xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_events.c (revision 2c1ed907520c50326b8f604907a8478b27881a2e)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/mm_types.h>
25 #include <linux/slab.h>
26 #include <linux/types.h>
27 #include <linux/sched/signal.h>
28 #include <linux/sched/mm.h>
29 #include <linux/uaccess.h>
30 #include <linux/mman.h>
31 #include <linux/memory.h>
32 #include "kfd_priv.h"
33 #include "kfd_events.h"
34 #include "kfd_device_queue_manager.h"
35 #include <linux/device.h>
36 
37 /*
38  * Wrapper around wait_queue_entry_t
39  */
40 struct kfd_event_waiter {
41 	wait_queue_entry_t wait;
42 	struct kfd_event *event; /* Event to wait for */
43 	bool activated;		 /* Becomes true when event is signaled */
44 	bool event_age_enabled;  /* set to true when last_event_age is non-zero */
45 };
46 
47 /*
48  * Each signal event needs a 64-bit signal slot where the signaler will write
49  * a 1 before sending an interrupt. (This is needed because some interrupts
50  * do not contain enough spare data bits to identify an event.)
51  * We get whole pages and map them to the process VA.
52  * Individual signal events use their event_id as slot index.
53  */
54 struct kfd_signal_page {
55 	uint64_t *kernel_address;
56 	uint64_t __user *user_address;
57 	bool need_to_free_pages;
58 };
59 
page_slots(struct kfd_signal_page * page)60 static uint64_t *page_slots(struct kfd_signal_page *page)
61 {
62 	return page->kernel_address;
63 }
64 
allocate_signal_page(struct kfd_process * p)65 static struct kfd_signal_page *allocate_signal_page(struct kfd_process *p)
66 {
67 	void *backing_store;
68 	struct kfd_signal_page *page;
69 
70 	page = kzalloc(sizeof(*page), GFP_KERNEL);
71 	if (!page)
72 		return NULL;
73 
74 	backing_store = (void *) __get_free_pages(GFP_KERNEL,
75 					get_order(KFD_SIGNAL_EVENT_LIMIT * 8));
76 	if (!backing_store)
77 		goto fail_alloc_signal_store;
78 
79 	/* Initialize all events to unsignaled */
80 	memset(backing_store, (uint8_t) UNSIGNALED_EVENT_SLOT,
81 	       KFD_SIGNAL_EVENT_LIMIT * 8);
82 
83 	page->kernel_address = backing_store;
84 	page->need_to_free_pages = true;
85 	pr_debug("Allocated new event signal page at %p, for process %p\n",
86 			page, p);
87 
88 	return page;
89 
90 fail_alloc_signal_store:
91 	kfree(page);
92 	return NULL;
93 }
94 
allocate_event_notification_slot(struct kfd_process * p,struct kfd_event * ev,const int * restore_id)95 static int allocate_event_notification_slot(struct kfd_process *p,
96 					    struct kfd_event *ev,
97 					    const int *restore_id)
98 {
99 	int id;
100 
101 	if (!p->signal_page) {
102 		p->signal_page = allocate_signal_page(p);
103 		if (!p->signal_page)
104 			return -ENOMEM;
105 		/* Oldest user mode expects 256 event slots */
106 		p->signal_mapped_size = 256*8;
107 	}
108 
109 	if (restore_id) {
110 		id = idr_alloc(&p->event_idr, ev, *restore_id, *restore_id + 1,
111 				GFP_KERNEL);
112 	} else {
113 		/*
114 		 * Compatibility with old user mode: Only use signal slots
115 		 * user mode has mapped, may be less than
116 		 * KFD_SIGNAL_EVENT_LIMIT. This also allows future increase
117 		 * of the event limit without breaking user mode.
118 		 */
119 		id = idr_alloc(&p->event_idr, ev, 0, p->signal_mapped_size / 8,
120 				GFP_KERNEL);
121 	}
122 	if (id < 0)
123 		return id;
124 
125 	ev->event_id = id;
126 	page_slots(p->signal_page)[id] = UNSIGNALED_EVENT_SLOT;
127 
128 	return 0;
129 }
130 
131 /*
132  * Assumes that p->event_mutex or rcu_readlock is held and of course that p is
133  * not going away.
