1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Endpoint *Function* (EPF) library 4 * 5 * Copyright (C) 2017 Texas Instruments 6 * Author: Kishon Vijay Abraham I <kishon@ti.com> 7 */ 8 9 #include <linux/device.h> 10 #include <linux/dma-mapping.h> 11 #include <linux/slab.h> 12 #include <linux/module.h> 13 14 #include <linux/pci-epc.h> 15 #include <linux/pci-epf.h> 16 #include <linux/pci-ep-cfs.h> 17 18 static DEFINE_MUTEX(pci_epf_mutex); 19 20 static const struct bus_type pci_epf_bus_type; 21 static const struct device_type pci_epf_type; 22 23 /** 24 * pci_epf_unbind() - Notify the function driver that the binding between the 25 * EPF device and EPC device has been lost 26 * @epf: the EPF device which has lost the binding with the EPC device 27 * 28 * Invoke to notify the function driver that the binding between the EPF device 29 * and EPC device has been lost. 30 */ 31 void pci_epf_unbind(struct pci_epf *epf) 32 { 33 struct pci_epf *epf_vf; 34 35 if (!epf->driver) { 36 dev_WARN(&epf->dev, "epf device not bound to driver\n"); 37 return; 38 } 39 40 mutex_lock(&epf->lock); 41 list_for_each_entry(epf_vf, &epf->pci_vepf, list) { 42 if (epf_vf->is_bound) 43 epf_vf->driver->ops->unbind(epf_vf); 44 } 45 if (epf->is_bound) 46 epf->driver->ops->unbind(epf); 47 mutex_unlock(&epf->lock); 48 module_put(epf->driver->owner); 49 } 50 EXPORT_SYMBOL_GPL(pci_epf_unbind); 51 52 /** 53 * pci_epf_bind() - Notify the function driver that the EPF device has been 54 * bound to a EPC device 55 * @epf: the EPF device which has been bound to the EPC device 56 * 57 * Invoke to notify the function driver that it has been bound to a EPC device 58 */ 59 int pci_epf_bind(struct pci_epf *epf) 60 { 61 struct device *dev = &epf->dev; 62 struct pci_epf *epf_vf; 63 u8 func_no, vfunc_no; 64 struct pci_epc *epc; 65 int ret; 66 67 if (!epf->driver) { 68 dev_WARN(dev, "epf device not bound to driver\n"); 69 return -EINVAL; 70 } 71 72 if (!try_module_get(epf->driver->owner)) 73 return -EAGAIN; 74 75 mutex_lock(&epf->lock); 76 list_for_each_entry(epf_vf, &epf->pci_vepf, list) { 77 vfunc_no = epf_vf->vfunc_no; 78 79 if (vfunc_no < 1) { 80 dev_err(dev, "Invalid virtual function number\n"); 81 ret = -EINVAL; 82 goto ret; 83 } 84 85 epc = epf->epc; 86 func_no = epf->func_no; 87 if (!IS_ERR_OR_NULL(epc)) { 88 if (!epc->max_vfs) { 89 dev_err(dev, "No support for virt function\n"); 90 ret = -EINVAL; 91 goto ret; 92 } 93 94 if (vfunc_no > epc->max_vfs[func_no]) { 95 dev_err(dev, "PF%d: Exceeds max vfunc number\n", 96 func_no); 97 ret = -EINVAL; 98 goto ret; 99 } 100 } 101 102 epc = epf->sec_epc; 103 func_no = epf->sec_epc_func_no; 104 if (!IS_ERR_OR_NULL(epc)) { 105 if (!epc->max_vfs) { 106 dev_err(dev, "No support for virt function\n"); 107 ret = -EINVAL; 108 goto ret; 109 } 110 111 if (vfunc_no > epc->max_vfs[func_no]) { 112 dev_err(dev, "PF%d: Exceeds max vfunc number\n", 113 func_no); 114 ret = -EINVAL; 115 goto ret; 116 } 117 } 118 119 epf_vf->func_no = epf->func_no; 120 epf_vf->sec_epc_func_no = epf->sec_epc_func_no; 121 epf_vf->epc = epf->epc; 122 epf_vf->sec_epc = epf->sec_epc; 123 ret = epf_vf->driver->ops->bind(epf_vf); 124 if (ret) 125 goto ret; 126 epf_vf->is_bound = true; 127 } 128 129 ret = epf->driver->ops->bind(epf); 130 if (ret) 131 goto ret; 132 epf->is_bound = true; 