xref: /linux/include/linux/hyperv.h (revision 3349e275067f94ffb4141989aed9cbae7409429b)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  *
4  * Copyright (c) 2011, Microsoft Corporation.
5  *
6  * Authors:
7  *   Haiyang Zhang <haiyangz@microsoft.com>
8  *   Hank Janssen  <hjanssen@microsoft.com>
9  *   K. Y. Srinivasan <kys@microsoft.com>
10  */
11 
12 #ifndef _HYPERV_H
13 #define _HYPERV_H
14 
15 #include <uapi/linux/hyperv.h>
16 
17 #include <linux/mm.h>
18 #include <linux/types.h>
19 #include <linux/scatterlist.h>
20 #include <linux/list.h>
21 #include <linux/timer.h>
22 #include <linux/completion.h>
23 #include <linux/device.h>
24 #include <linux/mod_devicetable.h>
25 #include <linux/interrupt.h>
26 #include <linux/reciprocal_div.h>
27 #include <hyperv/hvhdk.h>
28 
29 #define MAX_PAGE_BUFFER_COUNT				32
30 #define MAX_MULTIPAGE_BUFFER_COUNT			32 /* 128K */
31 
32 #pragma pack(push, 1)
33 
34 /*
35  * Types for GPADL, decides is how GPADL header is created.
36  *
37  * It doesn't make much difference between BUFFER and RING if PAGE_SIZE is the
38  * same as HV_HYP_PAGE_SIZE.
39  *
40  * If PAGE_SIZE is bigger than HV_HYP_PAGE_SIZE, the headers of ring buffers
41  * will be of PAGE_SIZE, however, only the first HV_HYP_PAGE will be put
42  * into gpadl, therefore the number for HV_HYP_PAGE and the indexes of each
43  * HV_HYP_PAGE will be different between different types of GPADL, for example
44  * if PAGE_SIZE is 64K:
45  *
46  * BUFFER:
47  *
48  * gva:    |--       64k      --|--       64k      --| ... |
49  * gpa:    | 4k | 4k | ... | 4k | 4k | 4k | ... | 4k |
50  * index:  0    1    2     15   16   17   18 .. 31   32 ...
51  *         |    |    ...   |    |    |   ...    |   ...
52  *         v    V          V    V    V          V
53  * gpadl:  | 4k | 4k | ... | 4k | 4k | 4k | ... | 4k | ... |
54  * index:  0    1    2 ... 15   16   17   18 .. 31   32 ...
55  *
56  * RING:
57  *
58  *         | header  |           data           | header  |     data      |
59  * gva:    |-- 64k --|--       64k      --| ... |-- 64k --|-- 64k --| ... |
60  * gpa:    | 4k | .. | 4k | 4k | ... | 4k | ... | 4k | .. | 4k | .. | ... |
61  * index:  0    1    16   17   18    31   ...   n   n+1  n+16 ...         2n
62  *         |         /    /          /          |         /               /
63  *         |        /    /          /           |        /               /
64  *         |       /    /   ...    /    ...     |       /      ...      /
65  *         |      /    /          /             |      /               /
66  *         |     /    /          /              |     /               /
67  *         V    V    V          V               V    V               v
68  * gpadl:  | 4k | 4k |   ...    |    ...        | 4k | 4k |  ...     |
69  * index:  0    1    2   ...    16   ...       n-15 n-14 n-13  ...  2n-30
70  */
71 enum hv_gpadl_type {
72 	HV_GPADL_BUFFER,
73 	HV_GPADL_RING
74 };
75 
76 /* Single-page buffer */
77 struct hv_page_buffer {
78 	u32 len;
79 	u32 offset;
80 	u64 pfn;
81 };
82 
83 /* Multiple-page buffer */
84 struct hv_multipage_buffer {
85 	/* Length and Offset determines the # of pfns in the array */
86 	u32 len;
87 	u32 offset;
88 	u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT];
89 };
90 
91 /*
92  * Multiple-page buffer array; the pfn array is variable size:
93  * The number of entries in the PFN array is determined by
94  * "len" and "offset".
95  */
96 struct hv_mpb_array {
97 	/* Length and Offset determines the # of pfns in the array */
98 	u32 len;
99 	u32 offset;
100 	u64 pfn_array[];
101 };
102 
103 /* 0x18 includes the proprietary packet header */
104 #define MAX_PAGE_BUFFER_PACKET		(0x18 +			\
105 					(sizeof(struct hv_page_buffer) * \
106 					 MAX_PAGE_BUFFER_COUNT))
107 #define MAX_MULTIPAGE_BUFFER_PACKET	(0x18 +			\
108 					 sizeof(struct hv_multipage_buffer))
109 
110 
111 #pragma pack(pop)
112 
113 struct hv_ring_buffer {
114 	/* Offset in bytes from the start of ring data below */
115 	u32 write_index;
116 
117 	/* Offset in bytes from the start of ring data below */
118 	u32 read_index;
119 
120 	u32 interrupt_mask;
121 
122 	/*
123 	 * WS2012/Win8 and later versions of Hyper-V implement interrupt
124 	 * driven flow management. The feature bit feat_pending_send_sz
125 	 * is set by the host on the host->guest ring buffer, and by the
126 	 * guest on the guest->host ring buffer.
127 	 *
128 	 * The meaning of the feature bit is a bit complex in that it has
129 	 * semantics that apply to both ring buffers.  If the guest sets
130 	 * the feature bit in the guest->host ring buffer, the guest is
131 	 * telling the host that:
132 	 * 1) It will set the pending_send_sz field in the guest->host ring
133 	 *    buffer when it is waiting for space to become available, and
134 	 * 2) It will read the pending_send_sz field in the host->guest
135 	 *    ring buffer and interrupt the host when it frees enough space
136 	 *
137 	 * Similarly, if the host sets the feature bit in the host->guest
138 	 * ring buffer, the host is telling the guest that:
139 	 * 1) It will set the pending_send_sz field in the host->guest ring
140 	 *    buffer when it is waiting for space to become available, and
141 	 * 2) It will read the pending_send_sz field in the guest->host
142 	 *    ring buffer and interrupt the guest when it frees enough space
143 	 *
144 	 * If either the guest or host does not set the feature bit that it
145 	 * owns, that guest or host must do polling if it encounters a full
146 	 * ring buffer, and not signal the other end with an interrupt.
147 	 */
148 	u32 pending_send_sz;
149 	u32 reserved1[12];
150 	union {
151 		struct {
152 			u32 feat_pending_send_sz:1;
153 		};
154 		u32 value;
155 	} feature_bits;
156 
157 	/* Pad it to PAGE_SIZE so that data starts on page boundary */
158 	u8	reserved2[PAGE_SIZE - 68];
159 
160 	/*
161 	 * Ring data starts here + RingDataStartOffset
162 	 * !!! DO NOT place any fields below this !!!
163 	 */
164 	u8 buffer[];
165 } __packed;
166 
167 
168 /*
169  * If the requested ring buffer size is at least 8 times the size of the
170  * header, steal space from the ring buffer for the header. Otherwise, add
171  * space for the header so that is doesn't take too much of the ring buffer
172  * space.
173  *
174  * The factor of 8 is somewhat arbitrary. The goal is to prevent adding a
175  * relatively small header (4 Kbytes on x86) to a large-ish power-of-2 ring
176  * buffer size (such as 128 Kbytes) and so end up making a nearly twice as
177  * large allocation that will be almost half wasted. As a contrasting example,
178  * on ARM64 with 64 Kbyte page size, we don't want to take 64 Kbytes for the
179  * header from a 128 Kbyte allocation, leaving only 64 Kbytes for the ring.
180  * In this latter case, we must add 64 Kbytes for the header and not worry
181  * about what's wasted.
182  */
183 #define VMBUS_HEADER_ADJ(payload_sz) \
184 	((payload_sz) >=  8 * sizeof(struct hv_ring_buffer) ? \
185 	0 : sizeof(struct hv_ring_buffer))
186 
187 /* Calculate the proper size of a ringbuffer, it must be page-aligned */
188 #define VMBUS_RING_SIZE(payload_sz) PAGE_ALIGN(VMBUS_HEADER_ADJ(payload_sz) + \
189 					       (payload_sz))
190 
191 struct hv_ring_buffer_info {
192 	struct hv_ring_buffer *ring_buffer;
193 	u32 ring_size;			/* Include the shared header */
194 	struct reciprocal_value ring_size_div10_reciprocal;
195 	spinlock_t ring_lock;
196 
197 	u32 ring_datasize;		/* < ring_size */
198 	u32 priv_read_index;
199 	/*
200 	 * The ring buffer mutex lock. This lock prevents the ring buffer from
201 	 * being freed while the ring buffer is being accessed.