134  */
lookup_event_by_id(struct kfd_process * p,uint32_t id)135 static struct kfd_event *lookup_event_by_id(struct kfd_process *p, uint32_t id)
136 {
137 	return idr_find(&p->event_idr, id);
138 }
139 
140 /**
141  * lookup_signaled_event_by_partial_id - Lookup signaled event from partial ID
142  * @p:     Pointer to struct kfd_process
143  * @id:    ID to look up
144  * @bits:  Number of valid bits in @id
145  *
146  * Finds the first signaled event with a matching partial ID. If no
147  * matching signaled event is found, returns NULL. In that case the
148  * caller should assume that the partial ID is invalid and do an
149  * exhaustive search of all siglaned events.
150  *
151  * If multiple events with the same partial ID signal at the same
152  * time, they will be found one interrupt at a time, not necessarily
153  * in the same order the interrupts occurred. As long as the number of
154  * interrupts is correct, all signaled events will be seen by the
155  * driver.
156  */
lookup_signaled_event_by_partial_id(struct kfd_process * p,uint32_t id,uint32_t bits)157 static struct kfd_event *lookup_signaled_event_by_partial_id(
158 	struct kfd_process *p, uint32_t id, uint32_t bits)
159 {
160 	struct kfd_event *ev;
161 
162 	if (!p->signal_page || id >= KFD_SIGNAL_EVENT_LIMIT)
163 		return NULL;
164 
165 	/* Fast path for the common case that @id is not a partial ID
166 	 * and we only need a single lookup.
167 	 */
168 	if (bits > 31 || (1U << bits) >= KFD_SIGNAL_EVENT_LIMIT) {
169 		if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT)
170 			return NULL;
171 
172 		return idr_find(&p->event_idr, id);
173 	}
174 
175 	/* General case for partial IDs: Iterate over all matching IDs
176 	 * and find the first one that has signaled.
177 	 */
178 	for (ev = NULL; id < KFD_SIGNAL_EVENT_LIMIT && !ev; id += 1U << bits) {
179 		if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT)
180 			continue;
181 
182 		ev = idr_find(&p->event_idr, id);
183 	}
184 
185 	return ev;
186 }
187 
create_signal_event(struct file * devkfd,struct kfd_process * p,struct kfd_event * ev,const int * restore_id)188 static int create_signal_event(struct file *devkfd, struct kfd_process *p,
189 				struct kfd_event *ev, const int *restore_id)
190 {
191 	int ret;
192 
193 	if (p->signal_mapped_size &&
194 	    p->signal_event_count == p->signal_mapped_size / 8) {
195 		if (!p->signal_event_limit_reached) {
196 			pr_debug("Signal event wasn't created because limit was reached\n");
197 			p->signal_event_limit_reached = true;
198 		}
199 		return -ENOSPC;
200 	}
201 
202 	ret = allocate_event_notification_slot(p, ev, restore_id);
203 	if (ret) {
204 		pr_warn("Signal event wasn't created because out of kernel memory\n");
205 		return ret;
206 	}
207 
208 	p->signal_event_count++;
209 
210 	ev->user_signal_address = &p->signal_page->user_address[ev->event_id];
211 	pr_debug("Signal event number %zu created with id %d, address %p\n",
212 			p->signal_event_count, ev->event_id,
213 			ev->user_signal_address);
214 
215 	return 0;
216 }
217 
create_other_event(struct kfd_process * p,struct kfd_event * ev,const int * restore_id)218 static int create_other_event(struct kfd_process *p, struct kfd_event *ev, const int *restore_id)
219 {
220 	int id;
221 
222 	if (restore_id)
223 		id = idr_alloc(&p->event_idr, ev, *restore_id, *restore_id + 1,
224 			GFP_KERNEL);
225 	else
226 		/* Cast KFD_LAST_NONSIGNAL_EVENT to uint32_t. This allows an
227 		 * intentional integer overflow to -1 without a compiler
228 		 * warning. idr_alloc treats a negative value as "maximum
229 		 * signed integer".
