1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright IBM Corp. 2012 4 * 5 * Author(s): 6 * Jan Glauber <jang@linux.vnet.ibm.com> 7 * 8 * The System z PCI code is a rewrite from a prototype by 9 * the following people (Kudoz!): 10 * Alexander Schmidt 11 * Christoph Raisch 12 * Hannes Hering 13 * Hoang-Nam Nguyen 14 * Jan-Bernd Themann 15 * Stefan Roscher 16 * Thomas Klein 17 */ 18 19 #define KMSG_COMPONENT "zpci" 20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 21 22 #include <linux/kernel.h> 23 #include <linux/slab.h> 24 #include <linux/err.h> 25 #include <linux/export.h> 26 #include <linux/delay.h> 27 #include <linux/seq_file.h> 28 #include <linux/jump_label.h> 29 #include <linux/pci.h> 30 #include <linux/printk.h> 31 #include <linux/lockdep.h> 32 #include <linux/list_sort.h> 33 34 #include <asm/machine.h> 35 #include <asm/isc.h> 36 #include <asm/airq.h> 37 #include <asm/facility.h> 38 #include <asm/pci_insn.h> 39 #include <asm/pci_clp.h> 40 #include <asm/pci_dma.h> 41 42 #include "pci_bus.h" 43 #include "pci_iov.h" 44 45 /* list of all detected zpci devices */ 46 static LIST_HEAD(zpci_list); 47 static DEFINE_SPINLOCK(zpci_list_lock); 48 49 static DECLARE_BITMAP(zpci_domain, ZPCI_DOMAIN_BITMAP_SIZE); 50 static DEFINE_SPINLOCK(zpci_domain_lock); 51 52 #define ZPCI_IOMAP_ENTRIES \ 53 min(((unsigned long) ZPCI_NR_DEVICES * PCI_STD_NUM_BARS / 2), \ 54 ZPCI_IOMAP_MAX_ENTRIES) 55 56 unsigned int s390_pci_no_rid; 57 58 static DEFINE_SPINLOCK(zpci_iomap_lock); 59 static unsigned long *zpci_iomap_bitmap; 60 struct zpci_iomap_entry *zpci_iomap_start; 61 EXPORT_SYMBOL_GPL(zpci_iomap_start); 62 63 DEFINE_STATIC_KEY_FALSE(have_mio); 64 65 static struct kmem_cache *zdev_fmb_cache; 66 67 /* AEN structures that must be preserved over KVM module re-insertion */ 68 union zpci_sic_iib *zpci_aipb; 69 EXPORT_SYMBOL_GPL(zpci_aipb); 70 struct airq_iv *zpci_aif_sbv; 71 EXPORT_SYMBOL_GPL(zpci_aif_sbv); 72 73 struct zpci_dev *get_zdev_by_fid(u32 fid) 74 { 75 struct zpci_dev *tmp, *zdev = NULL; 76 77 spin_lock(&zpci_list_lock); 78 list_for_each_entry(tmp, &zpci_list, entry) { 79 if (tmp->fid == fid) { 80 zdev = tmp; 81 zpci_zdev_get(zdev); 82 break; 83 } 84 } 85 spin_unlock(&zpci_list_lock); 86 return zdev; 87 } 88 89 void zpci_remove_reserved_devices(void) 90 { 91 struct zpci_dev *tmp, *zdev; 92 enum zpci_state state; 93 LIST_HEAD(remove); 94 95 spin_lock(&zpci_list_lock); 96 list_for_each_entry_safe(zdev, tmp, &zpci_list, entry) { 97 if (zdev->state == ZPCI_FN_STATE_STANDBY && 98 !clp_get_state(zdev->fid, &state) && 99 state == ZPCI_FN_STATE_RESERVED) 100 list_move_tail(&zdev->entry, &remove); 101 } 102 spin_unlock(&zpci_list_lock); 103 104 list_for_each_entry_safe(zdev, tmp, &remove, entry) 105 zpci_device_reserved(zdev); 106 } 107 108 int pci_domain_nr(struct pci_bus *bus) 109 { 110 return ((struct zpci_bus *) bus->sysdata)->domain_nr; 111 } 112 EXPORT_SYMBOL_GPL(pci_domain_nr); 113 114 int pci_proc_domain(struct pci_bus *bus) 115 { 116 return pci_domain_nr(bus); 117 } 118 EXPORT_SYMBOL_GPL(pci_proc_domain); 119 120 /* Modify PCI: Register I/O address translation parameters */ 121 int zpci_register_ioat(struct zpci_dev *zdev, u8 dmaas, 122 u64 base, u64 limit, u64 iota, u8 *status) 123 { 124 u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_REG_IOAT); 125 struct zpci_fib fib = {0}; 126 u8 cc; 127 128 fib.pba = base; 129 /* Work around off by one in ISM virt device */ 130 if (zdev->pft == PCI_FUNC_TYPE_ISM && limit > base) 131 fib.pal = limit + (1 << 12); 132 else 133 fib.pal = limit; 134 fib.iota = iota; 135 fib.gd = zdev->gisa; 136 cc = zpci_mod_fc(req, &fib, status); 137 if (cc) 138 zpci_dbg(3, "reg ioat fid:%x, cc:%d, status:%d\n", zdev->fid, cc, *status); 139 return cc; 140 } 141 EXPORT_SYMBOL_GPL(zpci_register_ioat); 142 143 /* Modify PCI: Unregister I/O address translation parameters */ 144 int zpci_unregister_ioat(struct zpci_dev *zdev, u8 dmaas) 145 { 146 u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_DEREG_IOAT); 147 struct zpci_fib fib = {0}; 148 u8 cc, status; 149 150 fib.gd = zdev->gisa; 151 