1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24 #include <linux/mm_types.h>
25 #include <linux/slab.h>
26 #include <linux/types.h>
27 #include <linux/sched/signal.h>
28 #include <linux/sched/mm.h>
29 #include <linux/uaccess.h>
30 #include <linux/mman.h>
31 #include <linux/memory.h>
32 #include "kfd_priv.h"
33 #include "kfd_events.h"
34 #include "kfd_device_queue_manager.h"
35 #include <linux/device.h>
36
37 /*
38 * Wrapper around wait_queue_entry_t
39 */
40 struct kfd_event_waiter {
41 wait_queue_entry_t wait;
42 struct kfd_event *event; /* Event to wait for */
43 bool activated; /* Becomes true when event is signaled */
44 bool event_age_enabled; /* set to true when last_event_age is non-zero */
45 };
46
47 /*
48 * Each signal event needs a 64-bit signal slot where the signaler will write
49 * a 1 before sending an interrupt. (This is needed because some interrupts
50 * do not contain enough spare data bits to identify an event.)
51 * We get whole pages and map them to the process VA.
52 * Individual signal events use their event_id as slot index.
53 */
54 struct kfd_signal_page {
55 uint64_t *kernel_address;
56 uint64_t __user *user_address;
57 bool need_to_free_pages;
58 };
59
page_slots(struct kfd_signal_page * page)60 static uint64_t *page_slots(struct kfd_signal_page *page)
61 {
62 return page->kernel_address;
63 }
64
allocate_signal_page(struct kfd_process * p)65 static struct kfd_signal_page *allocate_signal_page(struct kfd_process *p)
66 {
67 void *backing_store;
68 struct kfd_signal_page *page;
69
70 page = kzalloc(sizeof(*page), GFP_KERNEL);
71 if (!page)
72 return NULL;
73
74 backing_store = (void *) __get_free_pages(GFP_KERNEL,
75 get_order(KFD_SIGNAL_EVENT_LIMIT * 8));
76 if (!backing_store)
77 goto fail_alloc_signal_store;
78
79 /* Initialize all events to unsignaled */
80 memset(backing_store, (uint8_t) UNSIGNALED_EVENT_SLOT,
81 KFD_SIGNAL_EVENT_LIMIT * 8);
82
83 page->kernel_address = backing_store;
84 page->need_to_free_pages = true;
85 pr_debug("Allocated new event signal page at %p, for process %p\n",
86 page, p);
87
88 return page;
89
90 fail_alloc_signal_store:
91 kfree(page);
92 return NULL;
93 }
94
allocate_event_notification_slot(struct kfd_process * p,struct kfd_event * ev,const int * restore_id)95 static int allocate_event_notification_slot(struct kfd_process *p,
96 struct kfd_event *ev,
97 const int *restore_id)
98 {
99 int id;
100
101 if (!p->signal_page) {
102 p->signal_page = allocate_signal_page(p);
103 if (!p->signal_page)
104 return -ENOMEM;
105 /* Oldest user mode expects 256 event slots */
106 p->signal_mapped_size = 256*8;
107 }
108
109 if (restore_id) {
110 id = idr_alloc(&p->event_idr, ev, *restore_id, *restore_id + 1,
111 GFP_KERNEL);
112 } else {
113 /*
114 * Compatibility with old user mode: Only use signal slots
115 * user mode has mapped, may be less than
116 * KFD_SIGNAL_EVENT_LIMIT. This also allows future increase
117 * of the event limit without breaking user mode.
118 */
119 id = idr_alloc(&p->event_idr, ev, 0, p->signal_mapped_size / 8,
120 GFP_KERNEL);
121 }
122 if (id < 0)
123 return id;
124
125 ev->event_id = id;
126 page_slots(p->signal_page)[id] = UNSIGNALED_EVENT_SLOT;
127
128 return 0;
129 }
130
131 /*
132 * Assumes that p->event_mutex or rcu_readlock is held and of course that p is
133 * not going away.
134 */
lookup_event_by_id(struct kfd_process * p,uint32_t id)135 static struct kfd_event *lookup_event_by_id(struct kfd_process *p, uint32_t id)
136 {
137 return idr_find(&p->event_idr, id);
138 }
139
140 /**
141 * lookup_signaled_event_by_partial_id - Lookup signaled event from partial ID
142 * @p: Pointer to struct kfd_process
143 * @id: ID to look up
144 * @bits: Number of valid bits in @id
145 *
146 * Finds the first signaled event with a matching partial ID. If no
147 * matching signaled event is found, returns NULL. In that case the
148 * caller should assume that the partial ID is invalid and do an
149 * exhaustive search of all siglaned events.
150 *
151 * If multiple events with the same partial ID signal at the same
152 * time, they will be found one interrupt at a time, not necessarily
153 * in the same order the interrupts occurred. As long as the number of
154 * interrupts is correct, all signaled events will be seen by the
155 * driver.
156 */
lookup_signaled_event_by_partial_id(struct kfd_process * p,uint32_t id,uint32_t bits)157 static struct kfd_event *lookup_signaled_event_by_partial_id(
158 struct kfd_process *p, uint32_t id, uint32_t bits)
159 {
160 struct kfd_event *ev;
161
162 if (!p->signal_page || id >= KFD_SIGNAL_EVENT_LIMIT)
163 return NULL;
164
165 /* Fast path for the common case that @id is not a partial ID
166 * and we only need a single lookup.
167 */
168 if (bits > 31 || (1U << bits) >= KFD_SIGNAL_EVENT_LIMIT) {
169 if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT)
170 return NULL;
171
172 return idr_find(&p->event_idr, id);
173 }
174
175 /* General case for partial IDs: Iterate over all matching IDs
176 * and find the first one that has signaled.