202 	 */
203 	struct mutex ring_buffer_mutex;
204 
205 	/* Buffer that holds a copy of an incoming host packet */
206 	void *pkt_buffer;
207 	u32 pkt_buffer_size;
208 };
209 
210 
hv_get_bytes_to_read(const struct hv_ring_buffer_info * rbi)211 static inline u32 hv_get_bytes_to_read(const struct hv_ring_buffer_info *rbi)
212 {
213 	u32 read_loc, write_loc, dsize, read;
214 
215 	dsize = rbi->ring_datasize;
216 	read_loc = rbi->ring_buffer->read_index;
217 	write_loc = READ_ONCE(rbi->ring_buffer->write_index);
218 
219 	read = write_loc >= read_loc ? (write_loc - read_loc) :
220 		(dsize - read_loc) + write_loc;
221 
222 	return read;
223 }
224 
hv_get_bytes_to_write(const struct hv_ring_buffer_info * rbi)225 static inline u32 hv_get_bytes_to_write(const struct hv_ring_buffer_info *rbi)
226 {
227 	u32 read_loc, write_loc, dsize, write;
228 
229 	dsize = rbi->ring_datasize;
230 	read_loc = READ_ONCE(rbi->ring_buffer->read_index);
231 	write_loc = rbi->ring_buffer->write_index;
232 
233 	write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
234 		read_loc - write_loc;
235 	return write;
236 }
237 
hv_get_avail_to_write_percent(const struct hv_ring_buffer_info * rbi)238 static inline u32 hv_get_avail_to_write_percent(
239 		const struct hv_ring_buffer_info *rbi)
240 {
241 	u32 avail_write = hv_get_bytes_to_write(rbi);
242 
243 	return reciprocal_divide(
244 			(avail_write  << 3) + (avail_write << 1),
245 			rbi->ring_size_div10_reciprocal);
246 }
247 
248 /*
249  * VMBUS version is 32 bit entity broken up into
250  * two 16 bit quantities: major_number. minor_number.
251  *
252  * 0 . 13 (Windows Server 2008)
253  * 1 . 1  (Windows 7, WS2008 R2)
254  * 2 . 4  (Windows 8, WS2012)
255  * 3 . 0  (Windows 8.1, WS2012 R2)
256  * 4 . 0  (Windows 10)
257  * 4 . 1  (Windows 10 RS3)
258  * 5 . 0  (Newer Windows 10)
259  * 5 . 1  (Windows 10 RS4)
260  * 5 . 2  (Windows Server 2019, RS5)
261  * 5 . 3  (Windows Server 2022)
262  *
263  * The WS2008 and WIN7 versions are listed here for
264  * completeness but are no longer supported in the
265  * Linux kernel.
266  */
267 
268 #define VERSION_WS2008  ((0 << 16) | (13))
269 #define VERSION_WIN7    ((1 << 16) | (1))
270 #define VERSION_WIN8    ((2 << 16) | (4))
271 #define VERSION_WIN8_1    ((3 << 16) | (0))
272 #define VERSION_WIN10 ((4 << 16) | (0))
273 #define VERSION_WIN10_V4_1 ((4 << 16) | (1))
274 #define VERSION_WIN10_V5 ((5 << 16) | (0))
275 #define VERSION_WIN10_V5_1 ((5 << 16) | (1))
276 #define VERSION_WIN10_V5_2 ((5 << 16) | (2))
277 #define VERSION_WIN10_V5_3 ((5 << 16) | (3))
278 
279 /* Make maximum size of pipe payload of 16K */
280 #define MAX_PIPE_DATA_PAYLOAD		(sizeof(u8) * 16384)
281 
282 /* Define PipeMode values. */
283 #define VMBUS_PIPE_TYPE_BYTE		0x00000000
284 #define VMBUS_PIPE_TYPE_MESSAGE		0x00000004
285 
286 /* The size of the user defined data buffer for non-pipe offers. */
287 #define MAX_USER_DEFINED_BYTES		120
288 
289 /* The size of the user defined data buffer for pipe offers. */
290 #define MAX_PIPE_USER_DEFINED_BYTES	116
291 
292 /*
293  * At the center of the Channel Management library is the Channel Offer. This
294  * struct contains the fundamental information about an offer.
295  */
296 struct vmbus_channel_offer {
297 	guid_t if_type;
298 	guid_t if_instance;
299 
300 	/*
301 	 * These two fields are not currently used.
302 	 */
303 	u64 reserved1;
304 	u64 reserved2;
305 
306 	u16 chn_flags;
307 	u16 mmio_megabytes;		/* in bytes * 1024 * 1024 */
308 
309 	union {
310 		/* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */
311 		struct {
312 			unsigned char user_def[MAX_USER_DEFINED_BYTES];
313 		} std;
314 
315 		/*
316 		 * Pipes:
317 		 * The following structure is an integrated pipe protocol, which
318 		 * is implemented on top of standard user-defined data. Pipe
319 		 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own
320 		 * use.
321 		 */
322 		struct {
323 			u32  pipe_mode;
324 			unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES];
325 		} pipe;
326 	} u;
327 	/*
328 	 * The sub_channel_index is defined in Win8: a value of zero means a
329 	 * primary channel and a value of non-zero means a sub-channel.
330 	 *
331 	 * Before Win8, the field is reserved, meaning it's always zero.
332 	 */
333 	u16 sub_channel_index;
334 	u16 reserved3;
335 } __packed;
336 
337 /* Server Flags */
338 #define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE	1
339 #define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES	2
340 #define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS		4
341 #define VMBUS_CHANNEL_NAMED_PIPE_MODE			0x10
342 #define VMBUS_CHANNEL_LOOPBACK_OFFER			0x100
343 #define VMBUS_CHANNEL_PARENT_OFFER			0x200
344 #define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION	0x400
345 #define VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER		0x2000
346 
347 struct vmpacket_descriptor {
348 	u16 type;
349 	u16 offset8;
350 	u16 len8;
351 	u16 flags;
352 	u64 trans_id;
353 } __packed;
354 
355 struct vmpacket_header {
356 	u32 prev_pkt_start_offset;
357 	struct vmpacket_descriptor descriptor;
358 } __packed;
359 
360 struct vmtransfer_page_range {
361 	u32 byte_count;
362 	u32 byte_offset;
363 } __packed;
364 
365 struct vmtransfer_page_packet_header {
366 	struct vmpacket_descriptor d;
367 	u16 xfer_pageset_id;
368 	u8  sender_owns_set;
369 	u8 reserved;
370 	u32 range_cnt;
371 	struct vmtransfer_page_range ranges[];
372 } __packed;
373 
374 /*
375  * This structure defines a range in guest physical space that can be made to
376  * look virtually contiguous.
377  */
378 struct gpa_range {
379 	u32 byte_count;
380 	u32 byte_offset;
381 	u64 pfn_array[];
382 };
383 
384 /*
385  * This is the format for a GPA-Direct packet, which contains a set of GPA
386  * ranges, in addition to commands and/or data.