152 cc = zpci_mod_fc(req, &fib, &status); 153 if (cc) 154 zpci_dbg(3, "unreg ioat fid:%x, cc:%d, status:%d\n", zdev->fid, cc, status); 155 return cc; 156 } 157 158 /* Modify PCI: Set PCI function measurement parameters */ 159 int zpci_fmb_enable_device(struct zpci_dev *zdev) 160 { 161 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE); 162 struct zpci_iommu_ctrs *ctrs; 163 struct zpci_fib fib = {0}; 164 unsigned long flags; 165 u8 cc, status; 166 167 if (zdev->fmb || sizeof(*zdev->fmb) < zdev->fmb_length) 168 return -EINVAL; 169 170 zdev->fmb = kmem_cache_zalloc(zdev_fmb_cache, GFP_KERNEL); 171 if (!zdev->fmb) 172 return -ENOMEM; 173 WARN_ON((u64) zdev->fmb & 0xf); 174 175 /* reset software counters */ 176 spin_lock_irqsave(&zdev->dom_lock, flags); 177 ctrs = zpci_get_iommu_ctrs(zdev); 178 if (ctrs) { 179 atomic64_set(&ctrs->mapped_pages, 0); 180 atomic64_set(&ctrs->unmapped_pages, 0); 181 atomic64_set(&ctrs->global_rpcits, 0); 182 atomic64_set(&ctrs->sync_map_rpcits, 0); 183 atomic64_set(&ctrs->sync_rpcits, 0); 184 } 185 spin_unlock_irqrestore(&zdev->dom_lock, flags); 186 187 188 fib.fmb_addr = virt_to_phys(zdev->fmb); 189 fib.gd = zdev->gisa; 190 cc = zpci_mod_fc(req, &fib, &status); 191 if (cc) { 192 kmem_cache_free(zdev_fmb_cache, zdev->fmb); 193 zdev->fmb = NULL; 194 } 195 return cc ? -EIO : 0; 196 } 197 198 /* Modify PCI: Disable PCI function measurement */ 199 int zpci_fmb_disable_device(struct zpci_dev *zdev) 200 { 201 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE); 202 struct zpci_fib fib = {0}; 203 u8 cc, status; 204 205 if (!zdev->fmb) 206 return -EINVAL; 207 208 fib.gd = zdev->gisa; 209 210 /* Function measurement is disabled if fmb address is zero */ 211 cc = zpci_mod_fc(req, &fib, &status); 212 if (cc == 3) /* Function already gone. */ 213 cc = 0; 214 215 if (!cc) { 216 kmem_cache_free(zdev_fmb_cache, zdev->fmb); 217 zdev->fmb = NULL; 218 } 219 return cc ? -EIO : 0; 220 } 221 222 static int zpci_cfg_load(struct zpci_dev *zdev, int offset, u32 *val, u8 len) 223 { 224 u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len); 225 u64 data; 226 int rc; 227 228 rc = __zpci_load(&data, req, offset); 229 if (!rc) { 230 data = le64_to_cpu((__force __le64) data); 231 data >>= (8 - len) * 8; 232 *val = (u32) data; 233 } else 234 *val = 0xffffffff; 235 return rc; 236 } 237 238 static int zpci_cfg_store(struct zpci_dev *zdev, int offset, u32 val, u8 len) 239 { 240 u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len); 241 u64 data = val; 242 int rc; 243 244 data <<= (8 - len) * 8; 245 data = (__force u64) cpu_to_le64(data); 246 rc = __zpci_store(data, req, offset); 247 return rc; 248 } 249 250 resource_size_t pcibios_align_resource(void *data, const struct resource *res, 251 resource_size_t size, 252 resource_size_t align) 253 { 254 return 0; 255 } 256 257 void __iomem *ioremap_prot(phys_addr_t phys_addr, size_t size, 258 unsigned long prot) 259 { 260 /* 261 * When PCI MIO instructions are unavailable the "physical" address 262 * encodes a hint for accessing the PCI memory space it represents. 263 * Just pass it unchanged such that ioread/iowrite can decode it. 264 */ 265 if (!static_branch_unlikely(&have_mio)) 266 return (void __iomem *)phys_addr; 267 268 return generic_ioremap_prot(phys_addr, size, __pgprot(prot)); 269 } 270 EXPORT_SYMBOL(ioremap_prot); 271 272 void iounmap(volatile void __iomem *addr) 273 { 274 if (static_branch_likely(&have_mio)) 275 generic_iounmap(addr); 276 } 277 EXPORT_SYMBOL(iounmap); 278 279 /* Create a virtual mapping cookie for a PCI BAR */ 280 static void __iomem *pci_iomap_range_fh(struct pci_dev *pdev, int bar, 281 unsigned long offset, unsigned long max) 282 { 283 struct zpci_dev *zdev = to_zpci(pdev); 284 int idx; 285 286 idx = zdev->bars[bar].map_idx; 287 spin_lock(&zpci_iomap_lock); 288 /* Detect overrun */ 289 WARN_ON(!