xref: /linux/drivers/pci/pci.c (revision 2f2c7254931f41b5736e3ba12aaa9ac1bbeeeb92)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Bus Services, see include/linux/pci.h for further explanation.
4  *
5  * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6  * David Mosberger-Tang
7  *
8  * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/device.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/pci_hotplug.h>
29 #include <linux/vmalloc.h>
30 #include <asm/dma.h>
31 #include <linux/aer.h>
32 #include <linux/bitfield.h>
33 #include "pci.h"
34 
35 DEFINE_MUTEX(pci_slot_mutex);
36 
37 const char *pci_power_names[] = {
38 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
39 };
40 EXPORT_SYMBOL_GPL(pci_power_names);
41 
42 #ifdef CONFIG_X86_32
43 int isa_dma_bridge_buggy;
44 EXPORT_SYMBOL(isa_dma_bridge_buggy);
45 #endif
46 
47 int pci_pci_problems;
48 EXPORT_SYMBOL(pci_pci_problems);
49 
50 unsigned int pci_pm_d3hot_delay;
51 
52 static void pci_pme_list_scan(struct work_struct *work);
53 
54 static LIST_HEAD(pci_pme_list);
55 static DEFINE_MUTEX(pci_pme_list_mutex);
56 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
57 
58 struct pci_pme_device {
59 	struct list_head list;
60 	struct pci_dev *dev;
61 };
62 
63 #define PME_TIMEOUT 1000 /* How long between PME checks */
64 
65 /*
66  * Following exit from Conventional Reset, devices must be ready within 1 sec
67  * (PCIe r6.0 sec 6.6.1).  A D3cold to D0 transition implies a Conventional
68  * Reset (PCIe r6.0 sec 5.8).
69  */
70 #define PCI_RESET_WAIT 1000 /* msec */
71 
72 /*
73  * Devices may extend the 1 sec period through Request Retry Status
74  * completions (PCIe r6.0 sec 2.3.1).  The spec does not provide an upper
75  * limit, but 60 sec ought to be enough for any device to become
76  * responsive.
77  */
78 #define PCIE_RESET_READY_POLL_MS 60000 /* msec */
79 
pci_dev_d3_sleep(struct pci_dev * dev)80 static void pci_dev_d3_sleep(struct pci_dev *dev)
81 {
82 	unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
83 	unsigned int upper;
84 
85 	if (delay_ms) {
86 		/* Use a 20% upper bound, 1ms minimum */
87 		upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
88 		usleep_range(delay_ms * USEC_PER_MSEC,
89 			     (delay_ms + upper) * USEC_PER_MSEC);
90 	}
91 }
92 
pci_reset_supported(struct pci_dev * dev)93 bool pci_reset_supported(struct pci_dev *dev)
94 {
95 	return dev->reset_methods[0] != 0;
96 }
97 
98 #ifdef CONFIG_PCI_DOMAINS
99 int pci_domains_supported = 1;
100 #endif
101 
102 #define DEFAULT_CARDBUS_IO_SIZE		(256)
103 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
104 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
105 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
106 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
107 
108 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
109 #define DEFAULT_HOTPLUG_MMIO_SIZE	(2*1024*1024)
110 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE	(2*1024*1024)
111 /* hpiosize=nn can override this */
112 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
113 /*
114  * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
115  * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
116  * pci=hpmemsize=nnM overrides both
117  */
118 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
119 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
120 
121 #define DEFAULT_HOTPLUG_BUS_SIZE	1
122 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
123 
124 
125 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
126 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
127 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
128 #elif defined CONFIG_PCIE_BUS_SAFE
129 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
130 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
131 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
132 #elif defined CONFIG_PCIE_BUS_PEER2PEER
133 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
134 #else
135 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
136 #endif
137 
138 /*
139  * The default CLS is used if arch didn't set CLS explicitly and not
140  * all pci devices agree on the same value.  Arch can override either
141  * the dfl or actual value as it sees fit.  Don't forget this is
142  * measured in 32-bit words, not bytes.
143  */
144 u8 pci_dfl_cache_line_size __ro_after_init = L1_CACHE_BYTES >> 2;
145 u8 pci_cache_line_size __ro_after_init ;
146 
147 /*
148  * If we set up a device for bus mastering, we need to check the latency
149  * timer as certain BIOSes forget to set it properly.
150  */
151 unsigned int pcibios_max_latency = 255;
152 
153 /* If set, the PCIe ARI capability will not be used. */
154 static bool pcie_ari_disabled;
155 
156 /* If set, the PCIe ATS capability will not be used. */
157 static bool pcie_ats_disabled;
158 
159 /* If set, the PCI config space of each device is printed during boot. */
160 bool pci_early_dump;
161 
pci_ats_disabled(void)162 bool pci_ats_disabled(void)
163 {
164 	return pcie_ats_disabled;
165 }
166 EXPORT_SYMBOL_GPL(pci_ats_disabled);
167 
168 /* Disable bridge_d3 for all PCIe ports */
169 static bool pci_bridge_d3_disable;
170 /* Force bridge_d3 for all PCIe ports */
171 static bool pci_bridge_d3_force;
172 
pcie_port_pm_setup(char * str)173 static int __init pcie_port_pm_setup(char *str)
174 {
175 	if (!strcmp(str, "off"))
176 		pci_bridge_d3_disable = true;
177 	else if (!strcmp(str, "force"))
178 		pci_bridge_d3_force = true;
179 	return 1;
180 }
181 __setup("pcie_port_pm=", pcie_port_pm_setup);
182 
183 /**
184  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
185  * @bus: pointer to PCI bus structure to search
186  *
187  * Given a PCI bus, returns the highest PCI bus number present in the set
188  * including the given PCI bus and its list of child PCI buses.
189  */
pci_bus_max_busnr(struct pci_bus * bus)190 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
191 {
192 	struct pci_bus *tmp;
193 	unsigned char max, n;
194 
195 	max = bus->busn_res.end;
196 	list_for_each_entry(tmp, &bus->children, node) {
197 		n = pci_bus_max_busnr(tmp);
198 		if (n > max)
199 			max = n;
200 	}
201 	return max;
202 }
203 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
204 
205 /**
206  * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
207  * @pdev: the PCI device
208  *
209  * Returns error bits set in PCI_STATUS and clears them.
210  */
pci_status_get_and_clear_errors(struct pci_dev * pdev)211 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
212 {
213 	u16 status;
214 	int ret;
215 
216 	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
217 	if (ret != PCIBIOS_SUCCESSFUL)
218 		return -EIO;
219 
220 	status &= PCI_STATUS_ERROR_BITS;
221 	if (status)
222 		pci_write_config_word(pdev, PCI_STATUS, status);
223 
224 	return status;
225 }
226 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
227 
228 #ifdef CONFIG_HAS_IOMEM
__pci_ioremap_resource(struct pci_dev * pdev,int bar,bool write_combine)229 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
230 					    bool write_combine)
231 {
232 	struct resource *res = &pdev->resource[bar];
233 	resource_size_t start = res->start;
234 	resource_size_t size = resource_size(res);
235 
236 	/*
237 	 * Make sure the BAR is actually a memory resource, not an IO resource
238 	 */
239 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
240 		pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
241 		return NULL;
242 	}
243 
244 	if (write_combine)
245 		return ioremap_wc(start, size);
246 
247 	return ioremap(start, size);
248 }
249 
pci_ioremap_bar(struct pci_dev * pdev,int bar)250 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
251 {
252 	return __pci_ioremap_resource(pdev, bar, false);
253 }
254 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
255 
pci_ioremap_wc_bar(struct pci_dev * pdev,int bar)256 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
257 {
258 	return __pci_ioremap_resource(pdev, bar, true);
259 }
260 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
261 #endif
262 
263 /**
264  * pci_dev_str_match_path - test if a path string matches a device
265  * @dev: the PCI device to test
266  * @path: string to match the device against
267  * @endptr: pointer to the string after the match
268  *
269  * Test if a string (typically from a kernel parameter) formatted as a
270  * path of device/function addresses matches a PCI device. The string must
271  * be of the form:
272  *
273  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
274  *
275  * A path for a device can be obtained using 'lspci -t'.  Using a path
276  * is more robust against bus renumbering than using only a single bus,
277  * device and function address.
278  *
279  * Returns 1 if the string matches the device, 0 if it does not and
280  * a negative error code if it fails to parse the string.
281  */
pci_dev_str_match_path(struct pci_dev * dev,const char * path,const char ** endptr)282 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
283 				  const char **endptr)
284 {
285 	int ret;
286 	unsigned int seg, bus, slot, func;
287 	char *wpath, *p;
288 	char end;
289 
290 	*endptr = strchrnul(path, ';');
291 
292 	wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
293 	if (!wpath)
294 		return -ENOMEM;
295 
296 	while (1) {
297 		p = strrchr(wpath, '/');
298 		if (!p)
299 			break;
300 		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
301 		if (ret != 2) {
302 			ret = -EINVAL;
303 			goto free_and_exit;
304 		}
305 
306 		if (dev->devfn != PCI_DEVFN(slot, func)) {
307 			ret = 0;
308 			goto free_and_exit;
309 		}
310 
311 		/*
312 		 * Note: we don't need to get a reference to the upstream
313 		 * bridge because we hold a reference to the top level
314 		 * device which should hold a reference to the bridge,
315 		 * and so on.
316 		 */
317 		dev = pci_upstream_bridge(dev);
318 		if (!dev) {
319 			ret = 0;
320 			goto free_and_exit;
321 		}
322 
323 		*p = 0;
324 	}
325 
326 	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
327 		     &func, &end);
328 	if (ret != 4) {
329 		seg = 0;
330 		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
331 		if (ret != 3) {
332 			ret = -EINVAL;
333 			goto free_and_exit;
334 		}
335 	}
336 
337 	ret = (seg == pci_domain_nr(dev->bus) &&
338 	       bus == dev->bus->number &&
339 	       dev->devfn == PCI_DEVFN(slot, func));
340 
341 free_and_exit:
342 	kfree(wpath);
343 	return ret;
344 }
345 
346 /**
347  * pci_dev_str_match - test if a string matches a device
348  * @dev: the PCI device to test
349  * @p: string to match the device against
350  * @endptr: pointer to the string after the match
351  *
352  * Test if a string (typically from a kernel parameter) matches a specified
353  * PCI device. The string may be of one of the following formats:
354  *
355  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
356  *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
357  *
358  * The first format specifies a PCI bus/device/function address which
359  * may change if new hardware is inserted, if motherboard firmware changes,
360  * or due to changes caused in kernel parameters. If the domain is
361  * left unspecified, it is taken to be 0.  In order to be robust against
362  * bus renumbering issues, a path of PCI device/function numbers may be used
363  * to address the specific device.  The path for a device can be determined
364  * through the use of 'lspci -t'.
365  *
366  * The second format matches devices using IDs in the configuration
367  * space which may match multiple devices in the system. A value of 0
368  * for any field will match all devices. (Note: this differs from
369  * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
370  * legacy reasons and convenience so users don't have to specify
371  * FFFFFFFFs on the command line.)
372  *
373  * Returns 1 if the string matches the device, 0 if it does not and
374  * a negative error code if the string cannot be parsed.
375  */
pci_dev_str_match(struct pci_dev * dev,const char * p,const char ** endptr)376 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
377 			     const char **endptr)
378 {
379 	int ret;
380 	int count;
381 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
382 
383 	if (strncmp(p, "pci:", 4) == 0) {
384 		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
385 		p += 4;
386 		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
387 			     &subsystem_vendor, &subsystem_device, &count);
388 		if (ret != 4) {
389 			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
390 			if (ret != 2)
391 				return -EINVAL;
392 
393 			subsystem_vendor = 0;
394 			subsystem_device = 0;
395 		}
396 
397 		p += count;
398 
399 		if ((!vendor || vendor == dev->vendor) &&
400 		    (!device || device == dev->device) &&
401 		    (!subsystem_vendor ||
402 			    subsystem_vendor == dev->subsystem_vendor) &&
403 		    (!subsystem_device ||
404 			    subsystem_device == dev->subsystem_device))
405 			goto found;
406 	} else {
407 		/*
408 		 * PCI Bus, Device, Function IDs are specified
409 		 * (optionally, may include a path of devfns following it)
410 		 */
411 		ret = pci_dev_str_match_path(dev, p, &p);
412 		if (ret < 0)
413 			return ret;
414 		else if (ret)
415 			goto found;
416 	}
417 
418 	*endptr = p;
419 	return 0;
420 
421 found:
422 	*endptr = p;
423 	return 1;
424 }
425 
__pci_find_next_cap(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap)426 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
427 			      u8 pos, int cap)
428 {
429 	return PCI_FIND_NEXT_CAP(pci_bus_read_config, pos, cap, bus, devfn);
430 }
431 
pci_find_next_capability(struct pci_dev * dev,u8 pos,int cap)432 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
433 {
434 	return __pci_find_next_cap(dev->bus, dev->devfn,
435 				   pos + PCI_CAP_LIST_NEXT, cap);
436 }
437 EXPORT_SYMBOL_GPL(pci_find_next_capability);
438 
__pci_bus_find_cap_start(struct pci_bus * bus,unsigned int devfn,u8 hdr_type)439 static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
440 				    unsigned int devfn, u8 hdr_type)
441 {
442 	u16 status;
443 
444 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
445 	if (!(status & PCI_STATUS_CAP_LIST))
446 		return 0;
447 
448 	switch (hdr_type) {
449 	case PCI_HEADER_TYPE_NORMAL:
450 	case PCI_HEADER_TYPE_BRIDGE:
451 		return PCI_CAPABILITY_LIST;
452 	case PCI_HEADER_TYPE_CARDBUS:
453 		return PCI_CB_CAPABILITY_LIST;
454 	}
455 
456 	return 0;
457 }
458 
459 /**
460  * pci_find_capability - query for devices' capabilities
461  * @dev: PCI device to query
462  * @cap: capability code
463  *
464  * Tell if a device supports a given PCI capability.
465  * Returns the address of the requested capability structure within the
466  * device's PCI configuration space or 0 in case the device does not
467  * support it.  Possible values for @cap include:
468  *
469  *  %PCI_CAP_ID_PM           Power Management
470  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
471  *  %PCI_CAP_ID_VPD          Vital Product Data
472  *  %PCI_CAP_ID_SLOTID       Slot Identification
473  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
474  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
475  *  %PCI_CAP_ID_PCIX         PCI-X
476  *  %PCI_CAP_ID_EXP          PCI Express
477  */
pci_find_capability(struct pci_dev * dev,int cap)478 u8 pci_find_capability(struct pci_dev *dev, int cap)
479 {
480 	u8 pos;
481 
482 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
483 	if (pos)
484 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
485 
486 	return pos;
487 }
488 EXPORT_SYMBOL(pci_find_capability);
489 
490 /**
491  * pci_bus_find_capability - query for devices' capabilities
492  * @bus: the PCI bus to query
493  * @devfn: PCI device to query
494  * @cap: capability code
495  *
496  * Like pci_find_capability() but works for PCI devices that do not have a
497  * pci_dev structure set up yet.
498  *
499  * Returns the address of the requested capability structure within the
500  * device's PCI configuration space or 0 in case the device does not
501  * support it.
502  */
pci_bus_find_capability(struct pci_bus * bus,unsigned int devfn,int cap)503 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
504 {
505 	u8 hdr_type, pos;
506 
507 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
508 
509 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & PCI_HEADER_TYPE_MASK);
510 	if (pos)
511 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
512 
513 	return pos;
514 }
515 EXPORT_SYMBOL(pci_bus_find_capability);
516 
517 /**
518  * pci_find_next_ext_capability - Find an extended capability
519  * @dev: PCI device to query
520  * @start: address at which to start looking (0 to start at beginning of list)
521  * @cap: capability code
522  *
523  * Returns the address of the next matching extended capability structure
524  * within the device's PCI configuration space or 0 if the device does
525  * not support it.  Some capabilities can occur several times, e.g., the
526  * vendor-specific capability, and this provides a way to find them all.
527  */
pci_find_next_ext_capability(struct pci_dev * dev,u16 start,int cap)528 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
529 {
530 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
531 		return 0;
532 
533 	return PCI_FIND_NEXT_EXT_CAP(pci_bus_read_config, start, cap,
534 				     dev->bus, dev->devfn);
535 }
536 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
537 
538 /**
539  * pci_find_ext_capability - Find an extended capability
540  * @dev: PCI device to query
541  * @cap: capability code
542  *
543  * Returns the address of the requested extended capability structure
544  * within the device's PCI configuration space or 0 if the device does
545  * not support it.  Possible values for @cap include:
546  *
547  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
548  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
549  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
550  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
551  */
pci_find_ext_capability(struct pci_dev * dev,int cap)552 u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
553 {
554 	return pci_find_next_ext_capability(dev, 0, cap);
555 }
556 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
557 
558 /**
559  * pci_get_dsn - Read and return the 8-byte Device Serial Number
560  * @dev: PCI device to query
561  *
562  * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
563  * Number.
564  *
565  * Returns the DSN, or zero if the capability does not exist.
566  */
pci_get_dsn(struct pci_dev * dev)567 u64 pci_get_dsn(struct pci_dev *dev)
568 {
569 	u32 dword;
570 	u64 dsn;
571 	int pos;
572 
573 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
574 	if (!pos)
575 		return 0;
576 
577 	/*
578 	 * The Device Serial Number is two dwords offset 4 bytes from the
579 	 * capability position. The specification says that the first dword is
580 	 * the lower half, and the second dword is the upper half.
581 	 */
582 	pos += 4;
583 	pci_read_config_dword(dev, pos, &dword);
584 	dsn = (u64)dword;
585 	pci_read_config_dword(dev, pos + 4, &dword);
586 	dsn |= ((u64)dword) << 32;
587 
588 	return dsn;
589 }
590 EXPORT_SYMBOL_GPL(pci_get_dsn);
591 
__pci_find_next_ht_cap(struct pci_dev * dev,u8 pos,int ht_cap)592 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
593 {
594 	int rc;
595 	u8 cap, mask;
596 
597 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
598 		mask = HT_3BIT_CAP_MASK;
599 	else
600 		mask = HT_5BIT_CAP_MASK;
601 
602 	pos = PCI_FIND_NEXT_CAP(pci_bus_read_config, pos,
603 				PCI_CAP_ID_HT, dev->bus, dev->devfn);
604 	while (pos) {
605 		rc = pci_read_config_byte(dev, pos + 3, &cap);
606 		if (rc != PCIBIOS_SUCCESSFUL)
607 			return 0;
608 
609 		if ((cap & mask) == ht_cap)
610 			return pos;
611 
612 		pos = PCI_FIND_NEXT_CAP(pci_bus_read_config,
613 					pos + PCI_CAP_LIST_NEXT,
614 					PCI_CAP_ID_HT, dev->bus,
615 					dev->devfn);
616 	}
617 
618 	return 0;
619 }
620 
621 /**
622  * pci_find_next_ht_capability - query a device's HyperTransport capabilities
623  * @dev: PCI device to query
624  * @pos: Position from which to continue searching
625  * @ht_cap: HyperTransport capability code
626  *
627  * To be used in conjunction with pci_find_ht_capability() to search for
628  * all capabilities matching @ht_cap. @pos should always be a value returned
629  * from pci_find_ht_capability().
630  *
631  * NB. To be 100% safe against broken PCI devices, the caller should take
632  * steps to avoid an infinite loop.
633  */
pci_find_next_ht_capability(struct pci_dev * dev,u8 pos,int ht_cap)634 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
635 {
636 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
637 }
638 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
639 
640 /**
641  * pci_find_ht_capability - query a device's HyperTransport capabilities
642  * @dev: PCI device to query
643  * @ht_cap: HyperTransport capability code
644  *
645  * Tell if a device supports a given HyperTransport capability.
646  * Returns an address within the device's PCI configuration space
647  * or 0 in case the device does not support the request capability.
648  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
649  * which has a HyperTransport capability matching @ht_cap.
650  */
pci_find_ht_capability(struct pci_dev * dev,int ht_cap)651 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
652 {
653 	u8 pos;
654 
655 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
656 	if (pos)
657 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
658 
659 	return pos;
660 }
661 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
662 
663 /**
664  * pci_find_vsec_capability - Find a vendor-specific extended capability
665  * @dev: PCI device to query
666  * @vendor: Vendor ID for which capability is defined
667  * @cap: Vendor-specific capability ID
668  *
669  * If @dev has Vendor ID @vendor, search for a VSEC capability with
670  * VSEC ID @cap. If found, return the capability offset in
671  * config space; otherwise return 0.
672  */
pci_find_vsec_capability(struct pci_dev * dev,u16 vendor,int cap)673 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
674 {
675 	u16 vsec = 0;
676 	u32 header;
677 	int ret;
678 
679 	if (vendor != dev->vendor)
680 		return 0;
681 
682 	while ((vsec = pci_find_next_ext_capability(dev, vsec,
683 						     PCI_EXT_CAP_ID_VNDR))) {
684 		ret = pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, &header);
685 		if (ret != PCIBIOS_SUCCESSFUL)
686 			continue;
687 
688 		if (PCI_VNDR_HEADER_ID(header) == cap)
689 			return vsec;
690 	}
691 
692 	return 0;
693 }
694 EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
695 
696 /**
697  * pci_find_dvsec_capability - Find DVSEC for vendor
698  * @dev: PCI device to query
699  * @vendor: Vendor ID to match for the DVSEC
700  * @dvsec: Designated Vendor-specific capability ID
701  *
702  * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
703  * offset in config space; otherwise return 0.
704  */
pci_find_dvsec_capability(struct pci_dev * dev,u16 vendor,u16 dvsec)705 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
706 {
707 	int pos;
708 
709 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
710 	if (!pos)
711 		return 0;
712 
713 	while (pos) {
714 		u16 v, id;
715 
716 		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
717 		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
718 		if (vendor == v && dvsec == id)
719 			return pos;
720 
721 		pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
722 	}
723 
724 	return 0;
725 }
726 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
727 
728 /**
729  * pci_find_parent_resource - return resource region of parent bus of given
730  *			      region
731  * @dev: PCI device structure contains resources to be searched
732  * @res: child resource record for which parent is sought
733  *
734  * For given resource region of given device, return the resource region of
735  * parent bus the given region is contained in.
736  */
pci_find_parent_resource(const struct pci_dev * dev,struct resource * res)737 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
738 					  struct resource *res)
739 {
740 	const struct pci_bus *bus = dev->bus;
741 	struct resource *r;
742 
743 	pci_bus_for_each_resource(bus, r) {
744 		if (!r)
745 			continue;
746 		if (resource_contains(r, res)) {
747 
748 			/*
749 			 * If the window is prefetchable but the BAR is
750 			 * not, the allocator made a mistake.
751 			 */
752 			if (r->flags & IORESOURCE_PREFETCH &&
753 			    !(res->flags & IORESOURCE_PREFETCH))
754 				return NULL;
755 
756 			/*
757 			 * If we're below a transparent bridge, there may
758 			 * be both a positively-decoded aperture and a
759 			 * subtractively-decoded region that contain the BAR.
760 			 * We want the positively-decoded one, so this depends
761 			 * on pci_bus_for_each_resource() giving us those
762 			 * first.
763 			 */
764 			return r;
765 		}
766 	}
767 	return NULL;
768 }
769 EXPORT_SYMBOL(pci_find_parent_resource);
770 
771 /**
772  * pci_find_resource - Return matching PCI device resource
773  * @dev: PCI device to query
774  * @res: Resource to look for
775  *
776  * Goes over standard PCI resources (BARs) and checks if the given resource
777  * is partially or fully contained in any of them. In that case the
778  * matching resource is returned, %NULL otherwise.
779  */
pci_find_resource(struct pci_dev * dev,struct resource * res)780 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
781 {
782 	int i;
783 
784 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
785 		struct resource *r = &dev->resource[i];
786 
787 		if (r->start && resource_contains(r, res))
788 			return r;
789 	}
790 
791 	return NULL;
792 }
793 EXPORT_SYMBOL(pci_find_resource);
794 
795 /**
796  * pci_resource_name - Return the name of the PCI resource
797  * @dev: PCI device to query
798  * @i: index of the resource
799  *
800  * Return the standard PCI resource (BAR) name according to their index.
801  */
pci_resource_name(struct pci_dev * dev,unsigned int i)802 const char *pci_resource_name(struct pci_dev *dev, unsigned int i)
803 {
804 	static const char * const bar_name[] = {
805 		"BAR 0",
806 		"BAR 1",
807 		"BAR 2",
808 		"BAR 3",
809 		"BAR 4",
810 		"BAR 5",
811 		"ROM",
812 #ifdef CONFIG_PCI_IOV
813 		"VF BAR 0",
814 		"VF BAR 1",
815 		"VF BAR 2",
816 		"VF BAR 3",
817 		"VF BAR 4",
818 		"VF BAR 5",
819 #endif
820 		"bridge window",	/* "io" included in %pR */
821 		"bridge window",	/* "mem" included in %pR */
822 		"bridge window",	/* "mem pref" included in %pR */
823 	};
824 	static const char * const cardbus_name[] = {
825 		"BAR 1",
826 		"unknown",
827 		"unknown",
828 		"unknown",
829 		"unknown",
830 		"unknown",
831 #ifdef CONFIG_PCI_IOV
832 		"unknown",
833 		"unknown",
834 		"unknown",
835 		"unknown",
836 		"unknown",
837 		"unknown",
838 #endif
839 		"CardBus bridge window 0",	/* I/O */
840 		"CardBus bridge window 1",	/* I/O */
841 		"CardBus bridge window 0",	/* mem */
842 		"CardBus bridge window 1",	/* mem */
843 	};
844 
845 	if (dev->hdr_type == PCI_HEADER_TYPE_CARDBUS &&
846 	    i < ARRAY_SIZE(cardbus_name))
847 		return cardbus_name[i];
848 
849 	if (i < ARRAY_SIZE(bar_name))
850 		return bar_name[i];
851 
852 	return "unknown";
853 }
854 
855 /**
856  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
857  * @dev: the PCI device to operate on
858  * @pos: config space offset of status word
859  * @mask: mask of bit(s) to care about in status word
860  *
861  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
862  */
pci_wait_for_pending(struct pci_dev * dev,int pos,u16 mask)863 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
864 {
865 	int i;
866 
867 	/* Wait for Transaction Pending bit clean */
868 	for (i = 0; i < 4; i++) {
869 		u16 status;
870 		if (i)
871 			msleep((1 << (i - 1)) * 100);
872 
873 		pci_read_config_word(dev, pos, &status);
874 		if (!(status & mask))
875 			return 1;
876 	}
877 
878 	return 0;
879 }
880 
881 static int pci_acs_enable;
882 
883 /**
884  * pci_request_acs - ask for ACS to be enabled if supported
885  */
pci_request_acs(void)886 void pci_request_acs(void)
887 {
888 	pci_acs_enable = 1;
889 }
890 
891 static const char *disable_acs_redir_param;
892 static const char *config_acs_param;
893 
894 struct pci_acs {
895 	u16 cap;
896 	u16 ctrl;
897 	u16 fw_ctrl;
898 };
899 
__pci_config_acs(struct pci_dev * dev,struct pci_acs * caps,const char * p,const u16 acs_mask,const u16 acs_flags)900 static void __pci_config_acs(struct pci_dev *dev, struct pci_acs *caps,
901 			     const char *p, const u16 acs_mask, const u16 acs_flags)
902 {
903 	u16 flags = acs_flags;
904 	u16 mask = acs_mask;
905 	char *delimit;
906 	int ret = 0;
907 
908 	if (!p)
909 		return;
910 
911 	while (*p) {
912 		if (!acs_mask) {
913 			/* Check for ACS flags */
914 			delimit = strstr(p, "@");
915 			if (delimit) {
916 				int end;
917 				u32 shift = 0;
918 
919 				end = delimit - p - 1;
920 				mask = 0;
921 				flags = 0;
922 
923 				while (end > -1) {
924 					if (*(p + end) == '0') {
925 						mask |= 1 << shift;
926 						shift++;
927 						end--;
928 					} else if (*(p + end) == '1') {
929 						mask |= 1 << shift;
930 						flags |= 1 << shift;
931 						shift++;
932 						end--;
933 					} else if ((*(p + end) == 'x') || (*(p + end) == 'X')) {
934 						shift++;
935 						end--;
936 					} else {
937 						pci_err(dev, "Invalid ACS flags... Ignoring\n");
938 						return;
939 					}
940 				}
941 				p = delimit + 1;
942 			} else {
943 				pci_err(dev, "ACS Flags missing\n");
944 				return;
945 			}
946 		}
947 
948 		if (mask & ~(PCI_ACS_SV | PCI_ACS_TB | PCI_ACS_RR | PCI_ACS_CR |
949 			    PCI_ACS_UF | PCI_ACS_EC | PCI_ACS_DT)) {
950 			pci_err(dev, "Invalid ACS flags specified\n");
951 			return;
952 		}
953 
954 		ret = pci_dev_str_match(dev, p, &p);
955 		if (ret < 0) {
956 			pr_info_once("PCI: Can't parse ACS command line parameter\n");
957 			break;
958 		} else if (ret == 1) {
959 			/* Found a match */
960 			break;
961 		}
962 
963 		if (*p != ';' && *p != ',') {
964 			/* End of param or invalid format */
965 			break;
966 		}
967 		p++;
968 	}
969 
970 	if (ret != 1)
971 		return;
972 
973 	if (!pci_dev_specific_disable_acs_redir(dev))
974 		return;
975 
976 	pci_dbg(dev, "ACS mask  = %#06x\n", mask);
977 	pci_dbg(dev, "ACS flags = %#06x\n", flags);
978 	pci_dbg(dev, "ACS control = %#06x\n", caps->ctrl);
979 	pci_dbg(dev, "ACS fw_ctrl = %#06x\n", caps->fw_ctrl);
980 
981 	/*
982 	 * For mask bits that are 0, copy them from the firmware setting
983 	 * and apply flags for all the mask bits that are 1.