387  */
388 struct vmdata_gpa_direct {
389 	struct vmpacket_descriptor d;
390 	u32 reserved;
391 	u32 range_cnt;
392 	struct gpa_range range[1];
393 } __packed;
394 
395 #define VMPACKET_DATA_START_ADDRESS(__packet)	\
396 	(void *)(((unsigned char *)__packet) +	\
397 	 ((struct vmpacket_descriptor)__packet)->offset8 * 8)
398 
399 #define VMPACKET_DATA_LENGTH(__packet)		\
400 	((((struct vmpacket_descriptor)__packet)->len8 -	\
401 	  ((struct vmpacket_descriptor)__packet)->offset8) * 8)
402 
403 #define VMPACKET_TRANSFER_MODE(__packet)	\
404 	(((struct IMPACT)__packet)->type)
405 
406 enum vmbus_packet_type {
407 	VM_PKT_INVALID				= 0x0,
408 	VM_PKT_SYNCH				= 0x1,
409 	VM_PKT_ADD_XFER_PAGESET			= 0x2,
410 	VM_PKT_RM_XFER_PAGESET			= 0x3,
411 	VM_PKT_ESTABLISH_GPADL			= 0x4,
412 	VM_PKT_TEARDOWN_GPADL			= 0x5,
413 	VM_PKT_DATA_INBAND			= 0x6,
414 	VM_PKT_DATA_USING_XFER_PAGES		= 0x7,
415 	VM_PKT_DATA_USING_GPADL			= 0x8,
416 	VM_PKT_DATA_USING_GPA_DIRECT		= 0x9,
417 	VM_PKT_CANCEL_REQUEST			= 0xa,
418 	VM_PKT_COMP				= 0xb,
419 	VM_PKT_DATA_USING_ADDITIONAL_PKT	= 0xc,
420 	VM_PKT_ADDITIONAL_DATA			= 0xd
421 };
422 
423 #define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED	1
424 
425 
426 /* Version 1 messages */
427 enum vmbus_channel_message_type {
428 	CHANNELMSG_INVALID			=  0,
429 	CHANNELMSG_OFFERCHANNEL		=  1,
430 	CHANNELMSG_RESCIND_CHANNELOFFER	=  2,
431 	CHANNELMSG_REQUESTOFFERS		=  3,
432 	CHANNELMSG_ALLOFFERS_DELIVERED	=  4,
433 	CHANNELMSG_OPENCHANNEL		=  5,
434 	CHANNELMSG_OPENCHANNEL_RESULT		=  6,
435 	CHANNELMSG_CLOSECHANNEL		=  7,
436 	CHANNELMSG_GPADL_HEADER		=  8,
437 	CHANNELMSG_GPADL_BODY			=  9,
438 	CHANNELMSG_GPADL_CREATED		= 10,
439 	CHANNELMSG_GPADL_TEARDOWN		= 11,
440 	CHANNELMSG_GPADL_TORNDOWN		= 12,
441 	CHANNELMSG_RELID_RELEASED		= 13,
442 	CHANNELMSG_INITIATE_CONTACT		= 14,
443 	CHANNELMSG_VERSION_RESPONSE		= 15,
444 	CHANNELMSG_UNLOAD			= 16,
445 	CHANNELMSG_UNLOAD_RESPONSE		= 17,
446 	CHANNELMSG_18				= 18,
447 	CHANNELMSG_19				= 19,
448 	CHANNELMSG_20				= 20,
449 	CHANNELMSG_TL_CONNECT_REQUEST		= 21,
450 	CHANNELMSG_MODIFYCHANNEL		= 22,
451 	CHANNELMSG_TL_CONNECT_RESULT		= 23,
452 	CHANNELMSG_MODIFYCHANNEL_RESPONSE	= 24,
453 	CHANNELMSG_COUNT
454 };
455 
456 /* Hyper-V supports about 2048 channels, and the RELIDs start with 1. */
457 #define INVALID_RELID	U32_MAX
458 
459 struct vmbus_channel_message_header {
460 	enum vmbus_channel_message_type msgtype;
461 	u32 padding;
462 } __packed;
463 
464 /* Query VMBus Version parameters */
465 struct vmbus_channel_query_vmbus_version {
466 	struct vmbus_channel_message_header header;
467 	u32 version;
468 } __packed;
469 
470 /* VMBus Version Supported parameters */
471 struct vmbus_channel_version_supported {
472 	struct vmbus_channel_message_header header;
473 	u8 version_supported;
474 } __packed;
475 
476 /* Offer Channel parameters */
477 struct vmbus_channel_offer_channel {
478 	struct vmbus_channel_message_header header;
479 	struct vmbus_channel_offer offer;
480 	u32 child_relid;
481 	u8 monitorid;
482 	/*
483 	 * win7 and beyond splits this field into a bit field.
484 	 */
485 	u8 monitor_allocated:1;
486 	u8 reserved:7;
487 	/*
488 	 * These are new fields added in win7 and later.
489 	 * Do not access these fields without checking the
490 	 * negotiated protocol.
491 	 *
492 	 * If "is_dedicated_interrupt" is set, we must not set the
493 	 * associated bit in the channel bitmap while sending the
494 	 * interrupt to the host.
495 	 *
496 	 * connection_id is to be used in signaling the host.
497 	 */
498 	u16 is_dedicated_interrupt:1;
499 	u16 reserved1:15;
500 	u32 connection_id;
501 } __packed;
502 
503 /* Rescind Offer parameters */
504 struct vmbus_channel_rescind_offer {
505 	struct vmbus_channel_message_header header;
506 	u32 child_relid;
507 } __packed;
508 
509 /*
510  * Request Offer -- no parameters, SynIC message contains the partition ID
511  * Set Snoop -- no parameters, SynIC message contains the partition ID
512  * Clear Snoop -- no parameters, SynIC message contains the partition ID
513  * All Offers Delivered -- no parameters, SynIC message contains the partition
514  *		           ID
515  * Flush Client -- no parameters, SynIC message contains the partition ID
516  */
517 
518 /* Open Channel parameters */
519 struct vmbus_channel_open_channel {
520 	struct vmbus_channel_message_header header;
521 
522 	/* Identifies the specific VMBus channel that is being opened. */
523 	u32 child_relid;
524 
525 	/* ID making a particular open request at a channel offer unique. */
526 	u32 openid;
527 
528 	/* GPADL for the channel's ring buffer. */
529 	u32 ringbuffer_gpadlhandle;
530 
531 	/*
532 	 * Starting with win8, this field will be used to specify
533 	 * the target virtual processor on which to deliver the interrupt for
534 	 * the host to guest communication.
535 	 * Prior to win8, incoming channel interrupts would only
536 	 * be delivered on cpu 0. Setting this value to 0 would
537 	 * preserve the earlier behavior.
538 	 */
539 	u32 target_vp;
540 
541 	/*
542 	 * The upstream ring buffer begins at offset zero in the memory
543 	 * described by RingBufferGpadlHandle. The downstream ring buffer
544 	 * follows it at this offset (in pages).
545 	 */
546 	u32 downstream_ringbuffer_pageoffset;
547 
548 	/* User-specific data to be passed along to the server endpoint. */
549 	unsigned char userdata[MAX_USER_DEFINED_BYTES];
550 } __packed;
551 
552 /* Open Channel Result parameters */
553 struct vmbus_channel_open_result {
554 	struct vmbus_channel_message_header header;
555 	u32 child_relid;
556 	u32 openid;
557 	u32 status;
558 } __packed;
559 
560 /* Modify Channel Result parameters */
561 struct vmbus_channel_modifychannel_response {
562 	struct vmbus_channel_message_header header;
563 	u32 child_relid;
564 	u32 status;
565 } __packed;
566 
567 /* Close channel parameters; */
568 struct vmbus_channel_close_channel {
569 	struct vmbus_channel_message_header header;
570 	u32 child_relid;
571 } __packed;
572 
573 /* Channel Message GPADL */
574 #define GPADL_TYPE_RING_BUFFER		1
575 #define GPADL_TYPE_SERVER_SAVE_AREA	2
576 #define GPADL_TYPE_TRANSACTION		8
577 
578 /*
579  * The number of PFNs in a GPADL message is defined by the number of
580  * pages that would be spanned by ByteCount and ByteOffset.  If the
581  * implied number of PFNs won't fit in this packet, there will be a
582  * follow-up packet that contains more.
583  */
584 struct vmbus_channel_gpadl_header {
585 	struct vmbus_channel_message_header header;
586 	u32 child_relid;
587 	u32 gpadl;
588 	u16 range_buflen;
589 	u16 rangecount;
590 	struct gpa_range range[];
591 } __packed;
592 
593 /* This is the followup packet that contains more PFNs. */
594 struct vmbus_channel_gpadl_body {
595 	struct vmbus_channel_message_header header;
596 	u32 msgnumber;
597 	u32 gpadl;
598 	u64 pfn[];
599 } __packed;
600 
601 struct vmbus_channel_gpadl_created {
602 	struct vmbus_channel_message_header header;
603 	u32 child_relid;
604 	u32 gpadl;
605 	u32 creation_status;
606 } __packed;
607 
608 struct vmbus_channel_gpadl_teardown {
609 	struct vmbus_channel_message_header header;
610 	u32 child_relid;
611 	u32 gpadl;
612 } __packed;
613 
614 struct vmbus_channel_gpadl_torndown {
615 	struct vmbus_channel_message_header header;
616 	u32 gpadl;
617 } __packed;
618 
619 struct vmbus_channel_relid_released {
620 	struct vmbus_channel_message_header header;
621 	u32 child_relid;
622 } __packed;
623 
624 struct vmbus_channel_initiate_contact {
625 	struct vmbus_channel_message_header header;
626 	u32 vmbus_version_requested;
627 	u32 target_vcpu; /* The VCPU the host should respond to */
628 	union {
629 		u64 interrupt_page;
630 		struct {
631 			u8	msg_sint;
632 			u8	msg_vtl;
633 			u8	reserved[6];
634 		};
635 	};
636 	u64 monitor_page1;
637 	u64 monitor_page2;
638 } __packed;
639 
640 /* Hyper-V socket: guest's connect()-ing to host */
641 struct vmbus_channel_tl_connect_request {
642 	struct vmbus_channel_message_header header;
643 	guid_t guest_endpoint_id;
644 	guid_t host_service_id;
645 } __packed;
646 
647 /* Modify Channel parameters, cf. vmbus_send_modifychannel() */
648 struct vmbus_channel_modifychannel {
649 	struct vmbus_channel_message_header header;
650 	u32 child_relid;
651 	u32 target_vp;
652 } __packed;
653 
654 struct vmbus_channel_version_response {
655 	struct vmbus_channel_message_header header;
656 	u8 version_supported;
657 
658 	u8 connection_state;
659 	u16 padding;
660 
661 	/*
662 	 * On new hosts that support VMBus protocol 5.0, we must use
663 	 * VMBUS_MESSAGE_CONNECTION_ID_4 for the Initiate Contact Message,
664 	 * and for subsequent messages, we must use the Message Connection ID
665 	 * field in the host-returned Version Response Message.