++zpci_iomap_start[idx].count); 290 zpci_iomap_start[idx].fh = zdev->fh; 291 zpci_iomap_start[idx].bar = bar; 292 spin_unlock(&zpci_iomap_lock); 293 294 return (void __iomem *) ZPCI_ADDR(idx) + offset; 295 } 296 297 static void __iomem *pci_iomap_range_mio(struct pci_dev *pdev, int bar, 298 unsigned long offset, 299 unsigned long max) 300 { 301 unsigned long barsize = pci_resource_len(pdev, bar); 302 struct zpci_dev *zdev = to_zpci(pdev); 303 void __iomem *iova; 304 305 iova = ioremap((unsigned long) zdev->bars[bar].mio_wt, barsize); 306 return iova ? iova + offset : iova; 307 } 308 309 void __iomem *pci_iomap_range(struct pci_dev *pdev, int bar, 310 unsigned long offset, unsigned long max) 311 { 312 if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar)) 313 return NULL; 314 315 if (static_branch_likely(&have_mio)) 316 return pci_iomap_range_mio(pdev, bar, offset, max); 317 else 318 return pci_iomap_range_fh(pdev, bar, offset, max); 319 } 320 EXPORT_SYMBOL(pci_iomap_range); 321 322 void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long maxlen) 323 { 324 return pci_iomap_range(dev, bar, 0, maxlen); 325 } 326 EXPORT_SYMBOL(pci_iomap); 327 328 static void __iomem *pci_iomap_wc_range_mio(struct pci_dev *pdev, int bar, 329 unsigned long offset, unsigned long max) 330 { 331 unsigned long barsize = pci_resource_len(pdev, bar); 332 struct zpci_dev *zdev = to_zpci(pdev); 333 void __iomem *iova; 334 335 iova = ioremap((unsigned long) zdev->bars[bar].mio_wb, barsize); 336 return iova ? iova + offset : iova; 337 } 338 339 void __iomem *pci_iomap_wc_range(struct pci_dev *pdev, int bar, 340 unsigned long offset, unsigned long max) 341 { 342 if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar)) 343 return NULL; 344 345 if (static_branch_likely(&have_mio)) 346 return pci_iomap_wc_range_mio(pdev, bar, offset, max); 347 else 348 return pci_iomap_range_fh(pdev, bar, offset, max); 349 } 350 EXPORT_SYMBOL(pci_iomap_wc_range); 351 352 void __iomem *pci_iomap_wc(struct pci_dev *dev, int bar, unsigned long maxlen) 353 { 354 return pci_iomap_wc_range(dev, bar, 0, maxlen); 355 } 356 EXPORT_SYMBOL(pci_iomap_wc); 357 358 static void pci_iounmap_fh(struct pci_dev *pdev, void __iomem *addr) 359 { 360 unsigned int idx = ZPCI_IDX(addr); 361 362 spin_lock(&zpci_iomap_lock); 363 /* Detect underrun */ 364 WARN_ON(!zpci_iomap_start[idx].count); 365 if (!--zpci_iomap_start[idx].count) { 366 zpci_iomap_start[idx].fh = 0; 367 zpci_iomap_start[idx].bar = 0; 368 } 369 spin_unlock(&zpci_iomap_lock); 370 } 371 372 static void pci_iounmap_mio(struct pci_dev *pdev, void __iomem *addr) 373 { 374 iounmap(addr); 375 } 376 377 void pci_iounmap(struct pci_dev *pdev, void __iomem *addr) 378 { 379 if (static_branch_likely(&have_mio)) 380 pci_iounmap_mio(pdev, addr); 381 else 382 pci_iounmap_fh(pdev, addr); 383 } 384 EXPORT_SYMBOL(pci_iounmap); 385 386 static int pci_read(struct pci_bus *bus, unsigned int devfn, int where, 387 int size, u32 *val) 388 { 389 struct zpci_dev *zdev = zdev_from_bus(bus, devfn); 390 391 return (zdev) ? zpci_cfg_load(zdev, where, val, size) : -ENODEV; 392 } 393 394 static int pci_write(struct pci_bus *bus, unsigned int devfn, int where, 395 int size, u32 val) 396 { 397 struct zpci_dev *zdev = zdev_from_bus(bus, devfn); 398 399 return (zdev) ? zpci_cfg_store(zdev, where, val, size) : -ENODEV; 400 } 401 402 static struct pci_ops pci_root_ops = { 403 .read = pci_read, 404 .write = pci_write, 405 }; 406 407 static void zpci_map_resources(struct pci_dev *pdev) 408 { 409 struct zpci_dev *zdev = to_zpci(pdev); 410 resource_size_t len; 411 int i; 412 413 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 414 len = pci_resource_len(pdev, i); 415 if (!len) 416 continue; 417 418 if (zpci_use_mio(zdev)) 419 pdev->resource[i].start = 420 (resource_size_t __force) zdev->bars[i].mio_wt; 421 else 422 pdev->resource[i].start = (resource_size_t __force) 423 pci_iomap_range_fh(pdev, i, 0, 0); 424 pdev->resource[i].end = pdev->resource[i].start + len - 1; 425 } 426 427 zpci_iov_map_resources(pdev); 428 } 429 430 static void zpci_unmap_resources(struct pci_dev *pdev) 431 { 432 struct zpci_dev *zdev = to_zpci(pdev); 433 resource_size_t len; 434 int i; 435 436 if (zpci_use_mio(zdev)) 437 return; 438 439 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 440 len = pci_resource_len(pdev, i); 441 if (!len) 442 continue; 443 pci_iounmap_fh(pdev, (void __iomem __force *) 444 pdev->resource[i].start); 445 } 446 } 447 448 static int zpci_alloc_iomap(struct zpci_dev *zdev) 449 { 450 unsigned long entry; 451 452 spin_lock(&zpci_iomap_lock); 453 entry = find_first_zero_bit(zpci_iomap_bitmap, ZPCI_IOMAP_ENTRIES); 454 if (entry == ZPCI_IOMAP_ENTRIES) { 455 spin_unlock(&zpci_iomap_lock); 456 return -ENOSPC; 457 } 458 set_bit(entry, zpci_iomap_bitmap); 459 spin_unlock(&zpci_iomap_lock); 460 return entry; 461 } 462 463 static void zpci_free_iomap(struct zpci_dev *zdev, int entry) 464 { 465 spin_lock(&zpci_iomap_lock); 466 memset(&zpci_iomap_start[entry], 0, sizeof(struct zpci_iomap_entry)); 467 clear_bit(entry, zpci_iomap_bitmap); 468 spin_unlock(&zpci_iomap_lock); 469 } 470 471 static void zpci_do_update_iomap_fh(struct zpci_dev *zdev, u32 fh) 472 { 473 int bar, idx; 474 475 spin_lock(&zpci_iomap_lock); 476 for (bar = 0; bar < PCI_STD_NUM_BARS; bar++) { 477 if (!zdev->bars[bar].size) 478 continue; 479 idx = zdev->bars[bar].map_idx; 480 if (!zpci_iomap_start[idx].count) 481 continue; 482 WRITE_ONCE(zpci_iomap_start[idx].fh, zdev->fh); 483 } 484 spin_unlock(&zpci_iomap_lock); 485 } 486 487 void zpci_update_fh(struct zpci_dev *zdev, u32 fh) 488 { 489 if (!fh || zdev->fh == fh) 490 return; 491 492 zdev->fh = fh; 493 if (zpci_use_mio(zdev)) 494 return; 495 if (zdev->has_resources && zdev_enabled(zdev)) 496 zpci_do_update_iomap_fh(zdev, fh); 497 } 498 499 static struct resource *__alloc_res(struct zpci_dev *zdev, unsigned long start, 500 unsigned long size, unsigned long flags) 501 { 502 struct resource *r; 503 504 r = kzalloc(sizeof(*r), GFP_KERNEL); 505 if (!r) 506 return NULL; 507 508 r->start = start; 509 r->end = r->start + size - 1; 510 r->flags = flags; 511 r->name = zdev->res_name; 512 513 if (request_resource(&iomem_resource, r)) { 514 kfree(r); 515 return NULL; 516 } 517 return r; 518 } 519 520 int zpci_setup_bus_resources(struct zpci_dev *zdev) 521 { 522 unsigned long addr, size, flags; 523 struct resource *res; 524 int i, entry; 525 526 snprintf(zdev->res_name, sizeof(zdev->res_name), 527 "PCI Bus %04x:%02x", zdev->uid, ZPCI_BUS_NR); 528 529 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 530 if (!zdev->bars[i].size) 531 continue; 532 entry = zpci_alloc_iomap(zdev); 533 if (entry < 0) 534 return entry; 535 zdev->bars[i].map_idx = entry; 536 537 /* only MMIO is supported */ 538 flags = IORESOURCE_MEM; 539 if (zdev->bars[i].val & 8) 540 flags |= IORESOURCE_PREFETCH; 541 if (zdev->bars[i].val & 4) 542 flags |= IORESOURCE_MEM_64; 543 544 if (zpci_use_mio(zdev)) 545 addr = (unsigned long) zdev->bars[i].mio_wt; 546 else 547 addr = ZPCI_ADDR(entry); 548 size = 1UL << zdev->bars[i].size; 549 550 res = __alloc_res(zdev, addr, size, flags); 551 if (!res) { 552 zpci_free_iomap(zdev, entry); 553 return -ENOMEM; 554 } 555 zdev->bars[i].res = res; 556 } 557 zdev->has_resources = 1; 558 559 return 0; 560 } 561 562 static void zpci_cleanup_bus_resources(struct zpci_dev *zdev) 563 { 564 struct resource *res; 565 int i; 566 567 pci_lock_rescan_remove(); 568 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 569 res = zdev->bars[i].res; 570 if (!res) 571 continue; 572 573 release_resource(res); 574 pci_bus_remove_resource(zdev->zbus->bus, res); 575 zpci_free_iomap(zdev, zdev->bars[i].map_idx); 576 zdev->bars[i].res = NULL; 577 kfree(res); 578 } 579 zdev->has_resources = 0; 580 pci_unlock_rescan_remove(); 581 } 582 583 int pcibios_device_add(struct pci_dev *pdev) 584 { 585 struct zpci_dev *zdev = to_zpci(pdev); 586 struct resource *res; 587 int i; 588 589 /* The pdev has a reference to the zdev via its bus */ 590 zpci_zdev_get(zdev); 591 if (pdev->is_physfn) 592 pdev->no_vf_scan = 1; 593 594 zpci_map_resources(pdev); 595 596 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 597 res = &pdev->resource[i]; 598 if (res->parent || !res->flags) 599 continue; 600 pci_claim_resource(pdev, i); 601 } 602 603 return 0; 604 } 605 606 void pcibios_release_device(struct pci_dev *pdev) 607 { 608 struct