133 134 mutex_unlock(&epf->lock); 135 return 0; 136 137 ret: 138 mutex_unlock(&epf->lock); 139 pci_epf_unbind(epf); 140 141 return ret; 142 } 143 EXPORT_SYMBOL_GPL(pci_epf_bind); 144 145 /** 146 * pci_epf_add_vepf() - associate virtual EP function to physical EP function 147 * @epf_pf: the physical EP function to which the virtual EP function should be 148 * associated 149 * @epf_vf: the virtual EP function to be added 150 * 151 * A physical endpoint function can be associated with multiple virtual 152 * endpoint functions. Invoke pci_epf_add_epf() to add a virtual PCI endpoint 153 * function to a physical PCI endpoint function. 154 */ 155 int pci_epf_add_vepf(struct pci_epf *epf_pf, struct pci_epf *epf_vf) 156 { 157 u32 vfunc_no; 158 159 if (IS_ERR_OR_NULL(epf_pf) || IS_ERR_OR_NULL(epf_vf)) 160 return -EINVAL; 161 162 if (epf_pf->epc || epf_vf->epc || epf_vf->epf_pf) 163 return -EBUSY; 164 165 if (epf_pf->sec_epc || epf_vf->sec_epc) 166 return -EBUSY; 167 168 mutex_lock(&epf_pf->lock); 169 vfunc_no = find_first_zero_bit(&epf_pf->vfunction_num_map, 170 BITS_PER_LONG); 171 if (vfunc_no >= BITS_PER_LONG) { 172 mutex_unlock(&epf_pf->lock); 173 return -EINVAL; 174 } 175 176 set_bit(vfunc_no, &epf_pf->vfunction_num_map); 177 epf_vf->vfunc_no = vfunc_no; 178 179 epf_vf->epf_pf = epf_pf; 180 epf_vf->is_vf = true; 181 182 list_add_tail(&epf_vf->list, &epf_pf->pci_vepf); 183 mutex_unlock(&epf_pf->lock); 184 185 return 0; 186 } 187 EXPORT_SYMBOL_GPL(pci_epf_add_vepf); 188 189 /** 190 * pci_epf_remove_vepf() - remove virtual EP function from physical EP function 191 * @epf_pf: the physical EP function from which the virtual EP function should 192 * be removed 193 * @epf_vf: the virtual EP function to be removed 194 * 195 * Invoke to remove a virtual endpoint function from the physical endpoint 196 * function. 197 */ 198 void pci_epf_remove_vepf(struct pci_epf *epf_pf, struct pci_epf *epf_vf) 199 { 200 if (IS_ERR_OR_NULL(epf_pf) || IS_ERR_OR_NULL(epf_vf)) 201 return; 202 203 mutex_lock(&epf_pf->lock); 204 clear_bit(epf_vf->vfunc_no, &epf_pf->vfunction_num_map); 205 epf_vf->epf_pf = NULL; 206 list_del(&epf_vf->list); 207 mutex_unlock(&epf_pf->lock); 208 } 209 EXPORT_SYMBOL_GPL(pci_epf_remove_vepf); 210 211 static int pci_epf_get_required_bar_size(struct pci_epf *epf, size_t *bar_size, 212 size_t *aligned_mem_size, 213 enum pci_barno bar, 214 const struct pci_epc_features *epc_features, 215 enum pci_epc_interface_type type) 216 { 217 u64 bar_fixed_size = epc_features->bar[bar].fixed_size; 218 size_t align = epc_features->align; 219 size_t size = *bar_size; 220 221 if (size < 128) 222 size = 128; 223 224 /* According to PCIe base spec, min size for a resizable BAR is 1 MB. */ 225 if (epc_features->bar[bar].type == BAR_RESIZABLE && size < SZ_1M) 226 size = SZ_1M; 227 228 if (epc_features->bar[bar].type == BAR_FIXED && bar_fixed_size) { 229 if (size > bar_fixed_size) { 230 dev_err(&epf->dev, 231 "requested BAR size is larger than fixed size\n"); 232 return -ENOMEM; 233 } 234 size = bar_fixed_size; 235 } else { 236 /* BAR size must be power of two */ 237 size = roundup_pow_of_two(size); 238 } 239 240 *bar_size = size; 241 242 /* 243 * The EPC's BAR start address must meet alignment requirements. In most 244 * cases, the alignment will match the BAR size. However, differences 245 * can occur—for example, when the fixed BAR size (e.g., 128 bytes) is 246 * smaller than the required alignment (e.g., 4 KB). 