230 		 */
231 		id = idr_alloc(&p->event_idr, ev, KFD_FIRST_NONSIGNAL_EVENT_ID,
232 				(uint32_t)KFD_LAST_NONSIGNAL_EVENT_ID + 1,
233 				GFP_KERNEL);
234 
235 	if (id < 0)
236 		return id;
237 	ev->event_id = id;
238 
239 	return 0;
240 }
241 
kfd_event_init_process(struct kfd_process * p)242 int kfd_event_init_process(struct kfd_process *p)
243 {
244 	int id;
245 
246 	mutex_init(&p->event_mutex);
247 	idr_init(&p->event_idr);
248 	p->signal_page = NULL;
249 	p->signal_event_count = 1;
250 	/* Allocate event ID 0. It is used for a fast path to ignore bogus events
251 	 * that are sent by the CP without a context ID
252 	 */
253 	id = idr_alloc(&p->event_idr, NULL, 0, 1, GFP_KERNEL);
254 	if (id < 0) {
255 		idr_destroy(&p->event_idr);
256 		mutex_destroy(&p->event_mutex);
257 		return id;
258 	}
259 	return 0;
260 }
261 
destroy_event(struct kfd_process * p,struct kfd_event * ev)262 static void destroy_event(struct kfd_process *p, struct kfd_event *ev)
263 {
264 	struct kfd_event_waiter *waiter;
265 
266 	/* Wake up pending waiters. They will return failure */
267 	spin_lock(&ev->lock);
268 	list_for_each_entry(waiter, &ev->wq.head, wait.entry)
269 		WRITE_ONCE(waiter->event, NULL);
270 	wake_up_all(&ev->wq);
271 	spin_unlock(&ev->lock);
272 
273 	if (ev->type == KFD_EVENT_TYPE_SIGNAL ||
274 	    ev->type == KFD_EVENT_TYPE_DEBUG)
275 		p->signal_event_count--;
276 
277 	idr_remove(&p->event_idr, ev->event_id);
278 	kfree_rcu(ev, rcu);
279 }
280 
destroy_events(struct kfd_process * p)281 static void destroy_events(struct kfd_process *p)
282 {
283 	struct kfd_event *ev;
284 	uint32_t id;
285 
286 	idr_for_each_entry(&p->event_idr, ev, id)
287 		if (ev)
288 			destroy_event(p, ev);
289 	idr_destroy(&p->event_idr);
290 	mutex_destroy(&p->event_mutex);
291 }
292 
293 /*
294  * We assume that the process is being destroyed and there is no need to
295  * unmap the pages or keep bookkeeping data in order.
296  */
shutdown_signal_page(struct kfd_process * p)297 static void shutdown_signal_page(struct kfd_process *p)
298 {
299 	struct kfd_signal_page *page = p->signal_page;
300 
301 	if (page) {
302 		if (page->need_to_free_pages)
303 			free_pages((unsigned long)page->kernel_address,
304 				   get_order(KFD_SIGNAL_EVENT_LIMIT * 8));
305 		kfree(page);
306 	}
307 }
308 
kfd_event_free_process(struct kfd_process * p)309 void kfd_event_free_process(struct kfd_process *p)
310 {
311 	destroy_events(p);
312 	shutdown_signal_page(p);
313 }
314 
event_can_be_gpu_signaled(const struct kfd_event * ev)315 static bool event_can_be_gpu_signaled(const struct kfd_event *ev)
316 {
317 	return ev->type == KFD_EVENT_TYPE_SIGNAL ||
318 					ev->type == KFD_EVENT_TYPE_DEBUG;
319 }
320 
event_can_be_cpu_signaled(const struct kfd_event * ev)321 static bool event_can_be_cpu_signaled(const struct kfd_event *ev)
322 {
323 	return ev->type == KFD_EVENT_TYPE_SIGNAL;
324 }
325 
kfd_event_page_set(struct kfd_process * p,void * kernel_address,uint64_t size,uint64_t user_handle)326 static int kfd_event_page_set(struct kfd_process *p, void *kernel_address,