666 	 *
667 	 * On old hosts, we should always use VMBUS_MESSAGE_CONNECTION_ID (1).
668 	 */
669 	u32 msg_conn_id;
670 } __packed;
671 
672 enum vmbus_channel_state {
673 	CHANNEL_OFFER_STATE,
674 	CHANNEL_OPENING_STATE,
675 	CHANNEL_OPEN_STATE,
676 	CHANNEL_OPENED_STATE,
677 };
678 
679 /*
680  * Represents each channel msg on the vmbus connection This is a
681  * variable-size data structure depending on the msg type itself
682  */
683 struct vmbus_channel_msginfo {
684 	/* Bookkeeping stuff */
685 	struct list_head msglistentry;
686 
687 	/* So far, this is only used to handle gpadl body message */
688 	struct list_head submsglist;
689 
690 	/* Synchronize the request/response if needed */
691 	struct completion  waitevent;
692 	struct vmbus_channel *waiting_channel;
693 	union {
694 		struct vmbus_channel_version_supported version_supported;
695 		struct vmbus_channel_open_result open_result;
696 		struct vmbus_channel_gpadl_torndown gpadl_torndown;
697 		struct vmbus_channel_gpadl_created gpadl_created;
698 		struct vmbus_channel_version_response version_response;
699 		struct vmbus_channel_modifychannel_response modify_response;
700 	} response;
701 
702 	u32 msgsize;
703 	/*
704 	 * The channel message that goes out on the "wire".
705 	 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header
706 	 */
707 	unsigned char msg[];
708 };
709 
710 struct vmbus_close_msg {
711 	struct vmbus_channel_msginfo info;
712 	struct vmbus_channel_close_channel msg;
713 };
714 
715 enum vmbus_device_type {
716 	HV_IDE = 0,
717 	HV_SCSI,
718 	HV_FC,
719 	HV_NIC,
720 	HV_ND,
721 	HV_PCIE,
722 	HV_FB,
723 	HV_KBD,
724 	HV_MOUSE,
725 	HV_KVP,
726 	HV_TS,
727 	HV_HB,
728 	HV_SHUTDOWN,
729 	HV_FCOPY,
730 	HV_BACKUP,
731 	HV_DM,
732 	HV_UNKNOWN,
733 };
734 
735 /*
736  * Provides request ids for VMBus. Encapsulates guest memory
737  * addresses and stores the next available slot in req_arr
738  * to generate new ids in constant time.
739  */
740 struct vmbus_requestor {
741 	u64 *req_arr;
742 	unsigned long *req_bitmap; /* is a given slot available? */
743 	u32 size;
744 	u64 next_request_id;
745 	spinlock_t req_lock; /* provides atomicity */
746 };
747 
748 #define VMBUS_NO_RQSTOR U64_MAX
749 #define VMBUS_RQST_ERROR (U64_MAX - 1)
750 #define VMBUS_RQST_ADDR_ANY U64_MAX
751 /* NetVSC-specific */
752 #define VMBUS_RQST_ID_NO_RESPONSE (U64_MAX - 2)
753 /* StorVSC-specific */
754 #define VMBUS_RQST_INIT (U64_MAX - 2)
755 #define VMBUS_RQST_RESET (U64_MAX - 3)
756 
757 struct vmbus_device {
758 	/* preferred ring buffer size in KB, 0 means no preferred size for this device */
759 	size_t pref_ring_size;
760 	u16  dev_type;
761 	guid_t guid;
762 	bool perf_device;
763 	bool allowed_in_isolated;
764 };
765 
766 #define VMBUS_DEFAULT_MAX_PKT_SIZE 4096
767 
768 struct vmbus_gpadl {
769 	u32 gpadl_handle;
770 	u32 size;
771 	void *buffer;
772 	bool decrypted;
773 };
774 
775 struct vmbus_channel {
776 	struct list_head listentry;
777 
778 	struct hv_device *device_obj;
779 
780 	enum vmbus_channel_state state;
781 
782 	struct vmbus_channel_offer_channel offermsg;
783 	/*
784 	 * These are based on the OfferMsg.MonitorId.
785 	 * Save it here for easy access.
786 	 */
787 	u8 monitor_grp;
788 	u8 monitor_bit;
789 
790 	bool rescind; /* got rescind msg */
791 	bool rescind_ref; /* got rescind msg, got channel reference */
792 	struct completion rescind_event;
793 
794 	struct vmbus_gpadl ringbuffer_gpadlhandle;
795 
796 	/* Allocated memory for ring buffer */
797 	struct page *ringbuffer_page;
798 	u32 ringbuffer_pagecount;
799 	u32 ringbuffer_send_offset;
800 	struct hv_ring_buffer_info outbound;	/* send to parent */
801 	struct hv_ring_buffer_info inbound;	/* receive from parent */
802 
803 	struct vmbus_close_msg close_msg;
804 
805 	/* Statistics */
806 	u64	interrupts;	/* Host to Guest interrupts */
807 	u64	sig_events;	/* Guest to Host events */
808 
809 	/*
810 	 * Guest to host interrupts caused by the outbound ring buffer changing
811 	 * from empty to not empty.
812 	 */
813 	u64 intr_out_empty;
814 
815 	/*
816 	 * Indicates that a full outbound ring buffer was encountered. The flag
817 	 * is set to true when a full outbound ring buffer is encountered and
818 	 * set to false when a write to the outbound ring buffer is completed.
819 	 */
820 	bool out_full_flag;
821 
822 	/* Channel callback's invoked in softirq context */
823 	struct tasklet_struct callback_event;
824 	void (*onchannel_callback)(void *context);
825 	void *channel_callback_context;
826 
827 	void (*change_target_cpu_callback)(struct vmbus_channel *channel,
828 			u32 old, u32 new);
829 
830 	/*
831 	 * Synchronize channel scheduling and channel removal; see the inline
832 	 * comments in vmbus_chan_sched() and vmbus_reset_channel_cb().
833 	 */
834 	spinlock_t sched_lock;
835 
836 	/*
837 	 * A channel can be marked for one of three modes of reading:
838 	 *   BATCHED - callback called from taslket and should read
839 	 *            channel until empty. Interrupts from the host
840 	 *            are masked while read is in process (default).
841 	 *   DIRECT - callback called from tasklet (softirq).
842 	 *   ISR - callback called in interrupt context and must
843 	 *         invoke its own deferred processing.
844 	 *         Host interrupts are disabled and must be re-enabled
845 	 *         when ring is empty.
846 	 */
847 	enum hv_callback_mode {
848 		HV_CALL_BATCHED,
849 		HV_CALL_DIRECT,
850 		HV_CALL_ISR
851 	} callback_mode;
852 
853 	bool is_dedicated_interrupt;
854 	u64 sig_event;
855 
856 	/*
857 	 * Starting with win8, this field will be used to specify the
858 	 * target CPU on which to deliver the interrupt for the host
859 	 * to guest communication.
860 	 *
861 	 * Prior to win8, incoming channel interrupts would only be
862 	 * delivered on CPU 0. Setting this value to 0 would preserve
863 	 * the earlier behavior.
864 	 */
865 	u32 target_cpu;
866 	/*
867 	 * Support for sub-channels. For high performance devices,
868 	 * it will be useful to have multiple sub-channels to support
869 	 * a scalable communication infrastructure with the host.
870 	 * The support for sub-channels is implemented as an extension
871 	 * to the current infrastructure.
872 	 * The initial offer is considered the primary channel and this
873 	 * offer message will indicate if the host supports sub-channels.
874 	 * The guest is free to ask for sub-channels to be offered and can
875 	 * open these sub-channels as a normal "primary" channel. However,
876 	 * all sub-channels will have the same type and instance guids as the
877 	 * primary channel. Requests sent on a given channel will result in a
878 	 * response on the same channel.
879 	 */
880 
881 	/*
882 	 * Sub-channel creation callback. This callback will be called in
883 	 * process context when a sub-channel offer is received from the host.
884 	 * The guest can open the sub-channel in the context of this callback.
885 	 */
886 	void (*sc_creation_callback)(struct vmbus_channel *new_sc);
887 
888 	/*
889 	 * Channel rescind callback. Some channels (the hvsock ones), need to
890 	 * register a callback which is invoked in vmbus_onoffer_rescind().
891 	 */
892 	void (*chn_rescind_callback)(struct vmbus_channel *channel);
893 
894 	/*
895 	 * All Sub-channels of a primary channel are linked here.
896 	 */
897 	struct list_head sc_list;
898 	/*
899 	 * The primary channel this sub-channel belongs to.
900 	 * This will be NULL for the primary channel.
