & ATA_QUIRK_MAX_SEC_LBA48)
3154 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
3155 
3156 	if (ap->ops->dev_config)
3157 		ap->ops->dev_config(dev);
3158 
3159 	if (dev->quirks & ATA_QUIRK_DIAGNOSTIC) {
3160 		/* Let the user know. We don't want to disallow opens for
3161 		   rescue purposes, or in case the vendor is just a blithering
3162 		   idiot. Do this after the dev_config call as some controllers
3163 		   with buggy firmware may want to avoid reporting false device
3164 		   bugs */
3165 
3166 		if (print_info) {
3167 			ata_dev_warn(dev,
3168 "Drive reports diagnostics failure. This may indicate a drive\n");
3169 			ata_dev_warn(dev,
3170 "fault or invalid emulation. Contact drive vendor for information.\n");
3171 		}
3172 	}
3173 
3174 	if ((dev->quirks & ATA_QUIRK_FIRMWARE_WARN) && print_info) {
3175 		ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
3176 		ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
3177 	}
3178 
3179 	return 0;
3180 
3181 err_out_nosup:
3182 	return rc;
3183 }
3184 
3185 /**
3186  *	ata_cable_40wire	-	return 40 wire cable type
3187  *	@ap: port
3188  *
3189  *	Helper method for drivers which want to hardwire 40 wire cable
3190  *	detection.
3191  */
3192 
ata_cable_40wire(struct ata_port * ap)3193 int ata_cable_40wire(struct ata_port *ap)
3194 {
3195 	return ATA_CBL_PATA40;
3196 }
3197 EXPORT_SYMBOL_GPL(ata_cable_40wire);
3198 
3199 /**
3200  *	ata_cable_80wire	-	return 80 wire cable type
3201  *	@ap: port
3202  *
3203  *	Helper method for drivers which want to hardwire 80 wire cable
3204  *	detection.
3205  */
3206 
ata_cable_80wire(struct ata_port * ap)3207 int ata_cable_80wire(struct ata_port *ap)
3208 {
3209 	return ATA_CBL_PATA80;
3210 }
3211 EXPORT_SYMBOL_GPL(ata_cable_80wire);
3212 
3213 /**
3214  *	ata_cable_unknown	-	return unknown PATA cable.
3215  *	@ap: port
3216  *
3217  *	Helper method for drivers which have no PATA cable detection.
3218  */
3219 
ata_cable_unknown(struct ata_port * ap)3220 int ata_cable_unknown(struct ata_port *ap)
3221 {
3222 	return ATA_CBL_PATA_UNK;
3223 }
3224 EXPORT_SYMBOL_GPL(ata_cable_unknown);
3225 
3226 /**
3227  *	ata_cable_ignore	-	return ignored PATA cable.
3228  *	@ap: port
3229  *
3230  *	Helper method for drivers which don't use cable type to limit
3231  *	transfer mode.
3232  */
ata_cable_ignore(struct ata_port * ap)3233 int ata_cable_ignore(struct ata_port *ap)
3234 {
3235 	return ATA_CBL_PATA_IGN;
3236 }
3237 EXPORT_SYMBOL_GPL(ata_cable_ignore);
3238 
3239 /**
3240  *	ata_cable_sata	-	return SATA cable type
3241  *	@ap: port
3242  *
3243  *	Helper method for drivers which have SATA cables
3244  */
3245 
ata_cable_sata(struct ata_port * ap)3246 int ata_cable_sata(struct ata_port *ap)
3247 {
3248 	return ATA_CBL_SATA;
3249 }
3250 EXPORT_SYMBOL_GPL(ata_cable_sata);
3251 
3252 /**
3253  *	sata_print_link_status - Print SATA link status
3254  *	@link: SATA link to printk link status about
3255  *
3256  *	This function prints link speed and status of a SATA link.
3257  *
3258  *	LOCKING:
3259  *	None.
3260  */
sata_print_link_status(struct ata_link * link)3261 static void sata_print_link_status(struct ata_link *link)
3262 {
3263 	u32 sstatus, scontrol, tmp;
3264 
3265 	if (sata_scr_read(link, SCR_STATUS, &sstatus))
3266 		return;
3267 	if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3268 		return;
3269 
3270 	if (ata_phys_link_online(link)) {
3271 		tmp = (sstatus >> 4) & 0xf;
3272 		ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
3273 			      sata_spd_string(tmp), sstatus, scontrol);
3274 	} else {
3275 		ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
3276 			      sstatus, scontrol);
3277 	}
3278 }
3279 
3280 /**
3281  *	ata_dev_pair		-	return other device on cable
3282  *	@adev: device
3283  *
3284  *	Obtain the other device on the same cable, or if none is
3285  *	present NULL is returned
3286  */
3287 
ata_dev_pair(struct ata_device * adev)3288 struct ata_device *ata_dev_pair(struct ata_device *adev)
3289 {
3290 	struct ata_link *link = adev->link;
3291 	struct ata_device *pair = &link->device[1 - adev->devno];
3292 	if (!ata_dev_enabled(pair))
3293 		return NULL;
3294 	return pair;
3295 }
3296 EXPORT_SYMBOL_GPL(ata_dev_pair);
3297 
3298 #ifdef CONFIG_ATA_ACPI
3299 /**
3300  *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3301  *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3302  *	@cycle: cycle duration in ns
3303  *
3304  *	Return matching xfer mode for @cycle.  The returned mode is of
3305  *	the transfer type specified by @xfer_shift.  If @cycle is too
3306  *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3307  *	than the fastest known mode, the fasted mode is returned.
3308  *
3309  *	LOCKING:
3310  *	None.
3311  *
3312  *	RETURNS:
3313  *	Matching xfer_mode, 0xff if no match found.
3314  */
ata_timing_cycle2mode(unsigned int xfer_shift,int cycle)3315 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3316 {
3317 	u8 base_mode = 0xff, last_mode = 0xff;
3318 	const struct ata_xfer_ent *ent;
3319 	const struct ata_timing *t;
3320 
3321 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3322 		if (ent->shift == xfer_shift)
3323 			base_mode = ent->base;
3324 
3325 	for (t = ata_timing_find_mode(base_mode);
3326 	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3327 		unsigned short this_cycle;
3328 
3329 		switch (xfer_shift) {
3330 		case ATA_SHIFT_PIO:
3331 		case ATA_SHIFT_MWDMA:
3332 			this_cycle = t->cycle;
3333 			break;
3334 		case ATA_SHIFT_UDMA:
3335 			this_cycle = t->udma;
3336 			break;
3337 		default:
3338 			return 0xff;
3339 		}
3340 
3341 		if (cycle > this_cycle)
3342 			break;
3343 
3344 		last_mode = t->mode;
3345 	}
3346 
3347 	return last_mode;
3348 }
3349 #endif
3350 
3351 /**
3352  *	ata_down_xfermask_limit - adjust dev xfer masks downward
3353  *	@dev: Device to adjust xfer masks
3354  *	@sel: ATA_DNXFER_* selector
3355  *
3356  *	Adjust xfer masks of @dev downward.  Note that this function
3357  *	does not apply the change.  Invoking ata_set_mode() afterwards
3358  *	will apply the limit.
3359  *
3360  *	LOCKING:
3361  *	Inherited from caller.
3362  *
3363  *	RETURNS:
3364  *	0 on success, negative errno on failure
3365  */
ata_down_xfermask_limit(struct ata_device * dev,unsigned int sel)3366 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3367 {
3368 	char buf[32];
3369 	unsigned int orig_mask, xfer_mask;
3370 	unsigned int pio_mask, mwdma_mask, udma_mask;
3371 	int quiet, highbit;
3372 
3373 	quiet = !!(sel & ATA_DNXFER_QUIET);
3374 	sel &= ~ATA_DNXFER_QUIET;
3375 
3376 	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3377 						  dev->mwdma_mask,
3378 						  dev->udma_mask);
3379 	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3380 
3381 	switch (sel) {
3382 	case ATA_DNXFER_PIO:
3383 		highbit = fls(pio_mask) - 1;
3384 		pio_mask &= ~(1 << highbit);
3385 		break;
3386 
3387 	case ATA_DNXFER_DMA:
3388 		if (udma_mask) {
3389 			highbit = fls(udma_mask) - 1;
3390 			udma_mask &= ~(1 << highbit);
3391 			if (!udma_mask)
3392 				return -ENOENT;
3393 		} else if (mwdma_mask) {
3394 			highbit = fls(mwdma_mask) - 1;
3395 			mwdma_mask &= ~(1 << highbit);
3396 			if (!mwdma_mask)
3397 				return -ENOENT;
3398 		}
3399 		break;
3400 
3401 	case ATA_DNXFER_40C:
3402 		udma_mask &= ATA_UDMA_MASK_40C;
3403 		break;
3404 
3405 	case ATA_DNXFER_FORCE_PIO0:
3406 		pio_mask &= 1;
3407 		fallthrough;
3408 	case ATA_DNXFER_FORCE_PIO:
3409 		mwdma_mask = 0;
3410 		udma_mask = 0;
3411 		break;
3412 
3413 	default:
3414 		BUG();
3415 	}
3416 
3417 	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3418 
3419 	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3420 		return -ENOENT;
3421 
3422 	if (!quiet) {
3423 		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3424 			snprintf(buf, sizeof(buf), "%s:%s",
3425 				 ata_mode_string(xfer_mask),
3426 				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3427 		else
3428 			snprintf(buf, sizeof(buf), "%s",
3429 				 ata_mode_string(xfer_mask));
3430 
3431 		ata_dev_warn(dev, "limiting speed to %s\n", buf);
3432 	}
3433 
3434 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3435 			    &dev->udma_mask);
3436 
3437 	return 0;
3438 }
3439 
ata_dev_set_mode(struct ata_device * dev)3440 static int ata_dev_set_mode(struct ata_device *dev)
3441 {
3442 	struct ata_port *ap = dev->link->ap;
3443 	struct ata_eh_context *ehc = &dev->link->eh_context;
3444 	const bool nosetxfer = dev->quirks & ATA_QUIRK_NOSETXFER;
3445 	const char *dev_err_whine = "";
3446 	int ign_dev_err = 0;
3447 	unsigned int err_mask = 0;
3448 	int rc;
3449 
3450 	dev->flags &= ~ATA_DFLAG_PIO;
3451 	if (dev->xfer_shift == ATA_SHIFT_PIO)
3452 		dev->flags |= ATA_DFLAG_PIO;
3453 
3454 	if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3455 		dev_err_whine = " (SET_XFERMODE skipped)";
3456 	else {
3457 		if (nosetxfer)
3458 			ata_dev_warn(dev,
3459 				     "NOSETXFER but PATA detected - can't "
3460 				     "skip SETXFER, might malfunction\n");
3461 		err_mask = ata_dev_set_xfermode(dev);
3462 	}
3463 
3464 	if (err_mask & ~AC_ERR_DEV)
3465 		goto fail;
3466 
3467 	/* revalidate */
3468 	ehc->i.flags |= ATA_EHI_POST_SETMODE;
3469 	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3470 	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3471 	if (rc)
3472 		return rc;
3473 
3474 	if (dev->xfer_shift == ATA_SHIFT_PIO) {
3475 		/* Old CFA may refuse this command, which is just fine */
3476 		if (ata_id_is_cfa(dev->id))
3477 			ign_dev_err = 1;
3478 		/* Catch several broken garbage emulations plus some pre
3479 		   ATA devices */
3480 		if (ata_id_major_version(dev->id) == 0 &&
3481 					dev->pio_mode <= XFER_PIO_2)
3482 			ign_dev_err = 1;
3483 		/* Some very old devices and some bad newer ones fail
3484 		   any kind of SET_XFERMODE request but support PIO0-2
3485 		   timings and no IORDY */
3486 		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3487 			ign_dev_err = 1;
3488 	}
3489 	/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3490 	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3491 	if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3492 	    dev->dma_mode == XFER_MW_DMA_0 &&
3493 	    (dev->id[63] >> 8) & 1)
3494 		ign_dev_err = 1;
3495 
3496 	/* if the device is actually configured correctly, ignore dev err */
3497 	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3498 		ign_dev_err = 1;
3499 
3500 	if (err_mask & AC_ERR_DEV) {
3501 		if (!ign_dev_err)
3502 			goto fail;
3503 		else
3504 			dev_err_whine = " (device error ignored)";
3505 	}
3506 
3507 	ata_dev_dbg(dev, "xfer_shift=%u, xfer_mode=0x%x\n",
3508 		    dev->xfer_shift, (int)dev->xfer_mode);
3509 
3510 	if (!(ehc->i.flags & ATA_EHI_QUIET) ||
3511 	    ehc->i.flags & ATA_EHI_DID_HARDRESET)
3512 		ata_dev_info(dev, "configured for %s%s\n",
3513 			     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3514 			     dev_err_whine);
3515 
3516 	return 0;
3517 
3518  fail:
3519 	ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3520 	return -EIO;
3521 }
3522 
3523 /**
3524  *	ata_set_mode - Program timings and issue SET FEATURES - XFER
3525  *	@link: link on which timings will be programmed
3526  *	@r_failed_dev: out parameter for failed device
3527  *
3528  *	Standard implementation of the function used to tune and set
3529  *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3530  *	ata_dev_set_mode() fails, pointer to the failing device is
3531  *	returned in @r_failed_dev.
3532  *
3533  *	LOCKING:
3534  *	PCI/etc. bus probe sem.
3535  *
3536  *	RETURNS:
3537  *	0 on success, negative errno otherwise
3538  */
3539 
ata_set_mode(struct ata_link * link,struct ata_device ** r_failed_dev)3540 int ata_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3541 {
3542 	struct ata_port *ap = link->ap;
3543 	struct ata_device *dev;
3544 	int rc = 0, used_dma = 0, found = 0;
3545 
3546 	/* step 1: calculate xfer_mask */
3547 	ata_for_each_dev(dev, link, ENABLED) {
3548 		unsigned int pio_mask, dma_mask;
3549 		unsigned int mode_mask;
3550 
3551 		mode_mask = ATA_DMA_MASK_ATA;
3552 		if (dev->class == ATA_DEV_ATAPI)
3553 			mode_mask = ATA_DMA_MASK_ATAPI;
3554 		else if (ata_id_is_cfa(dev->id))
3555 			mode_mask = ATA_DMA_MASK_CFA;
3556 
3557 		ata_dev_xfermask(dev);
3558 		ata_force_xfermask(dev);
3559 
3560 		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3561 
3562 		if (libata_dma_mask & mode_mask)
3563 			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3564 						     dev->udma_mask);
3565 		else
3566 			dma_mask = 0;
3567 
3568 		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3569 		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3570 
3571 		found = 1;
3572 		if (ata_dma_enabled(dev))
3573 			used_dma = 1;
3574 	}
3575 	if (!found)
3576 		goto out;
3577 
3578 	/* step 2: always set host PIO timings */
3579 	ata_for_each_dev(dev, link, ENABLED) {
3580 		if (dev->pio_mode == 0xff) {
3581 			ata_dev_warn(dev, "no PIO support\n");
3582 			rc = -EINVAL;
3583 			goto out;
3584 		}
3585 
3586 		dev->xfer_mode = dev->pio_mode;
3587 		dev->xfer_shift = ATA_SHIFT_PIO;
3588 		if (ap->ops->set_piomode)
3589 			ap->ops->set_piomode(ap, dev);
3590 	}
3591 
3592 	/* step 3: set host DMA timings */
3593 	ata_for_each_dev(dev, link, ENABLED) {
3594 		if (!ata_dma_enabled(dev))
3595 			continue;
3596 
3597 		dev->xfer_mode = dev->dma_mode;
3598 		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3599 		if (ap->ops->set_dmamode)
3600 			ap->ops->set_dmamode(ap, dev);
3601 	}
3602 
3603 	/* step 4: update devices' xfer mode */
3604 	ata_for_each_dev(dev, link, ENABLED) {
3605 		rc = ata_dev_set_mode(dev);
3606 		if (rc)
3607 			goto out;
3608 	}
3609 
3610 	/* Record simplex status. If we selected DMA then the other
3611 	 * host channels are not permitted to do so.
3612 	 */
3613 	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3614 		ap->host->simplex_claimed = ap;
3615 
3616  out:
3617 	if (rc)
3618 		*r_failed_dev = dev;
3619 	return rc;
3620 }
3621 EXPORT_SYMBOL_GPL(ata_set_mode);
3622 
3623 /**
3624  *	ata_wait_ready - wait for link to become ready
3625  *	@link: link to be waited on
3626  *	@deadline: deadline jiffies for the operation
3627  *	@check_ready: callback to check link readiness
3628  *
3629  *	Wait for @link to become ready.  @check_ready should return
3630  *	positive number if @link is ready, 0 if it isn't, -ENODEV if
3631  *	link doesn't seem to be occupied, other errno for other error
3632  *	conditions.
3633  *
3634  *	Transient -ENODEV conditions are allowed for
3635  *	ATA_TMOUT_FF_WAIT.
3636  *
3637  *	LOCKING:
3638  *	EH context.
3639  *
3640  *	RETURNS:
3641  *	0 if @link is ready before @deadline; otherwise, -errno.
3642  */
ata_wait_ready(struct ata_link * link,unsigned long deadline,int (* check_ready)(struct ata_link * link))3643 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3644 		   int (*check_ready)(struct ata_link *link))
3645 {
3646 	unsigned long start = jiffies;
3647 	unsigned long nodev_deadline;
3648 	int warned = 0;
3649 
3650 	/* choose which 0xff timeout to use, read comment in libata.h */
3651 	if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3652 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3653 	else
3654 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3655 
3656 	/* Slave readiness can't be tested separately from master.  On
3657 	 * M/S emulation configuration, this function should be called
3658 	 * only on the master and it will handle both master and slave.
