1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/mm.h> 5 #include <linux/sched.h> 6 #include <linux/sched/mm.h> 7 #include <linux/mmu_notifier.h> 8 #include <linux/rmap.h> 9 #include <linux/swap.h> 10 #include <linux/mm_inline.h> 11 #include <linux/kthread.h> 12 #include <linux/khugepaged.h> 13 #include <linux/freezer.h> 14 #include <linux/mman.h> 15 #include <linux/hashtable.h> 16 #include <linux/userfaultfd_k.h> 17 #include <linux/page_idle.h> 18 #include <linux/page_table_check.h> 19 #include <linux/rcupdate_wait.h> 20 #include <linux/leafops.h> 21 #include <linux/shmem_fs.h> 22 #include <linux/dax.h> 23 #include <linux/ksm.h> 24 #include <linux/pgalloc.h> 25 #include <linux/backing-dev.h> 26 27 #include <asm/tlb.h> 28 #include "internal.h" 29 #include "mm_slot.h" 30 31 enum scan_result { 32 SCAN_FAIL, 33 SCAN_SUCCEED, 34 SCAN_NO_PTE_TABLE, 35 SCAN_PMD_MAPPED, 36 SCAN_EXCEED_NONE_PTE, 37 SCAN_EXCEED_SWAP_PTE, 38 SCAN_EXCEED_SHARED_PTE, 39 SCAN_PTE_NON_PRESENT, 40 SCAN_PTE_UFFD_WP, 41 SCAN_PTE_MAPPED_HUGEPAGE, 42 SCAN_LACK_REFERENCED_PAGE, 43 SCAN_PAGE_NULL, 44 SCAN_SCAN_ABORT, 45 SCAN_PAGE_COUNT, 46 SCAN_PAGE_LRU, 47 SCAN_PAGE_LOCK, 48 SCAN_PAGE_ANON, 49 SCAN_PAGE_COMPOUND, 50 SCAN_ANY_PROCESS, 51 SCAN_VMA_NULL, 52 SCAN_VMA_CHECK, 53 SCAN_ADDRESS_RANGE, 54 SCAN_DEL_PAGE_LRU, 55 SCAN_ALLOC_HUGE_PAGE_FAIL, 56 SCAN_CGROUP_CHARGE_FAIL, 57 SCAN_TRUNCATED, 58 SCAN_PAGE_HAS_PRIVATE, 59 SCAN_STORE_FAILED, 60 SCAN_COPY_MC, 61 SCAN_PAGE_FILLED, 62 SCAN_PAGE_DIRTY_OR_WRITEBACK, 63 }; 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/huge_memory.h> 67 68 static struct task_struct *khugepaged_thread __read_mostly; 69 static DEFINE_MUTEX(khugepaged_mutex); 70 71 /* default scan 8*HPAGE_PMD_NR ptes (or vmas) every 10 second */ 72 static unsigned int khugepaged_pages_to_scan __read_mostly; 73 static unsigned int khugepaged_pages_collapsed; 74 static unsigned int khugepaged_full_scans; 75 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000; 76 /* during fragmentation poll the hugepage allocator once every minute */ 77 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000; 78 static unsigned long khugepaged_sleep_expire; 79 static DEFINE_SPINLOCK(khugepaged_mm_lock); 80 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait); 81 /* 82 * default collapse hugepages if there is at least one pte mapped like 83 * it would have happened if the vma was large enough during page 84 * fault. 85 * 86 * Note that these are only respected if collapse was initiated by khugepaged. 87 */ 88 unsigned int khugepaged_max_ptes_none __read_mostly; 89 static unsigned int khugepaged_max_ptes_swap __read_mostly; 90 static unsigned int khugepaged_max_ptes_shared __read_mostly; 91 92 #define MM_SLOTS_HASH_BITS 10 93 static DEFINE_READ_MOSTLY_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 94 95 static struct kmem_cache *mm_slot_cache __ro_after_init; 96 97 struct collapse_control { 98 bool is_khugepaged; 99 100 /* Num pages scanned per node */ 101 u32 node_load[MAX_NUMNODES]; 102 103 /* nodemask for allocation fallback */ 104 nodemask_t alloc_nmask; 105 }; 106 107 /** 108 * struct khugepaged_scan - cursor for scanning 109 * @mm_head: the head of the mm list to scan 110 * @mm_slot: the current mm_slot we are scanning 111 * @address: the next address inside that to be scanned 112 * 113 * There is only the one khugepaged_scan instance of this cursor structure. 114 */ 115 struct khugepaged_scan { 116 struct list_head mm_head; 117 struct mm_slot *mm_slot; 118 unsigned long address; 119 }; 120 121 static struct khugepaged_scan khugepaged_scan = { 122 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head), 123 }; 124 125 #ifdef CONFIG_SYSFS 126 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj, 127 struct kobj_attribute *attr, 128 char *buf) 129 { 130 return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs); 131 } 132 133 static ssize_t __sleep_millisecs_store(const char *buf, size_t count, 134 unsigned int *millisecs) 135 { 136 unsigned int msecs; 137 int err; 138 139 err = kstrtouint(buf, 10, &msecs); 140 if (err) 141 return -EINVAL; 142 143 *millisecs = msecs; 144 khugepaged_sleep_expire = 0; 145 wake_up_interruptible(&khugepaged_wait); 146 147 return count; 148 } 149 150 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj, 151 struct kobj_attribute *attr, 152 const char *buf, size_t count) 153 { 154 return __sleep_millisecs_store(buf, count, &khugepaged_scan_sleep_millisecs); 155 } 156 static struct kobj_attribute scan_sleep_millisecs_attr = 157 __ATTR_RW(scan_sleep_millisecs); 158 159 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj, 160 struct kobj_attribute *attr, 161 char *buf) 162 { 163 return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs); 164 } 165 166 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj, 167 struct kobj_attribute *attr, 168 const char *buf, size_t count) 169 { 170 return __sleep_millisecs_store(buf, count, &khugepaged_alloc_sleep_millisecs); 171 } 172 static struct kobj_attribute alloc_sleep_millisecs_attr = 173 __ATTR_RW(alloc_sleep_millisecs); 174 175 static ssize_t pages_to_scan_show(struct kobject *kobj, 176 struct kobj_attribute *attr, 177 char *buf) 178 { 179 return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan); 180 } 181 static ssize_t pages_to_scan_store(struct kobject *kobj, 182 struct kobj_attribute *attr, 183 const char *buf, size_t count) 184 { 185 unsigned int pages; 186 int err; 187 188 err = kstrtouint(buf, 10, &pages); 189 if (err || !pages) 190 return -EINVAL; 191 192 khugepaged_pages_to_scan = pages; 193 194 return count; 195 } 196 static struct kobj_attribute pages_to_scan_attr = 197 __ATTR_RW(pages_to_scan); 198 199 static ssize_t pages_collapsed_show(struct kobject *kobj, 200 struct kobj_attribute *attr, 201 char *buf) 202 { 203 return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed); 204 } 205 static struct kobj_attribute pages_collapsed_attr = 206 __ATTR_RO(pages_collapsed); 207 208 static ssize_t full_scans_show(struct kobject *kobj, 209 struct kobj_attribute *attr, 210 char *buf) 211 { 212 return sysfs_emit(buf, "%u\n", khugepaged_full_scans); 213 } 214 static struct kobj_attribute full_scans_attr = 215 __ATTR_RO(full_scans); 216 217 static ssize_t defrag_show(struct kobject *kobj, 218 struct kobj_attribute *attr, char *buf) 219 { 220 return single_hugepage_flag_show(kobj, attr, buf, 221 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 222 } 223 static ssize_t defrag_store(struct kobject *kobj, 224 struct kobj_attribute *attr, 225 const char *buf, size_t count) 226 { 227 return single_hugepage_flag_store(kobj, attr, buf, count, 228 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 229 } 230 static struct kobj_attribute khugepaged_defrag_attr = 231 __ATTR_RW(defrag); 232 233 /* 234 * max_ptes_none controls if khugepaged should collapse hugepages over 235 * any unmapped ptes in turn potentially increasing the memory 236 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not 237 * reduce the available free memory in the system as it 238 * runs. Increasing max_ptes_none will instead potentially reduce the 239 * free memory in the system during the khugepaged scan. 240 */ 241 static ssize_t max_ptes_none_show(struct kobject *kobj, 242 struct kobj_attribute *attr, 243 char *buf) 244 { 245 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none); 246 } 247 static ssize_t max_ptes_none_store(struct kobject *kobj, 248 struct kobj_attribute *attr, 249 const char *buf, size_t count) 250 { 251 int err; 252 unsigned long max_ptes_none; 253 254 err = kstrtoul(buf, 10, &max_ptes_none); 255 if (err || max_ptes_none > HPAGE_PMD_NR - 1) 256 return -EINVAL; 257 258 khugepaged_max_ptes_none = max_ptes_none; 259 260 return count; 261 } 262 static struct kobj_attribute khugepaged_max_ptes_none_attr = 263 __ATTR_RW(max_ptes_none); 264 265 static ssize_t max_ptes_swap_show(struct kobject *kobj, 266 struct kobj_attribute *attr, 267 char *buf) 268 { 269 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap); 270 } 271 272 static ssize_t max_ptes_swap_store(struct kobject *kobj, 273 struct kobj_attribute *attr, 274 const char *buf, size_t count) 275 { 276 int err; 277 unsigned long max_ptes_swap; 278 279 err = kstrtoul(buf, 10, &max_ptes_swap); 280 if (err || max_ptes_swap > HPAGE_PMD_NR - 1) 281 return -EINVAL; 282 283 khugepaged_max_ptes_swap = max_ptes_swap; 284 285 return count; 286 } 287 288 static struct kobj_attribute khugepaged_max_ptes_swap_attr = 289 __ATTR_RW(max_ptes_swap); 290 291 static ssize_t max_ptes_shared_show(struct kobject *kobj, 292 struct kobj_attribute *attr, 293 char *buf) 294 { 295 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared); 296 } 297 298 static ssize_t max_ptes_shared_store(struct kobject *kobj, 299 struct kobj_attribute *attr, 300 const char *buf, size_t count) 301 { 302 int err; 303 unsigned long max_ptes_shared; 304 305 err = kstrtoul(buf, 10, &max_ptes_shared); 306 if (err || max_ptes_shared > HPAGE_PMD_NR - 1) 307 return -EINVAL; 308 309 khugepaged_max_ptes_shared = max_ptes_shared; 310 311 return count; 312 } 313 314 static struct kobj_attribute khugepaged_max_ptes_shared_attr = 315 __ATTR_RW(max_ptes_shared); 316 317 static struct attribute *khugepaged_attr[] = { 318 &khugepaged_defrag_attr.attr, 319 &khugepaged_max_ptes_none_attr.attr, 320 &khugepaged_max_ptes_swap_attr.attr, 321 &khugepaged_max_ptes_shared_attr.attr, 322 &pages_to_scan_attr.attr, 323 &pages_collapsed_attr.attr, 324 &full_scans_attr.attr, 325 &scan_sleep_millisecs_attr.attr, 326 &alloc_sleep_millisecs_attr.attr, 327 NULL, 328 }; 329 330 struct attribute_group khugepaged_attr_group = { 331 .attrs = khugepaged_attr, 332 .name = "khugepaged", 333 }; 334 #endif /* CONFIG_SYSFS */ 335 336 static bool pte_none_or_zero(pte_t pte) 337 { 338 if (pte_none(pte)) 339 return true; 340 return pte_present(pte) && is_zero_pfn(pte_pfn(pte)); 341 } 342 343 int hugepage_madvise(struct vm_area_struct *vma, 344 vm_flags_t *vm_flags, int advice) 345 { 346 switch (advice) { 347 case MADV_HUGEPAGE: 348 *vm_flags &= ~VM_NOHUGEPAGE; 349 *vm_flags |= VM_HUGEPAGE; 350 /* 351 * If the vma become good for khugepaged to scan, 352 * register it here without waiting a page fault that 353 * may not happen any time soon. 354 */ 355 khugepaged_enter_vma(vma, *vm_flags); 356 break; 357 case MADV_NOHUGEPAGE: 358 *vm_flags &= ~VM_HUGEPAGE; 359 *vm_flags |= VM_NOHUGEPAGE; 360 /* 361 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning 362 * this vma even if we leave the mm registered in khugepaged if 363 * it got registered before VM_NOHUGEPAGE was set. 364 */ 365 break; 366 } 367 368 return 0; 369 } 370 371 int __init khugepaged_init(void) 372 { 373 mm_slot_cache = KMEM_CACHE(mm_slot, 0); 374 if (!mm_slot_cache) 375 return -ENOMEM; 376 377 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8; 378 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1; 379 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8; 380 khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2; 381 382 return 0; 383 } 384 385 void __init khugepaged_destroy(void) 386 { 387 kmem_cache_destroy(mm_slot_cache); 388 } 389 390 static inline int hpage_collapse_test_exit(struct mm_struct *mm) 391 { 392 return atomic_read(&mm->mm_users) == 0; 393 } 394 395 static inline int hpage_collapse_test_exit_or_disable(struct mm_struct *mm) 396 { 397 return hpage_collapse_test_exit(mm) || 398 mm_flags_test(MMF_DISABLE_THP_COMPLETELY, mm); 399 } 400 401 static bool hugepage_pmd_enabled(void) 402 { 403 /* 404 * We cover the anon, shmem and the file-backed case here; file-backed 405 * hugepages, when configured in, are determined by the global control. 