984 	 */
985 	caps->ctrl = (caps->fw_ctrl & ~mask) | (flags & mask);
986 
987 	pci_info(dev, "Configured ACS to %#06x\n", caps->ctrl);
988 }
989 
990 /**
991  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
992  * @dev: the PCI device
993  * @caps: default ACS controls
994  */
pci_std_enable_acs(struct pci_dev * dev,struct pci_acs * caps)995 static void pci_std_enable_acs(struct pci_dev *dev, struct pci_acs *caps)
996 {
997 	/* Source Validation */
998 	caps->ctrl |= (caps->cap & PCI_ACS_SV);
999 
1000 	/* P2P Request Redirect */
1001 	caps->ctrl |= (caps->cap & PCI_ACS_RR);
1002 
1003 	/* P2P Completion Redirect */
1004 	caps->ctrl |= (caps->cap & PCI_ACS_CR);
1005 
1006 	/* Upstream Forwarding */
1007 	caps->ctrl |= (caps->cap & PCI_ACS_UF);
1008 
1009 	/* Enable Translation Blocking for external devices and noats */
1010 	if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
1011 		caps->ctrl |= (caps->cap & PCI_ACS_TB);
1012 }
1013 
1014 /**
1015  * pci_enable_acs - enable ACS if hardware support it
1016  * @dev: the PCI device
1017  */
pci_enable_acs(struct pci_dev * dev)1018 static void pci_enable_acs(struct pci_dev *dev)
1019 {
1020 	struct pci_acs caps;
1021 	bool enable_acs = false;
1022 	int pos;
1023 
1024 	/* If an iommu is present we start with kernel default caps */
1025 	if (pci_acs_enable) {
1026 		if (pci_dev_specific_enable_acs(dev))
1027 			enable_acs = true;
1028 	}
1029 
1030 	pos = dev->acs_cap;
1031 	if (!pos)
1032 		return;
1033 
1034 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &caps.cap);
1035 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &caps.ctrl);
1036 	caps.fw_ctrl = caps.ctrl;
1037 
1038 	if (enable_acs)
1039 		pci_std_enable_acs(dev, &caps);
1040 
1041 	/*
1042 	 * Always apply caps from the command line, even if there is no iommu.
1043 	 * Trust that the admin has a reason to change the ACS settings.
1044 	 */
1045 	__pci_config_acs(dev, &caps, disable_acs_redir_param,
1046 			 PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC,
1047 			 ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC));
1048 	__pci_config_acs(dev, &caps, config_acs_param, 0, 0);
1049 
1050 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, caps.ctrl);
1051 }
1052 
1053 /**
1054  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
1055  * @dev: PCI device to have its BARs restored
1056  *
1057  * Restore the BAR values for a given device, so as to make it
1058  * accessible by its driver.
1059  */
pci_restore_bars(struct pci_dev * dev)1060 static void pci_restore_bars(struct pci_dev *dev)
1061 {
1062 	int i;
1063 
1064 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1065 		pci_update_resource(dev, i);
1066 }
1067 
platform_pci_power_manageable(struct pci_dev * dev)1068 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1069 {
1070 	if (pci_use_mid_pm())
1071 		return true;
1072 
1073 	return acpi_pci_power_manageable(dev);
1074 }
1075 
platform_pci_set_power_state(struct pci_dev * dev,pci_power_t t)1076 static inline int platform_pci_set_power_state(struct pci_dev *dev,
1077 					       pci_power_t t)
1078 {
1079 	if (pci_use_mid_pm())
1080 		return mid_pci_set_power_state(dev, t);
1081 
1082 	return acpi_pci_set_power_state(dev, t);
1083 }
1084 
platform_pci_get_power_state(struct pci_dev * dev)1085 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1086 {
1087 	if (pci_use_mid_pm())
1088 		return mid_pci_get_power_state(dev);
1089 
1090 	return acpi_pci_get_power_state(dev);
1091 }
1092 
platform_pci_refresh_power_state(struct pci_dev * dev)1093 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1094 {
1095 	if (!pci_use_mid_pm())
1096 		acpi_pci_refresh_power_state(dev);
1097 }
1098 
platform_pci_choose_state(struct pci_dev * dev)1099 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1100 {
1101 	if (pci_use_mid_pm())
1102 		return PCI_POWER_ERROR;
1103 
1104 	return acpi_pci_choose_state(dev);
1105 }
1106 
platform_pci_set_wakeup(struct pci_dev * dev,bool enable)1107 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1108 {
1109 	if (pci_use_mid_pm())
1110 		return PCI_POWER_ERROR;
1111 
1112 	return acpi_pci_wakeup(dev, enable);
1113 }
1114 
platform_pci_need_resume(struct pci_dev * dev)1115 static inline bool platform_pci_need_resume(struct pci_dev *dev)
1116 {
1117 	if (pci_use_mid_pm())
1118 		return false;
1119 
1120 	return acpi_pci_need_resume(dev);
1121 }
1122 
platform_pci_bridge_d3(struct pci_dev * dev)1123 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1124 {
1125 	if (pci_use_mid_pm())
1126 		return false;
1127 
1128 	return acpi_pci_bridge_d3(dev);
1129 }
1130 
1131 /**
1132  * pci_update_current_state - Read power state of given device and cache it
1133  * @dev: PCI device to handle.
1134  * @state: State to cache in case the device doesn't have the PM capability
1135  *
1136  * The power state is read from the PMCSR register, which however is
1137  * inaccessible in D3cold.  The platform firmware is therefore queried first
1138  * to detect accessibility of the register.  In case the platform firmware
1139  * reports an incorrect state or the device isn't power manageable by the
1140  * platform at all, we try to detect D3cold by testing accessibility of the
1141  * vendor ID in config space.
1142  */
pci_update_current_state(struct pci_dev * dev,pci_power_t state)1143 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1144 {
1145 	if (platform_pci_get_power_state(dev) == PCI_D3cold) {
1146 		dev->current_state = PCI_D3cold;
1147 	} else if (dev->pm_cap) {
1148 		u16 pmcsr;
1149 
1150 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1151 		if (PCI_POSSIBLE_ERROR(pmcsr)) {
1152 			dev->current_state = PCI_D3cold;
1153 			return;
1154 		}
1155 		dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1156 	} else {
1157 		dev->current_state = state;
1158 	}
1159 }
1160 
1161 /**
1162  * pci_refresh_power_state - Refresh the given device's power state data
1163  * @dev: Target PCI device.
1164  *
1165  * Ask the platform to refresh the devices power state information and invoke
1166  * pci_update_current_state() to update its current PCI power state.
1167  */
pci_refresh_power_state(struct pci_dev * dev)1168 void pci_refresh_power_state(struct pci_dev *dev)
1169 {
1170 	platform_pci_refresh_power_state(dev);
1171 	pci_update_current_state(dev, dev->current_state);
1172 }
1173 
1174 /**
1175  * pci_platform_power_transition - Use platform to change device power state
1176  * @dev: PCI device to handle.
1177  * @state: State to put the device into.
1178  */
pci_platform_power_transition(struct pci_dev * dev,pci_power_t state)1179 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1180 {
1181 	int error;
1182 
1183 	error = platform_pci_set_power_state(dev, state);
1184 	if (!error)
1185 		pci_update_current_state(dev, state);
1186 	else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1187 		dev->current_state = PCI_D0;
1188 
1189 	return error;
1190 }
1191 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1192 
pci_resume_one(struct pci_dev * pci_dev,void * ign)1193 static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1194 {
1195 	pm_request_resume(&pci_dev->dev);
1196 	return 0;
1197 }
1198 
1199 /**
1200  * pci_resume_bus - Walk given bus and runtime resume devices on it
1201  * @bus: Top bus of the subtree to walk.
1202  */
pci_resume_bus(struct pci_bus * bus)1203 void pci_resume_bus(struct pci_bus *bus)
1204 {
1205 	if (bus)
1206 		pci_walk_bus(bus, pci_resume_one, NULL);
1207 }
1208 
pci_dev_wait(struct pci_dev * dev,char * reset_type,int timeout)1209 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1210 {
1211 	int delay = 1;
1212 	bool retrain = false;
1213 	struct pci_dev *root, *bridge;
1214 
1215 	root = pcie_find_root_port(dev);
1216 
1217 	if (pci_is_pcie(dev)) {
1218 		bridge = pci_upstream_bridge(dev);
1219 		if (bridge)
1220 			retrain = true;
1221 	}
1222 
1223 	/*
1224 	 * The caller has already waited long enough after a reset that the
1225 	 * device should respond to config requests, but it may respond
1226 	 * with Request Retry Status (RRS) if it needs more time to
1227 	 * initialize.
1228 	 *
1229 	 * If the device is below a Root Port with Configuration RRS
1230 	 * Software Visibility enabled, reading the Vendor ID returns a
1231 	 * special data value if the device responded with RRS.  Read the
1232 	 * Vendor ID until we get non-RRS status.
1233 	 *
1234 	 * If there's no Root Port or Configuration RRS Software Visibility
1235 	 * is not enabled, the device may still respond with RRS, but
1236 	 * hardware may retry the config request.  If no retries receive
1237 	 * Successful Completion, hardware generally synthesizes ~0
1238 	 * (PCI_ERROR_RESPONSE) data to complete the read.  Reading Vendor
1239 	 * ID for VFs and non-existent devices also returns ~0, so read the
1240 	 * Command register until it returns something other than ~0.
1241 	 */
1242 	for (;;) {
1243 		u32 id;
1244 
1245 		if (pci_dev_is_disconnected(dev)) {
1246 			pci_dbg(dev, "disconnected; not waiting\n");
1247 			return -ENOTTY;
1248 		}
1249 
1250 		if (root && root->config_rrs_sv) {
1251 			pci_read_config_dword(dev, PCI_VENDOR_ID, &id);
1252 			if (!pci_bus_rrs_vendor_id(id))
1253 				break;
1254 		} else {
1255 			pci_read_config_dword(dev, PCI_COMMAND, &id);
1256 			if (!PCI_POSSIBLE_ERROR(id))
1257 				break;
1258 		}
1259 
1260 		if (delay > timeout) {
1261 			pci_warn(dev, "not ready %dms after %s; giving up\n",
1262 				 delay - 1, reset_type);
1263 			return -ENOTTY;
1264 		}
1265 
1266 		if (delay > PCI_RESET_WAIT) {
1267 			if (retrain) {
1268 				retrain = false;
1269 				if (pcie_failed_link_retrain(bridge) == 0) {
1270 					delay = 1;
1271 					continue;
1272 				}
1273 			}
1274 			pci_info(dev, "not ready %dms after %s; waiting\n",
1275 				 delay - 1, reset_type);
1276 		}
1277 
1278 		msleep(delay);
1279 		delay *= 2;
1280 	}
1281 
1282 	if (delay > PCI_RESET_WAIT)
1283 		pci_info(dev, "ready %dms after %s\n", delay - 1,
1284 			 reset_type);
1285 	else
1286 		pci_dbg(dev, "ready %dms after %s\n", delay - 1,
1287 			reset_type);
1288 
1289 	return 0;
1290 }
1291 
1292 /**
1293  * pci_power_up - Put the given device into D0
1294  * @dev: PCI device to power up
1295  *
1296  * On success, return 0 or 1, depending on whether or not it is necessary to
1297  * restore the device's BARs subsequently (1 is returned in that case).
1298  *
1299  * On failure, return a negative error code.  Always return failure if @dev
1300  * lacks a Power Management Capability, even if the platform was able to
1301  * put the device in D0 via non-PCI means.
1302  */
pci_power_up(struct pci_dev * dev)1303 int pci_power_up(struct pci_dev *dev)
1304 {
1305 	bool need_restore;
1306 	pci_power_t state;
1307 	u16 pmcsr;
1308 
1309 	platform_pci_set_power_state(dev, PCI_D0);
1310 
1311 	if (!dev->pm_cap) {
1312 		state = platform_pci_get_power_state(dev);
1313 		if (state == PCI_UNKNOWN)
1314 			dev->current_state = PCI_D0;
1315 		else
1316 			dev->current_state = state;
1317 
1318 		return -EIO;
1319 	}
1320 
1321 	if (pci_dev_is_disconnected(dev)) {
1322 		dev->current_state = PCI_D3cold;
1323 		return -EIO;
1324 	}
1325 
1326 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1327 	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1328 		pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1329 			pci_power_name(dev->current_state));
1330 		dev->current_state = PCI_D3cold;
1331 		return -EIO;
1332 	}
1333 
1334 	state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1335 
1336 	need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1337 			!(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1338 
1339 	if (state == PCI_D0)
1340 		goto end;
1341 
1342 	/*
1343 	 * Force the entire word to 0. This doesn't affect PME_Status, disables
1344 	 * PME_En, and sets PowerState to 0.
1345 	 */
1346 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1347 
1348 	/* Mandatory transition delays; see PCI PM 1.2. */
1349 	if (state == PCI_D3hot)
1350 		pci_dev_d3_sleep(dev);
1351 	else if (state == PCI_D2)
1352 		udelay(PCI_PM_D2_DELAY);
1353 
1354 end:
1355 	dev->current_state = PCI_D0;
1356 	if (need_restore)
1357 		return 1;
1358 
1359 	return 0;
1360 }
1361 
1362 /**
1363  * pci_set_full_power_state - Put a PCI device into D0 and update its state
1364  * @dev: PCI device to power up
1365  * @locked: whether pci_bus_sem is held
1366  *
1367  * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1368  * to confirm the state change, restore its BARs if they might be lost and
1369  * reconfigure ASPM in accordance with the new power state.
1370  *
1371  * If pci_restore_state() is going to be called right after a power state change
1372  * to D0, it is more efficient to use pci_power_up() directly instead of this
1373  * function.
1374  */
pci_set_full_power_state(struct pci_dev * dev,bool locked)1375 static int pci_set_full_power_state(struct pci_dev *dev, bool locked)
1376 {
1377 	u16 pmcsr;
1378 	int ret;
1379 
1380 	ret = pci_power_up(dev);
1381 	if (ret < 0) {
1382 		if (dev->current_state == PCI_D0)
1383 			return 0;
1384 
1385 		return ret;
1386 	}
1387 
1388 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1389 	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1390 	if (dev->current_state != PCI_D0) {
1391 		pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1392 				     pci_power_name(dev->current_state));
1393 	} else if (ret > 0) {
1394 		/*
1395 		 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1396 		 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1397 		 * from D3hot to D0 _may_ perform an internal reset, thereby
1398 		 * going to "D0 Uninitialized" rather than "D0 Initialized".
1399 		 * For example, at least some versions of the 3c905B and the
1400 		 * 3c556B exhibit this behaviour.
1401 		 *
1402 		 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1403 		 * devices in a D3hot state at boot.  Consequently, we need to
1404 		 * restore at least the BARs so that the device will be
1405 		 * accessible to its driver.
1406 		 */
1407 		pci_restore_bars(dev);
1408 	}
1409 
1410 	if (dev->bus->self)
1411 		pcie_aspm_pm_state_change(dev->bus->self, locked);
1412 
1413 	return 0;
1414 }
1415 
1416 /**
1417  * __pci_dev_set_current_state - Set current state of a PCI device
1418  * @dev: Device to handle
1419  * @data: pointer to state to be set
1420  */
__pci_dev_set_current_state(struct pci_dev * dev,void * data)1421 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1422 {
1423 	pci_power_t state = *(pci_power_t *)data;
1424 
1425 	dev->current_state = state;
1426 	return 0;
1427 }
1428 
1429 /**
1430  * pci_bus_set_current_state - Walk given bus and set current state of devices
1431  * @bus: Top bus of the subtree to walk.
1432  * @state: state to be set
1433  */
pci_bus_set_current_state(struct pci_bus * bus,pci_power_t state)1434 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1435 {
1436 	if (bus)
1437 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1438 }
1439 
__pci_bus_set_current_state(struct pci_bus * bus,pci_power_t state,bool locked)1440 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state, bool locked)
1441 {
1442 	if (!bus)
1443 		return;
1444 
1445 	if (locked)
1446 		pci_walk_bus_locked(bus, __pci_dev_set_current_state, &state);
1447 	else
1448 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1449 }
1450 
1451 /**
1452  * pci_set_low_power_state - Put a PCI device into a low-power state.
1453  * @dev: PCI device to handle.
1454  * @state: PCI power state (D1, D2, D3hot) to put the device into.
1455  * @locked: whether pci_bus_sem is held
1456  *
1457  * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1458  *
1459  * RETURN VALUE:
1460  * -EINVAL if the requested state is invalid.
1461  * -EIO if device does not support PCI PM or its PM capabilities register has a
1462  * wrong version, or device doesn't support the requested state.
1463  * 0 if device already is in the requested state.
1464  * 0 if device's power state has been successfully changed.
1465  */
pci_set_low_power_state(struct pci_dev * dev,pci_power_t state,bool locked)1466 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1467 {
1468 	u16 pmcsr;
1469 
1470 	if (!dev->pm_cap)
1471 		return -EIO;
1472 
1473 	/*
1474 	 * Validate transition: We can enter D0 from any state, but if
1475 	 * we're already in a low-power state, we can only go deeper.  E.g.,
1476 	 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1477 	 * we'd have to go from D3 to D0, then to D1.
1478 	 */
1479 	if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1480 		pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1481 			pci_power_name(dev->current_state),
1482 			pci_power_name(state));
1483 		return -EINVAL;
1484 	}
1485 
1486 	/* Check if this device supports the desired state */
1487 	if ((state == PCI_D1 && !dev->d1_support)
1488 	   || (state == PCI_D2 && !dev->d2_support))
1489 		return -EIO;
1490 
1491 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1492 	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1493 		pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1494 			pci_power_name(dev->current_state),
1495 			pci_power_name(state));
1496 		dev->current_state = PCI_D3cold;
1497 		return -EIO;
1498 	}
1499 
1500 	pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1501 	pmcsr |= state;
1502 
1503 	/* Enter specified state */
1504 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1505 
1506 	/* Mandatory power management transition delays; see PCI PM 1.2. */
1507 	if (state == PCI_D3hot)
1508 		pci_dev_d3_sleep(dev);
1509 	else if (state == PCI_D2)
1510 		udelay(PCI_PM_D2_DELAY);
1511 
1512 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1513 	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1514 	if (dev->current_state != state)
1515 		pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1516 				     pci_power_name(dev->current_state),
1517 				     pci_power_name(state));
1518 
1519 	if (dev->bus->self)
1520 		pcie_aspm_pm_state_change(dev->bus->self, locked);
1521 
1522 	return 0;
1523 }
1524 
__pci_set_power_state(struct pci_dev * dev,pci_power_t state,bool locked)1525 static int __pci_set_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1526 {
1527 	int error;
1528 
1529 	/* Bound the state we're entering */
1530 	if (state > PCI_D3cold)
1531 		state = PCI_D3cold;
1532 	else if (state < PCI_D0)
1533 		state = PCI_D0;
1534 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1535 
1536 		/*
1537 		 * If the device or the parent bridge do not support PCI
1538 		 * PM, ignore the request if we're doing anything other
1539 		 * than putting it into D0 (which would only happen on
1540 		 * boot).
1541 		 */
1542 		return 0;
1543 
1544 	/* Check if we're already there */
1545 	if (dev->current_state == state)
1546 		return 0;
1547 
1548 	if (state == PCI_D0)
1549 		return pci_set_full_power_state(dev, locked);
1550 
1551 	/*
1552 	 * This device is quirked not to be put into D3, so don't put it in
1553 	 * D3
1554 	 */
1555 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1556 		return 0;
1557 
1558 	if (state == PCI_D3cold) {
1559 		/*
1560 		 * To put the device in D3cold, put it into D3hot in the native
1561 		 * way, then put it into D3cold using platform ops.
1562 		 */
1563 		error = pci_set_low_power_state(dev, PCI_D3hot, locked);
1564 
1565 		if (pci_platform_power_transition(dev, PCI_D3cold))
1566 			return error;
1567 
1568 		/* Powering off a bridge may power off the whole hierarchy */
1569 		if (dev->current_state == PCI_D3cold)
1570 			__pci_bus_set_current_state(dev->subordinate, PCI_D3cold, locked);
1571 	} else {
1572 		error = pci_set_low_power_state(dev, state, locked);
1573 
1574 		if (pci_platform_power_transition(dev, state))
1575 			return error;
1576 	}
1577 
1578 	return 0;
1579 }
1580 
1581 /**
1582  * pci_set_power_state - Set the power state of a PCI device
1583  * @dev: PCI device to handle.
1584  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1585  *
1586  * Transition a device to a new power state, using the platform firmware and/or
1587  * the device's PCI PM registers.
1588  *
1589  * RETURN VALUE:
1590  * -EINVAL if the requested state is invalid.
1591  * -EIO if device does not support PCI PM or its PM capabilities register has a
1592  * wrong version, or device doesn't support the requested state.
1593  * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1594  * 0 if device already is in the requested state.
1595  * 0 if the transition is to D3 but D3 is not supported.
1596  * 0 if device's power state has been successfully changed.
1597  */
pci_set_power_state(struct pci_dev * dev,pci_power_t state)1598 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1599 {
1600 	return __pci_set_power_state(dev, state, false);
1601 }
1602 EXPORT_SYMBOL(pci_set_power_state);
1603 
pci_set_power_state_locked(struct pci_dev * dev,pci_power_t state)1604 int pci_set_power_state_locked(struct pci_dev *dev, pci_power_t state)
1605 {
1606 	lockdep_assert_held(&pci_bus_sem);
1607 
1608 	return __pci_set_power_state(dev, state, true);
1609 }
1610 EXPORT_SYMBOL(pci_set_power_state_locked);
1611 
1612 #define PCI_EXP_SAVE_REGS	7
1613 
_pci_find_saved_cap(struct pci_dev * pci_dev,u16 cap,bool extended)1614 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1615 						       u16 cap, bool extended)
1616 {
1617 	struct pci_cap_saved_state *tmp;
1618 
1619 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1620 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1621 			return tmp;
1622 	}
1623 	return NULL;
1624 }
1625 
pci_find_saved_cap(struct pci_dev * dev,char cap)1626 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1627 {
1628 	return _pci_find_saved_cap(dev, cap, false);
1629 }
1630 
pci_find_saved_ext_cap(struct pci_dev * dev,u16 cap)1631 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1632 {
1633 	return _pci_find_saved_cap(dev, cap, true);
1634 }
1635 
pci_save_pcie_state(struct pci_dev * dev)1636 static int pci_save_pcie_state(struct pci_dev *dev)
1637 {
1638 	int i = 0;
1639 	struct pci_cap_saved_state *save_state;
1640 	u16 *cap;
1641 
1642 	if (!pci_is_pcie(dev))
1643 		return 0;
1644 
1645 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1646 	if (!save_state) {
1647 		pci_err(dev, "buffer not found in %s\n", __func__);
1648 		return -ENOMEM;
1649 	}
1650 
1651 	cap = (u16 *)&save_state->cap.data[0];
1652 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1653 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1654 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1655 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1656 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1657 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1658 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1659 
1660 	pci_save_aspm_l1ss_state(dev);
1661 	pci_save_ltr_state(dev);
1662 
1663 	return 0;
1664 }
1665 
pci_restore_pcie_state(struct pci_dev * dev)1666 static void pci_restore_pcie_state(struct pci_dev *dev)
1667 {
1668 	int i = 0;
1669 	struct pci_cap_saved_state *save_state;
1670 	u16 *cap;
1671 
1672 	/*
1673 	 * Restore max latencies (in the LTR capability) before enabling
1674 	 * LTR itself in PCI_EXP_DEVCTL2.
1675 	 */
1676 	pci_restore_ltr_state(dev);
1677 	pci_restore_aspm_l1ss_state(dev);
1678 
1679 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1680 	if (!save_state)
1681 		return;
1682 
1683 	/*
1684 	 * Downstream ports reset the LTR enable bit when link goes down.
1685 	 * Check and re-configure the bit here before restoring device.
1686 	 * PCIe r5.0, sec 7.5.3.16.
1687 	 */
1688 	pci_bridge_reconfigure_ltr(dev);
1689 
1690 	cap = (u16 *)&save_state->cap.data[0];
1691 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1692 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1693 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1694 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1695 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1696 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1697 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1698 }
1699 
pci_save_pcix_state(struct pci_dev * dev)1700 static int pci_save_pcix_state(struct pci_dev *dev)
1701 {
1702 	int pos;
1703 	struct pci_cap_saved_state *save_state;
1704 
1705 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1706 	if (!pos)
1707 		return 0;
1708 
1709 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1710 	if (!save_state) {
1711 		pci_err(dev, "buffer not found in %s\n", __func__);
1712 		return -ENOMEM;
1713 	}
1714 
1715 	pci_read_config_word(dev, pos + PCI_X_CMD,
1716 			     (u16 *)save_state->cap.data);
1717 
1718 	return 0;
1719 }
1720 
pci_restore_pcix_state(struct pci_dev * dev)1721 static void pci_restore_pcix_state(struct pci_dev *dev)
1722 {
1723 	int i = 0, pos;
1724 	struct pci_cap_saved_state *save_state;
1725 	u16 *cap;
1726 
1727 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1728 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1729 	if (!save_state || !pos)
1730 		return;
1731 	cap = (u16 *)&save_state->cap.data[0];
1732 
1733 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1734 }
1735 
1736 /**
1737  * pci_save_state - save the PCI configuration space of a device before
1738  *		    suspending
1739  * @dev: PCI device that we're dealing with
1740  */
pci_save_state(struct pci_dev * dev)1741 int pci_save_state(struct pci_dev *dev)
1742 {
1743 	int i;
1744 	/* XXX: 100% dword access ok here? */
1745 	for (i = 0; i < 16; i++) {
1746 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1747 		pci_dbg(dev, "save config %#04x: %#010x\n",
1748 			i * 4, dev->saved_config_space[i]);
1749 	}
1750 	dev->state_saved = true;
1751 
1752 	i = pci_save_pcie_state(dev);
1753 	if (i != 0)
1754 		return i;
1755 
1756 	i = pci_save_pcix_state(dev);
1757 	if (i != 0)
1758 		return i;
1759 
1760 	pci_save_dpc_state(dev);
1761 	pci_save_aer_state(dev);
1762 	pci_save_ptm_state(dev);
1763 	pci_save_tph_state(dev);
1764 	return pci_save_vc_state(dev);
1765 }
1766 EXPORT_SYMBOL(pci_save_state);
1767 
pci_restore_config_dword(struct pci_dev * pdev,int offset,u32 saved_val,int retry,bool force)1768 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1769 				     u32 saved_val, int retry, bool force)
1770 {
1771 	u32 val;
1772 
1773 	pci_read_config_dword(pdev, offset, &val);
1774 	if (!force && val == saved_val)
1775 		return;
1776 
1777 	for (;;) {
1778 		pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n",
1779 			offset, val, saved_val);
1780 		pci_write_config_dword(pdev, offset, saved_val);
1781 		if (retry-- <= 0)
1782 			return;
1783 
1784 		pci_read_config_dword(pdev, offset, &val);
1785 		if (val == saved_val)
1786 			return;
1787 
1788 		mdelay(1);
1789 	}
1790 }
1791 
pci_restore_config_space_range(struct pci_dev * pdev,int start,int end,int retry,bool force)1792 static void pci_restore_config_space_range(struct pci_dev *pdev,
1793 					   int start, int end, int retry,
1794 					   bool force)
1795 {
1796 	int index;
1797 
1798 	for (index = end; index >= start; index--)
1799 		pci_restore_config_dword(pdev, 4 * index,
1800 					 pdev->saved_config_space[index],
1801 					 retry, force);
1802 }
1803 
pci_restore_config_space(struct pci_dev * pdev)1804 static void pci_restore_config_space(struct pci_dev *pdev)
1805 {
1806 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1807 		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1808 		/* Restore BARs before the command register. */
1809 		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1810 		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1811 	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1812 		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1813 
1814 		/*
1815 		 * Force rewriting of prefetch registers to avoid S3 resume
1816 		 * issues on Intel PCI bridges that occur when these
1817 		 * registers are not explicitly written.