3659 	 */
3660 	WARN_ON(link == link->ap->slave_link);
3661 
3662 	if (time_after(nodev_deadline, deadline))
3663 		nodev_deadline = deadline;
3664 
3665 	while (1) {
3666 		unsigned long now = jiffies;
3667 		int ready, tmp;
3668 
3669 		ready = tmp = check_ready(link);
3670 		if (ready > 0)
3671 			return 0;
3672 
3673 		/*
3674 		 * -ENODEV could be transient.  Ignore -ENODEV if link
3675 		 * is online.  Also, some SATA devices take a long
3676 		 * time to clear 0xff after reset.  Wait for
3677 		 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3678 		 * offline.
3679 		 *
3680 		 * Note that some PATA controllers (pata_ali) explode
3681 		 * if status register is read more than once when
3682 		 * there's no device attached.
3683 		 */
3684 		if (ready == -ENODEV) {
3685 			if (ata_link_online(link))
3686 				ready = 0;
3687 			else if ((link->ap->flags & ATA_FLAG_SATA) &&
3688 				 !ata_link_offline(link) &&
3689 				 time_before(now, nodev_deadline))
3690 				ready = 0;
3691 		}
3692 
3693 		if (ready)
3694 			return ready;
3695 		if (time_after(now, deadline))
3696 			return -EBUSY;
3697 
3698 		if (!warned && time_after(now, start + 5 * HZ) &&
3699 		    (deadline - now > 3 * HZ)) {
3700 			ata_link_warn(link,
3701 				"link is slow to respond, please be patient "
3702 				"(ready=%d)\n", tmp);
3703 			warned = 1;
3704 		}
3705 
3706 		ata_msleep(link->ap, 50);
3707 	}
3708 }
3709 
3710 /**
3711  *	ata_wait_after_reset - wait for link to become ready after reset
3712  *	@link: link to be waited on
3713  *	@deadline: deadline jiffies for the operation
3714  *	@check_ready: callback to check link readiness
3715  *
3716  *	Wait for @link to become ready after reset.
3717  *
3718  *	LOCKING:
3719  *	EH context.
3720  *
3721  *	RETURNS:
3722  *	0 if @link is ready before @deadline; otherwise, -errno.
3723  */
ata_wait_after_reset(struct ata_link * link,unsigned long deadline,int (* check_ready)(struct ata_link * link))3724 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3725 				int (*check_ready)(struct ata_link *link))
3726 {
3727 	ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3728 
3729 	return ata_wait_ready(link, deadline, check_ready);
3730 }
3731 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
3732 
3733 /**
3734  *	ata_std_prereset - prepare for reset
3735  *	@link: ATA link to be reset
3736  *	@deadline: deadline jiffies for the operation
3737  *
3738  *	@link is about to be reset.  Initialize it.  Failure from
3739  *	prereset makes libata abort whole reset sequence and give up
3740  *	that port, so prereset should be best-effort.  It does its
3741  *	best to prepare for reset sequence but if things go wrong, it
3742  *	should just whine, not fail.
3743  *
3744  *	LOCKING:
3745  *	Kernel thread context (may sleep)
3746  *
3747  *	RETURNS:
3748  *	Always 0.
3749  */
ata_std_prereset(struct ata_link * link,unsigned long deadline)3750 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3751 {
3752 	struct ata_port *ap = link->ap;
3753 	struct ata_eh_context *ehc = &link->eh_context;
3754 	const unsigned int *timing = sata_ehc_deb_timing(ehc);
3755 	int rc;
3756 
3757 	/* if we're about to do hardreset, nothing more to do */
3758 	if (ehc->i.action & ATA_EH_HARDRESET)
3759 		return 0;
3760 
3761 	/* if SATA, resume link */
3762 	if (ap->flags & ATA_FLAG_SATA) {
3763 		rc = sata_link_resume(link, timing, deadline);
3764 		/* whine about phy resume failure but proceed */
3765 		if (rc && rc != -EOPNOTSUPP)
3766 			ata_link_warn(link,
3767 				      "failed to resume link for reset (errno=%d)\n",
3768 				      rc);
3769 	}
3770 
3771 	/* no point in trying softreset on offline link */
3772 	if (ata_phys_link_offline(link))
3773 		ehc->i.action &= ~ATA_EH_SOFTRESET;
3774 
3775 	return 0;
3776 }
3777 EXPORT_SYMBOL_GPL(ata_std_prereset);
3778 
3779 /**
3780  *	ata_std_postreset - standard postreset callback
3781  *	@link: the target ata_link
3782  *	@classes: classes of attached devices
3783  *
3784  *	This function is invoked after a successful reset.  Note that
3785  *	the device might have been reset more than once using
3786  *	different reset methods before postreset is invoked.
3787  *
3788  *	LOCKING:
3789  *	Kernel thread context (may sleep)
3790  */
ata_std_postreset(struct ata_link * link,unsigned int * classes)3791 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3792 {
3793 	u32 serror;
3794 
3795 	/* reset complete, clear SError */
3796 	if (!sata_scr_read(link, SCR_ERROR, &serror))
3797 		sata_scr_write(link, SCR_ERROR, serror);
3798 
3799 	/* print link status */
3800 	sata_print_link_status(link);
3801 }
3802 EXPORT_SYMBOL_GPL(ata_std_postreset);
3803 
3804 /**
3805  *	ata_dev_same_device - Determine whether new ID matches configured device
3806  *	@dev: device to compare against
3807  *	@new_class: class of the new device
3808  *	@new_id: IDENTIFY page of the new device
3809  *
3810  *	Compare @new_class and @new_id against @dev and determine
3811  *	whether @dev is the device indicated by @new_class and
3812  *	@new_id.
3813  *
3814  *	LOCKING:
3815  *	None.
3816  *
3817  *	RETURNS:
3818  *	1 if @dev matches @new_class and @new_id, 0 otherwise.
3819  */
ata_dev_same_device(struct ata_device * dev,unsigned int new_class,const u16 * new_id)3820 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3821 			       const u16 *new_id)
3822 {
3823 	const u16 *old_id = dev->id;
3824 	unsigned char model[2][ATA_ID_PROD_LEN + 1];
3825 	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3826 
3827 	if (dev->class != new_class) {
3828 		ata_dev_info(dev, "class mismatch %d != %d\n",
3829 			     dev->class, new_class);
3830 		return 0;
3831 	}
3832 
3833 	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3834 	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3835 	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3836 	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3837 
3838 	if (strcmp(model[0], model[1])) {
3839 		ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3840 			     model[0], model[1]);
3841 		return 0;
3842 	}
3843 
3844 	if (strcmp(serial[0], serial[1])) {
3845 		ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3846 			     serial[0], serial[1]);
3847 		return 0;
3848 	}
3849 
3850 	return 1;
3851 }
3852 
3853 /**
3854  *	ata_dev_reread_id - Re-read IDENTIFY data
3855  *	@dev: target ATA device
3856  *	@readid_flags: read ID flags
3857  *
3858  *	Re-read IDENTIFY page and make sure @dev is still attached to
3859  *	the port.
3860  *
3861  *	LOCKING:
3862  *	Kernel thread context (may sleep)
3863  *
3864  *	RETURNS:
3865  *	0 on success, negative errno otherwise
3866  */
ata_dev_reread_id(struct ata_device * dev,unsigned int readid_flags)3867 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3868 {
3869 	unsigned int class = dev->class;
3870 	u16 *id = (void *)dev->sector_buf;
3871 	int rc;
3872 
3873 	/* read ID data */
3874 	rc = ata_dev_read_id(dev, &class, readid_flags, id);
3875 	if (rc)
3876 		return rc;
3877 
3878 	/* is the device still there? */
3879 	if (!ata_dev_same_device(dev, class, id))
3880 		return -ENODEV;
3881 
3882 	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3883 	return 0;
3884 }
3885 
3886 /**
3887  *	ata_dev_revalidate - Revalidate ATA device
3888  *	@dev: device to revalidate
3889  *	@new_class: new class code
3890  *	@readid_flags: read ID flags
3891  *
3892  *	Re-read IDENTIFY page, make sure @dev is still attached to the
3893  *	port and reconfigure it according to the new IDENTIFY page.
3894  *
3895  *	LOCKING:
3896  *	Kernel thread context (may sleep)
3897  *
3898  *	RETURNS:
3899  *	0 on success, negative errno otherwise
3900  */
ata_dev_revalidate(struct ata_device * dev,unsigned int new_class,unsigned int readid_flags)3901 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3902 		       unsigned int readid_flags)
3903 {
3904 	u64 n_sectors = dev->n_sectors;
3905 	u64 n_native_sectors = dev->n_native_sectors;
3906 	int rc;
3907 
3908 	if (!ata_dev_enabled(dev))
3909 		return -ENODEV;
3910 
3911 	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3912 	if (ata_class_enabled(new_class) && new_class == ATA_DEV_PMP) {
3913 		ata_dev_info(dev, "class mismatch %u != %u\n",
3914 			     dev->class, new_class);
3915 		rc = -ENODEV;
3916 		goto fail;
3917 	}
3918 
3919 	/* re-read ID */
3920 	rc = ata_dev_reread_id(dev, readid_flags);
3921 	if (rc)
3922 		goto fail;
3923 
3924 	/* configure device according to the new ID */
3925 	rc = ata_dev_configure(dev);
3926 	if (rc)
3927 		goto fail;
3928 
3929 	/* verify n_sectors hasn't changed */
3930 	if (dev->class != ATA_DEV_ATA || !n_sectors ||
3931 	    dev->n_sectors == n_sectors)
3932 		return 0;
3933 
3934 	/* n_sectors has changed */
3935 	ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3936 		     (unsigned long long)n_sectors,
3937 		     (unsigned long long)dev->n_sectors);
3938 
3939 	/*
3940 	 * Something could have caused HPA to be unlocked
3941 	 * involuntarily.  If n_native_sectors hasn't changed and the
3942 	 * new size matches it, keep the device.
3943 	 */
3944 	if (dev->n_native_sectors == n_native_sectors &&
3945 	    dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3946 		ata_dev_warn(dev,
3947 			     "new n_sectors matches native, probably "
3948 			     "late HPA unlock, n_sectors updated\n");
3949 		/* use the larger n_sectors */
3950 		return 0;
3951 	}
3952 
3953 	/*
3954 	 * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
3955 	 * unlocking HPA in those cases.
3956 	 *
3957 	 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
3958 	 */
3959 	if (dev->n_native_sectors == n_native_sectors &&
3960 	    dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
3961 	    !(dev->quirks & ATA_QUIRK_BROKEN_HPA)) {
3962 		ata_dev_warn(dev,
3963 			     "old n_sectors matches native, probably "
3964 			     "late HPA lock, will try to unlock HPA\n");
3965 		/* try unlocking HPA */
3966 		dev->flags |= ATA_DFLAG_UNLOCK_HPA;
3967 		rc = -EIO;
3968 	} else
3969 		rc = -ENODEV;
3970 
3971 	/* restore original n_[native_]sectors and fail */
3972 	dev->n_native_sectors = n_native_sectors;
3973 	dev->n_sectors = n_sectors;
3974  fail:
3975 	ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
3976 	return rc;
3977 }
3978 
3979 static const char * const ata_quirk_names[] = {
3980 	[__ATA_QUIRK_DIAGNOSTIC]	= "diagnostic",
3981 	[__ATA_QUIRK_NODMA]		= "nodma",
3982 	[__ATA_QUIRK_NONCQ]		= "noncq",
3983 	[__ATA_QUIRK_MAX_SEC_128]	= "maxsec128",
3984 	[__ATA_QUIRK_BROKEN_HPA]	= "brokenhpa",
3985 	[__ATA_QUIRK_DISABLE]		= "disable",
3986 	[__ATA_QUIRK_HPA_SIZE]		= "hpasize",
3987 	[__ATA_QUIRK_IVB]		= "ivb",
3988 	[__ATA_QUIRK_STUCK_ERR]		= "stuckerr",
3989 	[__ATA_QUIRK_BRIDGE_OK]		= "bridgeok",
3990 	[__ATA_QUIRK_ATAPI_MOD16_DMA]	= "atapimod16dma",
3991 	[__ATA_QUIRK_FIRMWARE_WARN]	= "firmwarewarn",
3992 	[__ATA_QUIRK_1_5_GBPS]		= "1.5gbps",
3993 	[__ATA_QUIRK_NOSETXFER]		= "nosetxfer",
3994 	[__ATA_QUIRK_BROKEN_FPDMA_AA]	= "brokenfpdmaaa",
3995 	[__ATA_QUIRK_DUMP_ID]		= "dumpid",
3996 	[__ATA_QUIRK_MAX_SEC_LBA48]	= "maxseclba48",
3997 	[__ATA_QUIRK_ATAPI_DMADIR]	= "atapidmadir",
3998 	[__ATA_QUIRK_NO_NCQ_TRIM]	= "noncqtrim",
3999 	[__ATA_QUIRK_NOLPM]		= "nolpm",
4000 	[__ATA_QUIRK_WD_BROKEN_LPM]	= "wdbrokenlpm",
4001 	[__ATA_QUIRK_ZERO_AFTER_TRIM]	= "zeroaftertrim",
4002 	[__ATA_QUIRK_NO_DMA_LOG]	= "nodmalog",
4003 	[__ATA_QUIRK_NOTRIM]		= "notrim",
4004 	[__ATA_QUIRK_MAX_SEC_1024]	= "maxsec1024",
4005 	[__ATA_QUIRK_MAX_SEC_8191]	= "maxsec8191",
4006 	[__ATA_QUIRK_MAX_TRIM_128M]	= "maxtrim128m",
4007 	[__ATA_QUIRK_NO_NCQ_ON_ATI]	= "noncqonati",
4008 	[__ATA_QUIRK_NO_LPM_ON_ATI]	= "nolpmonati",
4009 	[__ATA_QUIRK_NO_ID_DEV_LOG]	= "noiddevlog",
4010 	[__ATA_QUIRK_NO_LOG_DIR]	= "nologdir",
4011 	[__ATA_QUIRK_NO_FUA]		= "nofua",
4012 };
4013 
ata_dev_print_quirks(const struct ata_device * dev,const char * model,const char * rev,unsigned int quirks)4014 static void ata_dev_print_quirks(const struct ata_device *dev,
4015 				 const char *model, const char *rev,
4016 				 unsigned int quirks)
4017 {
4018 	struct ata_eh_context *ehc = &dev->link->eh_context;
4019 	int n = 0, i;
4020 	size_t sz;
4021 	char *str;
4022 
4023 	if (!ata_dev_print_info(dev) || ehc->i.flags & ATA_EHI_DID_PRINT_QUIRKS)
4024 		return;
4025 
4026 	ehc->i.flags |= ATA_EHI_DID_PRINT_QUIRKS;
4027 
4028 	if (!quirks)
4029 		return;
4030 
4031 	sz = 64 + ARRAY_SIZE(ata_quirk_names) * 16;
4032 	str = kmalloc(sz, GFP_KERNEL);
4033 	if (!str)
4034 		return;
4035 
4036 	n = snprintf(str, sz, "Model '%s', rev '%s', applying quirks:",
4037 		     model, rev);
4038 
4039 	for (i = 0; i < ARRAY_SIZE(ata_quirk_names); i++) {
4040 		if (quirks & (1U << i))
4041 			n += snprintf(str + n, sz - n,
4042 				      " %s", ata_quirk_names[i]);
4043 	}
4044 
4045 	ata_dev_warn(dev, "%s\n", str);
4046 
4047 	kfree(str);
4048 }
4049 
4050 struct ata_dev_quirks_entry {
4051 	const char *model_num;
4052 	const char *model_rev;
4053 	unsigned int quirks;
4054 };
4055 
4056 static const struct ata_dev_quirks_entry __ata_dev_quirks[] = {
4057 	/* Devices with DMA related problems under Linux */
4058 	{ "WDC AC11000H",	NULL,		ATA_QUIRK_NODMA },
4059 	{ "WDC AC22100H",	NULL,		ATA_QUIRK_NODMA },
4060 	{ "WDC AC32500H",	NULL,		ATA_QUIRK_NODMA },
4061 	{ "WDC AC33100H",	NULL,		ATA_QUIRK_NODMA },
4062 	{ "WDC AC31600H",	NULL,		ATA_QUIRK_NODMA },
4063 	{ "WDC AC32100H",	"24.09P07",	ATA_QUIRK_NODMA },
4064 	{ "WDC AC23200L",	"21.10N21",	ATA_QUIRK_NODMA },
4065 	{ "Compaq CRD-8241B",	NULL,		ATA_QUIRK_NODMA },
4066 	{ "CRD-8400B",		NULL,		ATA_QUIRK_NODMA },
4067 	{ "CRD-848[02]B",	NULL,		ATA_QUIRK_NODMA },
4068 	{ "CRD-84",		NULL,		ATA_QUIRK_NODMA },
4069 	{ "SanDisk SDP3B",	NULL,		ATA_QUIRK_NODMA },
4070 	{ "SanDisk SDP3B-64",	NULL,		ATA_QUIRK_NODMA },
4071 	{ "SANYO CD-ROM CRD",	NULL,		ATA_QUIRK_NODMA },
4072 	{ "HITACHI CDR-8",	NULL,		ATA_QUIRK_NODMA },
4073 	{ "HITACHI CDR-8[34]35", NULL,		ATA_QUIRK_NODMA },
4074 	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_QUIRK_NODMA },
4075 	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_QUIRK_NODMA },
4076 	{ "CD-532E-A",		NULL,		ATA_QUIRK_NODMA },
4077 	{ "E-IDE CD-ROM CR-840", NULL,		ATA_QUIRK_NODMA },
4078 	{ "CD-ROM Drive/F5A",	NULL,		ATA_QUIRK_NODMA },
4079 	{ "WPI CDD-820",	NULL,		ATA_QUIRK_NODMA },
4080 	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_QUIRK_NODMA },
4081 	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_QUIRK_NODMA },
4082 	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM", NULL, ATA_QUIRK_NODMA },
4083 	{ "_NEC DV5800A",	NULL,		ATA_QUIRK_NODMA },
4084 	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_QUIRK_NODMA },
4085 	{ "Seagate STT20000A", NULL,		ATA_QUIRK_NODMA },
4086 	{ " 2GB ATA Flash Disk", "ADMA428M",	ATA_QUIRK_NODMA },
4087 	{ "VRFDFC22048UCHC-TE*", NULL,		ATA_QUIRK_NODMA },
4088 	/* Odd clown on sil3726/4726 PMPs */
4089 	{ "Config  Disk",	NULL,		ATA_QUIRK_DISABLE },
4090 	/* Similar story with ASMedia 1092 */
4091 	{ "ASMT109x- Config",	NULL,		ATA_QUIRK_DISABLE },
4092 
4093 	/* Weird ATAPI devices */
4094 	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_QUIRK_MAX_SEC_128 },
4095 	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_QUIRK_ATAPI_MOD16_DMA },
4096 	{ "Slimtype DVD A  DS8A8SH", NULL,	ATA_QUIRK_MAX_SEC_LBA48 },
4097 	{ "Slimtype DVD A  DS8A9SH", NULL,	ATA_QUIRK_MAX_SEC_LBA48 },
4098 
4099 	/*
4100 	 * Causes silent data corruption with higher max sects.