327 		       uint64_t size, uint64_t user_handle)
328 {
329 	struct kfd_signal_page *page;
330 
331 	if (p->signal_page)
332 		return -EBUSY;
333 
334 	page = kzalloc(sizeof(*page), GFP_KERNEL);
335 	if (!page)
336 		return -ENOMEM;
337 
338 	/* Initialize all events to unsignaled */
339 	memset(kernel_address, (uint8_t) UNSIGNALED_EVENT_SLOT,
340 	       KFD_SIGNAL_EVENT_LIMIT * 8);
341 
342 	page->kernel_address = kernel_address;
343 
344 	p->signal_page = page;
345 	p->signal_mapped_size = size;
346 	p->signal_handle = user_handle;
347 	return 0;
348 }
349 
kfd_kmap_event_page(struct kfd_process * p,uint64_t event_page_offset)350 int kfd_kmap_event_page(struct kfd_process *p, uint64_t event_page_offset)
351 {
352 	struct kfd_node *kfd;
353 	struct kfd_process_device *pdd;
354 	void *mem, *kern_addr;
355 	uint64_t size;
356 	int err = 0;
357 
358 	if (p->signal_page) {
359 		pr_err("Event page is already set\n");
360 		return -EINVAL;
361 	}
362 
363 	pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(event_page_offset));
364 	if (!pdd) {
365 		pr_err("Getting device by id failed in %s\n", __func__);
366 		return -EINVAL;
367 	}
368 	kfd = pdd->dev;
369 
370 	pdd = kfd_bind_process_to_device(kfd, p);
371 	if (IS_ERR(pdd))
372 		return PTR_ERR(pdd);
373 
374 	mem = kfd_process_device_translate_handle(pdd,
375 			GET_IDR_HANDLE(event_page_offset));
376 	if (!mem) {
377 		pr_err("Can't find BO, offset is 0x%llx\n", event_page_offset);
378 		return -EINVAL;
379 	}
380 
381 	err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(mem, &kern_addr, &size);
382 	if (err) {
383 		pr_err("Failed to map event page to kernel\n");
384 		return err;
385 	}
386 
387 	err = kfd_event_page_set(p, kern_addr, size, event_page_offset);
388 	if (err) {
389 		pr_err("Failed to set event page\n");
390 		amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
391 		return err;
392 	}
393 	return err;
394 }
395 
kfd_event_create(struct file * devkfd,struct kfd_process * p,uint32_t event_type,bool auto_reset,uint32_t node_id,uint32_t * event_id,uint32_t * event_trigger_data,uint64_t * event_page_offset,uint32_t * event_slot_index)396 int kfd_event_create(struct file *devkfd, struct kfd_process *p,
397 		     uint32_t event_type, bool auto_reset, uint32_t node_id,
398 		     uint32_t *event_id, uint32_t *event_trigger_data,
399 		     uint64_t *event_page_offset, uint32_t *event_slot_index)
400 {
401 	int ret = 0;
402 	struct kfd_event *ev = kzalloc(sizeof(*ev), GFP_KERNEL);
403 
404 	if (!ev)
405 		return -ENOMEM;
406 
407 	ev->type = event_type;
408 	ev->auto_reset = auto_reset;
409 	ev->signaled = false;
410 
411 	spin_lock_init(&ev->lock);
412 	init_waitqueue_head(&ev->wq);
413 
414 	*event_page_offset = 0;
415 
416 	mutex_lock(&p->event_mutex);
417 
418 	switch (event_type) {
419 	case KFD_EVENT_TYPE_SIGNAL:
420 	case KFD_EVENT_TYPE_DEBUG:
421 		ret = create_signal_event(devkfd, p, ev, NULL);
422 		if (!ret) {
423 			*event_page_offset = KFD_MMAP_TYPE_EVENTS;