406 * Anon pmd-sized hugepages are determined by the pmd-size control. 407 * Shmem pmd-sized hugepages are also determined by its pmd-size control, 408 * except when the global shmem_huge is set to SHMEM_HUGE_DENY. 409 */ 410 if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && 411 hugepage_global_enabled()) 412 return true; 413 if (test_bit(PMD_ORDER, &huge_anon_orders_always)) 414 return true; 415 if (test_bit(PMD_ORDER, &huge_anon_orders_madvise)) 416 return true; 417 if (test_bit(PMD_ORDER, &huge_anon_orders_inherit) && 418 hugepage_global_enabled()) 419 return true; 420 if (IS_ENABLED(CONFIG_SHMEM) && shmem_hpage_pmd_enabled()) 421 return true; 422 return false; 423 } 424 425 void __khugepaged_enter(struct mm_struct *mm) 426 { 427 struct mm_slot *slot; 428 int wakeup; 429 430 /* __khugepaged_exit() must not run from under us */ 431 VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm); 432 if (unlikely(mm_flags_test_and_set(MMF_VM_HUGEPAGE, mm))) 433 return; 434 435 slot = mm_slot_alloc(mm_slot_cache); 436 if (!slot) 437 return; 438 439 spin_lock(&khugepaged_mm_lock); 440 mm_slot_insert(mm_slots_hash, mm, slot); 441 /* 442 * Insert just behind the scanning cursor, to let the area settle 443 * down a little. 444 */ 445 wakeup = list_empty(&khugepaged_scan.mm_head); 446 list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head); 447 spin_unlock(&khugepaged_mm_lock); 448 449 mmgrab(mm); 450 if (wakeup) 451 wake_up_interruptible(&khugepaged_wait); 452 } 453 454 void khugepaged_enter_vma(struct vm_area_struct *vma, 455 vm_flags_t vm_flags) 456 { 457 if (!mm_flags_test(MMF_VM_HUGEPAGE, vma->vm_mm) && 458 hugepage_pmd_enabled()) { 459 if (thp_vma_allowable_order(vma, vm_flags, TVA_KHUGEPAGED, PMD_ORDER)) 460 __khugepaged_enter(vma->vm_mm); 461 } 462 } 463 464 void __khugepaged_exit(struct mm_struct *mm) 465 { 466 struct mm_slot *slot; 467 int free = 0; 468 469 spin_lock(&khugepaged_mm_lock); 470 slot = mm_slot_lookup(mm_slots_hash, mm); 471 if (slot && khugepaged_scan.mm_slot != slot) { 472 hash_del(&slot->hash); 473 list_del(&slot->mm_node); 474 free = 1; 475 } 476 spin_unlock(&khugepaged_mm_lock); 477 478 if (free) { 479 mm_flags_clear(MMF_VM_HUGEPAGE, mm); 480 mm_slot_free(mm_slot_cache, slot); 481 mmdrop(mm); 482 } else if (slot) { 483 /* 484 * This is required to serialize against 485 * hpage_collapse_test_exit() (which is guaranteed to run 486 * under mmap sem read mode). Stop here (after we return all 487 * pagetables will be destroyed) until khugepaged has finished 488 * working on the pagetables under the mmap_lock. 489 */ 490 mmap_write_lock(mm); 491 mmap_write_unlock(mm); 492 } 493 } 494 495 static void release_pte_folio(struct folio *folio) 496 { 497 node_stat_mod_folio(folio, 498 NR_ISOLATED_ANON + folio_is_file_lru(folio), 499 -folio_nr_pages(folio)); 500 folio_unlock(folio); 501 folio_putback_lru(folio); 502 } 503 504 static void release_pte_pages(pte_t *pte, pte_t *_pte, 505 struct list_head *compound_pagelist) 506 { 507 struct folio *folio, *tmp; 508 509 while (--_pte >= pte) { 510 pte_t pteval = ptep_get(_pte); 511 unsigned long pfn; 512 513 if (pte_none(pteval)) 514 continue; 515 VM_WARN_ON_ONCE(!pte_present(pteval)); 516 pfn = pte_pfn(pteval); 517 if (is_zero_pfn(pfn)) 518 continue; 519 folio = pfn_folio(pfn); 520 if (folio_test_large(folio)) 521 continue; 522 release_pte_folio(folio); 523 } 524 525 list_for_each_entry_safe(folio, tmp, compound_pagelist, lru) { 526 list_del(&folio->lru); 527 release_pte_folio(folio); 528 } 529 } 530 531 static enum scan_result __collapse_huge_page_isolate(struct vm_area_struct *vma, 532 unsigned long start_addr, pte_t *pte, struct collapse_control *cc, 533 struct list_head *compound_pagelist) 534 { 535 struct page *page = NULL; 536 struct folio *folio = NULL; 537 unsigned long addr = start_addr; 538 pte_t *_pte; 539 int none_or_zero = 0, shared = 0, referenced = 0; 540 enum scan_result result = SCAN_FAIL; 541 542 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; 543 _pte++, addr += PAGE_SIZE) { 544 pte_t pteval = ptep_get(_pte); 545 if (pte_none_or_zero(pteval)) { 546 ++none_or_zero; 547 if (!userfaultfd_armed(vma) && 548 (!cc->is_khugepaged || 549 none_or_zero <= khugepaged_max_ptes_none)) { 550 continue; 551 } else { 552 result = SCAN_EXCEED_NONE_PTE; 553 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 554 goto out; 555 } 556 } 557 if (!pte_present(pteval)) { 558 result = SCAN_PTE_NON_PRESENT; 559 goto out; 560 } 561 if (pte_uffd_wp(pteval)) { 562 result = SCAN_PTE_UFFD_WP; 563 goto out; 564 } 565 page = vm_normal_page(vma, addr, pteval); 566 if (unlikely(!page) || unlikely(is_zone_device_page(page))) { 567 result = SCAN_PAGE_NULL; 568 goto out; 569 } 570 571 folio = page_folio(page); 572 VM_BUG_ON_FOLIO(!folio_test_anon(folio), folio); 573 574 /* See hpage_collapse_scan_pmd(). */ 575 if (folio_maybe_mapped_shared(folio)) { 576 ++shared; 577 if (cc->is_khugepaged && 578 shared > khugepaged_max_ptes_shared) { 579 result = SCAN_EXCEED_SHARED_PTE; 580 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 581 goto out; 582 } 583 } 584 585 if (folio_test_large(folio)) { 586 struct folio *f; 587 588 /* 589 * Check if we have dealt with the compound page 590 * already 591 */ 592 list_for_each_entry(f, compound_pagelist, lru) { 593 if (folio == f) 594 goto next; 595 } 596 } 597 598 /* 599 * We can do it before folio_isolate_lru because the 600 * folio can't be freed from under us. NOTE: PG_lock 601 * is needed to serialize against split_huge_page 602 * when invoked from the VM. 603 */ 604 if (!folio_trylock(folio)) { 605 result = SCAN_PAGE_LOCK; 606 goto out; 607 } 608 609 /* 610 * Check if the page has any GUP (or other external) pins. 611 * 612 * The page table that maps the page has been already unlinked 613 * from the page table tree and this process cannot get 614 * an additional pin on the page. 615 * 616 * New pins can come later if the page is shared across fork, 617 * but not from this process. The other process cannot write to 618 * the page, only trigger CoW. 619 */ 620 if (folio_expected_ref_count(folio) != folio_ref_count(folio)) { 621 folio_unlock(folio); 622 result = SCAN_PAGE_COUNT; 623 goto out; 624 } 625 626 /* 627 * Isolate the page to avoid collapsing an hugepage 628 * currently in use by the VM. 629 */ 630 if (!folio_isolate_lru(folio)) { 631 folio_unlock(folio); 632 result = SCAN_DEL_PAGE_LRU; 633 goto out; 634 } 635 node_stat_mod_folio(folio, 636 NR_ISOLATED_ANON + folio_is_file_lru(folio), 637 folio_nr_pages(folio)); 638 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 639 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 640 641 if (folio_test_large(folio)) 642 list_add_tail(&folio->lru, compound_pagelist); 643 next: 644 /* 645 * If collapse was initiated by khugepaged, check that there is 646 * enough young pte to justify collapsing the page 647 */ 648 if (cc->is_khugepaged && 649 (pte_young(pteval) || folio_test_young(folio) || 650 folio_test_referenced(folio) || 651 mmu_notifier_test_young(vma->vm_mm, addr))) 652 referenced++; 653 } 654 655 if (unlikely(cc->is_khugepaged && !referenced)) { 656 result = SCAN_LACK_REFERENCED_PAGE; 657 } else { 658 result = SCAN_SUCCEED; 659 trace_mm_collapse_huge_page_isolate(folio, none_or_zero, 660 referenced, result); 661 return result; 662 } 663 out: 664 release_pte_pages(pte, _pte, compound_pagelist); 665 trace_mm_collapse_huge_page_isolate(folio, none_or_zero, 666 referenced, result); 667 return result; 668 } 669 670 static void __collapse_huge_page_copy_succeeded(pte_t *pte, 671 struct vm_area_struct *vma, 672 unsigned long address, 673 spinlock_t *ptl, 674 struct list_head *compound_pagelist) 675 { 676 unsigned long end = address + HPAGE_PMD_SIZE; 677 struct folio *src, *tmp; 678 pte_t pteval; 679 pte_t *_pte; 680 unsigned int nr_ptes; 681 682 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; _pte += nr_ptes, 683 address += nr_ptes * PAGE_SIZE) { 684 nr_ptes = 1; 685 pteval = ptep_get(_pte); 686 if (pte_none_or_zero(pteval)) { 687 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1); 688 if (pte_none(pteval)) 689 continue; 690 /* 691 * ptl mostly unnecessary. 692 */ 693 spin_lock(ptl); 694 ptep_clear(vma->vm_mm, address, _pte); 695 spin_unlock(ptl); 696 ksm_might_unmap_zero_page(vma->vm_mm, pteval); 697 } else { 698 struct page *src_page = pte_page(pteval); 699 700 src = page_folio(src_page); 701 702 if (folio_test_large(src)) { 703 unsigned int max_nr_ptes = (end - address) >> PAGE_SHIFT; 704 705 nr_ptes = folio_pte_batch(src, _pte, pteval, max_nr_ptes); 706 } else { 707 release_pte_folio(src); 708 } 709 710 /* 711 * ptl mostly unnecessary, but preempt has to 712 * be disabled to update the per-cpu stats 713 * inside folio_remove_rmap_pte(). 714 */ 715 spin_lock(ptl); 716 clear_ptes(vma->vm_mm, address, _pte, nr_ptes); 717 folio_remove_rmap_ptes(src, src_page, nr_ptes, vma); 718 spin_unlock(ptl); 719 free_swap_cache(src); 720 folio_put_refs(src, nr_ptes); 721 } 722 } 723 724 list_for_each_entry_safe(src, tmp, compound_pagelist, lru) { 725 list_del(&src->lru); 726 node_stat_sub_folio(src, NR_ISOLATED_ANON + 727 folio_is_file_lru(src)); 728 folio_unlock(src); 729 free_swap_cache(src); 730 folio_putback_lru(src); 731 } 732 } 733 734 static void __collapse_huge_page_copy_failed(pte_t *pte, 735 pmd_t *pmd, 736 pmd_t orig_pmd, 737 struct vm_area_struct *vma, 738 struct list_head *compound_pagelist) 739 { 740 spinlock_t *pmd_ptl; 741 742 /* 743 * Re-establish the PMD to point to the original page table 744 * entry. Restoring PMD needs to be done prior to releasing 745 * pages. Since pages are still isolated and locked here, 746 * acquiring anon_vma_lock_write is unnecessary. 