1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * PCI Endpoint *Controller* (EPC) library
4 *
5 * Copyright (C) 2017 Texas Instruments
6 * Author: Kishon Vijay Abraham I <kishon@ti.com>
7 */
8
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12
13 #include <linux/pci-epc.h>
14 #include <linux/pci-epf.h>
15 #include <linux/pci-ep-cfs.h>
16
17 static const struct class pci_epc_class = {
18 .name = "pci_epc",
19 };
20
devm_pci_epc_release(struct device * dev,void * res)21 static void devm_pci_epc_release(struct device *dev, void *res)
22 {
23 struct pci_epc *epc = *(struct pci_epc **)res;
24
25 pci_epc_destroy(epc);
26 }
27
28 /**
29 * pci_epc_put() - release the PCI endpoint controller
30 * @epc: epc returned by pci_epc_get()
31 *
32 * release the refcount the caller obtained by invoking pci_epc_get()
33 */
pci_epc_put(struct pci_epc * epc)34 void pci_epc_put(struct pci_epc *epc)
35 {
36 if (IS_ERR_OR_NULL(epc))
37 return;
38
39 module_put(epc->ops->owner);
40 put_device(&epc->dev);
41 }
42 EXPORT_SYMBOL_GPL(pci_epc_put);
43
44 /**
45 * pci_epc_get() - get the PCI endpoint controller
46 * @epc_name: device name of the endpoint controller
47 *
48 * Invoke to get struct pci_epc * corresponding to the device name of the
49 * endpoint controller
50 */
pci_epc_get(const char * epc_name)51 struct pci_epc *pci_epc_get(const char *epc_name)
52 {
53 int ret = -EINVAL;
54 struct pci_epc *epc;
55 struct device *dev;
56
57 dev = class_find_device_by_name(&pci_epc_class, epc_name);
58 if (!dev)
59 goto err;
60
61 epc = to_pci_epc(dev);
62 if (try_module_get(epc->ops->owner))
63 return epc;
64
65 err:
66 put_device(dev);
67 return ERR_PTR(ret);
68 }
69 EXPORT_SYMBOL_GPL(pci_epc_get);
70
71 /**
72 * pci_epc_get_first_free_bar() - helper to get first unreserved BAR
73 * @epc_features: pci_epc_features structure that holds the reserved bar bitmap
74 *
75 * Invoke to get the first unreserved BAR that can be used by the endpoint
76 * function.
77 */
78 enum pci_barno
pci_epc_get_first_free_bar(const struct pci_epc_features * epc_features)79 pci_epc_get_first_free_bar(const struct pci_epc_features *epc_features)
80 {
81 return pci_epc_get_next_free_bar(epc_features, BAR_0);
82 }
83 EXPORT_SYMBOL_GPL(pci_epc_get_first_free_bar);
84
85 /**
86 * pci_epc_get_next_free_bar() - helper to get unreserved BAR starting from @bar
87 * @epc_features: pci_epc_features structure that holds the reserved bar bitmap
88 * @bar: the starting BAR number from where unreserved BAR should be searched
89 *
90 * Invoke to get the next unreserved BAR starting from @bar that can be used
91 * for endpoint function.
92 */
pci_epc_get_next_free_bar(const struct pci_epc_features * epc_features,enum pci_barno bar)93 enum pci_barno pci_epc_get_next_free_bar(const struct pci_epc_features
94 *epc_features, enum pci_barno bar)
95 {
96 int i;
97
98 if (!epc_features)
99 return BAR_0;
100
101 /* If 'bar - 1' is a 64-bit BAR, move to the next BAR */
102 if (bar > 0 && epc_features->bar[bar - 1].only_64bit)
103 bar++;
104
105 for (i = bar; i < PCI_STD_NUM_BARS; i++) {
106 /* If the BAR is not reserved, return it. */
107 if (epc_features->bar[i].type != BAR_RESERVED)
108 return i;
109 }
110
111 return NO_BAR;
112 }
113 EXPORT_SYMBOL_GPL(pci_epc_get_next_free_bar);
114
pci_epc_function_is_valid(struct pci_epc * epc,u8 func_no,u8 vfunc_no)115 static bool pci_epc_function_is_valid(struct pci_epc *epc,
116 u8 func_no, u8 vfunc_no)
117 {
118 if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
119 return false;
120
121 if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
122 return false;
123
124 return true;
125 }
126
127 /**
128 * pci_epc_get_features() - get the features supported by EPC
129 * @epc: the features supported by *this* EPC device will be returned
130 * @func_no: the features supported by the EPC device specific to the
131 * endpoint function with func_no will be returned
132 * @vfunc_no: the features supported by the EPC device specific to the
133 * virtual endpoint function with vfunc_no will be returned
134 *
135 * Invoke to get the features provided by the EPC which may be
136 * specific to an endpoint function. Returns pci_epc_features on success
137 * and NULL for any failures.