4101 	 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4102 	 */
4103 	{ "ST380013AS",		"3.20",		ATA_QUIRK_MAX_SEC_1024 },
4104 
4105 	/*
4106 	 * These devices time out with higher max sects.
4107 	 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
4108 	 */
4109 	{ "LITEON CX1-JB*-HP",	NULL,		ATA_QUIRK_MAX_SEC_1024 },
4110 	{ "LITEON EP1-*",	NULL,		ATA_QUIRK_MAX_SEC_1024 },
4111 
4112 	/*
4113 	 * These devices time out with higher max sects.
4114 	 * https://bugzilla.kernel.org/show_bug.cgi?id=220693
4115 	 */
4116 	{ "DELLBOSS VD",	"MV.R00-0",	ATA_QUIRK_MAX_SEC_8191 },
4117 
4118 	/* Devices we expect to fail diagnostics */
4119 
4120 	/* Devices where NCQ should be avoided */
4121 	/* NCQ is slow */
4122 	{ "WDC WD740ADFD-00",	NULL,		ATA_QUIRK_NONCQ },
4123 	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_QUIRK_NONCQ },
4124 	/* http://thread.gmane.org/gmane.linux.ide/14907 */
4125 	{ "FUJITSU MHT2060BH",	NULL,		ATA_QUIRK_NONCQ },
4126 	/* NCQ is broken */
4127 	{ "Maxtor *",		"BANC*",	ATA_QUIRK_NONCQ },
4128 	{ "Maxtor 7V300F0",	"VA111630",	ATA_QUIRK_NONCQ },
4129 	{ "ST380817AS",		"3.42",		ATA_QUIRK_NONCQ },
4130 	{ "ST3160023AS",	"3.42",		ATA_QUIRK_NONCQ },
4131 	{ "OCZ CORE_SSD",	"02.10104",	ATA_QUIRK_NONCQ },
4132 
4133 	/* Seagate NCQ + FLUSH CACHE firmware bug */
4134 	{ "ST31500341AS",	"SD1[5-9]",	ATA_QUIRK_NONCQ |
4135 						ATA_QUIRK_FIRMWARE_WARN },
4136 
4137 	{ "ST31000333AS",	"SD1[5-9]",	ATA_QUIRK_NONCQ |
4138 						ATA_QUIRK_FIRMWARE_WARN },
4139 
4140 	{ "ST3640[36]23AS",	"SD1[5-9]",	ATA_QUIRK_NONCQ |
4141 						ATA_QUIRK_FIRMWARE_WARN },
4142 
4143 	{ "ST3320[68]13AS",	"SD1[5-9]",	ATA_QUIRK_NONCQ |
4144 						ATA_QUIRK_FIRMWARE_WARN },
4145 
4146 	/* drives which fail FPDMA_AA activation (some may freeze afterwards)
4147 	   the ST disks also have LPM issues */
4148 	{ "ST1000LM024 HN-M101MBB", NULL,	ATA_QUIRK_BROKEN_FPDMA_AA |
4149 						ATA_QUIRK_NOLPM },
4150 	{ "VB0250EAVER",	"HPG7",		ATA_QUIRK_BROKEN_FPDMA_AA },
4151 
4152 	/* Blacklist entries taken from Silicon Image 3124/3132
4153 	   Windows driver .inf file - also several Linux problem reports */
4154 	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_QUIRK_NONCQ },
4155 	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_QUIRK_NONCQ },
4156 	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_QUIRK_NONCQ },
4157 
4158 	/* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4159 	{ "C300-CTFDDAC128MAG",	"0001",		ATA_QUIRK_NONCQ },
4160 
4161 	/* Sandisk SD7/8/9s lock up hard on large trims */
4162 	{ "SanDisk SD[789]*",	NULL,		ATA_QUIRK_MAX_TRIM_128M },
4163 
4164 	/* devices which puke on READ_NATIVE_MAX */
4165 	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_QUIRK_BROKEN_HPA },
4166 	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_QUIRK_BROKEN_HPA },
4167 	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_QUIRK_BROKEN_HPA },
4168 	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_QUIRK_BROKEN_HPA },
4169 
4170 	/* this one allows HPA unlocking but fails IOs on the area */
4171 	{ "OCZ-VERTEX",		    "1.30",	ATA_QUIRK_BROKEN_HPA },
4172 
4173 	/* Devices which report 1 sector over size HPA */
4174 	{ "ST340823A",		NULL,		ATA_QUIRK_HPA_SIZE },
4175 	{ "ST320413A",		NULL,		ATA_QUIRK_HPA_SIZE },
4176 	{ "ST310211A",		NULL,		ATA_QUIRK_HPA_SIZE },
4177 
4178 	/* Devices which get the IVB wrong */
4179 	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_QUIRK_IVB },
4180 	/* Maybe we should just add all TSSTcorp devices... */
4181 	{ "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_QUIRK_IVB },
4182 
4183 	/* Devices that do not need bridging limits applied */
4184 	{ "MTRON MSP-SATA*",		NULL,	ATA_QUIRK_BRIDGE_OK },
4185 	{ "BUFFALO HD-QSU2/R5",		NULL,	ATA_QUIRK_BRIDGE_OK },
4186 
4187 	/* Devices which aren't very happy with higher link speeds */
4188 	{ "WD My Book",			NULL,	ATA_QUIRK_1_5_GBPS },
4189 	{ "Seagate FreeAgent GoFlex",	NULL,	ATA_QUIRK_1_5_GBPS },
4190 
4191 	/*
4192 	 * Devices which choke on SETXFER.  Applies only if both the
4193 	 * device and controller are SATA.
4194 	 */
4195 	{ "PIONEER DVD-RW  DVRTD08",	NULL,	ATA_QUIRK_NOSETXFER },
4196 	{ "PIONEER DVD-RW  DVRTD08A",	NULL,	ATA_QUIRK_NOSETXFER },
4197 	{ "PIONEER DVD-RW  DVR-215",	NULL,	ATA_QUIRK_NOSETXFER },
4198 	{ "PIONEER DVD-RW  DVR-212D",	NULL,	ATA_QUIRK_NOSETXFER },
4199 	{ "PIONEER DVD-RW  DVR-216D",	NULL,	ATA_QUIRK_NOSETXFER },
4200 
4201 	/* These specific Pioneer models have LPM issues */
4202 	{ "PIONEER BD-RW   BDR-207M",	NULL,	ATA_QUIRK_NOLPM },
4203 	{ "PIONEER BD-RW   BDR-205",	NULL,	ATA_QUIRK_NOLPM },
4204 
4205 	/* Crucial devices with broken LPM support */
4206 	{ "CT*0BX*00SSD1",		NULL,	ATA_QUIRK_NOLPM },
4207 
4208 	/* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
4209 	{ "Crucial_CT512MX100*",	"MU01",	ATA_QUIRK_NO_NCQ_TRIM |
4210 						ATA_QUIRK_ZERO_AFTER_TRIM |
4211 						ATA_QUIRK_NOLPM },
4212 	/* 512GB MX100 with newer firmware has only LPM issues */
4213 	{ "Crucial_CT512MX100*",	NULL,	ATA_QUIRK_ZERO_AFTER_TRIM |
4214 						ATA_QUIRK_NOLPM },
4215 
4216 	/* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
4217 	{ "Crucial_CT480M500*",		NULL,	ATA_QUIRK_NO_NCQ_TRIM |
4218 						ATA_QUIRK_ZERO_AFTER_TRIM |
4219 						ATA_QUIRK_NOLPM },
4220 	{ "Crucial_CT960M500*",		NULL,	ATA_QUIRK_NO_NCQ_TRIM |
4221 						ATA_QUIRK_ZERO_AFTER_TRIM |
4222 						ATA_QUIRK_NOLPM },
4223 
4224 	/* AMD Radeon devices with broken LPM support */
4225 	{ "R3SL240G",			NULL,	ATA_QUIRK_NOLPM },
4226 
4227 	/* Apacer models with LPM issues */
4228 	{ "Apacer AS340*",		NULL,	ATA_QUIRK_NOLPM },
4229 
4230 	/* Silicon Motion models with LPM issues */
4231 	{ "MD619HXCLDE3TC",		"TCVAID", ATA_QUIRK_NOLPM },
4232 	{ "MD619GXCLDE3TC",		"TCV35D", ATA_QUIRK_NOLPM },
4233 
4234 	/* These specific Samsung models/firmware-revs do not handle LPM well */
4235 	{ "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_QUIRK_NOLPM },
4236 	{ "SAMSUNG SSD PM830 mSATA *",  "CXM13D1Q", ATA_QUIRK_NOLPM },
4237 	{ "SAMSUNG MZ7TD256HAFV-000L9", NULL,       ATA_QUIRK_NOLPM },
4238 	{ "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_QUIRK_NOLPM },
4239 
4240 	/* devices that don't properly handle queued TRIM commands */
4241 	{ "Micron_M500IT_*",		"MU01",	ATA_QUIRK_NO_NCQ_TRIM |
4242 						ATA_QUIRK_ZERO_AFTER_TRIM },
4243 	{ "Micron_M500_*",		NULL,	ATA_QUIRK_NO_NCQ_TRIM |
4244 						ATA_QUIRK_ZERO_AFTER_TRIM },
4245 	{ "Micron_M5[15]0_*",		"MU01",	ATA_QUIRK_NO_NCQ_TRIM |
4246 						ATA_QUIRK_ZERO_AFTER_TRIM },
4247 	{ "Micron_1100_*",		NULL,	ATA_QUIRK_NO_NCQ_TRIM |
4248 						ATA_QUIRK_ZERO_AFTER_TRIM, },
4249 	{ "Crucial_CT*M500*",		NULL,	ATA_QUIRK_NO_NCQ_TRIM |
4250 						ATA_QUIRK_ZERO_AFTER_TRIM },
4251 	{ "Crucial_CT*M550*",		"MU01",	ATA_QUIRK_NO_NCQ_TRIM |
4252 						ATA_QUIRK_ZERO_AFTER_TRIM },
4253 	{ "Crucial_CT*MX100*",		"MU01",	ATA_QUIRK_NO_NCQ_TRIM |
4254 						ATA_QUIRK_ZERO_AFTER_TRIM },
4255 	{ "Samsung SSD 840 EVO*",	NULL,	ATA_QUIRK_NO_NCQ_TRIM |
4256 						ATA_QUIRK_NO_DMA_LOG |
4257 						ATA_QUIRK_ZERO_AFTER_TRIM },
4258 	{ "Samsung SSD 840*",		NULL,	ATA_QUIRK_NO_NCQ_TRIM |
4259 						ATA_QUIRK_ZERO_AFTER_TRIM },
4260 	{ "Samsung SSD 850*",		NULL,	ATA_QUIRK_NO_NCQ_TRIM |
4261 						ATA_QUIRK_ZERO_AFTER_TRIM },
4262 	{ "Samsung SSD 860*",		NULL,	ATA_QUIRK_NO_NCQ_TRIM |
4263 						ATA_QUIRK_ZERO_AFTER_TRIM |
4264 						ATA_QUIRK_NO_NCQ_ON_ATI |
4265 						ATA_QUIRK_NO_LPM_ON_ATI },
4266 	{ "Samsung SSD 870*",		NULL,	ATA_QUIRK_NO_NCQ_TRIM |
4267 						ATA_QUIRK_ZERO_AFTER_TRIM |
4268 						ATA_QUIRK_NO_NCQ_ON_ATI |
4269 						ATA_QUIRK_NO_LPM_ON_ATI },
4270 	{ "SAMSUNG*MZ7LH*",		NULL,	ATA_QUIRK_NO_NCQ_TRIM |
4271 						ATA_QUIRK_ZERO_AFTER_TRIM |
4272 						ATA_QUIRK_NO_NCQ_ON_ATI |
4273 						ATA_QUIRK_NO_LPM_ON_ATI },
4274 	{ "FCCT*M500*",			NULL,	ATA_QUIRK_NO_NCQ_TRIM |
4275 						ATA_QUIRK_ZERO_AFTER_TRIM },
4276 
4277 	/* devices that don't properly handle TRIM commands */
4278 	{ "SuperSSpeed S238*",		NULL,	ATA_QUIRK_NOTRIM },
4279 	{ "M88V29*",			NULL,	ATA_QUIRK_NOTRIM },
4280 
4281 	/*
4282 	 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4283 	 * (Return Zero After Trim) flags in the ATA Command Set are
4284 	 * unreliable in the sense that they only define what happens if
4285 	 * the device successfully executed the DSM TRIM command. TRIM
4286 	 * is only advisory, however, and the device is free to silently
4287 	 * ignore all or parts of the request.
4288 	 *
4289 	 * Whitelist drives that are known to reliably return zeroes
4290 	 * after TRIM.
4291 	 */
4292 
4293 	/*
4294 	 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4295 	 * that model before whitelisting all other intel SSDs.
4296 	 */
4297 	{ "INTEL*SSDSC2MH*",		NULL,	0 },
4298 
4299 	{ "Micron*",			NULL,	ATA_QUIRK_ZERO_AFTER_TRIM },
4300 	{ "Crucial*",			NULL,	ATA_QUIRK_ZERO_AFTER_TRIM },
4301 	{ "INTEL*SSD*",			NULL,	ATA_QUIRK_ZERO_AFTER_TRIM },
4302 	{ "SSD*INTEL*",			NULL,	ATA_QUIRK_ZERO_AFTER_TRIM },
4303 	{ "Samsung*SSD*",		NULL,	ATA_QUIRK_ZERO_AFTER_TRIM },
4304 	{ "SAMSUNG*SSD*",		NULL,	ATA_QUIRK_ZERO_AFTER_TRIM },
4305 	{ "SAMSUNG*MZ7KM*",		NULL,	ATA_QUIRK_ZERO_AFTER_TRIM },
4306 	{ "ST[1248][0248]0[FH]*",	NULL,	ATA_QUIRK_ZERO_AFTER_TRIM },
4307 
4308 	/*
4309 	 * Some WD SATA-I drives spin up and down erratically when the link
4310 	 * is put into the slumber mode.  We don't have full list of the
4311 	 * affected devices.  Disable LPM if the device matches one of the
4312 	 * known prefixes and is SATA-1.  As a side effect LPM partial is
4313 	 * lost too.
4314 	 *
4315 	 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4316 	 */
4317 	{ "WDC WD800JD-*",		NULL,	ATA_QUIRK_WD_BROKEN_LPM },
4318 	{ "WDC WD1200JD-*",		NULL,	ATA_QUIRK_WD_BROKEN_LPM },
4319 	{ "WDC WD1600JD-*",		NULL,	ATA_QUIRK_WD_BROKEN_LPM },
4320 	{ "WDC WD2000JD-*",		NULL,	ATA_QUIRK_WD_BROKEN_LPM },
4321 	{ "WDC WD2500JD-*",		NULL,	ATA_QUIRK_WD_BROKEN_LPM },
4322 	{ "WDC WD3000JD-*",		NULL,	ATA_QUIRK_WD_BROKEN_LPM },
4323 	{ "WDC WD3200JD-*",		NULL,	ATA_QUIRK_WD_BROKEN_LPM },
4324 
4325 	/*
4326 	 * This sata dom device goes on a walkabout when the ATA_LOG_DIRECTORY
4327 	 * log page is accessed. Ensure we never ask for this log page with
4328 	 * these devices.
4329 	 */
4330 	{ "SATADOM-ML 3ME",		NULL,	ATA_QUIRK_NO_LOG_DIR },
4331 
4332 	/* Buggy FUA */
4333 	{ "Maxtor",		"BANC1G10",	ATA_QUIRK_NO_FUA },
4334 	{ "WDC*WD2500J*",	NULL,		ATA_QUIRK_NO_FUA },
4335 	{ "OCZ-VERTEX*",	NULL,		ATA_QUIRK_NO_FUA },
4336 	{ "INTEL*SSDSC2CT*",	NULL,		ATA_QUIRK_NO_FUA },
4337 
4338 	/* End Marker */
4339 	{ }
4340 };
4341 
ata_dev_quirks(const struct ata_device * dev)4342 static unsigned int ata_dev_quirks(const struct ata_device *dev)
4343 {
4344 	unsigned char model_num[ATA_ID_PROD_LEN + 1];
4345 	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4346 	const struct ata_dev_quirks_entry *ad = __ata_dev_quirks;
4347 
4348 	/* dev->quirks is an unsigned int. */
4349 	BUILD_BUG_ON(__ATA_QUIRK_MAX > 32);
4350 
4351 	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4352 	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4353 
4354 	while (ad->model_num) {
4355 		if (glob_match(ad->model_num, model_num) &&
4356 		    (!ad->model_rev || glob_match(ad->model_rev, model_rev))) {
4357 			ata_dev_print_quirks(dev, model_num, model_rev,
4358 					     ad->quirks);
4359 			return ad->quirks;
4360 		}
4361 		ad++;
4362 	}
4363 	return 0;
4364 }
4365 
ata_dev_nodma(const struct ata_device * dev)4366 static bool ata_dev_nodma(const struct ata_device *dev)
4367 {
4368 	/*
4369 	 * We do not support polling DMA. Deny DMA for those ATAPI devices
4370 	 * with CDB-intr (and use PIO) if the LLDD handles only interrupts in
4371 	 * the HSM_ST_LAST state.