747 */ 748 pmd_ptl = pmd_lock(vma->vm_mm, pmd); 749 pmd_populate(vma->vm_mm, pmd, pmd_pgtable(orig_pmd)); 750 spin_unlock(pmd_ptl); 751 /* 752 * Release both raw and compound pages isolated 753 * in __collapse_huge_page_isolate. 754 */ 755 release_pte_pages(pte, pte + HPAGE_PMD_NR, compound_pagelist); 756 } 757 758 /* 759 * __collapse_huge_page_copy - attempts to copy memory contents from raw 760 * pages to a hugepage. Cleans up the raw pages if copying succeeds; 761 * otherwise restores the original page table and releases isolated raw pages. 762 * Returns SCAN_SUCCEED if copying succeeds, otherwise returns SCAN_COPY_MC. 763 * 764 * @pte: starting of the PTEs to copy from 765 * @folio: the new hugepage to copy contents to 766 * @pmd: pointer to the new hugepage's PMD 767 * @orig_pmd: the original raw pages' PMD 768 * @vma: the original raw pages' virtual memory area 769 * @address: starting address to copy 770 * @ptl: lock on raw pages' PTEs 771 * @compound_pagelist: list that stores compound pages 772 */ 773 static enum scan_result __collapse_huge_page_copy(pte_t *pte, struct folio *folio, 774 pmd_t *pmd, pmd_t orig_pmd, struct vm_area_struct *vma, 775 unsigned long address, spinlock_t *ptl, 776 struct list_head *compound_pagelist) 777 { 778 unsigned int i; 779 enum scan_result result = SCAN_SUCCEED; 780 781 /* 782 * Copying pages' contents is subject to memory poison at any iteration. 783 */ 784 for (i = 0; i < HPAGE_PMD_NR; i++) { 785 pte_t pteval = ptep_get(pte + i); 786 struct page *page = folio_page(folio, i); 787 unsigned long src_addr = address + i * PAGE_SIZE; 788 struct page *src_page; 789 790 if (pte_none_or_zero(pteval)) { 791 clear_user_highpage(page, src_addr); 792 continue; 793 } 794 src_page = pte_page(pteval); 795 if (copy_mc_user_highpage(page, src_page, src_addr, vma) > 0) { 796 result = SCAN_COPY_MC; 797 break; 798 } 799 } 800 801 if (likely(result == SCAN_SUCCEED)) 802 __collapse_huge_page_copy_succeeded(pte, vma, address, ptl, 803 compound_pagelist); 804 else 805 __collapse_huge_page_copy_failed(pte, pmd, orig_pmd, vma, 806 compound_pagelist); 807 808 return result; 809 } 810 811 static void khugepaged_alloc_sleep(void) 812 { 813 DEFINE_WAIT(wait); 814 815 add_wait_queue(&khugepaged_wait, &wait); 816 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 817 schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs)); 818 remove_wait_queue(&khugepaged_wait, &wait); 819 } 820 821 static struct collapse_control khugepaged_collapse_control = { 822 .is_khugepaged = true, 823 }; 824 825 static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc) 826 { 827 int i; 828 829 /* 830 * If node_reclaim_mode is disabled, then no extra effort is made to 831 * allocate memory locally. 832 */ 833 if (!node_reclaim_enabled()) 834 return false; 835 836 /* If there is a count for this node already, it must be acceptable */ 837 if (cc->node_load[nid]) 838 return false; 839 840 for (i = 0; i < MAX_NUMNODES; i++) { 841 if (!cc->node_load[i]) 842 continue; 843 if (node_distance(nid, i) > node_reclaim_distance) 844 return true; 845 } 846 return false; 847 } 848 849 #define khugepaged_defrag() \ 850 (transparent_hugepage_flags & \ 851 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)) 852 853 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */ 854 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void) 855 { 856 return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT; 857 } 858 859 #ifdef CONFIG_NUMA 860 static int hpage_collapse_find_target_node(struct collapse_control *cc) 861 { 862 int nid, target_node = 0, max_value = 0; 863 864 /* find first node with max normal pages hit */ 865 for (nid = 0; nid < MAX_NUMNODES; nid++) 866 if (cc->node_load[nid] > max_value) { 867 max_value = cc->node_load[nid]; 868 target_node = nid; 869 } 870 871 for_each_online_node(nid) { 872 if (max_value == cc->node_load[nid]) 873 node_set(nid, cc->alloc_nmask); 874 } 875 876 return target_node; 877 } 878 #else 879 static int hpage_collapse_find_target_node(struct collapse_control *cc) 880 { 881 return 0; 882 } 883 #endif 884 885 /* 886 * If mmap_lock temporarily dropped, revalidate vma 887 * before taking mmap_lock. 888 * Returns enum scan_result value. 889 */ 890 891 static enum scan_result hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address, 892 bool expect_anon, struct vm_area_struct **vmap, struct collapse_control *cc) 893 { 894 struct vm_area_struct *vma; 895 enum tva_type type = cc->is_khugepaged ? TVA_KHUGEPAGED : 896 TVA_FORCED_COLLAPSE; 897 898 if (unlikely(hpage_collapse_test_exit_or_disable(mm))) 899 return SCAN_ANY_PROCESS; 900 901 *vmap = vma = find_vma(mm, address); 902 if (!vma) 903 return SCAN_VMA_NULL; 904 905 if (!thp_vma_suitable_order(vma, address, PMD_ORDER)) 906 return SCAN_ADDRESS_RANGE; 907 if (!thp_vma_allowable_order(vma, vma->vm_flags, type, PMD_ORDER)) 908 return SCAN_VMA_CHECK; 909 /* 910 * Anon VMA expected, the address may be unmapped then 911 * remapped to file after khugepaged reaquired the mmap_lock. 912 * 913 * thp_vma_allowable_order may return true for qualified file 914 * vmas. 915 */ 916 if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap))) 917 return SCAN_PAGE_ANON; 918 return SCAN_SUCCEED; 919 } 920 921 static inline enum scan_result check_pmd_state(pmd_t *pmd) 922 { 923 pmd_t pmde = pmdp_get_lockless(pmd); 924 925 if (pmd_none(pmde)) 926 return SCAN_NO_PTE_TABLE; 927 928 /* 929 * The folio may be under migration when khugepaged is trying to 930 * collapse it. Migration success or failure will eventually end 931 * up with a present PMD mapping a folio again. 932 */ 933 if (pmd_is_migration_entry(pmde)) 934 return SCAN_PMD_MAPPED; 935 if (!pmd_present(pmde)) 936 return SCAN_NO_PTE_TABLE; 937 if (pmd_trans_huge(pmde)) 938 return SCAN_PMD_MAPPED; 939 if (pmd_bad(pmde)) 940 return SCAN_NO_PTE_TABLE; 941 return SCAN_SUCCEED; 942 } 943 944 static enum scan_result find_pmd_or_thp_or_none(struct mm_struct *mm, 945 unsigned long address, pmd_t **pmd) 946 { 947 *pmd = mm_find_pmd(mm, address); 948 if (!*pmd) 949 return SCAN_NO_PTE_TABLE; 950 951 return check_pmd_state(*pmd); 952 } 953 954 static enum scan_result check_pmd_still_valid(struct mm_struct *mm, 955 unsigned long address, pmd_t *pmd) 956 { 957 pmd_t *new_pmd; 958 enum scan_result result = find_pmd_or_thp_or_none(mm, address, &new_pmd); 959 960 if (result != SCAN_SUCCEED) 961 return result; 962 if (new_pmd != pmd) 963 return SCAN_FAIL; 964 return SCAN_SUCCEED; 965 } 966 967 /* 968 * Bring missing pages in from swap, to complete THP collapse. 969 * Only done if hpage_collapse_scan_pmd believes it is worthwhile. 970 * 971 * Called and returns without pte mapped or spinlocks held. 972 * Returns result: if not SCAN_SUCCEED, mmap_lock has been released. 973 */ 974 static enum scan_result __collapse_huge_page_swapin(struct mm_struct *mm, 975 struct vm_area_struct *vma, unsigned long start_addr, pmd_t *pmd, 976 int referenced) 977 { 978 int swapped_in = 0; 979 vm_fault_t ret = 0; 980 unsigned long addr, end = start_addr + (HPAGE_PMD_NR * PAGE_SIZE); 981 enum scan_result result; 982 pte_t *pte = NULL; 983 spinlock_t *ptl; 984 985 for (addr = start_addr; addr < end; addr += PAGE_SIZE) { 986 struct vm_fault vmf = { 987 .vma = vma, 988 .address = addr, 989 .pgoff = linear_page_index(vma, addr), 990 .flags = FAULT_FLAG_ALLOW_RETRY, 991 .pmd = pmd, 992 }; 993 994 if (!pte++) { 995 /* 996 * Here the ptl is only used to check pte_same() in 997 * do_swap_page(), so readonly version is enough. 998 */ 999 pte = pte_offset_map_ro_nolock(mm, pmd, addr, &ptl); 1000 if (!pte) { 1001 mmap_read_unlock(mm); 1002 result = SCAN_NO_PTE_TABLE; 1003 goto out; 1004 } 1005 } 1006 1007 vmf.orig_pte = ptep_get_lockless(pte); 1008 if (pte_none(vmf.orig_pte) || 1009 pte_present(vmf.orig_pte)) 1010 continue; 1011 1012 vmf.pte = pte; 1013 vmf.ptl = ptl; 1014 ret = do_swap_page(&vmf); 1015 /* Which unmaps pte (after perhaps re-checking the entry) */ 1016 pte = NULL; 1017 1018 /* 1019 * do_swap_page returns VM_FAULT_RETRY with released mmap_lock. 1020 * Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because 1021 * we do not retry here and swap entry will remain in pagetable 1022 * resulting in later failure. 1023 */ 1024 if (ret & VM_FAULT_RETRY) { 1025 /* Likely, but not guaranteed, that page lock failed */ 1026 result = SCAN_PAGE_LOCK; 1027 goto out; 1028 } 1029 if (ret & VM_FAULT_ERROR) { 1030 mmap_read_unlock(mm); 1031 result = SCAN_FAIL; 1032 goto out; 1033 } 1034 swapped_in++; 1035 } 1036 1037 if (pte) 1038 pte_unmap(pte); 1039 1040 /* Drain LRU cache to remove extra pin on the swapped in pages */ 1041 if (swapped_in) 1042 lru_add_drain(); 1043 1044 result = SCAN_SUCCEED; 1045 out: 1046 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, result); 1047 return result; 1048 } 1049 1050 static enum scan_result alloc_charge_folio(struct folio **foliop, struct mm_struct *mm, 1051 struct collapse_control *cc) 1052 { 1053 gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() : 1054 GFP_TRANSHUGE); 1055 int node = hpage_collapse_find_target_node(cc); 1056 struct folio *folio; 1057 1058 folio = __folio_alloc(gfp, HPAGE_PMD_ORDER, node, &cc->alloc_nmask); 1059 if (!folio) { 1060 *foliop = NULL; 1061 count_vm_event(THP_COLLAPSE_ALLOC_FAILED); 1062 return SCAN_ALLOC_HUGE_PAGE_FAIL; 1063 } 1064 1065 count_vm_event(THP_COLLAPSE_ALLOC); 1066 if (unlikely(mem_cgroup_charge(folio, mm, gfp))) { 1067 folio_put(folio); 1068 *foliop = NULL; 1069 return SCAN_CGROUP_CHARGE_FAIL; 1070 } 1071 1072 count_memcg_folio_events(folio, THP_COLLAPSE_ALLOC, 1); 1073 1074 *foliop = folio; 1075 return SCAN_SUCCEED; 1076 } 1077 1078 static enum scan_result collapse_huge_page(struct mm_struct *mm, unsigned long address, 1079 int referenced, int unmapped, struct collapse_control *cc) 1080 { 1081 LIST_HEAD(compound_pagelist); 1082 pmd_t *pmd, _pmd; 1083 pte_t *pte; 1084 pgtable_t pgtable; 1085 struct folio *folio; 1086 spinlock_t *pmd_ptl, *pte_ptl; 1087 enum scan_result result = SCAN_FAIL; 1088 struct vm_area_struct *vma; 1089 struct mmu_notifier_range range; 1090 1091 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1092 1093 /* 1094 * Before allocating the hugepage, release the mmap_lock read lock. 1095 * The allocation can take potentially a long time if it involves 1096 * sync compaction, and we do not need to hold the mmap_lock during 1097 * that. We will recheck the vma after taking it again in write mode. 1098 */ 1099 mmap_read_unlock(mm); 1100 1101 result = alloc_charge_folio(&folio, mm, cc); 1102 if (result != SCAN_SUCCEED) 1103 goto out_nolock; 1104 1105 mmap_read_lock(mm); 1106 result = hugepage_vma_revalidate(mm, address, true, &vma, cc); 1107 if (result != SCAN_SUCCEED) { 1108 mmap_read_unlock(mm); 1109 goto out_nolock; 1110 } 1111 1112 result = find_pmd_or_thp_or_none(mm, address, &pmd); 1113 if (result != SCAN_SUCCEED) { 1114 mmap_read_unlock(mm); 1115 goto out_nolock; 1116 } 1117 1118 if (unmapped) { 1119 /* 1120 * __collapse_huge_page_swapin will return with mmap_lock 1121 * released when it fails. So we jump out_nolock directly in 1122 * that case. Continuing to collapse causes inconsistency. 