138 */
pci_epc_get_features(struct pci_epc * epc,u8 func_no,u8 vfunc_no)139 const struct pci_epc_features *pci_epc_get_features(struct pci_epc *epc,
140 u8 func_no, u8 vfunc_no)
141 {
142 const struct pci_epc_features *epc_features;
143
144 if (!pci_epc_function_is_valid(epc, func_no, vfunc_no))
145 return NULL;
146
147 if (!epc->ops->get_features)
148 return NULL;
149
150 mutex_lock(&epc->lock);
151 epc_features = epc->ops->get_features(epc, func_no, vfunc_no);
152 mutex_unlock(&epc->lock);
153
154 return epc_features;
155 }
156 EXPORT_SYMBOL_GPL(pci_epc_get_features);
157
158 /**
159 * pci_epc_stop() - stop the PCI link
160 * @epc: the link of the EPC device that has to be stopped
161 *
162 * Invoke to stop the PCI link
163 */
pci_epc_stop(struct pci_epc * epc)164 void pci_epc_stop(struct pci_epc *epc)
165 {
166 if (IS_ERR(epc) || !epc->ops->stop)
167 return;
168
169 mutex_lock(&epc->lock);
170 epc->ops->stop(epc);
171 mutex_unlock(&epc->lock);
172 }
173 EXPORT_SYMBOL_GPL(pci_epc_stop);
174
175 /**
176 * pci_epc_start() - start the PCI link
177 * @epc: the link of *this* EPC device has to be started
178 *
179 * Invoke to start the PCI link
180 */
pci_epc_start(struct pci_epc * epc)181 int pci_epc_start(struct pci_epc *epc)
182 {
183 int ret;
184
185 if (IS_ERR(epc))
186 return -EINVAL;
187
188 if (!epc->ops->start)
189 return 0;
190
191 mutex_lock(&epc->lock);
192 ret = epc->ops->start(epc);
193 mutex_unlock(&epc->lock);
194
195 return ret;
196 }
197 EXPORT_SYMBOL_GPL(pci_epc_start);
198
199 /**
200 * pci_epc_raise_irq() - interrupt the host system
201 * @epc: the EPC device which has to interrupt the host
202 * @func_no: the physical endpoint function number in the EPC device
203 * @vfunc_no: the virtual endpoint function number in the physical function
204 * @type: specify the type of interrupt; INTX, MSI or MSI-X
205 * @interrupt_num: the MSI or MSI-X interrupt number with range (1-N)
206 *
207 * Invoke to raise an INTX, MSI or MSI-X interrupt
208 */
pci_epc_raise_irq(struct pci_epc * epc,u8 func_no,u8 vfunc_no,unsigned int type,u16 interrupt_num)209 int pci_epc_raise_irq(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
210 unsigned int type, u16 interrupt_num)
211 {
212 int ret;
213
214 if (!pci_epc_function_is_valid(epc, func_no, vfunc_no))
215 return -EINVAL;
216
217 if (!epc->ops->raise_irq)
218 return 0;
219
220 mutex_lock(&epc->lock);
221 ret = epc->ops->raise_irq(epc, func_no, vfunc_no, type, interrupt_num);
222 mutex_unlock(&epc->lock);
223
224 return ret;
225 }
226 EXPORT_SYMBOL_GPL(pci_epc_raise_irq);
227
228 /**
229 * pci_epc_map_msi_irq() - Map physical address to MSI address and return
230 * MSI data
231 * @epc: the EPC device which has the MSI capability
232 * @func_no: the physical endpoint function number in the EPC device
233 * @vfunc_no: the virtual endpoint function number in the physical function
234 * @phys_addr: the physical address of the outbound region
235 * @interrupt_num: the MSI interrupt number with range (1-N)
236 * @entry_size: Size of Outbound address region for each interrupt
237 * @msi_data: the data that should be written in order to raise MSI interrupt
238 * with interrupt number as 'interrupt num'
239 * @msi_addr_offset: Offset of MSI address from the aligned outbound address
240 * to which the MSI address is mapped
241 *
242 * Invoke to map physical address to MSI address and return MSI data. The
243 * physical address should be an address in the outbound region. This is
244 * required to implement doorbell functionality of NTB wherein EPC on either
245 * side of the interface (primary and secondary) can directly write to the
246 * physical address (in outbound region) of the other interface to ring
247 * doorbell.
248 */
pci_epc_map_msi_irq(struct pci_epc * epc,u8 func_no,u8 vfunc_no,phys_addr_t phys_addr,u8 interrupt_num,u32 entry_size,u32 * msi_data,u32 * msi_addr_offset)249 int pci_epc_map_msi_irq(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
250 phys_addr_t phys_addr, u8 interrupt_num, u32 entry_size,
251 u32 *msi_data, u32 *msi_addr_offset)
252 {
253 int ret;
254
255 if (!pci_epc_function_is_valid(epc, func_no, vfunc_no))
256 return -EINVAL;
257
258 if (!epc->ops->map_msi_irq)
259 return -EINVAL;
260
261 mutex_lock(&epc->lock);
262 ret = epc->ops->map_msi_irq(epc, func_no, vfunc_no, phys_addr,
263 interrupt_num, entry_size, msi_data,
264 msi_addr_offset);
265 mutex_unlock(&epc->lock);
266
267 return ret;
268 }
269 EXPORT_SYMBOL_GPL(pci_epc_map_msi_irq);
270
271 /**
272 * pci_epc_get_msi() - get the number of MSI interrupt numbers allocated
273 * @epc: the EPC device to which MSI interrupts was requested
274 * @func_no: the physical endpoint function number in the EPC device
275 * @vfunc_no: the virtual endpoint function number in the physical function
276 *
277 * Invoke to get the number of MSI interrupts allocated by the RC
278 */
pci_epc_get_msi(struct pci_epc * epc,u8 func_no,u8 vfunc_no)279 int pci_epc_get_msi(struct pci_epc *epc, u8 func_no, u8 vfunc_no)
280 {
281 int interrupt;
282
283 if (!pci_epc_function_is_valid(epc, func_no, vfunc_no))
284 return 0;
285
286 if (!epc->ops->get_msi)
287 return 0;
288
289 mutex_lock(&epc->lock);
290 interrupt = epc->ops->get_msi(epc, func_no, vfunc_no);
291 mutex_unlock(&epc->lock);
292
293 if (interrupt < 0)
294 return 0;
295
296 return interrupt;
297 }
298 EXPORT_SYMBOL_GPL(pci_epc_get_msi);
299
300 /**
301 * pci_epc_set_msi() - set the number of MSI interrupt numbers required
302 * @epc: the EPC device on which MSI has to be configured
303 * @func_no: the physical endpoint function number in the EPC device
304 * @vfunc_no: the virtual endpoint function number in the physical function
305 * @nr_irqs: number of MSI interrupts required by the EPF
306 *
307 * Invoke to set the required number of MSI interrupts.