4372 	 */
4373 	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4374 	    (dev->flags & ATA_DFLAG_CDB_INTR))
4375 		return true;
4376 	return dev->quirks & ATA_QUIRK_NODMA;
4377 }
4378 
4379 /**
4380  *	ata_is_40wire		-	check drive side detection
4381  *	@dev: device
4382  *
4383  *	Perform drive side detection decoding, allowing for device vendors
4384  *	who can't follow the documentation.
4385  */
4386 
ata_is_40wire(struct ata_device * dev)4387 static int ata_is_40wire(struct ata_device *dev)
4388 {
4389 	if (dev->quirks & ATA_QUIRK_IVB)
4390 		return ata_drive_40wire_relaxed(dev->id);
4391 	return ata_drive_40wire(dev->id);
4392 }
4393 
4394 /**
4395  *	cable_is_40wire		-	40/80/SATA decider
4396  *	@ap: port to consider
4397  *
4398  *	This function encapsulates the policy for speed management
4399  *	in one place. At the moment we don't cache the result but
4400  *	there is a good case for setting ap->cbl to the result when
4401  *	we are called with unknown cables (and figuring out if it
4402  *	impacts hotplug at all).
4403  *
4404  *	Return 1 if the cable appears to be 40 wire.
4405  */
4406 
cable_is_40wire(struct ata_port * ap)4407 static int cable_is_40wire(struct ata_port *ap)
4408 {
4409 	struct ata_link *link;
4410 	struct ata_device *dev;
4411 
4412 	/* If the controller thinks we are 40 wire, we are. */
4413 	if (ap->cbl == ATA_CBL_PATA40)
4414 		return 1;
4415 
4416 	/* If the controller thinks we are 80 wire, we are. */
4417 	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4418 		return 0;
4419 
4420 	/* If the system is known to be 40 wire short cable (eg
4421 	 * laptop), then we allow 80 wire modes even if the drive
4422 	 * isn't sure.
4423 	 */
4424 	if (ap->cbl == ATA_CBL_PATA40_SHORT)
4425 		return 0;
4426 
4427 	/* If the controller doesn't know, we scan.
4428 	 *
4429 	 * Note: We look for all 40 wire detects at this point.  Any
4430 	 *       80 wire detect is taken to be 80 wire cable because
4431 	 * - in many setups only the one drive (slave if present) will
4432 	 *   give a valid detect
4433 	 * - if you have a non detect capable drive you don't want it
4434 	 *   to colour the choice
4435 	 */
4436 	ata_for_each_link(link, ap, EDGE) {
4437 		ata_for_each_dev(dev, link, ENABLED) {
4438 			if (!ata_is_40wire(dev))
4439 				return 0;
4440 		}
4441 	}
4442 	return 1;
4443 }
4444 
4445 /**
4446  *	ata_dev_xfermask - Compute supported xfermask of the given device
4447  *	@dev: Device to compute xfermask for
4448  *
4449  *	Compute supported xfermask of @dev and store it in
4450  *	dev->*_mask.  This function is responsible for applying all
4451  *	known limits including host controller limits, device quirks, etc...
4452  *
4453  *	LOCKING:
4454  *	None.
4455  */
ata_dev_xfermask(struct ata_device * dev)4456 static void ata_dev_xfermask(struct ata_device *dev)
4457 {
4458 	struct ata_link *link = dev->link;
4459 	struct ata_port *ap = link->ap;
4460 	struct ata_host *host = ap->host;
4461 	unsigned int xfer_mask;
4462 
4463 	/* controller modes available */
4464 	xfer_mask = ata_pack_xfermask(ap->pio_mask,
4465 				      ap->mwdma_mask, ap->udma_mask);
4466 
4467 	/* drive modes available */
4468 	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4469 				       dev->mwdma_mask, dev->udma_mask);
4470 	xfer_mask &= ata_id_xfermask(dev->id);
4471 
4472 	/*
4473 	 *	CFA Advanced TrueIDE timings are not allowed on a shared
4474 	 *	cable
4475 	 */
4476 	if (ata_dev_pair(dev)) {
4477 		/* No PIO5 or PIO6 */
4478 		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4479 		/* No MWDMA3 or MWDMA 4 */
4480 		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4481 	}
4482 
4483 	if (ata_dev_nodma(dev)) {
4484 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4485 		ata_dev_warn(dev,
4486 			     "device does not support DMA, disabling DMA\n");
4487 	}
4488 
4489 	if ((host->flags & ATA_HOST_SIMPLEX) &&
4490 	    host->simplex_claimed && host->simplex_claimed != ap) {
4491 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4492 		ata_dev_warn(dev,
4493 			     "simplex DMA is claimed by other device, disabling DMA\n");
4494 	}
4495 
4496 	if (ap->flags & ATA_FLAG_NO_IORDY)
4497 		xfer_mask &= ata_pio_mask_no_iordy(dev);
4498 
4499 	if (ap->ops->mode_filter)
4500 		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4501 
4502 	/* Apply cable rule here.  Don't apply it early because when
4503 	 * we handle hot plug the cable type can itself change.
4504 	 * Check this last so that we know if the transfer rate was
4505 	 * solely limited by the cable.
4506 	 * Unknown or 80 wire cables reported host side are checked
4507 	 * drive side as well. Cases where we know a 40wire cable
4508 	 * is used safely for 80 are not checked here.
4509 	 */
4510 	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4511 		/* UDMA/44 or higher would be available */
4512 		if (cable_is_40wire(ap)) {
4513 			ata_dev_warn(dev,
4514 				     "limited to UDMA/33 due to 40-wire cable\n");
4515 			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4516 		}
4517 
4518 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4519 			    &dev->mwdma_mask, &dev->udma_mask);
4520 }
4521 
4522 /**
4523  *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4524  *	@dev: Device to which command will be sent
4525  *
4526  *	Issue SET FEATURES - XFER MODE command to device @dev
4527  *	on port @ap.
4528  *
4529  *	LOCKING:
4530  *	PCI/etc. bus probe sem.
4531  *
4532  *	RETURNS:
4533  *	0 on success, AC_ERR_* mask otherwise.
4534  */
4535 
ata_dev_set_xfermode(struct ata_device * dev)4536 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4537 {
4538 	struct ata_taskfile tf;
4539 
4540 	/* set up set-features taskfile */
4541 	ata_dev_dbg(dev, "set features - xfer mode\n");
4542 
4543 	/* Some controllers and ATAPI devices show flaky interrupt
4544 	 * behavior after setting xfer mode.  Use polling instead.
4545 	 */
4546 	ata_tf_init(dev, &tf);
4547 	tf.command = ATA_CMD_SET_FEATURES;
4548 	tf.feature = SETFEATURES_XFER;
4549 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4550 	tf.protocol = ATA_PROT_NODATA;
4551 	/* If we are using IORDY we must send the mode setting command */
4552 	if (ata_pio_need_iordy(dev))
4553 		tf.nsect = dev->xfer_mode;
4554 	/* If the device has IORDY and the controller does not - turn it off */
4555  	else if (ata_id_has_iordy(dev->id))
4556 		tf.nsect = 0x01;
4557 	else /* In the ancient relic department - skip all of this */
4558 		return 0;
4559 
4560 	/*
4561 	 * On some disks, this command causes spin-up, so we need longer
4562 	 * timeout.
4563 	 */
4564 	return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4565 }
4566 
4567 /**
4568  *	ata_dev_set_feature - Issue SET FEATURES
4569  *	@dev: Device to which command will be sent
4570  *	@subcmd: The SET FEATURES subcommand to be sent
4571  *	@action: The sector count represents a subcommand specific action
4572  *
4573  *	Issue SET FEATURES command to device @dev on port @ap with sector count
4574  *
4575  *	LOCKING:
4576  *	PCI/etc. bus probe sem.
4577  *
4578  *	RETURNS:
4579  *	0 on success, AC_ERR_* mask otherwise.
4580  */
ata_dev_set_feature(struct ata_device * dev,u8 subcmd,u8 action)4581 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 subcmd, u8 action)
4582 {
4583 	struct ata_taskfile tf;
4584 	unsigned int timeout = 0;
4585 
4586 	/* set up set-features taskfile */
4587 	ata_dev_dbg(dev, "set features\n");
4588 
4589 	ata_tf_init(dev, &tf);
4590 	tf.command = ATA_CMD_SET_FEATURES;
4591 	tf.feature = subcmd;
4592 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4593 	tf.protocol = ATA_PROT_NODATA;
4594 	tf.nsect = action;
4595 
4596 	if (subcmd == SETFEATURES_SPINUP)
4597 		timeout = ata_probe_timeout ?
4598 			  ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4599 
4600 	return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4601 }
4602 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4603 
4604 /**
4605  *	ata_dev_init_params - Issue INIT DEV PARAMS command
4606  *	@dev: Device to which command will be sent
4607  *	@heads: Number of heads (taskfile parameter)
4608  *	@sectors: Number of sectors (taskfile parameter)
4609  *
4610  *	LOCKING:
4611  *	Kernel thread context (may sleep)
4612  *
4613  *	RETURNS:
4614  *	0 on success, AC_ERR_* mask otherwise.
4615  */
ata_dev_init_params(struct ata_device * dev,u16 heads,u16 sectors)4616 static unsigned int ata_dev_init_params(struct ata_device *dev,
4617 					u16 heads, u16 sectors)
4618 {
4619 	struct ata_taskfile tf;
4620 	unsigned int err_mask;
4621 
4622 	/* Number of sectors per track 1-255. Number of heads 1-16 */
4623 	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4624 		return AC_ERR_INVALID;
4625 
4626 	/* set up init dev params taskfile */
4627 	ata_dev_dbg(dev, "init dev params\n");
4628 
4629 	ata_tf_init(dev, &tf);
4630 	tf.command = ATA_CMD_INIT_DEV_PARAMS;
4631 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4632 	tf.protocol = ATA_PROT_NODATA;
4633 	tf.nsect = sectors;
4634 	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4635 
4636 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4637 	/* A clean abort indicates an original or just out of spec drive
4638 	   and we should continue as we issue the setup based on the
4639 	   drive reported working geometry */
4640 	if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
4641 		err_mask = 0;
4642 
4643 	return err_mask;
4644 }
4645 
4646 /**
4647  *	atapi_check_dma - Check whether ATAPI DMA can be supported
4648  *	@qc: Metadata associated with taskfile to check
4649  *
4650  *	Allow low-level driver to filter ATA PACKET commands, returning
4651  *	a status indicating whether or not it is OK to use DMA for the
4652  *	supplied PACKET command.
4653  *
4654  *	LOCKING:
4655  *	spin_lock_irqsave(host lock)
4656  *
4657  *	RETURNS: 0 when ATAPI DMA can be used
4658  *               nonzero otherwise
4659  */
atapi_check_dma(struct ata_queued_cmd * qc)4660 int atapi_check_dma(struct ata_queued_cmd *qc)
4661 {
4662 	struct ata_port *ap = qc->ap;
4663 
4664 	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4665 	 * few ATAPI devices choke on such DMA requests.
4666 	 */
4667 	if (!(qc->dev->quirks & ATA_QUIRK_ATAPI_MOD16_DMA) &&
4668 	    unlikely(qc->nbytes & 15))
4669 		return -EOPNOTSUPP;
4670 
4671 	if (ap->ops->check_atapi_dma)
4672 		return ap->ops->check_atapi_dma(qc);
4673 
4674 	return 0;
4675 }
4676 
4677 /**
4678  *	ata_std_qc_defer - Check whether a qc needs to be deferred
4679  *	@qc: ATA command in question
4680  *
4681  *	Non-NCQ commands cannot run with any other command, NCQ or
4682  *	not.  As upper layer only knows the queue depth, we are
4683  *	responsible for maintaining exclusion.  This function checks
4684  *	whether a new command @qc can be issued.
4685  *
4686  *	LOCKING:
4687  *	spin_lock_irqsave(host lock)
4688  *
4689  *	RETURNS:
4690  *	ATA_DEFER_* if deferring is needed, 0 otherwise.
4691  */
ata_std_qc_defer(struct ata_queued_cmd * qc)4692 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4693 {
4694 	struct ata_link *link = qc->dev->link;
4695 
4696 	if (ata_is_ncq(qc->tf.protocol)) {
4697 		if (!ata_tag_valid(link->active_tag))
4698 			return 0;
4699 	} else {
4700 		if (!ata_tag_valid(link->active_tag) && !link->sactive)
4701 			return 0;
4702 	}
4703 
4704 	return ATA_DEFER_LINK;
4705 }
4706 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
4707 
4708 /**
4709  *	ata_sg_init - Associate command with scatter-gather table.
4710  *	@qc: Command to be associated
4711  *	@sg: Scatter-gather table.
4712  *	@n_elem: Number of elements in s/g table.
4713  *
4714  *	Initialize the data-related elements of queued_cmd @qc
4715  *	to point to a scatter-gather table @sg, containing @n_elem
4716  *	elements.
4717  *
4718  *	LOCKING:
4719  *	spin_lock_irqsave(host lock)
4720  */
ata_sg_init(struct ata_queued_cmd * qc,struct scatterlist * sg,unsigned int n_elem)4721 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4722 		 unsigned int n_elem)
4723 {
4724 	qc->sg = sg;
4725 	qc->n_elem = n_elem;
4726 	qc->cursg = qc->sg;
4727 }
4728 
4729 #ifdef CONFIG_HAS_DMA
4730 
4731 /**
4732  *	ata_sg_clean - Unmap DMA memory associated with command
4733  *	@qc: Command containing DMA memory to be released
4734  *
4735  *	Unmap all mapped DMA memory associated with this command.
4736  *
4737  *	LOCKING:
4738  *	spin_lock_irqsave(host lock)
4739  */
ata_sg_clean(struct ata_queued_cmd * qc)4740 static void ata_sg_clean(struct ata_queued_cmd *qc)
4741 {
4742 	struct ata_port *ap = qc->ap;
4743 	struct scatterlist *sg = qc->sg;
4744 	int dir = qc->dma_dir;
4745 
4746 	WARN_ON_ONCE(sg == NULL);
4747 
4748 	if (qc->n_elem)
4749 		dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4750 
4751 	qc->flags &= ~ATA_QCFLAG_DMAMAP;
4752 	qc->sg = NULL;
4753 }
4754 
4755 /**
4756  *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4757  *	@qc: Command with scatter-gather table to be mapped.
4758  *
4759  *	DMA-map the scatter-gather table associated with queued_cmd @qc.
4760  *
4761  *	LOCKING:
4762  *	spin_lock_irqsave(host lock)
4763  *
4764  *	RETURNS:
4765  *	Zero on success, negative on error.
4766  *
4767  */
ata_sg_setup(struct ata_queued_cmd * qc)4768 static int ata_sg_setup(struct ata_queued_cmd *qc)
4769 {
4770 	struct ata_port *ap = qc->ap;
4771 	unsigned int n_elem;
4772 
4773 	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4774 	if (n_elem < 1)
4775 		return -1;
4776 
4777 	qc->orig_n_elem = qc->n_elem;
4778 	qc->n_elem = n_elem;
4779 	qc->flags |= ATA_QCFLAG_DMAMAP;
4780 
4781 	return 0;
4782 }
4783 
4784 #else /* !CONFIG_HAS_DMA */
4785 
ata_sg_clean(struct ata_queued_cmd * qc)4786 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
ata_sg_setup(struct ata_queued_cmd * qc)4787 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
4788 
4789 #endif /* !CONFIG_HAS_DMA */
4790 
4791 /**
4792  *	swap_buf_le16 - swap halves of 16-bit words in place
4793  *	@buf:  Buffer to swap
4794  *	@buf_words:  Number of 16-bit words in buffer.
4795  *
4796  *	Swap halves of 16-bit words if needed to convert from
4797  *	little-endian byte order to native cpu byte order, or
4798  *	vice-versa.
4799  *
4800  *	LOCKING:
4801  *	Inherited from caller.
4802  */
swap_buf_le16(u16 * buf,unsigned int buf_words)4803 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4804 {
4805 #ifdef __BIG_ENDIAN
4806 	unsigned int i;
4807 
4808 	for (i = 0; i < buf_words; i++)
4809 		buf[i] = le16_to_cpu(buf[i]);
4810 #endif /* __BIG_ENDIAN */
4811 }
4812 
4813 /**
4814  *	ata_qc_free - free unused ata_queued_cmd
4815  *	@qc: Command to complete
4816  *
4817  *	Designed to free unused ata_queued_cmd object
4818  *	in case something prevents using it.
4819  *
4820  *	LOCKING:
4821  *	spin_lock_irqsave(host lock)
4822  */
ata_qc_free(struct ata_queued_cmd * qc)4823 void ata_qc_free(struct ata_queued_cmd *qc)
4824 {
4825 	qc->flags = 0;
4826 	if (ata_tag_valid(qc->tag))
4827 		qc->tag = ATA_TAG_POISON;
4828 }
4829 
__ata_qc_complete(struct ata_queued_cmd * qc)4830 void __ata_qc_complete(struct ata_queued_cmd *qc)
4831 {
4832 	struct ata_port *ap;
4833 	struct ata_link *link;
4834 
4835 	if (WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)))
4836 		return;
4837 
4838 	ap = qc->ap;
4839 	link = qc->dev->link;
4840 
4841 	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4842 		ata_sg_clean(qc);
4843 
4844 	/* command should be marked inactive atomically with qc completion */
4845 	if (ata_is_ncq(qc->tf.protocol)) {
4846 		link->sactive &= ~(1 << qc->hw_tag);
4847 		if (!link->sactive)
4848 			ap->nr_active_links--;
4849 	} else {
4850 		link->active_tag = ATA_TAG_POISON;
4851 		ap->nr_active_links--;
4852 	}
4853 
4854 	/* clear exclusive status */
4855 	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4856 		     ap->excl_link == link))
4857 		ap->excl_link = NULL;
4858 
4859 	/*
4860 	 * Mark qc as inactive to prevent the port interrupt handler from
4861 	 * completing the command twice later, before the error handler is
4862 	 * called.