177 */
178 for (ev = NULL; id < KFD_SIGNAL_EVENT_LIMIT && !ev; id += 1U << bits) {
179 if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT)
180 continue;
181
182 ev = idr_find(&p->event_idr, id);
183 }
184
185 return ev;
186 }
187
create_signal_event(struct file * devkfd,struct kfd_process * p,struct kfd_event * ev,const int * restore_id)188 static int create_signal_event(struct file *devkfd, struct kfd_process *p,
189 struct kfd_event *ev, const int *restore_id)
190 {
191 int ret;
192
193 if (p->signal_mapped_size &&
194 p->signal_event_count == p->signal_mapped_size / 8) {
195 if (!p->signal_event_limit_reached) {
196 pr_debug("Signal event wasn't created because limit was reached\n");
197 p->signal_event_limit_reached = true;
198 }
199 return -ENOSPC;
200 }
201
202 ret = allocate_event_notification_slot(p, ev, restore_id);
203 if (ret) {
204 pr_warn("Signal event wasn't created because out of kernel memory\n");
205 return ret;
206 }
207
208 p->signal_event_count++;
209
210 ev->user_signal_address = &p->signal_page->user_address[ev->event_id];
211 pr_debug("Signal event number %zu created with id %d, address %p\n",
212 p->signal_event_count, ev->event_id,
213 ev->user_signal_address);
214
215 return 0;
216 }
217
create_other_event(struct kfd_process * p,struct kfd_event * ev,const int * restore_id)218 static int create_other_event(struct kfd_process *p, struct kfd_event *ev, const int *restore_id)
219 {
220 int id;
221
222 if (restore_id)
223 id = idr_alloc(&p->event_idr, ev, *restore_id, *restore_id + 1,
224 GFP_KERNEL);
225 else
226 /* Cast KFD_LAST_NONSIGNAL_EVENT to uint32_t. This allows an
227 * intentional integer overflow to -1 without a compiler
228 * warning. idr_alloc treats a negative value as "maximum
229 * signed integer".
230 */
231 id = idr_alloc(&p->event_idr, ev, KFD_FIRST_NONSIGNAL_EVENT_ID,
232 (uint32_t)KFD_LAST_NONSIGNAL_EVENT_ID + 1,
233 GFP_KERNEL);
234
235 if (id < 0)
236 return id;
237 ev->event_id = id;
238
239 return 0;
240 }
241
kfd_event_init_process(struct kfd_process * p)242 int kfd_event_init_process(struct kfd_process *p)
243 {
244 int id;
245
246 mutex_init(&p->event_mutex);
247 idr_init(&p->event_idr);
248 p->signal_page = NULL;
249 p->signal_event_count = 1;
250 /* Allocate event ID 0. It is used for a fast path to ignore bogus events
251 * that are sent by the CP without a context ID
252 */
253 id = idr_alloc(&p->event_idr, NULL, 0, 1, GFP_KERNEL);
254 if (id < 0) {
255 idr_destroy(&p->event_idr);
256 mutex_destroy(&p->event_mutex);
257 return id;
258 }
259 return 0;
260 }
261
destroy_event(struct kfd_process * p,struct kfd_event * ev)262 static void destroy_event(struct kfd_process *p, struct kfd_event *ev)
263 {
264 struct kfd_event_waiter *waiter;
265
266 /* Wake up pending waiters. They will return failure */
267 spin_lock(&ev->lock);
268 list_for_each_entry(waiter, &ev->wq.head, wait.entry)
269 WRITE_ONCE(waiter->event, NULL);
270 wake_up_all(&ev->wq);
271 spin_unlock(&ev->lock);
272
273 if (ev->type == KFD_EVENT_TYPE_SIGNAL ||
274 ev->type == KFD_EVENT_TYPE_DEBUG)
275 p->signal_event_count--;
276
277 idr_remove(&p->event_idr, ev->event_id);
278 kfree_rcu(ev, rcu);
279 }
280
destroy_events(struct kfd_process * p)281 static void destroy_events(struct kfd_process *p)
282 {
283 struct kfd_event *ev;
284 uint32_t id;
285
286 idr_for_each_entry(&p->event_idr, ev, id)
287 if (ev)
288 destroy_event(p, ev);
289 idr_destroy(&p->event_idr);
290 mutex_destroy(&p->event_mutex);
291 }
292
293 /*
294 * We assume that the process is being destroyed and there is no need to
295 * unmap the pages or keep bookkeeping data in order.
296 */
shutdown_signal_page(struct kfd_process * p)297 static void shutdown_signal_page(struct kfd_process *p)
298 {
299 struct kfd_signal_page *page = p->signal_page;
300
301 if (page) {
302 if (page->need_to_free_pages)
303 free_pages((unsigned long)page->kernel_address,
304 get_order(KFD_SIGNAL_EVENT_LIMIT * 8));
305 kfree(page);
306 }
307 }
308
kfd_event_free_process(struct kfd_process * p)309 void kfd_event_free_process(struct kfd_process *p)
310 {
311 destroy_events(p);
312 shutdown_signal_page(p);
313 }
314
event_can_be_gpu_signaled(const struct kfd_event * ev)315 static bool event_can_be_gpu_signaled(const struct kfd_event *ev)
316 {
317 return ev->type == KFD_EVENT_TYPE_SIGNAL ||
318 ev->type == KFD_EVENT_TYPE_DEBUG;
319 }
320
event_can_be_cpu_signaled(const struct kfd_event * ev)321 static bool event_can_be_cpu_signaled(const struct kfd_event *ev)
322 {
323 return ev->type == KFD_EVENT_TYPE_SIGNAL;
324 }
325
kfd_event_page_set(struct kfd_process * p,void * kernel_address,uint64_t size,uint64_t user_handle)326 static int kfd_event_page_set(struct kfd_process *p, void *kernel_address,
327 uint64_t size, uint64_t user_handle)
328 {
329 struct kfd_signal_page *page;
330
331 if (p->signal_page)
332 return -EBUSY;
333
334 page = kzalloc(sizeof(*page), GFP_KERNEL);
335 if (!page)
336 return -ENOMEM;
337
338 /* Initialize all events to unsignaled */
339 memset(kernel_address, (uint8_t) UNSIGNALED_EVENT_SLOT,
340 KFD_SIGNAL_EVENT_LIMIT * 8);
341
342 page->kernel_address = kernel_address;
343
344 p->signal_page = page;
345 p->signal_mapped_size = size;
346 p->signal_handle = user_handle;
347 return 0;