308 */
pci_epc_set_msi(struct pci_epc * epc,u8 func_no,u8 vfunc_no,u8 nr_irqs)309 int pci_epc_set_msi(struct pci_epc *epc, u8 func_no, u8 vfunc_no, u8 nr_irqs)
310 {
311 int ret;
312
313 if (!pci_epc_function_is_valid(epc, func_no, vfunc_no))
314 return -EINVAL;
315
316 if (nr_irqs < 1 || nr_irqs > 32)
317 return -EINVAL;
318
319 if (!epc->ops->set_msi)
320 return 0;
321
322 mutex_lock(&epc->lock);
323 ret = epc->ops->set_msi(epc, func_no, vfunc_no, nr_irqs);
324 mutex_unlock(&epc->lock);
325
326 return ret;
327 }
328 EXPORT_SYMBOL_GPL(pci_epc_set_msi);
329
330 /**
331 * pci_epc_get_msix() - get the number of MSI-X interrupt numbers allocated
332 * @epc: the EPC device to which MSI-X interrupts was requested
333 * @func_no: the physical endpoint function number in the EPC device
334 * @vfunc_no: the virtual endpoint function number in the physical function
335 *
336 * Invoke to get the number of MSI-X interrupts allocated by the RC
337 */
pci_epc_get_msix(struct pci_epc * epc,u8 func_no,u8 vfunc_no)338 int pci_epc_get_msix(struct pci_epc *epc, u8 func_no, u8 vfunc_no)
339 {
340 int interrupt;
341
342 if (!pci_epc_function_is_valid(epc, func_no, vfunc_no))
343 return 0;
344
345 if (!epc->ops->get_msix)
346 return 0;
347
348 mutex_lock(&epc->lock);
349 interrupt = epc->ops->get_msix(epc, func_no, vfunc_no);
350 mutex_unlock(&epc->lock);
351
352 if (interrupt < 0)
353 return 0;
354
355 return interrupt;
356 }
357 EXPORT_SYMBOL_GPL(pci_epc_get_msix);
358
359 /**
360 * pci_epc_set_msix() - set the number of MSI-X interrupt numbers required
361 * @epc: the EPC device on which MSI-X has to be configured
362 * @func_no: the physical endpoint function number in the EPC device
363 * @vfunc_no: the virtual endpoint function number in the physical function
364 * @nr_irqs: number of MSI-X interrupts required by the EPF
365 * @bir: BAR where the MSI-X table resides
366 * @offset: Offset pointing to the start of MSI-X table
367 *
368 * Invoke to set the required number of MSI-X interrupts.
369 */
pci_epc_set_msix(struct pci_epc * epc,u8 func_no,u8 vfunc_no,u16 nr_irqs,enum pci_barno bir,u32 offset)370 int pci_epc_set_msix(struct pci_epc *epc, u8 func_no, u8 vfunc_no, u16 nr_irqs,
371 enum pci_barno bir, u32 offset)
372 {
373 int ret;
374
375 if (!pci_epc_function_is_valid(epc, func_no, vfunc_no))
376 return -EINVAL;
377
378 if (nr_irqs < 1 || nr_irqs > 2048)
379 return -EINVAL;
380
381 if (!epc->ops->set_msix)
382 return 0;
383
384 mutex_lock(&epc->lock);
385 ret = epc->ops->set_msix(epc, func_no, vfunc_no, nr_irqs, bir, offset);
386 mutex_unlock(&epc->lock);
387
388 return ret;
389 }
390 EXPORT_SYMBOL_GPL(pci_epc_set_msix);
391
392 /**
393 * pci_epc_unmap_addr() - unmap CPU address from PCI address
394 * @epc: the EPC device on which address is allocated
395 * @func_no: the physical endpoint function number in the EPC device
396 * @vfunc_no: the virtual endpoint function number in the physical function
397 * @phys_addr: physical address of the local system
398 *
399 * Invoke to unmap the CPU address from PCI address.