247 */ 248 *aligned_mem_size = align ? ALIGN(size, align) : size; 249 250 return 0; 251 } 252 253 /** 254 * pci_epf_free_space() - free the allocated PCI EPF register space 255 * @epf: the EPF device from whom to free the memory 256 * @addr: the virtual address of the PCI EPF register space 257 * @bar: the BAR number corresponding to the register space 258 * @type: Identifies if the allocated space is for primary EPC or secondary EPC 259 * 260 * Invoke to free the allocated PCI EPF register space. 261 */ 262 void pci_epf_free_space(struct pci_epf *epf, void *addr, enum pci_barno bar, 263 enum pci_epc_interface_type type) 264 { 265 struct device *dev; 266 struct pci_epf_bar *epf_bar; 267 struct pci_epc *epc; 268 269 if (!addr) 270 return; 271 272 if (type == PRIMARY_INTERFACE) { 273 epc = epf->epc; 274 epf_bar = epf->bar; 275 } else { 276 epc = epf->sec_epc; 277 epf_bar = epf->sec_epc_bar; 278 } 279 280 dev = epc->dev.parent; 281 dma_free_coherent(dev, epf_bar[bar].mem_size, addr, 282 epf_bar[bar].phys_addr); 283 284 epf_bar[bar].phys_addr = 0; 285 epf_bar[bar].addr = NULL; 286 epf_bar[bar].size = 0; 287 epf_bar[bar].mem_size = 0; 288 epf_bar[bar].barno = 0; 289 epf_bar[bar].flags = 0; 290 } 291 EXPORT_SYMBOL_GPL(pci_epf_free_space); 292 293 /** 294 * pci_epf_alloc_space() - allocate memory for the PCI EPF register space 295 * @epf: the EPF device to whom allocate the memory 296 * @size: the size of the memory that has to be allocated 297 * @bar: the BAR number corresponding to the allocated register space 298 * @epc_features: the features provided by the EPC specific to this EPF 299 * @type: Identifies if the allocation is for primary EPC or secondary EPC 300 * 301 * Invoke to allocate memory for the PCI EPF register space. 302 * Flag PCI_BASE_ADDRESS_MEM_TYPE_64 will automatically get set if the BAR 303 * can only be a 64-bit BAR, or if the requested size is larger than 2 GB. 304 */ 305 void *pci_epf_alloc_space(struct pci_epf *epf, size_t size, enum pci_barno bar, 306 const struct pci_epc_features *epc_features, 307 enum pci_epc_interface_type type) 308 { 309 struct pci_epf_bar *epf_bar; 310 dma_addr_t phys_addr; 311 struct pci_epc *epc; 312 struct device *dev; 313 size_t mem_size; 314 void *space; 315 316 if (pci_epf_get_required_bar_size(epf, &size, &mem_size, bar, 317 epc_features, type)) 318 return NULL; 319 320 if (type == PRIMARY_INTERFACE) { 321 epc = epf->epc; 322 epf_bar = epf->bar; 323 } else { 324 epc = epf->sec_epc; 325 epf_bar = epf->sec_epc_bar; 326 } 327 328 dev = epc->dev.parent; 329 space = dma_alloc_coherent(dev, mem_size, &phys_addr, GFP_KERNEL); 330 if (!space) { 331 dev_err(dev, "failed to allocate mem space\n"); 332 return NULL; 333 } 334 335 epf_bar[bar].phys_addr = phys_addr; 336 epf_bar[bar].addr = space; 337 epf_bar[bar].size = size; 338 epf_bar[bar].mem_size = mem_size; 339 epf_bar[bar].barno = bar; 340 if (upper_32_bits(size) || epc_features->bar[bar].only_64bit) 341 epf_bar[bar].flags |= PCI_BASE_ADDRESS_MEM_TYPE_64; 342 else 343 epf_bar[bar].flags |= PCI_BASE_ADDRESS_MEM_TYPE_32; 344 345 return space; 346 } 347 EXPORT_SYMBOL_GPL(pci_epf_alloc_space); 348 349 /** 