4863 	 */
4864 	qc->flags &= ~ATA_QCFLAG_ACTIVE;
4865 	ap->qc_active &= ~(1ULL << qc->tag);
4866 
4867 	/* call completion callback */
4868 	qc->complete_fn(qc);
4869 }
4870 
fill_result_tf(struct ata_queued_cmd * qc)4871 static void fill_result_tf(struct ata_queued_cmd *qc)
4872 {
4873 	struct ata_port *ap = qc->ap;
4874 
4875 	/*
4876 	 * rtf may already be filled (e.g. for successful NCQ commands).
4877 	 * If that is the case, we have nothing to do.
4878 	 */
4879 	if (qc->flags & ATA_QCFLAG_RTF_FILLED)
4880 		return;
4881 
4882 	qc->result_tf.flags = qc->tf.flags;
4883 	ap->ops->qc_fill_rtf(qc);
4884 	qc->flags |= ATA_QCFLAG_RTF_FILLED;
4885 }
4886 
ata_verify_xfer(struct ata_queued_cmd * qc)4887 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4888 {
4889 	struct ata_device *dev = qc->dev;
4890 
4891 	if (!ata_is_data(qc->tf.protocol))
4892 		return;
4893 
4894 	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4895 		return;
4896 
4897 	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4898 }
4899 
4900 /**
4901  *	ata_qc_complete - Complete an active ATA command
4902  *	@qc: Command to complete
4903  *
4904  *	Indicate to the mid and upper layers that an ATA command has
4905  *	completed, with either an ok or not-ok status.
4906  *
4907  *	Refrain from calling this function multiple times when
4908  *	successfully completing multiple NCQ commands.
4909  *	ata_qc_complete_multiple() should be used instead, which will
4910  *	properly update IRQ expect state.
4911  *
4912  *	LOCKING:
4913  *	spin_lock_irqsave(host lock)
4914  */
ata_qc_complete(struct ata_queued_cmd * qc)4915 void ata_qc_complete(struct ata_queued_cmd *qc)
4916 {
4917 	struct ata_port *ap = qc->ap;
4918 	struct ata_device *dev = qc->dev;
4919 	struct ata_eh_info *ehi = &dev->link->eh_info;
4920 
4921 	/* Trigger the LED (if available) */
4922 	ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
4923 
4924 	/*
4925 	 * In order to synchronize EH with the regular execution path, a qc that
4926 	 * is owned by EH is marked with ATA_QCFLAG_EH.
4927 	 *
4928 	 * The normal execution path is responsible for not accessing a qc owned
4929 	 * by EH.  libata core enforces the rule by returning NULL from
4930 	 * ata_qc_from_tag() for qcs owned by EH.
4931 	 */
4932 	if (unlikely(qc->err_mask))
4933 		qc->flags |= ATA_QCFLAG_EH;
4934 
4935 	/*
4936 	 * Finish internal commands without any further processing and always
4937 	 * with the result TF filled.
4938 	 */
4939 	if (unlikely(ata_tag_internal(qc->tag))) {
4940 		fill_result_tf(qc);
4941 		trace_ata_qc_complete_internal(qc);
4942 		__ata_qc_complete(qc);
4943 		return;
4944 	}
4945 
4946 	/* Non-internal qc has failed.  Fill the result TF and summon EH. */
4947 	if (unlikely(qc->flags & ATA_QCFLAG_EH)) {
4948 		fill_result_tf(qc);
4949 		trace_ata_qc_complete_failed(qc);
4950 		ata_qc_schedule_eh(qc);
4951 		return;
4952 	}
4953 
4954 	WARN_ON_ONCE(ata_port_is_frozen(ap));
4955 
4956 	/* read result TF if requested */
4957 	if (qc->flags & ATA_QCFLAG_RESULT_TF)
4958 		fill_result_tf(qc);
4959 
4960 	trace_ata_qc_complete_done(qc);
4961 
4962 	/*
4963 	 * For CDL commands that completed without an error, check if we have
4964 	 * sense data (ATA_SENSE is set). If we do, then the command may have
4965 	 * been aborted by the device due to a limit timeout using the policy
4966 	 * 0xD. For these commands, invoke EH to get the command sense data.
4967 	 */
4968 	if (qc->flags & ATA_QCFLAG_HAS_CDL &&
4969 	    qc->result_tf.status & ATA_SENSE) {
4970 		/*
4971 		 * Tell SCSI EH to not overwrite scmd->result even if this
4972 		 * command is finished with result SAM_STAT_GOOD.
4973 		 */
4974 		qc->scsicmd->flags |= SCMD_FORCE_EH_SUCCESS;
4975 		qc->flags |= ATA_QCFLAG_EH_SUCCESS_CMD;
4976 		ehi->dev_action[dev->devno] |= ATA_EH_GET_SUCCESS_SENSE;
4977 
4978 		/*
4979 		 * set pending so that ata_qc_schedule_eh() does not trigger
4980 		 * fast drain, and freeze the port.
4981 		 */
4982 		ap->pflags |= ATA_PFLAG_EH_PENDING;
4983 		ata_qc_schedule_eh(qc);
4984 		return;
4985 	}
4986 
4987 	/* Some commands need post-processing after successful completion. */
4988 	switch (qc->tf.command) {
4989 	case ATA_CMD_SET_FEATURES:
4990 		if (qc->tf.feature != SETFEATURES_WC_ON &&
4991 		    qc->tf.feature != SETFEATURES_WC_OFF &&
4992 		    qc->tf.feature != SETFEATURES_RA_ON &&
4993 		    qc->tf.feature != SETFEATURES_RA_OFF)
4994 			break;
4995 		fallthrough;
4996 	case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4997 	case ATA_CMD_SET_MULTI: /* multi_count changed */
4998 		/* revalidate device */
4999 		ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5000 		ata_port_schedule_eh(ap);
5001 		break;
5002 
5003 	case ATA_CMD_SLEEP:
5004 		dev->flags |= ATA_DFLAG_SLEEPING;
5005 		break;
5006 	}
5007 
5008 	if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5009 		ata_verify_xfer(qc);
5010 
5011 	__ata_qc_complete(qc);
5012 }
5013 EXPORT_SYMBOL_GPL(ata_qc_complete);
5014 
5015 /**
5016  *	ata_qc_get_active - get bitmask of active qcs
5017  *	@ap: port in question
5018  *
5019  *	LOCKING:
5020  *	spin_lock_irqsave(host lock)
5021  *
5022  *	RETURNS:
5023  *	Bitmask of active qcs
5024  */
ata_qc_get_active(struct ata_port * ap)5025 u64 ata_qc_get_active(struct ata_port *ap)
5026 {
5027 	u64 qc_active = ap->qc_active;
5028 
5029 	/* ATA_TAG_INTERNAL is sent to hw as tag 0 */
5030 	if (qc_active & (1ULL << ATA_TAG_INTERNAL)) {
5031 		qc_active |= (1 << 0);
5032 		qc_active &= ~(1ULL << ATA_TAG_INTERNAL);
5033 	}
5034 
5035 	return qc_active;
5036 }
5037 EXPORT_SYMBOL_GPL(ata_qc_get_active);
5038 
5039 /**
5040  *	ata_qc_issue - issue taskfile to device
5041  *	@qc: command to issue to device
5042  *
5043  *	Prepare an ATA command to submission to device.
5044  *	This includes mapping the data into a DMA-able
5045  *	area, filling in the S/G table, and finally
5046  *	writing the taskfile to hardware, starting the command.
5047  *
5048  *	LOCKING:
5049  *	spin_lock_irqsave(host lock)
5050  */
ata_qc_issue(struct ata_queued_cmd * qc)5051 void ata_qc_issue(struct ata_queued_cmd *qc)
5052 {
5053 	struct ata_port *ap = qc->ap;
5054 	struct ata_link *link = qc->dev->link;
5055 	u8 prot = qc->tf.protocol;
5056 
5057 	/* Make sure only one non-NCQ command is outstanding. */
5058 	WARN_ON_ONCE(ata_tag_valid(link->active_tag));
5059 
5060 	if (ata_is_ncq(prot)) {
5061 		WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag));
5062 
5063 		if (!link->sactive)
5064 			ap->nr_active_links++;
5065 		link->sactive |= 1 << qc->hw_tag;
5066 	} else {
5067 		WARN_ON_ONCE(link->sactive);
5068 
5069 		ap->nr_active_links++;
5070 		link->active_tag = qc->tag;
5071 	}
5072 
5073 	qc->flags |= ATA_QCFLAG_ACTIVE;
5074 	ap->qc_active |= 1ULL << qc->tag;
5075 
5076 	/*
5077 	 * We guarantee to LLDs that they will have at least one
5078 	 * non-zero sg if the command is a data command.
5079 	 */
5080 	if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
5081 		goto sys_err;
5082 
5083 	if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5084 				 (ap->flags & ATA_FLAG_PIO_DMA)))
5085 		if (ata_sg_setup(qc))
5086 			goto sys_err;
5087 
5088 	/* if device is sleeping, schedule reset and abort the link */
5089 	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5090 		link->eh_info.action |= ATA_EH_RESET;
5091 		ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5092 		ata_link_abort(link);
5093 		return;
5094 	}
5095 
5096 	if (ap->ops->qc_prep) {
5097 		trace_ata_qc_prep(qc);
5098 		qc->err_mask |= ap->ops->qc_prep(qc);
5099 		if (unlikely(qc->err_mask))
5100 			goto err;
5101 	}
5102 
5103 	trace_ata_qc_issue(qc);
5104 	qc->err_mask |= ap->ops->qc_issue(qc);
5105 	if (unlikely(qc->err_mask))
5106 		goto err;
5107 	return;
5108 
5109 sys_err:
5110 	qc->err_mask |= AC_ERR_SYSTEM;
5111 err:
5112 	ata_qc_complete(qc);
5113 }
5114 
5115 /**
5116  *	ata_phys_link_online - test whether the given link is online
5117  *	@link: ATA link to test
5118  *
5119  *	Test whether @link is online.  Note that this function returns
5120  *	0 if online status of @link cannot be obtained, so
5121  *	ata_link_online(link) != !ata_link_offline(link).
5122  *
5123  *	LOCKING:
5124  *	None.
5125  *
5126  *	RETURNS:
5127  *	True if the port online status is available and online.
5128  */
ata_phys_link_online(struct ata_link * link)5129 bool ata_phys_link_online(struct ata_link *link)
5130 {
5131 	u32 sstatus;
5132 
5133 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5134 	    ata_sstatus_online(sstatus))
5135 		return true;
5136 	return false;
5137 }
5138 
5139 /**
5140  *	ata_phys_link_offline - test whether the given link is offline
5141  *	@link: ATA link to test
5142  *
5143  *	Test whether @link is offline.  Note that this function
5144  *	returns 0 if offline status of @link cannot be obtained, so
5145  *	ata_link_online(link) != !ata_link_offline(link).
5146  *
5147  *	LOCKING:
5148  *	None.
5149  *
5150  *	RETURNS:
5151  *	True if the port offline status is available and offline.
5152  */
ata_phys_link_offline(struct ata_link * link)5153 bool ata_phys_link_offline(struct ata_link *link)
5154 {
5155 	u32 sstatus;
5156 
5157 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5158 	    !ata_sstatus_online(sstatus))
5159 		return true;
5160 	return false;
5161 }
5162 
5163 /**
5164  *	ata_link_online - test whether the given link is online
5165  *	@link: ATA link to test
5166  *
5167  *	Test whether @link is online.  This is identical to
5168  *	ata_phys_link_online() when there's no slave link.  When
5169  *	there's a slave link, this function should only be called on
5170  *	the master link and will return true if any of M/S links is
5171  *	online.
5172  *
5173  *	LOCKING:
5174  *	None.
5175  *
5176  *	RETURNS:
5177  *	True if the port online status is available and online.
5178  */
ata_link_online(struct ata_link * link)5179 bool ata_link_online(struct ata_link *link)
5180 {
5181 	struct ata_link *slave = link->ap->slave_link;
5182 
5183 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5184 
5185 	return ata_phys_link_online(link) ||
5186 		(slave && ata_phys_link_online(slave));
5187 }
5188 EXPORT_SYMBOL_GPL(ata_link_online);
5189 
5190 /**
5191  *	ata_link_offline - test whether the given link is offline
5192  *	@link: ATA link to test
5193  *
5194  *	Test whether @link is offline.  This is identical to
5195  *	ata_phys_link_offline() when there's no slave link.  When
5196  *	there's a slave link, this function should only be called on
5197  *	the master link and will return true if both M/S links are
5198  *	offline.
5199  *
5200  *	LOCKING:
5201  *	None.
5202  *
5203  *	RETURNS:
5204  *	True if the port offline status is available and offline.
5205  */
ata_link_offline(struct ata_link * link)5206 bool ata_link_offline(struct ata_link *link)
5207 {
5208 	struct ata_link *slave = link->ap->slave_link;
5209 
5210 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5211 
5212 	return ata_phys_link_offline(link) &&
5213 		(!slave || ata_phys_link_offline(slave));
5214 }
5215 EXPORT_SYMBOL_GPL(ata_link_offline);
5216 
5217 #ifdef CONFIG_PM
ata_port_request_pm(struct ata_port * ap,pm_message_t mesg,unsigned int action,unsigned int ehi_flags,bool async)5218 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5219 				unsigned int action, unsigned int ehi_flags,
5220 				bool async)
5221 {
5222 	struct ata_link *link;
5223 	unsigned long flags;
5224 
5225 	spin_lock_irqsave(ap->lock, flags);
5226 
5227 	/*
5228 	 * A previous PM operation might still be in progress. Wait for
5229 	 * ATA_PFLAG_PM_PENDING to clear.
5230 	 */
5231 	if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5232 		spin_unlock_irqrestore(ap->lock, flags);
5233 		ata_port_wait_eh(ap);
5234 		spin_lock_irqsave(ap->lock, flags);
5235 	}
5236 
5237 	/* Request PM operation to EH */
5238 	ap->pm_mesg = mesg;
5239 	ap->pflags |= ATA_PFLAG_PM_PENDING;
5240 	ata_for_each_link(link, ap, HOST_FIRST) {
5241 		link->eh_info.action |= action;
5242 		link->eh_info.flags |= ehi_flags;
5243 	}
5244 
5245 	ata_port_schedule_eh(ap);
5246 
5247 	spin_unlock_irqrestore(ap->lock, flags);
5248 
5249 	if (!async)
5250 		ata_port_wait_eh(ap);
5251 }
5252 
ata_port_suspend(struct ata_port * ap,pm_message_t mesg,bool async)5253 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg,
5254 			     bool async)
5255 {
5256 	/*
5257 	 * We are about to suspend the port, so we do not care about
5258 	 * scsi_rescan_device() calls scheduled by previous resume operations.
5259 	 * The next resume will schedule the rescan again. So cancel any rescan
5260 	 * that is not done yet.
5261 	 */
5262 	cancel_delayed_work_sync(&ap->scsi_rescan_task);
5263 
5264 	/*
5265 	 * On some hardware, device fails to respond after spun down for
5266 	 * suspend. As the device will not be used until being resumed, we
5267 	 * do not need to touch the device. Ask EH to skip the usual stuff
5268 	 * and proceed directly to suspend.
5269 	 *
5270 	 * http://thread.gmane.org/gmane.linux.ide/46764
5271 	 */
5272 	ata_port_request_pm(ap, mesg, 0,
5273 			    ATA_EHI_QUIET | ATA_EHI_NO_AUTOPSY |
5274 			    ATA_EHI_NO_RECOVERY,
5275 			    async);
5276 }
5277 
ata_port_pm_suspend(struct device * dev)5278 static int ata_port_pm_suspend(struct device *dev)
5279 {
5280 	struct ata_port *ap = to_ata_port(dev);
5281 
5282 	if (pm_runtime_suspended(dev))
5283 		return 0;
5284 
5285 	ata_port_suspend(ap, PMSG_SUSPEND, false);
5286 	return 0;
5287 }
5288 
ata_port_pm_freeze(struct device * dev)5289 static int ata_port_pm_freeze(struct device *dev)
5290 {
5291 	struct ata_port *ap = to_ata_port(dev);
5292 
5293 	if (pm_runtime_suspended(dev))
5294 		return 0;
5295 
5296 	ata_port_suspend(ap, PMSG_FREEZE, false);
5297 	return 0;
5298 }
5299 
ata_port_pm_poweroff(struct device * dev)5300 static int ata_port_pm_poweroff(struct device *dev)
5301 {
5302 	if (!pm_runtime_suspended(dev))
5303 		ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE, false);
5304 	return 0;
5305 }
5306 
ata_port_resume(struct ata_port * ap,pm_message_t mesg,bool async)5307 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg,
5308 			    bool async)
5309 {
5310 	ata_port_request_pm(ap, mesg, ATA_EH_RESET,
5311 			    ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET,
5312 			    async);
5313 }
5314 
ata_port_pm_resume(struct device * dev)5315 static int ata_port_pm_resume(struct device *dev)
5316 {
5317 	if (!pm_runtime_suspended(dev))
5318 		ata_port_resume(to_ata_port(dev), PMSG_RESUME, true);
5319 	return 0;
5320 }
5321 
5322 /*
5323  * For ODDs, the upper layer will poll for media change every few seconds,
5324  * which will make it enter and leave suspend state every few seconds. And
5325  * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5326  * is very little and the ODD may malfunction after constantly being reset.
5327  * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5328  * ODD is attached to the port.