1123 */ 1124 result = __collapse_huge_page_swapin(mm, vma, address, pmd, 1125 referenced); 1126 if (result != SCAN_SUCCEED) 1127 goto out_nolock; 1128 } 1129 1130 mmap_read_unlock(mm); 1131 /* 1132 * Prevent all access to pagetables with the exception of 1133 * gup_fast later handled by the ptep_clear_flush and the VM 1134 * handled by the anon_vma lock + PG_lock. 1135 * 1136 * UFFDIO_MOVE is prevented to race as well thanks to the 1137 * mmap_lock. 1138 */ 1139 mmap_write_lock(mm); 1140 result = hugepage_vma_revalidate(mm, address, true, &vma, cc); 1141 if (result != SCAN_SUCCEED) 1142 goto out_up_write; 1143 /* check if the pmd is still valid */ 1144 vma_start_write(vma); 1145 result = check_pmd_still_valid(mm, address, pmd); 1146 if (result != SCAN_SUCCEED) 1147 goto out_up_write; 1148 1149 anon_vma_lock_write(vma->anon_vma); 1150 1151 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, address, 1152 address + HPAGE_PMD_SIZE); 1153 mmu_notifier_invalidate_range_start(&range); 1154 1155 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */ 1156 /* 1157 * This removes any huge TLB entry from the CPU so we won't allow 1158 * huge and small TLB entries for the same virtual address to 1159 * avoid the risk of CPU bugs in that area. 1160 * 1161 * Parallel GUP-fast is fine since GUP-fast will back off when 1162 * it detects PMD is changed. 1163 */ 1164 _pmd = pmdp_collapse_flush(vma, address, pmd); 1165 spin_unlock(pmd_ptl); 1166 mmu_notifier_invalidate_range_end(&range); 1167 tlb_remove_table_sync_one(); 1168 1169 pte = pte_offset_map_lock(mm, &_pmd, address, &pte_ptl); 1170 if (pte) { 1171 result = __collapse_huge_page_isolate(vma, address, pte, cc, 1172 &compound_pagelist); 1173 spin_unlock(pte_ptl); 1174 } else { 1175 result = SCAN_NO_PTE_TABLE; 1176 } 1177 1178 if (unlikely(result != SCAN_SUCCEED)) { 1179 if (pte) 1180 pte_unmap(pte); 1181 spin_lock(pmd_ptl); 1182 BUG_ON(!pmd_none(*pmd)); 1183 /* 1184 * We can only use set_pmd_at when establishing 1185 * hugepmds and never for establishing regular pmds that 1186 * points to regular pagetables. Use pmd_populate for that 1187 */ 1188 pmd_populate(mm, pmd, pmd_pgtable(_pmd)); 1189 spin_unlock(pmd_ptl); 1190 anon_vma_unlock_write(vma->anon_vma); 1191 goto out_up_write; 1192 } 1193 1194 /* 1195 * All pages are isolated and locked so anon_vma rmap 1196 * can't run anymore. 1197 */ 1198 anon_vma_unlock_write(vma->anon_vma); 1199 1200 result = __collapse_huge_page_copy(pte, folio, pmd, _pmd, 1201 vma, address, pte_ptl, 1202 &compound_pagelist); 1203 pte_unmap(pte); 1204 if (unlikely(result != SCAN_SUCCEED)) 1205 goto out_up_write; 1206 1207 /* 1208 * The smp_wmb() inside __folio_mark_uptodate() ensures the 1209 * copy_huge_page writes become visible before the set_pmd_at() 1210 * write. 1211 */ 1212 __folio_mark_uptodate(folio); 1213 pgtable = pmd_pgtable(_pmd); 1214 1215 spin_lock(pmd_ptl); 1216 BUG_ON(!pmd_none(*pmd)); 1217 pgtable_trans_huge_deposit(mm, pmd, pgtable); 1218 map_anon_folio_pmd_nopf(folio, pmd, vma, address); 1219 spin_unlock(pmd_ptl); 1220 1221 folio = NULL; 1222 1223 result = SCAN_SUCCEED; 1224 out_up_write: 1225 mmap_write_unlock(mm); 1226 out_nolock: 1227 if (folio) 1228 folio_put(folio); 1229 trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result); 1230 return result; 1231 } 1232 1233 static enum scan_result hpage_collapse_scan_pmd(struct mm_struct *mm, 1234 struct vm_area_struct *vma, unsigned long start_addr, bool *mmap_locked, 1235 struct collapse_control *cc) 1236 { 1237 pmd_t *pmd; 1238 pte_t *pte, *_pte; 1239 int none_or_zero = 0, shared = 0, referenced = 0; 1240 enum scan_result result = SCAN_FAIL; 1241 struct page *page = NULL; 1242 struct folio *folio = NULL; 1243 unsigned long addr; 1244 spinlock_t *ptl; 1245 int node = NUMA_NO_NODE, unmapped = 0; 1246 1247 VM_BUG_ON(start_addr & ~HPAGE_PMD_MASK); 1248 1249 result = find_pmd_or_thp_or_none(mm, start_addr, &pmd); 1250 if (result != SCAN_SUCCEED) 1251 goto out; 1252 1253 memset(cc->node_load, 0, sizeof(cc->node_load)); 1254 nodes_clear(cc->alloc_nmask); 1255 pte = pte_offset_map_lock(mm, pmd, start_addr, &ptl); 1256 if (!pte) { 1257 result = SCAN_NO_PTE_TABLE; 1258 goto out; 1259 } 1260 1261 for (addr = start_addr, _pte = pte; _pte < pte + HPAGE_PMD_NR; 1262 _pte++, addr += PAGE_SIZE) { 1263 pte_t pteval = ptep_get(_pte); 1264 if (pte_none_or_zero(pteval)) { 1265 ++none_or_zero; 1266 if (!userfaultfd_armed(vma) && 1267 (!cc->is_khugepaged || 1268 none_or_zero <= khugepaged_max_ptes_none)) { 1269 continue; 1270 } else { 1271 result = SCAN_EXCEED_NONE_PTE; 1272 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 1273 goto out_unmap; 1274 } 1275 } 1276 if (!pte_present(pteval)) { 1277 ++unmapped; 1278 if (!cc->is_khugepaged || 1279 unmapped <= khugepaged_max_ptes_swap) { 1280 /* 1281 * Always be strict with uffd-wp 1282 * enabled swap entries. Please see 1283 * comment below for pte_uffd_wp(). 1284 */ 1285 if (pte_swp_uffd_wp_any(pteval)) { 1286 result = SCAN_PTE_UFFD_WP; 1287 goto out_unmap; 1288 } 1289 continue; 1290 } else { 1291 result = SCAN_EXCEED_SWAP_PTE; 1292 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 1293 goto out_unmap; 1294 } 1295 } 1296 if (pte_uffd_wp(pteval)) { 1297 /* 1298 * Don't collapse the page if any of the small 1299 * PTEs are armed with uffd write protection. 1300 * Here we can also mark the new huge pmd as 1301 * write protected if any of the small ones is 1302 * marked but that could bring unknown 1303 * userfault messages that falls outside of 1304 * the registered range. So, just be simple. 1305 */ 1306 result = SCAN_PTE_UFFD_WP; 1307 goto out_unmap; 1308 } 1309 1310 page = vm_normal_page(vma, addr, pteval); 1311 if (unlikely(!page) || unlikely(is_zone_device_page(page))) { 1312 result = SCAN_PAGE_NULL; 1313 goto out_unmap; 1314 } 1315 folio = page_folio(page); 1316 1317 if (!folio_test_anon(folio)) { 1318 result = SCAN_PAGE_ANON; 1319 goto out_unmap; 1320 } 1321 1322 /* 1323 * We treat a single page as shared if any part of the THP 1324 * is shared. 1325 */ 1326 if (folio_maybe_mapped_shared(folio)) { 1327 ++shared; 1328 if (cc->is_khugepaged && 1329 shared > khugepaged_max_ptes_shared) { 1330 result = SCAN_EXCEED_SHARED_PTE; 1331 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 1332 goto out_unmap; 1333 } 1334 } 1335 1336 /* 1337 * Record which node the original page is from and save this 1338 * information to cc->node_load[]. 1339 * Khugepaged will allocate hugepage from the node has the max 1340 * hit record. 1341 */ 1342 node = folio_nid(folio); 1343 if (hpage_collapse_scan_abort(node, cc)) { 1344 result = SCAN_SCAN_ABORT; 1345 goto out_unmap; 1346 } 1347 cc->node_load[node]++; 1348 if (!folio_test_lru(folio)) { 1349 result = SCAN_PAGE_LRU; 1350 goto out_unmap; 1351 } 1352 if (folio_test_locked(folio)) { 1353 result = SCAN_PAGE_LOCK; 1354 goto out_unmap; 1355 } 1356 1357 /* 1358 * Check if the page has any GUP (or other external) pins. 1359 * 1360 * Here the check may be racy: 1361 * it may see folio_mapcount() > folio_ref_count(). 1362 * But such case is ephemeral we could always retry collapse 1363 * later. However it may report false positive if the page 1364 * has excessive GUP pins (i.e. 512). Anyway the same check 1365 * will be done again later the risk seems low. 1366 */ 1367 if (folio_expected_ref_count(folio) != folio_ref_count(folio)) { 1368 result = SCAN_PAGE_COUNT; 1369 goto out_unmap; 1370 } 1371 1372 /* 1373 * If collapse was initiated by khugepaged, check that there is 1374 * enough young pte to justify collapsing the page 1375 */ 1376 if (cc->is_khugepaged && 1377 (pte_young(pteval) || folio_test_young(folio) || 1378 folio_test_referenced(folio) || 1379 mmu_notifier_test_young(vma->vm_mm, addr))) 1380 referenced++; 1381 } 1382 if (cc->is_khugepaged && 1383 (!referenced || 1384 (unmapped && referenced < HPAGE_PMD_NR / 2))) { 1385 result = SCAN_LACK_REFERENCED_PAGE; 1386 } else { 1387 result = SCAN_SUCCEED; 1388 } 1389 out_unmap: 1390 pte_unmap_unlock(pte, ptl); 1391 if (result == SCAN_SUCCEED) { 1392 result = collapse_huge_page(mm, start_addr, referenced, 1393 unmapped, cc); 1394 /* collapse_huge_page will return with the mmap_lock released */ 1395 *mmap_locked = false; 1396 } 1397 out: 1398 trace_mm_khugepaged_scan_pmd(mm, folio, referenced, 1399 none_or_zero, result, unmapped); 1400 return result; 1401 } 1402 1403 static void collect_mm_slot(struct mm_slot *slot) 1404 { 1405 struct mm_struct *mm = slot->mm; 1406 1407 lockdep_assert_held(&khugepaged_mm_lock); 1408 1409 if (hpage_collapse_test_exit(mm)) { 1410 /* free mm_slot */ 1411 hash_del(&slot->hash); 1412 list_del(&slot->mm_node); 1413 1414 /* 1415 * Not strictly needed because the mm exited already. 