350 * pci_epf_assign_bar_space() - Assign PCI EPF BAR space 351 * @epf: EPF device to assign the BAR memory 352 * @size: Size of the memory that has to be assigned 353 * @bar: BAR number for which the memory is assigned 354 * @epc_features: Features provided by the EPC specific to this EPF 355 * @type: Identifies if the assignment is for primary EPC or secondary EPC 356 * @bar_addr: Address to be assigned for the @bar 357 * 358 * Invoke to assign memory for the PCI EPF BAR. 359 * Flag PCI_BASE_ADDRESS_MEM_TYPE_64 will automatically get set if the BAR 360 * can only be a 64-bit BAR, or if the requested size is larger than 2 GB. 361 */ 362 int pci_epf_assign_bar_space(struct pci_epf *epf, size_t size, 363 enum pci_barno bar, 364 const struct pci_epc_features *epc_features, 365 enum pci_epc_interface_type type, 366 dma_addr_t bar_addr) 367 { 368 size_t bar_size, aligned_mem_size; 369 struct pci_epf_bar *epf_bar; 370 dma_addr_t limit; 371 int pos; 372 373 if (!size) 374 return -EINVAL; 375 376 limit = bar_addr + size - 1; 377 378 /* 379 * Bits: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 380 * bar_addr: U U U U U U 0 X X X X X X X X X 381 * limit: U U U U U U 1 X X X X X X X X X 382 * 383 * bar_addr^limit 0 0 0 0 0 0 1 X X X X X X X X X 384 * 385 * U: unchanged address bits in range [bar_addr, limit] 386 * X: bit 0 or 1 387 * 388 * (bar_addr^limit) & BIT_ULL(pos) will find the first set bit from MSB 389 * (pos). And value of (2 ^ pos) should be able to cover the BAR range. 390 */ 391 for (pos = 8 * sizeof(dma_addr_t) - 1; pos > 0; pos--) 392 if ((limit ^ bar_addr) & BIT_ULL(pos)) 393 break; 394 395 if (pos == 8 * sizeof(dma_addr_t) - 1) 396 return -EINVAL; 397 398 bar_size = BIT_ULL(pos + 1); 399 if (pci_epf_get_required_bar_size(epf, &bar_size, &aligned_mem_size, 400 bar, epc_features, type)) 401 return -ENOMEM; 402 403 if (type == PRIMARY_INTERFACE) 404 epf_bar = epf->bar; 405 else 406 epf_bar = epf->sec_epc_bar; 407 408 epf_bar[bar].phys_addr = ALIGN_DOWN(bar_addr, aligned_mem_size); 409 410 if (epf_bar[bar].phys_addr + bar_size < limit) 411 return -ENOMEM; 412 413 epf_bar[bar].addr = NULL; 414 epf_bar[bar].size = bar_size; 415 epf_bar[bar].mem_size = aligned_mem_size; 416 epf_bar[bar].barno = bar; 417 if (upper_32_bits(size) || epc_features->bar[bar].only_64bit) 418 epf_bar[bar].flags |= PCI_BASE_ADDRESS_MEM_TYPE_64; 419 else 420 epf_bar[bar].flags |= PCI_BASE_ADDRESS_MEM_TYPE_32; 421 422 return 0; 423 } 424 EXPORT_SYMBOL_GPL(pci_epf_assign_bar_space); 425 426 static void pci_epf_remove_cfs(struct pci_epf_driver *driver) 427 { 428 struct config_group *group, *tmp; 429 430 if (!IS_ENABLED(CONFIG_PCI_ENDPOINT_CONFIGFS)) 431 return; 432 433 mutex_lock(&pci_epf_mutex); 434 list_for_each_entry_safe(group, tmp, &driver->epf_group, group_entry) 435 pci_ep_cfs_remove_epf_group(group); 436 WARN_ON(!list_empty(&driver->epf_group)); 437 mutex_unlock(&pci_epf_mutex); 438 } 439 440 /** 441 * pci_epf_unregister_driver() - unregister the PCI EPF driver 442 * @driver: the PCI EPF driver that has to be unregistered 443 * 444 * Invoke to unregister the PCI EPF driver. 