348 }
349
kfd_kmap_event_page(struct kfd_process * p,uint64_t event_page_offset)350 int kfd_kmap_event_page(struct kfd_process *p, uint64_t event_page_offset)
351 {
352 struct kfd_node *kfd;
353 struct kfd_process_device *pdd;
354 void *mem, *kern_addr;
355 uint64_t size;
356 int err = 0;
357
358 if (p->signal_page) {
359 pr_err("Event page is already set\n");
360 return -EINVAL;
361 }
362
363 pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(event_page_offset));
364 if (!pdd) {
365 pr_err("Getting device by id failed in %s\n", __func__);
366 return -EINVAL;
367 }
368 kfd = pdd->dev;
369
370 pdd = kfd_bind_process_to_device(kfd, p);
371 if (IS_ERR(pdd))
372 return PTR_ERR(pdd);
373
374 mem = kfd_process_device_translate_handle(pdd,
375 GET_IDR_HANDLE(event_page_offset));
376 if (!mem) {
377 pr_err("Can't find BO, offset is 0x%llx\n", event_page_offset);
378 return -EINVAL;
379 }
380
381 err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(mem, &kern_addr, &size);
382 if (err) {
383 pr_err("Failed to map event page to kernel\n");
384 return err;
385 }
386
387 err = kfd_event_page_set(p, kern_addr, size, event_page_offset);
388 if (err) {
389 pr_err("Failed to set event page\n");
390 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
391 return err;
392 }
393 return err;
394 }
395
kfd_event_create(struct file * devkfd,struct kfd_process * p,uint32_t event_type,bool auto_reset,uint32_t node_id,uint32_t * event_id,uint32_t * event_trigger_data,uint64_t * event_page_offset,uint32_t * event_slot_index)396 int kfd_event_create(struct file *devkfd, struct kfd_process *p,
397 uint32_t event_type, bool auto_reset, uint32_t node_id,
398 uint32_t *event_id, uint32_t *event_trigger_data,
399 uint64_t *event_page_offset, uint32_t *event_slot_index)
400 {
401 int ret = 0;
402 struct kfd_event *ev = kzalloc(sizeof(*ev), GFP_KERNEL);
403
404 if (!ev)
405 return -ENOMEM;
406
407 ev->type = event_type;
408 ev->auto_reset = auto_reset;
409 ev->signaled = false;
410
411 spin_lock_init(&ev->lock);
412 init_waitqueue_head(&ev->wq);
413
414 *event_page_offset = 0;
415
416 mutex_lock(&p->event_mutex);
417
418 switch (event_type) {
419 case KFD_EVENT_TYPE_SIGNAL:
420 case KFD_EVENT_TYPE_DEBUG:
421 ret = create_signal_event(devkfd, p, ev, NULL);
422 if (!ret) {
423 *event_page_offset = KFD_MMAP_TYPE_EVENTS;
424 *event_slot_index = ev->event_id;
425 }
426 break;
427 default:
428 ret = create_other_event(p, ev, NULL);
429 break;
430 }
431
432 if (!ret) {
433 *event_id = ev->event_id;
434 *event_trigger_data = ev->event_id;
435 ev->event_age = 1;
436 } else {
437 kfree(ev);
438 }
439
440 mutex_unlock(&p->event_mutex);
441
442 return ret;
443 }
444
kfd_criu_restore_event(struct file * devkfd,struct kfd_process * p,uint8_t __user * user_priv_ptr,uint64_t * priv_data_offset,uint64_t max_priv_data_size)445 int kfd_criu_restore_event(struct file *devkfd,
446 struct kfd_process *p,
447 uint8_t __user *user_priv_ptr,
448 uint64_t *priv_data_offset,
449 uint64_t max_priv_data_size)
450 {
451 struct kfd_criu_event_priv_data *ev_priv;
452 struct kfd_event *ev = NULL;
453 int ret = 0;
454
455 ev_priv = kmalloc(sizeof(*ev_priv), GFP_KERNEL);
456 if (!ev_priv)
457 return -ENOMEM;
458
459 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
460 if (!ev) {
461 ret = -ENOMEM;
462 goto exit;
463 }
464
465 if (*priv_data_offset + sizeof(*ev_priv) > max_priv_data_size) {
466 ret = -EINVAL;
467 goto exit;
468 }
469
470 ret = copy_from_user(ev_priv, user_priv_ptr + *priv_data_offset, sizeof(*ev_priv));
471 if (ret) {
472 ret = -EFAULT;
473 goto exit;
474 }
475 *priv_data_offset += sizeof(*ev_priv);
476
477 if (ev_priv->user_handle) {
478 ret = kfd_kmap_event_page(p, ev_priv->user_handle);
479 if (ret)
480 goto exit;
481 }
482
483 ev->type = ev_priv->type;
484 ev->auto_reset = ev_priv->auto_reset;
485 ev->signaled = ev_priv->signaled;
486
487 spin_lock_init(&ev->lock);
488 init_waitqueue_head(&ev->wq);
489
490 mutex_lock(&p->event_mutex);
491 switch (ev->type) {
492 case KFD_EVENT_TYPE_SIGNAL:
493 case KFD_EVENT_TYPE_DEBUG:
494 ret = create_signal_event(devkfd, p, ev, &ev_priv->event_id);
495 break;
496 case KFD_EVENT_TYPE_MEMORY:
497 memcpy(&ev->memory_exception_data,
498 &ev_priv->memory_exception_data,
499 sizeof(struct kfd_hsa_memory_exception_data));
500
501 ret = create_other_event(p, ev, &ev_priv->event_id);
502 break;
503 case KFD_EVENT_TYPE_HW_EXCEPTION:
504 memcpy(&ev->hw_exception_data,
505 &ev_priv->hw_exception_data,
506 sizeof(struct kfd_hsa_hw_exception_data));
507
508 ret = create_other_event(p, ev, &ev_priv->event_id);
509 break;
510 }
511 mutex_unlock(&p->event_mutex);
512
513 exit:
514 if (ret)
515 kfree(ev);
516
517 kfree(ev_priv);
518
519 return ret;
520 }
521
kfd_criu_checkpoint_events(struct kfd_process * p,uint8_t __user * user_priv_data,uint64_t * priv_data_offset)522 int kfd_criu_checkpoint_events(struct kfd_process *p,
523 uint8_t __user *user_priv_data,
524 uint64_t *priv_data_offset)
525 {
526 struct kfd_criu_event_priv_data *ev_privs;
527 int i = 0;
528 int ret = 0;
529 struct kfd_event *ev;
530 uint32_t ev_id;
531
532 uint32_t num_events = kfd_get_num_events(p);
533
534 if (!num_events)
535 return 0;
536
537 ev_privs = kvzalloc(num_events * sizeof(*ev_privs), GFP_KERNEL);