901 	 */
902 	struct vmbus_channel *primary_channel;
903 	/*
904 	 * Support per-channel state for use by vmbus drivers.
905 	 */
906 	void *per_channel_state;
907 
908 	/*
909 	 * Defer freeing channel until after all cpu's have
910 	 * gone through grace period.
911 	 */
912 	struct rcu_head rcu;
913 
914 	/*
915 	 * For sysfs per-channel properties.
916 	 */
917 	struct kobject			kobj;
918 
919 	/*
920 	 * For performance critical channels (storage, networking
921 	 * etc,), Hyper-V has a mechanism to enhance the throughput
922 	 * at the expense of latency:
923 	 * When the host is to be signaled, we just set a bit in a shared page
924 	 * and this bit will be inspected by the hypervisor within a certain
925 	 * window and if the bit is set, the host will be signaled. The window
926 	 * of time is the monitor latency - currently around 100 usecs. This
927 	 * mechanism improves throughput by:
928 	 *
929 	 * A) Making the host more efficient - each time it wakes up,
930 	 *    potentially it will process more number of packets. The
931 	 *    monitor latency allows a batch to build up.
932 	 * B) By deferring the hypercall to signal, we will also minimize
933 	 *    the interrupts.
934 	 *
935 	 * Clearly, these optimizations improve throughput at the expense of
936 	 * latency. Furthermore, since the channel is shared for both
937 	 * control and data messages, control messages currently suffer
938 	 * unnecessary latency adversely impacting performance and boot
939 	 * time. To fix this issue, permit tagging the channel as being
940 	 * in "low latency" mode. In this mode, we will bypass the monitor
941 	 * mechanism.
942 	 */
943 	bool low_latency;
944 
945 	bool probe_done;
946 
947 	/*
948 	 * Cache the device ID here for easy access; this is useful, in
949 	 * particular, in situations where the channel's device_obj has
950 	 * not been allocated/initialized yet.
951 	 */
952 	u16 device_id;
953 
954 	/*
955 	 * We must offload the handling of the primary/sub channels
956 	 * from the single-threaded vmbus_connection.work_queue to
957 	 * two different workqueue, otherwise we can block
958 	 * vmbus_connection.work_queue and hang: see vmbus_process_offer().
959 	 */
960 	struct work_struct add_channel_work;
961 
962 	/*
963 	 * Guest to host interrupts caused by the inbound ring buffer changing
964 	 * from full to not full while a packet is waiting.
965 	 */
966 	u64 intr_in_full;
967 
968 	/*
969 	 * The total number of write operations that encountered a full
970 	 * outbound ring buffer.
971 	 */
972 	u64 out_full_total;
973 
974 	/*
975 	 * The number of write operations that were the first to encounter a
976 	 * full outbound ring buffer.
977 	 */
978 	u64 out_full_first;
979 
980 	/* enabling/disabling fuzz testing on the channel (default is false)*/
981 	bool fuzz_testing_state;
982 
983 	/*
984 	 * Interrupt delay will delay the guest from emptying the ring buffer
985 	 * for a specific amount of time. The delay is in microseconds and will
986 	 * be between 1 to a maximum of 1000, its default is 0 (no delay).
987 	 * The  Message delay will delay guest reading on a per message basis
988 	 * in microseconds between 1 to 1000 with the default being 0
989 	 * (no delay).
990 	 */
991 	u32 fuzz_testing_interrupt_delay;
992 	u32 fuzz_testing_message_delay;
993 
994 	/* callback to generate a request ID from a request address */
995 	u64 (*next_request_id_callback)(struct vmbus_channel *channel, u64 rqst_addr);
996 	/* callback to retrieve a request address from a request ID */
997 	u64 (*request_addr_callback)(struct vmbus_channel *channel, u64 rqst_id);
998 
999 	/* request/transaction ids for VMBus */
1000 	struct vmbus_requestor requestor;
1001 	u32 rqstor_size;
1002 
1003 	/* The max size of a packet on this channel */
1004 	u32 max_pkt_size;
1005 
1006 	/* function to mmap ring buffer memory to the channel's sysfs ring attribute */
1007 	int (*mmap_ring_buffer)(struct vmbus_channel *channel, struct vm_area_struct *vma);
1008 
1009 	/* boolean to control visibility of sysfs for ring buffer */
1010 	bool ring_sysfs_visible;
1011 };
1012 
1013 #define lock_requestor(channel, flags)					\
1014 do {									\
1015 	struct vmbus_requestor *rqstor = &(channel)->requestor;		\
1016 									\
1017 	spin_lock_irqsave(&rqstor->req_lock, flags);			\
1018 } while (0)
1019 
unlock_requestor(struct vmbus_channel * channel,unsigned long flags)1020 static __always_inline void unlock_requestor(struct vmbus_channel *channel,
1021 					     unsigned long flags)
1022 {
1023 	struct vmbus_requestor *rqstor = &channel->requestor;
1024 
1025 	spin_unlock_irqrestore(&rqstor->req_lock, flags);
1026 }
1027 
1028 u64 vmbus_next_request_id(struct vmbus_channel *channel, u64 rqst_addr);
1029 u64 __vmbus_request_addr_match(struct vmbus_channel *channel, u64 trans_id,
1030 			       u64 rqst_addr);
1031 u64 vmbus_request_addr_match(struct vmbus_channel *channel, u64 trans_id,
1032 			     u64 rqst_addr);
1033 u64 vmbus_request_addr(struct vmbus_channel *channel, u64 trans_id);
1034 
is_hvsock_offer(const struct vmbus_channel_offer_channel * o)1035 static inline bool is_hvsock_offer(const struct vmbus_channel_offer_channel *o)
1036 {
1037 	return !!(o->offer.chn_flags & VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER);
1038 }
1039 
is_hvsock_channel(const struct vmbus_channel * c)1040 static inline bool is_hvsock_channel(const struct vmbus_channel *c)
1041 {
1042 	return is_hvsock_offer(&c->offermsg);
1043 }
1044 
is_sub_channel(const struct vmbus_channel * c)1045 static inline bool is_sub_channel(const struct vmbus_channel *c)
1046 {
1047 	return c->offermsg.offer.sub_channel_index != 0;
1048 }
1049 
set_channel_read_mode(struct vmbus_channel * c,enum hv_callback_mode mode)1050 static inline void set_channel_read_mode(struct vmbus_channel *c,
1051 					enum hv_callback_mode mode)
1052 {
1053 	c->callback_mode = mode;
1054 }
1055 
set_per_channel_state(struct vmbus_channel * c,void * s)1056 static inline void set_per_channel_state(struct vmbus_channel *c, void *s)
1057 {
1058 	c->per_channel_state = s;
1059 }
1060 
get_per_channel_state(struct vmbus_channel * c)1061 static inline void *get_per_channel_state(struct vmbus_channel *c)
1062 {
1063 	return c->per_channel_state;
1064 }
1065 
set_channel_pending_send_size(struct vmbus_channel * c,u32 size)1066 static inline void set_channel_pending_send_size(struct vmbus_channel *c,
1067 						 u32 size)
1068 {
1069 	unsigned long flags;
1070 
1071 	if (size) {
1072 		spin_lock_irqsave(&c->outbound.ring_lock, flags);
1073 		++c->out_full_total;
1074 
1075 		if (!c->out_full_flag) {
1076 			++c->out_full_first;
1077 			c->out_full_flag = true;
1078 		}
1079 		spin_unlock_irqrestore(&c->outbound.ring_lock, flags);
1080 	} else {
1081 		c->out_full_flag = false;
1082 	}
1083 
1084 	c->outbound.ring_buffer->pending_send_sz = size;
1085 }
1086 
1087 void vmbus_onmessage(struct vmbus_channel_message_header *hdr);
1088 
1089 int vmbus_request_offers(void);
1090 
1091 /*
1092  * APIs for managing sub-channels.