zpci_dev *zdev = to_zpci(pdev); 609 610 zpci_unmap_resources(pdev); 611 zpci_zdev_put(zdev); 612 } 613 614 int pcibios_enable_device(struct pci_dev *pdev, int mask) 615 { 616 struct zpci_dev *zdev = to_zpci(pdev); 617 618 zpci_debug_init_device(zdev, dev_name(&pdev->dev)); 619 zpci_fmb_enable_device(zdev); 620 621 return pci_enable_resources(pdev, mask); 622 } 623 624 void pcibios_disable_device(struct pci_dev *pdev) 625 { 626 struct zpci_dev *zdev = to_zpci(pdev); 627 628 zpci_fmb_disable_device(zdev); 629 zpci_debug_exit_device(zdev); 630 } 631 632 static int __zpci_register_domain(int domain) 633 { 634 spin_lock(&zpci_domain_lock); 635 if (test_bit(domain, zpci_domain)) { 636 spin_unlock(&zpci_domain_lock); 637 pr_err("Domain %04x is already assigned\n", domain); 638 return -EEXIST; 639 } 640 set_bit(domain, zpci_domain); 641 spin_unlock(&zpci_domain_lock); 642 return domain; 643 } 644 645 static int __zpci_alloc_domain(void) 646 { 647 int domain; 648 649 spin_lock(&zpci_domain_lock); 650 /* 651 * We can always auto allocate domains below ZPCI_NR_DEVICES. 652 * There is either a free domain or we have reached the maximum in 653 * which case we would have bailed earlier. 654 */ 655 domain = find_first_zero_bit(zpci_domain, ZPCI_NR_DEVICES); 656 set_bit(domain, zpci_domain); 657 spin_unlock(&zpci_domain_lock); 658 return domain; 659 } 660 661 int zpci_alloc_domain(int domain) 662 { 663 if (zpci_unique_uid) { 664 if (domain) 665 return __zpci_register_domain(domain); 666 pr_warn("UID checking was active but no UID is provided: switching to automatic domain allocation\n"); 667 update_uid_checking(false); 668 } 669 return __zpci_alloc_domain(); 670 } 671 672 void zpci_free_domain(int domain) 673 { 674 spin_lock(&zpci_domain_lock); 675 clear_bit(domain, zpci_domain); 676 spin_unlock(&zpci_domain_lock); 677 } 678 679 680 int zpci_enable_device(struct zpci_dev *zdev) 681 { 682 u32 fh = zdev->fh; 683 int rc = 0; 684 685 if (clp_enable_fh(zdev, &fh, ZPCI_NR_DMA_SPACES)) 686 rc = -EIO; 687 else 688 zpci_update_fh(zdev, fh); 689 return rc; 690 } 691 EXPORT_SYMBOL_GPL(zpci_enable_device); 692 693 int zpci_reenable_device(struct zpci_dev *zdev) 694 { 695 u8 status; 696 int rc; 697 698 rc = zpci_enable_device(zdev); 699 if (rc) 700 return rc; 701 702 rc = zpci_iommu_register_ioat(zdev, &status); 703 if (rc) 704 zpci_disable_device(zdev); 705 706 return rc; 707 } 708 EXPORT_SYMBOL_GPL(zpci_reenable_device); 709 710 int zpci_disable_device(struct zpci_dev *zdev) 711 { 712 u32 fh = zdev->fh; 713 int cc, rc = 0; 714 715 cc = clp_disable_fh(zdev, &fh); 716 if (!cc) { 717 zpci_update_fh(zdev, fh); 718 } else if (cc == CLP_RC_SETPCIFN_ALRDY) { 719 pr_info("Disabling PCI function %08x had no effect as it was already disabled\n", 720 zdev->fid); 721 /* Function is already disabled - update handle */ 722 rc = clp_refresh_fh(zdev->fid, &fh); 723 if (!rc) { 724 zpci_update_fh(zdev, fh); 725 rc = -EINVAL; 726 } 727 } else { 728 rc = -EIO; 729 } 730 return rc; 731 } 732 EXPORT_SYMBOL_GPL(zpci_disable_device); 733 734 /** 735 * zpci_hot_reset_device - perform a reset of the given zPCI function 736 * @zdev: the slot which should be reset 737 * 738 * Performs a low level reset of the zPCI function. The reset is low level in 739 * the sense that the zPCI function can be reset without detaching it from the 740 * common PCI subsystem. The reset may be performed while under control of 741 * either DMA or IOMMU APIs in which case the existing DMA/IOMMU translation 742 * table is reinstated at the end of the reset. 743 * 744 * After the reset the functions internal state is reset to an initial state 745 * equivalent to its state during boot when first probing a driver. 746 * Consequently after reset the PCI function requires re-initialization via the 747 * common PCI code including re-enabling IRQs via pci_alloc_irq_vectors() 748 * and enabling the function via e.g. pci_enable_device_flags(). The caller 749 * must guard against concurrent reset attempts. 