400 */
pci_epc_unmap_addr(struct pci_epc * epc,u8 func_no,u8 vfunc_no,phys_addr_t phys_addr)401 void pci_epc_unmap_addr(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
402 phys_addr_t phys_addr)
403 {
404 if (!pci_epc_function_is_valid(epc, func_no, vfunc_no))
405 return;
406
407 if (!epc->ops->unmap_addr)
408 return;
409
410 mutex_lock(&epc->lock);
411 epc->ops->unmap_addr(epc, func_no, vfunc_no, phys_addr);
412 mutex_unlock(&epc->lock);
413 }
414 EXPORT_SYMBOL_GPL(pci_epc_unmap_addr);
415
416 /**
417 * pci_epc_map_addr() - map CPU address to PCI address
418 * @epc: the EPC device on which address is allocated
419 * @func_no: the physical endpoint function number in the EPC device
420 * @vfunc_no: the virtual endpoint function number in the physical function
421 * @phys_addr: physical address of the local system
422 * @pci_addr: PCI address to which the physical address should be mapped
423 * @size: the size of the allocation
424 *
425 * Invoke to map CPU address with PCI address.
426 */
pci_epc_map_addr(struct pci_epc * epc,u8 func_no,u8 vfunc_no,phys_addr_t phys_addr,u64 pci_addr,size_t size)427 int pci_epc_map_addr(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
428 phys_addr_t phys_addr, u64 pci_addr, size_t size)
429 {
430 int ret;
431
432 if (!pci_epc_function_is_valid(epc, func_no, vfunc_no))
433 return -EINVAL;
434
435 if (!epc->ops->map_addr)
436 return 0;
437
438 mutex_lock(&epc->lock);
439 ret = epc->ops->map_addr(epc, func_no, vfunc_no, phys_addr, pci_addr,
440 size);
441 mutex_unlock(&epc->lock);
442
443 return ret;
444 }
445 EXPORT_SYMBOL_GPL(pci_epc_map_addr);
446
447 /**
448 * pci_epc_mem_map() - allocate and map a PCI address to a CPU address
449 * @epc: the EPC device on which the CPU address is to be allocated and mapped
450 * @func_no: the physical endpoint function number in the EPC device
451 * @vfunc_no: the virtual endpoint function number in the physical function
452 * @pci_addr: PCI address to which the CPU address should be mapped
453 * @pci_size: the number of bytes to map starting from @pci_addr
454 * @map: where to return the mapping information
455 *
456 * Allocate a controller memory address region and map it to a RC PCI address
457 * region, taking into account the controller physical address mapping
458 * constraints using the controller operation align_addr(). If this operation is
459 * not defined, we assume that there are no alignment constraints for the
460 * mapping.
461 *
462 * The effective size of the PCI address range mapped from @pci_addr is
463 * indicated by @map->pci_size. This size may be less than the requested
464 * @pci_size. The local virtual CPU address for the mapping is indicated by
465 * @map->virt_addr (@map->phys_addr indicates the physical address).
466 * The size and CPU address of the controller memory allocated and mapped are
467 * respectively indicated by @map->map_size and @map->virt_base (and
468 * @map->phys_base for the physical address of @map->virt_base).
469 *
470 * Returns 0 on success and a negative error code in case of error.
471 */
pci_epc_mem_map(struct pci_epc * epc,u8 func_no,u8 vfunc_no,u64 pci_addr,size_t pci_size,struct pci_epc_map * map)472 int pci_epc_mem_map(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
473 u64 pci_addr, size_t pci_size, struct pci_epc_map *map)
474 {
475 size_t map_size = pci_size;
476 size_t map_offset = 0;
477 int ret;
478
479 if (!pci_epc_function_is_valid(epc, func_no, vfunc_no))
480 return -EINVAL;
481
482 if (!pci_size || !map)
483 return -EINVAL;
484
485 /*
486 * Align the PCI address to map. If the controller defines the
487 * .align_addr() operation, use it to determine the PCI address to map
488 * and the size of the mapping. Otherwise, assume that the controller
489 * has no alignment constraint.
490 */
491 memset(map, 0, sizeof(*map));
492 map->pci_addr = pci_addr;
493 if (epc->ops->align_addr)
494 map->map_pci_addr =
495 epc->ops->align_addr(epc, pci_addr,
496 &map_size, &map_offset);
497 else
498 map->map_pci_addr = pci_addr;
499 map->map_size = map_size;
500 if (map->map_pci_addr + map->map_size < pci_addr + pci_size)
501 map->pci_size = map->map_pci_addr + map->map_size - pci_addr;
502 else
503 map->pci_size = pci_size;
504
505 map->virt_base = pci_epc_mem_alloc_addr(epc, &map->phys_base,
506 map->map_size);
507 if (!map->virt_base)
508 return -ENOMEM;
509
510 map->phys_addr = map->phys_base + map_offset;
511 map->virt_addr = map->virt_base + map_offset;
512
513 ret = pci_epc_map_addr(epc, func_no, vfunc_no, map->phys_base,
514 map->map_pci_addr, map->map_size);
515 if (ret) {
516 pci_epc_mem_free_addr(epc, map->phys_base, map->virt_base,
517 map->map_size);
518 return ret;
519 }
520
521 return 0;
522 }
523 EXPORT_SYMBOL_GPL(pci_epc_mem_map);
524
525 /**
526 * pci_epc_mem_unmap() - unmap and free a CPU address region
527 * @epc: the EPC device on which the CPU address is allocated and mapped
528 * @func_no: the physical endpoint function number in the EPC device
529 * @vfunc_no: the virtual endpoint function number in the physical function
530 * @map: the mapping information
531 *
532 * Unmap and free a CPU address region that was allocated and mapped with
533 * pci_epc_mem_map().
