xref: /linux/arch/s390/pci/pci.c (revision f90f2145b2804c0166126a6c8fbf51d695917df3)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Copyright IBM Corp. 2012
4   *
5   * Author(s):
6   *   Jan Glauber <jang@linux.vnet.ibm.com>
7   *
8   * The System z PCI code is a rewrite from a prototype by
9   * the following people (Kudoz!):
10   *   Alexander Schmidt
11   *   Christoph Raisch
12   *   Hannes Hering
13   *   Hoang-Nam Nguyen
14   *   Jan-Bernd Themann
15   *   Stefan Roscher
16   *   Thomas Klein
17   */
18  
19  #define KMSG_COMPONENT "zpci"
20  #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21  
22  #include <linux/kernel.h>
23  #include <linux/slab.h>
24  #include <linux/err.h>
25  #include <linux/export.h>
26  #include <linux/delay.h>
27  #include <linux/seq_file.h>
28  #include <linux/jump_label.h>
29  #include <linux/pci.h>
30  #include <linux/printk.h>
31  #include <linux/lockdep.h>
32  #include <linux/list_sort.h>
33  
34  #include <asm/machine.h>
35  #include <asm/isc.h>
36  #include <asm/airq.h>
37  #include <asm/facility.h>
38  #include <asm/pci_insn.h>
39  #include <asm/pci_clp.h>
40  #include <asm/pci_dma.h>
41  
42  #include "pci_bus.h"
43  #include "pci_iov.h"
44  
45  /* list of all detected zpci devices */
46  static LIST_HEAD(zpci_list);
47  static DEFINE_SPINLOCK(zpci_list_lock);
48  
49  static DECLARE_BITMAP(zpci_domain, ZPCI_DOMAIN_BITMAP_SIZE);
50  static DEFINE_SPINLOCK(zpci_domain_lock);
51  
52  #define ZPCI_IOMAP_ENTRIES						\
53  	min(((unsigned long) ZPCI_NR_DEVICES * PCI_STD_NUM_BARS / 2),	\
54  	    ZPCI_IOMAP_MAX_ENTRIES)
55  
56  unsigned int s390_pci_no_rid;
57  
58  static DEFINE_SPINLOCK(zpci_iomap_lock);
59  static unsigned long *zpci_iomap_bitmap;
60  struct zpci_iomap_entry *zpci_iomap_start;
61  EXPORT_SYMBOL_GPL(zpci_iomap_start);
62  
63  DEFINE_STATIC_KEY_FALSE(have_mio);
64  
65  static struct kmem_cache *zdev_fmb_cache;
66  
67  /* AEN structures that must be preserved over KVM module re-insertion */
68  union zpci_sic_iib *zpci_aipb;
69  EXPORT_SYMBOL_GPL(zpci_aipb);
70  struct airq_iv *zpci_aif_sbv;
71  EXPORT_SYMBOL_GPL(zpci_aif_sbv);
72  
73  struct zpci_dev *get_zdev_by_fid(u32 fid)
74  {
75  	struct zpci_dev *tmp, *zdev = NULL;
76  
77  	spin_lock(&zpci_list_lock);
78  	list_for_each_entry(tmp, &zpci_list, entry) {
79  		if (tmp->fid == fid) {
80  			zdev = tmp;
81  			zpci_zdev_get(zdev);
82  			break;
83  		}
84  	}
85  	spin_unlock(&zpci_list_lock);
86  	return zdev;
87  }
88  
89  void zpci_remove_reserved_devices(void)
90  {
91  	struct zpci_dev *tmp, *zdev;
92  	enum zpci_state state;
93  	LIST_HEAD(remove);
94  
95  	spin_lock(&zpci_list_lock);
96  	list_for_each_entry_safe(zdev, tmp, &zpci_list, entry) {
97  		if (zdev->state == ZPCI_FN_STATE_STANDBY &&
98  		    !clp_get_state(zdev->fid, &state) &&
99  		    state == ZPCI_FN_STATE_RESERVED)
100  			list_move_tail(&zdev->entry, &remove);
101  	}
102  	spin_unlock(&zpci_list_lock);
103  
104  	list_for_each_entry_safe(zdev, tmp, &remove, entry)
105  		zpci_device_reserved(zdev);
106  }
107  
108  int pci_domain_nr(struct pci_bus *bus)
109  {
110  	return ((struct zpci_bus *) bus->sysdata)->domain_nr;
111  }
112  EXPORT_SYMBOL_GPL(pci_domain_nr);
113  
114  int pci_proc_domain(struct pci_bus *bus)
115  {
116  	return pci_domain_nr(bus);
117  }
118  EXPORT_SYMBOL_GPL(pci_proc_domain);
119  
120  /* Modify PCI: Register I/O address translation parameters */
121  int zpci_register_ioat(struct zpci_dev *zdev, u8 dmaas,
122  		       u64 base, u64 limit, u64 iota, u8 *status)
123  {
124  	u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_REG_IOAT);
125  	struct zpci_fib fib = {0};
126  	u8 cc;
127  
128  	fib.pba = base;
129  	/* Work around off by one in ISM virt device */
130  	if (zdev->pft == PCI_FUNC_TYPE_ISM && limit > base)
131  		fib.pal = limit + (1 << 12);
132  	else
133  		fib.pal = limit;
134  	fib.iota = iota;