750 * 751 * In most cases this function should not be called directly but through 752 * pci_reset_function() or pci_reset_bus() which handle the save/restore and 753 * locking - asserted by lockdep. 754 * 755 * Return: 0 on success and an error value otherwise 756 */ 757 int zpci_hot_reset_device(struct zpci_dev *zdev) 758 { 759 int rc; 760 761 lockdep_assert_held(&zdev->state_lock); 762 zpci_dbg(3, "rst fid:%x, fh:%x\n", zdev->fid, zdev->fh); 763 if (zdev_enabled(zdev)) { 764 /* Disables device access, DMAs and IRQs (reset state) */ 765 rc = zpci_disable_device(zdev); 766 /* 767 * Due to a z/VM vs LPAR inconsistency in the error state the 768 * FH may indicate an enabled device but disable says the 769 * device is already disabled don't treat it as an error here. 770 */ 771 if (rc == -EINVAL) 772 rc = 0; 773 if (rc) 774 return rc; 775 } 776 777 rc = zpci_reenable_device(zdev); 778 779 return rc; 780 } 781 782 /** 783 * zpci_create_device() - Create a new zpci_dev and add it to the zbus 784 * @fid: Function ID of the device to be created 785 * @fh: Current Function Handle of the device to be created 786 * @state: Initial state after creation either Standby or Configured 787 * 788 * Allocates a new struct zpci_dev and queries the platform for its details. 789 * If successful the device can subsequently be added to the zPCI subsystem 790 * using zpci_add_device(). 791 * 792 * Returns: the zdev on success or an error pointer otherwise 793 */ 794 struct zpci_dev *zpci_create_device(u32 fid, u32 fh, enum zpci_state state) 795 { 796 struct zpci_dev *zdev; 797 int rc; 798 799 zdev = kzalloc(sizeof(*zdev), GFP_KERNEL); 800 if (!zdev) 801 return ERR_PTR(-ENOMEM); 802 803 /* FID and Function Handle are the static/dynamic identifiers */ 804 zdev->fid = fid; 805 zdev->fh = fh; 806 807 /* Query function properties and update zdev */ 808 rc = clp_query_pci_fn(zdev); 809 if (rc) 810 goto error; 811 zdev->state = state; 812 813 mutex_init(&zdev->state_lock); 814 mutex_init(&zdev->fmb_lock); 815 mutex_init(&zdev->kzdev_lock); 816 817 return zdev; 818 819 error: 820 zpci_dbg(0, "crt fid:%x, rc:%d\n", fid, rc); 821 kfree(zdev); 822 return ERR_PTR(rc); 823 } 824 825 /** 826 * zpci_add_device() - Add a previously created zPCI device to the zPCI subsystem 827 * @zdev: The zPCI device to be added 828 * 829 * A struct zpci_dev is added to the zPCI subsystem and to a virtual PCI bus creating 830 * a new one as necessary. A hotplug slot is created and events start to be handled. 831 * If successful from this point on zpci_zdev_get() and zpci_zdev_put() must be used. 832 * If adding the struct zpci_dev fails the device was not added and should be freed. 833 * 834 * Return: 0 on success, or an error code otherwise 835 */ 836 int zpci_add_device(struct zpci_dev *zdev) 837 { 838 int rc; 839 840 zpci_dbg(1, "add fid:%x, fh:%x, c:%d\n", zdev->fid, zdev->fh, zdev->state); 841 rc = zpci_init_iommu(zdev); 842 if (rc) 843 goto error; 844 845 rc = zpci_bus_device_register(zdev, &pci_root_ops); 846 if (rc) 847 goto error_destroy_iommu; 848 849 kref_init(&zdev->kref); 850 spin_lock(&zpci_list_lock); 851 list_add_tail(&zdev->entry, &zpci_list); 852 spin_unlock(&zpci_list_lock); 853 return 0; 854 855 error_destroy_iommu: 856 zpci_destroy_iommu(zdev); 857 error: 858 zpci_dbg(0, "add fid:%x, rc:%d\n", zdev->fid, rc); 859 return rc; 860 } 861 862 bool zpci_is_device_configured(struct zpci_dev *zdev) 863 { 864 enum zpci_state state = zdev->state; 865 866 return state != ZPCI_FN_STATE_RESERVED && 867 state != ZPCI_FN_STATE_STANDBY; 868 } 869 870 /** 871 * zpci_scan_configured_device() - Scan a freshly configured zpci_dev 872 * @zdev: The zpci_dev to be configured 873 * @fh: The general function handle supplied by the platform 874 * 875 * Given a device in the configuration state Configured, enables, scans and 876 * adds it to the common code PCI subsystem if possible. If any failure occurs, 877 * the zpci_dev is left disabled. 