538 if (!ev_privs)
539 return -ENOMEM;
540
541
542 idr_for_each_entry(&p->event_idr, ev, ev_id) {
543 struct kfd_criu_event_priv_data *ev_priv;
544
545 /*
546 * Currently, all events have same size of private_data, but the current ioctl's
547 * and CRIU plugin supports private_data of variable sizes
548 */
549 ev_priv = &ev_privs[i];
550
551 ev_priv->object_type = KFD_CRIU_OBJECT_TYPE_EVENT;
552
553 /* We store the user_handle with the first event */
554 if (i == 0 && p->signal_page)
555 ev_priv->user_handle = p->signal_handle;
556
557 ev_priv->event_id = ev->event_id;
558 ev_priv->auto_reset = ev->auto_reset;
559 ev_priv->type = ev->type;
560 ev_priv->signaled = ev->signaled;
561
562 if (ev_priv->type == KFD_EVENT_TYPE_MEMORY)
563 memcpy(&ev_priv->memory_exception_data,
564 &ev->memory_exception_data,
565 sizeof(struct kfd_hsa_memory_exception_data));
566 else if (ev_priv->type == KFD_EVENT_TYPE_HW_EXCEPTION)
567 memcpy(&ev_priv->hw_exception_data,
568 &ev->hw_exception_data,
569 sizeof(struct kfd_hsa_hw_exception_data));
570
571 pr_debug("Checkpointed event[%d] id = 0x%08x auto_reset = %x type = %x signaled = %x\n",
572 i,
573 ev_priv->event_id,
574 ev_priv->auto_reset,
575 ev_priv->type,
576 ev_priv->signaled);
577 i++;
578 }
579
580 ret = copy_to_user(user_priv_data + *priv_data_offset,
581 ev_privs, num_events * sizeof(*ev_privs));
582 if (ret) {
583 pr_err("Failed to copy events priv to user\n");
584 ret = -EFAULT;
585 }
586
587 *priv_data_offset += num_events * sizeof(*ev_privs);
588
589 kvfree(ev_privs);
590 return ret;
591 }
592
kfd_get_num_events(struct kfd_process * p)593 int kfd_get_num_events(struct kfd_process *p)
594 {
595 struct kfd_event *ev;
596 uint32_t id;
597 u32 num_events = 0;
598
599 idr_for_each_entry(&p->event_idr, ev, id)
600 num_events++;
601
602 return num_events;
603 }
604
605 /* Assumes that p is current. */
kfd_event_destroy(struct kfd_process * p,uint32_t event_id)606 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id)
607 {
608 struct kfd_event *ev;
609 int ret = 0;
610
611 mutex_lock(&p->event_mutex);
612
613 ev = lookup_event_by_id(p, event_id);
614
615 if (ev)
616 destroy_event(p, ev);
617 else
618 ret = -EINVAL;
619
620 mutex_unlock(&p->event_mutex);
621 return ret;
622 }
623
set_event(struct kfd_event * ev)624 static void set_event(struct kfd_event *ev)
625 {
626 struct kfd_event_waiter *waiter;
627
628 /* Auto reset if the list is non-empty and we're waking
629 * someone. waitqueue_active is safe here because we're
630 * protected by the ev->lock, which is also held when
631 * updating the wait queues in kfd_wait_on_events.
632 */
633 ev->signaled = !ev->auto_reset || !waitqueue_active(&ev->wq);
634 if (!(++ev->event_age)) {
635 /* Never wrap back to reserved/default event age 0/1 */
636 ev->event_age = 2;
637 WARN_ONCE(1, "event_age wrap back!");
638 }
639
640 list_for_each_entry(waiter, &ev->wq.head, wait.entry)
641 WRITE_ONCE(waiter->activated, true);
642
643 wake_up_all(&ev->wq);
644 }
645
646 /* Assumes that p is current. */
kfd_set_event(struct kfd_process * p,uint32_t event_id)647 int kfd_set_event(struct kfd_process *p, uint32_t event_id)
648 {
649 int ret = 0;
650 struct kfd_event *ev;
651
652 rcu_read_lock();
653
654 ev = lookup_event_by_id(p, event_id);
655 if (!ev) {
656 ret = -EINVAL;
657 goto unlock_rcu;
658 }
659 spin_lock(&ev->lock);
660
661 if (event_can_be_cpu_signaled(ev))
662 set_event(ev);
663 else
664 ret = -EINVAL;
665
666 spin_unlock(&ev->lock);
667 unlock_rcu:
668 rcu_read_unlock();
669 return ret;
670 }
671
reset_event(struct kfd_event * ev)672 static void reset_event(struct kfd_event *ev)
673 {
674 ev->signaled = false;
675 }
676
677 /* Assumes that p is current. */
kfd_reset_event(struct kfd_process * p,uint32_t event_id)678 int kfd_reset_event(struct kfd_process *p, uint32_t event_id)
679 {
680 int ret = 0;
681 struct kfd_event *ev;
682
683 rcu_read_lock();
684
685 ev = lookup_event_by_id(p, event_id);
686 if (!ev) {
687 ret = -EINVAL;
688 goto unlock_rcu;
689 }
690 spin_lock(&ev->lock);
691
692 if (event_can_be_cpu_signaled(ev))
693 reset_event(ev);
694 else
695 ret = -EINVAL;
696
697 spin_unlock(&ev->lock);
698 unlock_rcu:
699 rcu_read_unlock();
700 return ret;
701
702 }
703
acknowledge_signal(struct kfd_process * p,struct kfd_event * ev)704 static void acknowledge_signal(struct kfd_process *p, struct kfd_event *ev)
705 {
706 WRITE_ONCE(page_slots(p->signal_page)[ev->event_id], UNSIGNALED_EVENT_SLOT);
707 }
708
set_event_from_interrupt(struct kfd_process * p,struct kfd_event * ev)709 static void set_event_from_interrupt(struct kfd_process *p,
710 struct kfd_event *ev)
711 {
712 if (ev && event_can_be_gpu_signaled(ev)) {
713 acknowledge_signal(p, ev);
714 spin_lock(&ev->lock);
715 set_event(ev);
716 spin_unlock(&ev->lock);
717 }
718 }
719
kfd_signal_event_interrupt(u32 pasid,uint32_t partial_id,uint32_t valid_id_bits)720 void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id,
721 uint32_t valid_id_bits)
722 {
723 struct kfd_event *ev = NULL;
724
725 /*
726 * Because we are called from arbitrary context (workqueue) as opposed
727 * to process context, kfd_process could attempt to exit while we are
728 * running so the lookup function increments the process ref count.