5329  */
ata_port_runtime_idle(struct device * dev)5330 static int ata_port_runtime_idle(struct device *dev)
5331 {
5332 	struct ata_port *ap = to_ata_port(dev);
5333 	struct ata_link *link;
5334 	struct ata_device *adev;
5335 
5336 	ata_for_each_link(link, ap, HOST_FIRST) {
5337 		ata_for_each_dev(adev, link, ENABLED)
5338 			if (adev->class == ATA_DEV_ATAPI &&
5339 			    !zpodd_dev_enabled(adev))
5340 				return -EBUSY;
5341 	}
5342 
5343 	return 0;
5344 }
5345 
ata_port_runtime_suspend(struct device * dev)5346 static int ata_port_runtime_suspend(struct device *dev)
5347 {
5348 	ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND, false);
5349 	return 0;
5350 }
5351 
ata_port_runtime_resume(struct device * dev)5352 static int ata_port_runtime_resume(struct device *dev)
5353 {
5354 	ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME, false);
5355 	return 0;
5356 }
5357 
5358 static const struct dev_pm_ops ata_port_pm_ops = {
5359 	.suspend = ata_port_pm_suspend,
5360 	.resume = ata_port_pm_resume,
5361 	.freeze = ata_port_pm_freeze,
5362 	.thaw = ata_port_pm_resume,
5363 	.poweroff = ata_port_pm_poweroff,
5364 	.restore = ata_port_pm_resume,
5365 
5366 	.runtime_suspend = ata_port_runtime_suspend,
5367 	.runtime_resume = ata_port_runtime_resume,
5368 	.runtime_idle = ata_port_runtime_idle,
5369 };
5370 
5371 /* sas ports don't participate in pm runtime management of ata_ports,
5372  * and need to resume ata devices at the domain level, not the per-port
5373  * level. sas suspend/resume is async to allow parallel port recovery
5374  * since sas has multiple ata_port instances per Scsi_Host.
5375  */
ata_sas_port_suspend(struct ata_port * ap)5376 void ata_sas_port_suspend(struct ata_port *ap)
5377 {
5378 	ata_port_suspend(ap, PMSG_SUSPEND, true);
5379 }
5380 EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5381 
ata_sas_port_resume(struct ata_port * ap)5382 void ata_sas_port_resume(struct ata_port *ap)
5383 {
5384 	ata_port_resume(ap, PMSG_RESUME, true);
5385 }
5386 EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5387 
5388 /**
5389  *	ata_host_suspend - suspend host
5390  *	@host: host to suspend
5391  *	@mesg: PM message
5392  *
5393  *	Suspend @host.  Actual operation is performed by port suspend.
5394  */
ata_host_suspend(struct ata_host * host,pm_message_t mesg)5395 void ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5396 {
5397 	host->dev->power.power_state = mesg;
5398 }
5399 EXPORT_SYMBOL_GPL(ata_host_suspend);
5400 
5401 /**
5402  *	ata_host_resume - resume host
5403  *	@host: host to resume
5404  *
5405  *	Resume @host.  Actual operation is performed by port resume.
5406  */
ata_host_resume(struct ata_host * host)5407 void ata_host_resume(struct ata_host *host)
5408 {
5409 	host->dev->power.power_state = PMSG_ON;
5410 }
5411 EXPORT_SYMBOL_GPL(ata_host_resume);
5412 #endif
5413 
5414 const struct device_type ata_port_type = {
5415 	.name = ATA_PORT_TYPE_NAME,
5416 #ifdef CONFIG_PM
5417 	.pm = &ata_port_pm_ops,
5418 #endif
5419 };
5420 
5421 /**
5422  *	ata_dev_init - Initialize an ata_device structure
5423  *	@dev: Device structure to initialize
5424  *
5425  *	Initialize @dev in preparation for probing.
5426  *
5427  *	LOCKING:
5428  *	Inherited from caller.
5429  */
ata_dev_init(struct ata_device * dev)5430 void ata_dev_init(struct ata_device *dev)
5431 {
5432 	struct ata_link *link = ata_dev_phys_link(dev);
5433 	struct ata_port *ap = link->ap;
5434 	unsigned long flags;
5435 
5436 	/* SATA spd limit is bound to the attached device, reset together */
5437 	link->sata_spd_limit = link->hw_sata_spd_limit;
5438 	link->sata_spd = 0;
5439 
5440 	/* High bits of dev->flags are used to record warm plug
5441 	 * requests which occur asynchronously.  Synchronize using
5442 	 * host lock.
5443 	 */
5444 	spin_lock_irqsave(ap->lock, flags);
5445 	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5446 	dev->quirks = 0;
5447 	spin_unlock_irqrestore(ap->lock, flags);
5448 
5449 	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5450 	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5451 	dev->pio_mask = UINT_MAX;
5452 	dev->mwdma_mask = UINT_MAX;
5453 	dev->udma_mask = UINT_MAX;
5454 }
5455 
5456 /**
5457  *	ata_link_init - Initialize an ata_link structure
5458  *	@ap: ATA port link is attached to
5459  *	@link: Link structure to initialize
5460  *	@pmp: Port multiplier port number
5461  *
5462  *	Initialize @link.
5463  *
5464  *	LOCKING:
5465  *	Kernel thread context (may sleep)
5466  */
ata_link_init(struct ata_port * ap,struct ata_link * link,int pmp)5467 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5468 {
5469 	int i;
5470 
5471 	/* clear everything except for devices */
5472 	memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5473 	       ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5474 
5475 	link->ap = ap;
5476 	link->pmp = pmp;
5477 	link->active_tag = ATA_TAG_POISON;
5478 	link->hw_sata_spd_limit = UINT_MAX;
5479 
5480 	/* can't use iterator, ap isn't initialized yet */
5481 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5482 		struct ata_device *dev = &link->device[i];
5483 
5484 		dev->link = link;
5485 		dev->devno = dev - link->device;
5486 #ifdef CONFIG_ATA_ACPI
5487 		dev->gtf_filter = ata_acpi_gtf_filter;
5488 #endif
5489 		ata_dev_init(dev);
5490 	}
5491 }
5492 
5493 /**
5494  *	sata_link_init_spd - Initialize link->sata_spd_limit
5495  *	@link: Link to configure sata_spd_limit for
5496  *
5497  *	Initialize ``link->[hw_]sata_spd_limit`` to the currently
5498  *	configured value.
5499  *
5500  *	LOCKING:
5501  *	Kernel thread context (may sleep).
5502  *
5503  *	RETURNS:
5504  *	0 on success, -errno on failure.
5505  */
sata_link_init_spd(struct ata_link * link)5506 int sata_link_init_spd(struct ata_link *link)
5507 {
5508 	u8 spd;
5509 	int rc;
5510 
5511 	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5512 	if (rc)
5513 		return rc;
5514 
5515 	spd = (link->saved_scontrol >> 4) & 0xf;
5516 	if (spd)
5517 		link->hw_sata_spd_limit &= (1 << spd) - 1;
5518 
5519 	ata_force_link_limits(link);
5520 
5521 	link->sata_spd_limit = link->hw_sata_spd_limit;
5522 
5523 	return 0;
5524 }
5525 
5526 /**
5527  *	ata_port_alloc - allocate and initialize basic ATA port resources
5528  *	@host: ATA host this allocated port belongs to
5529  *
5530  *	Allocate and initialize basic ATA port resources.
5531  *
5532  *	RETURNS:
5533  *	Allocate ATA port on success, NULL on failure.
5534  *
5535  *	LOCKING:
5536  *	Inherited from calling layer (may sleep).
5537  */
ata_port_alloc(struct ata_host * host)5538 struct ata_port *ata_port_alloc(struct ata_host *host)
5539 {
5540 	struct ata_port *ap;
5541 	int id;
5542 
5543 	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5544 	if (!ap)
5545 		return NULL;
5546 
5547 	ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5548 	ap->lock = &host->lock;
5549 	id = ida_alloc_min(&ata_ida, 1, GFP_KERNEL);
5550 	if (id < 0) {
5551 		kfree(ap);
5552 		return NULL;
5553 	}
5554 	ap->print_id = id;
5555 	ap->host = host;
5556 	ap->dev = host->dev;
5557 
5558 	mutex_init(&ap->scsi_scan_mutex);
5559 	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5560 	INIT_DELAYED_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5561 	INIT_LIST_HEAD(&ap->eh_done_q);
5562 	init_waitqueue_head(&ap->eh_wait_q);
5563 	init_completion(&ap->park_req_pending);
5564 	timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
5565 		    TIMER_DEFERRABLE);
5566 
5567 	ap->cbl = ATA_CBL_NONE;
5568 
5569 	ata_link_init(ap, &ap->link, 0);
5570 
5571 #ifdef ATA_IRQ_TRAP
5572 	ap->stats.unhandled_irq = 1;
5573 	ap->stats.idle_irq = 1;
5574 #endif
5575 	ata_sff_port_init(ap);
5576 
5577 	ata_force_pflags(ap);
5578 
5579 	return ap;
5580 }
5581 EXPORT_SYMBOL_GPL(ata_port_alloc);
5582 
ata_port_free(struct ata_port * ap)5583 void ata_port_free(struct ata_port *ap)
5584 {
5585 	if (!ap)
5586 		return;
5587 
5588 	kfree(ap->pmp_link);
5589 	kfree(ap->slave_link);
5590 	ida_free(&ata_ida, ap->print_id);
5591 	kfree(ap);
5592 }
5593 EXPORT_SYMBOL_GPL(ata_port_free);
5594 
ata_devres_release(struct device * gendev,void * res)5595 static void ata_devres_release(struct device *gendev, void *res)
5596 {
5597 	struct ata_host *host = dev_get_drvdata(gendev);
5598 	int i;
5599 
5600 	for (i = 0; i < host->n_ports; i++) {
5601 		struct ata_port *ap = host->ports[i];
5602 
5603 		if (!ap)
5604 			continue;
5605 
5606 		if (ap->scsi_host)
5607 			scsi_host_put(ap->scsi_host);
5608 
5609 	}
5610 
5611 	dev_set_drvdata(gendev, NULL);
5612 	ata_host_put(host);
5613 }
5614 
ata_host_release(struct kref * kref)5615 static void ata_host_release(struct kref *kref)
5616 {
5617 	struct ata_host *host = container_of(kref, struct ata_host, kref);
5618 	int i;
5619 
5620 	for (i = 0; i < host->n_ports; i++) {
5621 		ata_port_free(host->ports[i]);
5622 		host->ports[i] = NULL;
5623 	}
5624 	kfree(host);
5625 }
5626 
ata_host_get(struct ata_host * host)5627 void ata_host_get(struct ata_host *host)
5628 {
5629 	kref_get(&host->kref);
5630 }
5631 
ata_host_put(struct ata_host * host)5632 void ata_host_put(struct ata_host *host)
5633 {
5634 	kref_put(&host->kref, ata_host_release);
5635 }
5636 EXPORT_SYMBOL_GPL(ata_host_put);
5637 
5638 /**
5639  *	ata_host_alloc - allocate and init basic ATA host resources
5640  *	@dev: generic device this host is associated with
5641  *	@n_ports: the number of ATA ports associated with this host
5642  *
5643  *	Allocate and initialize basic ATA host resources.  LLD calls
5644  *	this function to allocate a host, initializes it fully and
5645  *	attaches it using ata_host_register().
5646  *
5647  *	RETURNS:
5648  *	Allocate ATA host on success, NULL on failure.
5649  *
5650  *	LOCKING:
5651  *	Inherited from calling layer (may sleep).
5652  */
ata_host_alloc(struct device * dev,int n_ports)5653 struct ata_host *ata_host_alloc(struct device *dev, int n_ports)
5654 {
5655 	struct ata_host *host;
5656 	size_t sz;
5657 	int i;
5658 	void *dr;
5659 
5660 	/* alloc a container for our list of ATA ports (buses) */
5661 	sz = sizeof(struct ata_host) + n_ports * sizeof(void *);
5662 	host = kzalloc(sz, GFP_KERNEL);
5663 	if (!host)
5664 		return NULL;
5665 
5666 	if (!devres_open_group(dev, NULL, GFP_KERNEL)) {
5667 		kfree(host);
5668 		return NULL;
5669 	}
5670 
5671 	dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
5672 	if (!dr) {
5673 		kfree(host);
5674 		goto err_out;
5675 	}
5676 
5677 	devres_add(dev, dr);
5678 	dev_set_drvdata(dev, host);
5679 
5680 	spin_lock_init(&host->lock);
5681 	mutex_init(&host->eh_mutex);
5682 	host->dev = dev;
5683 	host->n_ports = n_ports;
5684 	kref_init(&host->kref);
5685 
5686 	/* allocate ports bound to this host */
5687 	for (i = 0; i < n_ports; i++) {
5688 		struct ata_port *ap;
5689 
5690 		ap = ata_port_alloc(host);
5691 		if (!ap)
5692 			goto err_out;
5693 
5694 		ap->port_no = i;
5695 		host->ports[i] = ap;
5696 	}
5697 
5698 	devres_remove_group(dev, NULL);
5699 	return host;
5700 
5701  err_out:
5702 	devres_release_group(dev, NULL);
5703 	return NULL;
5704 }
5705 EXPORT_SYMBOL_GPL(ata_host_alloc);
5706 
5707 /**
5708  *	ata_host_alloc_pinfo - alloc host and init with port_info array
5709  *	@dev: generic device this host is associated with
5710  *	@ppi: array of ATA port_info to initialize host with
5711  *	@n_ports: number of ATA ports attached to this host
5712  *
5713  *	Allocate ATA host and initialize with info from @ppi.  If NULL
5714  *	terminated, @ppi may contain fewer entries than @n_ports.  The
5715  *	last entry will be used for the remaining ports.
5716  *
5717  *	RETURNS:
5718  *	Allocate ATA host on success, NULL on failure.
5719  *
5720  *	LOCKING:
5721  *	Inherited from calling layer (may sleep).
5722  */
ata_host_alloc_pinfo(struct device * dev,const struct ata_port_info * const * ppi,int n_ports)5723 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5724 				      const struct ata_port_info * const * ppi,
5725 				      int n_ports)
5726 {
5727 	const struct ata_port_info *pi = &ata_dummy_port_info;
5728 	struct ata_host *host;
5729 	int i, j;
5730 
5731 	host = ata_host_alloc(dev, n_ports);
5732 	if (!host)
5733 		return NULL;
5734 
5735 	for (i = 0, j = 0; i < host->n_ports; i++) {
5736 		struct ata_port *ap = host->ports[i];
5737 
5738 		if (ppi[j])
5739 			pi = ppi[j++];
5740 
5741 		ap->pio_mask = pi->pio_mask;
5742 		ap->mwdma_mask = pi->mwdma_mask;
5743 		ap->udma_mask = pi->udma_mask;
5744 		ap->flags |= pi->flags;
5745 		ap->link.flags |= pi->link_flags;
5746 		ap->ops = pi->port_ops;
5747 
5748 		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5749 			host->ops = pi->port_ops;
5750 	}
5751 
5752 	return host;
5753 }
5754 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
5755 
ata_host_stop(struct device * gendev,void * res)5756 static void ata_host_stop(struct device *gendev, void *res)
5757 {
5758 	struct ata_host *host = dev_get_drvdata(gendev);
5759 	int i;
5760 
5761 	WARN_ON(!(host->flags & ATA_HOST_STARTED));
5762 
5763 	for (i = 0; i < host->n_ports; i++) {
5764 		struct ata_port *ap = host->ports[i];
5765 
5766 		if (ap->ops->port_stop)
5767 			ap->ops->port_stop(ap);
5768 	}
5769 
5770 	if (host->ops->host_stop)
5771 		host->ops->host_stop(host);
5772 }
5773 
5774 /**
5775  *	ata_finalize_port_ops - finalize ata_port_operations
5776  *	@ops: ata_port_operations to finalize
5777  *
5778  *	An ata_port_operations can inherit from another ops and that
5779  *	ops can again inherit from another.  This can go on as many
5780  *	times as necessary as long as there is no loop in the
5781  *	inheritance chain.
5782  *
5783  *	Ops tables are finalized when the host is started.  NULL or
5784  *	unspecified entries are inherited from the closet ancestor
5785  *	which has the method and the entry is populated with it.
5786  *	After finalization, the ops table directly points to all the
5787  *	methods and ->inherits is no longer necessary and cleared.
5788  *
5789  *	Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5790  *
5791  *	LOCKING:
5792  *	None.
5793  */
ata_finalize_port_ops(struct ata_port_operations * ops)5794 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5795 {
5796 	static DEFINE_SPINLOCK(lock);
5797 	const struct ata_port_operations *cur;
5798 	void **begin = (void **)ops;
5799 	void **end = (void **)&ops->inherits;
5800 	void **pp;
5801 
5802 	if (!ops || !ops->inherits)
5803 		return;
5804 
5805 	spin_lock(&lock);
5806 
5807 	for (cur = ops->inherits; cur; cur = cur->inherits) {
5808 		void **inherit = (void **)cur;
5809 
5810 		for (pp = begin; pp < end; pp++, inherit++)
5811 			if (!*pp)
5812 				*pp = *inherit;
5813 	}
5814 
5815 	for (pp = begin; pp < end; pp++)
5816 		if (IS_ERR(*pp))
5817 			*pp = NULL;
5818 
5819 	ops->inherits = NULL;
5820 
5821 	spin_unlock(&lock);
5822 }
5823 
5824 /**
5825  *	ata_host_start - start and freeze ports of an ATA host
5826  *	@host: ATA host to start ports for
5827  *
5828  *	Start and then freeze ports of @host.  Started status is
5829  *	recorded in host->flags, so this function can be called
5830  *	multiple times.  Ports are guaranteed to get started only
5831  *	once.  If host->ops is not initialized yet, it is set to the
5832  *	first non-dummy port ops.
5833  *
5834  *	LOCKING:
5835  *	Inherited from calling layer (may sleep).
5836  *
5837  *	RETURNS:
5838  *	0 if all ports are started successfully, -errno otherwise.