135  	fib.gd = zdev->gisa;
136  	cc = zpci_mod_fc(req, &fib, status);
137  	if (cc)
138  		zpci_dbg(3, "reg ioat fid:%x, cc:%d, status:%d\n", zdev->fid, cc, *status);
139  	return cc;
140  }
141  EXPORT_SYMBOL_GPL(zpci_register_ioat);
142  
143  /* Modify PCI: Unregister I/O address translation parameters */
144  int zpci_unregister_ioat(struct zpci_dev *zdev, u8 dmaas)
145  {
146  	u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_DEREG_IOAT);
147  	struct zpci_fib fib = {0};
148  	u8 cc, status;
149  
150  	fib.gd = zdev->gisa;
151  
152  	cc = zpci_mod_fc(req, &fib, &status);
153  	if (cc)
154  		zpci_dbg(3, "unreg ioat fid:%x, cc:%d, status:%d\n", zdev->fid, cc, status);
155  	return cc;
156  }
157  
158  /* Modify PCI: Set PCI function measurement parameters */
159  int zpci_fmb_enable_device(struct zpci_dev *zdev)
160  {
161  	u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE);
162  	struct zpci_iommu_ctrs *ctrs;
163  	struct zpci_fib fib = {0};
164  	unsigned long flags;
165  	u8 cc, status;
166  
167  	if (zdev->fmb || sizeof(*zdev->fmb) < zdev->fmb_length)
168  		return -EINVAL;
169  
170  	zdev->fmb = kmem_cache_zalloc(zdev_fmb_cache, GFP_KERNEL);
171  	if (!zdev->fmb)
172  		return -ENOMEM;
173  	WARN_ON((u64) zdev->fmb & 0xf);
174  
175  	/* reset software counters */
176  	spin_lock_irqsave(&zdev->dom_lock, flags);
177  	ctrs = zpci_get_iommu_ctrs(zdev);
178  	if (ctrs) {
179  		atomic64_set(&ctrs->mapped_pages, 0);
180  		atomic64_set(&ctrs->unmapped_pages, 0);
181  		atomic64_set(&ctrs->global_rpcits, 0);
182  		atomic64_set(&ctrs->sync_map_rpcits, 0);
183  		atomic64_set(&ctrs->sync_rpcits, 0);
184  	}
185  	spin_unlock_irqrestore(&zdev->dom_lock, flags);
186  
187  
188  	fib.fmb_addr = virt_to_phys(zdev->fmb);
189  	fib.gd = zdev->gisa;
190  	cc = zpci_mod_fc(req, &fib, &status);
191  	if (cc) {
192  		kmem_cache_free(zdev_fmb_cache, zdev->fmb);
193  		zdev->fmb = NULL;
194  	}
195  	return cc ? -EIO : 0;
196  }
197  
198  /* Modify PCI: Disable PCI function measurement */
199  int zpci_fmb_disable_device(struct zpci_dev *zdev)
200  {
201  	u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE);
202  	struct zpci_fib fib = {0};
203  	u8 cc, status;
204  
205  	if (!zdev->fmb)
206  		return -EINVAL;
207  
208  	fib.gd = zdev->gisa;
209  
210  	/* Function measurement is disabled if fmb address is zero */
211  	cc = zpci_mod_fc(req, &fib, &status);
212  	if (cc == 3) /* Function already gone. */
213  		cc = 0;
214  
215  	if (!cc) {
216  		kmem_cache_free(zdev_fmb_cache, zdev->fmb);
217  		zdev->fmb = NULL;
218  	}
219  	return cc ? -EIO : 0;
220  }
221  
222  static int zpci_cfg_load(struct zpci_dev *zdev, int offset, u32 *val, u8 len)
223  {
224  	u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len);
225  	u64 data;
226  	int rc;
227  
228  	rc = __zpci_load(&data, req, offset);
229  	if (!rc) {
230  		data = le64_to_cpu((__force __le64) data);
231  		data >>= (8 - len) * 8;
232  		*val = (u32) data;
233  	} else
234  		*val = 0xffffffff;
235  	return rc;
236  }
237  
238  static int zpci_cfg_store(struct zpci_dev *zdev, int offset, u32 val, u8 len)
239  {
240  	u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len);
241  	u64 data = val;
242  	int rc;
243  
244  	data <<= (8 - len) * 8;
245  	data = (__force u64) cpu_to_le64(data);
246  	rc = __zpci_store(data, req, offset);
247  	return rc;
248  }
249  
250  resource_size_t pcibios_align_resource(void *data, const struct resource *res,
251  				       resource_size_t size,
252  				       resource_size_t align)
253  {
254  	return 0;
255  }
256  
257  void __iomem *ioremap_prot(phys_addr_t phys_addr, size_t size,
258  			   unsigned long prot)
259  {
260  	/*
261  	 * When PCI MIO instructions are unavailable the "physical" address
262  	 * encodes a hint for accessing the PCI memory space it represents.
263  	 * Just pass it unchanged such that ioread/iowrite can decode it.