1416 * 1417 * mm_flags_clear(MMF_VM_HUGEPAGE, mm); 1418 */ 1419 1420 /* khugepaged_mm_lock actually not necessary for the below */ 1421 mm_slot_free(mm_slot_cache, slot); 1422 mmdrop(mm); 1423 } 1424 } 1425 1426 /* folio must be locked, and mmap_lock must be held */ 1427 static enum scan_result set_huge_pmd(struct vm_area_struct *vma, unsigned long addr, 1428 pmd_t *pmdp, struct folio *folio, struct page *page) 1429 { 1430 struct mm_struct *mm = vma->vm_mm; 1431 struct vm_fault vmf = { 1432 .vma = vma, 1433 .address = addr, 1434 .flags = 0, 1435 }; 1436 pgd_t *pgdp; 1437 p4d_t *p4dp; 1438 pud_t *pudp; 1439 1440 mmap_assert_locked(vma->vm_mm); 1441 1442 if (!pmdp) { 1443 pgdp = pgd_offset(mm, addr); 1444 p4dp = p4d_alloc(mm, pgdp, addr); 1445 if (!p4dp) 1446 return SCAN_FAIL; 1447 pudp = pud_alloc(mm, p4dp, addr); 1448 if (!pudp) 1449 return SCAN_FAIL; 1450 pmdp = pmd_alloc(mm, pudp, addr); 1451 if (!pmdp) 1452 return SCAN_FAIL; 1453 } 1454 1455 vmf.pmd = pmdp; 1456 if (do_set_pmd(&vmf, folio, page)) 1457 return SCAN_FAIL; 1458 1459 folio_get(folio); 1460 return SCAN_SUCCEED; 1461 } 1462 1463 static enum scan_result try_collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr, 1464 bool install_pmd) 1465 { 1466 enum scan_result result = SCAN_FAIL; 1467 int nr_mapped_ptes = 0; 1468 unsigned int nr_batch_ptes; 1469 struct mmu_notifier_range range; 1470 bool notified = false; 1471 unsigned long haddr = addr & HPAGE_PMD_MASK; 1472 unsigned long end = haddr + HPAGE_PMD_SIZE; 1473 struct vm_area_struct *vma = vma_lookup(mm, haddr); 1474 struct folio *folio; 1475 pte_t *start_pte, *pte; 1476 pmd_t *pmd, pgt_pmd; 1477 spinlock_t *pml = NULL, *ptl; 1478 int i; 1479 1480 mmap_assert_locked(mm); 1481 1482 /* First check VMA found, in case page tables are being torn down */ 1483 if (!vma || !vma->vm_file || 1484 !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE)) 1485 return SCAN_VMA_CHECK; 1486 1487 /* Fast check before locking page if already PMD-mapped */ 1488 result = find_pmd_or_thp_or_none(mm, haddr, &pmd); 1489 if (result == SCAN_PMD_MAPPED) 1490 return result; 1491 1492 /* 1493 * If we are here, we've succeeded in replacing all the native pages 1494 * in the page cache with a single hugepage. If a mm were to fault-in 1495 * this memory (mapped by a suitably aligned VMA), we'd get the hugepage 1496 * and map it by a PMD, regardless of sysfs THP settings. As such, let's 1497 * analogously elide sysfs THP settings here and force collapse. 1498 */ 1499 if (!thp_vma_allowable_order(vma, vma->vm_flags, TVA_FORCED_COLLAPSE, PMD_ORDER)) 1500 return SCAN_VMA_CHECK; 1501 1502 /* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */ 1503 if (userfaultfd_wp(vma)) 1504 return SCAN_PTE_UFFD_WP; 1505 1506 folio = filemap_lock_folio(vma->vm_file->f_mapping, 1507 linear_page_index(vma, haddr)); 1508 if (IS_ERR(folio)) 1509 return SCAN_PAGE_NULL; 1510 1511 if (folio_order(folio) != HPAGE_PMD_ORDER) { 1512 result = SCAN_PAGE_COMPOUND; 1513 goto drop_folio; 1514 } 1515 1516 result = find_pmd_or_thp_or_none(mm, haddr, &pmd); 1517 switch (result) { 1518 case SCAN_SUCCEED: 1519 break; 1520 case SCAN_NO_PTE_TABLE: 1521 /* 1522 * All pte entries have been removed and pmd cleared. 1523 * Skip all the pte checks and just update the pmd mapping. 1524 */ 1525 goto maybe_install_pmd; 1526 default: 1527 goto drop_folio; 1528 } 1529 1530 result = SCAN_FAIL; 1531 start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl); 1532 if (!start_pte) /* mmap_lock + page lock should prevent this */ 1533 goto drop_folio; 1534 1535 /* step 1: check all mapped PTEs are to the right huge page */ 1536 for (i = 0, addr = haddr, pte = start_pte; 1537 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1538 struct page *page; 1539 pte_t ptent = ptep_get(pte); 1540 1541 /* empty pte, skip */ 1542 if (pte_none(ptent)) 1543 continue; 1544 1545 /* page swapped out, abort */ 1546 if (!pte_present(ptent)) { 1547 result = SCAN_PTE_NON_PRESENT; 1548 goto abort; 1549 } 1550 1551 page = vm_normal_page(vma, addr, ptent); 1552 if (WARN_ON_ONCE(page && is_zone_device_page(page))) 1553 page = NULL; 1554 /* 1555 * Note that uprobe, debugger, or MAP_PRIVATE may change the 1556 * page table, but the new page will not be a subpage of hpage. 1557 */ 1558 if (folio_page(folio, i) != page) 1559 goto abort; 1560 } 1561 1562 pte_unmap_unlock(start_pte, ptl); 1563 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 1564 haddr, haddr + HPAGE_PMD_SIZE); 1565 mmu_notifier_invalidate_range_start(&range); 1566 notified = true; 1567 1568 /* 1569 * pmd_lock covers a wider range than ptl, and (if split from mm's 1570 * page_table_lock) ptl nests inside pml. The less time we hold pml, 1571 * the better; but userfaultfd's mfill_atomic_pte() on a private VMA 1572 * inserts a valid as-if-COWed PTE without even looking up page cache. 1573 * So page lock of folio does not protect from it, so we must not drop 1574 * ptl before pgt_pmd is removed, so uffd private needs pml taken now. 1575 */ 1576 if (userfaultfd_armed(vma) && !(vma->vm_flags & VM_SHARED)) 1577 pml = pmd_lock(mm, pmd); 1578 1579 start_pte = pte_offset_map_rw_nolock(mm, pmd, haddr, &pgt_pmd, &ptl); 1580 if (!start_pte) /* mmap_lock + page lock should prevent this */ 1581 goto abort; 1582 if (!pml) 1583 spin_lock(ptl); 1584 else if (ptl != pml) 1585 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); 1586 1587 if (unlikely(!pmd_same(pgt_pmd, pmdp_get_lockless(pmd)))) 1588 goto abort; 1589 1590 /* step 2: clear page table and adjust rmap */ 1591 for (i = 0, addr = haddr, pte = start_pte; i < HPAGE_PMD_NR; 1592 i += nr_batch_ptes, addr += nr_batch_ptes * PAGE_SIZE, 1593 pte += nr_batch_ptes) { 1594 unsigned int max_nr_batch_ptes = (end - addr) >> PAGE_SHIFT; 1595 struct page *page; 1596 pte_t ptent = ptep_get(pte); 1597 1598 nr_batch_ptes = 1; 1599 1600 if (pte_none(ptent)) 1601 continue; 1602 /* 1603 * We dropped ptl after the first scan, to do the mmu_notifier: 1604 * page lock stops more PTEs of the folio being faulted in, but 1605 * does not stop write faults COWing anon copies from existing 1606 * PTEs; and does not stop those being swapped out or migrated. 1607 */ 1608 if (!pte_present(ptent)) { 1609 result = SCAN_PTE_NON_PRESENT; 1610 goto abort; 1611 } 1612 page = vm_normal_page(vma, addr, ptent); 1613 1614 if (folio_page(folio, i) != page) 1615 goto abort; 1616 1617 nr_batch_ptes = folio_pte_batch(folio, pte, ptent, max_nr_batch_ptes); 1618 1619 /* 1620 * Must clear entry, or a racing truncate may re-remove it. 1621 * TLB flush can be left until pmdp_collapse_flush() does it. 1622 * PTE dirty? Shmem page is already dirty; file is read-only. 1623 */ 1624 clear_ptes(mm, addr, pte, nr_batch_ptes); 1625 folio_remove_rmap_ptes(folio, page, nr_batch_ptes, vma); 1626 nr_mapped_ptes += nr_batch_ptes; 1627 } 1628 1629 if (!pml) 1630 spin_unlock(ptl); 1631 1632 /* step 3: set proper refcount and mm_counters. */ 1633 if (nr_mapped_ptes) { 1634 folio_ref_sub(folio, nr_mapped_ptes); 1635 add_mm_counter(mm, mm_counter_file(folio), -nr_mapped_ptes); 1636 } 1637 1638 /* step 4: remove empty page table */ 1639 if (!pml) { 1640 pml = pmd_lock(mm, pmd); 1641 if (ptl != pml) { 1642 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); 1643 if (unlikely(!pmd_same(pgt_pmd, pmdp_get_lockless(pmd)))) { 1644 flush_tlb_mm(mm); 1645 goto unlock; 1646 } 1647 } 1648 } 1649 pgt_pmd = pmdp_collapse_flush(vma, haddr, pmd); 1650 pmdp_get_lockless_sync(); 1651 pte_unmap_unlock(start_pte, ptl); 1652 if (ptl != pml) 1653 spin_unlock(pml); 1654 1655 mmu_notifier_invalidate_range_end(&range); 1656 1657 mm_dec_nr_ptes(mm); 1658 page_table_check_pte_clear_range(mm, haddr, pgt_pmd); 1659 pte_free_defer(mm, pmd_pgtable(pgt_pmd)); 1660 1661 maybe_install_pmd: 1662 /* step 5: install pmd entry */ 1663 result = install_pmd 1664 ? set_huge_pmd(vma, haddr, pmd, folio, &folio->page) 1665 : SCAN_SUCCEED; 1666 goto drop_folio; 1667 abort: 1668 if (nr_mapped_ptes) { 1669 flush_tlb_mm(mm); 1670 folio_ref_sub(folio, nr_mapped_ptes); 1671 add_mm_counter(mm, mm_counter_file(folio), -nr_mapped_ptes); 1672 } 1673 unlock: 1674 if (start_pte) 1675 pte_unmap_unlock(start_pte, ptl); 1676 if (pml && pml != ptl) 1677 spin_unlock(pml); 1678 if (notified) 1679 mmu_notifier_invalidate_range_end(&range); 1680 drop_folio: 1681 folio_unlock(folio); 1682 folio_put(folio); 1683 return result; 1684 } 1685 1686 /** 1687 * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at 1688 * address haddr. 1689 * 1690 * @mm: process address space where collapse happens 1691 * @addr: THP collapse address 1692 * @install_pmd: If a huge PMD should be installed 1693 * 1694 * This function checks whether all the PTEs in the PMD are pointing to the 1695 * right THP. If so, retract the page table so the THP can refault in with 1696 * as pmd-mapped. Possibly install a huge PMD mapping the THP. 1697 */ 1698 void collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr, 1699 bool install_pmd) 1700 { 1701 try_collapse_pte_mapped_thp(mm, addr, install_pmd); 1702 } 1703 1704 /* Can we retract page tables for this file-backed VMA? */ 1705 static bool file_backed_vma_is_retractable(struct vm_area_struct *vma) 1706 { 1707 /* 1708 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that 1709 * got written to. These VMAs are likely not worth removing 1710 * page tables from, as PMD-mapping is likely to be split later. 1711 */ 1712 if (READ_ONCE(vma->anon_vma)) 1713 return false; 1714 1715 /* 1716 * When a vma is registered with uffd-wp, we cannot recycle 1717 * the page table because there may be pte markers installed. 1718 * Other vmas can still have the same file mapped hugely, but 1719 * skip this one: it will always be mapped in small page size 1720 * for uffd-wp registered ranges. 1721 */ 1722 if (userfaultfd_wp(vma)) 1723 return false; 1724 1725 /* 1726 * If the VMA contains guard regions then we can't collapse it. 1727 * 1728 * This is set atomically on guard marker installation under mmap/VMA 1729 * read lock, and here we may not hold any VMA or mmap lock at all. 1730 * 1731 * This is therefore serialised on the PTE page table lock, which is 1732 * obtained on guard region installation after the flag is set, so this 1733 * check being performed under this lock excludes races. 1734 */ 1735 if (vma_flag_test_atomic(vma, VMA_MAYBE_GUARD_BIT)) 1736 return false; 1737 1738 return true; 1739 } 1740 1741 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff) 1742 { 1743 struct vm_area_struct *vma; 1744 1745 i_mmap_lock_read(mapping); 1746 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 1747 struct mmu_notifier_range range; 1748 struct mm_struct *mm; 1749 unsigned long addr; 1750 pmd_t *pmd, pgt_pmd; 1751 spinlock_t *pml; 1752 spinlock_t *ptl; 1753 bool success = false; 1754 1755 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 1756 if (addr & ~HPAGE_PMD_MASK || 1757 vma->vm_end < addr + HPAGE_PMD_SIZE) 1758 continue; 1759 1760 mm = vma->vm_mm; 1761 if (find_pmd_or_thp_or_none(mm, addr, &pmd) != SCAN_SUCCEED) 1762 continue; 1763 1764 if (hpage_collapse_test_exit(mm)) 1765 continue; 1766 1767 if (!file_backed_vma_is_retractable(vma)) 1768 continue; 1769 1770 /* PTEs were notified when unmapped; but now for the PMD? */ 1771 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 1772 addr, addr + HPAGE_PMD_SIZE); 1773 mmu_notifier_invalidate_range_start(&range); 1774 1775 pml = pmd_lock(mm, pmd); 1776 /* 1777 * The lock of new_folio is still held, we will be blocked in 1778 * the page fault path, which prevents the pte entries from 1779 * being set again. So even though the old empty PTE page may be 1780 * concurrently freed and a new PTE page is filled into the pmd 1781 * entry, it is still empty and can be removed. 