445 */ 446 void pci_epf_unregister_driver(struct pci_epf_driver *driver) 447 { 448 pci_epf_remove_cfs(driver); 449 driver_unregister(&driver->driver); 450 } 451 EXPORT_SYMBOL_GPL(pci_epf_unregister_driver); 452 453 static int pci_epf_add_cfs(struct pci_epf_driver *driver) 454 { 455 struct config_group *group; 456 const struct pci_epf_device_id *id; 457 458 if (!IS_ENABLED(CONFIG_PCI_ENDPOINT_CONFIGFS)) 459 return 0; 460 461 INIT_LIST_HEAD(&driver->epf_group); 462 463 id = driver->id_table; 464 while (id->name[0]) { 465 group = pci_ep_cfs_add_epf_group(id->name); 466 if (IS_ERR(group)) { 467 pci_epf_remove_cfs(driver); 468 return PTR_ERR(group); 469 } 470 471 mutex_lock(&pci_epf_mutex); 472 list_add_tail(&group->group_entry, &driver->epf_group); 473 mutex_unlock(&pci_epf_mutex); 474 id++; 475 } 476 477 return 0; 478 } 479 480 /** 481 * __pci_epf_register_driver() - register a new PCI EPF driver 482 * @driver: structure representing PCI EPF driver 483 * @owner: the owner of the module that registers the PCI EPF driver 484 * 485 * Invoke to register a new PCI EPF driver. 486 */ 487 int __pci_epf_register_driver(struct pci_epf_driver *driver, 488 struct module *owner) 489 { 490 int ret; 491 492 if (!driver->ops) 493 return -EINVAL; 494 495 if (!driver->ops->bind || !driver->ops->unbind) 496 return -EINVAL; 497 498 driver->driver.bus = &pci_epf_bus_type; 499 driver->driver.owner = owner; 500 501 ret = driver_register(&driver->driver); 502 if (ret) 503 return ret; 504 505 pci_epf_add_cfs(driver); 506 507 return 0; 508 } 509 EXPORT_SYMBOL_GPL(__pci_epf_register_driver); 510 511 /** 512 * pci_epf_destroy() - destroy the created PCI EPF device 513 * @epf: the PCI EPF device that has to be destroyed. 514 * 515 * Invoke to destroy the PCI EPF device created by invoking pci_epf_create(). 516 */ 517 void pci_epf_destroy(struct pci_epf *epf) 518 { 519 device_unregister(&epf->dev); 520 } 521 EXPORT_SYMBOL_GPL(pci_epf_destroy); 522 523 /** 524 * pci_epf_create() - create a new PCI EPF device 525 * @name: the name of the PCI EPF device. This name will be used to bind the 526 * EPF device to a EPF driver 527 * 528 * Invoke to create a new PCI EPF device by providing the name of the function 529 * device. 530 */ 531 struct pci_epf *pci_epf_create(const char *name) 532 { 533 int ret; 534 struct pci_epf *epf; 535 struct device *dev; 536 int len; 537 538 epf = kzalloc(sizeof(*epf), GFP_KERNEL); 539 if (!epf) 540 return ERR_PTR(-ENOMEM); 541 542 len = strchrnul(name, '.') - name; 543 epf->name = kstrndup(name, len, GFP_KERNEL); 544 if (!epf->name) { 545 kfree(epf); 546 return ERR_PTR(-ENOMEM); 547 } 548 549 /* VFs are numbered starting with 1. So set BIT(0) by default */ 550 epf->vfunction_num_map = 1; 551 INIT_LIST_HEAD(&epf->pci_vepf); 552 553 dev = &epf->dev; 554 device_initialize(dev); 555 dev->bus = &pci_epf_bus_type; 556 dev->type = &pci_epf_type; 557 mutex_init(&epf->lock); 558 559 ret = dev_set_name(dev, "%s", name); 560 if (ret) { 561 put_device(dev); 562 return ERR_PTR(ret); 563 } 564 565 ret = device_add(dev); 566 if (ret) { 567 put_device(dev); 568 return ERR_PTR(ret); 569 } 570 571 return epf; 572 } 573 EXPORT_SYMBOL_GPL(pci_epf_create); 574 575 /** 576 * pci_epf_align_inbound_addr() - Align the given address based on the BAR 577 * alignment requirement 578 * @epf: the EPF device 579 * @addr: inbound address to be aligned 580 * @bar: the BAR number corresponding to the given addr 581 * @base: base address matching the @bar alignment requirement 582 * @off: offset to be added to the @base address 583 * 584 * Helper function to align input @addr based on BAR's alignment requirement. 