264  	 */
265  	if (!static_branch_unlikely(&have_mio))
266  		return (void __iomem *)phys_addr;
267  
268  	return generic_ioremap_prot(phys_addr, size, __pgprot(prot));
269  }
270  EXPORT_SYMBOL(ioremap_prot);
271  
272  void iounmap(volatile void __iomem *addr)
273  {
274  	if (static_branch_likely(&have_mio))
275  		generic_iounmap(addr);
276  }
277  EXPORT_SYMBOL(iounmap);
278  
279  /* Create a virtual mapping cookie for a PCI BAR */
280  static void __iomem *pci_iomap_range_fh(struct pci_dev *pdev, int bar,
281  					unsigned long offset, unsigned long max)
282  {
283  	struct zpci_dev *zdev =	to_zpci(pdev);
284  	int idx;
285  
286  	idx = zdev->bars[bar].map_idx;
287  	spin_lock(&zpci_iomap_lock);
288  	/* Detect overrun */
289  	WARN_ON(!++zpci_iomap_start[idx].count);
290  	zpci_iomap_start[idx].fh = zdev->fh;
291  	zpci_iomap_start[idx].bar = bar;
292  	spin_unlock(&zpci_iomap_lock);
293  
294  	return (void __iomem *) ZPCI_ADDR(idx) + offset;
295  }
296  
297  static void __iomem *pci_iomap_range_mio(struct pci_dev *pdev, int bar,
298  					 unsigned long offset,
299  					 unsigned long max)
300  {
301  	unsigned long barsize = pci_resource_len(pdev, bar);
302  	struct zpci_dev *zdev = to_zpci(pdev);
303  	void __iomem *iova;
304  
305  	iova = ioremap((unsigned long) zdev->bars[bar].mio_wt, barsize);
306  	return iova ? iova + offset : iova;
307  }
308  
309  void __iomem *pci_iomap_range(struct pci_dev *pdev, int bar,
310  			      unsigned long offset, unsigned long max)
311  {
312  	if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar))
313  		return NULL;
314  
315  	if (static_branch_likely(&have_mio))
316  		return pci_iomap_range_mio(pdev, bar, offset, max);
317  	else
318  		return pci_iomap_range_fh(pdev, bar, offset, max);
319  }
320  EXPORT_SYMBOL(pci_iomap_range);
321  
322  void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long maxlen)
323  {
324  	return pci_iomap_range(dev, bar, 0, maxlen);
325  }
326  EXPORT_SYMBOL(pci_iomap);
327  
328  static void __iomem *pci_iomap_wc_range_mio(struct pci_dev *pdev, int bar,
329  					    unsigned long offset, unsigned long max)
330  {
331  	unsigned long barsize = pci_resource_len(pdev, bar);
332  	struct zpci_dev *zdev = to_zpci(pdev);
333  	void __iomem *iova;
334  
335  	iova = ioremap((unsigned long) zdev->bars[bar].mio_wb, barsize);
336  	return iova ? iova + offset : iova;
337  }
338  
339  void __iomem *pci_iomap_wc_range(struct pci_dev *pdev, int bar,
340  				 unsigned long offset, unsigned long max)
341  {
342  	if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar))
343  		return NULL;
344  
345  	if (static_branch_likely(&have_mio))
346  		return pci_iomap_wc_range_mio(pdev, bar, offset, max);
347  	else
348  		return pci_iomap_range_fh(pdev, bar, offset, max);
349  }
350  EXPORT_SYMBOL(pci_iomap_wc_range);
351  
352  void __iomem *pci_iomap_wc(struct pci_dev *dev, int bar, unsigned long maxlen)
353  {
354  	return pci_iomap_wc_range(dev, bar, 0, maxlen);
355  }
356  EXPORT_SYMBOL(pci_iomap_wc);
357  
358  static void pci_iounmap_fh(struct pci_dev *pdev, void __iomem *addr)
359  {
360  	unsigned int idx = ZPCI_IDX(addr);
361  
362  	spin_lock(&zpci_iomap_lock);
363  	/* Detect underrun */
364  	WARN_ON(!zpci_iomap_start[idx].count);
365  	if (!--zpci_iomap_start[idx].count) {
366  		zpci_iomap_start[idx].fh = 0;
367  		zpci_iomap_start[idx].bar = 0;
368  	}
369  	spin_unlock(&zpci_iomap_lock);
370  }
371  
372  static void pci_iounmap_mio(struct pci_dev *pdev, void __iomem *addr)
373  {
374  	iounmap(addr);
375  }
376  
377  void pci_iounmap(struct pci_dev *pdev, void __iomem *addr)
378  {
379  	if (static_branch_likely(&have_mio))
380  		pci_iounmap_mio(pdev, addr);
381  	else
382  		pci_iounmap_fh(pdev, addr);
383  }
384  EXPORT_SYMBOL(pci_iounmap);
385  
386  static int pci_read(struct pci_bus *bus, unsigned int devfn, int where,
387  		    int size, u32 *val)
388  {
389  	struct zpci_dev *zdev = zdev_from_bus(bus, devfn);
390  
391  	return (zdev) ? zpci_cfg_load(zdev, where, val, size) : -ENODEV;
392  }
393  
394  static int pci_write(struct pci_bus *bus, unsigned int devfn, int where,
395  		     int size, u32 val)
396  {
397  	struct zpci_dev *zdev = zdev_from_bus(bus, devfn);
398  
399  	return (zdev) ? zpci_cfg_store(zdev, where, val, size) : -ENODEV;
400  }
401  
402  static struct pci_ops pci_root_ops = {
403  	.read = pci_read,
404  	.write = pci_write,
405  };
406  
407  static void zpci_map_resources(struct pci_dev *pdev)
408  {
409  	struct zpci_dev *zdev = to_zpci(pdev);
410  	resource_size_t len;
411  	int i;
412  