1782 * 1783 * So here we only need to recheck if the state of pmd entry 1784 * still meets our requirements, rather than checking pmd_same() 1785 * like elsewhere. 1786 */ 1787 if (check_pmd_state(pmd) != SCAN_SUCCEED) 1788 goto drop_pml; 1789 ptl = pte_lockptr(mm, pmd); 1790 if (ptl != pml) 1791 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); 1792 1793 /* 1794 * Huge page lock is still held, so normally the page table must 1795 * remain empty; and we have already skipped anon_vma and 1796 * userfaultfd_wp() vmas. But since the mmap_lock is not held, 1797 * it is still possible for a racing userfaultfd_ioctl() or 1798 * madvise() to have inserted ptes or markers. Now that we hold 1799 * ptlock, repeating the retractable checks protects us from 1800 * races against the prior checks. 1801 */ 1802 if (likely(file_backed_vma_is_retractable(vma))) { 1803 pgt_pmd = pmdp_collapse_flush(vma, addr, pmd); 1804 pmdp_get_lockless_sync(); 1805 success = true; 1806 } 1807 1808 if (ptl != pml) 1809 spin_unlock(ptl); 1810 drop_pml: 1811 spin_unlock(pml); 1812 1813 mmu_notifier_invalidate_range_end(&range); 1814 1815 if (success) { 1816 mm_dec_nr_ptes(mm); 1817 page_table_check_pte_clear_range(mm, addr, pgt_pmd); 1818 pte_free_defer(mm, pmd_pgtable(pgt_pmd)); 1819 } 1820 } 1821 i_mmap_unlock_read(mapping); 1822 } 1823 1824 /** 1825 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one. 1826 * 1827 * @mm: process address space where collapse happens 1828 * @addr: virtual collapse start address 1829 * @file: file that collapse on 1830 * @start: collapse start address 1831 * @cc: collapse context and scratchpad 1832 * 1833 * Basic scheme is simple, details are more complex: 1834 * - allocate and lock a new huge page; 1835 * - scan page cache, locking old pages 1836 * + swap/gup in pages if necessary; 1837 * - copy data to new page 1838 * - handle shmem holes 1839 * + re-validate that holes weren't filled by someone else 1840 * + check for userfaultfd 1841 * - finalize updates to the page cache; 1842 * - if replacing succeeds: 1843 * + unlock huge page; 1844 * + free old pages; 1845 * - if replacing failed; 1846 * + unlock old pages 1847 * + unlock and free huge page; 1848 */ 1849 static enum scan_result collapse_file(struct mm_struct *mm, unsigned long addr, 1850 struct file *file, pgoff_t start, struct collapse_control *cc) 1851 { 1852 struct address_space *mapping = file->f_mapping; 1853 struct page *dst; 1854 struct folio *folio, *tmp, *new_folio; 1855 pgoff_t index = 0, end = start + HPAGE_PMD_NR; 1856 LIST_HEAD(pagelist); 1857 XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER); 1858 enum scan_result result = SCAN_SUCCEED; 1859 int nr_none = 0; 1860 bool is_shmem = shmem_file(file); 1861 1862 VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem); 1863 VM_BUG_ON(start & (HPAGE_PMD_NR - 1)); 1864 1865 result = alloc_charge_folio(&new_folio, mm, cc); 1866 if (result != SCAN_SUCCEED) 1867 goto out; 1868 1869 mapping_set_update(&xas, mapping); 1870 1871 __folio_set_locked(new_folio); 1872 if (is_shmem) 1873 __folio_set_swapbacked(new_folio); 1874 new_folio->index = start; 1875 new_folio->mapping = mapping; 1876 1877 /* 1878 * Ensure we have slots for all the pages in the range. This is 1879 * almost certainly a no-op because most of the pages must be present 1880 */ 1881 do { 1882 xas_lock_irq(&xas); 1883 xas_create_range(&xas); 1884 if (!xas_error(&xas)) 1885 break; 1886 xas_unlock_irq(&xas); 1887 if (!xas_nomem(&xas, GFP_KERNEL)) { 1888 result = SCAN_FAIL; 1889 goto rollback; 1890 } 1891 } while (1); 1892 1893 for (index = start; index < end;) { 1894 xas_set(&xas, index); 1895 folio = xas_load(&xas); 1896 1897 VM_BUG_ON(index != xas.xa_index); 1898 if (is_shmem) { 1899 if (!folio) { 1900 /* 1901 * Stop if extent has been truncated or 1902 * hole-punched, and is now completely 1903 * empty. 1904 */ 1905 if (index == start) { 1906 if (!xas_next_entry(&xas, end - 1)) { 1907 result = SCAN_TRUNCATED; 1908 goto xa_locked; 1909 } 1910 } 1911 nr_none++; 1912 index++; 1913 continue; 1914 } 1915 1916 if (xa_is_value(folio) || !folio_test_uptodate(folio)) { 1917 xas_unlock_irq(&xas); 1918 /* swap in or instantiate fallocated page */ 1919 if (shmem_get_folio(mapping->host, index, 0, 1920 &folio, SGP_NOALLOC)) { 1921 result = SCAN_FAIL; 1922 goto xa_unlocked; 1923 } 1924 /* drain lru cache to help folio_isolate_lru() */ 1925 lru_add_drain(); 1926 } else if (folio_trylock(folio)) { 1927 folio_get(folio); 1928 xas_unlock_irq(&xas); 1929 } else { 1930 result = SCAN_PAGE_LOCK; 1931 goto xa_locked; 1932 } 1933 } else { /* !is_shmem */ 1934 if (!folio || xa_is_value(folio)) { 1935 xas_unlock_irq(&xas); 1936 page_cache_sync_readahead(mapping, &file->f_ra, 1937 file, index, 1938 end - index); 1939 /* drain lru cache to help folio_isolate_lru() */ 1940 lru_add_drain(); 1941 folio = filemap_lock_folio(mapping, index); 1942 if (IS_ERR(folio)) { 1943 result = SCAN_FAIL; 1944 goto xa_unlocked; 1945 } 1946 } else if (folio_test_dirty(folio)) { 1947 /* 1948 * khugepaged only works on read-only fd, 1949 * so this page is dirty because it hasn't 1950 * been flushed since first write. There 1951 * won't be new dirty pages. 1952 * 1953 * Trigger async flush here and hope the 1954 * writeback is done when khugepaged 1955 * revisits this page. 1956 * 1957 * This is a one-off situation. We are not 1958 * forcing writeback in loop. 1959 */ 1960 xas_unlock_irq(&xas); 1961 filemap_flush(mapping); 1962 result = SCAN_PAGE_DIRTY_OR_WRITEBACK; 1963 goto xa_unlocked; 1964 } else if (folio_test_writeback(folio)) { 1965 xas_unlock_irq(&xas); 1966 result = SCAN_PAGE_DIRTY_OR_WRITEBACK; 1967 goto xa_unlocked; 1968 } else if (folio_trylock(folio)) { 1969 folio_get(folio); 1970 xas_unlock_irq(&xas); 1971 } else { 1972 result = SCAN_PAGE_LOCK; 1973 goto xa_locked; 1974 } 1975 } 1976 1977 /* 1978 * The folio must be locked, so we can drop the i_pages lock 1979 * without racing with truncate. 1980 */ 1981 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1982 1983 /* make sure the folio is up to date */ 1984 if (unlikely(!folio_test_uptodate(folio))) { 1985 result = SCAN_FAIL; 1986 goto out_unlock; 1987 } 1988 1989 /* 1990 * If file was truncated then extended, or hole-punched, before 1991 * we locked the first folio, then a THP might be there already. 1992 * This will be discovered on the first iteration. 1993 */ 1994 if (folio_order(folio) == HPAGE_PMD_ORDER && 1995 folio->index == start) { 1996 /* Maybe PMD-mapped */ 1997 result = SCAN_PTE_MAPPED_HUGEPAGE; 1998 goto out_unlock; 1999 } 2000 2001 if (folio_mapping(folio) != mapping) { 2002 result = SCAN_TRUNCATED; 2003 goto out_unlock; 2004 } 2005 2006 if (!is_shmem && (folio_test_dirty(folio) || 2007 folio_test_writeback(folio))) { 2008 /* 2009 * khugepaged only works on read-only fd, so this 2010 * folio is dirty because it hasn't been flushed 2011 * since first write. 2012 */ 2013 result = SCAN_PAGE_DIRTY_OR_WRITEBACK; 2014 goto out_unlock; 2015 } 2016 2017 if (!folio_isolate_lru(folio)) { 2018 result = SCAN_DEL_PAGE_LRU; 2019 goto out_unlock; 2020 } 2021 2022 if (!filemap_release_folio(folio, GFP_KERNEL)) { 2023 result = SCAN_PAGE_HAS_PRIVATE; 2024 folio_putback_lru(folio); 2025 goto out_unlock; 2026 } 2027 2028 if (folio_mapped(folio)) 2029 try_to_unmap(folio, 2030 TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH); 2031 2032 xas_lock_irq(&xas); 2033 2034 VM_BUG_ON_FOLIO(folio != xa_load(xas.xa, index), folio); 2035 2036 /* 2037 * We control 2 + nr_pages references to the folio: 2038 * - we hold a pin on it; 2039 * - nr_pages reference from page cache; 2040 * - one from lru_isolate_folio; 2041 * If those are the only references, then any new usage 2042 * of the folio will have to fetch it from the page 2043 * cache. That requires locking the folio to handle 2044 * truncate, so any new usage will be blocked until we 2045 * unlock folio after collapse/during rollback. 2046 */ 2047 if (folio_ref_count(folio) != 2 + folio_nr_pages(folio)) { 2048 result = SCAN_PAGE_COUNT; 2049 xas_unlock_irq(&xas); 2050 folio_putback_lru(folio); 2051 goto out_unlock; 2052 } 2053 2054 /* 2055 * Accumulate the folios that are being collapsed. 2056 */ 2057 list_add_tail(&folio->lru, &pagelist); 2058 index += folio_nr_pages(folio); 2059 continue; 2060 out_unlock: 2061 folio_unlock(folio); 2062 folio_put(folio); 2063 goto xa_unlocked; 2064 } 2065 2066 if (!is_shmem) { 2067 filemap_nr_thps_inc(mapping); 2068 /* 2069 * Paired with the fence in do_dentry_open() -> get_write_access() 2070 * to ensure i_writecount is up to date and the update to nr_thps 2071 * is visible. Ensures the page cache will be truncated if the 2072 * file is opened writable. 2073 */ 2074 smp_mb(); 2075 if (inode_is_open_for_write(mapping->host)) { 2076 result = SCAN_FAIL; 2077 filemap_nr_thps_dec(mapping); 2078 } 2079 } 2080 2081 xa_locked: 2082 xas_unlock_irq(&xas); 2083 xa_unlocked: 2084 2085 /* 2086 * If collapse is successful, flush must be done now before copying. 2087 * If collapse is unsuccessful, does flush actually need to be done? 2088 * Do it anyway, to clear the state. 2089 */ 2090 try_to_unmap_flush(); 2091 2092 if (result == SCAN_SUCCEED && nr_none && 2093 !shmem_charge(mapping->host, nr_none)) 2094 result = SCAN_FAIL; 2095 if (result != SCAN_SUCCEED) { 2096 nr_none = 0; 2097 goto rollback; 2098 } 2099 2100 /* 2101 * The old folios are locked, so they won't change anymore. 