1093  */
1094 
1095 void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel,
1096 			void (*sc_cr_cb)(struct vmbus_channel *new_sc));
1097 
1098 void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel,
1099 		void (*chn_rescind_cb)(struct vmbus_channel *));
1100 
1101 /* The format must be the same as struct vmdata_gpa_direct */
1102 struct vmbus_channel_packet_page_buffer {
1103 	u16 type;
1104 	u16 dataoffset8;
1105 	u16 length8;
1106 	u16 flags;
1107 	u64 transactionid;
1108 	u32 reserved;
1109 	u32 rangecount;
1110 	struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT];
1111 } __packed;
1112 
1113 /* The format must be the same as struct vmdata_gpa_direct */
1114 struct vmbus_channel_packet_multipage_buffer {
1115 	u16 type;
1116 	u16 dataoffset8;
1117 	u16 length8;
1118 	u16 flags;
1119 	u64 transactionid;
1120 	u32 reserved;
1121 	u32 rangecount;		/* Always 1 in this case */
1122 	struct hv_multipage_buffer range;
1123 } __packed;
1124 
1125 /* The format must be the same as struct vmdata_gpa_direct */
1126 struct vmbus_packet_mpb_array {
1127 	u16 type;
1128 	u16 dataoffset8;
1129 	u16 length8;
1130 	u16 flags;
1131 	u64 transactionid;
1132 	u32 reserved;
1133 	u32 rangecount;         /* Always 1 in this case */
1134 	struct hv_mpb_array range;
1135 } __packed;
1136 
1137 int vmbus_alloc_ring(struct vmbus_channel *channel,
1138 		     u32 send_size, u32 recv_size);
1139 void vmbus_free_ring(struct vmbus_channel *channel);
1140 
1141 int vmbus_connect_ring(struct vmbus_channel *channel,
1142 		       void (*onchannel_callback)(void *context),
1143 		       void *context);
1144 int vmbus_disconnect_ring(struct vmbus_channel *channel);
1145 
1146 extern int vmbus_open(struct vmbus_channel *channel,
1147 			    u32 send_ringbuffersize,
1148 			    u32 recv_ringbuffersize,
1149 			    void *userdata,
1150 			    u32 userdatalen,
1151 			    void (*onchannel_callback)(void *context),
1152 			    void *context);
1153 
1154 extern void vmbus_close(struct vmbus_channel *channel);
1155 
1156 extern int vmbus_sendpacket_getid(struct vmbus_channel *channel,
1157 				  void *buffer,
1158 				  u32 bufferLen,
1159 				  u64 requestid,
1160 				  u64 *trans_id,
1161 				  enum vmbus_packet_type type,
1162 				  u32 flags);
1163 extern int vmbus_sendpacket(struct vmbus_channel *channel,
1164 				  void *buffer,
1165 				  u32 bufferLen,
1166 				  u64 requestid,
1167 				  enum vmbus_packet_type type,
1168 				  u32 flags);
1169 
1170 extern int vmbus_sendpacket_mpb_desc(struct vmbus_channel *channel,
1171 				     struct vmbus_packet_mpb_array *mpb,
1172 				     u32 desc_size,
1173 				     void *buffer,
1174 				     u32 bufferlen,
1175 				     u64 requestid);
1176 
1177 extern int vmbus_establish_gpadl(struct vmbus_channel *channel,
1178 				      void *kbuffer,
1179 				      u32 size,
1180 				      struct vmbus_gpadl *gpadl);
1181 
1182 extern int vmbus_teardown_gpadl(struct vmbus_channel *channel,
1183 				     struct vmbus_gpadl *gpadl);
1184 
1185 void vmbus_reset_channel_cb(struct vmbus_channel *channel);
1186 
1187 extern int vmbus_recvpacket(struct vmbus_channel *channel,
1188 				  void *buffer,
1189 				  u32 bufferlen,
1190 				  u32 *buffer_actual_len,
1191 				  u64 *requestid);
1192 
1193 extern int vmbus_recvpacket_raw(struct vmbus_channel *channel,
1194 				     void *buffer,
1195 				     u32 bufferlen,
1196 				     u32 *buffer_actual_len,
1197 				     u64 *requestid);
1198 
1199 /* Base driver object */
1200 struct hv_driver {
1201 	const char *name;
1202 
1203 	/*
1204 	 * A hvsock offer, which has a VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER
1205 	 * channel flag, actually doesn't mean a synthetic device because the
1206 	 * offer's if_type/if_instance can change for every new hvsock
1207 	 * connection.
1208 	 *
1209 	 * However, to facilitate the notification of new-offer/rescind-offer
1210 	 * from vmbus driver to hvsock driver, we can handle hvsock offer as
1211 	 * a special vmbus device, and hence we need the below flag to
1212 	 * indicate if the driver is the hvsock driver or not: we need to
1213 	 * specially treat the hvosck offer & driver in vmbus_match().
1214 	 */
1215 	bool hvsock;
1216 
1217 	/* the device type supported by this driver */
1218 	guid_t dev_type;
1219 	const struct hv_vmbus_device_id *id_table;
1220 
1221 	struct device_driver driver;
1222 
1223 	/* dynamic device GUID's */
1224 	struct  {
1225 		spinlock_t lock;
1226 		struct list_head list;
1227 	} dynids;
1228 
1229 	int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *);
1230 	void (*remove)(struct hv_device *dev);
1231 	void (*shutdown)(struct hv_device *);
1232 
1233 	int (*suspend)(struct hv_device *);
1234 	int (*resume)(struct hv_device *);
1235 
1236 };
1237 
1238 /* Base device object */
1239 struct hv_device {
1240 	/* the device type id of this device */
1241 	guid_t dev_type;
1242 
1243 	/* the device instance id of this device */
1244 	guid_t dev_instance;
1245 	u16 vendor_id;
1246 	u16 device_id;
1247 
1248 	struct device device;
1249 	/*
1250 	 * Driver name to force a match.  Do not set directly, because core
1251 	 * frees it.  Use driver_set_override() to set or clear it.
1252 	 */
1253 	const char *driver_override;
1254 
1255 	struct vmbus_channel *channel;
1256 	struct kset	     *channels_kset;
1257 	struct device_dma_parameters dma_parms;
1258 	u64 dma_mask;
1259 
1260 	/* place holder to keep track of the dir for hv device in debugfs */
1261 	struct dentry *debug_dir;
1262 
1263 };
1264 
1265 
1266 #define device_to_hv_device(d)	container_of_const(d, struct hv_device, device)
1267 #define drv_to_hv_drv(d)	container_of_const(d, struct hv_driver, driver)
1268 
hv_set_drvdata(struct hv_device * dev,void * data)1269 static inline void hv_set_drvdata(struct hv_device *dev, void *data)
1270 {
1271 	dev_set_drvdata(&dev->device, data);
1272 }
1273 
hv_get_drvdata(struct hv_device * dev)1274 static inline void *hv_get_drvdata(struct hv_device *dev)
1275 {
1276 	return dev_get_drvdata(&dev->device);
1277 }
1278 
1279 struct device *hv_get_vmbus_root_device(void);
1280 
1281 struct hv_ring_buffer_debug_info {
1282 	u32 current_interrupt_mask;
1283 	u32 current_read_index;
1284 	u32 current_write_index;
1285 	u32 bytes_avail_toread;
1286 	u32 bytes_avail_towrite;
1287 };
1288 
1289 
1290 int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
1291 				struct hv_ring_buffer_debug_info *debug_info);
1292 
1293 bool hv_ringbuffer_spinlock_busy(struct vmbus_channel *channel);
1294 
1295 /* Vmbus interface */
1296 #define vmbus_driver_register(driver)	\
1297 	__vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME)
1298 int __must_check __vmbus_driver_register(struct hv_driver *hv_driver,
1299 					 struct module *owner,
1300 					 const char *mod_name);
1301 void vmbus_driver_unregister(struct hv_driver *hv_driver);
1302 
1303 void vmbus_hvsock_device_unregister(struct vmbus_channel *channel);
1304 
1305 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1306 			resource_size_t min, resource_size_t max,
1307 			resource_size_t size, resource_size_t align,
1308 			bool fb_overlap_ok);
1309 void vmbus_free_mmio(resource_size_t start, resource_size_t size);
1310 
1311 /*
1312  * GUID definitions of various offer types - services offered to the guest.