585 * The aligned base address and offset are returned via @base and @off. 586 * 587 * NOTE: The pci_epf_alloc_space() function already accounts for alignment. 588 * This API is primarily intended for use with other memory regions not 589 * allocated by pci_epf_alloc_space(), such as peripheral register spaces or 590 * the message address of a platform MSI controller. 591 * 592 * Return: 0 on success, errno otherwise. 593 */ 594 int pci_epf_align_inbound_addr(struct pci_epf *epf, enum pci_barno bar, 595 u64 addr, dma_addr_t *base, size_t *off) 596 { 597 /* 598 * Most EP controllers require the BAR start address to be aligned to 599 * the BAR size, because they mask off the lower bits. 600 * 601 * Alignment to BAR size also works for controllers that support 602 * unaligned addresses. 603 */ 604 u64 align = epf->bar[bar].size; 605 606 *base = round_down(addr, align); 607 *off = addr & (align - 1); 608 609 return 0; 610 } 611 EXPORT_SYMBOL_GPL(pci_epf_align_inbound_addr); 612 613 static void pci_epf_dev_release(struct device *dev) 614 { 615 struct pci_epf *epf = to_pci_epf(dev); 616 617 kfree(epf->name); 618 kfree(epf); 619 } 620 621 static const struct device_type pci_epf_type = { 622 .release = pci_epf_dev_release, 623 }; 624 625 static const struct pci_epf_device_id * 626 pci_epf_match_id(const struct pci_epf_device_id *id, const struct pci_epf *epf) 627 { 628 while (id->name[0]) { 629 if (strcmp(epf->name, id->name) == 0) 630 return id; 631 id++; 632 } 633 634 return NULL; 635 } 636 637 static int pci_epf_device_match(struct device *dev, const struct device_driver *drv) 638 { 639 struct pci_epf *epf = to_pci_epf(dev); 640 const struct pci_epf_driver *driver = to_pci_epf_driver(drv); 641 642 if (driver->id_table) 643 return !!pci_epf_match_id(driver->id_table, epf); 644 645 return !strcmp(epf->name, drv->name); 646 } 647 648 static int pci_epf_device_probe(struct device *dev) 649 { 650 struct pci_epf *epf = to_pci_epf(dev); 651 struct pci_epf_driver *driver = to_pci_epf_driver(dev->driver); 652 653 if (!driver->probe) 654 return -ENODEV; 655 656 epf->driver = driver; 657 658 return driver->probe(epf, pci_epf_match_id(driver->id_table, epf)); 659 } 660 661 static void pci_epf_device_remove(struct device *dev) 662 { 663 struct pci_epf *epf = to_pci_epf(dev); 664 struct pci_epf_driver *driver = to_pci_epf_driver(dev->driver); 665 666 if (driver->remove) 667 driver->remove(epf); 668 epf->driver = NULL; 669 } 670 671 static const struct bus_type pci_epf_bus_type = { 672 .name = "pci-epf", 673 .match = pci_epf_device_match, 674 .probe = pci_epf_device_probe, 675 .remove = pci_epf_device_remove, 676 }; 677 678 static int __init pci_epf_init(void) 679 { 680 int ret; 681 682 ret = bus_register(&pci_epf_bus_type); 683 if (ret) { 684 pr_err("failed to register pci epf bus --> %d\n", ret); 685 return ret; 686 } 687 688 return 0; 689 } 690 module_init(pci_epf_init); 691 692 static void __exit pci_epf_exit(void) 693 { 694 bus_unregister(&pci_epf_bus_type); 695 } 696 module_exit(pci_epf_exit); 697 698 MODULE_DESCRIPTION("PCI EPF Library"); 699 MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>"); 700