1818 		 */
1819 		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1820 		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1821 	} else {
1822 		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1823 	}
1824 }
1825 
pci_restore_rebar_state(struct pci_dev * pdev)1826 static void pci_restore_rebar_state(struct pci_dev *pdev)
1827 {
1828 	unsigned int pos, nbars, i;
1829 	u32 ctrl;
1830 
1831 	pos = pdev->rebar_cap;
1832 	if (!pos)
1833 		return;
1834 
1835 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1836 	nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
1837 
1838 	for (i = 0; i < nbars; i++, pos += 8) {
1839 		struct resource *res;
1840 		int bar_idx, size;
1841 
1842 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1843 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1844 		res = pci_resource_n(pdev, bar_idx);
1845 		size = pci_rebar_bytes_to_size(resource_size(res));
1846 		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1847 		ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
1848 		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1849 	}
1850 }
1851 
1852 /**
1853  * pci_restore_state - Restore the saved state of a PCI device
1854  * @dev: PCI device that we're dealing with
1855  */
pci_restore_state(struct pci_dev * dev)1856 void pci_restore_state(struct pci_dev *dev)
1857 {
1858 	if (!dev->state_saved)
1859 		return;
1860 
1861 	pci_restore_pcie_state(dev);
1862 	pci_restore_pasid_state(dev);
1863 	pci_restore_pri_state(dev);
1864 	pci_restore_ats_state(dev);
1865 	pci_restore_vc_state(dev);
1866 	pci_restore_rebar_state(dev);
1867 	pci_restore_dpc_state(dev);
1868 	pci_restore_ptm_state(dev);
1869 	pci_restore_tph_state(dev);
1870 
1871 	pci_aer_clear_status(dev);
1872 	pci_restore_aer_state(dev);
1873 
1874 	pci_restore_config_space(dev);
1875 
1876 	pci_restore_pcix_state(dev);
1877 	pci_restore_msi_state(dev);
1878 
1879 	/* Restore ACS and IOV configuration state */
1880 	pci_enable_acs(dev);
1881 	pci_restore_iov_state(dev);
1882 
1883 	dev->state_saved = false;
1884 }
1885 EXPORT_SYMBOL(pci_restore_state);
1886 
1887 struct pci_saved_state {
1888 	u32 config_space[16];
1889 	struct pci_cap_saved_data cap[];
1890 };
1891 
1892 /**
1893  * pci_store_saved_state - Allocate and return an opaque struct containing
1894  *			   the device saved state.
1895  * @dev: PCI device that we're dealing with
1896  *
1897  * Return NULL if no state or error.
1898  */
pci_store_saved_state(struct pci_dev * dev)1899 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1900 {
1901 	struct pci_saved_state *state;
1902 	struct pci_cap_saved_state *tmp;
1903 	struct pci_cap_saved_data *cap;
1904 	size_t size;
1905 
1906 	if (!dev->state_saved)
1907 		return NULL;
1908 
1909 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1910 
1911 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1912 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1913 
1914 	state = kzalloc(size, GFP_KERNEL);
1915 	if (!state)
1916 		return NULL;
1917 
1918 	memcpy(state->config_space, dev->saved_config_space,
1919 	       sizeof(state->config_space));
1920 
1921 	cap = state->cap;
1922 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1923 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1924 		memcpy(cap, &tmp->cap, len);
1925 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1926 	}
1927 	/* Empty cap_save terminates list */
1928 
1929 	return state;
1930 }
1931 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1932 
1933 /**
1934  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1935  * @dev: PCI device that we're dealing with
1936  * @state: Saved state returned from pci_store_saved_state()
1937  */
pci_load_saved_state(struct pci_dev * dev,struct pci_saved_state * state)1938 int pci_load_saved_state(struct pci_dev *dev,
1939 			 struct pci_saved_state *state)
1940 {
1941 	struct pci_cap_saved_data *cap;
1942 
1943 	dev->state_saved = false;
1944 
1945 	if (!state)
1946 		return 0;
1947 
1948 	memcpy(dev->saved_config_space, state->config_space,
1949 	       sizeof(state->config_space));
1950 
1951 	cap = state->cap;
1952 	while (cap->size) {
1953 		struct pci_cap_saved_state *tmp;
1954 
1955 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1956 		if (!tmp || tmp->cap.size != cap->size)
1957 			return -EINVAL;
1958 
1959 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1960 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1961 		       sizeof(struct pci_cap_saved_data) + cap->size);
1962 	}
1963 
1964 	dev->state_saved = true;
1965 	return 0;
1966 }
1967 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1968 
1969 /**
1970  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1971  *				   and free the memory allocated for it.
1972  * @dev: PCI device that we're dealing with
1973  * @state: Pointer to saved state returned from pci_store_saved_state()
1974  */
pci_load_and_free_saved_state(struct pci_dev * dev,struct pci_saved_state ** state)1975 int pci_load_and_free_saved_state(struct pci_dev *dev,
1976 				  struct pci_saved_state **state)
1977 {
1978 	int ret = pci_load_saved_state(dev, *state);
1979 	kfree(*state);
1980 	*state = NULL;
1981 	return ret;
1982 }
1983 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1984 
pcibios_enable_device(struct pci_dev * dev,int bars)1985 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1986 {
1987 	return pci_enable_resources(dev, bars);
1988 }
1989 
pci_host_bridge_enable_device(struct pci_dev * dev)1990 static int pci_host_bridge_enable_device(struct pci_dev *dev)
1991 {
1992 	struct pci_host_bridge *host_bridge = pci_find_host_bridge(dev->bus);
1993 	int err;
1994 
1995 	if (host_bridge && host_bridge->enable_device) {
1996 		err = host_bridge->enable_device(host_bridge, dev);
1997 		if (err)
1998 			return err;
1999 	}
2000 
2001 	return 0;
2002 }
2003 
pci_host_bridge_disable_device(struct pci_dev * dev)2004 static void pci_host_bridge_disable_device(struct pci_dev *dev)
2005 {
2006 	struct pci_host_bridge *host_bridge = pci_find_host_bridge(dev->bus);
2007 
2008 	if (host_bridge && host_bridge->disable_device)
2009 		host_bridge->disable_device(host_bridge, dev);
2010 }
2011 
do_pci_enable_device(struct pci_dev * dev,int bars)2012 static int do_pci_enable_device(struct pci_dev *dev, int bars)
2013 {
2014 	int err;
2015 	struct pci_dev *bridge;
2016 	u16 cmd;
2017 	u8 pin;
2018 
2019 	err = pci_set_power_state(dev, PCI_D0);
2020 	if (err < 0 && err != -EIO)
2021 		return err;
2022 
2023 	bridge = pci_upstream_bridge(dev);
2024 	if (bridge)
2025 		pcie_aspm_powersave_config_link(bridge);
2026 
2027 	err = pci_host_bridge_enable_device(dev);
2028 	if (err)
2029 		return err;
2030 
2031 	err = pcibios_enable_device(dev, bars);
2032 	if (err < 0)
2033 		goto err_enable;
2034 	pci_fixup_device(pci_fixup_enable, dev);
2035 
2036 	if (dev->msi_enabled || dev->msix_enabled)
2037 		return 0;
2038 
2039 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
2040 	if (pin) {
2041 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
2042 		if (cmd & PCI_COMMAND_INTX_DISABLE)
2043 			pci_write_config_word(dev, PCI_COMMAND,
2044 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
2045 	}
2046 
2047 	return 0;
2048 
2049 err_enable:
2050 	pci_host_bridge_disable_device(dev);
2051 
2052 	return err;
2053 
2054 }
2055 
2056 /**
2057  * pci_reenable_device - Resume abandoned device
2058  * @dev: PCI device to be resumed
2059  *
2060  * NOTE: This function is a backend of pci_default_resume() and is not supposed
2061  * to be called by normal code, write proper resume handler and use it instead.
2062  */
pci_reenable_device(struct pci_dev * dev)2063 int pci_reenable_device(struct pci_dev *dev)
2064 {
2065 	if (pci_is_enabled(dev))
2066 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
2067 	return 0;
2068 }
2069 EXPORT_SYMBOL(pci_reenable_device);
2070 
pci_enable_bridge(struct pci_dev * dev)2071 static void pci_enable_bridge(struct pci_dev *dev)
2072 {
2073 	struct pci_dev *bridge;
2074 	int retval;
2075 
2076 	bridge = pci_upstream_bridge(dev);
2077 	if (bridge)
2078 		pci_enable_bridge(bridge);
2079 
2080 	if (pci_is_enabled(dev)) {
2081 		if (!dev->is_busmaster)
2082 			pci_set_master(dev);
2083 		return;
2084 	}
2085 
2086 	retval = pci_enable_device(dev);
2087 	if (retval)
2088 		pci_err(dev, "Error enabling bridge (%d), continuing\n",
2089 			retval);
2090 	pci_set_master(dev);
2091 }
2092 
pci_enable_device_flags(struct pci_dev * dev,unsigned long flags)2093 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
2094 {
2095 	struct pci_dev *bridge;
2096 	int err;
2097 	int i, bars = 0;
2098 
2099 	/*
2100 	 * Power state could be unknown at this point, either due to a fresh
2101 	 * boot or a device removal call.  So get the current power state
2102 	 * so that things like MSI message writing will behave as expected
2103 	 * (e.g. if the device really is in D0 at enable time).
2104 	 */
2105 	pci_update_current_state(dev, dev->current_state);
2106 
2107 	if (atomic_inc_return(&dev->enable_cnt) > 1)
2108 		return 0;		/* already enabled */
2109 
2110 	bridge = pci_upstream_bridge(dev);
2111 	if (bridge)
2112 		pci_enable_bridge(bridge);
2113 
2114 	/* only skip sriov related */
2115 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2116 		if (dev->resource[i].flags & flags)
2117 			bars |= (1 << i);
2118 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2119 		if (dev->resource[i].flags & flags)
2120 			bars |= (1 << i);
2121 
2122 	err = do_pci_enable_device(dev, bars);
2123 	if (err < 0)
2124 		atomic_dec(&dev->enable_cnt);
2125 	return err;
2126 }
2127 
2128 /**
2129  * pci_enable_device_mem - Initialize a device for use with Memory space
2130  * @dev: PCI device to be initialized
2131  *
2132  * Initialize device before it's used by a driver. Ask low-level code
2133  * to enable Memory resources. Wake up the device if it was suspended.
2134  * Beware, this function can fail.
2135  */
pci_enable_device_mem(struct pci_dev * dev)2136 int pci_enable_device_mem(struct pci_dev *dev)
2137 {
2138 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
2139 }
2140 EXPORT_SYMBOL(pci_enable_device_mem);
2141 
2142 /**
2143  * pci_enable_device - Initialize device before it's used by a driver.
2144  * @dev: PCI device to be initialized
2145  *
2146  * Initialize device before it's used by a driver. Ask low-level code
2147  * to enable I/O and memory. Wake up the device if it was suspended.
2148  * Beware, this function can fail.
2149  *
2150  * Note we don't actually enable the device many times if we call
2151  * this function repeatedly (we just increment the count).
2152  */
pci_enable_device(struct pci_dev * dev)2153 int pci_enable_device(struct pci_dev *dev)
2154 {
2155 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2156 }
2157 EXPORT_SYMBOL(pci_enable_device);
2158 
2159 /*
2160  * pcibios_device_add - provide arch specific hooks when adding device dev
2161  * @dev: the PCI device being added
2162  *
2163  * Permits the platform to provide architecture specific functionality when
2164  * devices are added. This is the default implementation. Architecture
2165  * implementations can override this.
2166  */
pcibios_device_add(struct pci_dev * dev)2167 int __weak pcibios_device_add(struct pci_dev *dev)
2168 {
2169 	return 0;
2170 }
2171 
2172 /**
2173  * pcibios_release_device - provide arch specific hooks when releasing
2174  *			    device dev
2175  * @dev: the PCI device being released
2176  *
2177  * Permits the platform to provide architecture specific functionality when
2178  * devices are released. This is the default implementation. Architecture
2179  * implementations can override this.
2180  */
pcibios_release_device(struct pci_dev * dev)2181 void __weak pcibios_release_device(struct pci_dev *dev) {}
2182 
2183 /**
2184  * pcibios_disable_device - disable arch specific PCI resources for device dev
2185  * @dev: the PCI device to disable
2186  *
2187  * Disables architecture specific PCI resources for the device. This
2188  * is the default implementation. Architecture implementations can
2189  * override this.
2190  */
pcibios_disable_device(struct pci_dev * dev)2191 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2192 
do_pci_disable_device(struct pci_dev * dev)2193 static void do_pci_disable_device(struct pci_dev *dev)
2194 {
2195 	u16 pci_command;
2196 
2197 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2198 	if (pci_command & PCI_COMMAND_MASTER) {
2199 		pci_command &= ~PCI_COMMAND_MASTER;
2200 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
2201 	}
2202 
2203 	pcibios_disable_device(dev);
2204 }
2205 
2206 /**
2207  * pci_disable_enabled_device - Disable device without updating enable_cnt
2208  * @dev: PCI device to disable
2209  *
2210  * NOTE: This function is a backend of PCI power management routines and is
2211  * not supposed to be called drivers.
2212  */
pci_disable_enabled_device(struct pci_dev * dev)2213 void pci_disable_enabled_device(struct pci_dev *dev)
2214 {
2215 	if (pci_is_enabled(dev))
2216 		do_pci_disable_device(dev);
2217 }
2218 
2219 /**
2220  * pci_disable_device - Disable PCI device after use
2221  * @dev: PCI device to be disabled
2222  *
2223  * Signal to the system that the PCI device is not in use by the system
2224  * anymore.  This only involves disabling PCI bus-mastering, if active.
2225  *
2226  * Note we don't actually disable the device until all callers of
2227  * pci_enable_device() have called pci_disable_device().
2228  */
pci_disable_device(struct pci_dev * dev)2229 void pci_disable_device(struct pci_dev *dev)
2230 {
2231 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2232 		      "disabling already-disabled device");
2233 
2234 	if (atomic_dec_return(&dev->enable_cnt) != 0)
2235 		return;
2236 
2237 	pci_host_bridge_disable_device(dev);
2238 
2239 	do_pci_disable_device(dev);
2240 
2241 	dev->is_busmaster = 0;
2242 }
2243 EXPORT_SYMBOL(pci_disable_device);
2244 
2245 /**
2246  * pcibios_set_pcie_reset_state - set reset state for device dev
2247  * @dev: the PCIe device reset
2248  * @state: Reset state to enter into
2249  *
2250  * Set the PCIe reset state for the device. This is the default
2251  * implementation. Architecture implementations can override this.
2252  */
pcibios_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)2253 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2254 					enum pcie_reset_state state)
2255 {
2256 	return -EINVAL;
2257 }
2258 
2259 /**
2260  * pci_set_pcie_reset_state - set reset state for device dev
2261  * @dev: the PCIe device reset
2262  * @state: Reset state to enter into
2263  *
2264  * Sets the PCI reset state for the device.
2265  */
pci_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)2266 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2267 {
2268 	return pcibios_set_pcie_reset_state(dev, state);
2269 }
2270 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2271 
2272 #ifdef CONFIG_PCIEAER
pcie_clear_device_status(struct pci_dev * dev)2273 void pcie_clear_device_status(struct pci_dev *dev)
2274 {
2275 	u16 sta;
2276 
2277 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2278 	pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2279 }
2280 #endif
2281 
2282 /**
2283  * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2284  * @dev: PCIe root port or event collector.
2285  */
pcie_clear_root_pme_status(struct pci_dev * dev)2286 void pcie_clear_root_pme_status(struct pci_dev *dev)
2287 {
2288 	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2289 }
2290 
2291 /**
2292  * pci_check_pme_status - Check if given device has generated PME.
2293  * @dev: Device to check.
2294  *
2295  * Check the PME status of the device and if set, clear it and clear PME enable
2296  * (if set).  Return 'true' if PME status and PME enable were both set or
2297  * 'false' otherwise.
2298  */
pci_check_pme_status(struct pci_dev * dev)2299 bool pci_check_pme_status(struct pci_dev *dev)
2300 {
2301 	int pmcsr_pos;
2302 	u16 pmcsr;
2303 	bool ret = false;
2304 
2305 	if (!dev->pm_cap)
2306 		return false;
2307 
2308 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2309 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2310 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2311 		return false;
2312 
2313 	/* Clear PME status. */
2314 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2315 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2316 		/* Disable PME to avoid interrupt flood. */
2317 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2318 		ret = true;
2319 	}
2320 
2321 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2322 
2323 	return ret;
2324 }
2325 
2326 /**
2327  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2328  * @dev: Device to handle.
2329  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2330  *
2331  * Check if @dev has generated PME and queue a resume request for it in that
2332  * case.
2333  */
pci_pme_wakeup(struct pci_dev * dev,void * pme_poll_reset)2334 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2335 {
2336 	if (pme_poll_reset && dev->pme_poll)
2337 		dev->pme_poll = false;
2338 
2339 	if (pci_check_pme_status(dev)) {
2340 		pci_wakeup_event(dev);
2341 		pm_request_resume(&dev->dev);
2342 	}
2343 	return 0;
2344 }
2345 
2346 /**
2347  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2348  * @bus: Top bus of the subtree to walk.
2349  */
pci_pme_wakeup_bus(struct pci_bus * bus)2350 void pci_pme_wakeup_bus(struct pci_bus *bus)
2351 {
2352 	if (bus)
2353 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2354 }
2355 
2356 
2357 /**
2358  * pci_pme_capable - check the capability of PCI device to generate PME#
2359  * @dev: PCI device to handle.
2360  * @state: PCI state from which device will issue PME#.
2361  */
pci_pme_capable(struct pci_dev * dev,pci_power_t state)2362 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2363 {
2364 	if (!dev->pm_cap)
2365 		return false;
2366 
2367 	return !!(dev->pme_support & (1 << state));
2368 }
2369 EXPORT_SYMBOL(pci_pme_capable);
2370 
pci_pme_list_scan(struct work_struct * work)2371 static void pci_pme_list_scan(struct work_struct *work)
2372 {
2373 	struct pci_pme_device *pme_dev, *n;
2374 
2375 	mutex_lock(&pci_pme_list_mutex);
2376 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2377 		struct pci_dev *pdev = pme_dev->dev;
2378 
2379 		if (pdev->pme_poll) {
2380 			struct pci_dev *bridge = pdev->bus->self;
2381 			struct device *dev = &pdev->dev;
2382 			struct device *bdev = bridge ? &bridge->dev : NULL;
2383 			int bref = 0;
2384 
2385 			/*
2386 			 * If we have a bridge, it should be in an active/D0
2387 			 * state or the configuration space of subordinate
2388 			 * devices may not be accessible or stable over the
2389 			 * course of the call.
2390 			 */
2391 			if (bdev) {
2392 				bref = pm_runtime_get_if_active(bdev);
2393 				if (!bref)
2394 					continue;
2395 
2396 				if (bridge->current_state != PCI_D0)
2397 					goto put_bridge;
2398 			}
2399 
2400 			/*
2401 			 * The device itself should be suspended but config
2402 			 * space must be accessible, therefore it cannot be in
2403 			 * D3cold.
2404 			 */
2405 			if (pm_runtime_suspended(dev) &&
2406 			    pdev->current_state != PCI_D3cold)
2407 				pci_pme_wakeup(pdev, NULL);
2408 
2409 put_bridge:
2410 			if (bref > 0)
2411 				pm_runtime_put(bdev);
2412 		} else {
2413 			list_del(&pme_dev->list);
2414 			kfree(pme_dev);
2415 		}
2416 	}
2417 	if (!list_empty(&pci_pme_list))
2418 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2419 				   msecs_to_jiffies(PME_TIMEOUT));
2420 	mutex_unlock(&pci_pme_list_mutex);
2421 }
2422 
__pci_pme_active(struct pci_dev * dev,bool enable)2423 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2424 {
2425 	u16 pmcsr;
2426 
2427 	if (!dev->pme_support)
2428 		return;
2429 
2430 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2431 	/* Clear PME_Status by writing 1 to it and enable PME# */
2432 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2433 	if (!enable)
2434 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2435 
2436 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2437 }
2438 
2439 /**
2440  * pci_pme_restore - Restore PME configuration after config space restore.
2441  * @dev: PCI device to update.
2442  */
pci_pme_restore(struct pci_dev * dev)2443 void pci_pme_restore(struct pci_dev *dev)
2444 {
2445 	u16 pmcsr;
2446 
2447 	if (!dev->pme_support)
2448 		return;
2449 
2450 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2451 	if (dev->wakeup_prepared) {
2452 		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2453 		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2454 	} else {
2455 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2456 		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2457 	}
2458 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2459 }
2460 
2461 /**
2462  * pci_pme_active - enable or disable PCI device's PME# function
2463  * @dev: PCI device to handle.
2464  * @enable: 'true' to enable PME# generation; 'false' to disable it.
2465  *
2466  * The caller must verify that the device is capable of generating PME# before
2467  * calling this function with @enable equal to 'true'.
2468  */
pci_pme_active(struct pci_dev * dev,bool enable)2469 void pci_pme_active(struct pci_dev *dev, bool enable)
2470 {
2471 	__pci_pme_active(dev, enable);
2472 
2473 	/*
2474 	 * PCI (as opposed to PCIe) PME requires that the device have
2475 	 * its PME# line hooked up correctly. Not all hardware vendors
2476 	 * do this, so the PME never gets delivered and the device
2477 	 * remains asleep. The easiest way around this is to
2478 	 * periodically walk the list of suspended devices and check
2479 	 * whether any have their PME flag set. The assumption is that
2480 	 * we'll wake up often enough anyway that this won't be a huge
2481 	 * hit, and the power savings from the devices will still be a
2482 	 * win.
2483 	 *
2484 	 * Although PCIe uses in-band PME message instead of PME# line
2485 	 * to report PME, PME does not work for some PCIe devices in
2486 	 * reality.  For example, there are devices that set their PME
2487 	 * status bits, but don't really bother to send a PME message;
2488 	 * there are PCI Express Root Ports that don't bother to
2489 	 * trigger interrupts when they receive PME messages from the
2490 	 * devices below.  So PME poll is used for PCIe devices too.
2491 	 */
2492 
2493 	if (dev->pme_poll) {
2494 		struct pci_pme_device *pme_dev;
2495 		if (enable) {
2496 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2497 					  GFP_KERNEL);
2498 			if (!pme_dev) {
2499 				pci_warn(dev, "can't enable PME#\n");
2500 				return;
2501 			}
2502 			pme_dev->dev = dev;
2503 			mutex_lock(&pci_pme_list_mutex);
2504 			list_add(&pme_dev->list, &pci_pme_list);
2505 			if (list_is_singular(&pci_pme_list))
2506 				queue_delayed_work(system_freezable_wq,
2507 						   &pci_pme_work,
2508 						   msecs_to_jiffies(PME_TIMEOUT));
2509 			mutex_unlock(&pci_pme_list_mutex);
2510 		} else {
2511 			mutex_lock(&pci_pme_list_mutex);
2512 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2513 				if (pme_dev->dev == dev) {
2514 					list_del(&pme_dev->list);
2515 					kfree(pme_dev);
2516 					break;
2517 				}
2518 			}
2519 			mutex_unlock(&pci_pme_list_mutex);
2520 		}
2521 	}
2522 
2523 	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2524 }
2525 EXPORT_SYMBOL(pci_pme_active);
2526 
2527 /**
2528  * __pci_enable_wake - enable PCI device as wakeup event source
2529  * @dev: PCI device affected
2530  * @state: PCI state from which device will issue wakeup events
2531  * @enable: True to enable event generation; false to disable
2532  *
2533  * This enables the device as a wakeup event source, or disables it.
2534  * When such events involves platform-specific hooks, those hooks are
2535  * called automatically by this routine.
2536  *
2537  * Devices with legacy power management (no standard PCI PM capabilities)
2538  * always require such platform hooks.
2539  *
2540  * RETURN VALUE:
2541  * 0 is returned on success
2542  * -EINVAL is returned if device is not supposed to wake up the system
2543  * Error code depending on the platform is returned if both the platform and
2544  * the native mechanism fail to enable the generation of wake-up events
2545  */
__pci_enable_wake(struct pci_dev * dev,pci_power_t state,bool enable)2546 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2547 {
2548 	int ret = 0;
2549 
2550 	/*
2551 	 * Bridges that are not power-manageable directly only signal
2552 	 * wakeup on behalf of subordinate devices which is set up
2553 	 * elsewhere, so skip them. However, bridges that are
2554 	 * power-manageable may signal wakeup for themselves (for example,
2555 	 * on a hotplug event) and they need to be covered here.
2556 	 */
2557 	if (!pci_power_manageable(dev))
2558 		return 0;
2559 
2560 	/* Don't do the same thing twice in a row for one device. */
2561 	if (!!enable == !!dev->wakeup_prepared)
2562 		return 0;
2563 
2564 	/*
2565 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2566 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2567 	 * enable.  To disable wake-up we call the platform first, for symmetry.
2568 	 */
2569 
2570 	if (enable) {
2571 		int error;
2572 
2573 		/*
2574 		 * Enable PME signaling if the device can signal PME from
2575 		 * D3cold regardless of whether or not it can signal PME from
2576 		 * the current target state, because that will allow it to
2577 		 * signal PME when the hierarchy above it goes into D3cold and
2578 		 * the device itself ends up in D3cold as a result of that.
2579 		 */
2580 		if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2581 			pci_pme_active(dev, true);
2582 		else
2583 			ret = 1;
2584 		error = platform_pci_set_wakeup(dev, true);
2585 		if (ret)
2586 			ret = error;
2587 		if (!ret)
2588 			dev->wakeup_prepared = true;
2589 	} else {
2590 		platform_pci_set_wakeup(dev, false);
2591 		pci_pme_active(dev, false);
2592 		dev->wakeup_prepared = false;
2593 	}
2594 
2595 	return ret;
2596 }
2597 
2598 /**
2599  * pci_enable_wake - change wakeup settings for a PCI device
2600  * @pci_dev: Target device
2601  * @state: PCI state from which device will issue wakeup events
2602  * @enable: Whether or not to enable event generation
2603  *
2604  * If @enable is set, check device_may_wakeup() for the device before calling
2605  * __pci_enable_wake() for it.
2606  */
pci_enable_wake(struct pci_dev * pci_dev,pci_power_t state,bool enable)2607 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2608 {
2609 	if (enable && !device_may_wakeup(&pci_dev->dev))
2610 		return -EINVAL;
2611 
2612 	return __pci_enable_wake(pci_dev, state, enable);
2613 }
2614 EXPORT_SYMBOL(pci_enable_wake);
2615 
2616 /**
2617  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2618  * @dev: PCI device to prepare
2619  * @enable: True to enable wake-up event generation; false to disable
2620  *
2621  * Many drivers want the device to wake up the system from D3_hot or D3_cold
2622  * and this function allows them to set that up cleanly - pci_enable_wake()
2623  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2624  * ordering constraints.
2625  *
2626  * This function only returns error code if the device is not allowed to wake
2627  * up the system from sleep or it is not capable of generating PME# from both
2628  * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2629  */
pci_wake_from_d3(struct pci_dev * dev,bool enable)2630 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2631 {
2632 	return pci_pme_capable(dev, PCI_D3cold) ?
2633 			pci_enable_wake(dev, PCI_D3cold, enable) :
2634 			pci_enable_wake(dev, PCI_D3hot, enable);
2635 }
2636 EXPORT_SYMBOL(pci_wake_from_d3);
2637 
2638 /**
2639  * pci_target_state - find an appropriate low power state for a given PCI dev
2640  * @dev: PCI device
2641  * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2642  *
2643  * Use underlying platform code to find a supported low power state for @dev.
2644  * If the platform can't manage @dev, return the deepest state from which it
2645  * can generate wake events, based on any available PME info.
2646  */
pci_target_state(struct pci_dev * dev,bool wakeup)2647 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2648 {
2649 	if (platform_pci_power_manageable(dev)) {
2650 		/*
2651 		 * Call the platform to find the target state for the device.
