xref: /linux/mm/khugepaged.c (revision cb5573868ea85ddbc74dd9a917acd1e434d21390)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/mm.h>
5 #include <linux/sched.h>
6 #include <linux/sched/mm.h>
7 #include <linux/mmu_notifier.h>
8 #include <linux/rmap.h>
9 #include <linux/swap.h>
10 #include <linux/mm_inline.h>
11 #include <linux/kthread.h>
12 #include <linux/khugepaged.h>
13 #include <linux/freezer.h>
14 #include <linux/mman.h>
15 #include <linux/hashtable.h>
16 #include <linux/userfaultfd_k.h>
17 #include <linux/page_idle.h>
18 #include <linux/page_table_check.h>
19 #include <linux/rcupdate_wait.h>
20 #include <linux/leafops.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/dax.h>
23 #include <linux/ksm.h>
24 #include <linux/pgalloc.h>
25 #include <linux/backing-dev.h>
26 
27 #include <asm/tlb.h>
28 #include "internal.h"
29 #include "mm_slot.h"
30 
31 enum scan_result {
32 	SCAN_FAIL,
33 	SCAN_SUCCEED,
34 	SCAN_NO_PTE_TABLE,
35 	SCAN_PMD_MAPPED,
36 	SCAN_EXCEED_NONE_PTE,
37 	SCAN_EXCEED_SWAP_PTE,
38 	SCAN_EXCEED_SHARED_PTE,
39 	SCAN_PTE_NON_PRESENT,
40 	SCAN_PTE_UFFD_WP,
41 	SCAN_PTE_MAPPED_HUGEPAGE,
42 	SCAN_LACK_REFERENCED_PAGE,
43 	SCAN_PAGE_NULL,
44 	SCAN_SCAN_ABORT,
45 	SCAN_PAGE_COUNT,
46 	SCAN_PAGE_LRU,
47 	SCAN_PAGE_LOCK,
48 	SCAN_PAGE_ANON,
49 	SCAN_PAGE_COMPOUND,
50 	SCAN_ANY_PROCESS,
51 	SCAN_VMA_NULL,
52 	SCAN_VMA_CHECK,
53 	SCAN_ADDRESS_RANGE,
54 	SCAN_DEL_PAGE_LRU,
55 	SCAN_ALLOC_HUGE_PAGE_FAIL,
56 	SCAN_CGROUP_CHARGE_FAIL,
57 	SCAN_TRUNCATED,
58 	SCAN_PAGE_HAS_PRIVATE,
59 	SCAN_STORE_FAILED,
60 	SCAN_COPY_MC,
61 	SCAN_PAGE_FILLED,
62 	SCAN_PAGE_DIRTY_OR_WRITEBACK,
63 };
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/huge_memory.h>
67 
68 static struct task_struct *khugepaged_thread __read_mostly;
69 static DEFINE_MUTEX(khugepaged_mutex);
70 
71 /* default scan 8*HPAGE_PMD_NR ptes (or vmas) every 10 second */
72 static unsigned int khugepaged_pages_to_scan __read_mostly;
73 static unsigned int khugepaged_pages_collapsed;
74 static unsigned int khugepaged_full_scans;
75 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
76 /* during fragmentation poll the hugepage allocator once every minute */
77 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
78 static unsigned long khugepaged_sleep_expire;
79 static DEFINE_SPINLOCK(khugepaged_mm_lock);
80 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
81 /*
82  * default collapse hugepages if there is at least one pte mapped like
83  * it would have happened if the vma was large enough during page
84  * fault.
85  *
86  * Note that these are only respected if collapse was initiated by khugepaged.
87  */
88 unsigned int khugepaged_max_ptes_none __read_mostly;
89 static unsigned int khugepaged_max_ptes_swap __read_mostly;
90 static unsigned int khugepaged_max_ptes_shared __read_mostly;
91 
92 #define MM_SLOTS_HASH_BITS 10
93 static DEFINE_READ_MOSTLY_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
94 
95 static struct kmem_cache *mm_slot_cache __ro_after_init;
96 
97 struct collapse_control {
98 	bool is_khugepaged;
99 
100 	/* Num pages scanned per node */
101 	u32 node_load[MAX_NUMNODES];
102 
103 	/* nodemask for allocation fallback */
104 	nodemask_t alloc_nmask;
105 };
106 
107 /**
108  * struct khugepaged_scan - cursor for scanning
109  * @mm_head: the head of the mm list to scan
110  * @mm_slot: the current mm_slot we are scanning
111  * @address: the next address inside that to be scanned
112  *
113  * There is only the one khugepaged_scan instance of this cursor structure.
114  */
115 struct khugepaged_scan {
116 	struct list_head mm_head;
117 	struct mm_slot *mm_slot;
118 	unsigned long address;
119 };
120 
121 static struct khugepaged_scan khugepaged_scan = {
122 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
123 };
124 
125 #ifdef CONFIG_SYSFS
126 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
127 					 struct kobj_attribute *attr,
128 					 char *buf)
129 {
130 	return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs);
131 }
132 
133 static ssize_t __sleep_millisecs_store(const char *buf, size_t count,
134 				       unsigned int *millisecs)
135 {
136 	unsigned int msecs;
137 	int err;
138 
139 	err = kstrtouint(buf, 10, &msecs);
140 	if (err)
141 		return -EINVAL;
142 
143 	*millisecs = msecs;
144 	khugepaged_sleep_expire = 0;
145 	wake_up_interruptible(&khugepaged_wait);
146 
147 	return count;
148 }
149 
150 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
151 					  struct kobj_attribute *attr,
152 					  const char *buf, size_t count)
153 {
154 	return __sleep_millisecs_store(buf, count, &khugepaged_scan_sleep_millisecs);
155 }
156 static struct kobj_attribute scan_sleep_millisecs_attr =
157 	__ATTR_RW(scan_sleep_millisecs);
158 
159 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
160 					  struct kobj_attribute *attr,
161 					  char *buf)
162 {
163 	return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
164 }
165 
166 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
167 					   struct kobj_attribute *attr,
168 					   const char *buf, size_t count)
169 {
170 	return __sleep_millisecs_store(buf, count, &khugepaged_alloc_sleep_millisecs);
171 }
172 static struct kobj_attribute alloc_sleep_millisecs_attr =
173 	__ATTR_RW(alloc_sleep_millisecs);
174 
175 static ssize_t pages_to_scan_show(struct kobject *kobj,
176 				  struct kobj_attribute *attr,
177 				  char *buf)
178 {
179 	return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan);
180 }
181 static ssize_t pages_to_scan_store(struct kobject *kobj,
182 				   struct kobj_attribute *attr,
183 				   const char *buf, size_t count)
184 {
185 	unsigned int pages;
186 	int err;
187 
188 	err = kstrtouint(buf, 10, &pages);
189 	if (err || !pages)
190 		return -EINVAL;
191 
192 	khugepaged_pages_to_scan = pages;
193 
194 	return count;
195 }
196 static struct kobj_attribute pages_to_scan_attr =
197 	__ATTR_RW(pages_to_scan);
198 
199 static ssize_t pages_collapsed_show(struct kobject *kobj,
200 				    struct kobj_attribute *attr,
201 				    char *buf)
202 {
203 	return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed);
204 }
205 static struct kobj_attribute pages_collapsed_attr =
206 	__ATTR_RO(pages_collapsed);
207 
208 static ssize_t full_scans_show(struct kobject *kobj,
209 			       struct kobj_attribute *attr,
210 			       char *buf)
211 {
212 	return sysfs_emit(buf, "%u\n", khugepaged_full_scans);
213 }
214 static struct kobj_attribute full_scans_attr =
215 	__ATTR_RO(full_scans);
216 
217 static ssize_t defrag_show(struct kobject *kobj,
218 			   struct kobj_attribute *attr, char *buf)
219 {
220 	return single_hugepage_flag_show(kobj, attr, buf,
221 					 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
222 }
223 static ssize_t defrag_store(struct kobject *kobj,
224 			    struct kobj_attribute *attr,
225 			    const char *buf, size_t count)
226 {
227 	return single_hugepage_flag_store(kobj, attr, buf, count,
228 				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
229 }
230 static struct kobj_attribute khugepaged_defrag_attr =
231 	__ATTR_RW(defrag);
232 
233 /*
234  * max_ptes_none controls if khugepaged should collapse hugepages over
235  * any unmapped ptes in turn potentially increasing the memory
236  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
237  * reduce the available free memory in the system as it
238  * runs. Increasing max_ptes_none will instead potentially reduce the
239  * free memory in the system during the khugepaged scan.
240  */
241 static ssize_t max_ptes_none_show(struct kobject *kobj,
242 				  struct kobj_attribute *attr,
243 				  char *buf)
244 {
245 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none);
246 }
247 static ssize_t max_ptes_none_store(struct kobject *kobj,
248 				   struct kobj_attribute *attr,
249 				   const char *buf, size_t count)
250 {
251 	int err;
252 	unsigned long max_ptes_none;
253 
254 	err = kstrtoul(buf, 10, &max_ptes_none);
255 	if (err || max_ptes_none > HPAGE_PMD_NR - 1)
256 		return -EINVAL;
257 
258 	khugepaged_max_ptes_none = max_ptes_none;
259 
260 	return count;
261 }
262 static struct kobj_attribute khugepaged_max_ptes_none_attr =
263 	__ATTR_RW(max_ptes_none);
264 
265 static ssize_t max_ptes_swap_show(struct kobject *kobj,
266 				  struct kobj_attribute *attr,
267 				  char *buf)
268 {
269 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap);
270 }
271 
272 static ssize_t max_ptes_swap_store(struct kobject *kobj,
273 				   struct kobj_attribute *attr,
274 				   const char *buf, size_t count)
275 {
276 	int err;
277 	unsigned long max_ptes_swap;
278 
279 	err  = kstrtoul(buf, 10, &max_ptes_swap);
280 	if (err || max_ptes_swap > HPAGE_PMD_NR - 1)
281 		return -EINVAL;
282 
283 	khugepaged_max_ptes_swap = max_ptes_swap;
284 
285 	return count;
286 }
287 
288 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
289 	__ATTR_RW(max_ptes_swap);
290 
291 static ssize_t max_ptes_shared_show(struct kobject *kobj,
292 				    struct kobj_attribute *attr,
293 				    char *buf)
294 {
295 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared);
296 }
297 
298 static ssize_t max_ptes_shared_store(struct kobject *kobj,
299 				     struct kobj_attribute *attr,
300 				     const char *buf, size_t count)
301 {
302 	int err;
303 	unsigned long max_ptes_shared;
304 
305 	err  = kstrtoul(buf, 10, &max_ptes_shared);
306 	if (err || max_ptes_shared > HPAGE_PMD_NR - 1)
307 		return -EINVAL;
308 
309 	khugepaged_max_ptes_shared = max_ptes_shared;
310 
311 	return count;
312 }
313 
314 static struct kobj_attribute khugepaged_max_ptes_shared_attr =
315 	__ATTR_RW(max_ptes_shared);
316 
317 static struct attribute *khugepaged_attr[] = {
318 	&khugepaged_defrag_attr.attr,
319 	&khugepaged_max_ptes_none_attr.attr,
320 	&khugepaged_max_ptes_swap_attr.attr,
321 	&khugepaged_max_ptes_shared_attr.attr,
322 	&pages_to_scan_attr.attr,
323 	&pages_collapsed_attr.attr,
324 	&full_scans_attr.attr,
325 	&scan_sleep_millisecs_attr.attr,
326 	&alloc_sleep_millisecs_attr.attr,
327 	NULL,
328 };
329 
330 struct attribute_group khugepaged_attr_group = {
331 	.attrs = khugepaged_attr,
332 	.name = "khugepaged",
333 };
334 #endif /* CONFIG_SYSFS */
335 
336 static bool pte_none_or_zero(pte_t pte)
337 {
338 	if (pte_none(pte))
339 		return true;
340 	return pte_present(pte) && is_zero_pfn(pte_pfn(pte));
341 }
342 
343 int hugepage_madvise(struct vm_area_struct *vma,
344 		     vm_flags_t *vm_flags, int advice)
345 {
346 	switch (advice) {
347 	case MADV_HUGEPAGE:
348 		*vm_flags &= ~VM_NOHUGEPAGE;
349 		*vm_flags |= VM_HUGEPAGE;
350 		/*
351 		 * If the vma become good for khugepaged to scan,
352 		 * register it here without waiting a page fault that
353 		 * may not happen any time soon.
354 		 */
355 		khugepaged_enter_vma(vma, *vm_flags);
356 		break;
357 	case MADV_NOHUGEPAGE:
358 		*vm_flags &= ~VM_HUGEPAGE;
359 		*vm_flags |= VM_NOHUGEPAGE;
360 		/*
361 		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
362 		 * this vma even if we leave the mm registered in khugepaged if
363 		 * it got registered before VM_NOHUGEPAGE was set.
364 		 */
365 		break;
366 	}
367 
368 	return 0;
369 }
370 
371 int __init khugepaged_init(void)
372 {
373 	mm_slot_cache = KMEM_CACHE(mm_slot, 0);
374 	if (!mm_slot_cache)
375 		return -ENOMEM;
376 
377 	khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
378 	khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
379 	khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
380 	khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2;
381 
382 	return 0;
383 }
384 
385 void __init khugepaged_destroy(void)
386 {
387 	kmem_cache_destroy(mm_slot_cache);
388 }
389 
390 static inline int hpage_collapse_test_exit(struct mm_struct *mm)
391 {
392 	return atomic_read(&mm->mm_users) == 0;
393 }
394 
395 static inline int hpage_collapse_test_exit_or_disable(struct mm_struct *mm)
396 {
397 	return hpage_collapse_test_exit(mm) ||
398 		mm_flags_test(MMF_DISABLE_THP_COMPLETELY, mm);
399 }
400 
401 static bool hugepage_pmd_enabled(void)
402 {
403 	/*
404 	 * We cover the anon, shmem and the file-backed case here; file-backed
405 	 * hugepages, when configured in, are determined by the global control.