729 */
730 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
731
732 if (!p)
733 return; /* Presumably process exited. */
734
735 rcu_read_lock();
736
737 if (valid_id_bits)
738 ev = lookup_signaled_event_by_partial_id(p, partial_id,
739 valid_id_bits);
740 if (ev) {
741 set_event_from_interrupt(p, ev);
742 } else if (p->signal_page) {
743 /*
744 * Partial ID lookup failed. Assume that the event ID
745 * in the interrupt payload was invalid and do an
746 * exhaustive search of signaled events.
747 */
748 uint64_t *slots = page_slots(p->signal_page);
749 uint32_t id;
750
751 /*
752 * If id is valid but slot is not signaled, GPU may signal the same event twice
753 * before driver have chance to process the first interrupt, then signal slot is
754 * auto-reset after set_event wakeup the user space, just drop the second event as
755 * the application only need wakeup once.
756 */
757 if ((valid_id_bits > 31 || (1U << valid_id_bits) >= KFD_SIGNAL_EVENT_LIMIT) &&
758 partial_id < KFD_SIGNAL_EVENT_LIMIT && slots[partial_id] == UNSIGNALED_EVENT_SLOT)
759 goto out_unlock;
760
761 if (valid_id_bits)
762 pr_debug_ratelimited("Partial ID invalid: %u (%u valid bits)\n",
763 partial_id, valid_id_bits);
764
765 if (p->signal_event_count < KFD_SIGNAL_EVENT_LIMIT / 64) {
766 /* With relatively few events, it's faster to
767 * iterate over the event IDR
768 */
769 idr_for_each_entry(&p->event_idr, ev, id) {
770 if (id >= KFD_SIGNAL_EVENT_LIMIT)
771 break;
772
773 if (READ_ONCE(slots[id]) != UNSIGNALED_EVENT_SLOT)
774 set_event_from_interrupt(p, ev);
775 }
776 } else {
777 /* With relatively many events, it's faster to
778 * iterate over the signal slots and lookup
779 * only signaled events from the IDR.
780 */
781 for (id = 1; id < KFD_SIGNAL_EVENT_LIMIT; id++)
782 if (READ_ONCE(slots[id]) != UNSIGNALED_EVENT_SLOT) {
783 ev = lookup_event_by_id(p, id);
784 set_event_from_interrupt(p, ev);
785 }
786 }
787 }
788
789 out_unlock:
790 rcu_read_unlock();
791 kfd_unref_process(p);
792 }
793
alloc_event_waiters(uint32_t num_events)794 static struct kfd_event_waiter *alloc_event_waiters(uint32_t num_events)
795 {
796 struct kfd_event_waiter *event_waiters;
797 uint32_t i;
798
799 event_waiters = kcalloc(num_events, sizeof(struct kfd_event_waiter),
800 GFP_KERNEL);
801 if (!event_waiters)
802 return NULL;
803
804 for (i = 0; i < num_events; i++)
805 init_wait(&event_waiters[i].wait);
806
807 return event_waiters;
808 }
809
init_event_waiter(struct kfd_process * p,struct kfd_event_waiter * waiter,struct kfd_event_data * event_data)810 static int init_event_waiter(struct kfd_process *p,
811 struct kfd_event_waiter *waiter,
812 struct kfd_event_data *event_data)
813 {
814 struct kfd_event *ev = lookup_event_by_id(p, event_data->event_id);
815
816 if (!ev)
817 return -EINVAL;
818
819 spin_lock(&ev->lock);
820 waiter->event = ev;
821 waiter->activated = ev->signaled;
822 ev->signaled = ev->signaled && !ev->auto_reset;
823
824 /* last_event_age = 0 reserved for backward compatible */
825 if (waiter->event->type == KFD_EVENT_TYPE_SIGNAL &&
826 event_data->signal_event_data.last_event_age) {
827 waiter->event_age_enabled = true;
828 if (ev->event_age != event_data->signal_event_data.last_event_age)
829 waiter->activated = true;
830 }
831
832 if (!waiter->activated)
833 add_wait_queue(&ev->wq, &waiter->wait);
834 spin_unlock(&ev->lock);
835
836 return 0;
837 }
838
839 /* test_event_condition - Test condition of events being waited for
840 * @all: Return completion only if all events have signaled
841 * @num_events: Number of events to wait for
842 * @event_waiters: Array of event waiters, one per event
843 *
844 * Returns KFD_IOC_WAIT_RESULT_COMPLETE if all (or one) event(s) have
845 * signaled. Returns KFD_IOC_WAIT_RESULT_TIMEOUT if no (or not all)
846 * events have signaled. Returns KFD_IOC_WAIT_RESULT_FAIL if any of
847 * the events have been destroyed.
848 */
test_event_condition(bool all,uint32_t num_events,struct kfd_event_waiter * event_waiters)849 static uint32_t test_event_condition(bool all, uint32_t num_events,
850 struct kfd_event_waiter *event_waiters)
851 {
852 uint32_t i;
853 uint32_t activated_count = 0;
854
855 for (i = 0; i < num_events; i++) {
856 if (!READ_ONCE(event_waiters[i].event))
857 return KFD_IOC_WAIT_RESULT_FAIL;
858
859 if (READ_ONCE(event_waiters[i].activated)) {
860 if (!all)
861 return KFD_IOC_WAIT_RESULT_COMPLETE;
862
863 activated_count++;
864 }
865 }
866
867 return activated_count == num_events ?
868 KFD_IOC_WAIT_RESULT_COMPLETE : KFD_IOC_WAIT_RESULT_TIMEOUT;
869 }
870
871 /*
872 * Copy event specific data, if defined.