424 			*event_slot_index = ev->event_id;
425 		}
426 		break;
427 	default:
428 		ret = create_other_event(p, ev, NULL);
429 		break;
430 	}
431 
432 	if (!ret) {
433 		*event_id = ev->event_id;
434 		*event_trigger_data = ev->event_id;
435 		ev->event_age = 1;
436 	} else {
437 		kfree(ev);
438 	}
439 
440 	mutex_unlock(&p->event_mutex);
441 
442 	return ret;
443 }
444 
kfd_criu_restore_event(struct file * devkfd,struct kfd_process * p,uint8_t __user * user_priv_ptr,uint64_t * priv_data_offset,uint64_t max_priv_data_size)445 int kfd_criu_restore_event(struct file *devkfd,
446 			   struct kfd_process *p,
447 			   uint8_t __user *user_priv_ptr,
448 			   uint64_t *priv_data_offset,
449 			   uint64_t max_priv_data_size)
450 {
451 	struct kfd_criu_event_priv_data *ev_priv;
452 	struct kfd_event *ev = NULL;
453 	int ret = 0;
454 
455 	ev_priv = kmalloc(sizeof(*ev_priv), GFP_KERNEL);
456 	if (!ev_priv)
457 		return -ENOMEM;
458 
459 	ev = kzalloc(sizeof(*ev), GFP_KERNEL);
460 	if (!ev) {
461 		ret = -ENOMEM;
462 		goto exit;
463 	}
464 
465 	if (*priv_data_offset + sizeof(*ev_priv) > max_priv_data_size) {
466 		ret = -EINVAL;
467 		goto exit;
468 	}
469 
470 	ret = copy_from_user(ev_priv, user_priv_ptr + *priv_data_offset, sizeof(*ev_priv));
471 	if (ret) {
472 		ret = -EFAULT;
473 		goto exit;
474 	}
475 	*priv_data_offset += sizeof(*ev_priv);
476 
477 	if (ev_priv->user_handle) {
478 		ret = kfd_kmap_event_page(p, ev_priv->user_handle);
479 		if (ret)
480 			goto exit;
481 	}
482 
483 	ev->type = ev_priv->type;
484 	ev->auto_reset = ev_priv->auto_reset;
485 	ev->signaled = ev_priv->signaled;
486 
487 	spin_lock_init(&ev->lock);
488 	init_waitqueue_head(&ev->wq);
489 
490 	mutex_lock(&p->event_mutex);
491 	switch (ev->type) {
492 	case KFD_EVENT_TYPE_SIGNAL:
493 	case KFD_EVENT_TYPE_DEBUG:
494 		ret = create_signal_event(devkfd, p, ev, &ev_priv->event_id);
495 		break;
496 	case KFD_EVENT_TYPE_MEMORY:
497 		memcpy(&ev->memory_exception_data,
498 			&ev_priv->memory_exception_data,
499 			sizeof(struct kfd_hsa_memory_exception_data));
500 
501 		ret = create_other_event(p, ev, &ev_priv->event_id);
502 		break;
503 	case KFD_EVENT_TYPE_HW_EXCEPTION:
504 		memcpy(&ev->hw_exception_data,
505 			&ev_priv->hw_exception_data,
506 			sizeof(struct kfd_hsa_hw_exception_data));
507 
508 		ret = create_other_event(p, ev, &ev_priv->event_id);
509 		break;
510 	}
511 	mutex_unlock(&p->event_mutex);
512 
513 exit:
514 	if (ret)
515 		kfree(ev);
516 
517 	kfree(ev_priv);
518 
519 	return ret;
520 }
521 
kfd_criu_checkpoint_events(struct kfd_process * p,uint8_t __user * user_priv_data,uint64_t * priv_data_offset)522 int kfd_criu_checkpoint_events(struct kfd_process *p,
523 			 uint8_t __user *user_priv_data,
524 			 uint64_t *priv_data_offset)
525 {
526 	struct kfd_criu_event_priv_data *ev_privs;
527 	int i = 0;
528 	int ret =  0;
529 	struct kfd_event *ev;
530 	uint32_t ev_id;
531 
532 	uint32_t num_events = kfd_get_num_events(p);
533 
534 	if (!num_events)
535 		return 0;
536 
537 	ev_privs = kvzalloc(num_events * sizeof(*ev_privs), GFP_KERNEL);