413  	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
414  		len = pci_resource_len(pdev, i);
415  		if (!len)
416  			continue;
417  
418  		if (zpci_use_mio(zdev))
419  			pdev->resource[i].start =
420  				(resource_size_t __force) zdev->bars[i].mio_wt;
421  		else
422  			pdev->resource[i].start = (resource_size_t __force)
423  				pci_iomap_range_fh(pdev, i, 0, 0);
424  		pdev->resource[i].end = pdev->resource[i].start + len - 1;
425  	}
426  
427  	zpci_iov_map_resources(pdev);
428  }
429  
430  static void zpci_unmap_resources(struct pci_dev *pdev)
431  {
432  	struct zpci_dev *zdev = to_zpci(pdev);
433  	resource_size_t len;
434  	int i;
435  
436  	if (zpci_use_mio(zdev))
437  		return;
438  
439  	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
440  		len = pci_resource_len(pdev, i);
441  		if (!len)
442  			continue;
443  		pci_iounmap_fh(pdev, (void __iomem __force *)
444  			       pdev->resource[i].start);
445  	}
446  }
447  
448  static int zpci_alloc_iomap(struct zpci_dev *zdev)
449  {
450  	unsigned long entry;
451  
452  	spin_lock(&zpci_iomap_lock);
453  	entry = find_first_zero_bit(zpci_iomap_bitmap, ZPCI_IOMAP_ENTRIES);
454  	if (entry == ZPCI_IOMAP_ENTRIES) {
455  		spin_unlock(&zpci_iomap_lock);
456  		return -ENOSPC;
457  	}
458  	set_bit(entry, zpci_iomap_bitmap);
459  	spin_unlock(&zpci_iomap_lock);
460  	return entry;
461  }
462  
463  static void zpci_free_iomap(struct zpci_dev *zdev, int entry)
464  {
465  	spin_lock(&zpci_iomap_lock);
466  	memset(&zpci_iomap_start[entry], 0, sizeof(struct zpci_iomap_entry));
467  	clear_bit(entry, zpci_iomap_bitmap);
468  	spin_unlock(&zpci_iomap_lock);
469  }
470  
471  static void zpci_do_update_iomap_fh(struct zpci_dev *zdev, u32 fh)
472  {
473  	int bar, idx;
474  
475  	spin_lock(&zpci_iomap_lock);
476  	for (bar = 0; bar < PCI_STD_NUM_BARS; bar++) {
477  		if (!zdev->bars[bar].size)
478  			continue;
479  		idx = zdev->bars[bar].map_idx;
480  		if (!zpci_iomap_start[idx].count)
481  			continue;
482  		WRITE_ONCE(zpci_iomap_start[idx].fh, zdev->fh);
483  	}
484  	spin_unlock(&zpci_iomap_lock);
485  }
486  
487  void zpci_update_fh(struct zpci_dev *zdev, u32 fh)
488  {
489  	if (!fh || zdev->fh == fh)
490  		return;
491  
492  	zdev->fh = fh;
493  	if (zpci_use_mio(zdev))
494  		return;
495  	if (zdev->has_resources && zdev_enabled(zdev))
496  		zpci_do_update_iomap_fh(zdev, fh);
497  }
498  
499  static struct resource *__alloc_res(struct zpci_dev *zdev, unsigned long start,
500  				    unsigned long size, unsigned long flags)
501  {
502  	struct resource *r;
503  
504  	r = kzalloc(sizeof(*r), GFP_KERNEL);
505  	if (!r)
506  		return NULL;
507  
508  	r->start = start;
509  	r->end = r->start + size - 1;
510  	r->flags = flags;
511  	r->name = zdev->res_name;
512  
513  	if (request_resource(&iomem_resource, r)) {
514  		kfree(r);
515  		return NULL;
516  	}
517  	return r;
518  }
519  
520  int zpci_setup_bus_resources(struct zpci_dev *zdev)
521  {
522  	unsigned long addr, size, flags;
523  	struct resource *res;
524  	int i, entry;
525  
526  	snprintf(zdev->res_name, sizeof(zdev->res_name),
527  		 "PCI Bus %04x:%02x", zdev->uid, ZPCI_BUS_NR);
528  
529  	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
530  		if (!zdev->bars[i].size)
531  			continue;
532  		entry = zpci_alloc_iomap(zdev);
533  		if (entry < 0)
534  			return entry;
535  		zdev->bars[i].map_idx = entry;
536  
537  		/* only MMIO is supported */
538  		flags = IORESOURCE_MEM;
539  		if (zdev->bars[i].val & 8)
540  			flags |= IORESOURCE_PREFETCH;
541  		if (zdev->bars[i].val & 4)
542  			flags |= IORESOURCE_MEM_64;
543  
544  		if (zpci_use_mio(zdev))
545  			addr = (unsigned long) zdev->bars[i].mio_wt;
546  		else
547  			addr = ZPCI_ADDR(entry);
548  		size = 1UL << zdev->bars[i].size;
549  
550  		res = __alloc_res(zdev, addr, size, flags);
551  		if (!res) {
552  			zpci_free_iomap(zdev, entry);
553  			return -ENOMEM;
554  		}
555  		zdev->bars[i].res = res;
556  	}
557  	zdev->has_resources = 1;
558  
559  	return 0;
560  }
561  
562  static void zpci_cleanup_bus_resources(struct zpci_dev *zdev)
563  {
564  	struct resource *res;
565  	int i;
566  
567  	pci_lock_rescan_remove();
568  	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
569  		res = zdev->bars[i].res;
570  		if (!res)
571  			continue;
572  
573  		release_resource(res);
574  		pci_bus_remove_resource(zdev->zbus->bus, res);
575  		zpci_free_iomap(zdev, zdev->bars[i].map_idx);
576  		zdev->bars[i].res = NULL;
577  		kfree(res);
578  	}
579  	zdev->has_resources = 0;
580  	pci_unlock_rescan_remove();
581  }