1313  */
1314 
1315 /*
1316  * Network GUID
1317  * {f8615163-df3e-46c5-913f-f2d2f965ed0e}
1318  */
1319 #define HV_NIC_GUID \
1320 	.guid = GUID_INIT(0xf8615163, 0xdf3e, 0x46c5, 0x91, 0x3f, \
1321 			  0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e)
1322 
1323 /*
1324  * IDE GUID
1325  * {32412632-86cb-44a2-9b5c-50d1417354f5}
1326  */
1327 #define HV_IDE_GUID \
1328 	.guid = GUID_INIT(0x32412632, 0x86cb, 0x44a2, 0x9b, 0x5c, \
1329 			  0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5)
1330 
1331 /*
1332  * SCSI GUID
1333  * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f}
1334  */
1335 #define HV_SCSI_GUID \
1336 	.guid = GUID_INIT(0xba6163d9, 0x04a1, 0x4d29, 0xb6, 0x05, \
1337 			  0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f)
1338 
1339 /*
1340  * Shutdown GUID
1341  * {0e0b6031-5213-4934-818b-38d90ced39db}
1342  */
1343 #define HV_SHUTDOWN_GUID \
1344 	.guid = GUID_INIT(0x0e0b6031, 0x5213, 0x4934, 0x81, 0x8b, \
1345 			  0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb)
1346 
1347 /*
1348  * Time Synch GUID
1349  * {9527E630-D0AE-497b-ADCE-E80AB0175CAF}
1350  */
1351 #define HV_TS_GUID \
1352 	.guid = GUID_INIT(0x9527e630, 0xd0ae, 0x497b, 0xad, 0xce, \
1353 			  0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf)
1354 
1355 /*
1356  * Heartbeat GUID
1357  * {57164f39-9115-4e78-ab55-382f3bd5422d}
1358  */
1359 #define HV_HEART_BEAT_GUID \
1360 	.guid = GUID_INIT(0x57164f39, 0x9115, 0x4e78, 0xab, 0x55, \
1361 			  0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d)
1362 
1363 /*
1364  * KVP GUID
1365  * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6}
1366  */
1367 #define HV_KVP_GUID \
1368 	.guid = GUID_INIT(0xa9a0f4e7, 0x5a45, 0x4d96, 0xb8, 0x27, \
1369 			  0x8a, 0x84, 0x1e, 0x8c, 0x03, 0xe6)
1370 
1371 /*
1372  * Dynamic memory GUID
1373  * {525074dc-8985-46e2-8057-a307dc18a502}
1374  */
1375 #define HV_DM_GUID \
1376 	.guid = GUID_INIT(0x525074dc, 0x8985, 0x46e2, 0x80, 0x57, \
1377 			  0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02)
1378 
1379 /*
1380  * Mouse GUID
1381  * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a}
1382  */
1383 #define HV_MOUSE_GUID \
1384 	.guid = GUID_INIT(0xcfa8b69e, 0x5b4a, 0x4cc0, 0xb9, 0x8b, \
1385 			  0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a)
1386 
1387 /*
1388  * Keyboard GUID
1389  * {f912ad6d-2b17-48ea-bd65-f927a61c7684}
1390  */
1391 #define HV_KBD_GUID \
1392 	.guid = GUID_INIT(0xf912ad6d, 0x2b17, 0x48ea, 0xbd, 0x65, \
1393 			  0xf9, 0x27, 0xa6, 0x1c, 0x76, 0x84)
1394 
1395 /*
1396  * VSS (Backup/Restore) GUID
1397  */
1398 #define HV_VSS_GUID \
1399 	.guid = GUID_INIT(0x35fa2e29, 0xea23, 0x4236, 0x96, 0xae, \
1400 			  0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40)
1401 /*
1402  * Synthetic Video GUID
1403  * {DA0A7802-E377-4aac-8E77-0558EB1073F8}
1404  */
1405 #define HV_SYNTHVID_GUID \
1406 	.guid = GUID_INIT(0xda0a7802, 0xe377, 0x4aac, 0x8e, 0x77, \
1407 			  0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8)
1408 
1409 /*
1410  * Synthetic FC GUID
1411  * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda}
1412  */
1413 #define HV_SYNTHFC_GUID \
1414 	.guid = GUID_INIT(0x2f9bcc4a, 0x0069, 0x4af3, 0xb7, 0x6b, \
1415 			  0x6f, 0xd0, 0xbe, 0x52, 0x8c, 0xda)
1416 
1417 /*
1418  * Guest File Copy Service
1419  * {34D14BE3-DEE4-41c8-9AE7-6B174977C192}
1420  */
1421 
1422 #define HV_FCOPY_GUID \
1423 	.guid = GUID_INIT(0x34d14be3, 0xdee4, 0x41c8, 0x9a, 0xe7, \
1424 			  0x6b, 0x17, 0x49, 0x77, 0xc1, 0x92)
1425 
1426 /*
1427  * NetworkDirect. This is the guest RDMA service.
1428  * {8c2eaf3d-32a7-4b09-ab99-bd1f1c86b501}
1429  */
1430 #define HV_ND_GUID \
1431 	.guid = GUID_INIT(0x8c2eaf3d, 0x32a7, 0x4b09, 0xab, 0x99, \
1432 			  0xbd, 0x1f, 0x1c, 0x86, 0xb5, 0x01)
1433 
1434 /*
1435  * PCI Express Pass Through
1436  * {44C4F61D-4444-4400-9D52-802E27EDE19F}
1437  */
1438 
1439 #define HV_PCIE_GUID \
1440 	.guid = GUID_INIT(0x44c4f61d, 0x4444, 0x4400, 0x9d, 0x52, \
1441 			  0x80, 0x2e, 0x27, 0xed, 0xe1, 0x9f)
1442 
1443 /*
1444  * Linux doesn't support these 4 devices: the first two are for
1445  * Automatic Virtual Machine Activation, the third is for
1446  * Remote Desktop Virtualization, and the fourth is Initial
1447  * Machine Configuration (IMC) used only by Windows guests.
1448  * {f8e65716-3cb3-4a06-9a60-1889c5cccab5}
1449  * {3375baf4-9e15-4b30-b765-67acb10d607b}
1450  * {276aacf4-ac15-426c-98dd-7521ad3f01fe}
1451  * {c376c1c3-d276-48d2-90a9-c04748072c60}
1452  */
1453 
1454 #define HV_AVMA1_GUID \
1455 	.guid = GUID_INIT(0xf8e65716, 0x3cb3, 0x4a06, 0x9a, 0x60, \
1456 			  0x18, 0x89, 0xc5, 0xcc, 0xca, 0xb5)
1457 
1458 #define HV_AVMA2_GUID \
1459 	.guid = GUID_INIT(0x3375baf4, 0x9e15, 0x4b30, 0xb7, 0x65, \
1460 			  0x67, 0xac, 0xb1, 0x0d, 0x60, 0x7b)
1461 
1462 #define HV_RDV_GUID \
1463 	.guid = GUID_INIT(0x276aacf4, 0xac15, 0x426c, 0x98, 0xdd, \
1464 			  0x75, 0x21, 0xad, 0x3f, 0x01, 0xfe)
1465 
1466 #define HV_IMC_GUID \
1467 	.guid = GUID_INIT(0xc376c1c3, 0xd276, 0x48d2, 0x90, 0xa9, \
1468 			  0xc0, 0x47, 0x48, 0x07, 0x2c, 0x60)
1469 
1470 /*
1471  * Common header for Hyper-V ICs
1472  */
1473 
1474 #define ICMSGTYPE_NEGOTIATE		0
1475 #define ICMSGTYPE_HEARTBEAT		1
1476 #define ICMSGTYPE_KVPEXCHANGE		2
1477 #define ICMSGTYPE_SHUTDOWN		3
1478 #define ICMSGTYPE_TIMESYNC		4
1479 #define ICMSGTYPE_VSS			5
1480 #define ICMSGTYPE_FCOPY			7
1481 
1482 #define ICMSGHDRFLAG_TRANSACTION	1
1483 #define ICMSGHDRFLAG_REQUEST		2
1484 #define ICMSGHDRFLAG_RESPONSE		4
1485 
1486 
1487 /*
1488  * While we want to handle util services as regular devices,
1489  * there is only one instance of each of these services; so
1490  * we statically allocate the service specific state.
1491  */
1492 
1493 struct hv_util_service {
1494 	u8 *recv_buffer;
1495 	void *channel;
1496 	void (*util_cb)(void *);
1497 	int (*util_init)(struct hv_util_service *);
1498 	int (*util_init_transport)(void);
1499 	void (*util_deinit)(void);
1500 	int (*util_pre_suspend)(void);
1501 	int (*util_pre_resume)(void);
1502 };
1503 
1504 struct vmbuspipe_hdr {
1505 	u32 flags;
1506 	u32 msgsize;
1507 } __packed;
1508 
1509 struct ic_version {
1510 	u16 major;
1511 	u16 minor;
1512 } __packed;
1513 
1514 struct icmsg_hdr {
1515 	struct ic_version icverframe;
1516 	u16 icmsgtype;
1517 	struct ic_version icvermsg;
1518 	u16 icmsgsize;
1519 	u32 status;
1520 	u8 ictransaction_id;
1521 	u8 icflags;
1522 	u8 reserved[2];
1523 } __packed;
1524 
1525 #define IC_VERSION_NEGOTIATION_MAX_VER_COUNT 100
1526 #define ICMSG_HDR (sizeof(struct vmbuspipe_hdr) + sizeof(struct icmsg_hdr))
1527 #define ICMSG_NEGOTIATE_PKT_SIZE(icframe_vercnt, icmsg_vercnt) \
1528 	(ICMSG_HDR + sizeof(struct icmsg_negotiate) + \
1529 	 (((icframe_vercnt) + (icmsg_vercnt)) * sizeof(struct ic_version)))
1530 
1531 struct icmsg_negotiate {
1532 	u16 icframe_vercnt;
1533 	u16 icmsg_vercnt;
1534 	u32 reserved;
1535 	struct ic_version icversion_data[]; /* any size array */
1536 } __packed;
1537 
1538 struct shutdown_msg_data {
1539 	u32 reason_code;
1540 	u32 timeout_seconds;
1541 	u32 flags;
1542 	u8  display_message[2048];
1543 } __packed;
1544 
1545 struct heartbeat_msg_data {
1546 	u64 seq_num;
1547 	u32 reserved[8];
1548 } __packed;
1549 
1550 /* Time Sync IC defs */
1551 #define ICTIMESYNCFLAG_PROBE	0
1552 #define ICTIMESYNCFLAG_SYNC	1
1553 #define ICTIMESYNCFLAG_SAMPLE	2
1554 
1555 #ifdef __x86_64__
1556 #define WLTIMEDELTA	116444736000000000L	/* in 100ns unit */
1557 #else
1558 #define WLTIMEDELTA	116444736000000000LL
1559 #endif
1560 
1561 struct ictimesync_data {
1562 	u64 parenttime;
1563 	u64 childtime;
1564 	u64 roundtriptime;
1565 	u8 flags;
1566 } __packed;
1567 
1568 struct ictimesync_ref_data {
1569 	u64 parenttime;
1570 	u64 vmreferencetime;
1571 	u8 flags;
1572 	char leapflags;
1573 	char stratum;
1574 	u8 reserved[3];
1575 } __packed;
1576 
1577 struct hyperv_service_callback {
1578 	u8 msg_type;
1579 	char *log_msg;
1580 	guid_t data;
1581 	struct vmbus_channel *channel;
1582 	void (*callback)(void *context);
1583 };
1584 
1585 struct hv_dma_range {
1586 	dma_addr_t dma;
1587 	u32 mapping_size;
1588 };
1589 
1590 #define MAX_SRV_VER	0x7ffffff
1591 extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *icmsghdrp, u8 *buf, u32 buflen,
1592 				const int *fw_version, int fw_vercnt,
1593 				const int *srv_version, int srv_vercnt,
1594 				int *nego_fw_version, int *nego_srv_version);
1595 
1596 void hv_process_channel_removal(struct vmbus_channel *channel);
1597 
1598 void vmbus_setevent(struct vmbus_channel *channel);
1599 /*
1600  * Negotiated version with the Host.