534 */
pci_epc_mem_unmap(struct pci_epc * epc,u8 func_no,u8 vfunc_no,struct pci_epc_map * map)535 void pci_epc_mem_unmap(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
536 struct pci_epc_map *map)
537 {
538 if (!pci_epc_function_is_valid(epc, func_no, vfunc_no))
539 return;
540
541 if (!map || !map->virt_base)
542 return;
543
544 pci_epc_unmap_addr(epc, func_no, vfunc_no, map->phys_base);
545 pci_epc_mem_free_addr(epc, map->phys_base, map->virt_base,
546 map->map_size);
547 }
548 EXPORT_SYMBOL_GPL(pci_epc_mem_unmap);
549
550 /**
551 * pci_epc_clear_bar() - reset the BAR
552 * @epc: the EPC device for which the BAR has to be cleared
553 * @func_no: the physical endpoint function number in the EPC device
554 * @vfunc_no: the virtual endpoint function number in the physical function
555 * @epf_bar: the struct epf_bar that contains the BAR information
556 *
557 * Invoke to reset the BAR of the endpoint device.
558 */
pci_epc_clear_bar(struct pci_epc * epc,u8 func_no,u8 vfunc_no,struct pci_epf_bar * epf_bar)559 void pci_epc_clear_bar(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
560 struct pci_epf_bar *epf_bar)
561 {
562 if (!pci_epc_function_is_valid(epc, func_no, vfunc_no))
563 return;
564
565 if (epf_bar->barno == BAR_5 &&
566 epf_bar->flags & PCI_BASE_ADDRESS_MEM_TYPE_64)
567 return;
568
569 if (!epc->ops->clear_bar)
570 return;
571
572 mutex_lock(&epc->lock);
573 epc->ops->clear_bar(epc, func_no, vfunc_no, epf_bar);
574 mutex_unlock(&epc->lock);
575 }
576 EXPORT_SYMBOL_GPL(pci_epc_clear_bar);
577
578 /**
579 * pci_epc_set_bar() - configure BAR in order for host to assign PCI addr space
580 * @epc: the EPC device on which BAR has to be configured
581 * @func_no: the physical endpoint function number in the EPC device
582 * @vfunc_no: the virtual endpoint function number in the physical function
583 * @epf_bar: the struct epf_bar that contains the BAR information
584 *
585 * Invoke to configure the BAR of the endpoint device.
586 */
pci_epc_set_bar(struct pci_epc * epc,u8 func_no,u8 vfunc_no,struct pci_epf_bar * epf_bar)587 int pci_epc_set_bar(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
588 struct pci_epf_bar *epf_bar)
589 {
590 const struct pci_epc_features *epc_features;
591 enum pci_barno bar = epf_bar->barno;
592 int flags = epf_bar->flags;
593 int ret;
594
595 epc_features = pci_epc_get_features(epc, func_no, vfunc_no);
596 if (!epc_features)
597 return -EINVAL;
598
599 if (epc_features->bar[bar].type == BAR_RESIZABLE &&
600 (epf_bar->size < SZ_1M || (u64)epf_bar->size > (SZ_128G * 1024)))
601 return -EINVAL;
602
603 if (epc_features->bar[bar].type == BAR_FIXED &&
604 (epc_features->bar[bar].fixed_size != epf_bar->size))
605 return -EINVAL;
606
607 if (!is_power_of_2(epf_bar->size))
608 return -EINVAL;
609
610 if ((epf_bar->barno == BAR_5 && flags & PCI_BASE_ADDRESS_MEM_TYPE_64) ||
611 (flags & PCI_BASE_ADDRESS_SPACE_IO &&
612 flags & PCI_BASE_ADDRESS_IO_MASK) ||
613 (upper_32_bits(epf_bar->size) &&
614 !(flags & PCI_BASE_ADDRESS_MEM_TYPE_64)))
615 return -EINVAL;
616
617 if (!epc->ops->set_bar)
618 return 0;
619
620 mutex_lock(&epc->lock);
621 ret = epc->ops->set_bar(epc, func_no, vfunc_no, epf_bar);
622 mutex_unlock(&epc->lock);
623
624 return ret;
625 }
626 EXPORT_SYMBOL_GPL(pci_epc_set_bar);
627
628 /**
629 * pci_epc_bar_size_to_rebar_cap() - convert a size to the representation used
630 * by the Resizable BAR Capability Register
631 * @size: the size to convert
632 * @cap: where to store the result
633 *
634 * Returns 0 on success and a negative error code in case of error.
635 */
pci_epc_bar_size_to_rebar_cap(size_t size,u32 * cap)636 int pci_epc_bar_size_to_rebar_cap(size_t size, u32 *cap)
637 {
638 /*
639 * As per PCIe r6.0, sec 7.8.6.2, min size for a resizable BAR is 1 MB,
640 * thus disallow a requested BAR size smaller than 1 MB.
641 * Disallow a requested BAR size larger than 128 TB.
642 */
643 if (size < SZ_1M || (u64)size > (SZ_128G * 1024))
644 return -EINVAL;
645
646 *cap = ilog2(size) - ilog2(SZ_1M);
647
648 /* Sizes in REBAR_CAP start at BIT(4). */
649 *cap = BIT(*cap + 4);
650
651 return 0;
652 }
653 EXPORT_SYMBOL_GPL(pci_epc_bar_size_to_rebar_cap);
654
655 /**
656 * pci_epc_write_header() - write standard configuration header
657 * @epc: the EPC device to which the configuration header should be written
658 * @func_no: the physical endpoint function number in the EPC device
659 * @vfunc_no: the virtual endpoint function number in the physical function
660 * @header: standard configuration header fields
661 *
662 * Invoke to write the configuration header to the endpoint controller. Every
663 * endpoint controller will have a dedicated location to which the standard
664 * configuration header would be written. The callback function should write
665 * the header fields to this dedicated location.