582  
583  int pcibios_device_add(struct pci_dev *pdev)
584  {
585  	struct zpci_dev *zdev = to_zpci(pdev);
586  	struct resource *res;
587  	int i;
588  
589  	/* The pdev has a reference to the zdev via its bus */
590  	zpci_zdev_get(zdev);
591  	if (pdev->is_physfn)
592  		pdev->no_vf_scan = 1;
593  
594  	zpci_map_resources(pdev);
595  
596  	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
597  		res = &pdev->resource[i];
598  		if (res->parent || !res->flags)
599  			continue;
600  		pci_claim_resource(pdev, i);
601  	}
602  
603  	return 0;
604  }
605  
606  void pcibios_release_device(struct pci_dev *pdev)
607  {
608  	struct zpci_dev *zdev = to_zpci(pdev);
609  
610  	zpci_unmap_resources(pdev);
611  	zpci_zdev_put(zdev);
612  }
613  
614  int pcibios_enable_device(struct pci_dev *pdev, int mask)
615  {
616  	struct zpci_dev *zdev = to_zpci(pdev);
617  
618  	zpci_debug_init_device(zdev, dev_name(&pdev->dev));
619  	zpci_fmb_enable_device(zdev);
620  
621  	return pci_enable_resources(pdev, mask);
622  }
623  
624  void pcibios_disable_device(struct pci_dev *pdev)
625  {
626  	struct zpci_dev *zdev = to_zpci(pdev);
627  
628  	zpci_fmb_disable_device(zdev);
629  	zpci_debug_exit_device(zdev);
630  }
631  
632  static int __zpci_register_domain(int domain)
633  {
634  	spin_lock(&zpci_domain_lock);
635  	if (test_bit(domain, zpci_domain)) {
636  		spin_unlock(&zpci_domain_lock);
637  		pr_err("Domain %04x is already assigned\n", domain);
638  		return -EEXIST;
639  	}
640  	set_bit(domain, zpci_domain);
641  	spin_unlock(&zpci_domain_lock);
642  	return domain;
643  }
644  
645  static int __zpci_alloc_domain(void)
646  {
647  	int domain;
648  
649  	spin_lock(&zpci_domain_lock);
650  	/*
651  	 * We can always auto allocate domains below ZPCI_NR_DEVICES.
652  	 * There is either a free domain or we have reached the maximum in
653  	 * which case we would have bailed earlier.
654  	 */
655  	domain = find_first_zero_bit(zpci_domain, ZPCI_NR_DEVICES);
656  	set_bit(domain, zpci_domain);
657  	spin_unlock(&zpci_domain_lock);
658  	return domain;
659  }
660  
661  int zpci_alloc_domain(int domain)
662  {
663  	if (zpci_unique_uid) {
664  		if (domain)
665  			return __zpci_register_domain(domain);
666  		pr_warn("UID checking was active but no UID is provided: switching to automatic domain allocation\n");
667  		update_uid_checking(false);
668  	}
669  	return __zpci_alloc_domain();
670  }
671  
672  void zpci_free_domain(int domain)
673  {
674  	spin_lock(&zpci_domain_lock);
675  	clear_bit(domain, zpci_domain);
676  	spin_unlock(&zpci_domain_lock);
677  }
678  
679  
680  int zpci_enable_device(struct zpci_dev *zdev)
681  {
682  	u32 fh = zdev->fh;
683  	int rc = 0;
684  
685  	if (clp_enable_fh(zdev, &fh, ZPCI_NR_DMA_SPACES))
686  		rc = -EIO;
687  	else
688  		zpci_update_fh(zdev, fh);
689  	return rc;
690  }
691  EXPORT_SYMBOL_GPL(zpci_enable_device);
692  
693  int zpci_reenable_device(struct zpci_dev *zdev)
694  {
695  	u8 status;
696  	int rc;
697  
698  	rc = zpci_enable_device(zdev);
699  	if (rc)
700  		return rc;
701  
702  	rc = zpci_iommu_register_ioat(zdev, &status);
703  	if (rc)
704  		zpci_disable_device(zdev);
705  
706  	return rc;
707  }
708  EXPORT_SYMBOL_GPL(zpci_reenable_device);
709  
710  int zpci_disable_device(struct zpci_dev *zdev)
711  {
712  	u32 fh = zdev->fh;
713  	int cc, rc = 0;
714  
715  	cc = clp_disable_fh(zdev, &fh);
716  	if (!cc) {
717  		zpci_update_fh(zdev, fh);
718  	} else if (cc == CLP_RC_SETPCIFN_ALRDY) {
719  		pr_info("Disabling PCI function %08x had no effect as it was already disabled\n",
720  			zdev->fid);
721  		/* Function is already disabled - update handle */
722  		rc = clp_refresh_fh(zdev->fid, &fh);
723  		if (!rc) {
724  			zpci_update_fh(zdev, fh);
725  			rc = -EINVAL;
726  		}
727  	} else {
728  		rc = -EIO;
729  	}
730  	return rc;
731  }
732  EXPORT_SYMBOL_GPL(zpci_disable_device);
733  
734  /**
735   * zpci_hot_reset_device - perform a reset of the given zPCI function
736   * @zdev: the slot which should be reset
737   *
738   * Performs a low level reset of the zPCI function. The reset is low level in
739   * the sense that the zPCI function can be reset without detaching it from the
740   * common PCI subsystem. The reset may be performed while under control of
741   * either DMA or IOMMU APIs in which case the existing DMA/IOMMU translation
742   * table is reinstated at the end of the reset.
743   *
744   * After the reset the functions internal state is reset to an initial state
745   * equivalent to its state during boot when first probing a driver.