2652 		 */
2653 		pci_power_t state = platform_pci_choose_state(dev);
2654 
2655 		switch (state) {
2656 		case PCI_POWER_ERROR:
2657 		case PCI_UNKNOWN:
2658 			return PCI_D3hot;
2659 
2660 		case PCI_D1:
2661 		case PCI_D2:
2662 			if (pci_no_d1d2(dev))
2663 				return PCI_D3hot;
2664 		}
2665 
2666 		return state;
2667 	}
2668 
2669 	/*
2670 	 * If the device is in D3cold even though it's not power-manageable by
2671 	 * the platform, it may have been powered down by non-standard means.
2672 	 * Best to let it slumber.
2673 	 */
2674 	if (dev->current_state == PCI_D3cold)
2675 		return PCI_D3cold;
2676 	else if (!dev->pm_cap)
2677 		return PCI_D0;
2678 
2679 	if (wakeup && dev->pme_support) {
2680 		pci_power_t state = PCI_D3hot;
2681 
2682 		/*
2683 		 * Find the deepest state from which the device can generate
2684 		 * PME#.
2685 		 */
2686 		while (state && !(dev->pme_support & (1 << state)))
2687 			state--;
2688 
2689 		if (state)
2690 			return state;
2691 		else if (dev->pme_support & 1)
2692 			return PCI_D0;
2693 	}
2694 
2695 	return PCI_D3hot;
2696 }
2697 
2698 /**
2699  * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2700  *			  into a sleep state
2701  * @dev: Device to handle.
2702  *
2703  * Choose the power state appropriate for the device depending on whether
2704  * it can wake up the system and/or is power manageable by the platform
2705  * (PCI_D3hot is the default) and put the device into that state.
2706  */
pci_prepare_to_sleep(struct pci_dev * dev)2707 int pci_prepare_to_sleep(struct pci_dev *dev)
2708 {
2709 	bool wakeup = device_may_wakeup(&dev->dev);
2710 	pci_power_t target_state = pci_target_state(dev, wakeup);
2711 	int error;
2712 
2713 	if (target_state == PCI_POWER_ERROR)
2714 		return -EIO;
2715 
2716 	pci_enable_wake(dev, target_state, wakeup);
2717 
2718 	error = pci_set_power_state(dev, target_state);
2719 
2720 	if (error)
2721 		pci_enable_wake(dev, target_state, false);
2722 
2723 	return error;
2724 }
2725 EXPORT_SYMBOL(pci_prepare_to_sleep);
2726 
2727 /**
2728  * pci_back_from_sleep - turn PCI device on during system-wide transition
2729  *			 into working state
2730  * @dev: Device to handle.
2731  *
2732  * Disable device's system wake-up capability and put it into D0.
2733  */
pci_back_from_sleep(struct pci_dev * dev)2734 int pci_back_from_sleep(struct pci_dev *dev)
2735 {
2736 	int ret = pci_set_power_state(dev, PCI_D0);
2737 
2738 	if (ret)
2739 		return ret;
2740 
2741 	pci_enable_wake(dev, PCI_D0, false);
2742 	return 0;
2743 }
2744 EXPORT_SYMBOL(pci_back_from_sleep);
2745 
2746 /**
2747  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2748  * @dev: PCI device being suspended.
2749  *
2750  * Prepare @dev to generate wake-up events at run time and put it into a low
2751  * power state.
2752  */
pci_finish_runtime_suspend(struct pci_dev * dev)2753 int pci_finish_runtime_suspend(struct pci_dev *dev)
2754 {
2755 	pci_power_t target_state;
2756 	int error;
2757 
2758 	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2759 	if (target_state == PCI_POWER_ERROR)
2760 		return -EIO;
2761 
2762 	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2763 
2764 	error = pci_set_power_state(dev, target_state);
2765 
2766 	if (error)
2767 		pci_enable_wake(dev, target_state, false);
2768 
2769 	return error;
2770 }
2771 
2772 /**
2773  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2774  * @dev: Device to check.
2775  *
2776  * Return true if the device itself is capable of generating wake-up events
2777  * (through the platform or using the native PCIe PME) or if the device supports
2778  * PME and one of its upstream bridges can generate wake-up events.
2779  */
pci_dev_run_wake(struct pci_dev * dev)2780 bool pci_dev_run_wake(struct pci_dev *dev)
2781 {
2782 	struct pci_bus *bus = dev->bus;
2783 
2784 	if (!dev->pme_support)
2785 		return false;
2786 
2787 	/* PME-capable in principle, but not from the target power state */
2788 	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2789 		return false;
2790 
2791 	if (device_can_wakeup(&dev->dev))
2792 		return true;
2793 
2794 	while (bus->parent) {
2795 		struct pci_dev *bridge = bus->self;
2796 
2797 		if (device_can_wakeup(&bridge->dev))
2798 			return true;
2799 
2800 		bus = bus->parent;
2801 	}
2802 
2803 	/* We have reached the root bus. */
2804 	if (bus->bridge)
2805 		return device_can_wakeup(bus->bridge);
2806 
2807 	return false;
2808 }
2809 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2810 
2811 /**
2812  * pci_dev_need_resume - Check if it is necessary to resume the device.
2813  * @pci_dev: Device to check.
2814  *
2815  * Return 'true' if the device is not runtime-suspended or it has to be
2816  * reconfigured due to wakeup settings difference between system and runtime
2817  * suspend, or the current power state of it is not suitable for the upcoming
2818  * (system-wide) transition.
2819  */
pci_dev_need_resume(struct pci_dev * pci_dev)2820 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2821 {
2822 	struct device *dev = &pci_dev->dev;
2823 	pci_power_t target_state;
2824 
2825 	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2826 		return true;
2827 
2828 	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2829 
2830 	/*
2831 	 * If the earlier platform check has not triggered, D3cold is just power
2832 	 * removal on top of D3hot, so no need to resume the device in that
2833 	 * case.
2834 	 */
2835 	return target_state != pci_dev->current_state &&
2836 		target_state != PCI_D3cold &&
2837 		pci_dev->current_state != PCI_D3hot;
2838 }
2839 
2840 /**
2841  * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2842  * @pci_dev: Device to check.
2843  *
2844  * If the device is suspended and it is not configured for system wakeup,
2845  * disable PME for it to prevent it from waking up the system unnecessarily.
2846  *
2847  * Note that if the device's power state is D3cold and the platform check in
2848  * pci_dev_need_resume() has not triggered, the device's configuration need not
2849  * be changed.
2850  */
pci_dev_adjust_pme(struct pci_dev * pci_dev)2851 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2852 {
2853 	struct device *dev = &pci_dev->dev;
2854 
2855 	spin_lock_irq(&dev->power.lock);
2856 
2857 	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2858 	    pci_dev->current_state < PCI_D3cold)
2859 		__pci_pme_active(pci_dev, false);
2860 
2861 	spin_unlock_irq(&dev->power.lock);
2862 }
2863 
2864 /**
2865  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2866  * @pci_dev: Device to handle.
2867  *
2868  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2869  * it might have been disabled during the prepare phase of system suspend if
2870  * the device was not configured for system wakeup.
2871  */
pci_dev_complete_resume(struct pci_dev * pci_dev)2872 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2873 {
2874 	struct device *dev = &pci_dev->dev;
2875 
2876 	if (!pci_dev_run_wake(pci_dev))
2877 		return;
2878 
2879 	spin_lock_irq(&dev->power.lock);
2880 
2881 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2882 		__pci_pme_active(pci_dev, true);
2883 
2884 	spin_unlock_irq(&dev->power.lock);
2885 }
2886 
2887 /**
2888  * pci_choose_state - Choose the power state of a PCI device.
2889  * @dev: Target PCI device.
2890  * @state: Target state for the whole system.
2891  *
2892  * Returns PCI power state suitable for @dev and @state.
2893  */
pci_choose_state(struct pci_dev * dev,pm_message_t state)2894 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2895 {
2896 	if (state.event == PM_EVENT_ON)
2897 		return PCI_D0;
2898 
2899 	return pci_target_state(dev, false);
2900 }
2901 EXPORT_SYMBOL(pci_choose_state);
2902 
pci_config_pm_runtime_get(struct pci_dev * pdev)2903 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2904 {
2905 	struct device *dev = &pdev->dev;
2906 	struct device *parent = dev->parent;
2907 
2908 	if (parent)
2909 		pm_runtime_get_sync(parent);
2910 	pm_runtime_get_noresume(dev);
2911 	/*
2912 	 * pdev->current_state is set to PCI_D3cold during suspending,
2913 	 * so wait until suspending completes
2914 	 */
2915 	pm_runtime_barrier(dev);
2916 	/*
2917 	 * Only need to resume devices in D3cold, because config
2918 	 * registers are still accessible for devices suspended but
2919 	 * not in D3cold.
2920 	 */
2921 	if (pdev->current_state == PCI_D3cold)
2922 		pm_runtime_resume(dev);
2923 }
2924 
pci_config_pm_runtime_put(struct pci_dev * pdev)2925 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2926 {
2927 	struct device *dev = &pdev->dev;
2928 	struct device *parent = dev->parent;
2929 
2930 	pm_runtime_put(dev);
2931 	if (parent)
2932 		pm_runtime_put_sync(parent);
2933 }
2934 
2935 static const struct dmi_system_id bridge_d3_blacklist[] = {
2936 #ifdef CONFIG_X86
2937 	{
2938 		/*
2939 		 * Gigabyte X299 root port is not marked as hotplug capable
2940 		 * which allows Linux to power manage it.  However, this
2941 		 * confuses the BIOS SMI handler so don't power manage root
2942 		 * ports on that system.
2943 		 */
2944 		.ident = "X299 DESIGNARE EX-CF",
2945 		.matches = {
2946 			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2947 			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2948 		},
2949 	},
2950 	{
2951 		/*
2952 		 * Downstream device is not accessible after putting a root port
2953 		 * into D3cold and back into D0 on Elo Continental Z2 board
2954 		 */
2955 		.ident = "Elo Continental Z2",
2956 		.matches = {
2957 			DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"),
2958 			DMI_MATCH(DMI_BOARD_NAME, "Geminilake"),
2959 			DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"),
2960 		},
2961 	},
2962 	{
2963 		/*
2964 		 * Changing power state of root port dGPU is connected fails
2965 		 * https://gitlab.freedesktop.org/drm/amd/-/issues/3229
2966 		 */
2967 		.ident = "Hewlett-Packard HP Pavilion 17 Notebook PC/1972",
2968 		.matches = {
2969 			DMI_MATCH(DMI_BOARD_VENDOR, "Hewlett-Packard"),
2970 			DMI_MATCH(DMI_BOARD_NAME, "1972"),
2971 			DMI_MATCH(DMI_BOARD_VERSION, "95.33"),
2972 		},
2973 	},
2974 #endif
2975 	{ }
2976 };
2977 
2978 /**
2979  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2980  * @bridge: Bridge to check
2981  *
2982  * Currently we only allow D3 for some PCIe ports and for Thunderbolt.
2983  *
2984  * Return: Whether it is possible to move the bridge to D3.
2985  *
2986  * The return value is guaranteed to be constant across the entire lifetime
2987  * of the bridge, including its hot-removal.
2988  */
pci_bridge_d3_possible(struct pci_dev * bridge)2989 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2990 {
2991 	if (!pci_is_pcie(bridge))
2992 		return false;
2993 
2994 	switch (pci_pcie_type(bridge)) {
2995 	case PCI_EXP_TYPE_ROOT_PORT:
2996 	case PCI_EXP_TYPE_UPSTREAM:
2997 	case PCI_EXP_TYPE_DOWNSTREAM:
2998 		if (pci_bridge_d3_disable)
2999 			return false;
3000 
3001 		/*
3002 		 * Hotplug ports handled by platform firmware may not be put
3003 		 * into D3 by the OS, e.g. ACPI slots ...
3004 		 */
3005 		if (bridge->is_hotplug_bridge && !bridge->is_pciehp)
3006 			return false;
3007 
3008 		/* ... or PCIe hotplug ports not handled natively by the OS. */
3009 		if (bridge->is_pciehp && !pciehp_is_native(bridge))
3010 			return false;
3011 
3012 		if (pci_bridge_d3_force)
3013 			return true;
3014 
3015 		/* Even the oldest 2010 Thunderbolt controller supports D3. */
3016 		if (bridge->is_thunderbolt)
3017 			return true;
3018 
3019 		/* Platform might know better if the bridge supports D3 */
3020 		if (platform_pci_bridge_d3(bridge))
3021 			return true;
3022 
3023 		/*
3024 		 * Hotplug ports handled natively by the OS were not validated
3025 		 * by vendors for runtime D3 at least until 2018 because there
3026 		 * was no OS support.
3027 		 */
3028 		if (bridge->is_pciehp)
3029 			return false;
3030 
3031 		if (dmi_check_system(bridge_d3_blacklist))
3032 			return false;
3033 
3034 		/*
3035 		 * Out of caution, we only allow PCIe ports from 2015 or newer
3036 		 * into D3 on x86.
3037 		 */
3038 		if (!IS_ENABLED(CONFIG_X86) || dmi_get_bios_year() >= 2015)
3039 			return true;
3040 		break;
3041 	}
3042 
3043 	return false;
3044 }
3045 
pci_dev_check_d3cold(struct pci_dev * dev,void * data)3046 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3047 {
3048 	bool *d3cold_ok = data;
3049 
3050 	if (/* The device needs to be allowed to go D3cold ... */
3051 	    dev->no_d3cold || !dev->d3cold_allowed ||
3052 
3053 	    /* ... and if it is wakeup capable to do so from D3cold. */
3054 	    (device_may_wakeup(&dev->dev) &&
3055 	     !pci_pme_capable(dev, PCI_D3cold)) ||
3056 
3057 	    /* If it is a bridge it must be allowed to go to D3. */
3058 	    !pci_power_manageable(dev))
3059 
3060 		*d3cold_ok = false;
3061 
3062 	return !*d3cold_ok;
3063 }
3064 
3065 /*
3066  * pci_bridge_d3_update - Update bridge D3 capabilities
3067  * @dev: PCI device which is changed
3068  *
3069  * Update upstream bridge PM capabilities accordingly depending on if the
3070  * device PM configuration was changed or the device is being removed.  The
3071  * change is also propagated upstream.
3072  */
pci_bridge_d3_update(struct pci_dev * dev)3073 void pci_bridge_d3_update(struct pci_dev *dev)
3074 {
3075 	bool remove = !device_is_registered(&dev->dev);
3076 	struct pci_dev *bridge;
3077 	bool d3cold_ok = true;
3078 
3079 	bridge = pci_upstream_bridge(dev);
3080 	if (!bridge || !pci_bridge_d3_possible(bridge))
3081 		return;
3082 
3083 	/*
3084 	 * If D3 is currently allowed for the bridge, removing one of its
3085 	 * children won't change that.
3086 	 */
3087 	if (remove && bridge->bridge_d3)
3088 		return;
3089 
3090 	/*
3091 	 * If D3 is currently allowed for the bridge and a child is added or
3092 	 * changed, disallowance of D3 can only be caused by that child, so
3093 	 * we only need to check that single device, not any of its siblings.
3094 	 *
3095 	 * If D3 is currently not allowed for the bridge, checking the device
3096 	 * first may allow us to skip checking its siblings.
3097 	 */
3098 	if (!remove)
3099 		pci_dev_check_d3cold(dev, &d3cold_ok);
3100 
3101 	/*
3102 	 * If D3 is currently not allowed for the bridge, this may be caused
3103 	 * either by the device being changed/removed or any of its siblings,
3104 	 * so we need to go through all children to find out if one of them
3105 	 * continues to block D3.
3106 	 */
3107 	if (d3cold_ok && !bridge->bridge_d3)
3108 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3109 			     &d3cold_ok);
3110 
3111 	if (bridge->bridge_d3 != d3cold_ok) {
3112 		bridge->bridge_d3 = d3cold_ok;
3113 		/* Propagate change to upstream bridges */
3114 		pci_bridge_d3_update(bridge);
3115 	}
3116 }
3117 
3118 /**
3119  * pci_d3cold_enable - Enable D3cold for device
3120  * @dev: PCI device to handle
3121  *
3122  * This function can be used in drivers to enable D3cold from the device
3123  * they handle.  It also updates upstream PCI bridge PM capabilities
3124  * accordingly.
3125  */
pci_d3cold_enable(struct pci_dev * dev)3126 void pci_d3cold_enable(struct pci_dev *dev)
3127 {
3128 	if (dev->no_d3cold) {
3129 		dev->no_d3cold = false;
3130 		pci_bridge_d3_update(dev);
3131 	}
3132 }
3133 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3134 
3135 /**
3136  * pci_d3cold_disable - Disable D3cold for device
3137  * @dev: PCI device to handle
3138  *
3139  * This function can be used in drivers to disable D3cold from the device
3140  * they handle.  It also updates upstream PCI bridge PM capabilities
3141  * accordingly.
3142  */
pci_d3cold_disable(struct pci_dev * dev)3143 void pci_d3cold_disable(struct pci_dev *dev)
3144 {
3145 	if (!dev->no_d3cold) {
3146 		dev->no_d3cold = true;
3147 		pci_bridge_d3_update(dev);
3148 	}
3149 }
3150 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3151 
pci_pm_power_up_and_verify_state(struct pci_dev * pci_dev)3152 void pci_pm_power_up_and_verify_state(struct pci_dev *pci_dev)
3153 {
3154 	pci_power_up(pci_dev);
3155 	pci_update_current_state(pci_dev, PCI_D0);
3156 }
3157 
3158 /**
3159  * pci_pm_init - Initialize PM functions of given PCI device
3160  * @dev: PCI device to handle.
3161  */
pci_pm_init(struct pci_dev * dev)3162 void pci_pm_init(struct pci_dev *dev)
3163 {
3164 	int pm;
3165 	u16 pmc;
3166 
3167 	device_enable_async_suspend(&dev->dev);
3168 	dev->wakeup_prepared = false;
3169 
3170 	dev->pm_cap = 0;
3171 	dev->pme_support = 0;
3172 
3173 	/* find PCI PM capability in list */
3174 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3175 	if (!pm)
3176 		goto poweron;
3177 	/* Check device's ability to generate PME# */
3178 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3179 
3180 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3181 		pci_err(dev, "unsupported PM cap regs version (%u)\n",
3182 			pmc & PCI_PM_CAP_VER_MASK);
3183 		goto poweron;
3184 	}
3185 
3186 	dev->pm_cap = pm;
3187 	dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3188 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3189 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
3190 	dev->d3cold_allowed = true;
3191 
3192 	dev->d1_support = false;
3193 	dev->d2_support = false;
3194 	if (!pci_no_d1d2(dev)) {
3195 		if (pmc & PCI_PM_CAP_D1)
3196 			dev->d1_support = true;
3197 		if (pmc & PCI_PM_CAP_D2)
3198 			dev->d2_support = true;
3199 
3200 		if (dev->d1_support || dev->d2_support)
3201 			pci_info(dev, "supports%s%s\n",
3202 				   dev->d1_support ? " D1" : "",
3203 				   dev->d2_support ? " D2" : "");
3204 	}
3205 
3206 	pmc &= PCI_PM_CAP_PME_MASK;
3207 	if (pmc) {
3208 		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3209 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3210 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3211 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3212 			 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3213 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3214 		dev->pme_support = FIELD_GET(PCI_PM_CAP_PME_MASK, pmc);
3215 		dev->pme_poll = true;
3216 		/*
3217 		 * Make device's PM flags reflect the wake-up capability, but
3218 		 * let the user space enable it to wake up the system as needed.
3219 		 */
3220 		device_set_wakeup_capable(&dev->dev, true);
3221 		/* Disable the PME# generation functionality */
3222 		pci_pme_active(dev, false);
3223 	}
3224 
3225 poweron:
3226 	pci_pm_power_up_and_verify_state(dev);
3227 	pm_runtime_forbid(&dev->dev);
3228 	pm_runtime_set_active(&dev->dev);
3229 	pm_runtime_enable(&dev->dev);
3230 }
3231 
pci_ea_flags(struct pci_dev * dev,u8 prop)3232 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3233 {
3234 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3235 
3236 	switch (prop) {
3237 	case PCI_EA_P_MEM:
3238 	case PCI_EA_P_VF_MEM:
3239 		flags |= IORESOURCE_MEM;
3240 		break;
3241 	case PCI_EA_P_MEM_PREFETCH:
3242 	case PCI_EA_P_VF_MEM_PREFETCH:
3243 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3244 		break;
3245 	case PCI_EA_P_IO:
3246 		flags |= IORESOURCE_IO;
3247 		break;
3248 	default:
3249 		return 0;
3250 	}
3251 
3252 	return flags;
3253 }
3254 
pci_ea_get_resource(struct pci_dev * dev,u8 bei,u8 prop)3255 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3256 					    u8 prop)
3257 {
3258 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3259 		return &dev->resource[bei];
3260 #ifdef CONFIG_PCI_IOV
3261 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3262 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3263 		return &dev->resource[PCI_IOV_RESOURCES +
3264 				      bei - PCI_EA_BEI_VF_BAR0];
3265 #endif
3266 	else if (bei == PCI_EA_BEI_ROM)
3267 		return &dev->resource[PCI_ROM_RESOURCE];
3268 	else
3269 		return NULL;
3270 }
3271 
3272 /* Read an Enhanced Allocation (EA) entry */
pci_ea_read(struct pci_dev * dev,int offset)3273 static int pci_ea_read(struct pci_dev *dev, int offset)
3274 {
3275 	struct resource *res;
3276 	const char *res_name;
3277 	int ent_size, ent_offset = offset;
3278 	resource_size_t start, end;
3279 	unsigned long flags;
3280 	u32 dw0, bei, base, max_offset;
3281 	u8 prop;
3282 	bool support_64 = (sizeof(resource_size_t) >= 8);
3283 
3284 	pci_read_config_dword(dev, ent_offset, &dw0);
3285 	ent_offset += 4;
3286 
3287 	/* Entry size field indicates DWORDs after 1st */
3288 	ent_size = (FIELD_GET(PCI_EA_ES, dw0) + 1) << 2;
3289 
3290 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3291 		goto out;
3292 
3293 	bei = FIELD_GET(PCI_EA_BEI, dw0);
3294 	prop = FIELD_GET(PCI_EA_PP, dw0);
3295 
3296 	/*
3297 	 * If the Property is in the reserved range, try the Secondary
3298 	 * Property instead.
3299 	 */
3300 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3301 		prop = FIELD_GET(PCI_EA_SP, dw0);
3302 	if (prop > PCI_EA_P_BRIDGE_IO)
3303 		goto out;
3304 
3305 	res = pci_ea_get_resource(dev, bei, prop);
3306 	res_name = pci_resource_name(dev, bei);
3307 	if (!res) {
3308 		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3309 		goto out;
3310 	}
3311 
3312 	flags = pci_ea_flags(dev, prop);
3313 	if (!flags) {
3314 		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3315 		goto out;
3316 	}
3317 
3318 	/* Read Base */
3319 	pci_read_config_dword(dev, ent_offset, &base);
3320 	start = (base & PCI_EA_FIELD_MASK);
3321 	ent_offset += 4;
3322 
3323 	/* Read MaxOffset */
3324 	pci_read_config_dword(dev, ent_offset, &max_offset);
3325 	ent_offset += 4;
3326 
3327 	/* Read Base MSBs (if 64-bit entry) */
3328 	if (base & PCI_EA_IS_64) {
3329 		u32 base_upper;
3330 
3331 		pci_read_config_dword(dev, ent_offset, &base_upper);
3332 		ent_offset += 4;
3333 
3334 		flags |= IORESOURCE_MEM_64;
3335 
3336 		/* entry starts above 32-bit boundary, can't use */
3337 		if (!support_64 && base_upper)
3338 			goto out;
3339 
3340 		if (support_64)
3341 			start |= ((u64)base_upper << 32);
3342 	}
3343 
3344 	end = start + (max_offset | 0x03);
3345 
3346 	/* Read MaxOffset MSBs (if 64-bit entry) */
3347 	if (max_offset & PCI_EA_IS_64) {
3348 		u32 max_offset_upper;
3349 
3350 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3351 		ent_offset += 4;
3352 
3353 		flags |= IORESOURCE_MEM_64;
3354 
3355 		/* entry too big, can't use */
3356 		if (!support_64 && max_offset_upper)
3357 			goto out;
3358 
3359 		if (support_64)
3360 			end += ((u64)max_offset_upper << 32);
3361 	}
3362 
3363 	if (end < start) {
3364 		pci_err(dev, "EA Entry crosses address boundary\n");
3365 		goto out;
3366 	}
3367 
3368 	if (ent_size != ent_offset - offset) {
3369 		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3370 			ent_size, ent_offset - offset);
3371 		goto out;
3372 	}
3373 
3374 	res->name = pci_name(dev);
3375 	res->start = start;
3376 	res->end = end;
3377 	res->flags = flags;
3378 
3379 	if (bei <= PCI_EA_BEI_BAR5)
3380 		pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3381 			 res_name, res, prop);
3382 	else if (bei == PCI_EA_BEI_ROM)
3383 		pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3384 			 res_name, res, prop);
3385 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3386 		pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3387 			 res_name, res, prop);
3388 	else
3389 		pci_info(dev, "BEI %d %pR: from Enhanced Allocation, properties %#02x\n",
3390 			   bei, res, prop);
3391 
3392 out:
3393 	return offset + ent_size;
3394 }
3395 
3396 /* Enhanced Allocation Initialization */
pci_ea_init(struct pci_dev * dev)3397 void pci_ea_init(struct pci_dev *dev)
3398 {
3399 	int ea;
3400 	u8 num_ent;
3401 	int offset;
3402 	int i;
3403 
3404 	/* find PCI EA capability in list */
3405 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3406 	if (!ea)
3407 		return;
3408 
3409 	/* determine the number of entries */
3410 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3411 					&num_ent);
3412 	num_ent &= PCI_EA_NUM_ENT_MASK;
3413 
3414 	offset = ea + PCI_EA_FIRST_ENT;
3415 
3416 	/* Skip DWORD 2 for type 1 functions */
3417 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3418 		offset += 4;
3419 
3420 	/* parse each EA entry */
3421 	for (i = 0; i < num_ent; ++i)
3422 		offset = pci_ea_read(dev, offset);
3423 }
3424 
pci_add_saved_cap(struct pci_dev * pci_dev,struct pci_cap_saved_state * new_cap)3425 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3426 	struct pci_cap_saved_state *new_cap)
3427 {
3428 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3429 }
3430 
3431 /**
3432  * _pci_add_cap_save_buffer - allocate buffer for saving given
3433  *			      capability registers
3434  * @dev: the PCI device
3435  * @cap: the capability to allocate the buffer for
3436  * @extended: Standard or Extended capability ID
3437  * @size: requested size of the buffer
3438  */
_pci_add_cap_save_buffer(struct pci_dev * dev,u16 cap,bool extended,unsigned int size)3439 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3440 				    bool extended, unsigned int size)
3441 {
3442 	int pos;
3443 	struct pci_cap_saved_state *save_state;
3444 
3445 	if (extended)
3446 		pos = pci_find_ext_capability(dev, cap);
3447 	else
3448 		pos = pci_find_capability(dev, cap);
3449 
3450 	if (!pos)
3451 		return 0;
3452 
3453 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3454 	if (!save_state)
3455 		return -ENOMEM;
3456 
3457 	save_state->cap.cap_nr = cap;
3458 	save_state->cap.cap_extended = extended;
3459 	save_state->cap.size = size;
3460 	pci_add_saved_cap(dev, save_state);
3461 
3462 	return 0;
3463 }
3464 
pci_add_cap_save_buffer(struct pci_dev * dev,char cap,unsigned int size)3465 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3466 {
3467 	return _pci_add_cap_save_buffer(dev, cap, false, size);
3468 }
3469 
pci_add_ext_cap_save_buffer(struct pci_dev * dev,u16 cap,unsigned int size)3470 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3471 {
3472 	return _pci_add_cap_save_buffer(dev, cap, true, size);
3473 }
3474 
3475 /**
3476  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3477  * @dev: the PCI device
3478  */
pci_allocate_cap_save_buffers(struct pci_dev * dev)3479 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3480 {
3481 	int error;
3482 
3483 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3484 					PCI_EXP_SAVE_REGS * sizeof(u16));
3485 	if (error)
3486 		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3487 
3488 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3489 	if (error)
3490 		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3491 
3492 	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3493 					    2 * sizeof(u16));
3494 	if (error)
3495 		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3496 
3497 	pci_allocate_vc_save_buffers(dev);
3498 }
3499 
pci_free_cap_save_buffers(struct pci_dev * dev)3500 void pci_free_cap_save_buffers(struct pci_dev *dev)
3501 {
3502 	struct pci_cap_saved_state *tmp;
3503 	struct hlist_node *n;
3504 
3505 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3506 		kfree(tmp);
3507 }
3508 
3509 /**
3510  * pci_configure_ari - enable or disable ARI forwarding
3511  * @dev: the PCI device
3512  *
3513  * If @dev and its upstream bridge both support ARI, enable ARI in the
3514  * bridge.  Otherwise, disable ARI in the bridge.