666 */
pci_epc_write_header(struct pci_epc * epc,u8 func_no,u8 vfunc_no,struct pci_epf_header * header)667 int pci_epc_write_header(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
668 struct pci_epf_header *header)
669 {
670 int ret;
671
672 if (!pci_epc_function_is_valid(epc, func_no, vfunc_no))
673 return -EINVAL;
674
675 /* Only Virtual Function #1 has deviceID */
676 if (vfunc_no > 1)
677 return -EINVAL;
678
679 if (!epc->ops->write_header)
680 return 0;
681
682 mutex_lock(&epc->lock);
683 ret = epc->ops->write_header(epc, func_no, vfunc_no, header);
684 mutex_unlock(&epc->lock);
685
686 return ret;
687 }
688 EXPORT_SYMBOL_GPL(pci_epc_write_header);
689
690 /**
691 * pci_epc_add_epf() - bind PCI endpoint function to an endpoint controller
692 * @epc: the EPC device to which the endpoint function should be added
693 * @epf: the endpoint function to be added
694 * @type: Identifies if the EPC is connected to the primary or secondary
695 * interface of EPF
696 *
697 * A PCI endpoint device can have one or more functions. In the case of PCIe,
698 * the specification allows up to 8 PCIe endpoint functions. Invoke
699 * pci_epc_add_epf() to add a PCI endpoint function to an endpoint controller.
700 */
pci_epc_add_epf(struct pci_epc * epc,struct pci_epf * epf,enum pci_epc_interface_type type)701 int pci_epc_add_epf(struct pci_epc *epc, struct pci_epf *epf,
702 enum pci_epc_interface_type type)
703 {
704 struct list_head *list;
705 u32 func_no;
706 int ret = 0;
707
708 if (IS_ERR_OR_NULL(epc) || epf->is_vf)
709 return -EINVAL;
710
711 if (type == PRIMARY_INTERFACE && epf->epc)
712 return -EBUSY;
713
714 if (type == SECONDARY_INTERFACE && epf->sec_epc)
715 return -EBUSY;
716
717 mutex_lock(&epc->list_lock);
718 func_no = find_first_zero_bit(&epc->function_num_map,
719 BITS_PER_LONG);
720 if (func_no >= BITS_PER_LONG) {
721 ret = -EINVAL;
722 goto ret;
723 }
724
725 if (func_no > epc->max_functions - 1) {
726 dev_err(&epc->dev, "Exceeding max supported Function Number\n");
727 ret = -EINVAL;
728 goto ret;
729 }
730
731 set_bit(func_no, &epc->function_num_map);
732 if (type == PRIMARY_INTERFACE) {
733 epf->func_no = func_no;
734 epf->epc = epc;
735 list = &epf->list;
736 } else {
737 epf->sec_epc_func_no = func_no;
738 epf->sec_epc = epc;
739 list = &epf->sec_epc_list;
740 }
741
742 list_add_tail(list, &epc->pci_epf);
743 ret:
744 mutex_unlock(&epc->list_lock);
745
746 return ret;
747 }
748 EXPORT_SYMBOL_GPL(pci_epc_add_epf);
749
750 /**
751 * pci_epc_remove_epf() - remove PCI endpoint function from endpoint controller
752 * @epc: the EPC device from which the endpoint function should be removed
753 * @epf: the endpoint function to be removed
754 * @type: identifies if the EPC is connected to the primary or secondary
755 * interface of EPF
756 *
757 * Invoke to remove PCI endpoint function from the endpoint controller.
758 */
pci_epc_remove_epf(struct pci_epc * epc,struct pci_epf * epf,enum pci_epc_interface_type type)759 void pci_epc_remove_epf(struct pci_epc *epc, struct pci_epf *epf,
760 enum pci_epc_interface_type type)
761 {
762 struct list_head *list;
763 u32 func_no = 0;
764
765 if (IS_ERR_OR_NULL(epc) || !epf)
766 return;
767
768 mutex_lock(&epc->list_lock);
769 if (type == PRIMARY_INTERFACE) {
770 func_no = epf->func_no;
771 list = &epf->list;
772 epf->epc = NULL;
773 } else {
774 func_no = epf->sec_epc_func_no;
775 list = &epf->sec_epc_list;
776 epf->sec_epc = NULL;
777 }
778 clear_bit(func_no, &epc->function_num_map);
779 list_del(list);
780 mutex_unlock(&epc->list_lock);
781 }
782 EXPORT_SYMBOL_GPL(pci_epc_remove_epf);
783
784 /**
785 * pci_epc_linkup() - Notify the EPF device that EPC device has established a
786 * connection with the Root Complex.
787 * @epc: the EPC device which has established link with the host
788 *
789 * Invoke to Notify the EPF device that the EPC device has established a
790 * connection with the Root Complex.