873 * Currently only memory exception events have additional data to copy to user
874 */
copy_signaled_event_data(uint32_t num_events,struct kfd_event_waiter * event_waiters,struct kfd_event_data __user * data)875 static int copy_signaled_event_data(uint32_t num_events,
876 struct kfd_event_waiter *event_waiters,
877 struct kfd_event_data __user *data)
878 {
879 void *src;
880 void __user *dst;
881 struct kfd_event_waiter *waiter;
882 struct kfd_event *event;
883 uint32_t i, size = 0;
884
885 for (i = 0; i < num_events; i++) {
886 waiter = &event_waiters[i];
887 event = waiter->event;
888 if (!event)
889 return -EINVAL; /* event was destroyed */
890 if (waiter->activated) {
891 if (event->type == KFD_EVENT_TYPE_MEMORY) {
892 dst = &data[i].memory_exception_data;
893 src = &event->memory_exception_data;
894 size = sizeof(struct kfd_hsa_memory_exception_data);
895 } else if (event->type == KFD_EVENT_TYPE_HW_EXCEPTION) {
896 dst = &data[i].memory_exception_data;
897 src = &event->hw_exception_data;
898 size = sizeof(struct kfd_hsa_hw_exception_data);
899 } else if (event->type == KFD_EVENT_TYPE_SIGNAL &&
900 waiter->event_age_enabled) {
901 dst = &data[i].signal_event_data.last_event_age;
902 src = &event->event_age;
903 size = sizeof(u64);
904 }
905 if (size && copy_to_user(dst, src, size))
906 return -EFAULT;
907 }
908 }
909
910 return 0;
911 }
912
user_timeout_to_jiffies(uint32_t user_timeout_ms)913 static long user_timeout_to_jiffies(uint32_t user_timeout_ms)
914 {
915 if (user_timeout_ms == KFD_EVENT_TIMEOUT_IMMEDIATE)
916 return 0;
917
918 if (user_timeout_ms == KFD_EVENT_TIMEOUT_INFINITE)
919 return MAX_SCHEDULE_TIMEOUT;
920
921 /*
922 * msecs_to_jiffies interprets all values above 2^31-1 as infinite,
923 * but we consider them finite.
924 * This hack is wrong, but nobody is likely to notice.
925 */
926 user_timeout_ms = min_t(uint32_t, user_timeout_ms, 0x7FFFFFFF);
927
928 return msecs_to_jiffies(user_timeout_ms) + 1;
929 }
930
free_waiters(uint32_t num_events,struct kfd_event_waiter * waiters,bool undo_auto_reset)931 static void free_waiters(uint32_t num_events, struct kfd_event_waiter *waiters,
932 bool undo_auto_reset)
933 {
934 uint32_t i;
935
936 for (i = 0; i < num_events; i++)
937 if (waiters[i].event) {
938 spin_lock(&waiters[i].event->lock);
939 remove_wait_queue(&waiters[i].event->wq,
940 &waiters[i].wait);
941 if (undo_auto_reset && waiters[i].activated &&
942 waiters[i].event && waiters[i].event->auto_reset)
943 set_event(waiters[i].event);
944 spin_unlock(&waiters[i].event->lock);
945 }
946
947 kfree(waiters);
948 }
949
kfd_wait_on_events(struct kfd_process * p,uint32_t num_events,void __user * data,bool all,uint32_t * user_timeout_ms,uint32_t * wait_result)950 int kfd_wait_on_events(struct kfd_process *p,
951 uint32_t num_events, void __user *data,
952 bool all, uint32_t *user_timeout_ms,
953 uint32_t *wait_result)
954 {
955 struct kfd_event_data __user *events =
956 (struct kfd_event_data __user *) data;
957 uint32_t i;
958 int ret = 0;
959
960 struct kfd_event_waiter *event_waiters = NULL;
961 long timeout = user_timeout_to_jiffies(*user_timeout_ms);
962
963 event_waiters = alloc_event_waiters(num_events);
964 if (!event_waiters) {
965 ret = -ENOMEM;
966 goto out;
967 }
968
969 /* Use p->event_mutex here to protect against concurrent creation and
970 * destruction of events while we initialize event_waiters.
971 */
972 mutex_lock(&p->event_mutex);
973
974 for (i = 0; i < num_events; i++) {
975 struct kfd_event_data event_data;
976
977 if (copy_from_user(&event_data, &events[i],
978 sizeof(struct kfd_event_data))) {
979 ret = -EFAULT;
980 goto out_unlock;
981 }
982
983 ret = init_event_waiter(p, &event_waiters[i], &event_data);
984 if (ret)
985 goto out_unlock;
986 }
987
988 /* Check condition once. */
989 *wait_result = test_event_condition(all, num_events, event_waiters);
990 if (*wait_result == KFD_IOC_WAIT_RESULT_COMPLETE) {
991 ret = copy_signaled_event_data(num_events,
992 event_waiters, events);
993 goto out_unlock;
994 } else if (WARN_ON(*wait_result == KFD_IOC_WAIT_RESULT_FAIL)) {
995 /* This should not happen. Events shouldn't be
996 * destroyed while we're holding the event_mutex
997 */
998 goto out_unlock;
999 }
1000
1001 mutex_unlock(&p->event_mutex);
1002
1003 while (true) {
1004 if (fatal_signal_pending(current)) {
1005 ret = -EINTR;
1006 break;
1007 }
1008
1009 if (signal_pending(current)) {
1010 ret = -ERESTARTSYS;
1011 if (*user_timeout_ms != KFD_EVENT_TIMEOUT_IMMEDIATE &&
1012 *user_timeout_ms != KFD_EVENT_TIMEOUT_INFINITE)
1013 *user_timeout_ms = jiffies_to_msecs(
1014 max(0l, timeout-1));
1015 break;
1016 }
1017
1018 /* Set task state to interruptible sleep before
1019 * checking wake-up conditions. A concurrent wake-up
1020 * will put the task back into runnable state. In that
1021 * case schedule_timeout will not put the task to
1022 * sleep and we'll get a chance to re-check the
1023 * updated conditions almost immediately. Otherwise,
1024 * this race condition would lead to a soft hang or a
1025 * very long sleep.
1026 */
1027 set_current_state(TASK_INTERRUPTIBLE);
1028
1029 *wait_result = test_event_condition(all, num_events,
1030 event_waiters);
1031 if (*wait_result != KFD_IOC_WAIT_RESULT_TIMEOUT)
1032 break;
1033
1034 if (timeout <= 0)
1035 break;
1036
1037 timeout = schedule_timeout(timeout);
1038 }
1039 __set_current_state(TASK_RUNNING);
1040
1041 mutex_lock(&p->event_mutex);
1042 /* copy_signaled_event_data may sleep. So this has to happen
1043 * after the task state is set back to RUNNING.
1044 *
1045 * The event may also have been destroyed after signaling. So
1046 * copy_signaled_event_data also must confirm that the event
1047 * still exists. Therefore this must be under the p->event_mutex
1048 * which is also held when events are destroyed.