3515  */
pci_configure_ari(struct pci_dev * dev)3516 void pci_configure_ari(struct pci_dev *dev)
3517 {
3518 	u32 cap;
3519 	struct pci_dev *bridge;
3520 
3521 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3522 		return;
3523 
3524 	bridge = dev->bus->self;
3525 	if (!bridge)
3526 		return;
3527 
3528 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3529 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3530 		return;
3531 
3532 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3533 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3534 					 PCI_EXP_DEVCTL2_ARI);
3535 		bridge->ari_enabled = 1;
3536 	} else {
3537 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3538 					   PCI_EXP_DEVCTL2_ARI);
3539 		bridge->ari_enabled = 0;
3540 	}
3541 }
3542 
pci_acs_flags_enabled(struct pci_dev * pdev,u16 acs_flags)3543 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3544 {
3545 	int pos;
3546 	u16 cap, ctrl;
3547 
3548 	pos = pdev->acs_cap;
3549 	if (!pos)
3550 		return false;
3551 
3552 	/*
3553 	 * Except for egress control, capabilities are either required
3554 	 * or only required if controllable.  Features missing from the
3555 	 * capability field can therefore be assumed as hard-wired enabled.
3556 	 */
3557 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3558 	acs_flags &= (cap | PCI_ACS_EC);
3559 
3560 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3561 	return (ctrl & acs_flags) == acs_flags;
3562 }
3563 
3564 /**
3565  * pci_acs_enabled - test ACS against required flags for a given device
3566  * @pdev: device to test
3567  * @acs_flags: required PCI ACS flags
3568  *
3569  * Return true if the device supports the provided flags.  Automatically
3570  * filters out flags that are not implemented on multifunction devices.
3571  *
3572  * Note that this interface checks the effective ACS capabilities of the
3573  * device rather than the actual capabilities.  For instance, most single
3574  * function endpoints are not required to support ACS because they have no
3575  * opportunity for peer-to-peer access.  We therefore return 'true'
3576  * regardless of whether the device exposes an ACS capability.  This makes
3577  * it much easier for callers of this function to ignore the actual type
3578  * or topology of the device when testing ACS support.
3579  */
pci_acs_enabled(struct pci_dev * pdev,u16 acs_flags)3580 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3581 {
3582 	int ret;
3583 
3584 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3585 	if (ret >= 0)
3586 		return ret > 0;
3587 
3588 	/*
3589 	 * Conventional PCI and PCI-X devices never support ACS, either
3590 	 * effectively or actually.  The shared bus topology implies that
3591 	 * any device on the bus can receive or snoop DMA.
3592 	 */
3593 	if (!pci_is_pcie(pdev))
3594 		return false;
3595 
3596 	switch (pci_pcie_type(pdev)) {
3597 	/*
3598 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3599 	 * but since their primary interface is PCI/X, we conservatively
3600 	 * handle them as we would a non-PCIe device.
3601 	 */
3602 	case PCI_EXP_TYPE_PCIE_BRIDGE:
3603 	/*
3604 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3605 	 * applicable... must never implement an ACS Extended Capability...".
3606 	 * This seems arbitrary, but we take a conservative interpretation
3607 	 * of this statement.
3608 	 */
3609 	case PCI_EXP_TYPE_PCI_BRIDGE:
3610 	case PCI_EXP_TYPE_RC_EC:
3611 		return false;
3612 	/*
3613 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3614 	 * implement ACS in order to indicate their peer-to-peer capabilities,
3615 	 * regardless of whether they are single- or multi-function devices.
3616 	 */
3617 	case PCI_EXP_TYPE_DOWNSTREAM:
3618 	case PCI_EXP_TYPE_ROOT_PORT:
3619 		return pci_acs_flags_enabled(pdev, acs_flags);
3620 	/*
3621 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3622 	 * implemented by the remaining PCIe types to indicate peer-to-peer
3623 	 * capabilities, but only when they are part of a multifunction
3624 	 * device.  The footnote for section 6.12 indicates the specific
3625 	 * PCIe types included here.
3626 	 */
3627 	case PCI_EXP_TYPE_ENDPOINT:
3628 	case PCI_EXP_TYPE_UPSTREAM:
3629 	case PCI_EXP_TYPE_LEG_END:
3630 	case PCI_EXP_TYPE_RC_END:
3631 		if (!pdev->multifunction)
3632 			break;
3633 
3634 		return pci_acs_flags_enabled(pdev, acs_flags);
3635 	}
3636 
3637 	/*
3638 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3639 	 * to single function devices with the exception of downstream ports.
3640 	 */
3641 	return true;
3642 }
3643 
3644 /**
3645  * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3646  * @start: starting downstream device
3647  * @end: ending upstream device or NULL to search to the root bus
3648  * @acs_flags: required flags
3649  *
3650  * Walk up a device tree from start to end testing PCI ACS support.  If
3651  * any step along the way does not support the required flags, return false.
3652  */
pci_acs_path_enabled(struct pci_dev * start,struct pci_dev * end,u16 acs_flags)3653 bool pci_acs_path_enabled(struct pci_dev *start,
3654 			  struct pci_dev *end, u16 acs_flags)
3655 {
3656 	struct pci_dev *pdev, *parent = start;
3657 
3658 	do {
3659 		pdev = parent;
3660 
3661 		if (!pci_acs_enabled(pdev, acs_flags))
3662 			return false;
3663 
3664 		if (pci_is_root_bus(pdev->bus))
3665 			return (end == NULL);
3666 
3667 		parent = pdev->bus->self;
3668 	} while (pdev != end);
3669 
3670 	return true;
3671 }
3672 
3673 /**
3674  * pci_acs_init - Initialize ACS if hardware supports it
3675  * @dev: the PCI device
3676  */
pci_acs_init(struct pci_dev * dev)3677 void pci_acs_init(struct pci_dev *dev)
3678 {
3679 	dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3680 
3681 	/*
3682 	 * Attempt to enable ACS regardless of capability because some Root
3683 	 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3684 	 * the standard ACS capability but still support ACS via those
3685 	 * quirks.
3686 	 */
3687 	pci_enable_acs(dev);
3688 }
3689 
pci_rebar_init(struct pci_dev * pdev)3690 void pci_rebar_init(struct pci_dev *pdev)
3691 {
3692 	pdev->rebar_cap = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3693 }
3694 
3695 /**
3696  * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3697  * @pdev: PCI device
3698  * @bar: BAR to find
3699  *
3700  * Helper to find the position of the ctrl register for a BAR.
3701  * Returns -ENOTSUPP if resizable BARs are not supported at all.
3702  * Returns -ENOENT if no ctrl register for the BAR could be found.
3703  */
pci_rebar_find_pos(struct pci_dev * pdev,int bar)3704 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3705 {
3706 	unsigned int pos, nbars, i;
3707 	u32 ctrl;
3708 
3709 	if (pci_resource_is_iov(bar)) {
3710 		pos = pci_iov_vf_rebar_cap(pdev);
3711 		bar = pci_resource_num_to_vf_bar(bar);
3712 	} else {
3713 		pos = pdev->rebar_cap;
3714 	}
3715 
3716 	if (!pos)
3717 		return -ENOTSUPP;
3718 
3719 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3720 	nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
3721 
3722 	for (i = 0; i < nbars; i++, pos += 8) {
3723 		int bar_idx;
3724 
3725 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3726 		bar_idx = FIELD_GET(PCI_REBAR_CTRL_BAR_IDX, ctrl);
3727 		if (bar_idx == bar)
3728 			return pos;
3729 	}
3730 
3731 	return -ENOENT;
3732 }
3733 
3734 /**
3735  * pci_rebar_get_possible_sizes - get possible sizes for BAR
3736  * @pdev: PCI device
3737  * @bar: BAR to query
3738  *
3739  * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3740  * (bit 0=1MB, bit 31=128TB). Returns 0 if BAR isn't resizable.
3741  */
pci_rebar_get_possible_sizes(struct pci_dev * pdev,int bar)3742 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3743 {
3744 	int pos;
3745 	u32 cap;
3746 
3747 	pos = pci_rebar_find_pos(pdev, bar);
3748 	if (pos < 0)
3749 		return 0;
3750 
3751 	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3752 	cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap);
3753 
3754 	/* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3755 	if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3756 	    bar == 0 && cap == 0x700)
3757 		return 0x3f00;
3758 
3759 	return cap;
3760 }
3761 EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3762 
3763 /**
3764  * pci_rebar_get_current_size - get the current size of a BAR
3765  * @pdev: PCI device
3766  * @bar: BAR to set size to
3767  *
3768  * Read the size of a BAR from the resizable BAR config.
3769  * Returns size if found or negative error code.
3770  */
pci_rebar_get_current_size(struct pci_dev * pdev,int bar)3771 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3772 {
3773 	int pos;
3774 	u32 ctrl;
3775 
3776 	pos = pci_rebar_find_pos(pdev, bar);
3777 	if (pos < 0)
3778 		return pos;
3779 
3780 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3781 	return FIELD_GET(PCI_REBAR_CTRL_BAR_SIZE, ctrl);
3782 }
3783 
3784 /**
3785  * pci_rebar_set_size - set a new size for a BAR
3786  * @pdev: PCI device
3787  * @bar: BAR to set size to
3788  * @size: new size as defined in the spec (0=1MB, 31=128TB)
3789  *
3790  * Set the new size of a BAR as defined in the spec.
3791  * Returns zero if resizing was successful, error code otherwise.
3792  */
pci_rebar_set_size(struct pci_dev * pdev,int bar,int size)3793 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3794 {
3795 	int pos;
3796 	u32 ctrl;
3797 
3798 	pos = pci_rebar_find_pos(pdev, bar);
3799 	if (pos < 0)
3800 		return pos;
3801 
3802 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3803 	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3804 	ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
3805 	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3806 	return 0;
3807 }
3808 
3809 /**
3810  * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3811  * @dev: the PCI device
3812  * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3813  *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3814  *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3815  *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3816  *
3817  * Return 0 if all upstream bridges support AtomicOp routing, egress
3818  * blocking is disabled on all upstream ports, and the root port supports
3819  * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3820  * AtomicOp completion), or negative otherwise.
3821  */
pci_enable_atomic_ops_to_root(struct pci_dev * dev,u32 cap_mask)3822 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3823 {
3824 	struct pci_bus *bus = dev->bus;
3825 	struct pci_dev *bridge;
3826 	u32 cap, ctl2;
3827 
3828 	/*
3829 	 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3830 	 * in Device Control 2 is reserved in VFs and the PF value applies
3831 	 * to all associated VFs.
3832 	 */
3833 	if (dev->is_virtfn)
3834 		return -EINVAL;
3835 
3836 	if (!pci_is_pcie(dev))
3837 		return -EINVAL;
3838 
3839 	/*
3840 	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3841 	 * AtomicOp requesters.  For now, we only support endpoints as
3842 	 * requesters and root ports as completers.  No endpoints as
3843 	 * completers, and no peer-to-peer.
3844 	 */
3845 
3846 	switch (pci_pcie_type(dev)) {
3847 	case PCI_EXP_TYPE_ENDPOINT:
3848 	case PCI_EXP_TYPE_LEG_END:
3849 	case PCI_EXP_TYPE_RC_END:
3850 		break;
3851 	default:
3852 		return -EINVAL;
3853 	}
3854 
3855 	while (bus->parent) {
3856 		bridge = bus->self;
3857 
3858 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3859 
3860 		switch (pci_pcie_type(bridge)) {
3861 		/* Ensure switch ports support AtomicOp routing */
3862 		case PCI_EXP_TYPE_UPSTREAM:
3863 		case PCI_EXP_TYPE_DOWNSTREAM:
3864 			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3865 				return -EINVAL;
3866 			break;
3867 
3868 		/* Ensure root port supports all the sizes we care about */
3869 		case PCI_EXP_TYPE_ROOT_PORT:
3870 			if ((cap & cap_mask) != cap_mask)
3871 				return -EINVAL;
3872 			break;
3873 		}
3874 
3875 		/* Ensure upstream ports don't block AtomicOps on egress */
3876 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3877 			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3878 						   &ctl2);
3879 			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3880 				return -EINVAL;
3881 		}
3882 
3883 		bus = bus->parent;
3884 	}
3885 
3886 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3887 				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3888 	return 0;
3889 }
3890 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3891 
3892 /**
3893  * pci_release_region - Release a PCI bar
3894  * @pdev: PCI device whose resources were previously reserved by
3895  *	  pci_request_region()
3896  * @bar: BAR to release
3897  *
3898  * Releases the PCI I/O and memory resources previously reserved by a
3899  * successful call to pci_request_region().  Call this function only
3900  * after all use of the PCI regions has ceased.
3901  */
pci_release_region(struct pci_dev * pdev,int bar)3902 void pci_release_region(struct pci_dev *pdev, int bar)
3903 {
3904 	if (!pci_bar_index_is_valid(bar))
3905 		return;
3906 
3907 	if (pci_resource_len(pdev, bar) == 0)
3908 		return;
3909 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3910 		release_region(pci_resource_start(pdev, bar),
3911 				pci_resource_len(pdev, bar));
3912 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3913 		release_mem_region(pci_resource_start(pdev, bar),
3914 				pci_resource_len(pdev, bar));
3915 }
3916 EXPORT_SYMBOL(pci_release_region);
3917 
3918 /**
3919  * __pci_request_region - Reserved PCI I/O and memory resource
3920  * @pdev: PCI device whose resources are to be reserved
3921  * @bar: BAR to be reserved
3922  * @name: name of the driver requesting the resource
3923  * @exclusive: whether the region access is exclusive or not
3924  *
3925  * Returns: 0 on success, negative error code on failure.
3926  *
3927  * Mark the PCI region associated with PCI device @pdev BAR @bar as being
3928  * reserved by owner @name. Do not access any address inside the PCI regions
3929  * unless this call returns successfully.
3930  *
3931  * If @exclusive is set, then the region is marked so that userspace
3932  * is explicitly not allowed to map the resource via /dev/mem or
3933  * sysfs MMIO access.
3934  *
3935  * Returns 0 on success, or %EBUSY on error.  A warning
3936  * message is also printed on failure.
3937  */
__pci_request_region(struct pci_dev * pdev,int bar,const char * name,int exclusive)3938 static int __pci_request_region(struct pci_dev *pdev, int bar,
3939 				const char *name, int exclusive)
3940 {
3941 	if (!pci_bar_index_is_valid(bar))
3942 		return -EINVAL;
3943 
3944 	if (pci_resource_len(pdev, bar) == 0)
3945 		return 0;
3946 
3947 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3948 		if (!request_region(pci_resource_start(pdev, bar),
3949 			    pci_resource_len(pdev, bar), name))
3950 			goto err_out;
3951 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3952 		if (!__request_mem_region(pci_resource_start(pdev, bar),
3953 					pci_resource_len(pdev, bar), name,
3954 					exclusive))
3955 			goto err_out;
3956 	}
3957 
3958 	return 0;
3959 
3960 err_out:
3961 	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3962 		 &pdev->resource[bar]);
3963 	return -EBUSY;
3964 }
3965 
3966 /**
3967  * pci_request_region - Reserve PCI I/O and memory resource
3968  * @pdev: PCI device whose resources are to be reserved
3969  * @bar: BAR to be reserved
3970  * @name: name of the driver requesting the resource
3971  *
3972  * Returns: 0 on success, negative error code on failure.
3973  *
3974  * Mark the PCI region associated with PCI device @pdev BAR @bar as being
3975  * reserved by owner @name. Do not access any address inside the PCI regions
3976  * unless this call returns successfully.
3977  *
3978  * Returns 0 on success, or %EBUSY on error.  A warning
3979  * message is also printed on failure.
3980  */
pci_request_region(struct pci_dev * pdev,int bar,const char * name)3981 int pci_request_region(struct pci_dev *pdev, int bar, const char *name)
3982 {
3983 	return __pci_request_region(pdev, bar, name, 0);
3984 }
3985 EXPORT_SYMBOL(pci_request_region);
3986 
3987 /**
3988  * pci_release_selected_regions - Release selected PCI I/O and memory resources
3989  * @pdev: PCI device whose resources were previously reserved
3990  * @bars: Bitmask of BARs to be released
3991  *
3992  * Release selected PCI I/O and memory resources previously reserved.
3993  * Call this function only after all use of the PCI regions has ceased.
3994  */
pci_release_selected_regions(struct pci_dev * pdev,int bars)3995 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3996 {
3997 	int i;
3998 
3999 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4000 		if (bars & (1 << i))
4001 			pci_release_region(pdev, i);
4002 }
4003 EXPORT_SYMBOL(pci_release_selected_regions);
4004 
__pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * name,int excl)4005 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4006 					  const char *name, int excl)
4007 {
4008 	int i;
4009 
4010 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4011 		if (bars & (1 << i))
4012 			if (__pci_request_region(pdev, i, name, excl))
4013 				goto err_out;
4014 	return 0;
4015 
4016 err_out:
4017 	while (--i >= 0)
4018 		if (bars & (1 << i))
4019 			pci_release_region(pdev, i);
4020 
4021 	return -EBUSY;
4022 }
4023 
4024 
4025 /**
4026  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4027  * @pdev: PCI device whose resources are to be reserved
4028  * @bars: Bitmask of BARs to be requested
4029  * @name: Name of the driver requesting the resources
4030  *
4031  * Returns: 0 on success, negative error code on failure.
4032  */
pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * name)4033 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4034 				 const char *name)
4035 {
4036 	return __pci_request_selected_regions(pdev, bars, name, 0);
4037 }
4038 EXPORT_SYMBOL(pci_request_selected_regions);
4039 
4040 /**
4041  * pci_request_selected_regions_exclusive - Request regions exclusively
4042  * @pdev: PCI device to request regions from
4043  * @bars: bit mask of BARs to request
4044  * @name: name of the driver requesting the resources
4045  *
4046  * Returns: 0 on success, negative error code on failure.
4047  */
pci_request_selected_regions_exclusive(struct pci_dev * pdev,int bars,const char * name)4048 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4049 					   const char *name)
4050 {
4051 	return __pci_request_selected_regions(pdev, bars, name,
4052 			IORESOURCE_EXCLUSIVE);
4053 }
4054 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4055 
4056 /**
4057  * pci_release_regions - Release reserved PCI I/O and memory resources
4058  * @pdev: PCI device whose resources were previously reserved by
4059  *	  pci_request_regions()
4060  *
4061  * Releases all PCI I/O and memory resources previously reserved by a
4062  * successful call to pci_request_regions().  Call this function only
4063  * after all use of the PCI regions has ceased.
4064  */
pci_release_regions(struct pci_dev * pdev)4065 void pci_release_regions(struct pci_dev *pdev)
4066 {
4067 	pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4068 }
4069 EXPORT_SYMBOL(pci_release_regions);
4070 
4071 /**
4072  * pci_request_regions - Reserve PCI I/O and memory resources
4073  * @pdev: PCI device whose resources are to be reserved
4074  * @name: name of the driver requesting the resources
4075  *
4076  * Mark all PCI regions associated with PCI device @pdev as being reserved by
4077  * owner @name. Do not access any address inside the PCI regions unless this
4078  * call returns successfully.
4079  *
4080  * Returns 0 on success, or %EBUSY on error.  A warning
4081  * message is also printed on failure.
4082  */
pci_request_regions(struct pci_dev * pdev,const char * name)4083 int pci_request_regions(struct pci_dev *pdev, const char *name)
4084 {
4085 	return pci_request_selected_regions(pdev,
4086 			((1 << PCI_STD_NUM_BARS) - 1), name);
4087 }
4088 EXPORT_SYMBOL(pci_request_regions);
4089 
4090 /**
4091  * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4092  * @pdev: PCI device whose resources are to be reserved
4093  * @name: name of the driver requesting the resources
4094  *
4095  * Returns: 0 on success, negative error code on failure.
4096  *
4097  * Mark all PCI regions associated with PCI device @pdev as being reserved
4098  * by owner @name. Do not access any address inside the PCI regions
4099  * unless this call returns successfully.
4100  *
4101  * pci_request_regions_exclusive() will mark the region so that /dev/mem
4102  * and the sysfs MMIO access will not be allowed.
4103  *
4104  * Returns 0 on success, or %EBUSY on error.  A warning message is also
4105  * printed on failure.
4106  */
pci_request_regions_exclusive(struct pci_dev * pdev,const char * name)4107 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *name)
4108 {
4109 	return pci_request_selected_regions_exclusive(pdev,
4110 				((1 << PCI_STD_NUM_BARS) - 1), name);
4111 }
4112 EXPORT_SYMBOL(pci_request_regions_exclusive);
4113 
4114 /*
4115  * Record the PCI IO range (expressed as CPU physical address + size).
4116  * Return a negative value if an error has occurred, zero otherwise
4117  */
pci_register_io_range(const struct fwnode_handle * fwnode,phys_addr_t addr,resource_size_t size)4118 int pci_register_io_range(const struct fwnode_handle *fwnode, phys_addr_t addr,
4119 			resource_size_t	size)
4120 {
4121 	int ret = 0;
4122 #ifdef PCI_IOBASE
4123 	struct logic_pio_hwaddr *range;
4124 
4125 	if (!size || addr + size < addr)
4126 		return -EINVAL;
4127 
4128 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
4129 	if (!range)
4130 		return -ENOMEM;
4131 
4132 	range->fwnode = fwnode;
4133 	range->size = size;
4134 	range->hw_start = addr;
4135 	range->flags = LOGIC_PIO_CPU_MMIO;
4136 
4137 	ret = logic_pio_register_range(range);
4138 	if (ret)
4139 		kfree(range);
4140 
4141 	/* Ignore duplicates due to deferred probing */
4142 	if (ret == -EEXIST)
4143 		ret = 0;
4144 #endif
4145 
4146 	return ret;
4147 }
4148 
pci_pio_to_address(unsigned long pio)4149 phys_addr_t pci_pio_to_address(unsigned long pio)
4150 {
4151 #ifdef PCI_IOBASE
4152 	if (pio < MMIO_UPPER_LIMIT)
4153 		return logic_pio_to_hwaddr(pio);
4154 #endif
4155 
4156 	return (phys_addr_t) OF_BAD_ADDR;
4157 }
4158 EXPORT_SYMBOL_GPL(pci_pio_to_address);
4159 
pci_address_to_pio(phys_addr_t address)4160 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4161 {
4162 #ifdef PCI_IOBASE
4163 	return logic_pio_trans_cpuaddr(address);
4164 #else
4165 	if (address > IO_SPACE_LIMIT)
4166 		return (unsigned long)-1;
4167 
4168 	return (unsigned long) address;
4169 #endif
4170 }
4171 
4172 /**
4173  * pci_remap_iospace - Remap the memory mapped I/O space
4174  * @res: Resource describing the I/O space
4175  * @phys_addr: physical address of range to be mapped
4176  *
4177  * Remap the memory mapped I/O space described by the @res and the CPU
4178  * physical address @phys_addr into virtual address space.  Only
4179  * architectures that have memory mapped IO functions defined (and the
4180  * PCI_IOBASE value defined) should call this function.
4181  */
4182 #ifndef pci_remap_iospace
pci_remap_iospace(const struct resource * res,phys_addr_t phys_addr)4183 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4184 {
4185 #if defined(PCI_IOBASE)
4186 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4187 
4188 	if (!(res->flags & IORESOURCE_IO))
4189 		return -EINVAL;
4190 
4191 	if (res->end > IO_SPACE_LIMIT)
4192 		return -EINVAL;
4193 
4194 	return vmap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4195 			       pgprot_device(PAGE_KERNEL));
4196 #else
4197 	/*
4198 	 * This architecture does not have memory mapped I/O space,
4199 	 * so this function should never be called
4200 	 */
4201 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4202 	return -ENODEV;
4203 #endif
4204 }
4205 EXPORT_SYMBOL(pci_remap_iospace);
4206 #endif
4207 
4208 /**
4209  * pci_unmap_iospace - Unmap the memory mapped I/O space
4210  * @res: resource to be unmapped
4211  *
4212  * Unmap the CPU virtual address @res from virtual address space.  Only
4213  * architectures that have memory mapped IO functions defined (and the
4214  * PCI_IOBASE value defined) should call this function.
4215  */
pci_unmap_iospace(struct resource * res)4216 void pci_unmap_iospace(struct resource *res)
4217 {
4218 #if defined(PCI_IOBASE)
4219 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4220 
4221 	vunmap_range(vaddr, vaddr + resource_size(res));
4222 #endif
4223 }
4224 EXPORT_SYMBOL(pci_unmap_iospace);
4225 
__pci_set_master(struct pci_dev * dev,bool enable)4226 static void __pci_set_master(struct pci_dev *dev, bool enable)
4227 {
4228 	u16 old_cmd, cmd;
4229 
4230 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4231 	if (enable)
4232 		cmd = old_cmd | PCI_COMMAND_MASTER;
4233 	else
4234 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4235 	if (cmd != old_cmd) {
4236 		pci_dbg(dev, "%s bus mastering\n",
4237 			enable ? "enabling" : "disabling");
4238 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4239 	}
4240 	dev->is_busmaster = enable;
4241 }
4242 
4243 /**
4244  * pcibios_setup - process "pci=" kernel boot arguments
4245  * @str: string used to pass in "pci=" kernel boot arguments
4246  *
4247  * Process kernel boot arguments.  This is the default implementation.
4248  * Architecture specific implementations can override this as necessary.
4249  */
pcibios_setup(char * str)4250 char * __weak __init pcibios_setup(char *str)
4251 {
4252 	return str;
4253 }
4254 
4255 /**
4256  * pcibios_set_master - enable PCI bus-mastering for device dev
4257  * @dev: the PCI device to enable
4258  *
4259  * Enables PCI bus-mastering for the device.  This is the default
4260  * implementation.  Architecture specific implementations can override
4261  * this if necessary.
4262  */
pcibios_set_master(struct pci_dev * dev)4263 void __weak pcibios_set_master(struct pci_dev *dev)
4264 {
4265 	u8 lat;
4266 
4267 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4268 	if (pci_is_pcie(dev))
4269 		return;
4270 
4271 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4272 	if (lat < 16)
4273 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4274 	else if (lat > pcibios_max_latency)
4275 		lat = pcibios_max_latency;
4276 	else
4277 		return;
4278 
4279 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4280 }
4281 
4282 /**
4283  * pci_set_master - enables bus-mastering for device dev
4284  * @dev: the PCI device to enable
4285  *
4286  * Enables bus-mastering on the device and calls pcibios_set_master()
4287  * to do the needed arch specific settings.
4288  */
pci_set_master(struct pci_dev * dev)4289 void pci_set_master(struct pci_dev *dev)
4290 {
4291 	__pci_set_master(dev, true);
4292 	pcibios_set_master(dev);
4293 }
4294 EXPORT_SYMBOL(pci_set_master);
4295 
4296 /**
4297  * pci_clear_master - disables bus-mastering for device dev
4298  * @dev: the PCI device to disable
4299  */
pci_clear_master(struct pci_dev * dev)4300 void pci_clear_master(struct pci_dev *dev)
4301 {
4302 	__pci_set_master(dev, false);
4303 }
4304 EXPORT_SYMBOL(pci_clear_master);
4305 
4306 /**
4307  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4308  * @dev: the PCI device for which MWI is to be enabled
4309  *
4310  * Helper function for pci_set_mwi.
4311  * Originally copied from drivers/net/acenic.c.
4312  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4313  *
4314  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4315  */
pci_set_cacheline_size(struct pci_dev * dev)4316 int pci_set_cacheline_size(struct pci_dev *dev)
4317 {
4318 	u8 cacheline_size;
4319 
4320 	if (!pci_cache_line_size)
4321 		return -EINVAL;
4322 
4323 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4324 	   equal to or multiple of the right value. */
4325 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4326 	if (cacheline_size >= pci_cache_line_size &&
4327 	    (cacheline_size % pci_cache_line_size) == 0)
4328 		return 0;
4329 
4330 	/* Write the correct value. */
4331 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4332 	/* Read it back. */
4333 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4334 	if (cacheline_size == pci_cache_line_size)
4335 		return 0;
4336 
4337 	pci_dbg(dev, "cache line size of %d is not supported\n",
4338 		   pci_cache_line_size << 2);
4339 
4340 	return -EINVAL;
4341 }
4342 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4343 
4344 /**
4345  * pci_set_mwi - enables memory-write-invalidate PCI transaction
4346  * @dev: the PCI device for which MWI is enabled
4347  *
4348  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4349  *
4350  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4351  */
pci_set_mwi(struct pci_dev * dev)4352 int pci_set_mwi(struct pci_dev *dev)
4353 {
4354 #ifdef PCI_DISABLE_MWI
4355 	return 0;
4356 #else
4357 	int rc;
4358 	u16 cmd;
4359 
4360 	rc = pci_set_cacheline_size(dev);
4361 	if (rc)
4362 		return rc;
4363 
4364 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4365 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4366 		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4367 		cmd |= PCI_COMMAND_INVALIDATE;
4368 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4369 	}
4370 	return 0;
4371 #endif
4372 }
4373 EXPORT_SYMBOL(pci_set_mwi);
4374 
4375 /**
4376  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4377  * @dev: the PCI device for which MWI is enabled
4378  *
4379  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4380  * Callers are not required to check the return value.