746   * Consequently after reset the PCI function requires re-initialization via the
747   * common PCI code including re-enabling IRQs via pci_alloc_irq_vectors()
748   * and enabling the function via e.g. pci_enable_device_flags(). The caller
749   * must guard against concurrent reset attempts.
750   *
751   * In most cases this function should not be called directly but through
752   * pci_reset_function() or pci_reset_bus() which handle the save/restore and
753   * locking - asserted by lockdep.
754   *
755   * Return: 0 on success and an error value otherwise
756   */
757  int zpci_hot_reset_device(struct zpci_dev *zdev)
758  {
759  	int rc;
760  
761  	lockdep_assert_held(&zdev->state_lock);
762  	zpci_dbg(3, "rst fid:%x, fh:%x\n", zdev->fid, zdev->fh);
763  	if (zdev_enabled(zdev)) {
764  		/* Disables device access, DMAs and IRQs (reset state) */
765  		rc = zpci_disable_device(zdev);
766  		/*
767  		 * Due to a z/VM vs LPAR inconsistency in the error state the
768  		 * FH may indicate an enabled device but disable says the
769  		 * device is already disabled don't treat it as an error here.
770  		 */
771  		if (rc == -EINVAL)
772  			rc = 0;
773  		if (rc)
774  			return rc;
775  	}
776  
777  	rc = zpci_reenable_device(zdev);
778  
779  	return rc;
780  }
781  
782  /**
783   * zpci_create_device() - Create a new zpci_dev and add it to the zbus
784   * @fid: Function ID of the device to be created
785   * @fh: Current Function Handle of the device to be created
786   * @state: Initial state after creation either Standby or Configured
787   *
788   * Allocates a new struct zpci_dev and queries the platform for its details.
789   * If successful the device can subsequently be added to the zPCI subsystem
790   * using zpci_add_device().
791   *
792   * Returns: the zdev on success or an error pointer otherwise
793   */
794  struct zpci_dev *zpci_create_device(u32 fid, u32 fh, enum zpci_state state)
795  {
796  	struct zpci_dev *zdev;
797  	int rc;
798  
799  	zdev = kzalloc(sizeof(*zdev), GFP_KERNEL);
800  	if (!zdev)
801  		return ERR_PTR(-ENOMEM);
802  
803  	/* FID and Function Handle are the static/dynamic identifiers */
804  	zdev->fid = fid;
805  	zdev->fh = fh;
806  
807  	/* Query function properties and update zdev */
808  	rc = clp_query_pci_fn(zdev);
809  	if (rc)
810  		goto error;
811  	zdev->state =  state;
812  
813  	mutex_init(&zdev->state_lock);
814  	mutex_init(&zdev->fmb_lock);
815  	mutex_init(&zdev->kzdev_lock);
816  
817  	return zdev;
818  
819  error:
820  	zpci_dbg(0, "crt fid:%x, rc:%d\n", fid, rc);
821  	kfree(zdev);
822  	return ERR_PTR(rc);
823  }
824  
825  /**
826   * zpci_add_device() - Add a previously created zPCI device to the zPCI subsystem
827   * @zdev: The zPCI device to be added
828   *
829   * A struct zpci_dev is added to the zPCI subsystem and to a virtual PCI bus creating
830   * a new one as necessary. A hotplug slot is created and events start to be handled.
831   * If successful from this point on zpci_zdev_get() and zpci_zdev_put() must be used.
832   * If adding the struct zpci_dev fails the device was not added and should be freed.
833   *
834   * Return: 0 on success, or an error code otherwise
835   */
836  int zpci_add_device(struct zpci_dev *zdev)
837  {
838  	int rc;
839  
840  	zpci_dbg(1, "add fid:%x, fh:%x, c:%d\n", zdev->fid, zdev->fh, zdev->state);
841  	rc = zpci_init_iommu(zdev);
842  	if (rc)
843  		goto error;
844  
845  	rc = zpci_bus_device_register(zdev, &pci_root_ops);
846  	if (rc)
847  		goto error_destroy_iommu;
848  
849  	kref_init(&zdev->kref);
850  	spin_lock(&zpci_list_lock);
851  	list_add_tail(&zdev->entry, &zpci_list);
852  	spin_unlock(&zpci_list_lock);
853  	return 0;
854  
855  error_destroy_iommu:
856  	zpci_destroy_iommu(zdev);
857  error:
858  	zpci_dbg(0, "add fid:%x, rc:%d\n", zdev->fid, rc);
859  	return rc;
860  }
861  
862  bool zpci_is_device_configured(struct zpci_dev *zdev)
863  {
864  	enum zpci_state state = zdev->state;
865  
866  	return state != ZPCI_FN_STATE_RESERVED &&
867  		state != ZPCI_FN_STATE_STANDBY;
868  }
869  
870  /**
871   * zpci_scan_configured_device() - Scan a freshly configured zpci_dev
872   * @zdev: The zpci_dev to be configured
873   * @fh: The general function handle supplied by the platform
874   *
875   * Given a device in the configuration state Configured, enables, scans and
876   * adds it to the common code PCI subsystem if possible. If any failure occurs,
877   * the zpci_dev is left disabled.
878   *
879   * Return: 0 on success, or an error code otherwise
880   */
881  int zpci_scan_configured_device(struct zpci_dev *zdev, u32 fh)
882  {
883  	zpci_update_fh(zdev, fh);
884  	return zpci_bus_scan_device(zdev);
885  }
886  
887  /**
888   * zpci_deconfigure_device() - Deconfigure a zpci_dev
889   * @zdev: The zpci_dev to configure
890   *
891   * Deconfigure a zPCI function that is currently configured and possibly known
892   * to the common code PCI subsystem.