406 	 * Anon pmd-sized hugepages are determined by the pmd-size control.
407 	 * Shmem pmd-sized hugepages are also determined by its pmd-size control,
408 	 * except when the global shmem_huge is set to SHMEM_HUGE_DENY.
409 	 */
410 	if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) &&
411 	    hugepage_global_enabled())
412 		return true;
413 	if (test_bit(PMD_ORDER, &huge_anon_orders_always))
414 		return true;
415 	if (test_bit(PMD_ORDER, &huge_anon_orders_madvise))
416 		return true;
417 	if (test_bit(PMD_ORDER, &huge_anon_orders_inherit) &&
418 	    hugepage_global_enabled())
419 		return true;
420 	if (IS_ENABLED(CONFIG_SHMEM) && shmem_hpage_pmd_enabled())
421 		return true;
422 	return false;
423 }
424 
425 void __khugepaged_enter(struct mm_struct *mm)
426 {
427 	struct mm_slot *slot;
428 	int wakeup;
429 
430 	/* __khugepaged_exit() must not run from under us */
431 	VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm);
432 	if (unlikely(mm_flags_test_and_set(MMF_VM_HUGEPAGE, mm)))
433 		return;
434 
435 	slot = mm_slot_alloc(mm_slot_cache);
436 	if (!slot)
437 		return;
438 
439 	spin_lock(&khugepaged_mm_lock);
440 	mm_slot_insert(mm_slots_hash, mm, slot);
441 	/*
442 	 * Insert just behind the scanning cursor, to let the area settle
443 	 * down a little.
444 	 */
445 	wakeup = list_empty(&khugepaged_scan.mm_head);
446 	list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head);
447 	spin_unlock(&khugepaged_mm_lock);
448 
449 	mmgrab(mm);
450 	if (wakeup)
451 		wake_up_interruptible(&khugepaged_wait);
452 }
453 
454 void khugepaged_enter_vma(struct vm_area_struct *vma,
455 			  vm_flags_t vm_flags)
456 {
457 	if (!mm_flags_test(MMF_VM_HUGEPAGE, vma->vm_mm) &&
458 	    hugepage_pmd_enabled()) {
459 		if (thp_vma_allowable_order(vma, vm_flags, TVA_KHUGEPAGED, PMD_ORDER))
460 			__khugepaged_enter(vma->vm_mm);
461 	}
462 }
463 
464 void __khugepaged_exit(struct mm_struct *mm)
465 {
466 	struct mm_slot *slot;
467 	int free = 0;
468 
469 	spin_lock(&khugepaged_mm_lock);
470 	slot = mm_slot_lookup(mm_slots_hash, mm);
471 	if (slot && khugepaged_scan.mm_slot != slot) {
472 		hash_del(&slot->hash);
473 		list_del(&slot->mm_node);
474 		free = 1;
475 	}
476 	spin_unlock(&khugepaged_mm_lock);
477 
478 	if (free) {
479 		mm_flags_clear(MMF_VM_HUGEPAGE, mm);
480 		mm_slot_free(mm_slot_cache, slot);
481 		mmdrop(mm);
482 	} else if (slot) {
483 		/*
484 		 * This is required to serialize against
485 		 * hpage_collapse_test_exit() (which is guaranteed to run
486 		 * under mmap sem read mode). Stop here (after we return all
487 		 * pagetables will be destroyed) until khugepaged has finished
488 		 * working on the pagetables under the mmap_lock.
489 		 */
490 		mmap_write_lock(mm);
491 		mmap_write_unlock(mm);
492 	}
493 }
494 
495 static void release_pte_folio(struct folio *folio)
496 {
497 	node_stat_mod_folio(folio,
498 			NR_ISOLATED_ANON + folio_is_file_lru(folio),
499 			-folio_nr_pages(folio));
500 	folio_unlock(folio);
501 	folio_putback_lru(folio);
502 }
503 
504 static void release_pte_pages(pte_t *pte, pte_t *_pte,
505 		struct list_head *compound_pagelist)
506 {
507 	struct folio *folio, *tmp;
508 
509 	while (--_pte >= pte) {
510 		pte_t pteval = ptep_get(_pte);
511 		unsigned long pfn;
512 
513 		if (pte_none(pteval))
514 			continue;
515 		VM_WARN_ON_ONCE(!pte_present(pteval));
516 		pfn = pte_pfn(pteval);
517 		if (is_zero_pfn(pfn))
518 			continue;
519 		folio = pfn_folio(pfn);
520 		if (folio_test_large(folio))
521 			continue;
522 		release_pte_folio(folio);
523 	}
524 
525 	list_for_each_entry_safe(folio, tmp, compound_pagelist, lru) {
526 		list_del(&folio->lru);
527 		release_pte_folio(folio);
528 	}
529 }
530 
531 static enum scan_result __collapse_huge_page_isolate(struct vm_area_struct *vma,
532 		unsigned long start_addr, pte_t *pte, struct collapse_control *cc,
533 		struct list_head *compound_pagelist)
534 {
535 	struct page *page = NULL;
536 	struct folio *folio = NULL;
537 	unsigned long addr = start_addr;
538 	pte_t *_pte;
539 	int none_or_zero = 0, shared = 0, referenced = 0;
540 	enum scan_result result = SCAN_FAIL;
541 
542 	for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
543 	     _pte++, addr += PAGE_SIZE) {
544 		pte_t pteval = ptep_get(_pte);
545 		if (pte_none_or_zero(pteval)) {
546 			++none_or_zero;
547 			if (!userfaultfd_armed(vma) &&
548 			    (!cc->is_khugepaged ||
549 			     none_or_zero <= khugepaged_max_ptes_none)) {
550 				continue;
551 			} else {
552 				result = SCAN_EXCEED_NONE_PTE;
553 				count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
554 				goto out;
555 			}
556 		}
557 		if (!pte_present(pteval)) {
558 			result = SCAN_PTE_NON_PRESENT;
559 			goto out;
560 		}
561 		if (pte_uffd_wp(pteval)) {
562 			result = SCAN_PTE_UFFD_WP;
563 			goto out;
564 		}
565 		page = vm_normal_page(vma, addr, pteval);
566 		if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
567 			result = SCAN_PAGE_NULL;
568 			goto out;
569 		}
570 
571 		folio = page_folio(page);
572 		VM_BUG_ON_FOLIO(!folio_test_anon(folio), folio);
573 
574 		/* See hpage_collapse_scan_pmd(). */
575 		if (folio_maybe_mapped_shared(folio)) {
576 			++shared;
577 			if (cc->is_khugepaged &&
578 			    shared > khugepaged_max_ptes_shared) {
579 				result = SCAN_EXCEED_SHARED_PTE;
580 				count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
581 				goto out;
582 			}
583 		}
584 
585 		if (folio_test_large(folio)) {
586 			struct folio *f;
587 
588 			/*
589 			 * Check if we have dealt with the compound page
590 			 * already
591 			 */
592 			list_for_each_entry(f, compound_pagelist, lru) {
593 				if (folio == f)
594 					goto next;
595 			}
596 		}
597 
598 		/*
599 		 * We can do it before folio_isolate_lru because the
600 		 * folio can't be freed from under us. NOTE: PG_lock
601 		 * is needed to serialize against split_huge_page
602 		 * when invoked from the VM.
603 		 */
604 		if (!folio_trylock(folio)) {
605 			result = SCAN_PAGE_LOCK;
606 			goto out;
607 		}
608 
609 		/*
610 		 * Check if the page has any GUP (or other external) pins.
611 		 *
612 		 * The page table that maps the page has been already unlinked
613 		 * from the page table tree and this process cannot get
614 		 * an additional pin on the page.
615 		 *
616 		 * New pins can come later if the page is shared across fork,
617 		 * but not from this process. The other process cannot write to
618 		 * the page, only trigger CoW.
619 		 */
620 		if (folio_expected_ref_count(folio) != folio_ref_count(folio)) {
621 			folio_unlock(folio);
622 			result = SCAN_PAGE_COUNT;
623 			goto out;
624 		}
625 
626 		/*
627 		 * Isolate the page to avoid collapsing an hugepage
628 		 * currently in use by the VM.
629 		 */
630 		if (!folio_isolate_lru(folio)) {
631 			folio_unlock(folio);
632 			result = SCAN_DEL_PAGE_LRU;
633 			goto out;
634 		}
635 		node_stat_mod_folio(folio,
636 				NR_ISOLATED_ANON + folio_is_file_lru(folio),
637 				folio_nr_pages(folio));
638 		VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
639 		VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
640 
641 		if (folio_test_large(folio))
642 			list_add_tail(&folio->lru, compound_pagelist);
643 next:
644 		/*
645 		 * If collapse was initiated by khugepaged, check that there is
646 		 * enough young pte to justify collapsing the page
647 		 */
648 		if (cc->is_khugepaged &&
649 		    (pte_young(pteval) || folio_test_young(folio) ||
650 		     folio_test_referenced(folio) ||
651 		     mmu_notifier_test_young(vma->vm_mm, addr)))
652 			referenced++;
653 	}
654 
655 	if (unlikely(cc->is_khugepaged && !referenced)) {
656 		result = SCAN_LACK_REFERENCED_PAGE;
657 	} else {
658 		result = SCAN_SUCCEED;
659 		trace_mm_collapse_huge_page_isolate(folio, none_or_zero,
660 						    referenced, result);
661 		return result;
662 	}
663 out:
664 	release_pte_pages(pte, _pte, compound_pagelist);
665 	trace_mm_collapse_huge_page_isolate(folio, none_or_zero,
666 					    referenced, result);
667 	return result;
668 }
669 
670 static void __collapse_huge_page_copy_succeeded(pte_t *pte,
671 						struct vm_area_struct *vma,
672 						unsigned long address,
673 						spinlock_t *ptl,
674 						struct list_head *compound_pagelist)
675 {
676 	unsigned long end = address + HPAGE_PMD_SIZE;
677 	struct folio *src, *tmp;
678 	pte_t pteval;
679 	pte_t *_pte;
680 	unsigned int nr_ptes;
681 
682 	for (_pte = pte; _pte < pte + HPAGE_PMD_NR; _pte += nr_ptes,
683 	     address += nr_ptes * PAGE_SIZE) {
684 		nr_ptes = 1;
685 		pteval = ptep_get(_pte);
686 		if (pte_none_or_zero(pteval)) {
687 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
688 			if (pte_none(pteval))
689 				continue;
690 			/*
691 			 * ptl mostly unnecessary.
692 			 */
693 			spin_lock(ptl);
694 			ptep_clear(vma->vm_mm, address, _pte);
695 			spin_unlock(ptl);
696 			ksm_might_unmap_zero_page(vma->vm_mm, pteval);
697 		} else {
698 			struct page *src_page = pte_page(pteval);
699 
700 			src = page_folio(src_page);
701 
702 			if (folio_test_large(src)) {
703 				unsigned int max_nr_ptes = (end - address) >> PAGE_SHIFT;
704 
705 				nr_ptes = folio_pte_batch(src, _pte, pteval, max_nr_ptes);
706 			} else {
707 				release_pte_folio(src);
708 			}
709 
710 			/*
711 			 * ptl mostly unnecessary, but preempt has to
712 			 * be disabled to update the per-cpu stats
713 			 * inside folio_remove_rmap_pte().
714 			 */
715 			spin_lock(ptl);
716 			clear_ptes(vma->vm_mm, address, _pte, nr_ptes);
717 			folio_remove_rmap_ptes(src, src_page, nr_ptes, vma);
718 			spin_unlock(ptl);
719 			free_swap_cache(src);
720 			folio_put_refs(src, nr_ptes);
721 		}
722 	}
723 
724 	list_for_each_entry_safe(src, tmp, compound_pagelist, lru) {
725 		list_del(&src->lru);
726 		node_stat_sub_folio(src, NR_ISOLATED_ANON +
727 				folio_is_file_lru(src));
728 		folio_unlock(src);
729 		free_swap_cache(src);
730 		folio_putback_lru(src);
731 	}
732 }
733 
734 static void __collapse_huge_page_copy_failed(pte_t *pte,
735 					     pmd_t *pmd,
736 					     pmd_t orig_pmd,
737 					     struct vm_area_struct *vma,
738 					     struct list_head *compound_pagelist)
739 {
740 	spinlock_t *pmd_ptl;
741 
742 	/*
743 	 * Re-establish the PMD to point to the original page table
744 	 * entry. Restoring PMD needs to be done prior to releasing
745 	 * pages. Since pages are still isolated and locked here,
746 	 * acquiring anon_vma_lock_write is unnecessary.
747 	 */
748 	pmd_ptl = pmd_lock(vma->vm_mm, pmd);
749 	pmd_populate(vma->vm_mm, pmd, pmd_pgtable(orig_pmd));
750 	spin_unlock(pmd_ptl);
751 	/*
752 	 * Release both raw and compound pages isolated
753 	 * in __collapse_huge_page_isolate.
754 	 */
755 	release_pte_pages(pte, pte + HPAGE_PMD_NR, compound_pagelist);
756 }
757 
758 /*
759  * __collapse_huge_page_copy - attempts to copy memory contents from raw
760  * pages to a hugepage. Cleans up the raw pages if copying succeeds;
761  * otherwise restores the original page table and releases isolated raw pages.