4381  *
4382  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4383  */
pci_try_set_mwi(struct pci_dev * dev)4384 int pci_try_set_mwi(struct pci_dev *dev)
4385 {
4386 #ifdef PCI_DISABLE_MWI
4387 	return 0;
4388 #else
4389 	return pci_set_mwi(dev);
4390 #endif
4391 }
4392 EXPORT_SYMBOL(pci_try_set_mwi);
4393 
4394 /**
4395  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4396  * @dev: the PCI device to disable
4397  *
4398  * Disables PCI Memory-Write-Invalidate transaction on the device
4399  */
pci_clear_mwi(struct pci_dev * dev)4400 void pci_clear_mwi(struct pci_dev *dev)
4401 {
4402 #ifndef PCI_DISABLE_MWI
4403 	u16 cmd;
4404 
4405 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4406 	if (cmd & PCI_COMMAND_INVALIDATE) {
4407 		cmd &= ~PCI_COMMAND_INVALIDATE;
4408 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4409 	}
4410 #endif
4411 }
4412 EXPORT_SYMBOL(pci_clear_mwi);
4413 
4414 /**
4415  * pci_disable_parity - disable parity checking for device
4416  * @dev: the PCI device to operate on
4417  *
4418  * Disable parity checking for device @dev
4419  */
pci_disable_parity(struct pci_dev * dev)4420 void pci_disable_parity(struct pci_dev *dev)
4421 {
4422 	u16 cmd;
4423 
4424 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4425 	if (cmd & PCI_COMMAND_PARITY) {
4426 		cmd &= ~PCI_COMMAND_PARITY;
4427 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4428 	}
4429 }
4430 
4431 /**
4432  * pci_intx - enables/disables PCI INTx for device dev
4433  * @pdev: the PCI device to operate on
4434  * @enable: boolean: whether to enable or disable PCI INTx
4435  *
4436  * Enables/disables PCI INTx for device @pdev
4437  */
pci_intx(struct pci_dev * pdev,int enable)4438 void pci_intx(struct pci_dev *pdev, int enable)
4439 {
4440 	u16 pci_command, new;
4441 
4442 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4443 
4444 	if (enable)
4445 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4446 	else
4447 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4448 
4449 	if (new == pci_command)
4450 		return;
4451 
4452 	pci_write_config_word(pdev, PCI_COMMAND, new);
4453 }
4454 EXPORT_SYMBOL_GPL(pci_intx);
4455 
4456 /**
4457  * pci_wait_for_pending_transaction - wait for pending transaction
4458  * @dev: the PCI device to operate on
4459  *
4460  * Return 0 if transaction is pending 1 otherwise.
4461  */
pci_wait_for_pending_transaction(struct pci_dev * dev)4462 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4463 {
4464 	if (!pci_is_pcie(dev))
4465 		return 1;
4466 
4467 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4468 				    PCI_EXP_DEVSTA_TRPND);
4469 }
4470 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4471 
4472 /**
4473  * pcie_flr - initiate a PCIe function level reset
4474  * @dev: device to reset
4475  *
4476  * Initiate a function level reset unconditionally on @dev without
4477  * checking any flags and DEVCAP
4478  */
pcie_flr(struct pci_dev * dev)4479 int pcie_flr(struct pci_dev *dev)
4480 {
4481 	if (!pci_wait_for_pending_transaction(dev))
4482 		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4483 
4484 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4485 
4486 	if (dev->imm_ready)
4487 		return 0;
4488 
4489 	/*
4490 	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4491 	 * 100ms, but may silently discard requests while the FLR is in
4492 	 * progress.  Wait 100ms before trying to access the device.
4493 	 */
4494 	msleep(100);
4495 
4496 	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4497 }
4498 EXPORT_SYMBOL_GPL(pcie_flr);
4499 
4500 /**
4501  * pcie_reset_flr - initiate a PCIe function level reset
4502  * @dev: device to reset
4503  * @probe: if true, return 0 if device can be reset this way
4504  *
4505  * Initiate a function level reset on @dev.
4506  */
pcie_reset_flr(struct pci_dev * dev,bool probe)4507 int pcie_reset_flr(struct pci_dev *dev, bool probe)
4508 {
4509 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4510 		return -ENOTTY;
4511 
4512 	if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4513 		return -ENOTTY;
4514 
4515 	if (probe)
4516 		return 0;
4517 
4518 	return pcie_flr(dev);
4519 }
4520 EXPORT_SYMBOL_GPL(pcie_reset_flr);
4521 
pci_af_flr(struct pci_dev * dev,bool probe)4522 static int pci_af_flr(struct pci_dev *dev, bool probe)
4523 {
4524 	int pos;
4525 	u8 cap;
4526 
4527 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4528 	if (!pos)
4529 		return -ENOTTY;
4530 
4531 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4532 		return -ENOTTY;
4533 
4534 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4535 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4536 		return -ENOTTY;
4537 
4538 	if (probe)
4539 		return 0;
4540 
4541 	/*
4542 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4543 	 * is used, so we use the control offset rather than status and shift
4544 	 * the test bit to match.
4545 	 */
4546 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4547 				 PCI_AF_STATUS_TP << 8))
4548 		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4549 
4550 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4551 
4552 	if (dev->imm_ready)
4553 		return 0;
4554 
4555 	/*
4556 	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4557 	 * updated 27 July 2006; a device must complete an FLR within
4558 	 * 100ms, but may silently discard requests while the FLR is in
4559 	 * progress.  Wait 100ms before trying to access the device.
4560 	 */
4561 	msleep(100);
4562 
4563 	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4564 }
4565 
4566 /**
4567  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4568  * @dev: Device to reset.
4569  * @probe: if true, return 0 if the device can be reset this way.
4570  *
4571  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4572  * unset, it will be reinitialized internally when going from PCI_D3hot to
4573  * PCI_D0.  If that's the case and the device is not in a low-power state
4574  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4575  *
4576  * NOTE: This causes the caller to sleep for twice the device power transition
4577  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4578  * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4579  * Moreover, only devices in D0 can be reset by this function.
4580  */
pci_pm_reset(struct pci_dev * dev,bool probe)4581 static int pci_pm_reset(struct pci_dev *dev, bool probe)
4582 {
4583 	u16 csr;
4584 
4585 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4586 		return -ENOTTY;
4587 
4588 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4589 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4590 		return -ENOTTY;
4591 
4592 	if (probe)
4593 		return 0;
4594 
4595 	if (dev->current_state != PCI_D0)
4596 		return -EINVAL;
4597 
4598 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4599 	csr |= PCI_D3hot;
4600 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4601 	pci_dev_d3_sleep(dev);
4602 
4603 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4604 	csr |= PCI_D0;
4605 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4606 	pci_dev_d3_sleep(dev);
4607 
4608 	return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4609 }
4610 
4611 /**
4612  * pcie_wait_for_link_status - Wait for link status change
4613  * @pdev: Device whose link to wait for.
4614  * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE.
4615  * @active: Waiting for active or inactive?
4616  *
4617  * Return 0 if successful, or -ETIMEDOUT if status has not changed within
4618  * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4619  */
pcie_wait_for_link_status(struct pci_dev * pdev,bool use_lt,bool active)4620 static int pcie_wait_for_link_status(struct pci_dev *pdev,
4621 				     bool use_lt, bool active)
4622 {
4623 	u16 lnksta_mask, lnksta_match;
4624 	unsigned long end_jiffies;
4625 	u16 lnksta;
4626 
4627 	lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA;
4628 	lnksta_match = active ? lnksta_mask : 0;
4629 
4630 	end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS);
4631 	do {
4632 		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
4633 		if ((lnksta & lnksta_mask) == lnksta_match)
4634 			return 0;
4635 		msleep(1);
4636 	} while (time_before(jiffies, end_jiffies));
4637 
4638 	return -ETIMEDOUT;
4639 }
4640 
4641 /**
4642  * pcie_retrain_link - Request a link retrain and wait for it to complete
4643  * @pdev: Device whose link to retrain.
4644  * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status.
4645  *
4646  * Trigger retraining of the PCIe Link and wait for the completion of the
4647  * retraining. As link retraining is known to asserts LBMS and may change
4648  * the Link Speed, LBMS is cleared after the retraining and the Link Speed
4649  * of the subordinate bus is updated.
4650  *
4651  * Retrain completion status is retrieved from the Link Status Register
4652  * according to @use_lt.  It is not verified whether the use of the DLLLA
4653  * bit is valid.
4654  *
4655  * Return 0 if successful, or -ETIMEDOUT if training has not completed
4656  * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4657  */
pcie_retrain_link(struct pci_dev * pdev,bool use_lt)4658 int pcie_retrain_link(struct pci_dev *pdev, bool use_lt)
4659 {
4660 	int rc;
4661 
4662 	/*
4663 	 * Ensure the updated LNKCTL parameters are used during link
4664 	 * training by checking that there is no ongoing link training that
4665 	 * may have started before link parameters were changed, so as to
4666 	 * avoid LTSSM race as recommended in Implementation Note at the end
4667 	 * of PCIe r6.1 sec 7.5.3.7.
4668 	 */
4669 	rc = pcie_wait_for_link_status(pdev, true, false);
4670 	if (rc)
4671 		return rc;
4672 
4673 	pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4674 	if (pdev->clear_retrain_link) {
4675 		/*
4676 		 * Due to an erratum in some devices the Retrain Link bit
4677 		 * needs to be cleared again manually to allow the link
4678 		 * training to succeed.
4679 		 */
4680 		pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4681 	}
4682 
4683 	rc = pcie_wait_for_link_status(pdev, use_lt, !use_lt);
4684 
4685 	/*
4686 	 * Clear LBMS after a manual retrain so that the bit can be used
4687 	 * to track link speed or width changes made by hardware itself
4688 	 * in attempt to correct unreliable link operation.
4689 	 */
4690 	pcie_reset_lbms(pdev);
4691 
4692 	/*
4693 	 * Ensure the Link Speed updates after retraining in case the Link
4694 	 * Speed was changed because of the retraining. While the bwctrl's
4695 	 * IRQ handler normally picks up the new Link Speed, clearing LBMS
4696 	 * races with the IRQ handler reading the Link Status register and
4697 	 * can result in the handler returning early without updating the
4698 	 * Link Speed.
4699 	 */
4700 	if (pdev->subordinate)
4701 		pcie_update_link_speed(pdev->subordinate);
4702 
4703 	return rc;
4704 }
4705 
4706 /**
4707  * pcie_wait_for_link_delay - Wait until link is active or inactive
4708  * @pdev: Bridge device
4709  * @active: waiting for active or inactive?
4710  * @delay: Delay to wait after link has become active (in ms)
4711  *
4712  * Use this to wait till link becomes active or inactive.
4713  */
pcie_wait_for_link_delay(struct pci_dev * pdev,bool active,int delay)4714 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4715 				     int delay)
4716 {
4717 	int rc;
4718 
4719 	/*
4720 	 * Some controllers might not implement link active reporting. In this
4721 	 * case, we wait for 1000 ms + any delay requested by the caller.
4722 	 */
4723 	if (!pdev->link_active_reporting) {
4724 		msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay);
4725 		return true;
4726 	}
4727 
4728 	/*
4729 	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4730 	 * after which we should expect the link to be active if the reset was
4731 	 * successful. If so, software must wait a minimum 100ms before sending
4732 	 * configuration requests to devices downstream this port.
4733 	 *
4734 	 * If the link fails to activate, either the device was physically
4735 	 * removed or the link is permanently failed.
4736 	 */
4737 	if (active)
4738 		msleep(20);
4739 	rc = pcie_wait_for_link_status(pdev, false, active);
4740 	if (active) {
4741 		if (rc)
4742 			rc = pcie_failed_link_retrain(pdev);
4743 		if (rc)
4744 			return false;
4745 
4746 		msleep(delay);
4747 		return true;
4748 	}
4749 
4750 	if (rc)
4751 		return false;
4752 
4753 	return true;
4754 }
4755 
4756 /**
4757  * pcie_wait_for_link - Wait until link is active or inactive
4758  * @pdev: Bridge device
4759  * @active: waiting for active or inactive?
4760  *
4761  * Use this to wait till link becomes active or inactive.
4762  */
pcie_wait_for_link(struct pci_dev * pdev,bool active)4763 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4764 {
4765 	return pcie_wait_for_link_delay(pdev, active, 100);
4766 }
4767 
4768 /*
4769  * Find maximum D3cold delay required by all the devices on the bus.  The
4770  * spec says 100 ms, but firmware can lower it and we allow drivers to
4771  * increase it as well.
4772  *
4773  * Called with @pci_bus_sem locked for reading.
4774  */
pci_bus_max_d3cold_delay(const struct pci_bus * bus)4775 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4776 {
4777 	const struct pci_dev *pdev;
4778 	int min_delay = 100;
4779 	int max_delay = 0;
4780 
4781 	list_for_each_entry(pdev, &bus->devices, bus_list) {
4782 		if (pdev->d3cold_delay < min_delay)
4783 			min_delay = pdev->d3cold_delay;
4784 		if (pdev->d3cold_delay > max_delay)
4785 			max_delay = pdev->d3cold_delay;
4786 	}
4787 
4788 	return max(min_delay, max_delay);
4789 }
4790 
4791 /**
4792  * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4793  * @dev: PCI bridge
4794  * @reset_type: reset type in human-readable form
4795  *
4796  * Handle necessary delays before access to the devices on the secondary
4797  * side of the bridge are permitted after D3cold to D0 transition
4798  * or Conventional Reset.
4799  *
4800  * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4801  * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4802  * 4.3.2.
4803  *
4804  * Return 0 on success or -ENOTTY if the first device on the secondary bus
4805  * failed to become accessible.
4806  */
pci_bridge_wait_for_secondary_bus(struct pci_dev * dev,char * reset_type)4807 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type)
4808 {
4809 	struct pci_dev *child __free(pci_dev_put) = NULL;
4810 	int delay;
4811 
4812 	if (pci_dev_is_disconnected(dev))
4813 		return 0;
4814 
4815 	if (!pci_is_bridge(dev))
4816 		return 0;
4817 
4818 	down_read(&pci_bus_sem);
4819 
4820 	/*
4821 	 * We only deal with devices that are present currently on the bus.
4822 	 * For any hot-added devices the access delay is handled in pciehp
4823 	 * board_added(). In case of ACPI hotplug the firmware is expected
4824 	 * to configure the devices before OS is notified.
4825 	 */
4826 	if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4827 		up_read(&pci_bus_sem);
4828 		return 0;
4829 	}
4830 
4831 	/* Take d3cold_delay requirements into account */
4832 	delay = pci_bus_max_d3cold_delay(dev->subordinate);
4833 	if (!delay) {
4834 		up_read(&pci_bus_sem);
4835 		return 0;
4836 	}
4837 
4838 	child = pci_dev_get(list_first_entry(&dev->subordinate->devices,
4839 					     struct pci_dev, bus_list));
4840 	up_read(&pci_bus_sem);
4841 
4842 	/*
4843 	 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4844 	 * accessing the device after reset (that is 1000 ms + 100 ms).
4845 	 */
4846 	if (!pci_is_pcie(dev)) {
4847 		pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4848 		msleep(1000 + delay);
4849 		return 0;
4850 	}
4851 
4852 	/*
4853 	 * For PCIe downstream and root ports that do not support speeds
4854 	 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4855 	 * speeds (gen3) we need to wait first for the data link layer to
4856 	 * become active.
4857 	 *
4858 	 * However, 100 ms is the minimum and the PCIe spec says the
4859 	 * software must allow at least 1s before it can determine that the
4860 	 * device that did not respond is a broken device. Also device can
4861 	 * take longer than that to respond if it indicates so through Request
4862 	 * Retry Status completions.
4863 	 *
4864 	 * Therefore we wait for 100 ms and check for the device presence
4865 	 * until the timeout expires.
4866 	 */
4867 	if (!pcie_downstream_port(dev))
4868 		return 0;
4869 
4870 	if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4871 		u16 status;
4872 
4873 		pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4874 		msleep(delay);
4875 
4876 		if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay))
4877 			return 0;
4878 
4879 		/*
4880 		 * If the port supports active link reporting we now check
4881 		 * whether the link is active and if not bail out early with
4882 		 * the assumption that the device is not present anymore.
4883 		 */
4884 		if (!dev->link_active_reporting)
4885 			return -ENOTTY;
4886 
4887 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status);
4888 		if (!(status & PCI_EXP_LNKSTA_DLLLA))
4889 			return -ENOTTY;
4890 
4891 		return pci_dev_wait(child, reset_type,
4892 				    PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT);
4893 	}
4894 
4895 	pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4896 		delay);
4897 	if (!pcie_wait_for_link_delay(dev, true, delay)) {
4898 		/* Did not train, no need to wait any further */
4899 		pci_info(dev, "Data Link Layer Link Active not set in %d msec\n", delay);
4900 		return -ENOTTY;
4901 	}
4902 
4903 	return pci_dev_wait(child, reset_type,
4904 			    PCIE_RESET_READY_POLL_MS - delay);
4905 }
4906 
pci_reset_secondary_bus(struct pci_dev * dev)4907 void pci_reset_secondary_bus(struct pci_dev *dev)
4908 {
4909 	u16 ctrl;
4910 
4911 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4912 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4913 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4914 
4915 	/*
4916 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
4917 	 * this to 2ms to ensure that we meet the minimum requirement.
4918 	 */
4919 	msleep(2);
4920 
4921 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4922 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4923 }
4924 
pcibios_reset_secondary_bus(struct pci_dev * dev)4925 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4926 {
4927 	pci_reset_secondary_bus(dev);
4928 }
4929 
4930 /**
4931  * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4932  * @dev: Bridge device
4933  *
4934  * Use the bridge control register to assert reset on the secondary bus.
4935  * Devices on the secondary bus are left in power-on state.
4936  */
pci_bridge_secondary_bus_reset(struct pci_dev * dev)4937 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4938 {
4939 	if (!dev->block_cfg_access)
4940 		pci_warn_once(dev, "unlocked secondary bus reset via: %pS\n",
4941 			      __builtin_return_address(0));
4942 	pcibios_reset_secondary_bus(dev);
4943 
4944 	return pci_bridge_wait_for_secondary_bus(dev, "bus reset");
4945 }
4946 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4947 
pci_parent_bus_reset(struct pci_dev * dev,bool probe)4948 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
4949 {
4950 	struct pci_dev *pdev;
4951 
4952 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4953 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4954 		return -ENOTTY;
4955 
4956 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4957 		if (pdev != dev)
4958 			return -ENOTTY;
4959 
4960 	if (probe)
4961 		return 0;
4962 
4963 	return pci_bridge_secondary_bus_reset(dev->bus->self);
4964 }
4965 
pci_reset_hotplug_slot(struct hotplug_slot * hotplug,bool probe)4966 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
4967 {
4968 	int rc = -ENOTTY;
4969 
4970 	if (!hotplug || !try_module_get(hotplug->owner))
4971 		return rc;
4972 
4973 	if (hotplug->ops->reset_slot)
4974 		rc = hotplug->ops->reset_slot(hotplug, probe);
4975 
4976 	module_put(hotplug->owner);
4977 
4978 	return rc;
4979 }
4980 
pci_dev_reset_slot_function(struct pci_dev * dev,bool probe)4981 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
4982 {
4983 	if (dev->multifunction || dev->subordinate || !dev->slot ||
4984 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4985 		return -ENOTTY;
4986 
4987 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4988 }
4989 
cxl_port_dvsec(struct pci_dev * dev)4990 static u16 cxl_port_dvsec(struct pci_dev *dev)
4991 {
4992 	return pci_find_dvsec_capability(dev, PCI_VENDOR_ID_CXL,
4993 					 PCI_DVSEC_CXL_PORT);
4994 }
4995 
cxl_sbr_masked(struct pci_dev * dev)4996 static bool cxl_sbr_masked(struct pci_dev *dev)
4997 {
4998 	u16 dvsec, reg;
4999 	int rc;
5000 
5001 	dvsec = cxl_port_dvsec(dev);
5002 	if (!dvsec)
5003 		return false;
5004 
5005 	rc = pci_read_config_word(dev, dvsec + PCI_DVSEC_CXL_PORT_CTL, &reg);
5006 	if (rc || PCI_POSSIBLE_ERROR(reg))
5007 		return false;
5008 
5009 	/*
5010 	 * Per CXL spec r3.1, sec 8.1.5.2, when "Unmask SBR" is 0, the SBR
5011 	 * bit in Bridge Control has no effect.  When 1, the Port generates
5012 	 * hot reset when the SBR bit is set to 1.
5013 	 */
5014 	if (reg & PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR)
5015 		return false;
5016 
5017 	return true;
5018 }
5019 
pci_reset_bus_function(struct pci_dev * dev,bool probe)5020 static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5021 {
5022 	struct pci_dev *bridge = pci_upstream_bridge(dev);
5023 	int rc;
5024 
5025 	/*
5026 	 * If "dev" is below a CXL port that has SBR control masked, SBR
5027 	 * won't do anything, so return error.
5028 	 */
5029 	if (bridge && cxl_sbr_masked(bridge)) {
5030 		if (probe)
5031 			return 0;
5032 
5033 		return -ENOTTY;
5034 	}
5035 
5036 	rc = pci_dev_reset_slot_function(dev, probe);
5037 	if (rc != -ENOTTY)
5038 		return rc;
5039 	return pci_parent_bus_reset(dev, probe);
5040 }
5041 
cxl_reset_bus_function(struct pci_dev * dev,bool probe)5042 static int cxl_reset_bus_function(struct pci_dev *dev, bool probe)
5043 {
5044 	struct pci_dev *bridge;
5045 	u16 dvsec, reg, val;
5046 	int rc;
5047 
5048 	bridge = pci_upstream_bridge(dev);
5049 	if (!bridge)
5050 		return -ENOTTY;
5051 
5052 	dvsec = cxl_port_dvsec(bridge);
5053 	if (!dvsec)
5054 		return -ENOTTY;
5055 
5056 	if (probe)
5057 		return 0;
5058 
5059 	rc = pci_read_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL, &reg);
5060 	if (rc)
5061 		return -ENOTTY;
5062 
5063 	if (reg & PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR) {
5064 		val = reg;
5065 	} else {
5066 		val = reg | PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR;
5067 		pci_write_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL,
5068 				      val);
5069 	}
5070 
5071 	rc = pci_reset_bus_function(dev, probe);
5072 
5073 	if (reg != val)
5074 		pci_write_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL,
5075 				      reg);
5076 
5077 	return rc;
5078 }
5079 
pci_dev_lock(struct pci_dev * dev)5080 void pci_dev_lock(struct pci_dev *dev)
5081 {
5082 	/* block PM suspend, driver probe, etc. */
5083 	device_lock(&dev->dev);
5084 	pci_cfg_access_lock(dev);
5085 }
5086 EXPORT_SYMBOL_GPL(pci_dev_lock);
5087 
5088 /* Return 1 on successful lock, 0 on contention */
pci_dev_trylock(struct pci_dev * dev)5089 int pci_dev_trylock(struct pci_dev *dev)
5090 {
5091 	if (device_trylock(&dev->dev)) {
5092 		if (pci_cfg_access_trylock(dev))
5093 			return 1;
5094 		device_unlock(&dev->dev);
5095 	}
5096 
5097 	return 0;
5098 }
5099 EXPORT_SYMBOL_GPL(pci_dev_trylock);
5100 
pci_dev_unlock(struct pci_dev * dev)5101 void pci_dev_unlock(struct pci_dev *dev)
5102 {
5103 	pci_cfg_access_unlock(dev);
5104 	device_unlock(&dev->dev);
5105 }
5106 EXPORT_SYMBOL_GPL(pci_dev_unlock);
5107 
pci_dev_save_and_disable(struct pci_dev * dev)5108 static void pci_dev_save_and_disable(struct pci_dev *dev)
5109 {
5110 	const struct pci_error_handlers *err_handler =
5111 			dev->driver ? dev->driver->err_handler : NULL;
5112 
5113 	/*
5114 	 * dev->driver->err_handler->reset_prepare() is protected against
5115 	 * races with ->remove() by the device lock, which must be held by
5116 	 * the caller.
5117 	 */
5118 	if (err_handler && err_handler->reset_prepare)
5119 		err_handler->reset_prepare(dev);
5120 	else if (dev->driver)
5121 		pci_warn(dev, "resetting");
5122 
5123 	/*
5124 	 * Wake-up device prior to save.  PM registers default to D0 after
5125 	 * reset and a simple register restore doesn't reliably return
5126 	 * to a non-D0 state anyway.
5127 	 */
5128 	pci_set_power_state(dev, PCI_D0);
5129 
5130 	pci_save_state(dev);
5131 	/*
5132 	 * Disable the device by clearing the Command register, except for
5133 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
5134 	 * BARs, but also prevents the device from being Bus Master, preventing
5135 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
5136 	 * compliant devices, INTx-disable prevents legacy interrupts.
5137 	 */
5138 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5139 }
5140 
pci_dev_restore(struct pci_dev * dev)5141 static void pci_dev_restore(struct pci_dev *dev)
5142 {
5143 	const struct pci_error_handlers *err_handler =
5144 			dev->driver ? dev->driver->err_handler : NULL;
5145 
5146 	pci_restore_state(dev);
5147 
5148 	/*
5149 	 * dev->driver->err_handler->reset_done() is protected against
5150 	 * races with ->remove() by the device lock, which must be held by
5151 	 * the caller.
5152 	 */
5153 	if (err_handler && err_handler->reset_done)
5154 		err_handler->reset_done(dev);
5155 	else if (dev->driver)
5156 		pci_warn(dev, "reset done");
5157 }
5158 
5159 /* dev->reset_methods[] is a 0-terminated list of indices into this array */
5160 const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5161 	{ },
5162 	{ pci_dev_specific_reset, .name = "device_specific" },
5163 	{ pci_dev_acpi_reset, .name = "acpi" },
5164 	{ pcie_reset_flr, .name = "flr" },
5165 	{ pci_af_flr, .name = "af_flr" },
5166 	{ pci_pm_reset, .name = "pm" },
5167 	{ pci_reset_bus_function, .name = "bus" },
5168 	{ cxl_reset_bus_function, .name = "cxl_bus" },
5169 };
5170 
5171 /**
5172  * __pci_reset_function_locked - reset a PCI device function while holding
5173  * the @dev mutex lock.
5174  * @dev: PCI device to reset
5175  *
5176  * Some devices allow an individual function to be reset without affecting
5177  * other functions in the same device.  The PCI device must be responsive
5178  * to PCI config space in order to use this function.
5179  *
5180  * The device function is presumed to be unused and the caller is holding
5181  * the device mutex lock when this function is called.
5182  *
5183  * Resetting the device will make the contents of PCI configuration space
5184  * random, so any caller of this must be prepared to reinitialise the
5185  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5186  * etc.
5187  *
5188  * Returns 0 if the device function was successfully reset or negative if the
5189  * device doesn't support resetting a single function.
5190  */
__pci_reset_function_locked(struct pci_dev * dev)5191 int __pci_reset_function_locked(struct pci_dev *dev)
5192 {
5193 	int i, m, rc;
5194 	const struct pci_reset_fn_method *method;
5195 
5196 	might_sleep();
5197 
5198 	/*
5199 	 * A reset method returns -ENOTTY if it doesn't support this device and
5200 	 * we should try the next method.
5201 	 *
5202 	 * If it returns 0 (success), we're finished.  If it returns any other
5203 	 * error, we're also finished: this indicates that further reset
5204 	 * mechanisms might be broken on the device.
5205 	 */
5206 	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5207 		m = dev->reset_methods[i];
5208 		if (!m)
5209 			return -ENOTTY;
5210 
5211 		method = &pci_reset_fn_methods[m];
5212 		pci_dbg(dev, "reset via %s\n", method->name);
5213 		rc = method->reset_fn(dev, PCI_RESET_DO_RESET);
5214 		if (!rc)
5215 			return 0;
5216 
5217 		pci_dbg(dev, "%s failed with %d\n", method->name, rc);
5218 		if (rc != -ENOTTY)
5219 			return rc;
5220 	}
5221 
5222 	return -ENOTTY;
5223 }
5224 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5225 
5226 /**
5227  * pci_init_reset_methods - check whether device can be safely reset
5228  * and store supported reset mechanisms.