1601  */
1602 
1603 extern __u32 vmbus_proto_version;
1604 
1605 int vmbus_send_tl_connect_request(const guid_t *shv_guest_servie_id,
1606 				  const guid_t *shv_host_servie_id);
1607 int vmbus_send_modifychannel(struct vmbus_channel *channel, u32 target_vp);
1608 void vmbus_set_event(struct vmbus_channel *channel);
1609 int vmbus_channel_set_cpu(struct vmbus_channel *channel, u32 target_cpu);
1610 
1611 /* Get the start of the ring buffer. */
1612 static inline void *
hv_get_ring_buffer(const struct hv_ring_buffer_info * ring_info)1613 hv_get_ring_buffer(const struct hv_ring_buffer_info *ring_info)
1614 {
1615 	return ring_info->ring_buffer->buffer;
1616 }
1617 
1618 /*
1619  * Mask off host interrupt callback notifications
1620  */
hv_begin_read(struct hv_ring_buffer_info * rbi)1621 static inline void hv_begin_read(struct hv_ring_buffer_info *rbi)
1622 {
1623 	rbi->ring_buffer->interrupt_mask = 1;
1624 
1625 	/* make sure mask update is not reordered */
1626 	virt_mb();
1627 }
1628 
1629 /*
1630  * Re-enable host callback and return number of outstanding bytes
1631  */
hv_end_read(struct hv_ring_buffer_info * rbi)1632 static inline u32 hv_end_read(struct hv_ring_buffer_info *rbi)
1633 {
1634 
1635 	rbi->ring_buffer->interrupt_mask = 0;
1636 
1637 	/* make sure mask update is not reordered */
1638 	virt_mb();
1639 
1640 	/*
1641 	 * Now check to see if the ring buffer is still empty.
1642 	 * If it is not, we raced and we need to process new
1643 	 * incoming messages.
1644 	 */
1645 	return hv_get_bytes_to_read(rbi);
1646 }
1647 
1648 /*
1649  * An API to support in-place processing of incoming VMBUS packets.
1650  */
1651 
1652 /* Get data payload associated with descriptor */
hv_pkt_data(const struct vmpacket_descriptor * desc)1653 static inline void *hv_pkt_data(const struct vmpacket_descriptor *desc)
1654 {
1655 	return (void *)((unsigned long)desc + (desc->offset8 << 3));
1656 }
1657 
1658 /* Get data size associated with descriptor */
hv_pkt_datalen(const struct vmpacket_descriptor * desc)1659 static inline u32 hv_pkt_datalen(const struct vmpacket_descriptor *desc)
1660 {
1661 	return (desc->len8 << 3) - (desc->offset8 << 3);
1662 }
1663 
1664 /* Get packet length associated with descriptor */
hv_pkt_len(const struct vmpacket_descriptor * desc)1665 static inline u32 hv_pkt_len(const struct vmpacket_descriptor *desc)
1666 {
1667 	return desc->len8 << 3;
1668 }
1669 
1670 struct vmpacket_descriptor *
1671 hv_pkt_iter_first(struct vmbus_channel *channel);
1672 
1673 struct vmpacket_descriptor *
1674 __hv_pkt_iter_next(struct vmbus_channel *channel,
1675 		   const struct vmpacket_descriptor *pkt);
1676 
1677 void hv_pkt_iter_close(struct vmbus_channel *channel);
1678 
1679 static inline struct vmpacket_descriptor *
hv_pkt_iter_next(struct vmbus_channel * channel,const struct vmpacket_descriptor * pkt)1680 hv_pkt_iter_next(struct vmbus_channel *channel,
1681 		 const struct vmpacket_descriptor *pkt)
1682 {
1683 	struct vmpacket_descriptor *nxt;
1684 
1685 	nxt = __hv_pkt_iter_next(channel, pkt);
1686 	if (!nxt)
1687 		hv_pkt_iter_close(channel);
1688 
1689 	return nxt;
1690 }
1691 
1692 #define foreach_vmbus_pkt(pkt, channel) \
1693 	for (pkt = hv_pkt_iter_first(channel); pkt; \
1694 	    pkt = hv_pkt_iter_next(channel, pkt))
1695 
1696 /*
1697  * Interface for passing data between SR-IOV PF and VF drivers. The VF driver
1698  * sends requests to read and write blocks. Each block must be 128 bytes or
1699  * smaller. Optionally, the VF driver can register a callback function which
1700  * will be invoked when the host says that one or more of the first 64 block
1701  * IDs is "invalid" which means that the VF driver should reread them.
1702  */
1703 #define HV_CONFIG_BLOCK_SIZE_MAX 128
1704 
1705 int hyperv_read_cfg_blk(struct pci_dev *dev, void *buf, unsigned int buf_len,
1706 			unsigned int block_id, unsigned int *bytes_returned);
1707 int hyperv_write_cfg_blk(struct pci_dev *dev, void *buf, unsigned int len,
1708 			 unsigned int block_id);
1709 int hyperv_reg_block_invalidate(struct pci_dev *dev, void *context,
1710 				void (*block_invalidate)(void *context,
1711 							 u64 block_mask));
1712 
1713 struct hyperv_pci_block_ops {
1714 	int (*read_block)(struct pci_dev *dev, void *buf, unsigned int buf_len,
1715 			  unsigned int block_id, unsigned int *bytes_returned);
1716 	int (*write_block)(struct pci_dev *dev, void *buf, unsigned int len,
1717 			   unsigned int block_id);
1718 	int (*reg_blk_invalidate)(struct pci_dev *dev, void *context,
1719 				  void (*block_invalidate)(void *context,
1720 							   u64 block_mask));
1721 };
1722 
1723 extern struct hyperv_pci_block_ops hvpci_block_ops;
1724 
virt_to_hvpfn(void * addr)1725 static inline unsigned long virt_to_hvpfn(void *addr)
1726 {
1727 	phys_addr_t paddr;
1728 
1729 	if (is_vmalloc_addr(addr))
1730 		paddr = page_to_phys(vmalloc_to_page(addr)) +
1731 				     offset_in_page(addr);
1732 	else
1733 		paddr = __pa(addr);
1734 
1735 	return  paddr >> HV_HYP_PAGE_SHIFT;
1736 }
1737 
1738 #define NR_HV_HYP_PAGES_IN_PAGE	(PAGE_SIZE / HV_HYP_PAGE_SIZE)
1739 #define offset_in_hvpage(ptr)	((unsigned long)(ptr) & ~HV_HYP_PAGE_MASK)
1740 #define HVPFN_UP(x)	(((x) + HV_HYP_PAGE_SIZE-1) >> HV_HYP_PAGE_SHIFT)
1741 #define HVPFN_DOWN(x)	((x) >> HV_HYP_PAGE_SHIFT)
1742 #define page_to_hvpfn(page)	(page_to_pfn(page) * NR_HV_HYP_PAGES_IN_PAGE)
1743 
1744 #endif /* _HYPERV_H */
1745