762  * Returns SCAN_SUCCEED if copying succeeds, otherwise returns SCAN_COPY_MC.
763  *
764  * @pte: starting of the PTEs to copy from
765  * @folio: the new hugepage to copy contents to
766  * @pmd: pointer to the new hugepage's PMD
767  * @orig_pmd: the original raw pages' PMD
768  * @vma: the original raw pages' virtual memory area
769  * @address: starting address to copy
770  * @ptl: lock on raw pages' PTEs
771  * @compound_pagelist: list that stores compound pages
772  */
773 static enum scan_result __collapse_huge_page_copy(pte_t *pte, struct folio *folio,
774 		pmd_t *pmd, pmd_t orig_pmd, struct vm_area_struct *vma,
775 		unsigned long address, spinlock_t *ptl,
776 		struct list_head *compound_pagelist)
777 {
778 	unsigned int i;
779 	enum scan_result result = SCAN_SUCCEED;
780 
781 	/*
782 	 * Copying pages' contents is subject to memory poison at any iteration.
783 	 */
784 	for (i = 0; i < HPAGE_PMD_NR; i++) {
785 		pte_t pteval = ptep_get(pte + i);
786 		struct page *page = folio_page(folio, i);
787 		unsigned long src_addr = address + i * PAGE_SIZE;
788 		struct page *src_page;
789 
790 		if (pte_none_or_zero(pteval)) {
791 			clear_user_highpage(page, src_addr);
792 			continue;
793 		}
794 		src_page = pte_page(pteval);
795 		if (copy_mc_user_highpage(page, src_page, src_addr, vma) > 0) {
796 			result = SCAN_COPY_MC;
797 			break;
798 		}
799 	}
800 
801 	if (likely(result == SCAN_SUCCEED))
802 		__collapse_huge_page_copy_succeeded(pte, vma, address, ptl,
803 						    compound_pagelist);
804 	else
805 		__collapse_huge_page_copy_failed(pte, pmd, orig_pmd, vma,
806 						 compound_pagelist);
807 
808 	return result;
809 }
810 
811 static void khugepaged_alloc_sleep(void)
812 {
813 	DEFINE_WAIT(wait);
814 
815 	add_wait_queue(&khugepaged_wait, &wait);
816 	__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
817 	schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
818 	remove_wait_queue(&khugepaged_wait, &wait);
819 }
820 
821 static struct collapse_control khugepaged_collapse_control = {
822 	.is_khugepaged = true,
823 };
824 
825 static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc)
826 {
827 	int i;
828 
829 	/*
830 	 * If node_reclaim_mode is disabled, then no extra effort is made to
831 	 * allocate memory locally.
832 	 */
833 	if (!node_reclaim_enabled())
834 		return false;
835 
836 	/* If there is a count for this node already, it must be acceptable */
837 	if (cc->node_load[nid])
838 		return false;
839 
840 	for (i = 0; i < MAX_NUMNODES; i++) {
841 		if (!cc->node_load[i])
842 			continue;
843 		if (node_distance(nid, i) > node_reclaim_distance)
844 			return true;
845 	}
846 	return false;
847 }
848 
849 #define khugepaged_defrag()					\
850 	(transparent_hugepage_flags &				\
851 	 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG))
852 
853 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
854 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
855 {
856 	return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
857 }
858 
859 #ifdef CONFIG_NUMA
860 static int hpage_collapse_find_target_node(struct collapse_control *cc)
861 {
862 	int nid, target_node = 0, max_value = 0;
863 
864 	/* find first node with max normal pages hit */
865 	for (nid = 0; nid < MAX_NUMNODES; nid++)
866 		if (cc->node_load[nid] > max_value) {
867 			max_value = cc->node_load[nid];
868 			target_node = nid;
869 		}
870 
871 	for_each_online_node(nid) {
872 		if (max_value == cc->node_load[nid])
873 			node_set(nid, cc->alloc_nmask);
874 	}
875 
876 	return target_node;
877 }
878 #else
879 static int hpage_collapse_find_target_node(struct collapse_control *cc)
880 {
881 	return 0;
882 }
883 #endif
884 
885 /*
886  * If mmap_lock temporarily dropped, revalidate vma
887  * before taking mmap_lock.
888  * Returns enum scan_result value.
889  */
890 
891 static enum scan_result hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
892 		bool expect_anon, struct vm_area_struct **vmap, struct collapse_control *cc)
893 {
894 	struct vm_area_struct *vma;
895 	enum tva_type type = cc->is_khugepaged ? TVA_KHUGEPAGED :
896 				 TVA_FORCED_COLLAPSE;
897 
898 	if (unlikely(hpage_collapse_test_exit_or_disable(mm)))
899 		return SCAN_ANY_PROCESS;
900 
901 	*vmap = vma = find_vma(mm, address);
902 	if (!vma)
903 		return SCAN_VMA_NULL;
904 
905 	if (!thp_vma_suitable_order(vma, address, PMD_ORDER))
906 		return SCAN_ADDRESS_RANGE;
907 	if (!thp_vma_allowable_order(vma, vma->vm_flags, type, PMD_ORDER))
908 		return SCAN_VMA_CHECK;
909 	/*
910 	 * Anon VMA expected, the address may be unmapped then
911 	 * remapped to file after khugepaged reaquired the mmap_lock.
912 	 *
913 	 * thp_vma_allowable_order may return true for qualified file
914 	 * vmas.
915 	 */
916 	if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap)))
917 		return SCAN_PAGE_ANON;
918 	return SCAN_SUCCEED;
919 }
920 
921 static inline enum scan_result check_pmd_state(pmd_t *pmd)
922 {
923 	pmd_t pmde = pmdp_get_lockless(pmd);
924 
925 	if (pmd_none(pmde))
926 		return SCAN_NO_PTE_TABLE;
927 
928 	/*
929 	 * The folio may be under migration when khugepaged is trying to
930 	 * collapse it. Migration success or failure will eventually end
931 	 * up with a present PMD mapping a folio again.
932 	 */
933 	if (pmd_is_migration_entry(pmde))
934 		return SCAN_PMD_MAPPED;
935 	if (!pmd_present(pmde))
936 		return SCAN_NO_PTE_TABLE;
937 	if (pmd_trans_huge(pmde))
938 		return SCAN_PMD_MAPPED;
939 	if (pmd_bad(pmde))
940 		return SCAN_NO_PTE_TABLE;
941 	return SCAN_SUCCEED;
942 }
943 
944 static enum scan_result find_pmd_or_thp_or_none(struct mm_struct *mm,
945 		unsigned long address, pmd_t **pmd)
946 {
947 	*pmd = mm_find_pmd(mm, address);
948 	if (!*pmd)
949 		return SCAN_NO_PTE_TABLE;
950 
951 	return check_pmd_state(*pmd);
952 }
953 
954 static enum scan_result check_pmd_still_valid(struct mm_struct *mm,
955 		unsigned long address, pmd_t *pmd)
956 {
957 	pmd_t *new_pmd;
958 	enum scan_result result = find_pmd_or_thp_or_none(mm, address, &new_pmd);
959 
960 	if (result != SCAN_SUCCEED)
961 		return result;
962 	if (new_pmd != pmd)
963 		return SCAN_FAIL;
964 	return SCAN_SUCCEED;
965 }
966 
967 /*
968  * Bring missing pages in from swap, to complete THP collapse.
969  * Only done if hpage_collapse_scan_pmd believes it is worthwhile.
970  *
971  * Called and returns without pte mapped or spinlocks held.
972  * Returns result: if not SCAN_SUCCEED, mmap_lock has been released.
973  */
974 static enum scan_result __collapse_huge_page_swapin(struct mm_struct *mm,
975 		struct vm_area_struct *vma, unsigned long start_addr, pmd_t *pmd,
976 		int referenced)
977 {
978 	int swapped_in = 0;
979 	vm_fault_t ret = 0;
980 	unsigned long addr, end = start_addr + (HPAGE_PMD_NR * PAGE_SIZE);
981 	enum scan_result result;
982 	pte_t *pte = NULL;
983 	spinlock_t *ptl;
984 
985 	for (addr = start_addr; addr < end; addr += PAGE_SIZE) {
986 		struct vm_fault vmf = {
987 			.vma = vma,
988 			.address = addr,
989 			.pgoff = linear_page_index(vma, addr),
990 			.flags = FAULT_FLAG_ALLOW_RETRY,
991 			.pmd = pmd,
992 		};
993 
994 		if (!pte++) {
995 			/*
996 			 * Here the ptl is only used to check pte_same() in
997 			 * do_swap_page(), so readonly version is enough.
998 			 */
999 			pte = pte_offset_map_ro_nolock(mm, pmd, addr, &ptl);
1000 			if (!pte) {
1001 				mmap_read_unlock(mm);
1002 				result = SCAN_NO_PTE_TABLE;
1003 				goto out;
1004 			}
1005 		}
1006 
1007 		vmf.orig_pte = ptep_get_lockless(pte);
1008 		if (pte_none(vmf.orig_pte) ||
1009 		    pte_present(vmf.orig_pte))
1010 			continue;
1011 
1012 		vmf.pte = pte;
1013 		vmf.ptl = ptl;
1014 		ret = do_swap_page(&vmf);
1015 		/* Which unmaps pte (after perhaps re-checking the entry) */
1016 		pte = NULL;
1017 
1018 		/*
1019 		 * do_swap_page returns VM_FAULT_RETRY with released mmap_lock.
1020 		 * Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because
1021 		 * we do not retry here and swap entry will remain in pagetable
1022 		 * resulting in later failure.
1023 		 */
1024 		if (ret & VM_FAULT_RETRY) {
1025 			/* Likely, but not guaranteed, that page lock failed */
1026 			result = SCAN_PAGE_LOCK;
1027 			goto out;
1028 		}
1029 		if (ret & VM_FAULT_ERROR) {
1030 			mmap_read_unlock(mm);
1031 			result = SCAN_FAIL;
1032 			goto out;
1033 		}
1034 		swapped_in++;
1035 	}
1036 
1037 	if (pte)
1038 		pte_unmap(pte);
1039 
1040 	/* Drain LRU cache to remove extra pin on the swapped in pages */
1041 	if (swapped_in)
1042 		lru_add_drain();
1043 
1044 	result = SCAN_SUCCEED;
1045 out:
1046 	trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, result);
1047 	return result;
1048 }
1049 
1050 static enum scan_result alloc_charge_folio(struct folio **foliop, struct mm_struct *mm,
1051 		struct collapse_control *cc)
1052 {
1053 	gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() :
1054 		     GFP_TRANSHUGE);
1055 	int node = hpage_collapse_find_target_node(cc);
1056 	struct folio *folio;
1057 
1058 	folio = __folio_alloc(gfp, HPAGE_PMD_ORDER, node, &cc->alloc_nmask);
1059 	if (!folio) {
1060 		*foliop = NULL;
1061 		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1062 		return SCAN_ALLOC_HUGE_PAGE_FAIL;
1063 	}
1064 
1065 	count_vm_event(THP_COLLAPSE_ALLOC);
1066 	if (unlikely(mem_cgroup_charge(folio, mm, gfp))) {
1067 		folio_put(folio);
1068 		*foliop = NULL;
1069 		return SCAN_CGROUP_CHARGE_FAIL;
1070 	}
1071 
1072 	count_memcg_folio_events(folio, THP_COLLAPSE_ALLOC, 1);
1073 
1074 	*foliop = folio;
1075 	return SCAN_SUCCEED;
1076 }
1077 
1078 static enum scan_result collapse_huge_page(struct mm_struct *mm, unsigned long address,
1079 		int referenced, int unmapped, struct collapse_control *cc)
1080 {
1081 	LIST_HEAD(compound_pagelist);
1082 	pmd_t *pmd, _pmd;
1083 	pte_t *pte;
1084 	pgtable_t pgtable;
1085 	struct folio *folio;
1086 	spinlock_t *pmd_ptl, *pte_ptl;
1087 	enum scan_result result = SCAN_FAIL;
1088 	struct vm_area_struct *vma;
1089 	struct mmu_notifier_range range;
1090 
1091 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1092 
1093 	/*
1094 	 * Before allocating the hugepage, release the mmap_lock read lock.
1095 	 * The allocation can take potentially a long time if it involves
1096 	 * sync compaction, and we do not need to hold the mmap_lock during
1097 	 * that. We will recheck the vma after taking it again in write mode.
1098 	 */
1099 	mmap_read_unlock(mm);
1100 
1101 	result = alloc_charge_folio(&folio, mm, cc);
1102 	if (result != SCAN_SUCCEED)
1103 		goto out_nolock;
1104 
1105 	mmap_read_lock(mm);
1106 	result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
1107 	if (result != SCAN_SUCCEED) {
1108 		mmap_read_unlock(mm);
1109 		goto out_nolock;
1110 	}
1111 
1112 	result = find_pmd_or_thp_or_none(mm, address, &pmd);
1113 	if (result != SCAN_SUCCEED) {
1114 		mmap_read_unlock(mm);
1115 		goto out_nolock;
1116 	}
1117 
1118 	if (unmapped) {
1119 		/*
1120 		 * __collapse_huge_page_swapin will return with mmap_lock
1121 		 * released when it fails. So we jump out_nolock directly in
1122 		 * that case.  Continuing to collapse causes inconsistency.