893   * If any failure occurs the device is left as is.
894   *
895   * Return: 0 on success, or an error code otherwise
896   */
897  int zpci_deconfigure_device(struct zpci_dev *zdev)
898  {
899  	int rc;
900  
901  	lockdep_assert_held(&zdev->state_lock);
902  	if (zdev->state != ZPCI_FN_STATE_CONFIGURED)
903  		return 0;
904  
905  	if (zdev->zbus->bus)
906  		zpci_bus_remove_device(zdev, false);
907  
908  	if (zdev_enabled(zdev)) {
909  		rc = zpci_disable_device(zdev);
910  		if (rc)
911  			return rc;
912  	}
913  
914  	rc = sclp_pci_deconfigure(zdev->fid);
915  	zpci_dbg(3, "deconf fid:%x, rc:%d\n", zdev->fid, rc);
916  	if (rc)
917  		return rc;
918  	zdev->state = ZPCI_FN_STATE_STANDBY;
919  
920  	return 0;
921  }
922  
923  /**
924   * zpci_device_reserved() - Mark device as reserved
925   * @zdev: the zpci_dev that was reserved
926   *
927   * Handle the case that a given zPCI function was reserved by another system.
928   * After a call to this function the zpci_dev can not be found via
929   * get_zdev_by_fid() anymore but may still be accessible via existing
930   * references though it will not be functional anymore.
931   */
932  void zpci_device_reserved(struct zpci_dev *zdev)
933  {
934  	/*
935  	 * Remove device from zpci_list as it is going away. This also
936  	 * makes sure we ignore subsequent zPCI events for this device.
937  	 */
938  	spin_lock(&zpci_list_lock);
939  	list_del(&zdev->entry);
940  	spin_unlock(&zpci_list_lock);
941  	zdev->state = ZPCI_FN_STATE_RESERVED;
942  	zpci_dbg(3, "rsv fid:%x\n", zdev->fid);
943  	zpci_zdev_put(zdev);
944  }
945  
946  void zpci_release_device(struct kref *kref)
947  {
948  	struct zpci_dev *zdev = container_of(kref, struct zpci_dev, kref);
949  
950  	WARN_ON(zdev->state != ZPCI_FN_STATE_RESERVED);
951  
952  	if (zdev->zbus->bus)
953  		zpci_bus_remove_device(zdev, false);
954  
955  	if (zdev_enabled(zdev))
956  		zpci_disable_device(zdev);
957  
958  	if (zdev->has_hp_slot)
959  		zpci_exit_slot(zdev);
960  
961  	if (zdev->has_resources)
962  		zpci_cleanup_bus_resources(zdev);
963  
964  	zpci_bus_device_unregister(zdev);
965  	zpci_destroy_iommu(zdev);
966  	zpci_dbg(3, "rem fid:%x\n", zdev->fid);
967  	kfree_rcu(zdev, rcu);
968  }
969  
970  int zpci_report_error(struct pci_dev *pdev,
971  		      struct zpci_report_error_header *report)
972  {
973  	struct zpci_dev *zdev = to_zpci(pdev);
974  
975  	return sclp_pci_report(report, zdev->fh, zdev->fid);
976  }
977  EXPORT_SYMBOL(zpci_report_error);
978  
979  /**
980   * zpci_clear_error_state() - Clears the zPCI error state of the device
981   * @zdev: The zdev for which the zPCI error state should be reset
982   *
983   * Clear the zPCI error state of the device. If clearing the zPCI error state
984   * fails the device is left in the error state. In this case it may make sense
985   * to call zpci_io_perm_failure() on the associated pdev if it exists.
986   *
987   * Returns: 0 on success, -EIO otherwise
988   */
989  int zpci_clear_error_state(struct zpci_dev *zdev)
990  {
991  	u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_RESET_ERROR);
992  	struct zpci_fib fib = {0};
993  	u8 status;
994  	int cc;
995  
996  	cc = zpci_mod_fc(req, &fib, &status);
997  	if (cc) {
998  		zpci_dbg(3, "ces fid:%x, cc:%d, status:%x\n", zdev->fid, cc, status);
999  		return -EIO;
1000  	}
1001  
1002  	return 0;
1003  }
1004  
1005  /**
1006   * zpci_reset_load_store_blocked() - Re-enables L/S from error state
1007   * @zdev: The zdev for which to unblock load/store access
1008   *
1009   * Re-enables load/store access for a PCI function in the error state while
1010   * keeping DMA blocked. In this state drivers can poke MMIO space to determine
1011   * if error recovery is possible while catching any rogue DMA access from the
1012   * device.