5839  */
ata_host_start(struct ata_host * host)5840 int ata_host_start(struct ata_host *host)
5841 {
5842 	int have_stop = 0;
5843 	void *start_dr = NULL;
5844 	int i, rc;
5845 
5846 	if (host->flags & ATA_HOST_STARTED)
5847 		return 0;
5848 
5849 	ata_finalize_port_ops(host->ops);
5850 
5851 	for (i = 0; i < host->n_ports; i++) {
5852 		struct ata_port *ap = host->ports[i];
5853 
5854 		ata_finalize_port_ops(ap->ops);
5855 
5856 		if (!host->ops && !ata_port_is_dummy(ap))
5857 			host->ops = ap->ops;
5858 
5859 		if (ap->ops->port_stop)
5860 			have_stop = 1;
5861 	}
5862 
5863 	if (host->ops && host->ops->host_stop)
5864 		have_stop = 1;
5865 
5866 	if (have_stop) {
5867 		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5868 		if (!start_dr)
5869 			return -ENOMEM;
5870 	}
5871 
5872 	for (i = 0; i < host->n_ports; i++) {
5873 		struct ata_port *ap = host->ports[i];
5874 
5875 		if (ap->ops->port_start) {
5876 			rc = ap->ops->port_start(ap);
5877 			if (rc) {
5878 				if (rc != -ENODEV)
5879 					dev_err(host->dev,
5880 						"failed to start port %d (errno=%d)\n",
5881 						i, rc);
5882 				goto err_out;
5883 			}
5884 		}
5885 		ata_eh_freeze_port(ap);
5886 	}
5887 
5888 	if (start_dr)
5889 		devres_add(host->dev, start_dr);
5890 	host->flags |= ATA_HOST_STARTED;
5891 	return 0;
5892 
5893  err_out:
5894 	while (--i >= 0) {
5895 		struct ata_port *ap = host->ports[i];
5896 
5897 		if (ap->ops->port_stop)
5898 			ap->ops->port_stop(ap);
5899 	}
5900 	devres_free(start_dr);
5901 	return rc;
5902 }
5903 EXPORT_SYMBOL_GPL(ata_host_start);
5904 
5905 /**
5906  *	ata_host_init - Initialize a host struct for sas (ipr, libsas)
5907  *	@host:	host to initialize
5908  *	@dev:	device host is attached to
5909  *	@ops:	port_ops
5910  *
5911  */
ata_host_init(struct ata_host * host,struct device * dev,struct ata_port_operations * ops)5912 void ata_host_init(struct ata_host *host, struct device *dev,
5913 		   struct ata_port_operations *ops)
5914 {
5915 	spin_lock_init(&host->lock);
5916 	mutex_init(&host->eh_mutex);
5917 	host->n_tags = ATA_MAX_QUEUE;
5918 	host->dev = dev;
5919 	host->ops = ops;
5920 	kref_init(&host->kref);
5921 }
5922 EXPORT_SYMBOL_GPL(ata_host_init);
5923 
ata_port_probe(struct ata_port * ap)5924 void ata_port_probe(struct ata_port *ap)
5925 {
5926 	struct ata_eh_info *ehi = &ap->link.eh_info;
5927 	unsigned long flags;
5928 
5929 	ata_acpi_port_power_on(ap);
5930 
5931 	/* kick EH for boot probing */
5932 	spin_lock_irqsave(ap->lock, flags);
5933 
5934 	ehi->probe_mask |= ATA_ALL_DEVICES;
5935 	ehi->action |= ATA_EH_RESET;
5936 	ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5937 
5938 	ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5939 	ap->pflags |= ATA_PFLAG_LOADING;
5940 	ata_port_schedule_eh(ap);
5941 
5942 	spin_unlock_irqrestore(ap->lock, flags);
5943 }
5944 EXPORT_SYMBOL_GPL(ata_port_probe);
5945 
async_port_probe(void * data,async_cookie_t cookie)5946 static void async_port_probe(void *data, async_cookie_t cookie)
5947 {
5948 	struct ata_port *ap = data;
5949 
5950 	/*
5951 	 * If we're not allowed to scan this host in parallel,
5952 	 * we need to wait until all previous scans have completed
5953 	 * before going further.
5954 	 * Jeff Garzik says this is only within a controller, so we
5955 	 * don't need to wait for port 0, only for later ports.
5956 	 */
5957 	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5958 		async_synchronize_cookie(cookie);
5959 
5960 	ata_port_probe(ap);
5961 	ata_port_wait_eh(ap);
5962 
5963 	/* in order to keep device order, we need to synchronize at this point */
5964 	async_synchronize_cookie(cookie);
5965 
5966 	ata_scsi_scan_host(ap, 1);
5967 }
5968 
5969 /**
5970  *	ata_host_register - register initialized ATA host
5971  *	@host: ATA host to register
5972  *	@sht: template for SCSI host
5973  *
5974  *	Register initialized ATA host.  @host is allocated using
5975  *	ata_host_alloc() and fully initialized by LLD.  This function
5976  *	starts ports, registers @host with ATA and SCSI layers and
5977  *	probe registered devices.
5978  *
5979  *	LOCKING:
5980  *	Inherited from calling layer (may sleep).
5981  *
5982  *	RETURNS:
5983  *	0 on success, -errno otherwise.
5984  */
ata_host_register(struct ata_host * host,const struct scsi_host_template * sht)5985 int ata_host_register(struct ata_host *host, const struct scsi_host_template *sht)
5986 {
5987 	int i, rc;
5988 
5989 	host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE);
5990 
5991 	/* host must have been started */
5992 	if (!(host->flags & ATA_HOST_STARTED)) {
5993 		dev_err(host->dev, "BUG: trying to register unstarted host\n");
5994 		WARN_ON(1);
5995 		return -EINVAL;
5996 	}
5997 
5998 	/* Create associated sysfs transport objects  */
5999 	for (i = 0; i < host->n_ports; i++) {
6000 		rc = ata_tport_add(host->dev,host->ports[i]);
6001 		if (rc) {
6002 			goto err_tadd;
6003 		}
6004 	}
6005 
6006 	rc = ata_scsi_add_hosts(host, sht);
6007 	if (rc)
6008 		goto err_tadd;
6009 
6010 	/* set cable, sata_spd_limit and report */
6011 	for (i = 0; i < host->n_ports; i++) {
6012 		struct ata_port *ap = host->ports[i];
6013 		unsigned int xfer_mask;
6014 
6015 		/* set SATA cable type if still unset */
6016 		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6017 			ap->cbl = ATA_CBL_SATA;
6018 
6019 		/* init sata_spd_limit to the current value */
6020 		sata_link_init_spd(&ap->link);
6021 		if (ap->slave_link)
6022 			sata_link_init_spd(ap->slave_link);
6023 
6024 		/* print per-port info to dmesg */
6025 		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6026 					      ap->udma_mask);
6027 
6028 		if (!ata_port_is_dummy(ap)) {
6029 			ata_port_info(ap, "%cATA max %s %s\n",
6030 				      (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6031 				      ata_mode_string(xfer_mask),
6032 				      ap->link.eh_info.desc);
6033 			ata_ehi_clear_desc(&ap->link.eh_info);
6034 		} else
6035 			ata_port_info(ap, "DUMMY\n");
6036 	}
6037 
6038 	/* perform each probe asynchronously */
6039 	for (i = 0; i < host->n_ports; i++) {
6040 		struct ata_port *ap = host->ports[i];
6041 		ap->cookie = async_schedule(async_port_probe, ap);
6042 	}
6043 
6044 	return 0;
6045 
6046  err_tadd:
6047 	while (--i >= 0) {
6048 		ata_tport_delete(host->ports[i]);
6049 	}
6050 	return rc;
6051 
6052 }
6053 EXPORT_SYMBOL_GPL(ata_host_register);
6054 
6055 /**
6056  *	ata_host_activate - start host, request IRQ and register it
6057  *	@host: target ATA host
6058  *	@irq: IRQ to request
6059  *	@irq_handler: irq_handler used when requesting IRQ
6060  *	@irq_flags: irq_flags used when requesting IRQ
6061  *	@sht: scsi_host_template to use when registering the host
6062  *
6063  *	After allocating an ATA host and initializing it, most libata
6064  *	LLDs perform three steps to activate the host - start host,
6065  *	request IRQ and register it.  This helper takes necessary
6066  *	arguments and performs the three steps in one go.
6067  *
6068  *	An invalid IRQ skips the IRQ registration and expects the host to
6069  *	have set polling mode on the port. In this case, @irq_handler
6070  *	should be NULL.
6071  *
6072  *	LOCKING:
6073  *	Inherited from calling layer (may sleep).
6074  *
6075  *	RETURNS:
6076  *	0 on success, -errno otherwise.
6077  */
ata_host_activate(struct ata_host * host,int irq,irq_handler_t irq_handler,unsigned long irq_flags,const struct scsi_host_template * sht)6078 int ata_host_activate(struct ata_host *host, int irq,
6079 		      irq_handler_t irq_handler, unsigned long irq_flags,
6080 		      const struct scsi_host_template *sht)
6081 {
6082 	int i, rc;
6083 	char *irq_desc;
6084 
6085 	rc = ata_host_start(host);
6086 	if (rc)
6087 		return rc;
6088 
6089 	/* Special case for polling mode */
6090 	if (!irq) {
6091 		WARN_ON(irq_handler);
6092 		return ata_host_register(host, sht);
6093 	}
6094 
6095 	irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
6096 				  dev_driver_string(host->dev),
6097 				  dev_name(host->dev));
6098 	if (!irq_desc)
6099 		return -ENOMEM;
6100 
6101 	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6102 			      irq_desc, host);
6103 	if (rc)
6104 		return rc;
6105 
6106 	for (i = 0; i < host->n_ports; i++)
6107 		ata_port_desc_misc(host->ports[i], irq);
6108 
6109 	rc = ata_host_register(host, sht);
6110 	/* if failed, just free the IRQ and leave ports alone */
6111 	if (rc)
6112 		devm_free_irq(host->dev, irq, host);
6113 
6114 	return rc;
6115 }
6116 EXPORT_SYMBOL_GPL(ata_host_activate);
6117 
6118 /**
6119  *	ata_dev_free_resources - Free a device resources
6120  *	@dev: Target ATA device
6121  *
6122  *	Free resources allocated to support a device features.
6123  *
6124  *	LOCKING:
6125  *	Kernel thread context (may sleep).
6126  */
ata_dev_free_resources(struct ata_device * dev)6127 void ata_dev_free_resources(struct ata_device *dev)
6128 {
6129 	if (zpodd_dev_enabled(dev))
6130 		zpodd_exit(dev);
6131 
6132 	ata_dev_cleanup_cdl_resources(dev);
6133 }
6134 
6135 /**
6136  *	ata_port_detach - Detach ATA port in preparation of device removal
6137  *	@ap: ATA port to be detached
6138  *
6139  *	Detach all ATA devices and the associated SCSI devices of @ap;
6140  *	then, remove the associated SCSI host.  @ap is guaranteed to
6141  *	be quiescent on return from this function.
6142  *
6143  *	LOCKING:
6144  *	Kernel thread context (may sleep).
6145  */
ata_port_detach(struct ata_port * ap)6146 static void ata_port_detach(struct ata_port *ap)
6147 {
6148 	unsigned long flags;
6149 	struct ata_link *link;
6150 	struct ata_device *dev;
6151 
6152 	/* Ensure ata_port probe has completed */
6153 	async_synchronize_cookie(ap->cookie + 1);
6154 
6155 	/* Wait for any ongoing EH */
6156 	ata_port_wait_eh(ap);
6157 
6158 	mutex_lock(&ap->scsi_scan_mutex);
6159 	spin_lock_irqsave(ap->lock, flags);
6160 
6161 	/* Remove scsi devices */
6162 	ata_for_each_link(link, ap, HOST_FIRST) {
6163 		ata_for_each_dev(dev, link, ALL) {
6164 			if (dev->sdev) {
6165 				spin_unlock_irqrestore(ap->lock, flags);
6166 				scsi_remove_device(dev->sdev);
6167 				spin_lock_irqsave(ap->lock, flags);
6168 				dev->sdev = NULL;
6169 			}
6170 		}
6171 	}
6172 
6173 	/* Tell EH to disable all devices */
6174 	ap->pflags |= ATA_PFLAG_UNLOADING;
6175 	ata_port_schedule_eh(ap);
6176 
6177 	spin_unlock_irqrestore(ap->lock, flags);
6178 	mutex_unlock(&ap->scsi_scan_mutex);
6179 
6180 	/* wait till EH commits suicide */
6181 	ata_port_wait_eh(ap);
6182 
6183 	/* it better be dead now */
6184 	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6185 
6186 	cancel_delayed_work_sync(&ap->hotplug_task);
6187 	cancel_delayed_work_sync(&ap->scsi_rescan_task);
6188 
6189 	/* Delete port multiplier link transport devices */
6190 	if (ap->pmp_link) {
6191 		int i;
6192 
6193 		for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6194 			ata_tlink_delete(&ap->pmp_link[i]);
6195 	}
6196 
6197 	/* Remove the associated SCSI host */
6198 	scsi_remove_host(ap->scsi_host);
6199 	ata_tport_delete(ap);
6200 }
6201 
6202 /**
6203  *	ata_host_detach - Detach all ports of an ATA host
6204  *	@host: Host to detach
6205  *
6206  *	Detach all ports of @host.
6207  *
6208  *	LOCKING:
6209  *	Kernel thread context (may sleep).
6210  */
ata_host_detach(struct ata_host * host)6211 void ata_host_detach(struct ata_host *host)
6212 {
6213 	int i;
6214 
6215 	for (i = 0; i < host->n_ports; i++)
6216 		ata_port_detach(host->ports[i]);
6217 
6218 	/* the host is dead now, dissociate ACPI */
6219 	ata_acpi_dissociate(host);
6220 }
6221 EXPORT_SYMBOL_GPL(ata_host_detach);
6222 
6223 #ifdef CONFIG_PCI
6224 
6225 /**
6226  *	ata_pci_remove_one - PCI layer callback for device removal
6227  *	@pdev: PCI device that was removed
6228  *
6229  *	PCI layer indicates to libata via this hook that hot-unplug or
6230  *	module unload event has occurred.  Detach all ports.  Resource
6231  *	release is handled via devres.
6232  *
6233  *	LOCKING:
6234  *	Inherited from PCI layer (may sleep).
6235  */
ata_pci_remove_one(struct pci_dev * pdev)6236 void ata_pci_remove_one(struct pci_dev *pdev)
6237 {
6238 	struct ata_host *host = pci_get_drvdata(pdev);
6239 
6240 	ata_host_detach(host);
6241 }
6242 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6243 
ata_pci_shutdown_one(struct pci_dev * pdev)6244 void ata_pci_shutdown_one(struct pci_dev *pdev)
6245 {
6246 	struct ata_host *host = pci_get_drvdata(pdev);
6247 	int i;
6248 
6249 	for (i = 0; i < host->n_ports; i++) {
6250 		struct ata_port *ap = host->ports[i];
6251 
6252 		ap->pflags |= ATA_PFLAG_FROZEN;
6253 
6254 		/* Disable port interrupts */
6255 		if (ap->ops->freeze)
6256 			ap->ops->freeze(ap);
6257 
6258 		/* Stop the port DMA engines */
6259 		if (ap->ops->port_stop)
6260 			ap->ops->port_stop(ap);
6261 	}
6262 }
6263 EXPORT_SYMBOL_GPL(ata_pci_shutdown_one);
6264 
6265 /* move to PCI subsystem */
pci_test_config_bits(struct pci_dev * pdev,const struct pci_bits * bits)6266 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6267 {
6268 	unsigned long tmp = 0;
6269 
6270 	switch (bits->width) {
6271 	case 1: {
6272 		u8 tmp8 = 0;
6273 		pci_read_config_byte(pdev, bits->reg, &tmp8);
6274 		tmp = tmp8;
6275 		break;
6276 	}
6277 	case 2: {
6278 		u16 tmp16 = 0;
6279 		pci_read_config_word(pdev, bits->reg, &tmp16);
6280 		tmp = tmp16;
6281 		break;
6282 	}
6283 	case 4: {
6284 		u32 tmp32 = 0;
6285 		pci_read_config_dword(pdev, bits->reg, &tmp32);
6286 		tmp = tmp32;
6287 		break;
6288 	}
6289 
6290 	default:
6291 		return -EINVAL;
6292 	}
6293 
6294 	tmp &= bits->mask;
6295 
6296 	return (tmp == bits->val) ? 1 : 0;
6297 }
6298 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6299 
6300 #ifdef CONFIG_PM
ata_pci_device_do_suspend(struct pci_dev * pdev,pm_message_t mesg)6301 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6302 {
6303 	pci_save_state(pdev);
6304 	pci_disable_device(pdev);
6305 
6306 	if (mesg.event & PM_EVENT_SLEEP)
6307 		pci_set_power_state(pdev, PCI_D3hot);
6308 }
6309 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6310 
ata_pci_device_do_resume(struct pci_dev * pdev)6311 int ata_pci_device_do_resume(struct pci_dev *pdev)
6312 {
6313 	int rc;
6314 
6315 	pci_set_power_state(pdev, PCI_D0);
6316 	pci_restore_state(pdev);
6317 
6318 	rc = pcim_enable_device(pdev);
6319 	if (rc) {
6320 		dev_err(&pdev->dev,
6321 			"failed to enable device after resume (%d)\n", rc);
6322 		return rc;
6323 	}
6324 
6325 	pci_set_master(pdev);
6326 	return 0;
6327 }
6328 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6329 
ata_pci_device_suspend(struct pci_dev * pdev,pm_message_t mesg)6330 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6331 {
6332 	struct ata_host *host = pci_get_drvdata(pdev);
6333 
6334 	ata_host_suspend(host, mesg);
6335 
6336 	ata_pci_device_do_suspend(pdev, mesg);
6337 
6338 	return 0;
6339 }
6340 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6341 
ata_pci_device_resume(struct pci_dev * pdev)6342 int ata_pci_device_resume(struct pci_dev *pdev)
6343 {
6344 	struct ata_host *host = pci_get_drvdata(pdev);
6345 	int rc;
6346 
6347 	rc = ata_pci_device_do_resume(pdev);
6348 	if (rc == 0)
6349 		ata_host_resume(host);
6350 	return rc;
6351 }
6352 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6353 #endif /* CONFIG_PM */
6354 #endif /* CONFIG_PCI */
6355 
6356 /**
6357  *	ata_platform_remove_one - Platform layer callback for device removal
6358  *	@pdev: Platform device that was removed
6359  *
6360  *	Platform layer indicates to libata via this hook that hot-unplug or
6361  *	module unload event has occurred.  Detach all ports.  Resource
6362  *	release is handled via devres.