1049 */
1050 if (!ret && *wait_result == KFD_IOC_WAIT_RESULT_COMPLETE)
1051 ret = copy_signaled_event_data(num_events,
1052 event_waiters, events);
1053
1054 out_unlock:
1055 free_waiters(num_events, event_waiters, ret == -ERESTARTSYS);
1056 mutex_unlock(&p->event_mutex);
1057 out:
1058 if (ret)
1059 *wait_result = KFD_IOC_WAIT_RESULT_FAIL;
1060 else if (*wait_result == KFD_IOC_WAIT_RESULT_FAIL)
1061 ret = -EIO;
1062
1063 return ret;
1064 }
1065
kfd_event_mmap(struct kfd_process * p,struct vm_area_struct * vma)1066 int kfd_event_mmap(struct kfd_process *p, struct vm_area_struct *vma)
1067 {
1068 unsigned long pfn;
1069 struct kfd_signal_page *page;
1070 int ret;
1071
1072 /* check required size doesn't exceed the allocated size */
1073 if (get_order(KFD_SIGNAL_EVENT_LIMIT * 8) <
1074 get_order(vma->vm_end - vma->vm_start)) {
1075 pr_err("Event page mmap requested illegal size\n");
1076 return -EINVAL;
1077 }
1078
1079 page = p->signal_page;
1080 if (!page) {
1081 /* Probably KFD bug, but mmap is user-accessible. */
1082 pr_debug("Signal page could not be found\n");
1083 return -EINVAL;
1084 }
1085
1086 pfn = __pa(page->kernel_address);
1087 pfn >>= PAGE_SHIFT;
1088
1089 vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE
1090 | VM_DONTDUMP | VM_PFNMAP);
1091
1092 pr_debug("Mapping signal page\n");
1093 pr_debug(" start user address == 0x%08lx\n", vma->vm_start);
1094 pr_debug(" end user address == 0x%08lx\n", vma->vm_end);
1095 pr_debug(" pfn == 0x%016lX\n", pfn);
1096 pr_debug(" vm_flags == 0x%08lX\n", vma->vm_flags);
1097 pr_debug(" size == 0x%08lX\n",
1098 vma->vm_end - vma->vm_start);
1099
1100 page->user_address = (uint64_t __user *)vma->vm_start;
1101
1102 /* mapping the page to user process */
1103 ret = remap_pfn_range(vma, vma->vm_start, pfn,
1104 vma->vm_end - vma->vm_start, vma->vm_page_prot);
1105 if (!ret)
1106 p->signal_mapped_size = vma->vm_end - vma->vm_start;
1107
1108 return ret;
1109 }
1110
1111 /*
1112 * Assumes that p is not going away.
1113 */
lookup_events_by_type_and_signal(struct kfd_process * p,int type,void * event_data)1114 static void lookup_events_by_type_and_signal(struct kfd_process *p,
1115 int type, void *event_data)
1116 {
1117 struct kfd_hsa_memory_exception_data *ev_data;
1118 struct kfd_event *ev;
1119 uint32_t id;
1120 bool send_signal = true;
1121
1122 ev_data = (struct kfd_hsa_memory_exception_data *) event_data;
1123
1124 rcu_read_lock();
1125
1126 id = KFD_FIRST_NONSIGNAL_EVENT_ID;
1127 idr_for_each_entry_continue(&p->event_idr, ev, id)
1128 if (ev->type == type) {
1129 send_signal = false;
1130 dev_dbg(kfd_device,
1131 "Event found: id %X type %d",
1132 ev->event_id, ev->type);
1133 spin_lock(&ev->lock);
1134 set_event(ev);
1135 if (ev->type == KFD_EVENT_TYPE_MEMORY && ev_data)
1136 ev->memory_exception_data = *ev_data;
1137 spin_unlock(&ev->lock);
1138 }
1139
1140 if (type == KFD_EVENT_TYPE_MEMORY) {
1141 dev_warn(kfd_device,
1142 "Sending SIGSEGV to process %d (pasid 0x%x)",
1143 p->lead_thread->pid, p->pasid);
1144 send_sig(SIGSEGV, p->lead_thread, 0);
1145 }
1146
1147 /* Send SIGTERM no event of type "type" has been found*/
1148 if (send_signal) {
1149 if (send_sigterm) {
1150 dev_warn(kfd_device,
1151 "Sending SIGTERM to process %d (pasid 0x%x)",
1152 p->lead_thread->pid, p->pasid);
1153 send_sig(SIGTERM, p->lead_thread, 0);
1154 } else {
1155 dev_err(kfd_device,
1156 "Process %d (pasid 0x%x) got unhandled exception",
1157 p->lead_thread->pid, p->pasid);
1158 }
1159 }
1160
1161 rcu_read_unlock();
1162 }
1163
kfd_signal_hw_exception_event(u32 pasid)1164 void kfd_signal_hw_exception_event(u32 pasid)
1165 {
1166 /*
1167 * Because we are called from arbitrary context (workqueue) as opposed
1168 * to process context, kfd_process could attempt to exit while we are
1169 * running so the lookup function increments the process ref count.
1170 */
1171 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
1172
1173 if (!p)
1174 return; /* Presumably process exited. */
1175
1176 lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_HW_EXCEPTION, NULL);
1177 kfd_unref_process(p);
1178 }
1179
kfd_signal_vm_fault_event(struct kfd_node * dev,u32 pasid,struct kfd_vm_fault_info * info,struct kfd_hsa_memory_exception_data * data)1180 void kfd_signal_vm_fault_event(struct kfd_node *dev, u32 pasid,
1181 struct kfd_vm_fault_info *info,
1182 struct kfd_hsa_memory_exception_data *data)
1183 {
1184 struct kfd_event *ev;
1185 uint32_t id;
1186 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
1187 struct kfd_hsa_memory_exception_data memory_exception_data;
1188 int user_gpu_id;
1189
1190 if (!p)
1191 return; /* Presumably process exited. */
1192
1193 user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id);
1194 if (unlikely(user_gpu_id == -EINVAL)) {
1195 WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id);
1196 return;
1197 }
1198
1199 /* SoC15 chips and onwards will pass in data from now on. */
1200 if (!data) {
1201 memset(&memory_exception_data, 0, sizeof(memory_exception_data));
1202 memory_exception_data.gpu_id = user_gpu_id;
1203 memory_exception_data.failure.imprecise = true;
1204
1205 /* Set failure reason */
1206 if (info) {
1207 memory_exception_data.va = (info->page_addr) <<
1208 PAGE_SHIFT;
1209 memory_exception_data.failure.NotPresent =
1210 info->prot_valid ? 1 : 0;
1211 memory_exception_data.failure.NoExecute =
1212 info->prot_exec ? 1 : 0;
1213 memory_exception_data.failure.ReadOnly =
1214 info->prot_write ? 1 : 0;
1215 memory_exception_data.failure.imprecise = 0;
1216 }
1217 }
1218
1219 rcu_read_lock();
1220
1221 id = KFD_FIRST_NONSIGNAL_EVENT_ID;
1222 idr_for_each_entry_continue(&p->event_idr, ev, id)
1223 if (ev->type == KFD_EVENT_TYPE_MEMORY) {
1224 spin_lock(&ev->lock);
1225 ev->memory_exception_data = data ? *data :
1226 memory_exception_data;
1227 set_event(ev);
1228 spin_unlock(&ev->lock);
1229 }
1230
1231 rcu_read_unlock();
1232 kfd_unref_process(p);
1233 }
1234
kfd_signal_reset_event(struct kfd_node * dev)1235 void kfd_signal_reset_event(struct kfd_node *dev)
1236 {
1237 struct kfd_hsa_hw_exception_data hw_exception_data;
1238 struct kfd_hsa_memory_exception_data memory_exception_data;
1239 struct kfd_process *p;
1240 struct kfd_event *ev;
1241 unsigned int temp;
1242 uint32_t id, idx;
1243 int reset_cause = atomic_read(&dev->sram_ecc_flag) ?