1123 		 */
1124 		result = __collapse_huge_page_swapin(mm, vma, address, pmd,
1125 						     referenced);
1126 		if (result != SCAN_SUCCEED)
1127 			goto out_nolock;
1128 	}
1129 
1130 	mmap_read_unlock(mm);
1131 	/*
1132 	 * Prevent all access to pagetables with the exception of
1133 	 * gup_fast later handled by the ptep_clear_flush and the VM
1134 	 * handled by the anon_vma lock + PG_lock.
1135 	 *
1136 	 * UFFDIO_MOVE is prevented to race as well thanks to the
1137 	 * mmap_lock.
1138 	 */
1139 	mmap_write_lock(mm);
1140 	result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
1141 	if (result != SCAN_SUCCEED)
1142 		goto out_up_write;
1143 	/* check if the pmd is still valid */
1144 	vma_start_write(vma);
1145 	result = check_pmd_still_valid(mm, address, pmd);
1146 	if (result != SCAN_SUCCEED)
1147 		goto out_up_write;
1148 
1149 	anon_vma_lock_write(vma->anon_vma);
1150 
1151 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, address,
1152 				address + HPAGE_PMD_SIZE);
1153 	mmu_notifier_invalidate_range_start(&range);
1154 
1155 	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1156 	/*
1157 	 * This removes any huge TLB entry from the CPU so we won't allow
1158 	 * huge and small TLB entries for the same virtual address to
1159 	 * avoid the risk of CPU bugs in that area.
1160 	 *
1161 	 * Parallel GUP-fast is fine since GUP-fast will back off when
1162 	 * it detects PMD is changed.
1163 	 */
1164 	_pmd = pmdp_collapse_flush(vma, address, pmd);
1165 	spin_unlock(pmd_ptl);
1166 	mmu_notifier_invalidate_range_end(&range);
1167 	tlb_remove_table_sync_one();
1168 
1169 	pte = pte_offset_map_lock(mm, &_pmd, address, &pte_ptl);
1170 	if (pte) {
1171 		result = __collapse_huge_page_isolate(vma, address, pte, cc,
1172 						      &compound_pagelist);
1173 		spin_unlock(pte_ptl);
1174 	} else {
1175 		result = SCAN_NO_PTE_TABLE;
1176 	}
1177 
1178 	if (unlikely(result != SCAN_SUCCEED)) {
1179 		if (pte)
1180 			pte_unmap(pte);
1181 		spin_lock(pmd_ptl);
1182 		BUG_ON(!pmd_none(*pmd));
1183 		/*
1184 		 * We can only use set_pmd_at when establishing
1185 		 * hugepmds and never for establishing regular pmds that
1186 		 * points to regular pagetables. Use pmd_populate for that
1187 		 */
1188 		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1189 		spin_unlock(pmd_ptl);
1190 		anon_vma_unlock_write(vma->anon_vma);
1191 		goto out_up_write;
1192 	}
1193 
1194 	/*
1195 	 * All pages are isolated and locked so anon_vma rmap
1196 	 * can't run anymore.
1197 	 */
1198 	anon_vma_unlock_write(vma->anon_vma);
1199 
1200 	result = __collapse_huge_page_copy(pte, folio, pmd, _pmd,
1201 					   vma, address, pte_ptl,
1202 					   &compound_pagelist);
1203 	pte_unmap(pte);
1204 	if (unlikely(result != SCAN_SUCCEED))
1205 		goto out_up_write;
1206 
1207 	/*
1208 	 * The smp_wmb() inside __folio_mark_uptodate() ensures the
1209 	 * copy_huge_page writes become visible before the set_pmd_at()
1210 	 * write.
1211 	 */
1212 	__folio_mark_uptodate(folio);
1213 	pgtable = pmd_pgtable(_pmd);
1214 
1215 	spin_lock(pmd_ptl);
1216 	BUG_ON(!pmd_none(*pmd));
1217 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
1218 	map_anon_folio_pmd_nopf(folio, pmd, vma, address);
1219 	spin_unlock(pmd_ptl);
1220 
1221 	folio = NULL;
1222 
1223 	result = SCAN_SUCCEED;
1224 out_up_write:
1225 	mmap_write_unlock(mm);
1226 out_nolock:
1227 	if (folio)
1228 		folio_put(folio);
1229 	trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result);
1230 	return result;
1231 }
1232 
1233 static enum scan_result hpage_collapse_scan_pmd(struct mm_struct *mm,
1234 		struct vm_area_struct *vma, unsigned long start_addr, bool *mmap_locked,
1235 		struct collapse_control *cc)
1236 {
1237 	pmd_t *pmd;
1238 	pte_t *pte, *_pte;
1239 	int none_or_zero = 0, shared = 0, referenced = 0;
1240 	enum scan_result result = SCAN_FAIL;
1241 	struct page *page = NULL;
1242 	struct folio *folio = NULL;
1243 	unsigned long addr;
1244 	spinlock_t *ptl;
1245 	int node = NUMA_NO_NODE, unmapped = 0;
1246 
1247 	VM_BUG_ON(start_addr & ~HPAGE_PMD_MASK);
1248 
1249 	result = find_pmd_or_thp_or_none(mm, start_addr, &pmd);
1250 	if (result != SCAN_SUCCEED)
1251 		goto out;
1252 
1253 	memset(cc->node_load, 0, sizeof(cc->node_load));
1254 	nodes_clear(cc->alloc_nmask);
1255 	pte = pte_offset_map_lock(mm, pmd, start_addr, &ptl);
1256 	if (!pte) {
1257 		result = SCAN_NO_PTE_TABLE;
1258 		goto out;
1259 	}
1260 
1261 	for (addr = start_addr, _pte = pte; _pte < pte + HPAGE_PMD_NR;
1262 	     _pte++, addr += PAGE_SIZE) {
1263 		pte_t pteval = ptep_get(_pte);
1264 		if (pte_none_or_zero(pteval)) {
1265 			++none_or_zero;
1266 			if (!userfaultfd_armed(vma) &&
1267 			    (!cc->is_khugepaged ||
1268 			     none_or_zero <= khugepaged_max_ptes_none)) {
1269 				continue;
1270 			} else {
1271 				result = SCAN_EXCEED_NONE_PTE;
1272 				count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
1273 				goto out_unmap;
1274 			}
1275 		}
1276 		if (!pte_present(pteval)) {
1277 			++unmapped;
1278 			if (!cc->is_khugepaged ||
1279 			    unmapped <= khugepaged_max_ptes_swap) {
1280 				/*
1281 				 * Always be strict with uffd-wp
1282 				 * enabled swap entries.  Please see
1283 				 * comment below for pte_uffd_wp().
1284 				 */
1285 				if (pte_swp_uffd_wp_any(pteval)) {
1286 					result = SCAN_PTE_UFFD_WP;
1287 					goto out_unmap;
1288 				}
1289 				continue;
1290 			} else {
1291 				result = SCAN_EXCEED_SWAP_PTE;
1292 				count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
1293 				goto out_unmap;
1294 			}
1295 		}
1296 		if (pte_uffd_wp(pteval)) {
1297 			/*
1298 			 * Don't collapse the page if any of the small
1299 			 * PTEs are armed with uffd write protection.
1300 			 * Here we can also mark the new huge pmd as
1301 			 * write protected if any of the small ones is
1302 			 * marked but that could bring unknown
1303 			 * userfault messages that falls outside of
1304 			 * the registered range.  So, just be simple.
1305 			 */
1306 			result = SCAN_PTE_UFFD_WP;
1307 			goto out_unmap;
1308 		}
1309 
1310 		page = vm_normal_page(vma, addr, pteval);
1311 		if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
1312 			result = SCAN_PAGE_NULL;
1313 			goto out_unmap;
1314 		}
1315 		folio = page_folio(page);
1316 
1317 		if (!folio_test_anon(folio)) {
1318 			result = SCAN_PAGE_ANON;
1319 			goto out_unmap;
1320 		}
1321 
1322 		/*
1323 		 * We treat a single page as shared if any part of the THP
1324 		 * is shared.
1325 		 */
1326 		if (folio_maybe_mapped_shared(folio)) {
1327 			++shared;
1328 			if (cc->is_khugepaged &&
1329 			    shared > khugepaged_max_ptes_shared) {
1330 				result = SCAN_EXCEED_SHARED_PTE;
1331 				count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
1332 				goto out_unmap;
1333 			}
1334 		}
1335 
1336 		/*
1337 		 * Record which node the original page is from and save this
1338 		 * information to cc->node_load[].
1339 		 * Khugepaged will allocate hugepage from the node has the max
1340 		 * hit record.
1341 		 */
1342 		node = folio_nid(folio);
1343 		if (hpage_collapse_scan_abort(node, cc)) {
1344 			result = SCAN_SCAN_ABORT;
1345 			goto out_unmap;
1346 		}
1347 		cc->node_load[node]++;
1348 		if (!folio_test_lru(folio)) {
1349 			result = SCAN_PAGE_LRU;
1350 			goto out_unmap;
1351 		}
1352 		if (folio_test_locked(folio)) {
1353 			result = SCAN_PAGE_LOCK;
1354 			goto out_unmap;
1355 		}
1356 
1357 		/*
1358 		 * Check if the page has any GUP (or other external) pins.
1359 		 *
1360 		 * Here the check may be racy:
1361 		 * it may see folio_mapcount() > folio_ref_count().
1362 		 * But such case is ephemeral we could always retry collapse
1363 		 * later.  However it may report false positive if the page
1364 		 * has excessive GUP pins (i.e. 512).  Anyway the same check
1365 		 * will be done again later the risk seems low.
1366 		 */
1367 		if (folio_expected_ref_count(folio) != folio_ref_count(folio)) {
1368 			result = SCAN_PAGE_COUNT;
1369 			goto out_unmap;
1370 		}
1371 
1372 		/*
1373 		 * If collapse was initiated by khugepaged, check that there is
1374 		 * enough young pte to justify collapsing the page
1375 		 */
1376 		if (cc->is_khugepaged &&
1377 		    (pte_young(pteval) || folio_test_young(folio) ||
1378 		     folio_test_referenced(folio) ||
1379 		     mmu_notifier_test_young(vma->vm_mm, addr)))
1380 			referenced++;
1381 	}
1382 	if (cc->is_khugepaged &&
1383 		   (!referenced ||
1384 		    (unmapped && referenced < HPAGE_PMD_NR / 2))) {
1385 		result = SCAN_LACK_REFERENCED_PAGE;
1386 	} else {
1387 		result = SCAN_SUCCEED;
1388 	}
1389 out_unmap:
1390 	pte_unmap_unlock(pte, ptl);
1391 	if (result == SCAN_SUCCEED) {
1392 		result = collapse_huge_page(mm, start_addr, referenced,
1393 					    unmapped, cc);
1394 		/* collapse_huge_page will return with the mmap_lock released */
1395 		*mmap_locked = false;
1396 	}
1397 out:
1398 	trace_mm_khugepaged_scan_pmd(mm, folio, referenced,
1399 				     none_or_zero, result, unmapped);
1400 	return result;
1401 }
1402 
1403 static void collect_mm_slot(struct mm_slot *slot)
1404 {
1405 	struct mm_struct *mm = slot->mm;
1406 
1407 	lockdep_assert_held(&khugepaged_mm_lock);
1408 
1409 	if (hpage_collapse_test_exit(mm)) {
1410 		/* free mm_slot */
1411 		hash_del(&slot->hash);
1412 		list_del(&slot->mm_node);
1413 
1414 		/*
1415 		 * Not strictly needed because the mm exited already.
1416 		 *
1417 		 * mm_flags_clear(MMF_VM_HUGEPAGE, mm);
1418 		 */
1419 
1420 		/* khugepaged_mm_lock actually not necessary for the below */
1421 		mm_slot_free(mm_slot_cache, slot);
1422 		mmdrop(mm);
1423 	}
1424 }
1425 
1426 /* folio must be locked, and mmap_lock must be held */
1427 static enum scan_result set_huge_pmd(struct vm_area_struct *vma, unsigned long addr,
1428 		pmd_t *pmdp, struct folio *folio, struct page *page)
1429 {
1430 	struct mm_struct *mm = vma->vm_mm;
1431 	struct vm_fault vmf = {
1432 		.vma = vma,
1433 		.address = addr,
1434 		.flags = 0,
1435 	};
1436 	pgd_t *pgdp;
1437 	p4d_t *p4dp;
1438 	pud_t *pudp;
1439 
1440 	mmap_assert_locked(vma->vm_mm);
1441 
1442 	if (!pmdp) {
1443 		pgdp = pgd_offset(mm, addr);
1444 		p4dp = p4d_alloc(mm, pgdp, addr);
1445 		if (!p4dp)
1446 			return SCAN_FAIL;
1447 		pudp = pud_alloc(mm, p4dp, addr);
1448 		if (!pudp)
1449 			return SCAN_FAIL;
1450 		pmdp = pmd_alloc(mm, pudp, addr);
1451 		if (!pmdp)
1452 			return SCAN_FAIL;
1453 	}
1454 
1455 	vmf.pmd = pmdp;
1456 	if (do_set_pmd(&vmf, folio, page))
1457 		return SCAN_FAIL;
1458 
1459 	folio_get(folio);
1460 	return SCAN_SUCCEED;
1461 }
1462 
1463 static enum scan_result try_collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr,
1464 		bool install_pmd)
1465 {
1466 	enum scan_result result = SCAN_FAIL;
1467 	int nr_mapped_ptes = 0;
1468 	unsigned int nr_batch_ptes;
1469 	struct mmu_notifier_range range;
1470 	bool notified = false;
1471 	unsigned long haddr = addr & HPAGE_PMD_MASK;
1472 	unsigned long end = haddr + HPAGE_PMD_SIZE;
1473 	struct vm_area_struct *vma = vma_lookup(mm, haddr);
1474 	struct folio *folio;
1475 	pte_t *start_pte, *pte;
1476 	pmd_t *pmd, pgt_pmd;
1477 	spinlock_t *pml = NULL, *ptl;
1478 	int i;
1479 
1480 	mmap_assert_locked(mm);
1481 
1482 	/* First check VMA found, in case page tables are being torn down */
1483 	if (!vma || !vma->vm_file ||
1484 	    !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE))
1485 		return SCAN_VMA_CHECK;
1486 
1487 	/* Fast check before locking page if already PMD-mapped */
1488 	result = find_pmd_or_thp_or_none(mm, haddr, &pmd);
1489 	if (result == SCAN_PMD_MAPPED)
1490 		return result;
1491 
1492 	/*
1493 	 * If we are here, we've succeeded in replacing all the native pages
1494 	 * in the page cache with a single hugepage. If a mm were to fault-in
1495 	 * this memory (mapped by a suitably aligned VMA), we'd get the hugepage
1496 	 * and map it by a PMD, regardless of sysfs THP settings. As such, let's
1497 	 * analogously elide sysfs THP settings here and force collapse.