6363  *
6364  *	LOCKING:
6365  *	Inherited from platform layer (may sleep).
6366  */
ata_platform_remove_one(struct platform_device * pdev)6367 void ata_platform_remove_one(struct platform_device *pdev)
6368 {
6369 	struct ata_host *host = platform_get_drvdata(pdev);
6370 
6371 	ata_host_detach(host);
6372 }
6373 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6374 
6375 #ifdef CONFIG_ATA_FORCE
6376 
6377 #define force_cbl(name, flag)				\
6378 	{ #name,	.cbl		= (flag) }
6379 
6380 #define force_spd_limit(spd, val)			\
6381 	{ #spd,	.spd_limit		= (val) }
6382 
6383 #define force_xfer(mode, shift)				\
6384 	{ #mode,	.xfer_mask	= (1UL << (shift)) }
6385 
6386 #define force_lflag_on(name, flags)			\
6387 	{ #name,	.lflags_on	= (flags) }
6388 
6389 #define force_lflag_onoff(name, flags)			\
6390 	{ "no" #name,	.lflags_on	= (flags) },	\
6391 	{ #name,	.lflags_off	= (flags) }
6392 
6393 #define force_pflag_on(name, flags)			\
6394 	{ #name,	.pflags_on	= (flags) }
6395 
6396 #define force_quirk_on(name, flag)			\
6397 	{ #name,	.quirk_on	= (flag) }
6398 
6399 #define force_quirk_onoff(name, flag)			\
6400 	{ "no" #name,	.quirk_on	= (flag) },	\
6401 	{ #name,	.quirk_off	= (flag) }
6402 
6403 static const struct ata_force_param force_tbl[] __initconst = {
6404 	force_cbl(40c,			ATA_CBL_PATA40),
6405 	force_cbl(80c,			ATA_CBL_PATA80),
6406 	force_cbl(short40c,		ATA_CBL_PATA40_SHORT),
6407 	force_cbl(unk,			ATA_CBL_PATA_UNK),
6408 	force_cbl(ign,			ATA_CBL_PATA_IGN),
6409 	force_cbl(sata,			ATA_CBL_SATA),
6410 
6411 	force_spd_limit(1.5Gbps,	1),
6412 	force_spd_limit(3.0Gbps,	2),
6413 
6414 	force_xfer(pio0,		ATA_SHIFT_PIO + 0),
6415 	force_xfer(pio1,		ATA_SHIFT_PIO + 1),
6416 	force_xfer(pio2,		ATA_SHIFT_PIO + 2),
6417 	force_xfer(pio3,		ATA_SHIFT_PIO + 3),
6418 	force_xfer(pio4,		ATA_SHIFT_PIO + 4),
6419 	force_xfer(pio5,		ATA_SHIFT_PIO + 5),
6420 	force_xfer(pio6,		ATA_SHIFT_PIO + 6),
6421 	force_xfer(mwdma0,		ATA_SHIFT_MWDMA + 0),
6422 	force_xfer(mwdma1,		ATA_SHIFT_MWDMA + 1),
6423 	force_xfer(mwdma2,		ATA_SHIFT_MWDMA + 2),
6424 	force_xfer(mwdma3,		ATA_SHIFT_MWDMA + 3),
6425 	force_xfer(mwdma4,		ATA_SHIFT_MWDMA + 4),
6426 	force_xfer(udma0,		ATA_SHIFT_UDMA + 0),
6427 	force_xfer(udma16,		ATA_SHIFT_UDMA + 0),
6428 	force_xfer(udma/16,		ATA_SHIFT_UDMA + 0),
6429 	force_xfer(udma1,		ATA_SHIFT_UDMA + 1),
6430 	force_xfer(udma25,		ATA_SHIFT_UDMA + 1),
6431 	force_xfer(udma/25,		ATA_SHIFT_UDMA + 1),
6432 	force_xfer(udma2,		ATA_SHIFT_UDMA + 2),
6433 	force_xfer(udma33,		ATA_SHIFT_UDMA + 2),
6434 	force_xfer(udma/33,		ATA_SHIFT_UDMA + 2),
6435 	force_xfer(udma3,		ATA_SHIFT_UDMA + 3),
6436 	force_xfer(udma44,		ATA_SHIFT_UDMA + 3),
6437 	force_xfer(udma/44,		ATA_SHIFT_UDMA + 3),
6438 	force_xfer(udma4,		ATA_SHIFT_UDMA + 4),
6439 	force_xfer(udma66,		ATA_SHIFT_UDMA + 4),
6440 	force_xfer(udma/66,		ATA_SHIFT_UDMA + 4),
6441 	force_xfer(udma5,		ATA_SHIFT_UDMA + 5),
6442 	force_xfer(udma100,		ATA_SHIFT_UDMA + 5),
6443 	force_xfer(udma/100,		ATA_SHIFT_UDMA + 5),
6444 	force_xfer(udma6,		ATA_SHIFT_UDMA + 6),
6445 	force_xfer(udma133,		ATA_SHIFT_UDMA + 6),
6446 	force_xfer(udma/133,		ATA_SHIFT_UDMA + 6),
6447 	force_xfer(udma7,		ATA_SHIFT_UDMA + 7),
6448 
6449 	force_lflag_on(nohrst,		ATA_LFLAG_NO_HRST),
6450 	force_lflag_on(nosrst,		ATA_LFLAG_NO_SRST),
6451 	force_lflag_on(norst,		ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST),
6452 	force_lflag_on(rstonce,		ATA_LFLAG_RST_ONCE),
6453 	force_lflag_onoff(dbdelay,	ATA_LFLAG_NO_DEBOUNCE_DELAY),
6454 
6455 	force_pflag_on(external,	ATA_PFLAG_EXTERNAL),
6456 
6457 	force_quirk_onoff(ncq,		ATA_QUIRK_NONCQ),
6458 	force_quirk_onoff(ncqtrim,	ATA_QUIRK_NO_NCQ_TRIM),
6459 	force_quirk_onoff(ncqati,	ATA_QUIRK_NO_NCQ_ON_ATI),
6460 
6461 	force_quirk_onoff(trim,		ATA_QUIRK_NOTRIM),
6462 	force_quirk_on(trim_zero,	ATA_QUIRK_ZERO_AFTER_TRIM),
6463 	force_quirk_on(max_trim_128m,	ATA_QUIRK_MAX_TRIM_128M),
6464 
6465 	force_quirk_onoff(dma,		ATA_QUIRK_NODMA),
6466 	force_quirk_on(atapi_dmadir,	ATA_QUIRK_ATAPI_DMADIR),
6467 	force_quirk_on(atapi_mod16_dma,	ATA_QUIRK_ATAPI_MOD16_DMA),
6468 
6469 	force_quirk_onoff(dmalog,	ATA_QUIRK_NO_DMA_LOG),
6470 	force_quirk_onoff(iddevlog,	ATA_QUIRK_NO_ID_DEV_LOG),
6471 	force_quirk_onoff(logdir,	ATA_QUIRK_NO_LOG_DIR),
6472 
6473 	force_quirk_on(max_sec_128,	ATA_QUIRK_MAX_SEC_128),
6474 	force_quirk_on(max_sec_1024,	ATA_QUIRK_MAX_SEC_1024),
6475 	force_quirk_on(max_sec_lba48,	ATA_QUIRK_MAX_SEC_LBA48),
6476 
6477 	force_quirk_onoff(lpm,		ATA_QUIRK_NOLPM),
6478 	force_quirk_onoff(setxfer,	ATA_QUIRK_NOSETXFER),
6479 	force_quirk_on(dump_id,		ATA_QUIRK_DUMP_ID),
6480 	force_quirk_onoff(fua,		ATA_QUIRK_NO_FUA),
6481 
6482 	force_quirk_on(disable,		ATA_QUIRK_DISABLE),
6483 };
6484 
ata_parse_force_one(char ** cur,struct ata_force_ent * force_ent,const char ** reason)6485 static int __init ata_parse_force_one(char **cur,
6486 				      struct ata_force_ent *force_ent,
6487 				      const char **reason)
6488 {
6489 	char *start = *cur, *p = *cur;
6490 	char *id, *val, *endp;
6491 	const struct ata_force_param *match_fp = NULL;
6492 	int nr_matches = 0, i;
6493 
6494 	/* find where this param ends and update *cur */
6495 	while (*p != '\0' && *p != ',')
6496 		p++;
6497 
6498 	if (*p == '\0')
6499 		*cur = p;
6500 	else
6501 		*cur = p + 1;
6502 
6503 	*p = '\0';
6504 
6505 	/* parse */
6506 	p = strchr(start, ':');
6507 	if (!p) {
6508 		val = strstrip(start);
6509 		goto parse_val;
6510 	}
6511 	*p = '\0';
6512 
6513 	id = strstrip(start);
6514 	val = strstrip(p + 1);
6515 
6516 	/* parse id */
6517 	p = strchr(id, '.');
6518 	if (p) {
6519 		*p++ = '\0';
6520 		force_ent->device = simple_strtoul(p, &endp, 10);
6521 		if (p == endp || *endp != '\0') {
6522 			*reason = "invalid device";
6523 			return -EINVAL;
6524 		}
6525 	}
6526 
6527 	force_ent->port = simple_strtoul(id, &endp, 10);
6528 	if (id == endp || *endp != '\0') {
6529 		*reason = "invalid port/link";
6530 		return -EINVAL;
6531 	}
6532 
6533  parse_val:
6534 	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6535 	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6536 		const struct ata_force_param *fp = &force_tbl[i];
6537 
6538 		if (strncasecmp(val, fp->name, strlen(val)))
6539 			continue;
6540 
6541 		nr_matches++;
6542 		match_fp = fp;
6543 
6544 		if (strcasecmp(val, fp->name) == 0) {
6545 			nr_matches = 1;
6546 			break;
6547 		}
6548 	}
6549 
6550 	if (!nr_matches) {
6551 		*reason = "unknown value";
6552 		return -EINVAL;
6553 	}
6554 	if (nr_matches > 1) {
6555 		*reason = "ambiguous value";
6556 		return -EINVAL;
6557 	}
6558 
6559 	force_ent->param = *match_fp;
6560 
6561 	return 0;
6562 }
6563 
ata_parse_force_param(void)6564 static void __init ata_parse_force_param(void)
6565 {
6566 	int idx = 0, size = 1;
6567 	int last_port = -1, last_device = -1;
6568 	char *p, *cur, *next;
6569 
6570 	/* Calculate maximum number of params and allocate ata_force_tbl */
6571 	for (p = ata_force_param_buf; *p; p++)
6572 		if (*p == ',')
6573 			size++;
6574 
6575 	ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL);
6576 	if (!ata_force_tbl) {
6577 		printk(KERN_WARNING "ata: failed to extend force table, "
6578 		       "libata.force ignored\n");
6579 		return;
6580 	}
6581 
6582 	/* parse and populate the table */
6583 	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6584 		const char *reason = "";
6585 		struct ata_force_ent te = { .port = -1, .device = -1 };
6586 
6587 		next = cur;
6588 		if (ata_parse_force_one(&next, &te, &reason)) {
6589 			printk(KERN_WARNING "ata: failed to parse force "
6590 			       "parameter \"%s\" (%s)\n",
6591 			       cur, reason);
6592 			continue;
6593 		}
6594 
6595 		if (te.port == -1) {
6596 			te.port = last_port;
6597 			te.device = last_device;
6598 		}
6599 
6600 		ata_force_tbl[idx++] = te;
6601 
6602 		last_port = te.port;
6603 		last_device = te.device;
6604 	}
6605 
6606 	ata_force_tbl_size = idx;
6607 }
6608 
ata_free_force_param(void)6609 static void ata_free_force_param(void)
6610 {
6611 	kfree(ata_force_tbl);
6612 }
6613 #else
ata_parse_force_param(void)6614 static inline void ata_parse_force_param(void) { }
ata_free_force_param(void)6615 static inline void ata_free_force_param(void) { }
6616 #endif
6617 
ata_init(void)6618 static int __init ata_init(void)
6619 {
6620 	int rc;
6621 
6622 	ata_parse_force_param();
6623 
6624 	rc = ata_sff_init();
6625 	if (rc) {
6626 		ata_free_force_param();
6627 		return rc;
6628 	}
6629 
6630 	libata_transport_init();
6631 	ata_scsi_transport_template = ata_attach_transport();
6632 	if (!ata_scsi_transport_template) {
6633 		ata_sff_exit();
6634 		rc = -ENOMEM;
6635 		goto err_out;
6636 	}
6637 
6638 	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6639 	return 0;
6640 
6641 err_out:
6642 	return rc;
6643 }
6644 
ata_exit(void)6645 static void __exit ata_exit(void)
6646 {
6647 	ata_release_transport(ata_scsi_transport_template);
6648 	libata_transport_exit();
6649 	ata_sff_exit();
6650 	ata_free_force_param();
6651 }
6652 
6653 subsys_initcall(ata_init);
6654 module_exit(ata_exit);
6655 
6656 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6657 
ata_ratelimit(void)6658 int ata_ratelimit(void)
6659 {
6660 	return __ratelimit(&ratelimit);
6661 }
6662 EXPORT_SYMBOL_GPL(ata_ratelimit);
6663 
6664 /**
6665  *	ata_msleep - ATA EH owner aware msleep
6666  *	@ap: ATA port to attribute the sleep to
6667  *	@msecs: duration to sleep in milliseconds
6668  *
6669  *	Sleeps @msecs.  If the current task is owner of @ap's EH, the
6670  *	ownership is released before going to sleep and reacquired
6671  *	after the sleep is complete.  IOW, other ports sharing the
6672  *	@ap->host will be allowed to own the EH while this task is
6673  *	sleeping.
6674  *
6675  *	LOCKING:
6676  *	Might sleep.
6677  */
ata_msleep(struct ata_port * ap,unsigned int msecs)6678 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6679 {
6680 	bool owns_eh = ap && ap->host->eh_owner == current;
6681 
6682 	if (owns_eh)
6683 		ata_eh_release(ap);
6684 
6685 	if (msecs < 20) {
6686 		unsigned long usecs = msecs * USEC_PER_MSEC;
6687 		usleep_range(usecs, usecs + 50);
6688 	} else {
6689 		msleep(msecs);
6690 	}
6691 
6692 	if (owns_eh)
6693 		ata_eh_acquire(ap);
6694 }
6695 EXPORT_SYMBOL_GPL(ata_msleep);
6696 
6697 /**
6698  *	ata_wait_register - wait until register value changes
6699  *	@ap: ATA port to wait register for, can be NULL
6700  *	@reg: IO-mapped register
6701  *	@mask: Mask to apply to read register value
6702  *	@val: Wait condition
6703  *	@interval: polling interval in milliseconds
6704  *	@timeout: timeout in milliseconds
6705  *
6706  *	Waiting for some bits of register to change is a common
6707  *	operation for ATA controllers.  This function reads 32bit LE
6708  *	IO-mapped register @reg and tests for the following condition.
6709  *
6710  *	(*@reg & mask) != val
6711  *
6712  *	If the condition is met, it returns; otherwise, the process is
6713  *	repeated after @interval_msec until timeout.
6714  *
6715  *	LOCKING:
6716  *	Kernel thread context (may sleep)
6717  *
6718  *	RETURNS:
6719  *	The final register value.
6720  */
ata_wait_register(struct ata_port * ap,void __iomem * reg,u32 mask,u32 val,unsigned int interval,unsigned int timeout)6721 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6722 		      unsigned int interval, unsigned int timeout)
6723 {
6724 	unsigned long deadline;
6725 	u32 tmp;
6726 
6727 	tmp = ioread32(reg);
6728 
6729 	/* Calculate timeout _after_ the first read to make sure
6730 	 * preceding writes reach the controller before starting to
6731 	 * eat away the timeout.
6732 	 */
6733 	deadline = ata_deadline(jiffies, timeout);
6734 
6735 	while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6736 		ata_msleep(ap, interval);
6737 		tmp = ioread32(reg);
6738 	}
6739 
6740 	return tmp;
6741 }
6742 EXPORT_SYMBOL_GPL(ata_wait_register);
6743 
6744 /*
6745  * Dummy port_ops
6746  */
ata_dummy_qc_issue(struct ata_queued_cmd * qc)6747 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6748 {
6749 	return AC_ERR_SYSTEM;
6750 }
6751 
ata_dummy_error_handler(struct ata_port * ap)6752 static void ata_dummy_error_handler(struct ata_port *ap)
6753 {
6754 	/* truly dummy */
6755 }
6756 
6757 struct ata_port_operations ata_dummy_port_ops = {
6758 	.qc_issue		= ata_dummy_qc_issue,
6759 	.error_handler		= ata_dummy_error_handler,
6760 	.sched_eh		= ata_std_sched_eh,
6761 	.end_eh			= ata_std_end_eh,
6762 };
6763 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6764 
6765 const struct ata_port_info ata_dummy_port_info = {
6766 	.port_ops		= &ata_dummy_port_ops,
6767 };
6768 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6769 
6770 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_tf_load);
6771 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_exec_command);
6772 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_setup);
6773 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_start);
6774 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_status);
6775