878 * 879 * Return: 0 on success, or an error code otherwise 880 */ 881 int zpci_scan_configured_device(struct zpci_dev *zdev, u32 fh) 882 { 883 zpci_update_fh(zdev, fh); 884 return zpci_bus_scan_device(zdev); 885 } 886 887 /** 888 * zpci_deconfigure_device() - Deconfigure a zpci_dev 889 * @zdev: The zpci_dev to configure 890 * 891 * Deconfigure a zPCI function that is currently configured and possibly known 892 * to the common code PCI subsystem. 893 * If any failure occurs the device is left as is. 894 * 895 * Return: 0 on success, or an error code otherwise 896 */ 897 int zpci_deconfigure_device(struct zpci_dev *zdev) 898 { 899 int rc; 900 901 lockdep_assert_held(&zdev->state_lock); 902 if (zdev->state != ZPCI_FN_STATE_CONFIGURED) 903 return 0; 904 905 if (zdev->zbus->bus) 906 zpci_bus_remove_device(zdev, false); 907 908 if (zdev_enabled(zdev)) { 909 rc = zpci_disable_device(zdev); 910 if (rc) 911 return rc; 912 } 913 914 rc = sclp_pci_deconfigure(zdev->fid); 915 zpci_dbg(3, "deconf fid:%x, rc:%d\n", zdev->fid, rc); 916 if (rc) 917 return rc; 918 zdev->state = ZPCI_FN_STATE_STANDBY; 919 920 return 0; 921 } 922 923 /** 924 * zpci_device_reserved() - Mark device as reserved 925 * @zdev: the zpci_dev that was reserved 926 * 927 * Handle the case that a given zPCI function was reserved by another system. 928 * After a call to this function the zpci_dev can not be found via 929 * get_zdev_by_fid() anymore but may still be accessible via existing 930 * references though it will not be functional anymore. 931 */ 932 void zpci_device_reserved(struct zpci_dev *zdev) 933 { 934 /* 935 * Remove device from zpci_list as it is going away. This also 936 * makes sure we ignore subsequent zPCI events for this device. 937 */ 938 spin_lock(&zpci_list_lock); 939 list_del(&zdev->entry); 940 spin_unlock(&zpci_list_lock); 941 zdev->state = ZPCI_FN_STATE_RESERVED; 942 zpci_dbg(3, "rsv fid:%x\n", zdev->fid); 943 zpci_zdev_put(zdev); 944 } 945 946 void zpci_release_device(struct kref *kref) 947 { 948 struct zpci_dev *zdev = container_of(kref, struct zpci_dev, kref); 949 950 WARN_ON(zdev->state != ZPCI_FN_STATE_RESERVED); 951 952 if (zdev->zbus->bus) 953 zpci_bus_remove_device(zdev, false); 954 955 if (zdev_enabled(zdev)) 956 zpci_disable_device(zdev); 957 958 if (zdev->has_hp_slot) 959 zpci_exit_slot(zdev); 960 961 if (zdev->has_resources) 962 zpci_cleanup_bus_resources(zdev); 963 964 zpci_bus_device_unregister(zdev); 965 zpci_destroy_iommu(zdev); 966 zpci_dbg(3, "rem fid:%x\n", zdev->fid); 967 kfree_rcu(zdev, rcu); 968 } 969 970 int zpci_report_error(struct pci_dev *pdev, 971 struct zpci_report_error_header *report) 972 { 973 struct zpci_dev *zdev = to_zpci(pdev); 974 975 return sclp_pci_report(report, zdev->fh, zdev->fid); 976 } 977 EXPORT_SYMBOL(zpci_report_error); 978 979 /** 980 * zpci_clear_error_state() - Clears the zPCI error state of the device 981 * @zdev: The zdev for which the zPCI error state should be reset 982 * 983 * Clear the zPCI error state of the device. If clearing the zPCI error state 984 * fails the device is left in the error state. In this case it may make sense 985 * to call zpci_io_perm_failure() on the associated pdev if it exists. 986 * 987 * Returns: 0 on success, -EIO otherwise 988 */ 989 int zpci_clear_error_state(struct zpci_dev *zdev) 990 { 991 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_RESET_ERROR); 992 struct zpci_fib fib = {0}; 993 u8 status; 994 int cc; 995 996 cc = zpci_mod_fc(req, &fib, &status); 997 if (cc) { 998 zpci_dbg(3, "ces fid:%x, cc:%d, status:%x\n", zdev->fid, cc, status); 999 return -EIO; 1000 } 1001 1002 return 0; 1003 } 1004 1005 /** 1006 * zpci_reset_load_store_blocked() - Re-enables L/S from error state 1007 * @zdev: The zdev for which to unblock load/store access 1008 * 1009 * Re-enables load/store access for a PCI function in the error state while 1010 * keeping DMA blocked. In this state drivers can poke MMIO space to determine 1011 * if error recovery is possible while catching any rogue DMA access from the 1012 * device. 