1498 	 */
1499 	if (!thp_vma_allowable_order(vma, vma->vm_flags, TVA_FORCED_COLLAPSE, PMD_ORDER))
1500 		return SCAN_VMA_CHECK;
1501 
1502 	/* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */
1503 	if (userfaultfd_wp(vma))
1504 		return SCAN_PTE_UFFD_WP;
1505 
1506 	folio = filemap_lock_folio(vma->vm_file->f_mapping,
1507 			       linear_page_index(vma, haddr));
1508 	if (IS_ERR(folio))
1509 		return SCAN_PAGE_NULL;
1510 
1511 	if (folio_order(folio) != HPAGE_PMD_ORDER) {
1512 		result = SCAN_PAGE_COMPOUND;
1513 		goto drop_folio;
1514 	}
1515 
1516 	result = find_pmd_or_thp_or_none(mm, haddr, &pmd);
1517 	switch (result) {
1518 	case SCAN_SUCCEED:
1519 		break;
1520 	case SCAN_NO_PTE_TABLE:
1521 		/*
1522 		 * All pte entries have been removed and pmd cleared.
1523 		 * Skip all the pte checks and just update the pmd mapping.
1524 		 */
1525 		goto maybe_install_pmd;
1526 	default:
1527 		goto drop_folio;
1528 	}
1529 
1530 	result = SCAN_FAIL;
1531 	start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
1532 	if (!start_pte)		/* mmap_lock + page lock should prevent this */
1533 		goto drop_folio;
1534 
1535 	/* step 1: check all mapped PTEs are to the right huge page */
1536 	for (i = 0, addr = haddr, pte = start_pte;
1537 	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1538 		struct page *page;
1539 		pte_t ptent = ptep_get(pte);
1540 
1541 		/* empty pte, skip */
1542 		if (pte_none(ptent))
1543 			continue;
1544 
1545 		/* page swapped out, abort */
1546 		if (!pte_present(ptent)) {
1547 			result = SCAN_PTE_NON_PRESENT;
1548 			goto abort;
1549 		}
1550 
1551 		page = vm_normal_page(vma, addr, ptent);
1552 		if (WARN_ON_ONCE(page && is_zone_device_page(page)))
1553 			page = NULL;
1554 		/*
1555 		 * Note that uprobe, debugger, or MAP_PRIVATE may change the
1556 		 * page table, but the new page will not be a subpage of hpage.
1557 		 */
1558 		if (folio_page(folio, i) != page)
1559 			goto abort;
1560 	}
1561 
1562 	pte_unmap_unlock(start_pte, ptl);
1563 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
1564 				haddr, haddr + HPAGE_PMD_SIZE);
1565 	mmu_notifier_invalidate_range_start(&range);
1566 	notified = true;
1567 
1568 	/*
1569 	 * pmd_lock covers a wider range than ptl, and (if split from mm's
1570 	 * page_table_lock) ptl nests inside pml. The less time we hold pml,
1571 	 * the better; but userfaultfd's mfill_atomic_pte() on a private VMA
1572 	 * inserts a valid as-if-COWed PTE without even looking up page cache.
1573 	 * So page lock of folio does not protect from it, so we must not drop
1574 	 * ptl before pgt_pmd is removed, so uffd private needs pml taken now.
1575 	 */
1576 	if (userfaultfd_armed(vma) && !(vma->vm_flags & VM_SHARED))
1577 		pml = pmd_lock(mm, pmd);
1578 
1579 	start_pte = pte_offset_map_rw_nolock(mm, pmd, haddr, &pgt_pmd, &ptl);
1580 	if (!start_pte)		/* mmap_lock + page lock should prevent this */
1581 		goto abort;
1582 	if (!pml)
1583 		spin_lock(ptl);
1584 	else if (ptl != pml)
1585 		spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1586 
1587 	if (unlikely(!pmd_same(pgt_pmd, pmdp_get_lockless(pmd))))
1588 		goto abort;
1589 
1590 	/* step 2: clear page table and adjust rmap */
1591 	for (i = 0, addr = haddr, pte = start_pte; i < HPAGE_PMD_NR;
1592 	     i += nr_batch_ptes, addr += nr_batch_ptes * PAGE_SIZE,
1593 	     pte += nr_batch_ptes) {
1594 		unsigned int max_nr_batch_ptes = (end - addr) >> PAGE_SHIFT;
1595 		struct page *page;
1596 		pte_t ptent = ptep_get(pte);
1597 
1598 		nr_batch_ptes = 1;
1599 
1600 		if (pte_none(ptent))
1601 			continue;
1602 		/*
1603 		 * We dropped ptl after the first scan, to do the mmu_notifier:
1604 		 * page lock stops more PTEs of the folio being faulted in, but
1605 		 * does not stop write faults COWing anon copies from existing
1606 		 * PTEs; and does not stop those being swapped out or migrated.
1607 		 */
1608 		if (!pte_present(ptent)) {
1609 			result = SCAN_PTE_NON_PRESENT;
1610 			goto abort;
1611 		}
1612 		page = vm_normal_page(vma, addr, ptent);
1613 
1614 		if (folio_page(folio, i) != page)
1615 			goto abort;
1616 
1617 		nr_batch_ptes = folio_pte_batch(folio, pte, ptent, max_nr_batch_ptes);
1618 
1619 		/*
1620 		 * Must clear entry, or a racing truncate may re-remove it.
1621 		 * TLB flush can be left until pmdp_collapse_flush() does it.
1622 		 * PTE dirty? Shmem page is already dirty; file is read-only.
1623 		 */
1624 		clear_ptes(mm, addr, pte, nr_batch_ptes);
1625 		folio_remove_rmap_ptes(folio, page, nr_batch_ptes, vma);
1626 		nr_mapped_ptes += nr_batch_ptes;
1627 	}
1628 
1629 	if (!pml)
1630 		spin_unlock(ptl);
1631 
1632 	/* step 3: set proper refcount and mm_counters. */
1633 	if (nr_mapped_ptes) {
1634 		folio_ref_sub(folio, nr_mapped_ptes);
1635 		add_mm_counter(mm, mm_counter_file(folio), -nr_mapped_ptes);
1636 	}
1637 
1638 	/* step 4: remove empty page table */
1639 	if (!pml) {
1640 		pml = pmd_lock(mm, pmd);
1641 		if (ptl != pml) {
1642 			spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1643 			if (unlikely(!pmd_same(pgt_pmd, pmdp_get_lockless(pmd)))) {
1644 				flush_tlb_mm(mm);
1645 				goto unlock;
1646 			}
1647 		}
1648 	}
1649 	pgt_pmd = pmdp_collapse_flush(vma, haddr, pmd);
1650 	pmdp_get_lockless_sync();
1651 	pte_unmap_unlock(start_pte, ptl);
1652 	if (ptl != pml)
1653 		spin_unlock(pml);
1654 
1655 	mmu_notifier_invalidate_range_end(&range);
1656 
1657 	mm_dec_nr_ptes(mm);
1658 	page_table_check_pte_clear_range(mm, haddr, pgt_pmd);
1659 	pte_free_defer(mm, pmd_pgtable(pgt_pmd));
1660 
1661 maybe_install_pmd:
1662 	/* step 5: install pmd entry */
1663 	result = install_pmd
1664 			? set_huge_pmd(vma, haddr, pmd, folio, &folio->page)
1665 			: SCAN_SUCCEED;
1666 	goto drop_folio;
1667 abort:
1668 	if (nr_mapped_ptes) {
1669 		flush_tlb_mm(mm);
1670 		folio_ref_sub(folio, nr_mapped_ptes);
1671 		add_mm_counter(mm, mm_counter_file(folio), -nr_mapped_ptes);
1672 	}
1673 unlock:
1674 	if (start_pte)
1675 		pte_unmap_unlock(start_pte, ptl);
1676 	if (pml && pml != ptl)
1677 		spin_unlock(pml);
1678 	if (notified)
1679 		mmu_notifier_invalidate_range_end(&range);
1680 drop_folio:
1681 	folio_unlock(folio);
1682 	folio_put(folio);
1683 	return result;
1684 }
1685 
1686 /**
1687  * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at
1688  * address haddr.
1689  *
1690  * @mm: process address space where collapse happens
1691  * @addr: THP collapse address
1692  * @install_pmd: If a huge PMD should be installed
1693  *
1694  * This function checks whether all the PTEs in the PMD are pointing to the
1695  * right THP. If so, retract the page table so the THP can refault in with
1696  * as pmd-mapped. Possibly install a huge PMD mapping the THP.
1697  */
1698 void collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr,
1699 		bool install_pmd)
1700 {
1701 	try_collapse_pte_mapped_thp(mm, addr, install_pmd);
1702 }
1703 
1704 /* Can we retract page tables for this file-backed VMA? */
1705 static bool file_backed_vma_is_retractable(struct vm_area_struct *vma)
1706 {
1707 	/*
1708 	 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
1709 	 * got written to. These VMAs are likely not worth removing
1710 	 * page tables from, as PMD-mapping is likely to be split later.
1711 	 */
1712 	if (READ_ONCE(vma->anon_vma))
1713 		return false;
1714 
1715 	/*
1716 	 * When a vma is registered with uffd-wp, we cannot recycle
1717 	 * the page table because there may be pte markers installed.
1718 	 * Other vmas can still have the same file mapped hugely, but
1719 	 * skip this one: it will always be mapped in small page size
1720 	 * for uffd-wp registered ranges.
1721 	 */
1722 	if (userfaultfd_wp(vma))
1723 		return false;
1724 
1725 	/*
1726 	 * If the VMA contains guard regions then we can't collapse it.
1727 	 *
1728 	 * This is set atomically on guard marker installation under mmap/VMA
1729 	 * read lock, and here we may not hold any VMA or mmap lock at all.
1730 	 *
1731 	 * This is therefore serialised on the PTE page table lock, which is
1732 	 * obtained on guard region installation after the flag is set, so this
1733 	 * check being performed under this lock excludes races.
1734 	 */
1735 	if (vma_flag_test_atomic(vma, VMA_MAYBE_GUARD_BIT))
1736 		return false;
1737 
1738 	return true;
1739 }
1740 
1741 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1742 {
1743 	struct vm_area_struct *vma;
1744 
1745 	i_mmap_lock_read(mapping);
1746 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1747 		struct mmu_notifier_range range;
1748 		struct mm_struct *mm;
1749 		unsigned long addr;
1750 		pmd_t *pmd, pgt_pmd;
1751 		spinlock_t *pml;
1752 		spinlock_t *ptl;
1753 		bool success = false;
1754 
1755 		addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1756 		if (addr & ~HPAGE_PMD_MASK ||
1757 		    vma->vm_end < addr + HPAGE_PMD_SIZE)
1758 			continue;
1759 
1760 		mm = vma->vm_mm;
1761 		if (find_pmd_or_thp_or_none(mm, addr, &pmd) != SCAN_SUCCEED)
1762 			continue;
1763 
1764 		if (hpage_collapse_test_exit(mm))
1765 			continue;
1766 
1767 		if (!file_backed_vma_is_retractable(vma))
1768 			continue;
1769 
1770 		/* PTEs were notified when unmapped; but now for the PMD? */
1771 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
1772 					addr, addr + HPAGE_PMD_SIZE);
1773 		mmu_notifier_invalidate_range_start(&range);
1774 
1775 		pml = pmd_lock(mm, pmd);
1776 		/*
1777 		 * The lock of new_folio is still held, we will be blocked in
1778 		 * the page fault path, which prevents the pte entries from
1779 		 * being set again. So even though the old empty PTE page may be
1780 		 * concurrently freed and a new PTE page is filled into the pmd
1781 		 * entry, it is still empty and can be removed.
1782 		 *
1783 		 * So here we only need to recheck if the state of pmd entry
1784 		 * still meets our requirements, rather than checking pmd_same()
1785 		 * like elsewhere.
1786 		 */
1787 		if (check_pmd_state(pmd) != SCAN_SUCCEED)
1788 			goto drop_pml;
1789 		ptl = pte_lockptr(mm, pmd);
1790 		if (ptl != pml)
1791 			spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1792 
1793 		/*
1794 		 * Huge page lock is still held, so normally the page table must
1795 		 * remain empty; and we have already skipped anon_vma and
1796 		 * userfaultfd_wp() vmas.  But since the mmap_lock is not held,
1797 		 * it is still possible for a racing userfaultfd_ioctl() or
1798 		 * madvise() to have inserted ptes or markers.  Now that we hold
1799 		 * ptlock, repeating the retractable checks protects us from
1800 		 * races against the prior checks.