5229  * @dev: PCI device to check for reset mechanisms
5230  *
5231  * Some devices allow an individual function to be reset without affecting
5232  * other functions in the same device.  The PCI device must be in D0-D3hot
5233  * state.
5234  *
5235  * Stores reset mechanisms supported by device in reset_methods byte array
5236  * which is a member of struct pci_dev.
5237  */
pci_init_reset_methods(struct pci_dev * dev)5238 void pci_init_reset_methods(struct pci_dev *dev)
5239 {
5240 	int m, i, rc;
5241 
5242 	BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5243 
5244 	might_sleep();
5245 
5246 	i = 0;
5247 	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5248 		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5249 		if (!rc)
5250 			dev->reset_methods[i++] = m;
5251 		else if (rc != -ENOTTY)
5252 			break;
5253 	}
5254 
5255 	dev->reset_methods[i] = 0;
5256 }
5257 
5258 /**
5259  * pci_reset_function - quiesce and reset a PCI device function
5260  * @dev: PCI device to reset
5261  *
5262  * Some devices allow an individual function to be reset without affecting
5263  * other functions in the same device.  The PCI device must be responsive
5264  * to PCI config space in order to use this function.
5265  *
5266  * This function does not just reset the PCI portion of a device, but
5267  * clears all the state associated with the device.  This function differs
5268  * from __pci_reset_function_locked() in that it saves and restores device state
5269  * over the reset and takes the PCI device lock.
5270  *
5271  * Returns 0 if the device function was successfully reset or negative if the
5272  * device doesn't support resetting a single function.
5273  */
pci_reset_function(struct pci_dev * dev)5274 int pci_reset_function(struct pci_dev *dev)
5275 {
5276 	struct pci_dev *bridge;
5277 	int rc;
5278 
5279 	if (!pci_reset_supported(dev))
5280 		return -ENOTTY;
5281 
5282 	/*
5283 	 * If there's no upstream bridge, no locking is needed since there is
5284 	 * no upstream bridge configuration to hold consistent.
5285 	 */
5286 	bridge = pci_upstream_bridge(dev);
5287 	if (bridge)
5288 		pci_dev_lock(bridge);
5289 
5290 	pci_dev_lock(dev);
5291 	pci_dev_save_and_disable(dev);
5292 
5293 	rc = __pci_reset_function_locked(dev);
5294 
5295 	pci_dev_restore(dev);
5296 	pci_dev_unlock(dev);
5297 
5298 	if (bridge)
5299 		pci_dev_unlock(bridge);
5300 
5301 	return rc;
5302 }
5303 EXPORT_SYMBOL_GPL(pci_reset_function);
5304 
5305 /**
5306  * pci_reset_function_locked - quiesce and reset a PCI device function
5307  * @dev: PCI device to reset
5308  *
5309  * Some devices allow an individual function to be reset without affecting
5310  * other functions in the same device.  The PCI device must be responsive
5311  * to PCI config space in order to use this function.
5312  *
5313  * This function does not just reset the PCI portion of a device, but
5314  * clears all the state associated with the device.  This function differs
5315  * from __pci_reset_function_locked() in that it saves and restores device state
5316  * over the reset.  It also differs from pci_reset_function() in that it
5317  * requires the PCI device lock to be held.
5318  *
5319  * Returns 0 if the device function was successfully reset or negative if the
5320  * device doesn't support resetting a single function.
5321  */
pci_reset_function_locked(struct pci_dev * dev)5322 int pci_reset_function_locked(struct pci_dev *dev)
5323 {
5324 	int rc;
5325 
5326 	if (!pci_reset_supported(dev))
5327 		return -ENOTTY;
5328 
5329 	pci_dev_save_and_disable(dev);
5330 
5331 	rc = __pci_reset_function_locked(dev);
5332 
5333 	pci_dev_restore(dev);
5334 
5335 	return rc;
5336 }
5337 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5338 
5339 /**
5340  * pci_try_reset_function - quiesce and reset a PCI device function
5341  * @dev: PCI device to reset
5342  *
5343  * Same as above, except return -EAGAIN if unable to lock device.
5344  */
pci_try_reset_function(struct pci_dev * dev)5345 int pci_try_reset_function(struct pci_dev *dev)
5346 {
5347 	int rc;
5348 
5349 	if (!pci_reset_supported(dev))
5350 		return -ENOTTY;
5351 
5352 	if (!pci_dev_trylock(dev))
5353 		return -EAGAIN;
5354 
5355 	pci_dev_save_and_disable(dev);
5356 	rc = __pci_reset_function_locked(dev);
5357 	pci_dev_restore(dev);
5358 	pci_dev_unlock(dev);
5359 
5360 	return rc;
5361 }
5362 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5363 
5364 /* Do any devices on or below this bus prevent a bus reset? */
pci_bus_resettable(struct pci_bus * bus)5365 static bool pci_bus_resettable(struct pci_bus *bus)
5366 {
5367 	struct pci_dev *dev;
5368 
5369 
5370 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5371 		return false;
5372 
5373 	list_for_each_entry(dev, &bus->devices, bus_list) {
5374 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5375 		    (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5376 			return false;
5377 	}
5378 
5379 	return true;
5380 }
5381 
5382 /* Lock devices from the top of the tree down */
pci_bus_lock(struct pci_bus * bus)5383 static void pci_bus_lock(struct pci_bus *bus)
5384 {
5385 	struct pci_dev *dev;
5386 
5387 	pci_dev_lock(bus->self);
5388 	list_for_each_entry(dev, &bus->devices, bus_list) {
5389 		if (dev->subordinate)
5390 			pci_bus_lock(dev->subordinate);
5391 		else
5392 			pci_dev_lock(dev);
5393 	}
5394 }
5395 
5396 /* Unlock devices from the bottom of the tree up */
pci_bus_unlock(struct pci_bus * bus)5397 static void pci_bus_unlock(struct pci_bus *bus)
5398 {
5399 	struct pci_dev *dev;
5400 
5401 	list_for_each_entry(dev, &bus->devices, bus_list) {
5402 		if (dev->subordinate)
5403 			pci_bus_unlock(dev->subordinate);
5404 		else
5405 			pci_dev_unlock(dev);
5406 	}
5407 	pci_dev_unlock(bus->self);
5408 }
5409 
5410 /* Return 1 on successful lock, 0 on contention */
pci_bus_trylock(struct pci_bus * bus)5411 static int pci_bus_trylock(struct pci_bus *bus)
5412 {
5413 	struct pci_dev *dev;
5414 
5415 	if (!pci_dev_trylock(bus->self))
5416 		return 0;
5417 
5418 	list_for_each_entry(dev, &bus->devices, bus_list) {
5419 		if (dev->subordinate) {
5420 			if (!pci_bus_trylock(dev->subordinate))
5421 				goto unlock;
5422 		} else if (!pci_dev_trylock(dev))
5423 			goto unlock;
5424 	}
5425 	return 1;
5426 
5427 unlock:
5428 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5429 		if (dev->subordinate)
5430 			pci_bus_unlock(dev->subordinate);
5431 		else
5432 			pci_dev_unlock(dev);
5433 	}
5434 	pci_dev_unlock(bus->self);
5435 	return 0;
5436 }
5437 
5438 /* Do any devices on or below this slot prevent a bus reset? */
pci_slot_resettable(struct pci_slot * slot)5439 static bool pci_slot_resettable(struct pci_slot *slot)
5440 {
5441 	struct pci_dev *dev;
5442 
5443 	if (slot->bus->self &&
5444 	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5445 		return false;
5446 
5447 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5448 		if (!dev->slot || dev->slot != slot)
5449 			continue;
5450 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5451 		    (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5452 			return false;
5453 	}
5454 
5455 	return true;
5456 }
5457 
5458 /* Lock devices from the top of the tree down */
pci_slot_lock(struct pci_slot * slot)5459 static void pci_slot_lock(struct pci_slot *slot)
5460 {
5461 	struct pci_dev *dev;
5462 
5463 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5464 		if (!dev->slot || dev->slot != slot)
5465 			continue;
5466 		if (dev->subordinate)
5467 			pci_bus_lock(dev->subordinate);
5468 		else
5469 			pci_dev_lock(dev);
5470 	}
5471 }
5472 
5473 /* Unlock devices from the bottom of the tree up */
pci_slot_unlock(struct pci_slot * slot)5474 static void pci_slot_unlock(struct pci_slot *slot)
5475 {
5476 	struct pci_dev *dev;
5477 
5478 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5479 		if (!dev->slot || dev->slot != slot)
5480 			continue;
5481 		if (dev->subordinate)
5482 			pci_bus_unlock(dev->subordinate);
5483 		else
5484 			pci_dev_unlock(dev);
5485 	}
5486 }
5487 
5488 /* Return 1 on successful lock, 0 on contention */
pci_slot_trylock(struct pci_slot * slot)5489 static int pci_slot_trylock(struct pci_slot *slot)
5490 {
5491 	struct pci_dev *dev;
5492 
5493 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5494 		if (!dev->slot || dev->slot != slot)
5495 			continue;
5496 		if (dev->subordinate) {
5497 			if (!pci_bus_trylock(dev->subordinate)) {
5498 				pci_dev_unlock(dev);
5499 				goto unlock;
5500 			}
5501 		} else if (!pci_dev_trylock(dev))
5502 			goto unlock;
5503 	}
5504 	return 1;
5505 
5506 unlock:
5507 	list_for_each_entry_continue_reverse(dev,
5508 					     &slot->bus->devices, bus_list) {
5509 		if (!dev->slot || dev->slot != slot)
5510 			continue;
5511 		if (dev->subordinate)
5512 			pci_bus_unlock(dev->subordinate);
5513 		else
5514 			pci_dev_unlock(dev);
5515 	}
5516 	return 0;
5517 }
5518 
5519 /*
5520  * Save and disable devices from the top of the tree down while holding
5521  * the @dev mutex lock for the entire tree.
5522  */
pci_bus_save_and_disable_locked(struct pci_bus * bus)5523 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5524 {
5525 	struct pci_dev *dev;
5526 
5527 	list_for_each_entry(dev, &bus->devices, bus_list) {
5528 		pci_dev_save_and_disable(dev);
5529 		if (dev->subordinate)
5530 			pci_bus_save_and_disable_locked(dev->subordinate);
5531 	}
5532 }
5533 
5534 /*
5535  * Restore devices from top of the tree down while holding @dev mutex lock
5536  * for the entire tree.  Parent bridges need to be restored before we can
5537  * get to subordinate devices.
5538  */
pci_bus_restore_locked(struct pci_bus * bus)5539 static void pci_bus_restore_locked(struct pci_bus *bus)
5540 {
5541 	struct pci_dev *dev;
5542 
5543 	list_for_each_entry(dev, &bus->devices, bus_list) {
5544 		pci_dev_restore(dev);
5545 		if (dev->subordinate) {
5546 			pci_bridge_wait_for_secondary_bus(dev, "bus reset");
5547 			pci_bus_restore_locked(dev->subordinate);
5548 		}
5549 	}
5550 }
5551 
5552 /*
5553  * Save and disable devices from the top of the tree down while holding
5554  * the @dev mutex lock for the entire tree.
5555  */
pci_slot_save_and_disable_locked(struct pci_slot * slot)5556 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5557 {
5558 	struct pci_dev *dev;
5559 
5560 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5561 		if (!dev->slot || dev->slot != slot)
5562 			continue;
5563 		pci_dev_save_and_disable(dev);
5564 		if (dev->subordinate)
5565 			pci_bus_save_and_disable_locked(dev->subordinate);
5566 	}
5567 }
5568 
5569 /*
5570  * Restore devices from top of the tree down while holding @dev mutex lock
5571  * for the entire tree.  Parent bridges need to be restored before we can
5572  * get to subordinate devices.
5573  */
pci_slot_restore_locked(struct pci_slot * slot)5574 static void pci_slot_restore_locked(struct pci_slot *slot)
5575 {
5576 	struct pci_dev *dev;
5577 
5578 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5579 		if (!dev->slot || dev->slot != slot)
5580 			continue;
5581 		pci_dev_restore(dev);
5582 		if (dev->subordinate) {
5583 			pci_bridge_wait_for_secondary_bus(dev, "slot reset");
5584 			pci_bus_restore_locked(dev->subordinate);
5585 		}
5586 	}
5587 }
5588 
pci_slot_reset(struct pci_slot * slot,bool probe)5589 static int pci_slot_reset(struct pci_slot *slot, bool probe)
5590 {
5591 	int rc;
5592 
5593 	if (!slot || !pci_slot_resettable(slot))
5594 		return -ENOTTY;
5595 
5596 	if (!probe)
5597 		pci_slot_lock(slot);
5598 
5599 	might_sleep();
5600 
5601 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5602 
5603 	if (!probe)
5604 		pci_slot_unlock(slot);
5605 
5606 	return rc;
5607 }
5608 
5609 /**
5610  * pci_probe_reset_slot - probe whether a PCI slot can be reset
5611  * @slot: PCI slot to probe
5612  *
5613  * Return 0 if slot can be reset, negative if a slot reset is not supported.
5614  */
pci_probe_reset_slot(struct pci_slot * slot)5615 int pci_probe_reset_slot(struct pci_slot *slot)
5616 {
5617 	return pci_slot_reset(slot, PCI_RESET_PROBE);
5618 }
5619 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5620 
5621 /**
5622  * __pci_reset_slot - Try to reset a PCI slot
5623  * @slot: PCI slot to reset
5624  *
5625  * A PCI bus may host multiple slots, each slot may support a reset mechanism
5626  * independent of other slots.  For instance, some slots may support slot power
5627  * control.  In the case of a 1:1 bus to slot architecture, this function may
5628  * wrap the bus reset to avoid spurious slot related events such as hotplug.
5629  * Generally a slot reset should be attempted before a bus reset.  All of the
5630  * function of the slot and any subordinate buses behind the slot are reset
5631  * through this function.  PCI config space of all devices in the slot and
5632  * behind the slot is saved before and restored after reset.
5633  *
5634  * Same as above except return -EAGAIN if the slot cannot be locked
5635  */
__pci_reset_slot(struct pci_slot * slot)5636 static int __pci_reset_slot(struct pci_slot *slot)
5637 {
5638 	int rc;
5639 
5640 	rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5641 	if (rc)
5642 		return rc;
5643 
5644 	if (pci_slot_trylock(slot)) {
5645 		pci_slot_save_and_disable_locked(slot);
5646 		might_sleep();
5647 		rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5648 		pci_slot_restore_locked(slot);
5649 		pci_slot_unlock(slot);
5650 	} else
5651 		rc = -EAGAIN;
5652 
5653 	return rc;
5654 }
5655 
pci_bus_reset(struct pci_bus * bus,bool probe)5656 static int pci_bus_reset(struct pci_bus *bus, bool probe)
5657 {
5658 	int ret;
5659 
5660 	if (!bus->self || !pci_bus_resettable(bus))
5661 		return -ENOTTY;
5662 
5663 	if (probe)
5664 		return 0;
5665 
5666 	pci_bus_lock(bus);
5667 
5668 	might_sleep();
5669 
5670 	ret = pci_bridge_secondary_bus_reset(bus->self);
5671 
5672 	pci_bus_unlock(bus);
5673 
5674 	return ret;
5675 }
5676 
5677 /**
5678  * pci_bus_error_reset - reset the bridge's subordinate bus
5679  * @bridge: The parent device that connects to the bus to reset
5680  *
5681  * This function will first try to reset the slots on this bus if the method is
5682  * available. If slot reset fails or is not available, this will fall back to a
5683  * secondary bus reset.
5684  */
pci_bus_error_reset(struct pci_dev * bridge)5685 int pci_bus_error_reset(struct pci_dev *bridge)
5686 {
5687 	struct pci_bus *bus = bridge->subordinate;
5688 	struct pci_slot *slot;
5689 
5690 	if (!bus)
5691 		return -ENOTTY;
5692 
5693 	mutex_lock(&pci_slot_mutex);
5694 	if (list_empty(&bus->slots))
5695 		goto bus_reset;
5696 
5697 	list_for_each_entry(slot, &bus->slots, list)
5698 		if (pci_probe_reset_slot(slot))
5699 			goto bus_reset;
5700 
5701 	list_for_each_entry(slot, &bus->slots, list)
5702 		if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5703 			goto bus_reset;
5704 
5705 	mutex_unlock(&pci_slot_mutex);
5706 	return 0;
5707 bus_reset:
5708 	mutex_unlock(&pci_slot_mutex);
5709 	return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5710 }
5711 
5712 /**
5713  * pci_probe_reset_bus - probe whether a PCI bus can be reset
5714  * @bus: PCI bus to probe
5715  *
5716  * Return 0 if bus can be reset, negative if a bus reset is not supported.
5717  */
pci_probe_reset_bus(struct pci_bus * bus)5718 int pci_probe_reset_bus(struct pci_bus *bus)
5719 {
5720 	return pci_bus_reset(bus, PCI_RESET_PROBE);
5721 }
5722 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5723 
5724 /**
5725  * __pci_reset_bus - Try to reset a PCI bus
5726  * @bus: top level PCI bus to reset
5727  *
5728  * Same as above except return -EAGAIN if the bus cannot be locked
5729  */
__pci_reset_bus(struct pci_bus * bus)5730 int __pci_reset_bus(struct pci_bus *bus)
5731 {
5732 	int rc;
5733 
5734 	rc = pci_bus_reset(bus, PCI_RESET_PROBE);
5735 	if (rc)
5736 		return rc;
5737 
5738 	if (pci_bus_trylock(bus)) {
5739 		pci_bus_save_and_disable_locked(bus);
5740 		might_sleep();
5741 		rc = pci_bridge_secondary_bus_reset(bus->self);
5742 		pci_bus_restore_locked(bus);
5743 		pci_bus_unlock(bus);
5744 	} else
5745 		rc = -EAGAIN;
5746 
5747 	return rc;
5748 }
5749 
5750 /**
5751  * pci_reset_bus - Try to reset a PCI bus
5752  * @pdev: top level PCI device to reset via slot/bus
5753  *
5754  * Same as above except return -EAGAIN if the bus cannot be locked
5755  */
pci_reset_bus(struct pci_dev * pdev)5756 int pci_reset_bus(struct pci_dev *pdev)
5757 {
5758 	return (!pci_probe_reset_slot(pdev->slot)) ?
5759 	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5760 }
5761 EXPORT_SYMBOL_GPL(pci_reset_bus);
5762 
5763 /**
5764  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5765  * @dev: PCI device to query
5766  *
5767  * Returns mmrbc: maximum designed memory read count in bytes or
5768  * appropriate error value.
5769  */
pcix_get_max_mmrbc(struct pci_dev * dev)5770 int pcix_get_max_mmrbc(struct pci_dev *dev)
5771 {
5772 	int cap;
5773 	u32 stat;
5774 
5775 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5776 	if (!cap)
5777 		return -EINVAL;
5778 
5779 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5780 		return -EINVAL;
5781 
5782 	return 512 << FIELD_GET(PCI_X_STATUS_MAX_READ, stat);
5783 }
5784 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5785 
5786 /**
5787  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5788  * @dev: PCI device to query
5789  *
5790  * Returns mmrbc: maximum memory read count in bytes or appropriate error
5791  * value.
5792  */
pcix_get_mmrbc(struct pci_dev * dev)5793 int pcix_get_mmrbc(struct pci_dev *dev)
5794 {
5795 	int cap;
5796 	u16 cmd;
5797 
5798 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5799 	if (!cap)
5800 		return -EINVAL;
5801 
5802 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5803 		return -EINVAL;
5804 
5805 	return 512 << FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
5806 }
5807 EXPORT_SYMBOL(pcix_get_mmrbc);
5808 
5809 /**
5810  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5811  * @dev: PCI device to query
5812  * @mmrbc: maximum memory read count in bytes
5813  *    valid values are 512, 1024, 2048, 4096
5814  *
5815  * If possible sets maximum memory read byte count, some bridges have errata
5816  * that prevent this.
5817  */
pcix_set_mmrbc(struct pci_dev * dev,int mmrbc)5818 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5819 {
5820 	int cap;
5821 	u32 stat, v, o;
5822 	u16 cmd;
5823 
5824 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5825 		return -EINVAL;
5826 
5827 	v = ffs(mmrbc) - 10;
5828 
5829 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5830 	if (!cap)
5831 		return -EINVAL;
5832 
5833 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5834 		return -EINVAL;
5835 
5836 	if (v > FIELD_GET(PCI_X_STATUS_MAX_READ, stat))
5837 		return -E2BIG;
5838 
5839 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5840 		return -EINVAL;
5841 
5842 	o = FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
5843 	if (o != v) {
5844 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5845 			return -EIO;
5846 
5847 		cmd &= ~PCI_X_CMD_MAX_READ;
5848 		cmd |= FIELD_PREP(PCI_X_CMD_MAX_READ, v);
5849 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5850 			return -EIO;
5851 	}
5852 	return 0;
5853 }
5854 EXPORT_SYMBOL(pcix_set_mmrbc);
5855 
5856 /**
5857  * pcie_get_readrq - get PCI Express read request size
5858  * @dev: PCI device to query
5859  *
5860  * Returns maximum memory read request in bytes or appropriate error value.
5861  */
pcie_get_readrq(struct pci_dev * dev)5862 int pcie_get_readrq(struct pci_dev *dev)
5863 {
5864 	u16 ctl;
5865 
5866 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5867 
5868 	return 128 << FIELD_GET(PCI_EXP_DEVCTL_READRQ, ctl);
5869 }
5870 EXPORT_SYMBOL(pcie_get_readrq);
5871 
5872 /**
5873  * pcie_set_readrq - set PCI Express maximum memory read request
5874  * @dev: PCI device to query
5875  * @rq: maximum memory read count in bytes
5876  *    valid values are 128, 256, 512, 1024, 2048, 4096
5877  *
5878  * If possible sets maximum memory read request in bytes
5879  */
pcie_set_readrq(struct pci_dev * dev,int rq)5880 int pcie_set_readrq(struct pci_dev *dev, int rq)
5881 {
5882 	u16 v;
5883 	int ret;
5884 	unsigned int firstbit;
5885 	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
5886 
5887 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5888 		return -EINVAL;
5889 
5890 	/*
5891 	 * If using the "performance" PCIe config, we clamp the read rq
5892 	 * size to the max packet size to keep the host bridge from
5893 	 * generating requests larger than we can cope with.
5894 	 */
5895 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5896 		int mps = pcie_get_mps(dev);
5897 
5898 		if (mps < rq)
5899 			rq = mps;
5900 	}
5901 
5902 	firstbit = ffs(rq);
5903 	if (firstbit < 8)
5904 		return -EINVAL;
5905 	v = FIELD_PREP(PCI_EXP_DEVCTL_READRQ, firstbit - 8);
5906 
5907 	if (bridge->no_inc_mrrs) {
5908 		int max_mrrs = pcie_get_readrq(dev);
5909 
5910 		if (rq > max_mrrs) {
5911 			pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs);
5912 			return -EINVAL;
5913 		}
5914 	}
5915 
5916 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5917 						  PCI_EXP_DEVCTL_READRQ, v);
5918 
5919 	return pcibios_err_to_errno(ret);
5920 }
5921 EXPORT_SYMBOL(pcie_set_readrq);
5922 
5923 /**
5924  * pcie_get_mps - get PCI Express maximum payload size
5925  * @dev: PCI device to query
5926  *
5927  * Returns maximum payload size in bytes
5928  */
pcie_get_mps(struct pci_dev * dev)5929 int pcie_get_mps(struct pci_dev *dev)
5930 {
5931 	u16 ctl;
5932 
5933 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5934 
5935 	return 128 << FIELD_GET(PCI_EXP_DEVCTL_PAYLOAD, ctl);
5936 }
5937 EXPORT_SYMBOL(pcie_get_mps);
5938 
5939 /**
5940  * pcie_set_mps - set PCI Express maximum payload size
5941  * @dev: PCI device to query
5942  * @mps: maximum payload size in bytes
5943  *    valid values are 128, 256, 512, 1024, 2048, 4096
5944  *
5945  * If possible sets maximum payload size
5946  */
pcie_set_mps(struct pci_dev * dev,int mps)5947 int pcie_set_mps(struct pci_dev *dev, int mps)
5948 {
5949 	u16 v;
5950 	int ret;
5951 
5952 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5953 		return -EINVAL;
5954 
5955 	v = ffs(mps) - 8;
5956 	if (v > dev->pcie_mpss)
5957 		return -EINVAL;
5958 	v = FIELD_PREP(PCI_EXP_DEVCTL_PAYLOAD, v);
5959 
5960 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5961 						  PCI_EXP_DEVCTL_PAYLOAD, v);
5962 
5963 	return pcibios_err_to_errno(ret);
5964 }
5965 EXPORT_SYMBOL(pcie_set_mps);
5966 
to_pcie_link_speed(u16 lnksta)5967 static enum pci_bus_speed to_pcie_link_speed(u16 lnksta)
5968 {
5969 	return pcie_link_speed[FIELD_GET(PCI_EXP_LNKSTA_CLS, lnksta)];
5970 }
5971 
pcie_link_speed_mbps(struct pci_dev * pdev)5972 int pcie_link_speed_mbps(struct pci_dev *pdev)
5973 {
5974 	u16 lnksta;
5975 	int err;
5976 
5977 	err = pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
5978 	if (err)
5979 		return err;
5980 
5981 	return pcie_dev_speed_mbps(to_pcie_link_speed(lnksta));
5982 }
5983 EXPORT_SYMBOL(pcie_link_speed_mbps);
5984 
5985 /**
5986  * pcie_bandwidth_available - determine minimum link settings of a PCIe
5987  *			      device and its bandwidth limitation
5988  * @dev: PCI device to query
5989  * @limiting_dev: storage for device causing the bandwidth limitation
5990  * @speed: storage for speed of limiting device
5991  * @width: storage for width of limiting device
5992  *
5993  * Walk up the PCI device chain and find the point where the minimum
5994  * bandwidth is available.  Return the bandwidth available there and (if
5995  * limiting_dev, speed, and width pointers are supplied) information about
5996  * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
5997  * raw bandwidth.
5998  */
pcie_bandwidth_available(struct pci_dev * dev,struct pci_dev ** limiting_dev,enum pci_bus_speed * speed,enum pcie_link_width * width)5999 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6000 			     enum pci_bus_speed *speed,
6001 			     enum pcie_link_width *width)
6002 {
6003 	u16 lnksta;
6004 	enum pci_bus_speed next_speed;
6005 	enum pcie_link_width next_width;
6006 	u32 bw, next_bw;
6007 
6008 	if (speed)
6009 		*speed = PCI_SPEED_UNKNOWN;
6010 	if (width)
6011 		*width = PCIE_LNK_WIDTH_UNKNOWN;
6012 
6013 	bw = 0;
6014 
6015 	while (dev) {
6016 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6017 
6018 		next_speed = to_pcie_link_speed(lnksta);
6019 		next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta);
6020 
6021 		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6022 
6023 		/* Check if current device limits the total bandwidth */
6024 		if (!bw || next_bw <= bw) {
6025 			bw = next_bw;
6026 
6027 			if (limiting_dev)
6028 				*limiting_dev = dev;
6029 			if (speed)
6030 				*speed = next_speed;
6031 			if (width)
6032 				*width = next_width;
6033 		}
6034 
6035 		dev = pci_upstream_bridge(dev);
6036 	}
6037 
6038 	return bw;
6039 }
6040 EXPORT_SYMBOL(pcie_bandwidth_available);
6041 
6042 /**
6043  * pcie_get_supported_speeds - query Supported Link Speed Vector
6044  * @dev: PCI device to query
6045  *
6046  * Query @dev supported link speeds.
6047  *
6048  * Implementation Note in PCIe r6.0 sec 7.5.3.18 recommends determining
6049  * supported link speeds using the Supported Link Speeds Vector in the Link
6050  * Capabilities 2 Register (when available).
6051  *
6052  * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.
6053  *
6054  * Without Link Capabilities 2, i.e., prior to PCIe r3.0, Supported Link
6055  * Speeds field in Link Capabilities is used and only 2.5 GT/s and 5.0 GT/s
6056  * speeds were defined.
6057  *
6058  * For @dev without Supported Link Speed Vector, the field is synthesized
6059  * from the Max Link Speed field in the Link Capabilities Register.
6060  *
6061  * Return: Supported Link Speeds Vector (+ reserved 0 at LSB).