2102 */ 2103 index = start; 2104 dst = folio_page(new_folio, 0); 2105 list_for_each_entry(folio, &pagelist, lru) { 2106 int i, nr_pages = folio_nr_pages(folio); 2107 2108 while (index < folio->index) { 2109 clear_highpage(dst); 2110 index++; 2111 dst++; 2112 } 2113 2114 for (i = 0; i < nr_pages; i++) { 2115 if (copy_mc_highpage(dst, folio_page(folio, i)) > 0) { 2116 result = SCAN_COPY_MC; 2117 goto rollback; 2118 } 2119 index++; 2120 dst++; 2121 } 2122 } 2123 while (index < end) { 2124 clear_highpage(dst); 2125 index++; 2126 dst++; 2127 } 2128 2129 if (nr_none) { 2130 struct vm_area_struct *vma; 2131 int nr_none_check = 0; 2132 2133 i_mmap_lock_read(mapping); 2134 xas_lock_irq(&xas); 2135 2136 xas_set(&xas, start); 2137 for (index = start; index < end; index++) { 2138 if (!xas_next(&xas)) { 2139 xas_store(&xas, XA_RETRY_ENTRY); 2140 if (xas_error(&xas)) { 2141 result = SCAN_STORE_FAILED; 2142 goto immap_locked; 2143 } 2144 nr_none_check++; 2145 } 2146 } 2147 2148 if (nr_none != nr_none_check) { 2149 result = SCAN_PAGE_FILLED; 2150 goto immap_locked; 2151 } 2152 2153 /* 2154 * If userspace observed a missing page in a VMA with 2155 * a MODE_MISSING userfaultfd, then it might expect a 2156 * UFFD_EVENT_PAGEFAULT for that page. If so, we need to 2157 * roll back to avoid suppressing such an event. Since 2158 * wp/minor userfaultfds don't give userspace any 2159 * guarantees that the kernel doesn't fill a missing 2160 * page with a zero page, so they don't matter here. 2161 * 2162 * Any userfaultfds registered after this point will 2163 * not be able to observe any missing pages due to the 2164 * previously inserted retry entries. 2165 */ 2166 vma_interval_tree_foreach(vma, &mapping->i_mmap, start, end) { 2167 if (userfaultfd_missing(vma)) { 2168 result = SCAN_EXCEED_NONE_PTE; 2169 goto immap_locked; 2170 } 2171 } 2172 2173 immap_locked: 2174 i_mmap_unlock_read(mapping); 2175 if (result != SCAN_SUCCEED) { 2176 xas_set(&xas, start); 2177 for (index = start; index < end; index++) { 2178 if (xas_next(&xas) == XA_RETRY_ENTRY) 2179 xas_store(&xas, NULL); 2180 } 2181 2182 xas_unlock_irq(&xas); 2183 goto rollback; 2184 } 2185 } else { 2186 xas_lock_irq(&xas); 2187 } 2188 2189 if (is_shmem) { 2190 lruvec_stat_mod_folio(new_folio, NR_SHMEM, HPAGE_PMD_NR); 2191 lruvec_stat_mod_folio(new_folio, NR_SHMEM_THPS, HPAGE_PMD_NR); 2192 } else { 2193 lruvec_stat_mod_folio(new_folio, NR_FILE_THPS, HPAGE_PMD_NR); 2194 } 2195 lruvec_stat_mod_folio(new_folio, NR_FILE_PAGES, HPAGE_PMD_NR); 2196 2197 /* 2198 * Mark new_folio as uptodate before inserting it into the 2199 * page cache so that it isn't mistaken for an fallocated but 2200 * unwritten page. 2201 */ 2202 folio_mark_uptodate(new_folio); 2203 folio_ref_add(new_folio, HPAGE_PMD_NR - 1); 2204 2205 if (is_shmem) 2206 folio_mark_dirty(new_folio); 2207 folio_add_lru(new_folio); 2208 2209 /* Join all the small entries into a single multi-index entry. */ 2210 xas_set_order(&xas, start, HPAGE_PMD_ORDER); 2211 xas_store(&xas, new_folio); 2212 WARN_ON_ONCE(xas_error(&xas)); 2213 xas_unlock_irq(&xas); 2214 2215 /* 2216 * Remove pte page tables, so we can re-fault the page as huge. 2217 * If MADV_COLLAPSE, adjust result to call try_collapse_pte_mapped_thp(). 2218 */ 2219 retract_page_tables(mapping, start); 2220 if (cc && !cc->is_khugepaged) 2221 result = SCAN_PTE_MAPPED_HUGEPAGE; 2222 folio_unlock(new_folio); 2223 2224 /* 2225 * The collapse has succeeded, so free the old folios. 2226 */ 2227 list_for_each_entry_safe(folio, tmp, &pagelist, lru) { 2228 list_del(&folio->lru); 2229 lruvec_stat_mod_folio(folio, NR_FILE_PAGES, 2230 -folio_nr_pages(folio)); 2231 if (is_shmem) 2232 lruvec_stat_mod_folio(folio, NR_SHMEM, 2233 -folio_nr_pages(folio)); 2234 folio->mapping = NULL; 2235 folio_clear_active(folio); 2236 folio_clear_unevictable(folio); 2237 folio_unlock(folio); 2238 folio_put_refs(folio, 2 + folio_nr_pages(folio)); 2239 } 2240 2241 goto out; 2242 2243 rollback: 2244 /* Something went wrong: roll back page cache changes */ 2245 if (nr_none) { 2246 xas_lock_irq(&xas); 2247 mapping->nrpages -= nr_none; 2248 xas_unlock_irq(&xas); 2249 shmem_uncharge(mapping->host, nr_none); 2250 } 2251 2252 list_for_each_entry_safe(folio, tmp, &pagelist, lru) { 2253 list_del(&folio->lru); 2254 folio_unlock(folio); 2255 folio_putback_lru(folio); 2256 folio_put(folio); 2257 } 2258 /* 2259 * Undo the updates of filemap_nr_thps_inc for non-SHMEM 2260 * file only. This undo is not needed unless failure is 2261 * due to SCAN_COPY_MC. 2262 */ 2263 if (!is_shmem && result == SCAN_COPY_MC) { 2264 filemap_nr_thps_dec(mapping); 2265 /* 2266 * Paired with the fence in do_dentry_open() -> get_write_access() 2267 * to ensure the update to nr_thps is visible. 2268 */ 2269 smp_mb(); 2270 } 2271 2272 new_folio->mapping = NULL; 2273 2274 folio_unlock(new_folio); 2275 folio_put(new_folio); 2276 out: 2277 VM_BUG_ON(!list_empty(&pagelist)); 2278 trace_mm_khugepaged_collapse_file(mm, new_folio, index, addr, is_shmem, file, HPAGE_PMD_NR, result); 2279 return result; 2280 } 2281 2282 static enum scan_result hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr, 2283 struct file *file, pgoff_t start, struct collapse_control *cc) 2284 { 2285 struct folio *folio = NULL; 2286 struct address_space *mapping = file->f_mapping; 2287 XA_STATE(xas, &mapping->i_pages, start); 2288 int present, swap; 2289 int node = NUMA_NO_NODE; 2290 enum scan_result result = SCAN_SUCCEED; 2291 2292 present = 0; 2293 swap = 0; 2294 memset(cc->node_load, 0, sizeof(cc->node_load)); 2295 nodes_clear(cc->alloc_nmask); 2296 rcu_read_lock(); 2297 xas_for_each(&xas, folio, start + HPAGE_PMD_NR - 1) { 2298 if (xas_retry(&xas, folio)) 2299 continue; 2300 2301 if (xa_is_value(folio)) { 2302 swap += 1 << xas_get_order(&xas); 2303 if (cc->is_khugepaged && 2304 swap > khugepaged_max_ptes_swap) { 2305 result = SCAN_EXCEED_SWAP_PTE; 2306 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 2307 break; 2308 } 2309 continue; 2310 } 2311 2312 if (!folio_try_get(folio)) { 2313 xas_reset(&xas); 2314 continue; 2315 } 2316 2317 if (unlikely(folio != xas_reload(&xas))) { 2318 folio_put(folio); 2319 xas_reset(&xas); 2320 continue; 2321 } 2322 2323 if (folio_order(folio) == HPAGE_PMD_ORDER && 2324 folio->index == start) { 2325 /* Maybe PMD-mapped */ 2326 result = SCAN_PTE_MAPPED_HUGEPAGE; 2327 /* 2328 * For SCAN_PTE_MAPPED_HUGEPAGE, further processing 2329 * by the caller won't touch the page cache, and so 2330 * it's safe to skip LRU and refcount checks before 2331 * returning. 2332 */ 2333 folio_put(folio); 2334 break; 2335 } 2336 2337 node = folio_nid(folio); 2338 if (hpage_collapse_scan_abort(node, cc)) { 2339 result = SCAN_SCAN_ABORT; 2340 folio_put(folio); 2341 break; 2342 } 2343 cc->node_load[node]++; 2344 2345 if (!folio_test_lru(folio)) { 2346 result = SCAN_PAGE_LRU; 2347 folio_put(folio); 2348 break; 2349 } 2350 2351 if (folio_expected_ref_count(folio) + 1 != folio_ref_count(folio)) { 2352 result = SCAN_PAGE_COUNT; 2353 folio_put(folio); 2354 break; 2355 } 2356 2357 /* 2358 * We probably should check if the folio is referenced 2359 * here, but nobody would transfer pte_young() to 2360 * folio_test_referenced() for us. And rmap walk here 2361 * is just too costly... 2362 */ 2363 2364 present += folio_nr_pages(folio); 2365 folio_put(folio); 2366 2367 if (need_resched()) { 2368 xas_pause(&xas); 2369 cond_resched_rcu(); 2370 } 2371 } 2372 rcu_read_unlock(); 2373 2374 if (result == SCAN_SUCCEED) { 2375 if (cc->is_khugepaged && 2376 present < HPAGE_PMD_NR - khugepaged_max_ptes_none) { 2377 result = SCAN_EXCEED_NONE_PTE; 2378 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 2379 } else { 2380 result = collapse_file(mm, addr, file, start, cc); 2381 } 2382 } 2383 2384 trace_mm_khugepaged_scan_file(mm, folio, file, present, swap, result); 2385 return result; 2386 } 2387 2388 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, enum scan_result *result, 2389 struct collapse_control *cc) 2390 __releases(&khugepaged_mm_lock) 2391 __acquires(&khugepaged_mm_lock) 2392 { 2393 struct vma_iterator vmi; 2394 struct mm_slot *slot; 2395 struct mm_struct *mm; 2396 struct vm_area_struct *vma; 2397 int progress = 0; 2398 2399 VM_BUG_ON(!pages); 2400 lockdep_assert_held(&khugepaged_mm_lock); 2401 *result = SCAN_FAIL; 2402 2403 if (khugepaged_scan.mm_slot) { 2404 slot = khugepaged_scan.mm_slot; 2405 } else { 2406 slot = list_first_entry(&khugepaged_scan.mm_head, 2407 struct mm_slot, mm_node); 2408 khugepaged_scan.address = 0; 2409 khugepaged_scan.mm_slot = slot; 2410 } 2411 spin_unlock(&khugepaged_mm_lock); 2412 2413 mm = slot->mm; 2414 /* 2415 * Don't wait for semaphore (to avoid long wait times). Just move to 2416 * the next mm on the list. 2417 */ 2418 vma = NULL; 2419 if (unlikely(!mmap_read_trylock(mm))) 2420 goto breakouterloop_mmap_lock; 2421 2422 progress++; 2423 if (unlikely(hpage_collapse_test_exit_or_disable(mm))) 2424 goto breakouterloop; 2425 2426 vma_iter_init(&vmi, mm, khugepaged_scan.address); 2427 for_each_vma(vmi, vma) { 2428 unsigned long hstart, hend; 2429 2430 cond_resched(); 2431 if (unlikely(hpage_collapse_test_exit_or_disable(mm))) { 2432 progress++; 2433 break; 2434 } 2435 if (!thp_vma_allowable_order(vma, vma->vm_flags, TVA_KHUGEPAGED, PMD_ORDER)) { 2436 progress++; 2437 continue; 2438 } 2439 hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE); 2440 hend = round_down(vma->vm_end, HPAGE_PMD_SIZE); 2441 if (khugepaged_scan.address > hend) { 2442 progress++; 2443 continue; 2444 } 2445 if (khugepaged_scan.address < hstart) 2446 khugepaged_scan.address = hstart; 2447 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK); 2448 2449 while (khugepaged_scan.address < hend) { 2450 bool mmap_locked = true; 2451 2452 cond_resched(); 2453 if (unlikely(hpage_collapse_test_exit_or_disable(mm))) 2454 goto breakouterloop; 2455 2456 VM_BUG_ON(khugepaged_scan.address < hstart || 2457 khugepaged_scan.address + HPAGE_PMD_SIZE > 2458 hend); 2459 if (!vma_is_anonymous(vma)) { 2460 struct file *file = get_file(vma->vm_file); 2461 pgoff_t pgoff = linear_page_index(vma, 2462 khugepaged_scan.address); 2463 2464 mmap_read_unlock(mm); 2465 mmap_locked = false; 2466 *result = hpage_collapse_scan_file(mm, 2467 khugepaged_scan.address, file, pgoff, cc); 2468 fput(file); 2469 if (*result == SCAN_PTE_MAPPED_HUGEPAGE) { 2470 mmap_read_lock(mm); 2471 if (hpage_collapse_test_exit_or_disable(mm)) 2472 goto breakouterloop; 2473 *result = try_collapse_pte_mapped_thp(mm, 2474 khugepaged_scan.address, false); 2475 if (*result == SCAN_PMD_MAPPED) 2476 *result = SCAN_SUCCEED; 2477 mmap_read_unlock(mm); 2478 } 2479 } else { 2480 *result = hpage_collapse_scan_pmd(mm, vma, 2481 khugepaged_scan.address, &mmap_locked, cc); 2482 } 2483 2484 if (*result == SCAN_SUCCEED) 2485 ++khugepaged_pages_collapsed; 2486 2487 /* move to next address */ 2488 khugepaged_scan.address += HPAGE_PMD_SIZE; 2489 progress += HPAGE_PMD_NR; 2490 if (!mmap_locked) 2491 /* 2492 * We released mmap_lock so break loop. Note 2493 * that we drop mmap_lock before all hugepage 2494 * allocations, so if allocation fails, we are 2495 * guaranteed to break here and report the 2496 * correct result back to caller. 