1801 		 */
1802 		if (likely(file_backed_vma_is_retractable(vma))) {
1803 			pgt_pmd = pmdp_collapse_flush(vma, addr, pmd);
1804 			pmdp_get_lockless_sync();
1805 			success = true;
1806 		}
1807 
1808 		if (ptl != pml)
1809 			spin_unlock(ptl);
1810 drop_pml:
1811 		spin_unlock(pml);
1812 
1813 		mmu_notifier_invalidate_range_end(&range);
1814 
1815 		if (success) {
1816 			mm_dec_nr_ptes(mm);
1817 			page_table_check_pte_clear_range(mm, addr, pgt_pmd);
1818 			pte_free_defer(mm, pmd_pgtable(pgt_pmd));
1819 		}
1820 	}
1821 	i_mmap_unlock_read(mapping);
1822 }
1823 
1824 /**
1825  * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1826  *
1827  * @mm: process address space where collapse happens
1828  * @addr: virtual collapse start address
1829  * @file: file that collapse on
1830  * @start: collapse start address
1831  * @cc: collapse context and scratchpad
1832  *
1833  * Basic scheme is simple, details are more complex:
1834  *  - allocate and lock a new huge page;
1835  *  - scan page cache, locking old pages
1836  *    + swap/gup in pages if necessary;
1837  *  - copy data to new page
1838  *  - handle shmem holes
1839  *    + re-validate that holes weren't filled by someone else
1840  *    + check for userfaultfd
1841  *  - finalize updates to the page cache;
1842  *  - if replacing succeeds:
1843  *    + unlock huge page;
1844  *    + free old pages;
1845  *  - if replacing failed;
1846  *    + unlock old pages
1847  *    + unlock and free huge page;
1848  */
1849 static enum scan_result collapse_file(struct mm_struct *mm, unsigned long addr,
1850 		struct file *file, pgoff_t start, struct collapse_control *cc)
1851 {
1852 	struct address_space *mapping = file->f_mapping;
1853 	struct page *dst;
1854 	struct folio *folio, *tmp, *new_folio;
1855 	pgoff_t index = 0, end = start + HPAGE_PMD_NR;
1856 	LIST_HEAD(pagelist);
1857 	XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1858 	enum scan_result result = SCAN_SUCCEED;
1859 	int nr_none = 0;
1860 	bool is_shmem = shmem_file(file);
1861 
1862 	VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1863 	VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1864 
1865 	result = alloc_charge_folio(&new_folio, mm, cc);
1866 	if (result != SCAN_SUCCEED)
1867 		goto out;
1868 
1869 	mapping_set_update(&xas, mapping);
1870 
1871 	__folio_set_locked(new_folio);
1872 	if (is_shmem)
1873 		__folio_set_swapbacked(new_folio);
1874 	new_folio->index = start;
1875 	new_folio->mapping = mapping;
1876 
1877 	/*
1878 	 * Ensure we have slots for all the pages in the range.  This is
1879 	 * almost certainly a no-op because most of the pages must be present
1880 	 */
1881 	do {
1882 		xas_lock_irq(&xas);
1883 		xas_create_range(&xas);
1884 		if (!xas_error(&xas))
1885 			break;
1886 		xas_unlock_irq(&xas);
1887 		if (!xas_nomem(&xas, GFP_KERNEL)) {
1888 			result = SCAN_FAIL;
1889 			goto rollback;
1890 		}
1891 	} while (1);
1892 
1893 	for (index = start; index < end;) {
1894 		xas_set(&xas, index);
1895 		folio = xas_load(&xas);
1896 
1897 		VM_BUG_ON(index != xas.xa_index);
1898 		if (is_shmem) {
1899 			if (!folio) {
1900 				/*
1901 				 * Stop if extent has been truncated or
1902 				 * hole-punched, and is now completely
1903 				 * empty.
1904 				 */
1905 				if (index == start) {
1906 					if (!xas_next_entry(&xas, end - 1)) {
1907 						result = SCAN_TRUNCATED;
1908 						goto xa_locked;
1909 					}
1910 				}
1911 				nr_none++;
1912 				index++;
1913 				continue;
1914 			}
1915 
1916 			if (xa_is_value(folio) || !folio_test_uptodate(folio)) {
1917 				xas_unlock_irq(&xas);
1918 				/* swap in or instantiate fallocated page */
1919 				if (shmem_get_folio(mapping->host, index, 0,
1920 						&folio, SGP_NOALLOC)) {
1921 					result = SCAN_FAIL;
1922 					goto xa_unlocked;
1923 				}
1924 				/* drain lru cache to help folio_isolate_lru() */
1925 				lru_add_drain();
1926 			} else if (folio_trylock(folio)) {
1927 				folio_get(folio);
1928 				xas_unlock_irq(&xas);
1929 			} else {
1930 				result = SCAN_PAGE_LOCK;
1931 				goto xa_locked;
1932 			}
1933 		} else {	/* !is_shmem */
1934 			if (!folio || xa_is_value(folio)) {
1935 				xas_unlock_irq(&xas);
1936 				page_cache_sync_readahead(mapping, &file->f_ra,
1937 							  file, index,
1938 							  end - index);
1939 				/* drain lru cache to help folio_isolate_lru() */
1940 				lru_add_drain();
1941 				folio = filemap_lock_folio(mapping, index);
1942 				if (IS_ERR(folio)) {
1943 					result = SCAN_FAIL;
1944 					goto xa_unlocked;
1945 				}
1946 			} else if (folio_test_dirty(folio)) {
1947 				/*
1948 				 * khugepaged only works on read-only fd,
1949 				 * so this page is dirty because it hasn't
1950 				 * been flushed since first write. There
1951 				 * won't be new dirty pages.
1952 				 *
1953 				 * Trigger async flush here and hope the
1954 				 * writeback is done when khugepaged
1955 				 * revisits this page.
1956 				 *
1957 				 * This is a one-off situation. We are not
1958 				 * forcing writeback in loop.
1959 				 */
1960 				xas_unlock_irq(&xas);
1961 				filemap_flush(mapping);
1962 				result = SCAN_PAGE_DIRTY_OR_WRITEBACK;
1963 				goto xa_unlocked;
1964 			} else if (folio_test_writeback(folio)) {
1965 				xas_unlock_irq(&xas);
1966 				result = SCAN_PAGE_DIRTY_OR_WRITEBACK;
1967 				goto xa_unlocked;
1968 			} else if (folio_trylock(folio)) {
1969 				folio_get(folio);
1970 				xas_unlock_irq(&xas);
1971 			} else {
1972 				result = SCAN_PAGE_LOCK;
1973 				goto xa_locked;
1974 			}
1975 		}
1976 
1977 		/*
1978 		 * The folio must be locked, so we can drop the i_pages lock
1979 		 * without racing with truncate.
1980 		 */
1981 		VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1982 
1983 		/* make sure the folio is up to date */
1984 		if (unlikely(!folio_test_uptodate(folio))) {
1985 			result = SCAN_FAIL;
1986 			goto out_unlock;
1987 		}
1988 
1989 		/*
1990 		 * If file was truncated then extended, or hole-punched, before
1991 		 * we locked the first folio, then a THP might be there already.
1992 		 * This will be discovered on the first iteration.
1993 		 */
1994 		if (folio_order(folio) == HPAGE_PMD_ORDER &&
1995 		    folio->index == start) {
1996 			/* Maybe PMD-mapped */
1997 			result = SCAN_PTE_MAPPED_HUGEPAGE;
1998 			goto out_unlock;
1999 		}
2000 
2001 		if (folio_mapping(folio) != mapping) {
2002 			result = SCAN_TRUNCATED;
2003 			goto out_unlock;
2004 		}
2005 
2006 		if (!is_shmem && (folio_test_dirty(folio) ||
2007 				  folio_test_writeback(folio))) {
2008 			/*
2009 			 * khugepaged only works on read-only fd, so this
2010 			 * folio is dirty because it hasn't been flushed
2011 			 * since first write.
2012 			 */
2013 			result = SCAN_PAGE_DIRTY_OR_WRITEBACK;
2014 			goto out_unlock;
2015 		}
2016 
2017 		if (!folio_isolate_lru(folio)) {
2018 			result = SCAN_DEL_PAGE_LRU;
2019 			goto out_unlock;
2020 		}
2021 
2022 		if (!filemap_release_folio(folio, GFP_KERNEL)) {
2023 			result = SCAN_PAGE_HAS_PRIVATE;
2024 			folio_putback_lru(folio);
2025 			goto out_unlock;
2026 		}
2027 
2028 		if (folio_mapped(folio))
2029 			try_to_unmap(folio,
2030 					TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH);
2031 
2032 		xas_lock_irq(&xas);
2033 
2034 		VM_BUG_ON_FOLIO(folio != xa_load(xas.xa, index), folio);
2035 
2036 		/*
2037 		 * We control 2 + nr_pages references to the folio:
2038 		 *  - we hold a pin on it;
2039 		 *  - nr_pages reference from page cache;
2040 		 *  - one from lru_isolate_folio;
2041 		 * If those are the only references, then any new usage
2042 		 * of the folio will have to fetch it from the page
2043 		 * cache. That requires locking the folio to handle
2044 		 * truncate, so any new usage will be blocked until we
2045 		 * unlock folio after collapse/during rollback.
2046 		 */
2047 		if (folio_ref_count(folio) != 2 + folio_nr_pages(folio)) {
2048 			result = SCAN_PAGE_COUNT;
2049 			xas_unlock_irq(&xas);
2050 			folio_putback_lru(folio);
2051 			goto out_unlock;
2052 		}
2053 
2054 		/*
2055 		 * Accumulate the folios that are being collapsed.
2056 		 */
2057 		list_add_tail(&folio->lru, &pagelist);
2058 		index += folio_nr_pages(folio);
2059 		continue;
2060 out_unlock:
2061 		folio_unlock(folio);
2062 		folio_put(folio);
2063 		goto xa_unlocked;
2064 	}
2065 
2066 	if (!is_shmem) {
2067 		filemap_nr_thps_inc(mapping);
2068 		/*
2069 		 * Paired with the fence in do_dentry_open() -> get_write_access()
2070 		 * to ensure i_writecount is up to date and the update to nr_thps
2071 		 * is visible. Ensures the page cache will be truncated if the
2072 		 * file is opened writable.
2073 		 */
2074 		smp_mb();
2075 		if (inode_is_open_for_write(mapping->host)) {
2076 			result = SCAN_FAIL;
2077 			filemap_nr_thps_dec(mapping);
2078 		}
2079 	}
2080 
2081 xa_locked:
2082 	xas_unlock_irq(&xas);
2083 xa_unlocked:
2084 
2085 	/*
2086 	 * If collapse is successful, flush must be done now before copying.
2087 	 * If collapse is unsuccessful, does flush actually need to be done?
2088 	 * Do it anyway, to clear the state.
2089 	 */
2090 	try_to_unmap_flush();
2091 
2092 	if (result == SCAN_SUCCEED && nr_none &&
2093 	    !shmem_charge(mapping->host, nr_none))
2094 		result = SCAN_FAIL;
2095 	if (result != SCAN_SUCCEED) {
2096 		nr_none = 0;
2097 		goto rollback;
2098 	}
2099 
2100 	/*
2101 	 * The old folios are locked, so they won't change anymore.
2102 	 */
2103 	index = start;
2104 	dst = folio_page(new_folio, 0);
2105 	list_for_each_entry(folio, &pagelist, lru) {
2106 		int i, nr_pages = folio_nr_pages(folio);
2107 
2108 		while (index < folio->index) {
2109 			clear_highpage(dst);
2110 			index++;
2111 			dst++;
2112 		}
2113 
2114 		for (i = 0; i < nr_pages; i++) {
2115 			if (copy_mc_highpage(dst, folio_page(folio, i)) > 0) {
2116 				result = SCAN_COPY_MC;
2117 				goto rollback;
2118 			}
2119 			index++;
2120 			dst++;
2121 		}
2122 	}
2123 	while (index < end) {
2124 		clear_highpage(dst);
2125 		index++;
2126 		dst++;
2127 	}
2128 
2129 	if (nr_none) {
2130 		struct vm_area_struct *vma;
2131 		int nr_none_check = 0;
2132 
2133 		i_mmap_lock_read(mapping);
2134 		xas_lock_irq(&xas);
2135 
2136 		xas_set(&xas, start);
2137 		for (index = start; index < end; index++) {
2138 			if (!xas_next(&xas)) {
2139 				xas_store(&xas, XA_RETRY_ENTRY);
2140 				if (xas_error(&xas)) {
2141 					result = SCAN_STORE_FAILED;
2142 					goto immap_locked;
2143 				}
2144 				nr_none_check++;
2145 			}
2146 		}
2147 
2148 		if (nr_none != nr_none_check) {
2149 			result = SCAN_PAGE_FILLED;
2150 			goto immap_locked;
2151 		}
2152 
2153 		/*
2154 		 * If userspace observed a missing page in a VMA with
2155 		 * a MODE_MISSING userfaultfd, then it might expect a
2156 		 * UFFD_EVENT_PAGEFAULT for that page. If so, we need to
2157 		 * roll back to avoid suppressing such an event. Since
2158 		 * wp/minor userfaultfds don't give userspace any
2159 		 * guarantees that the kernel doesn't fill a missing
2160 		 * page with a zero page, so they don't matter here.
2161 		 *
2162 		 * Any userfaultfds registered after this point will
2163 		 * not be able to observe any missing pages due to the
2164 		 * previously inserted retry entries.