6062  */
pcie_get_supported_speeds(struct pci_dev * dev)6063 u8 pcie_get_supported_speeds(struct pci_dev *dev)
6064 {
6065 	u32 lnkcap2, lnkcap;
6066 	u8 speeds;
6067 
6068 	/*
6069 	 * Speeds retain the reserved 0 at LSB before PCIe Supported Link
6070 	 * Speeds Vector to allow using SLS Vector bit defines directly.
6071 	 */
6072 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6073 	speeds = lnkcap2 & PCI_EXP_LNKCAP2_SLS;
6074 
6075 	/* Ignore speeds higher than Max Link Speed */
6076 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6077 	speeds &= GENMASK(lnkcap & PCI_EXP_LNKCAP_SLS, 0);
6078 
6079 	/* PCIe r3.0-compliant */
6080 	if (speeds)
6081 		return speeds;
6082 
6083 	/* Synthesize from the Max Link Speed field */
6084 	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6085 		speeds = PCI_EXP_LNKCAP2_SLS_5_0GB | PCI_EXP_LNKCAP2_SLS_2_5GB;
6086 	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6087 		speeds = PCI_EXP_LNKCAP2_SLS_2_5GB;
6088 
6089 	return speeds;
6090 }
6091 
6092 /**
6093  * pcie_get_speed_cap - query for the PCI device's link speed capability
6094  * @dev: PCI device to query
6095  *
6096  * Query the PCI device speed capability.
6097  *
6098  * Return: the maximum link speed supported by the device.
6099  */
pcie_get_speed_cap(struct pci_dev * dev)6100 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6101 {
6102 	return PCIE_LNKCAP2_SLS2SPEED(dev->supported_speeds);
6103 }
6104 EXPORT_SYMBOL(pcie_get_speed_cap);
6105 
6106 /**
6107  * pcie_get_width_cap - query for the PCI device's link width capability
6108  * @dev: PCI device to query
6109  *
6110  * Query the PCI device width capability.  Return the maximum link width
6111  * supported by the device.
6112  */
pcie_get_width_cap(struct pci_dev * dev)6113 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6114 {
6115 	u32 lnkcap;
6116 
6117 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6118 	if (lnkcap)
6119 		return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap);
6120 
6121 	return PCIE_LNK_WIDTH_UNKNOWN;
6122 }
6123 EXPORT_SYMBOL(pcie_get_width_cap);
6124 
6125 /**
6126  * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6127  * @dev: PCI device
6128  * @speed: storage for link speed
6129  * @width: storage for link width
6130  *
6131  * Calculate a PCI device's link bandwidth by querying for its link speed
6132  * and width, multiplying them, and applying encoding overhead.  The result
6133  * is in Mb/s, i.e., megabits/second of raw bandwidth.
6134  */
pcie_bandwidth_capable(struct pci_dev * dev,enum pci_bus_speed * speed,enum pcie_link_width * width)6135 static u32 pcie_bandwidth_capable(struct pci_dev *dev,
6136 				  enum pci_bus_speed *speed,
6137 				  enum pcie_link_width *width)
6138 {
6139 	*speed = pcie_get_speed_cap(dev);
6140 	*width = pcie_get_width_cap(dev);
6141 
6142 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6143 		return 0;
6144 
6145 	return *width * PCIE_SPEED2MBS_ENC(*speed);
6146 }
6147 
6148 /**
6149  * __pcie_print_link_status - Report the PCI device's link speed and width
6150  * @dev: PCI device to query
6151  * @verbose: Print info even when enough bandwidth is available
6152  *
6153  * If the available bandwidth at the device is less than the device is
6154  * capable of, report the device's maximum possible bandwidth and the
6155  * upstream link that limits its performance.  If @verbose, always print
6156  * the available bandwidth, even if the device isn't constrained.
6157  */
__pcie_print_link_status(struct pci_dev * dev,bool verbose)6158 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6159 {
6160 	enum pcie_link_width width, width_cap;
6161 	enum pci_bus_speed speed, speed_cap;
6162 	struct pci_dev *limiting_dev = NULL;
6163 	u32 bw_avail, bw_cap;
6164 	char *flit_mode = "";
6165 
6166 	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6167 	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6168 
6169 	if (dev->bus && dev->bus->flit_mode)
6170 		flit_mode = ", in Flit mode";
6171 
6172 	if (bw_avail >= bw_cap && verbose)
6173 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)%s\n",
6174 			 bw_cap / 1000, bw_cap % 1000,
6175 			 pci_speed_string(speed_cap), width_cap, flit_mode);
6176 	else if (bw_avail < bw_cap)
6177 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)%s\n",
6178 			 bw_avail / 1000, bw_avail % 1000,
6179 			 pci_speed_string(speed), width,
6180 			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6181 			 bw_cap / 1000, bw_cap % 1000,
6182 			 pci_speed_string(speed_cap), width_cap, flit_mode);
6183 }
6184 
6185 /**
6186  * pcie_print_link_status - Report the PCI device's link speed and width
6187  * @dev: PCI device to query
6188  *
6189  * Report the available bandwidth at the device.
6190  */
pcie_print_link_status(struct pci_dev * dev)6191 void pcie_print_link_status(struct pci_dev *dev)
6192 {
6193 	__pcie_print_link_status(dev, true);
6194 }
6195 EXPORT_SYMBOL(pcie_print_link_status);
6196 
6197 /**
6198  * pci_select_bars - Make BAR mask from the type of resource
6199  * @dev: the PCI device for which BAR mask is made
6200  * @flags: resource type mask to be selected
6201  *
6202  * This helper routine makes bar mask from the type of resource.
6203  */
pci_select_bars(struct pci_dev * dev,unsigned long flags)6204 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6205 {
6206 	int i, bars = 0;
6207 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
6208 		if (pci_resource_flags(dev, i) & flags)
6209 			bars |= (1 << i);
6210 	return bars;
6211 }
6212 EXPORT_SYMBOL(pci_select_bars);
6213 
6214 /* Some architectures require additional programming to enable VGA */
6215 static arch_set_vga_state_t arch_set_vga_state;
6216 
pci_register_set_vga_state(arch_set_vga_state_t func)6217 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6218 {
6219 	arch_set_vga_state = func;	/* NULL disables */
6220 }
6221 
pci_set_vga_state_arch(struct pci_dev * dev,bool decode,unsigned int command_bits,u32 flags)6222 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6223 				  unsigned int command_bits, u32 flags)
6224 {
6225 	if (arch_set_vga_state)
6226 		return arch_set_vga_state(dev, decode, command_bits,
6227 						flags);
6228 	return 0;
6229 }
6230 
6231 /**
6232  * pci_set_vga_state - set VGA decode state on device and parents if requested
6233  * @dev: the PCI device
6234  * @decode: true = enable decoding, false = disable decoding
6235  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6236  * @flags: traverse ancestors and change bridges
6237  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6238  */
pci_set_vga_state(struct pci_dev * dev,bool decode,unsigned int command_bits,u32 flags)6239 int pci_set_vga_state(struct pci_dev *dev, bool decode,
6240 		      unsigned int command_bits, u32 flags)
6241 {
6242 	struct pci_bus *bus;
6243 	struct pci_dev *bridge;
6244 	u16 cmd;
6245 	int rc;
6246 
6247 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6248 
6249 	/* ARCH specific VGA enables */
6250 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6251 	if (rc)
6252 		return rc;
6253 
6254 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6255 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
6256 		if (decode)
6257 			cmd |= command_bits;
6258 		else
6259 			cmd &= ~command_bits;
6260 		pci_write_config_word(dev, PCI_COMMAND, cmd);
6261 	}
6262 
6263 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6264 		return 0;
6265 
6266 	bus = dev->bus;
6267 	while (bus) {
6268 		bridge = bus->self;
6269 		if (bridge) {
6270 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6271 					     &cmd);
6272 			if (decode)
6273 				cmd |= PCI_BRIDGE_CTL_VGA;
6274 			else
6275 				cmd &= ~PCI_BRIDGE_CTL_VGA;
6276 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6277 					      cmd);
6278 		}
6279 		bus = bus->parent;
6280 	}
6281 	return 0;
6282 }
6283 
6284 #ifdef CONFIG_ACPI
pci_pr3_present(struct pci_dev * pdev)6285 bool pci_pr3_present(struct pci_dev *pdev)
6286 {
6287 	struct acpi_device *adev;
6288 
6289 	if (acpi_disabled)
6290 		return false;
6291 
6292 	adev = ACPI_COMPANION(&pdev->dev);
6293 	if (!adev)
6294 		return false;
6295 
6296 	return adev->power.flags.power_resources &&
6297 		acpi_has_method(adev->handle, "_PR3");
6298 }
6299 EXPORT_SYMBOL_GPL(pci_pr3_present);
6300 #endif
6301 
6302 /**
6303  * pci_add_dma_alias - Add a DMA devfn alias for a device
6304  * @dev: the PCI device for which alias is added
6305  * @devfn_from: alias slot and function
6306  * @nr_devfns: number of subsequent devfns to alias
6307  *
6308  * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6309  * which is used to program permissible bus-devfn source addresses for DMA
6310  * requests in an IOMMU.  These aliases factor into IOMMU group creation
6311  * and are useful for devices generating DMA requests beyond or different
6312  * from their logical bus-devfn.  Examples include device quirks where the
6313  * device simply uses the wrong devfn, as well as non-transparent bridges
6314  * where the alias may be a proxy for devices in another domain.
6315  *
6316  * IOMMU group creation is performed during device discovery or addition,
6317  * prior to any potential DMA mapping and therefore prior to driver probing
6318  * (especially for userspace assigned devices where IOMMU group definition
6319  * cannot be left as a userspace activity).  DMA aliases should therefore
6320  * be configured via quirks, such as the PCI fixup header quirk.
6321  */
pci_add_dma_alias(struct pci_dev * dev,u8 devfn_from,unsigned int nr_devfns)6322 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6323 		       unsigned int nr_devfns)
6324 {
6325 	int devfn_to;
6326 
6327 	nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6328 	devfn_to = devfn_from + nr_devfns - 1;
6329 
6330 	if (!dev->dma_alias_mask)
6331 		dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6332 	if (!dev->dma_alias_mask) {
6333 		pci_warn(dev, "Unable to allocate DMA alias mask\n");
6334 		return;
6335 	}
6336 
6337 	bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6338 
6339 	if (nr_devfns == 1)
6340 		pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6341 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6342 	else if (nr_devfns > 1)
6343 		pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6344 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6345 				PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6346 }
6347 
pci_devs_are_dma_aliases(struct pci_dev * dev1,struct pci_dev * dev2)6348 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6349 {
6350 	return (dev1->dma_alias_mask &&
6351 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6352 	       (dev2->dma_alias_mask &&
6353 		test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6354 	       pci_real_dma_dev(dev1) == dev2 ||
6355 	       pci_real_dma_dev(dev2) == dev1;
6356 }
6357 
pci_device_is_present(struct pci_dev * pdev)6358 bool pci_device_is_present(struct pci_dev *pdev)
6359 {
6360 	u32 v;
6361 
6362 	/* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6363 	pdev = pci_physfn(pdev);
6364 	if (pci_dev_is_disconnected(pdev))
6365 		return false;
6366 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6367 }
6368 EXPORT_SYMBOL_GPL(pci_device_is_present);
6369 
pci_ignore_hotplug(struct pci_dev * dev)6370 void pci_ignore_hotplug(struct pci_dev *dev)
6371 {
6372 	struct pci_dev *bridge = dev->bus->self;
6373 
6374 	dev->ignore_hotplug = 1;
6375 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
6376 	if (bridge)
6377 		bridge->ignore_hotplug = 1;
6378 }
6379 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6380 
6381 /**
6382  * pci_real_dma_dev - Get PCI DMA device for PCI device
6383  * @dev: the PCI device that may have a PCI DMA alias
6384  *
6385  * Permits the platform to provide architecture-specific functionality to
6386  * devices needing to alias DMA to another PCI device on another PCI bus. If
6387  * the PCI device is on the same bus, it is recommended to use
6388  * pci_add_dma_alias(). This is the default implementation. Architecture
6389  * implementations can override this.
6390  */
pci_real_dma_dev(struct pci_dev * dev)6391 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6392 {
6393 	return dev;
6394 }
6395 
pcibios_default_alignment(void)6396 resource_size_t __weak pcibios_default_alignment(void)
6397 {
6398 	return 0;
6399 }
6400 
6401 /*
6402  * Arches that don't want to expose struct resource to userland as-is in
6403  * sysfs and /proc can implement their own pci_resource_to_user().
6404  */
pci_resource_to_user(const struct pci_dev * dev,int bar,const struct resource * rsrc,resource_size_t * start,resource_size_t * end)6405 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6406 				 const struct resource *rsrc,
6407 				 resource_size_t *start, resource_size_t *end)
6408 {
6409 	*start = rsrc->start;
6410 	*end = rsrc->end;
6411 }
6412 
6413 static char *resource_alignment_param;
6414 static DEFINE_SPINLOCK(resource_alignment_lock);
6415 
6416 /**
6417  * pci_specified_resource_alignment - get resource alignment specified by user.
6418  * @dev: the PCI device to get
6419  * @resize: whether or not to change resources' size when reassigning alignment
6420  *
6421  * RETURNS: Resource alignment if it is specified.
6422  *          Zero if it is not specified.
6423  */
pci_specified_resource_alignment(struct pci_dev * dev,bool * resize)6424 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6425 							bool *resize)
6426 {
6427 	int align_order, count;
6428 	resource_size_t align = pcibios_default_alignment();
6429 	const char *p;
6430 	int ret;
6431 
6432 	spin_lock(&resource_alignment_lock);
6433 	p = resource_alignment_param;
6434 	if (!p || !*p)
6435 		goto out;
6436 	if (pci_has_flag(PCI_PROBE_ONLY)) {
6437 		align = 0;
6438 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6439 		goto out;
6440 	}
6441 
6442 	while (*p) {
6443 		count = 0;
6444 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6445 		    p[count] == '@') {
6446 			p += count + 1;
6447 			if (align_order > 63) {
6448 				pr_err("PCI: Invalid requested alignment (order %d)\n",
6449 				       align_order);
6450 				align_order = PAGE_SHIFT;
6451 			}
6452 		} else {
6453 			align_order = PAGE_SHIFT;
6454 		}
6455 
6456 		ret = pci_dev_str_match(dev, p, &p);
6457 		if (ret == 1) {
6458 			*resize = true;
6459 			align = 1ULL << align_order;
6460 			break;
6461 		} else if (ret < 0) {
6462 			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6463 			       p);
6464 			break;
6465 		}
6466 
6467 		if (*p != ';' && *p != ',') {
6468 			/* End of param or invalid format */
6469 			break;
6470 		}
6471 		p++;
6472 	}
6473 out:
6474 	spin_unlock(&resource_alignment_lock);
6475 	return align;
6476 }
6477 
pci_request_resource_alignment(struct pci_dev * dev,int bar,resource_size_t align,bool resize)6478 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6479 					   resource_size_t align, bool resize)
6480 {
6481 	struct resource *r = &dev->resource[bar];
6482 	const char *r_name = pci_resource_name(dev, bar);
6483 	resource_size_t size;
6484 
6485 	if (!(r->flags & IORESOURCE_MEM))
6486 		return;
6487 
6488 	if (r->flags & IORESOURCE_PCI_FIXED) {
6489 		pci_info(dev, "%s %pR: ignoring requested alignment %#llx\n",
6490 			 r_name, r, (unsigned long long)align);
6491 		return;
6492 	}
6493 
6494 	size = resource_size(r);
6495 	if (size >= align)
6496 		return;
6497 
6498 	/*
6499 	 * Increase the alignment of the resource.  There are two ways we
6500 	 * can do this:
6501 	 *
6502 	 * 1) Increase the size of the resource.  BARs are aligned on their
6503 	 *    size, so when we reallocate space for this resource, we'll
6504 	 *    allocate it with the larger alignment.  This also prevents
6505 	 *    assignment of any other BARs inside the alignment region, so
6506 	 *    if we're requesting page alignment, this means no other BARs
6507 	 *    will share the page.
6508 	 *
6509 	 *    The disadvantage is that this makes the resource larger than
6510 	 *    the hardware BAR, which may break drivers that compute things
6511 	 *    based on the resource size, e.g., to find registers at a
6512 	 *    fixed offset before the end of the BAR.
6513 	 *
6514 	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6515 	 *    set r->start to the desired alignment.  By itself this
6516 	 *    doesn't prevent other BARs being put inside the alignment
6517 	 *    region, but if we realign *every* resource of every device in
6518 	 *    the system, none of them will share an alignment region.
6519 	 *
6520 	 * When the user has requested alignment for only some devices via
6521 	 * the "pci=resource_alignment" argument, "resize" is true and we
6522 	 * use the first method.  Otherwise we assume we're aligning all
6523 	 * devices and we use the second.
6524 	 */
6525 
6526 	pci_info(dev, "%s %pR: requesting alignment to %#llx\n",
6527 		 r_name, r, (unsigned long long)align);
6528 
6529 	if (resize) {
6530 		r->start = 0;
6531 		r->end = align - 1;
6532 	} else {
6533 		r->flags &= ~IORESOURCE_SIZEALIGN;
6534 		r->flags |= IORESOURCE_STARTALIGN;
6535 		resource_set_range(r, align, size);
6536 	}
6537 	r->flags |= IORESOURCE_UNSET;
6538 }
6539 
6540 /*
6541  * This function disables memory decoding and releases memory resources
6542  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6543  * It also rounds up size to specified alignment.
6544  * Later on, the kernel will assign page-aligned memory resource back
6545  * to the device.
6546  */
pci_reassigndev_resource_alignment(struct pci_dev * dev)6547 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6548 {
6549 	int i;
6550 	struct resource *r;
6551 	resource_size_t align;
6552 	u16 command;
6553 	bool resize = false;
6554 
6555 	/*
6556 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6557 	 * 3.4.1.11.  Their resources are allocated from the space
6558 	 * described by the VF BARx register in the PF's SR-IOV capability.
6559 	 * We can't influence their alignment here.
6560 	 */
6561 	if (dev->is_virtfn)
6562 		return;
6563 
6564 	/* check if specified PCI is target device to reassign */
6565 	align = pci_specified_resource_alignment(dev, &resize);
6566 	if (!align)
6567 		return;
6568 
6569 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6570 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6571 		pci_warn(dev, "Can't reassign resources to host bridge\n");
6572 		return;
6573 	}
6574 
6575 	pci_read_config_word(dev, PCI_COMMAND, &command);
6576 	command &= ~PCI_COMMAND_MEMORY;
6577 	pci_write_config_word(dev, PCI_COMMAND, command);
6578 
6579 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6580 		pci_request_resource_alignment(dev, i, align, resize);
6581 
6582 	/*
6583 	 * Need to disable bridge's resource window,
6584 	 * to enable the kernel to reassign new resource
6585 	 * window later on.
6586 	 */
6587 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6588 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6589 			r = &dev->resource[i];
6590 			if (!(r->flags & IORESOURCE_MEM))
6591 				continue;
6592 			r->flags |= IORESOURCE_UNSET;
6593 			r->end = resource_size(r) - 1;
6594 			r->start = 0;
6595 		}
6596 		pci_disable_bridge_window(dev);
6597 	}
6598 }
6599 
resource_alignment_show(const struct bus_type * bus,char * buf)6600 static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf)
6601 {
6602 	size_t count = 0;
6603 
6604 	spin_lock(&resource_alignment_lock);
6605 	if (resource_alignment_param)
6606 		count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6607 	spin_unlock(&resource_alignment_lock);
6608 
6609 	return count;
6610 }
6611 
resource_alignment_store(const struct bus_type * bus,const char * buf,size_t count)6612 static ssize_t resource_alignment_store(const struct bus_type *bus,
6613 					const char *buf, size_t count)
6614 {
6615 	char *param, *old, *end;
6616 
6617 	if (count >= (PAGE_SIZE - 1))
6618 		return -EINVAL;
6619 
6620 	param = kstrndup(buf, count, GFP_KERNEL);
6621 	if (!param)
6622 		return -ENOMEM;
6623 
6624 	end = strchr(param, '\n');
6625 	if (end)
6626 		*end = '\0';
6627 
6628 	spin_lock(&resource_alignment_lock);
6629 	old = resource_alignment_param;
6630 	if (strlen(param)) {
6631 		resource_alignment_param = param;
6632 	} else {
6633 		kfree(param);
6634 		resource_alignment_param = NULL;
6635 	}
6636 	spin_unlock(&resource_alignment_lock);
6637 
6638 	kfree(old);
6639 
6640 	return count;
6641 }
6642 
6643 static BUS_ATTR_RW(resource_alignment);
6644 
pci_resource_alignment_sysfs_init(void)6645 static int __init pci_resource_alignment_sysfs_init(void)
6646 {
6647 	return bus_create_file(&pci_bus_type,
6648 					&bus_attr_resource_alignment);
6649 }
6650 late_initcall(pci_resource_alignment_sysfs_init);
6651 
pci_no_domains(void)6652 static void pci_no_domains(void)
6653 {
6654 #ifdef CONFIG_PCI_DOMAINS
6655 	pci_domains_supported = 0;
6656 #endif
6657 }
6658 
6659 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6660 static DEFINE_IDA(pci_domain_nr_static_ida);
6661 static DEFINE_IDA(pci_domain_nr_dynamic_ida);
6662 
of_pci_reserve_static_domain_nr(void)6663 static void of_pci_reserve_static_domain_nr(void)
6664 {
6665 	struct device_node *np;
6666 	int domain_nr;
6667 
6668 	for_each_node_by_type(np, "pci") {
6669 		domain_nr = of_get_pci_domain_nr(np);
6670 		if (domain_nr < 0)
6671 			continue;
6672 		/*
6673 		 * Permanently allocate domain_nr in dynamic_ida
6674 		 * to prevent it from dynamic allocation.
6675 		 */
6676 		ida_alloc_range(&pci_domain_nr_dynamic_ida,
6677 				domain_nr, domain_nr, GFP_KERNEL);
6678 	}
6679 }
6680 
of_pci_bus_find_domain_nr(struct device * parent)6681 static int of_pci_bus_find_domain_nr(struct device *parent)
6682 {
6683 	static bool static_domains_reserved = false;
6684 	int domain_nr;
6685 
6686 	/* On the first call scan device tree for static allocations. */
6687 	if (!static_domains_reserved) {
6688 		of_pci_reserve_static_domain_nr();
6689 		static_domains_reserved = true;
6690 	}
6691 
6692 	if (parent) {
6693 		/*
6694 		 * If domain is in DT, allocate it in static IDA.  This
6695 		 * prevents duplicate static allocations in case of errors
6696 		 * in DT.
6697 		 */
6698 		domain_nr = of_get_pci_domain_nr(parent->of_node);
6699 		if (domain_nr >= 0)
6700 			return ida_alloc_range(&pci_domain_nr_static_ida,
6701 					       domain_nr, domain_nr,
6702 					       GFP_KERNEL);
6703 	}
6704 
6705 	/*
6706 	 * If domain was not specified in DT, choose a free ID from dynamic
6707 	 * allocations. All domain numbers from DT are permanently in
6708 	 * dynamic allocations to prevent assigning them to other DT nodes
6709 	 * without static domain.
6710 	 */
6711 	return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
6712 }
6713 
of_pci_bus_release_domain_nr(struct device * parent,int domain_nr)6714 static void of_pci_bus_release_domain_nr(struct device *parent, int domain_nr)
6715 {
6716 	if (domain_nr < 0)
6717 		return;
6718 
6719 	/* Release domain from IDA where it was allocated. */
6720 	if (of_get_pci_domain_nr(parent->of_node) == domain_nr)
6721 		ida_free(&pci_domain_nr_static_ida, domain_nr);
6722 	else
6723 		ida_free(&pci_domain_nr_dynamic_ida, domain_nr);
6724 }
6725 
pci_bus_find_domain_nr(struct pci_bus * bus,struct device * parent)6726 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6727 {
6728 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6729 			       acpi_pci_bus_find_domain_nr(bus);
6730 }
6731 
pci_bus_release_domain_nr(struct device * parent,int domain_nr)6732 void pci_bus_release_domain_nr(struct device *parent, int domain_nr)
6733 {
6734 	if (!acpi_disabled)
6735 		return;
6736 	of_pci_bus_release_domain_nr(parent, domain_nr);
6737 }
6738 #endif
6739 
6740 /**
6741  * pci_ext_cfg_avail - can we access extended PCI config space?
6742  *
6743  * Returns 1 if we can access PCI extended config space (offsets
6744  * greater than 0xff). This is the default implementation. Architecture
6745  * implementations can override this.
6746  */
pci_ext_cfg_avail(void)6747 int __weak pci_ext_cfg_avail(void)
6748 {
6749 	return 1;
6750 }
6751 
pci_setup(char * str)6752 static int __init pci_setup(char *str)
6753 {
6754 	while (str) {
6755 		char *k = strchr(str, ',');
6756 		if (k)
6757 			*k++ = 0;
6758 		if (*str && (str = pcibios_setup(str)) && *str) {
6759 			if (!strcmp(str, "nomsi")) {
6760 				pci_no_msi();
6761 			} else if (!strncmp(str, "noats", 5)) {
6762 				pr_info("PCIe: ATS is disabled\n");
6763 				pcie_ats_disabled = true;
6764 			} else if (!strcmp(str, "noaer")) {
6765 				pci_no_aer();
6766 			} else if (!strcmp(str, "earlydump")) {
6767 				pci_early_dump = true;
6768 			} else if (!strncmp(str, "realloc=", 8)) {
6769 				pci_realloc_get_opt(str + 8);
6770 			} else if (!strncmp(str, "realloc", 7)) {
6771 				pci_realloc_get_opt("on");
6772 			} else if (!strcmp(str, "nodomains")) {
6773 				pci_no_domains();
6774 			} else if (!strncmp(str, "noari", 5)) {
6775 				pcie_ari_disabled = true;
6776 			} else if (!strncmp(str, "notph", 5)) {
6777 				pci_no_tph();
6778 			} else if (!strncmp(str, "cbiosize=", 9)) {
6779 				pci_cardbus_io_size = memparse(str + 9, &str);
6780 			} else if (!strncmp(str, "cbmemsize=", 10)) {
6781 				pci_cardbus_mem_size = memparse(str + 10, &str);
6782 			} else if (!strncmp(str, "resource_alignment=", 19)) {
6783 				resource_alignment_param = str + 19;
6784 			} else if (!strncmp(str, "ecrc=", 5)) {
6785 				pcie_ecrc_get_policy(str + 5);
6786 			} else if (!strncmp(str, "hpiosize=", 9)) {
6787 				pci_hotplug_io_size = memparse(str + 9, &str);
6788 			} else if (!strncmp(str, "hpmmiosize=", 11)) {
6789 				pci_hotplug_mmio_size = memparse(str + 11, &str);
6790 			} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6791 				pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6792 			} else if (!strncmp(str, "hpmemsize=", 10)) {
6793 				pci_hotplug_mmio_size = memparse(str + 10, &str);
6794 				pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6795 			} else if (!strncmp(str, "hpbussize=", 10)) {
6796 				pci_hotplug_bus_size =
6797 					simple_strtoul(str + 10, &str, 0);
6798 				if (pci_hotplug_bus_size > 0xff)
6799 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6800 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6801 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
6802 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
6803 				pcie_bus_config = PCIE_BUS_SAFE;
6804 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
6805 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
6806 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6807 				pcie_bus_config = PCIE_BUS_PEER2PEER;
6808 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
6809 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6810 			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
6811 				disable_acs_redir_param = str + 18;
6812 			} else if (!strncmp(str, "config_acs=", 11)) {
6813 				config_acs_param = str + 11;
6814 			} else {
6815 				pr_err("PCI: Unknown option `%s'\n", str);
6816 			}
6817 		}
6818 		str = k;
6819 	}
6820 	return 0;
6821 }
6822 early_param("pci", pci_setup);
6823 
6824 /*
6825  * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6826  * in pci_setup(), above, to point to data in the __initdata section which
6827  * will be freed after the init sequence is complete. We can't allocate memory
6828  * in pci_setup() because some architectures do not have any memory allocation
6829  * service available during an early_param() call. So we allocate memory and
6830  * copy the variable here before the init section is freed.
6831  *
6832  */
pci_realloc_setup_params(void)6833 static int __init pci_realloc_setup_params(void)
6834 {
6835 	resource_alignment_param = kstrdup(resource_alignment_param,
6836 					   GFP_KERNEL);
6837 	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6838 	config_acs_param = kstrdup(config_acs_param, GFP_KERNEL);
6839 
6840 	return 0;
6841 }
6842 pure_initcall(pci_realloc_setup_params);
6843