791 */
pci_epc_linkup(struct pci_epc * epc)792 void pci_epc_linkup(struct pci_epc *epc)
793 {
794 struct pci_epf *epf;
795
796 if (IS_ERR_OR_NULL(epc))
797 return;
798
799 mutex_lock(&epc->list_lock);
800 list_for_each_entry(epf, &epc->pci_epf, list) {
801 mutex_lock(&epf->lock);
802 if (epf->event_ops && epf->event_ops->link_up)
803 epf->event_ops->link_up(epf);
804 mutex_unlock(&epf->lock);
805 }
806 mutex_unlock(&epc->list_lock);
807 }
808 EXPORT_SYMBOL_GPL(pci_epc_linkup);
809
810 /**
811 * pci_epc_linkdown() - Notify the EPF device that EPC device has dropped the
812 * connection with the Root Complex.
813 * @epc: the EPC device which has dropped the link with the host
814 *
815 * Invoke to Notify the EPF device that the EPC device has dropped the
816 * connection with the Root Complex.
817 */
pci_epc_linkdown(struct pci_epc * epc)818 void pci_epc_linkdown(struct pci_epc *epc)
819 {
820 struct pci_epf *epf;
821
822 if (IS_ERR_OR_NULL(epc))
823 return;
824
825 mutex_lock(&epc->list_lock);
826 list_for_each_entry(epf, &epc->pci_epf, list) {
827 mutex_lock(&epf->lock);
828 if (epf->event_ops && epf->event_ops->link_down)
829 epf->event_ops->link_down(epf);
830 mutex_unlock(&epf->lock);
831 }
832 mutex_unlock(&epc->list_lock);
833 }
834 EXPORT_SYMBOL_GPL(pci_epc_linkdown);
835
836 /**
837 * pci_epc_init_notify() - Notify the EPF device that EPC device initialization
838 * is completed.
839 * @epc: the EPC device whose initialization is completed
840 *
841 * Invoke to Notify the EPF device that the EPC device's initialization
842 * is completed.
843 */
pci_epc_init_notify(struct pci_epc * epc)844 void pci_epc_init_notify(struct pci_epc *epc)
845 {
846 struct pci_epf *epf;
847
848 if (IS_ERR_OR_NULL(epc))
849 return;
850
851 mutex_lock(&epc->list_lock);
852 list_for_each_entry(epf, &epc->pci_epf, list) {
853 mutex_lock(&epf->lock);
854 if (epf->event_ops && epf->event_ops->epc_init)
855 epf->event_ops->epc_init(epf);
856 mutex_unlock(&epf->lock);
857 }
858 epc->init_complete = true;
859 mutex_unlock(&epc->list_lock);
860 }
861 EXPORT_SYMBOL_GPL(pci_epc_init_notify);
862
863 /**
864 * pci_epc_notify_pending_init() - Notify the pending EPC device initialization
865 * complete to the EPF device
866 * @epc: the EPC device whose initialization is pending to be notified
867 * @epf: the EPF device to be notified
868 *
869 * Invoke to notify the pending EPC device initialization complete to the EPF
870 * device. This is used to deliver the notification if the EPC initialization
871 * got completed before the EPF driver bind.
872 */
pci_epc_notify_pending_init(struct pci_epc * epc,struct pci_epf * epf)873 void pci_epc_notify_pending_init(struct pci_epc *epc, struct pci_epf *epf)
874 {
875 if (epc->init_complete) {
876 mutex_lock(&epf->lock);
877 if (epf->event_ops && epf->event_ops->epc_init)
878 epf->event_ops->epc_init(epf);
879 mutex_unlock(&epf->lock);
880 }
881 }
882 EXPORT_SYMBOL_GPL(pci_epc_notify_pending_init);
883
884 /**
885 * pci_epc_deinit_notify() - Notify the EPF device about EPC deinitialization
886 * @epc: the EPC device whose deinitialization is completed
887 *
888 * Invoke to notify the EPF device that the EPC deinitialization is completed.
889 */
pci_epc_deinit_notify(struct pci_epc * epc)890 void pci_epc_deinit_notify(struct pci_epc *epc)
891 {
892 struct pci_epf *epf;
893
894 if (IS_ERR_OR_NULL(epc))
895 return;
896
897 mutex_lock(&epc->list_lock);
898 list_for_each_entry(epf, &epc->pci_epf, list) {
899 mutex_lock(&epf->lock);
900 if (epf->event_ops && epf->event_ops->epc_deinit)
901 epf->event_ops->epc_deinit(epf);
902 mutex_unlock(&epf->lock);
903 }
904 epc->init_complete = false;
905 mutex_unlock(&epc->list_lock);
906 }
907 EXPORT_SYMBOL_GPL(pci_epc_deinit_notify);
908
909 /**
910 * pci_epc_bus_master_enable_notify() - Notify the EPF device that the EPC
911 * device has received the Bus Master
912 * Enable event from the Root complex
913 * @epc: the EPC device that received the Bus Master Enable event
914 *
915 * Notify the EPF device that the EPC device has generated the Bus Master Enable
916 * event due to host setting the Bus Master Enable bit in the Command register.