2165 		 */
2166 		vma_interval_tree_foreach(vma, &mapping->i_mmap, start, end) {
2167 			if (userfaultfd_missing(vma)) {
2168 				result = SCAN_EXCEED_NONE_PTE;
2169 				goto immap_locked;
2170 			}
2171 		}
2172 
2173 immap_locked:
2174 		i_mmap_unlock_read(mapping);
2175 		if (result != SCAN_SUCCEED) {
2176 			xas_set(&xas, start);
2177 			for (index = start; index < end; index++) {
2178 				if (xas_next(&xas) == XA_RETRY_ENTRY)
2179 					xas_store(&xas, NULL);
2180 			}
2181 
2182 			xas_unlock_irq(&xas);
2183 			goto rollback;
2184 		}
2185 	} else {
2186 		xas_lock_irq(&xas);
2187 	}
2188 
2189 	if (is_shmem) {
2190 		lruvec_stat_mod_folio(new_folio, NR_SHMEM, HPAGE_PMD_NR);
2191 		lruvec_stat_mod_folio(new_folio, NR_SHMEM_THPS, HPAGE_PMD_NR);
2192 	} else {
2193 		lruvec_stat_mod_folio(new_folio, NR_FILE_THPS, HPAGE_PMD_NR);
2194 	}
2195 	lruvec_stat_mod_folio(new_folio, NR_FILE_PAGES, HPAGE_PMD_NR);
2196 
2197 	/*
2198 	 * Mark new_folio as uptodate before inserting it into the
2199 	 * page cache so that it isn't mistaken for an fallocated but
2200 	 * unwritten page.
2201 	 */
2202 	folio_mark_uptodate(new_folio);
2203 	folio_ref_add(new_folio, HPAGE_PMD_NR - 1);
2204 
2205 	if (is_shmem)
2206 		folio_mark_dirty(new_folio);
2207 	folio_add_lru(new_folio);
2208 
2209 	/* Join all the small entries into a single multi-index entry. */
2210 	xas_set_order(&xas, start, HPAGE_PMD_ORDER);
2211 	xas_store(&xas, new_folio);
2212 	WARN_ON_ONCE(xas_error(&xas));
2213 	xas_unlock_irq(&xas);
2214 
2215 	/*
2216 	 * Remove pte page tables, so we can re-fault the page as huge.
2217 	 * If MADV_COLLAPSE, adjust result to call try_collapse_pte_mapped_thp().
2218 	 */
2219 	retract_page_tables(mapping, start);
2220 	if (cc && !cc->is_khugepaged)
2221 		result = SCAN_PTE_MAPPED_HUGEPAGE;
2222 	folio_unlock(new_folio);
2223 
2224 	/*
2225 	 * The collapse has succeeded, so free the old folios.
2226 	 */
2227 	list_for_each_entry_safe(folio, tmp, &pagelist, lru) {
2228 		list_del(&folio->lru);
2229 		lruvec_stat_mod_folio(folio, NR_FILE_PAGES,
2230 				      -folio_nr_pages(folio));
2231 		if (is_shmem)
2232 			lruvec_stat_mod_folio(folio, NR_SHMEM,
2233 					      -folio_nr_pages(folio));
2234 		folio->mapping = NULL;
2235 		folio_clear_active(folio);
2236 		folio_clear_unevictable(folio);
2237 		folio_unlock(folio);
2238 		folio_put_refs(folio, 2 + folio_nr_pages(folio));
2239 	}
2240 
2241 	goto out;
2242 
2243 rollback:
2244 	/* Something went wrong: roll back page cache changes */
2245 	if (nr_none) {
2246 		xas_lock_irq(&xas);
2247 		mapping->nrpages -= nr_none;
2248 		xas_unlock_irq(&xas);
2249 		shmem_uncharge(mapping->host, nr_none);
2250 	}
2251 
2252 	list_for_each_entry_safe(folio, tmp, &pagelist, lru) {
2253 		list_del(&folio->lru);
2254 		folio_unlock(folio);
2255 		folio_putback_lru(folio);
2256 		folio_put(folio);
2257 	}
2258 	/*
2259 	 * Undo the updates of filemap_nr_thps_inc for non-SHMEM
2260 	 * file only. This undo is not needed unless failure is
2261 	 * due to SCAN_COPY_MC.
2262 	 */
2263 	if (!is_shmem && result == SCAN_COPY_MC) {
2264 		filemap_nr_thps_dec(mapping);
2265 		/*
2266 		 * Paired with the fence in do_dentry_open() -> get_write_access()
2267 		 * to ensure the update to nr_thps is visible.
2268 		 */
2269 		smp_mb();
2270 	}
2271 
2272 	new_folio->mapping = NULL;
2273 
2274 	folio_unlock(new_folio);
2275 	folio_put(new_folio);
2276 out:
2277 	VM_BUG_ON(!list_empty(&pagelist));
2278 	trace_mm_khugepaged_collapse_file(mm, new_folio, index, addr, is_shmem, file, HPAGE_PMD_NR, result);
2279 	return result;
2280 }
2281 
2282 static enum scan_result hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr,
2283 		struct file *file, pgoff_t start, struct collapse_control *cc)
2284 {
2285 	struct folio *folio = NULL;
2286 	struct address_space *mapping = file->f_mapping;
2287 	XA_STATE(xas, &mapping->i_pages, start);
2288 	int present, swap;
2289 	int node = NUMA_NO_NODE;
2290 	enum scan_result result = SCAN_SUCCEED;
2291 
2292 	present = 0;
2293 	swap = 0;
2294 	memset(cc->node_load, 0, sizeof(cc->node_load));
2295 	nodes_clear(cc->alloc_nmask);
2296 	rcu_read_lock();
2297 	xas_for_each(&xas, folio, start + HPAGE_PMD_NR - 1) {
2298 		if (xas_retry(&xas, folio))
2299 			continue;
2300 
2301 		if (xa_is_value(folio)) {
2302 			swap += 1 << xas_get_order(&xas);
2303 			if (cc->is_khugepaged &&
2304 			    swap > khugepaged_max_ptes_swap) {
2305 				result = SCAN_EXCEED_SWAP_PTE;
2306 				count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
2307 				break;
2308 			}
2309 			continue;
2310 		}
2311 
2312 		if (!folio_try_get(folio)) {
2313 			xas_reset(&xas);
2314 			continue;
2315 		}
2316 
2317 		if (unlikely(folio != xas_reload(&xas))) {
2318 			folio_put(folio);
2319 			xas_reset(&xas);
2320 			continue;
2321 		}
2322 
2323 		if (folio_order(folio) == HPAGE_PMD_ORDER &&
2324 		    folio->index == start) {
2325 			/* Maybe PMD-mapped */
2326 			result = SCAN_PTE_MAPPED_HUGEPAGE;
2327 			/*
2328 			 * For SCAN_PTE_MAPPED_HUGEPAGE, further processing
2329 			 * by the caller won't touch the page cache, and so
2330 			 * it's safe to skip LRU and refcount checks before
2331 			 * returning.
2332 			 */
2333 			folio_put(folio);
2334 			break;
2335 		}
2336 
2337 		node = folio_nid(folio);
2338 		if (hpage_collapse_scan_abort(node, cc)) {
2339 			result = SCAN_SCAN_ABORT;
2340 			folio_put(folio);
2341 			break;
2342 		}
2343 		cc->node_load[node]++;
2344 
2345 		if (!folio_test_lru(folio)) {
2346 			result = SCAN_PAGE_LRU;
2347 			folio_put(folio);
2348 			break;
2349 		}
2350 
2351 		if (folio_expected_ref_count(folio) + 1 != folio_ref_count(folio)) {
2352 			result = SCAN_PAGE_COUNT;
2353 			folio_put(folio);
2354 			break;
2355 		}
2356 
2357 		/*
2358 		 * We probably should check if the folio is referenced
2359 		 * here, but nobody would transfer pte_young() to
2360 		 * folio_test_referenced() for us.  And rmap walk here
2361 		 * is just too costly...
2362 		 */
2363 
2364 		present += folio_nr_pages(folio);
2365 		folio_put(folio);
2366 
2367 		if (need_resched()) {
2368 			xas_pause(&xas);
2369 			cond_resched_rcu();
2370 		}
2371 	}
2372 	rcu_read_unlock();
2373 
2374 	if (result == SCAN_SUCCEED) {
2375 		if (cc->is_khugepaged &&
2376 		    present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
2377 			result = SCAN_EXCEED_NONE_PTE;
2378 			count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
2379 		} else {
2380 			result = collapse_file(mm, addr, file, start, cc);
2381 		}
2382 	}
2383 
2384 	trace_mm_khugepaged_scan_file(mm, folio, file, present, swap, result);
2385 	return result;
2386 }
2387 
2388 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, enum scan_result *result,
2389 					    struct collapse_control *cc)
2390 	__releases(&khugepaged_mm_lock)
2391 	__acquires(&khugepaged_mm_lock)
2392 {
2393 	struct vma_iterator vmi;
2394 	struct mm_slot *slot;
2395 	struct mm_struct *mm;
2396 	struct vm_area_struct *vma;
2397 	int progress = 0;
2398 
2399 	VM_BUG_ON(!pages);
2400 	lockdep_assert_held(&khugepaged_mm_lock);
2401 	*result = SCAN_FAIL;
2402 
2403 	if (khugepaged_scan.mm_slot) {
2404 		slot = khugepaged_scan.mm_slot;
2405 	} else {
2406 		slot = list_first_entry(&khugepaged_scan.mm_head,
2407 				     struct mm_slot, mm_node);
2408 		khugepaged_scan.address = 0;
2409 		khugepaged_scan.mm_slot = slot;
2410 	}
2411 	spin_unlock(&khugepaged_mm_lock);
2412 
2413 	mm = slot->mm;
2414 	/*
2415 	 * Don't wait for semaphore (to avoid long wait times).  Just move to
2416 	 * the next mm on the list.
2417 	 */
2418 	vma = NULL;
2419 	if (unlikely(!mmap_read_trylock(mm)))
2420 		goto breakouterloop_mmap_lock;
2421 
2422 	progress++;
2423 	if (unlikely(hpage_collapse_test_exit_or_disable(mm)))
2424 		goto breakouterloop;
2425 
2426 	vma_iter_init(&vmi, mm, khugepaged_scan.address);
2427 	for_each_vma(vmi, vma) {
2428 		unsigned long hstart, hend;
2429 
2430 		cond_resched();
2431 		if (unlikely(hpage_collapse_test_exit_or_disable(mm))) {
2432 			progress++;
2433 			break;
2434 		}
2435 		if (!thp_vma_allowable_order(vma, vma->vm_flags, TVA_KHUGEPAGED, PMD_ORDER)) {
2436 			progress++;
2437 			continue;
2438 		}
2439 		hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE);
2440 		hend = round_down(vma->vm_end, HPAGE_PMD_SIZE);
2441 		if (khugepaged_scan.address > hend) {
2442 			progress++;
2443 			continue;
2444 		}
2445 		if (khugepaged_scan.address < hstart)
2446 			khugepaged_scan.address = hstart;
2447 		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2448 
2449 		while (khugepaged_scan.address < hend) {
2450 			bool mmap_locked = true;
2451 
2452 			cond_resched();
2453 			if (unlikely(hpage_collapse_test_exit_or_disable(mm)))
2454 				goto breakouterloop;
2455 
2456 			VM_BUG_ON(khugepaged_scan.address < hstart ||
2457 				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2458 				  hend);
2459 			if (!vma_is_anonymous(vma)) {
2460 				struct file *file = get_file(vma->vm_file);
2461 				pgoff_t pgoff = linear_page_index(vma,
2462 						khugepaged_scan.address);
2463 
2464 				mmap_read_unlock(mm);
2465 				mmap_locked = false;
2466 				*result = hpage_collapse_scan_file(mm,
2467 					khugepaged_scan.address, file, pgoff, cc);
2468 				fput(file);
2469 				if (*result == SCAN_PTE_MAPPED_HUGEPAGE) {
2470 					mmap_read_lock(mm);
2471 					if (hpage_collapse_test_exit_or_disable(mm))
2472 						goto breakouterloop;
2473 					*result = try_collapse_pte_mapped_thp(mm,
2474 						khugepaged_scan.address, false);
2475 					if (*result == SCAN_PMD_MAPPED)
2476 						*result = SCAN_SUCCEED;
2477 					mmap_read_unlock(mm);
2478 				}
2479 			} else {
2480 				*result = hpage_collapse_scan_pmd(mm, vma,
2481 					khugepaged_scan.address, &mmap_locked, cc);
2482 			}
2483 
2484 			if (*result == SCAN_SUCCEED)
2485 				++khugepaged_pages_collapsed;
2486 
2487 			/* move to next address */
2488 			khugepaged_scan.address += HPAGE_PMD_SIZE;
2489 			progress += HPAGE_PMD_NR;
2490 			if (!mmap_locked)
2491 				/*
2492 				 * We released mmap_lock so break loop.  Note
2493 				 * that we drop mmap_lock before all hugepage
2494 				 * allocations, so if allocation fails, we are
2495 				 * guaranteed to break here and report the
2496 				 * correct result back to caller.
2497 				 */
2498 				goto breakouterloop_mmap_lock;
2499 			if (progress >= pages)
2500 				goto breakouterloop;
2501 		}
2502 	}
2503 breakouterloop:
2504 	mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */
2505 breakouterloop_mmap_lock:
2506 
2507 	spin_lock(&khugepaged_mm_lock);
2508 	VM_BUG_ON(khugepaged_scan.mm_slot != slot);
2509 	/*
2510 	 * Release the current mm_slot if this mm is about to die, or
2511 	 * if we scanned all vmas of this mm.