2497 */ 2498 goto breakouterloop_mmap_lock; 2499 if (progress >= pages) 2500 goto breakouterloop; 2501 } 2502 } 2503 breakouterloop: 2504 mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */ 2505 breakouterloop_mmap_lock: 2506 2507 spin_lock(&khugepaged_mm_lock); 2508 VM_BUG_ON(khugepaged_scan.mm_slot != slot); 2509 /* 2510 * Release the current mm_slot if this mm is about to die, or 2511 * if we scanned all vmas of this mm. 2512 */ 2513 if (hpage_collapse_test_exit(mm) || !vma) { 2514 /* 2515 * Make sure that if mm_users is reaching zero while 2516 * khugepaged runs here, khugepaged_exit will find 2517 * mm_slot not pointing to the exiting mm. 2518 */ 2519 if (!list_is_last(&slot->mm_node, &khugepaged_scan.mm_head)) { 2520 khugepaged_scan.mm_slot = list_next_entry(slot, mm_node); 2521 khugepaged_scan.address = 0; 2522 } else { 2523 khugepaged_scan.mm_slot = NULL; 2524 khugepaged_full_scans++; 2525 } 2526 2527 collect_mm_slot(slot); 2528 } 2529 2530 return progress; 2531 } 2532 2533 static int khugepaged_has_work(void) 2534 { 2535 return !list_empty(&khugepaged_scan.mm_head) && hugepage_pmd_enabled(); 2536 } 2537 2538 static int khugepaged_wait_event(void) 2539 { 2540 return !list_empty(&khugepaged_scan.mm_head) || 2541 kthread_should_stop(); 2542 } 2543 2544 static void khugepaged_do_scan(struct collapse_control *cc) 2545 { 2546 unsigned int progress = 0, pass_through_head = 0; 2547 unsigned int pages = READ_ONCE(khugepaged_pages_to_scan); 2548 bool wait = true; 2549 enum scan_result result = SCAN_SUCCEED; 2550 2551 lru_add_drain_all(); 2552 2553 while (true) { 2554 cond_resched(); 2555 2556 if (unlikely(kthread_should_stop())) 2557 break; 2558 2559 spin_lock(&khugepaged_mm_lock); 2560 if (!khugepaged_scan.mm_slot) 2561 pass_through_head++; 2562 if (khugepaged_has_work() && 2563 pass_through_head < 2) 2564 progress += khugepaged_scan_mm_slot(pages - progress, 2565 &result, cc); 2566 else 2567 progress = pages; 2568 spin_unlock(&khugepaged_mm_lock); 2569 2570 if (progress >= pages) 2571 break; 2572 2573 if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) { 2574 /* 2575 * If fail to allocate the first time, try to sleep for 2576 * a while. When hit again, cancel the scan. 2577 */ 2578 if (!wait) 2579 break; 2580 wait = false; 2581 khugepaged_alloc_sleep(); 2582 } 2583 } 2584 } 2585 2586 static bool khugepaged_should_wakeup(void) 2587 { 2588 return kthread_should_stop() || 2589 time_after_eq(jiffies, khugepaged_sleep_expire); 2590 } 2591 2592 static void khugepaged_wait_work(void) 2593 { 2594 if (khugepaged_has_work()) { 2595 const unsigned long scan_sleep_jiffies = 2596 msecs_to_jiffies(khugepaged_scan_sleep_millisecs); 2597 2598 if (!scan_sleep_jiffies) 2599 return; 2600 2601 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies; 2602 wait_event_freezable_timeout(khugepaged_wait, 2603 khugepaged_should_wakeup(), 2604 scan_sleep_jiffies); 2605 return; 2606 } 2607 2608 if (hugepage_pmd_enabled()) 2609 wait_event_freezable(khugepaged_wait, khugepaged_wait_event()); 2610 } 2611 2612 static int khugepaged(void *none) 2613 { 2614 struct mm_slot *slot; 2615 2616 set_freezable(); 2617 set_user_nice(current, MAX_NICE); 2618 2619 while (!kthread_should_stop()) { 2620 khugepaged_do_scan(&khugepaged_collapse_control); 2621 khugepaged_wait_work(); 2622 } 2623 2624 spin_lock(&khugepaged_mm_lock); 2625 slot = khugepaged_scan.mm_slot; 2626 khugepaged_scan.mm_slot = NULL; 2627 if (slot) 2628 collect_mm_slot(slot); 2629 spin_unlock(&khugepaged_mm_lock); 2630 return 0; 2631 } 2632 2633 static void set_recommended_min_free_kbytes(void) 2634 { 2635 struct zone *zone; 2636 int nr_zones = 0; 2637 unsigned long recommended_min; 2638 2639 if (!hugepage_pmd_enabled()) { 2640 calculate_min_free_kbytes(); 2641 goto update_wmarks; 2642 } 2643 2644 for_each_populated_zone(zone) { 2645 /* 2646 * We don't need to worry about fragmentation of 2647 * ZONE_MOVABLE since it only has movable pages. 2648 */ 2649 if (zone_idx(zone) > gfp_zone(GFP_USER)) 2650 continue; 2651 2652 nr_zones++; 2653 } 2654 2655 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */ 2656 recommended_min = pageblock_nr_pages * nr_zones * 2; 2657 2658 /* 2659 * Make sure that on average at least two pageblocks are almost free 2660 * of another type, one for a migratetype to fall back to and a 2661 * second to avoid subsequent fallbacks of other types There are 3 2662 * MIGRATE_TYPES we care about. 2663 */ 2664 recommended_min += pageblock_nr_pages * nr_zones * 2665 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES; 2666 2667 /* don't ever allow to reserve more than 5% of the lowmem */ 2668 recommended_min = min(recommended_min, 2669 (unsigned long) nr_free_buffer_pages() / 20); 2670 recommended_min <<= (PAGE_SHIFT-10); 2671 2672 if (recommended_min > min_free_kbytes) { 2673 if (user_min_free_kbytes >= 0) 2674 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n", 2675 min_free_kbytes, recommended_min); 2676 2677 min_free_kbytes = recommended_min; 2678 } 2679 2680 update_wmarks: 2681 setup_per_zone_wmarks(); 2682 } 2683 2684 int start_stop_khugepaged(void) 2685 { 2686 int err = 0; 2687 2688 mutex_lock(&khugepaged_mutex); 2689 if (hugepage_pmd_enabled()) { 2690 if (!khugepaged_thread) 2691 khugepaged_thread = kthread_run(khugepaged, NULL, 2692 "khugepaged"); 2693 if (IS_ERR(khugepaged_thread)) { 2694 pr_err("khugepaged: kthread_run(khugepaged) failed\n"); 2695 err = PTR_ERR(khugepaged_thread); 2696 khugepaged_thread = NULL; 2697 goto fail; 2698 } 2699 2700 if (!list_empty(&khugepaged_scan.mm_head)) 2701 wake_up_interruptible(&khugepaged_wait); 2702 } else if (khugepaged_thread) { 2703 kthread_stop(khugepaged_thread); 2704 khugepaged_thread = NULL; 2705 } 2706 set_recommended_min_free_kbytes(); 2707 fail: 2708 mutex_unlock(&khugepaged_mutex); 2709 return err; 2710 } 2711 2712 void khugepaged_min_free_kbytes_update(void) 2713 { 2714 mutex_lock(&khugepaged_mutex); 2715 if (hugepage_pmd_enabled() && khugepaged_thread) 2716 set_recommended_min_free_kbytes(); 2717 mutex_unlock(&khugepaged_mutex); 2718 } 2719 2720 bool current_is_khugepaged(void) 2721 { 2722 return kthread_func(current) == khugepaged; 2723 } 2724 2725 static int madvise_collapse_errno(enum scan_result r) 2726 { 2727 /* 2728 * MADV_COLLAPSE breaks from existing madvise(2) conventions to provide 2729 * actionable feedback to caller, so they may take an appropriate 2730 * fallback measure depending on the nature of the failure. 2731 */ 2732 switch (r) { 2733 case SCAN_ALLOC_HUGE_PAGE_FAIL: 2734 return -ENOMEM; 2735 case SCAN_CGROUP_CHARGE_FAIL: 2736 case SCAN_EXCEED_NONE_PTE: 2737 return -EBUSY; 2738 /* Resource temporary unavailable - trying again might succeed */ 2739 case SCAN_PAGE_COUNT: 2740 case SCAN_PAGE_LOCK: 2741 case SCAN_PAGE_LRU: 2742 case SCAN_DEL_PAGE_LRU: 2743 case SCAN_PAGE_FILLED: 2744 case SCAN_PAGE_DIRTY_OR_WRITEBACK: 2745 return -EAGAIN; 2746 /* 2747 * Other: Trying again likely not to succeed / error intrinsic to 2748 * specified memory range. khugepaged likely won't be able to collapse 2749 * either. 2750 */ 2751 default: 2752 return -EINVAL; 2753 } 2754 } 2755 2756 int madvise_collapse(struct vm_area_struct *vma, unsigned long start, 2757 unsigned long end, bool *lock_dropped) 2758 { 2759 struct collapse_control *cc; 2760 struct mm_struct *mm = vma->vm_mm; 2761 unsigned long hstart, hend, addr; 2762 enum scan_result last_fail = SCAN_FAIL; 2763 int thps = 0; 2764 bool mmap_locked = true; 2765 2766 BUG_ON(vma->vm_start > start); 2767 BUG_ON(vma->vm_end < end); 2768 2769 if (!thp_vma_allowable_order(vma, vma->vm_flags, TVA_FORCED_COLLAPSE, PMD_ORDER)) 2770 return -EINVAL; 2771 2772 cc = kmalloc(sizeof(*cc), GFP_KERNEL); 2773 if (!cc) 2774 return -ENOMEM; 2775 cc->is_khugepaged = false; 2776 2777 mmgrab(mm); 2778 lru_add_drain_all(); 2779 2780 hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 2781 hend = end & HPAGE_PMD_MASK; 2782 2783 for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) { 2784 enum scan_result result = SCAN_FAIL; 2785 bool triggered_wb = false; 2786 2787 retry: 2788 if (!mmap_locked) { 2789 cond_resched(); 2790 mmap_read_lock(mm); 2791 mmap_locked = true; 2792 result = hugepage_vma_revalidate(mm, addr, false, &vma, 2793 cc); 2794 if (result != SCAN_SUCCEED) { 2795 last_fail = result; 2796 goto out_nolock; 2797 } 2798 2799 hend = min(hend, vma->vm_end & HPAGE_PMD_MASK); 2800 } 2801 mmap_assert_locked(mm); 2802 if (!vma_is_anonymous(vma)) { 2803 struct file *file = get_file(vma->vm_file); 2804 pgoff_t pgoff = linear_page_index(vma, addr); 2805 2806 mmap_read_unlock(mm); 2807 mmap_locked = false; 2808 *lock_dropped = true; 2809 result = hpage_collapse_scan_file(mm, addr, file, pgoff, 2810 cc); 2811 2812 if (result == SCAN_PAGE_DIRTY_OR_WRITEBACK && !triggered_wb && 2813 mapping_can_writeback(file->f_mapping)) { 2814 loff_t lstart = (loff_t)pgoff << PAGE_SHIFT; 2815 loff_t lend = lstart + HPAGE_PMD_SIZE - 1; 2816 2817 filemap_write_and_wait_range(file->f_mapping, lstart, lend); 2818 triggered_wb = true; 2819 fput(file); 2820 goto retry; 2821 } 2822 fput(file); 2823 } else { 2824 result = hpage_collapse_scan_pmd(mm, vma, addr, 2825 &mmap_locked, cc); 2826 } 2827 if (!mmap_locked) 2828 *lock_dropped = true; 2829 2830 handle_result: 2831 switch (result) { 2832 case SCAN_SUCCEED: 2833 case SCAN_PMD_MAPPED: 2834 ++thps; 2835 break; 2836 case SCAN_PTE_MAPPED_HUGEPAGE: 2837 BUG_ON(mmap_locked); 2838 mmap_read_lock(mm); 2839 result = try_collapse_pte_mapped_thp(mm, addr, true); 2840 mmap_read_unlock(mm); 2841 goto handle_result; 2842 /* Whitelisted set of results where continuing OK */ 2843 case SCAN_NO_PTE_TABLE: 2844 case SCAN_PTE_NON_PRESENT: 2845 case SCAN_PTE_UFFD_WP: 2846 case SCAN_LACK_REFERENCED_PAGE: 2847 case SCAN_PAGE_NULL: 2848 case SCAN_PAGE_COUNT: 2849 case SCAN_PAGE_LOCK: 2850 case SCAN_PAGE_COMPOUND: 2851 case SCAN_PAGE_LRU: 2852 case SCAN_DEL_PAGE_LRU: 2853 last_fail = result; 2854 break; 2855 default: 2856 last_fail = result; 2857 /* Other error, exit */ 2858 goto out_maybelock; 2859 } 2860 } 2861 2862 out_maybelock: 2863 /* Caller expects us to hold mmap_lock on return */ 2864 if (!mmap_locked) 2865 mmap_read_lock(mm); 2866 out_nolock: 2867 mmap_assert_locked(mm); 2868 mmdrop(mm); 2869 kfree(cc); 2870 2871 return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0 2872 : madvise_collapse_errno(last_fail); 2873 } 2874