1013 * 1014 * Returns: 0 on success, -EIO otherwise 1015 */ 1016 int zpci_reset_load_store_blocked(struct zpci_dev *zdev) 1017 { 1018 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_RESET_BLOCK); 1019 struct zpci_fib fib = {0}; 1020 u8 status; 1021 int cc; 1022 1023 cc = zpci_mod_fc(req, &fib, &status); 1024 if (cc) { 1025 zpci_dbg(3, "rls fid:%x, cc:%d, status:%x\n", zdev->fid, cc, status); 1026 return -EIO; 1027 } 1028 1029 return 0; 1030 } 1031 1032 static int zpci_mem_init(void) 1033 { 1034 BUILD_BUG_ON(!is_power_of_2(__alignof__(struct zpci_fmb)) || 1035 __alignof__(struct zpci_fmb) < sizeof(struct zpci_fmb)); 1036 1037 zdev_fmb_cache = kmem_cache_create("PCI_FMB_cache", sizeof(struct zpci_fmb), 1038 __alignof__(struct zpci_fmb), 0, NULL); 1039 if (!zdev_fmb_cache) 1040 goto error_fmb; 1041 1042 zpci_iomap_start = kcalloc(ZPCI_IOMAP_ENTRIES, 1043 sizeof(*zpci_iomap_start), GFP_KERNEL); 1044 if (!zpci_iomap_start) 1045 goto error_iomap; 1046 1047 zpci_iomap_bitmap = kcalloc(BITS_TO_LONGS(ZPCI_IOMAP_ENTRIES), 1048 sizeof(*zpci_iomap_bitmap), GFP_KERNEL); 1049 if (!zpci_iomap_bitmap) 1050 goto error_iomap_bitmap; 1051 1052 if (static_branch_likely(&have_mio)) 1053 clp_setup_writeback_mio(); 1054 1055 return 0; 1056 error_iomap_bitmap: 1057 kfree(zpci_iomap_start); 1058 error_iomap: 1059 kmem_cache_destroy(zdev_fmb_cache); 1060 error_fmb: 1061 return -ENOMEM; 1062 } 1063 1064 static void zpci_mem_exit(void) 1065 { 1066 kfree(zpci_iomap_bitmap); 1067 kfree(zpci_iomap_start); 1068 kmem_cache_destroy(zdev_fmb_cache); 1069 } 1070 1071 static unsigned int s390_pci_probe __initdata = 1; 1072 unsigned int s390_pci_force_floating __initdata; 1073 static unsigned int s390_pci_initialized; 1074 1075 char * __init pcibios_setup(char *str) 1076 { 1077 if (!strcmp(str, "off")) { 1078 s390_pci_probe = 0; 1079 return NULL; 1080 } 1081 if (!strcmp(str, "nomio")) { 1082 clear_machine_feature(MFEATURE_PCI_MIO); 1083 return NULL; 1084 } 1085 if (!strcmp(str, "force_floating")) { 1086 s390_pci_force_floating = 1; 1087 return NULL; 1088 } 1089 if (!strcmp(str, "norid")) { 1090 s390_pci_no_rid = 1; 1091 return NULL; 1092 } 1093 return str; 1094 } 1095 1096 bool zpci_is_enabled(void) 1097 { 1098 return s390_pci_initialized; 1099 } 1100 1101 static int zpci_cmp_rid(void *priv, const struct list_head *a, 1102 const struct list_head *b) 1103 { 1104 struct zpci_dev *za = container_of(a, struct zpci_dev, entry); 1105 struct zpci_dev *zb = container_of(b, struct zpci_dev, entry); 1106 1107 /* 1108 * PCI functions without RID available maintain original order 1109 * between themselves but sort before those with RID. 1110 */ 1111 if (za->rid == zb->rid) 1112 return za->rid_available > zb->rid_available; 1113 /* 1114 * PCI functions with RID sort by RID ascending. 1115 */ 1116 return za->rid > zb->rid; 1117 } 1118 1119 static void zpci_add_devices(struct list_head *scan_list) 1120 { 1121 struct zpci_dev *zdev, *tmp; 1122 1123 list_sort(NULL, scan_list, &zpci_cmp_rid); 1124 list_for_each_entry_safe(zdev, tmp, scan_list, entry) { 1125 list_del_init(&zdev->entry); 1126 if (zpci_add_device(zdev)) 1127 kfree(zdev); 1128 } 1129 } 1130 1131 int zpci_scan_devices(void) 1132 { 1133 LIST_HEAD(scan_list); 1134 int rc; 1135 1136 rc = clp_scan_pci_devices(&scan_list); 1137 if (rc) 1138 return rc; 1139 1140 zpci_add_devices(&scan_list); 1141 zpci_bus_scan_busses(); 1142 return 0; 1143 } 1144 1145 static int __init pci_base_init(void) 1146 { 1147 int rc; 1148 1149 if (!s390_pci_probe) 1150 return 0; 1151 1152 if (!test_facility(69) || !test_facility(71)) { 1153 pr_info("PCI is not supported because CPU facilities 69 or 71 are not available\n"); 1154 return 0; 1155 } 1156 1157 if (test_machine_feature(MFEATURE_PCI_MIO)) { 1158 static_branch_enable(&have_mio); 1159 system_ctl_set_bit(2, CR2_MIO_ADDRESSING_BIT); 1160 } 1161 1162 rc = zpci_debug_init(); 1163 if (rc) 1164 goto out; 1165 1166 rc = zpci_mem_init(); 1167 if (rc) 1168 goto out_mem; 1169 1170 rc = zpci_irq_init(); 1171 if (rc) 1172 goto out_irq; 1173 1174 rc = zpci_scan_devices(); 1175 if (rc) 1176 goto out_find; 1177 1178 s390_pci_initialized = 1; 1179 return 0; 1180 1181 out_find: 1182 zpci_irq_exit(); 1183 out_irq: 1184 zpci_mem_exit(); 1185 out_mem: 1186 zpci_debug_exit(); 1187 out: 1188 return rc; 1189 } 1190 subsys_initcall_sync(pci_base_init); 1191