2512 	 */
2513 	if (hpage_collapse_test_exit(mm) || !vma) {
2514 		/*
2515 		 * Make sure that if mm_users is reaching zero while
2516 		 * khugepaged runs here, khugepaged_exit will find
2517 		 * mm_slot not pointing to the exiting mm.
2518 		 */
2519 		if (!list_is_last(&slot->mm_node, &khugepaged_scan.mm_head)) {
2520 			khugepaged_scan.mm_slot = list_next_entry(slot, mm_node);
2521 			khugepaged_scan.address = 0;
2522 		} else {
2523 			khugepaged_scan.mm_slot = NULL;
2524 			khugepaged_full_scans++;
2525 		}
2526 
2527 		collect_mm_slot(slot);
2528 	}
2529 
2530 	return progress;
2531 }
2532 
2533 static int khugepaged_has_work(void)
2534 {
2535 	return !list_empty(&khugepaged_scan.mm_head) && hugepage_pmd_enabled();
2536 }
2537 
2538 static int khugepaged_wait_event(void)
2539 {
2540 	return !list_empty(&khugepaged_scan.mm_head) ||
2541 		kthread_should_stop();
2542 }
2543 
2544 static void khugepaged_do_scan(struct collapse_control *cc)
2545 {
2546 	unsigned int progress = 0, pass_through_head = 0;
2547 	unsigned int pages = READ_ONCE(khugepaged_pages_to_scan);
2548 	bool wait = true;
2549 	enum scan_result result = SCAN_SUCCEED;
2550 
2551 	lru_add_drain_all();
2552 
2553 	while (true) {
2554 		cond_resched();
2555 
2556 		if (unlikely(kthread_should_stop()))
2557 			break;
2558 
2559 		spin_lock(&khugepaged_mm_lock);
2560 		if (!khugepaged_scan.mm_slot)
2561 			pass_through_head++;
2562 		if (khugepaged_has_work() &&
2563 		    pass_through_head < 2)
2564 			progress += khugepaged_scan_mm_slot(pages - progress,
2565 							    &result, cc);
2566 		else
2567 			progress = pages;
2568 		spin_unlock(&khugepaged_mm_lock);
2569 
2570 		if (progress >= pages)
2571 			break;
2572 
2573 		if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) {
2574 			/*
2575 			 * If fail to allocate the first time, try to sleep for
2576 			 * a while.  When hit again, cancel the scan.
2577 			 */
2578 			if (!wait)
2579 				break;
2580 			wait = false;
2581 			khugepaged_alloc_sleep();
2582 		}
2583 	}
2584 }
2585 
2586 static bool khugepaged_should_wakeup(void)
2587 {
2588 	return kthread_should_stop() ||
2589 	       time_after_eq(jiffies, khugepaged_sleep_expire);
2590 }
2591 
2592 static void khugepaged_wait_work(void)
2593 {
2594 	if (khugepaged_has_work()) {
2595 		const unsigned long scan_sleep_jiffies =
2596 			msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2597 
2598 		if (!scan_sleep_jiffies)
2599 			return;
2600 
2601 		khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2602 		wait_event_freezable_timeout(khugepaged_wait,
2603 					     khugepaged_should_wakeup(),
2604 					     scan_sleep_jiffies);
2605 		return;
2606 	}
2607 
2608 	if (hugepage_pmd_enabled())
2609 		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2610 }
2611 
2612 static int khugepaged(void *none)
2613 {
2614 	struct mm_slot *slot;
2615 
2616 	set_freezable();
2617 	set_user_nice(current, MAX_NICE);
2618 
2619 	while (!kthread_should_stop()) {
2620 		khugepaged_do_scan(&khugepaged_collapse_control);
2621 		khugepaged_wait_work();
2622 	}
2623 
2624 	spin_lock(&khugepaged_mm_lock);
2625 	slot = khugepaged_scan.mm_slot;
2626 	khugepaged_scan.mm_slot = NULL;
2627 	if (slot)
2628 		collect_mm_slot(slot);
2629 	spin_unlock(&khugepaged_mm_lock);
2630 	return 0;
2631 }
2632 
2633 static void set_recommended_min_free_kbytes(void)
2634 {
2635 	struct zone *zone;
2636 	int nr_zones = 0;
2637 	unsigned long recommended_min;
2638 
2639 	if (!hugepage_pmd_enabled()) {
2640 		calculate_min_free_kbytes();
2641 		goto update_wmarks;
2642 	}
2643 
2644 	for_each_populated_zone(zone) {
2645 		/*
2646 		 * We don't need to worry about fragmentation of
2647 		 * ZONE_MOVABLE since it only has movable pages.
2648 		 */
2649 		if (zone_idx(zone) > gfp_zone(GFP_USER))
2650 			continue;
2651 
2652 		nr_zones++;
2653 	}
2654 
2655 	/* Ensure 2 pageblocks are free to assist fragmentation avoidance */
2656 	recommended_min = pageblock_nr_pages * nr_zones * 2;
2657 
2658 	/*
2659 	 * Make sure that on average at least two pageblocks are almost free
2660 	 * of another type, one for a migratetype to fall back to and a
2661 	 * second to avoid subsequent fallbacks of other types There are 3
2662 	 * MIGRATE_TYPES we care about.
2663 	 */
2664 	recommended_min += pageblock_nr_pages * nr_zones *
2665 			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
2666 
2667 	/* don't ever allow to reserve more than 5% of the lowmem */
2668 	recommended_min = min(recommended_min,
2669 			      (unsigned long) nr_free_buffer_pages() / 20);
2670 	recommended_min <<= (PAGE_SHIFT-10);
2671 
2672 	if (recommended_min > min_free_kbytes) {
2673 		if (user_min_free_kbytes >= 0)
2674 			pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
2675 				min_free_kbytes, recommended_min);
2676 
2677 		min_free_kbytes = recommended_min;
2678 	}
2679 
2680 update_wmarks:
2681 	setup_per_zone_wmarks();
2682 }
2683 
2684 int start_stop_khugepaged(void)
2685 {
2686 	int err = 0;
2687 
2688 	mutex_lock(&khugepaged_mutex);
2689 	if (hugepage_pmd_enabled()) {
2690 		if (!khugepaged_thread)
2691 			khugepaged_thread = kthread_run(khugepaged, NULL,
2692 							"khugepaged");
2693 		if (IS_ERR(khugepaged_thread)) {
2694 			pr_err("khugepaged: kthread_run(khugepaged) failed\n");
2695 			err = PTR_ERR(khugepaged_thread);
2696 			khugepaged_thread = NULL;
2697 			goto fail;
2698 		}
2699 
2700 		if (!list_empty(&khugepaged_scan.mm_head))
2701 			wake_up_interruptible(&khugepaged_wait);
2702 	} else if (khugepaged_thread) {
2703 		kthread_stop(khugepaged_thread);
2704 		khugepaged_thread = NULL;
2705 	}
2706 	set_recommended_min_free_kbytes();
2707 fail:
2708 	mutex_unlock(&khugepaged_mutex);
2709 	return err;
2710 }
2711 
2712 void khugepaged_min_free_kbytes_update(void)
2713 {
2714 	mutex_lock(&khugepaged_mutex);
2715 	if (hugepage_pmd_enabled() && khugepaged_thread)
2716 		set_recommended_min_free_kbytes();
2717 	mutex_unlock(&khugepaged_mutex);
2718 }
2719 
2720 bool current_is_khugepaged(void)
2721 {
2722 	return kthread_func(current) == khugepaged;
2723 }
2724 
2725 static int madvise_collapse_errno(enum scan_result r)
2726 {
2727 	/*
2728 	 * MADV_COLLAPSE breaks from existing madvise(2) conventions to provide
2729 	 * actionable feedback to caller, so they may take an appropriate
2730 	 * fallback measure depending on the nature of the failure.
2731 	 */
2732 	switch (r) {
2733 	case SCAN_ALLOC_HUGE_PAGE_FAIL:
2734 		return -ENOMEM;
2735 	case SCAN_CGROUP_CHARGE_FAIL:
2736 	case SCAN_EXCEED_NONE_PTE:
2737 		return -EBUSY;
2738 	/* Resource temporary unavailable - trying again might succeed */
2739 	case SCAN_PAGE_COUNT:
2740 	case SCAN_PAGE_LOCK:
2741 	case SCAN_PAGE_LRU:
2742 	case SCAN_DEL_PAGE_LRU:
2743 	case SCAN_PAGE_FILLED:
2744 	case SCAN_PAGE_DIRTY_OR_WRITEBACK:
2745 		return -EAGAIN;
2746 	/*
2747 	 * Other: Trying again likely not to succeed / error intrinsic to
2748 	 * specified memory range. khugepaged likely won't be able to collapse
2749 	 * either.
2750 	 */
2751 	default:
2752 		return -EINVAL;
2753 	}
2754 }
2755 
2756 int madvise_collapse(struct vm_area_struct *vma, unsigned long start,
2757 		     unsigned long end, bool *lock_dropped)
2758 {
2759 	struct collapse_control *cc;
2760 	struct mm_struct *mm = vma->vm_mm;
2761 	unsigned long hstart, hend, addr;
2762 	enum scan_result last_fail = SCAN_FAIL;
2763 	int thps = 0;
2764 	bool mmap_locked = true;
2765 
2766 	BUG_ON(vma->vm_start > start);
2767 	BUG_ON(vma->vm_end < end);
2768 
2769 	if (!thp_vma_allowable_order(vma, vma->vm_flags, TVA_FORCED_COLLAPSE, PMD_ORDER))
2770 		return -EINVAL;
2771 
2772 	cc = kmalloc(sizeof(*cc), GFP_KERNEL);
2773 	if (!cc)
2774 		return -ENOMEM;
2775 	cc->is_khugepaged = false;
2776 
2777 	mmgrab(mm);
2778 	lru_add_drain_all();
2779 
2780 	hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2781 	hend = end & HPAGE_PMD_MASK;
2782 
2783 	for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) {
2784 		enum scan_result result = SCAN_FAIL;
2785 		bool triggered_wb = false;
2786 
2787 retry:
2788 		if (!mmap_locked) {
2789 			cond_resched();
2790 			mmap_read_lock(mm);
2791 			mmap_locked = true;
2792 			result = hugepage_vma_revalidate(mm, addr, false, &vma,
2793 							 cc);
2794 			if (result  != SCAN_SUCCEED) {
2795 				last_fail = result;
2796 				goto out_nolock;
2797 			}
2798 
2799 			hend = min(hend, vma->vm_end & HPAGE_PMD_MASK);
2800 		}
2801 		mmap_assert_locked(mm);
2802 		if (!vma_is_anonymous(vma)) {
2803 			struct file *file = get_file(vma->vm_file);
2804 			pgoff_t pgoff = linear_page_index(vma, addr);
2805 
2806 			mmap_read_unlock(mm);
2807 			mmap_locked = false;
2808 			*lock_dropped = true;
2809 			result = hpage_collapse_scan_file(mm, addr, file, pgoff,
2810 							  cc);
2811 
2812 			if (result == SCAN_PAGE_DIRTY_OR_WRITEBACK && !triggered_wb &&
2813 			    mapping_can_writeback(file->f_mapping)) {
2814 				loff_t lstart = (loff_t)pgoff << PAGE_SHIFT;
2815 				loff_t lend = lstart + HPAGE_PMD_SIZE - 1;
2816 
2817 				filemap_write_and_wait_range(file->f_mapping, lstart, lend);
2818 				triggered_wb = true;
2819 				fput(file);
2820 				goto retry;
2821 			}
2822 			fput(file);
2823 		} else {
2824 			result = hpage_collapse_scan_pmd(mm, vma, addr,
2825 							 &mmap_locked, cc);
2826 		}
2827 		if (!mmap_locked)
2828 			*lock_dropped = true;
2829 
2830 handle_result:
2831 		switch (result) {
2832 		case SCAN_SUCCEED:
2833 		case SCAN_PMD_MAPPED:
2834 			++thps;
2835 			break;
2836 		case SCAN_PTE_MAPPED_HUGEPAGE:
2837 			BUG_ON(mmap_locked);
2838 			mmap_read_lock(mm);
2839 			result = try_collapse_pte_mapped_thp(mm, addr, true);
2840 			mmap_read_unlock(mm);
2841 			goto handle_result;
2842 		/* Whitelisted set of results where continuing OK */
2843 		case SCAN_NO_PTE_TABLE:
2844 		case SCAN_PTE_NON_PRESENT:
2845 		case SCAN_PTE_UFFD_WP:
2846 		case SCAN_LACK_REFERENCED_PAGE:
2847 		case SCAN_PAGE_NULL:
2848 		case SCAN_PAGE_COUNT:
2849 		case SCAN_PAGE_LOCK:
2850 		case SCAN_PAGE_COMPOUND:
2851 		case SCAN_PAGE_LRU:
2852 		case SCAN_DEL_PAGE_LRU:
2853 			last_fail = result;
2854 			break;
2855 		default:
2856 			last_fail = result;
2857 			/* Other error, exit */
2858 			goto out_maybelock;
2859 		}
2860 	}
2861 
2862 out_maybelock:
2863 	/* Caller expects us to hold mmap_lock on return */
2864 	if (!mmap_locked)
2865 		mmap_read_lock(mm);
2866 out_nolock:
2867 	mmap_assert_locked(mm);
2868 	mmdrop(mm);
2869 	kfree(cc);
2870 
2871 	return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0
2872 			: madvise_collapse_errno(last_fail);
2873 }
2874