1013   *
1014   * Returns: 0 on success, -EIO otherwise
1015   */
1016  int zpci_reset_load_store_blocked(struct zpci_dev *zdev)
1017  {
1018  	u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_RESET_BLOCK);
1019  	struct zpci_fib fib = {0};
1020  	u8 status;
1021  	int cc;
1022  
1023  	cc = zpci_mod_fc(req, &fib, &status);
1024  	if (cc) {
1025  		zpci_dbg(3, "rls fid:%x, cc:%d, status:%x\n", zdev->fid, cc, status);
1026  		return -EIO;
1027  	}
1028  
1029  	return 0;
1030  }
1031  
1032  static int zpci_mem_init(void)
1033  {
1034  	BUILD_BUG_ON(!is_power_of_2(__alignof__(struct zpci_fmb)) ||
1035  		     __alignof__(struct zpci_fmb) < sizeof(struct zpci_fmb));
1036  
1037  	zdev_fmb_cache = kmem_cache_create("PCI_FMB_cache", sizeof(struct zpci_fmb),
1038  					   __alignof__(struct zpci_fmb), 0, NULL);
1039  	if (!zdev_fmb_cache)
1040  		goto error_fmb;
1041  
1042  	zpci_iomap_start = kcalloc(ZPCI_IOMAP_ENTRIES,
1043  				   sizeof(*zpci_iomap_start), GFP_KERNEL);
1044  	if (!zpci_iomap_start)
1045  		goto error_iomap;
1046  
1047  	zpci_iomap_bitmap = kcalloc(BITS_TO_LONGS(ZPCI_IOMAP_ENTRIES),
1048  				    sizeof(*zpci_iomap_bitmap), GFP_KERNEL);
1049  	if (!zpci_iomap_bitmap)
1050  		goto error_iomap_bitmap;
1051  
1052  	if (static_branch_likely(&have_mio))
1053  		clp_setup_writeback_mio();
1054  
1055  	return 0;
1056  error_iomap_bitmap:
1057  	kfree(zpci_iomap_start);
1058  error_iomap:
1059  	kmem_cache_destroy(zdev_fmb_cache);
1060  error_fmb:
1061  	return -ENOMEM;
1062  }
1063  
1064  static void zpci_mem_exit(void)
1065  {
1066  	kfree(zpci_iomap_bitmap);
1067  	kfree(zpci_iomap_start);
1068  	kmem_cache_destroy(zdev_fmb_cache);
1069  }
1070  
1071  static unsigned int s390_pci_probe __initdata = 1;
1072  unsigned int s390_pci_force_floating __initdata;
1073  static unsigned int s390_pci_initialized;
1074  
1075  char * __init pcibios_setup(char *str)
1076  {
1077  	if (!strcmp(str, "off")) {
1078  		s390_pci_probe = 0;
1079  		return NULL;
1080  	}
1081  	if (!strcmp(str, "nomio")) {
1082  		clear_machine_feature(MFEATURE_PCI_MIO);
1083  		return NULL;
1084  	}
1085  	if (!strcmp(str, "force_floating")) {
1086  		s390_pci_force_floating = 1;
1087  		return NULL;
1088  	}
1089  	if (!strcmp(str, "norid")) {
1090  		s390_pci_no_rid = 1;
1091  		return NULL;
1092  	}
1093  	return str;
1094  }
1095  
1096  bool zpci_is_enabled(void)
1097  {
1098  	return s390_pci_initialized;
1099  }
1100  
1101  static int zpci_cmp_rid(void *priv, const struct list_head *a,
1102  			const struct list_head *b)
1103  {
1104  	struct zpci_dev *za = container_of(a, struct zpci_dev, entry);
1105  	struct zpci_dev *zb = container_of(b, struct zpci_dev, entry);
1106  
1107  	/*
1108  	 * PCI functions without RID available maintain original order
1109  	 * between themselves but sort before those with RID.
1110  	 */
1111  	if (za->rid == zb->rid)
1112  		return za->rid_available > zb->rid_available;
1113  	/*
1114  	 * PCI functions with RID sort by RID ascending.
1115  	 */
1116  	return za->rid > zb->rid;
1117  }
1118  
1119  static void zpci_add_devices(struct list_head *scan_list)
1120  {
1121  	struct zpci_dev *zdev, *tmp;
1122  
1123  	list_sort(NULL, scan_list, &zpci_cmp_rid);
1124  	list_for_each_entry_safe(zdev, tmp, scan_list, entry) {
1125  		list_del_init(&zdev->entry);
1126  		if (zpci_add_device(zdev))
1127  			kfree(zdev);
1128  	}
1129  }
1130  
1131  int zpci_scan_devices(void)
1132  {
1133  	LIST_HEAD(scan_list);
1134  	int rc;
1135  
1136  	rc = clp_scan_pci_devices(&scan_list);
1137  	if (rc)
1138  		return rc;
1139  
1140  	zpci_add_devices(&scan_list);
1141  	zpci_bus_scan_busses();
1142  	return 0;
1143  }
1144  
1145  static int __init pci_base_init(void)
1146  {
1147  	int rc;
1148  
1149  	if (!s390_pci_probe)
1150  		return 0;
1151  
1152  	if (!test_facility(69) || !test_facility(71)) {
1153  		pr_info("PCI is not supported because CPU facilities 69 or 71 are not available\n");
1154  		return 0;
1155  	}
1156  
1157  	if (test_machine_feature(MFEATURE_PCI_MIO)) {
1158  		static_branch_enable(&have_mio);
1159  		system_ctl_set_bit(2, CR2_MIO_ADDRESSING_BIT);
1160  	}
1161  
1162  	rc = zpci_debug_init();
1163  	if (rc)
1164  		goto out;
1165  
1166  	rc = zpci_mem_init();
1167  	if (rc)
1168  		goto out_mem;
1169  
1170  	rc = zpci_irq_init();
1171  	if (rc)
1172  		goto out_irq;
1173  
1174  	rc = zpci_scan_devices();
1175  	if (rc)
1176  		goto out_find;
1177  
1178  	s390_pci_initialized = 1;
1179  	return 0;
1180  
1181  out_find:
1182  	zpci_irq_exit();
1183  out_irq:
1184  	zpci_mem_exit();
1185  out_mem:
1186  	zpci_debug_exit();
1187  out:
1188  	return rc;
1189  }
1190  subsys_initcall_sync(pci_base_init);
1191