917 */
pci_epc_bus_master_enable_notify(struct pci_epc * epc)918 void pci_epc_bus_master_enable_notify(struct pci_epc *epc)
919 {
920 struct pci_epf *epf;
921
922 if (IS_ERR_OR_NULL(epc))
923 return;
924
925 mutex_lock(&epc->list_lock);
926 list_for_each_entry(epf, &epc->pci_epf, list) {
927 mutex_lock(&epf->lock);
928 if (epf->event_ops && epf->event_ops->bus_master_enable)
929 epf->event_ops->bus_master_enable(epf);
930 mutex_unlock(&epf->lock);
931 }
932 mutex_unlock(&epc->list_lock);
933 }
934 EXPORT_SYMBOL_GPL(pci_epc_bus_master_enable_notify);
935
936 /**
937 * pci_epc_destroy() - destroy the EPC device
938 * @epc: the EPC device that has to be destroyed
939 *
940 * Invoke to destroy the PCI EPC device
941 */
pci_epc_destroy(struct pci_epc * epc)942 void pci_epc_destroy(struct pci_epc *epc)
943 {
944 pci_ep_cfs_remove_epc_group(epc->group);
945 #ifdef CONFIG_PCI_DOMAINS_GENERIC
946 pci_bus_release_domain_nr(epc->dev.parent, epc->domain_nr);
947 #endif
948 device_unregister(&epc->dev);
949 }
950 EXPORT_SYMBOL_GPL(pci_epc_destroy);
951
pci_epc_release(struct device * dev)952 static void pci_epc_release(struct device *dev)
953 {
954 kfree(to_pci_epc(dev));
955 }
956
957 /**
958 * __pci_epc_create() - create a new endpoint controller (EPC) device
959 * @dev: device that is creating the new EPC
960 * @ops: function pointers for performing EPC operations
961 * @owner: the owner of the module that creates the EPC device
962 *
963 * Invoke to create a new EPC device and add it to pci_epc class.
964 */
965 struct pci_epc *
__pci_epc_create(struct device * dev,const struct pci_epc_ops * ops,struct module * owner)966 __pci_epc_create(struct device *dev, const struct pci_epc_ops *ops,
967 struct module *owner)
968 {
969 int ret;
970 struct pci_epc *epc;
971
972 if (WARN_ON(!dev)) {
973 ret = -EINVAL;
974 goto err_ret;
975 }
976
977 epc = kzalloc(sizeof(*epc), GFP_KERNEL);
978 if (!epc) {
979 ret = -ENOMEM;
980 goto err_ret;
981 }
982
983 mutex_init(&epc->lock);
984 mutex_init(&epc->list_lock);
985 INIT_LIST_HEAD(&epc->pci_epf);
986
987 device_initialize(&epc->dev);
988 epc->dev.class = &pci_epc_class;
989 epc->dev.parent = dev;
990 epc->dev.release = pci_epc_release;
991 epc->ops = ops;
992
993 #ifdef CONFIG_PCI_DOMAINS_GENERIC
994 epc->domain_nr = pci_bus_find_domain_nr(NULL, dev);
995 #else
996 /*
997 * TODO: If the architecture doesn't support generic PCI
998 * domains, then a custom implementation has to be used.
999 */
1000 WARN_ONCE(1, "This architecture doesn't support generic PCI domains\n");
1001 #endif
1002
1003 ret = dev_set_name(&epc->dev, "%s", dev_name(dev));
1004 if (ret)
1005 goto put_dev;
1006
1007 ret = device_add(&epc->dev);
1008 if (ret)
1009 goto put_dev;
1010
1011 epc->group = pci_ep_cfs_add_epc_group(dev_name(dev));
1012
1013 return epc;
1014
1015 put_dev:
1016 put_device(&epc->dev);
1017
1018 err_ret:
1019 return ERR_PTR(ret);
1020 }
1021 EXPORT_SYMBOL_GPL(__pci_epc_create);
1022
1023 /**
1024 * __devm_pci_epc_create() - create a new endpoint controller (EPC) device
1025 * @dev: device that is creating the new EPC
1026 * @ops: function pointers for performing EPC operations
1027 * @owner: the owner of the module that creates the EPC device
1028 *
1029 * Invoke to create a new EPC device and add it to pci_epc class.
1030 * While at that, it also associates the device with the pci_epc using devres.
1031 * On driver detach, release function is invoked on the devres data,
1032 * then, devres data is freed.
1033 */
1034 struct pci_epc *
__devm_pci_epc_create(struct device * dev,const struct pci_epc_ops * ops,struct module * owner)1035 __devm_pci_epc_create(struct device *dev, const struct pci_epc_ops *ops,
1036 struct module *owner)
1037 {
1038 struct pci_epc **ptr, *epc;
1039
1040 ptr = devres_alloc(devm_pci_epc_release, sizeof(*ptr), GFP_KERNEL);
1041 if (!ptr)
1042 return ERR_PTR(-ENOMEM);
1043
1044 epc = __pci_epc_create(dev, ops, owner);
1045 if (!IS_ERR(epc)) {
1046 *ptr = epc;
1047 devres_add(dev, ptr);
1048 } else {
1049 devres_free(ptr);
1050 }
1051
1052 return epc;
1053 }
1054 EXPORT_SYMBOL_GPL(__devm_pci_epc_create);
1055
pci_epc_init(void)1056 static int __init pci_epc_init(void)
1057 {
1058 return class_register(&pci_epc_class);
1059 }
1060 module_init(pci_epc_init);
1061
pci_epc_exit(void)1062 static void __exit pci_epc_exit(void)
1063 {
1064 class_unregister(&pci_epc_class);
1065 }
1066 module_exit(pci_epc_exit);
1067
1068 MODULE_DESCRIPTION("PCI EPC Library");
1069 MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>");
1070