1244 KFD_HW_EXCEPTION_ECC :
1245 KFD_HW_EXCEPTION_GPU_HANG;
1246
1247 /* Whole gpu reset caused by GPU hang and memory is lost */
1248 memset(&hw_exception_data, 0, sizeof(hw_exception_data));
1249 hw_exception_data.memory_lost = 1;
1250 hw_exception_data.reset_cause = reset_cause;
1251
1252 memset(&memory_exception_data, 0, sizeof(memory_exception_data));
1253 memory_exception_data.ErrorType = KFD_MEM_ERR_SRAM_ECC;
1254 memory_exception_data.failure.imprecise = true;
1255
1256 idx = srcu_read_lock(&kfd_processes_srcu);
1257 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1258 int user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id);
1259 struct kfd_process_device *pdd = kfd_get_process_device_data(dev, p);
1260
1261 if (unlikely(user_gpu_id == -EINVAL)) {
1262 WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id);
1263 continue;
1264 }
1265
1266 if (unlikely(!pdd)) {
1267 WARN_ONCE(1, "Could not get device data from pasid:0x%x\n", p->pasid);
1268 continue;
1269 }
1270
1271 if (dev->dqm->detect_hang_count && !pdd->has_reset_queue)
1272 continue;
1273
1274 if (dev->dqm->detect_hang_count) {
1275 struct amdgpu_task_info *ti;
1276
1277 ti = amdgpu_vm_get_task_info_pasid(dev->adev, p->pasid);
1278 if (ti) {
1279 dev_err(dev->adev->dev,
1280 "Queues reset on process %s tid %d thread %s pid %d\n",
1281 ti->process_name, ti->tgid, ti->task_name, ti->pid);
1282 amdgpu_vm_put_task_info(ti);
1283 }
1284 }
1285
1286 rcu_read_lock();
1287
1288 id = KFD_FIRST_NONSIGNAL_EVENT_ID;
1289 idr_for_each_entry_continue(&p->event_idr, ev, id) {
1290 if (ev->type == KFD_EVENT_TYPE_HW_EXCEPTION) {
1291 spin_lock(&ev->lock);
1292 ev->hw_exception_data = hw_exception_data;
1293 ev->hw_exception_data.gpu_id = user_gpu_id;
1294 set_event(ev);
1295 spin_unlock(&ev->lock);
1296 }
1297 if (ev->type == KFD_EVENT_TYPE_MEMORY &&
1298 reset_cause == KFD_HW_EXCEPTION_ECC) {
1299 spin_lock(&ev->lock);
1300 ev->memory_exception_data = memory_exception_data;
1301 ev->memory_exception_data.gpu_id = user_gpu_id;
1302 set_event(ev);
1303 spin_unlock(&ev->lock);
1304 }
1305 }
1306
1307 rcu_read_unlock();
1308 }
1309 srcu_read_unlock(&kfd_processes_srcu, idx);
1310 }
1311
kfd_signal_poison_consumed_event(struct kfd_node * dev,u32 pasid)1312 void kfd_signal_poison_consumed_event(struct kfd_node *dev, u32 pasid)
1313 {
1314 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
1315 struct kfd_hsa_memory_exception_data memory_exception_data;
1316 struct kfd_hsa_hw_exception_data hw_exception_data;
1317 struct kfd_event *ev;
1318 uint32_t id = KFD_FIRST_NONSIGNAL_EVENT_ID;
1319 int user_gpu_id;
1320
1321 if (!p) {
1322 dev_warn(dev->adev->dev, "Not find process with pasid:%d\n", pasid);
1323 return; /* Presumably process exited. */
1324 }
1325
1326 user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id);
1327 if (unlikely(user_gpu_id == -EINVAL)) {
1328 WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id);
1329 return;
1330 }
1331
1332 memset(&hw_exception_data, 0, sizeof(hw_exception_data));
1333 hw_exception_data.gpu_id = user_gpu_id;
1334 hw_exception_data.memory_lost = 1;
1335 hw_exception_data.reset_cause = KFD_HW_EXCEPTION_ECC;
1336
1337 memset(&memory_exception_data, 0, sizeof(memory_exception_data));
1338 memory_exception_data.ErrorType = KFD_MEM_ERR_POISON_CONSUMED;
1339 memory_exception_data.gpu_id = user_gpu_id;
1340 memory_exception_data.failure.imprecise = true;
1341
1342 rcu_read_lock();
1343
1344 idr_for_each_entry_continue(&p->event_idr, ev, id) {
1345 if (ev->type == KFD_EVENT_TYPE_HW_EXCEPTION) {
1346 spin_lock(&ev->lock);
1347 ev->hw_exception_data = hw_exception_data;
1348 set_event(ev);
1349 spin_unlock(&ev->lock);
1350 }
1351
1352 if (ev->type == KFD_EVENT_TYPE_MEMORY) {
1353 spin_lock(&ev->lock);
1354 ev->memory_exception_data = memory_exception_data;
1355 set_event(ev);
1356 spin_unlock(&ev->lock);
1357 }
1358 }
1359
1360 dev_warn(dev->adev->dev, "Send SIGBUS to process %s(pasid:%d)\n",
1361 p->lead_thread->comm, pasid);
1362 rcu_read_unlock();
1363
1364 /* user application will handle SIGBUS signal */
1365 send_sig(SIGBUS, p->lead_thread, 0);
1366
1367 kfd_unref_process(p);
1368 }
1369