538 	if (!ev_privs)
539 		return -ENOMEM;
540 
541 
542 	idr_for_each_entry(&p->event_idr, ev, ev_id) {
543 		struct kfd_criu_event_priv_data *ev_priv;
544 
545 		/*
546 		 * Currently, all events have same size of private_data, but the current ioctl's
547 		 * and CRIU plugin supports private_data of variable sizes
548 		 */
549 		ev_priv = &ev_privs[i];
550 
551 		ev_priv->object_type = KFD_CRIU_OBJECT_TYPE_EVENT;
552 
553 		/* We store the user_handle with the first event */
554 		if (i == 0 && p->signal_page)
555 			ev_priv->user_handle = p->signal_handle;
556 
557 		ev_priv->event_id = ev->event_id;
558 		ev_priv->auto_reset = ev->auto_reset;
559 		ev_priv->type = ev->type;
560 		ev_priv->signaled = ev->signaled;
561 
562 		if (ev_priv->type == KFD_EVENT_TYPE_MEMORY)
563 			memcpy(&ev_priv->memory_exception_data,
564 				&ev->memory_exception_data,
565 				sizeof(struct kfd_hsa_memory_exception_data));
566 		else if (ev_priv->type == KFD_EVENT_TYPE_HW_EXCEPTION)
567 			memcpy(&ev_priv->hw_exception_data,
568 				&ev->hw_exception_data,
569 				sizeof(struct kfd_hsa_hw_exception_data));
570 
571 		pr_debug("Checkpointed event[%d] id = 0x%08x auto_reset = %x type = %x signaled = %x\n",
572 			  i,
573 			  ev_priv->event_id,
574 			  ev_priv->auto_reset,
575 			  ev_priv->type,
576 			  ev_priv->signaled);
577 		i++;
578 	}
579 
580 	ret = copy_to_user(user_priv_data + *priv_data_offset,
581 			   ev_privs, num_events * sizeof(*ev_privs));
582 	if (ret) {
583 		pr_err("Failed to copy events priv to user\n");
584 		ret = -EFAULT;
585 	}
586 
587 	*priv_data_offset += num_events * sizeof(*ev_privs);
588 
589 	kvfree(ev_privs);
590 	return ret;
591 }
592 
kfd_get_num_events(struct kfd_process * p)593 int kfd_get_num_events(struct kfd_process *p)
594 {
595 	struct kfd_event *ev;
596 	uint32_t id;
597 	u32 num_events = 0;
598 
599 	idr_for_each_entry(&p->event_idr, ev, id)
600 		num_events++;
601 
602 	return num_events;
603 }
604 
605 /* Assumes that p is current. */
kfd_event_destroy(struct kfd_process * p,uint32_t event_id)606 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id)
607 {
608 	struct kfd_event *ev;
609 	int ret = 0;
610 
611 	mutex_lock(&p->event_mutex);
612 
613 	ev = lookup_event_by_id(p, event_id);
614 
615 	if (ev)
616 		destroy_event(p, ev);
617 	else
618 		ret = -EINVAL;
619 
620 	mutex_unlock(&p->event_mutex);
621 	return ret;
622 }
623 
set_event(struct kfd_event * ev)624 static void set_event(struct kfd_event *ev)
625 {
626 	struct kfd_event_waiter *waiter;
627 
628 	/* Auto reset if the list is non-empty and we're waking
629 	 * someone. waitqueue_active is safe here because we're
630 	 * protected by the ev->lock, which is also held when
631 	 * updating the wait queues in kfd_wait_on_events.
632 	 */
633 	ev->signaled = !ev->auto_reset || !waitqueue_active(&ev->wq);
634 	if (!(++ev->event_age)) {
635 		/* Never wrap back to reserved/default event age 0/1 */
636 		ev->event_age = 2;
637 		WARN_ONCE(1, "event_age wrap back!");
638 	}
639 
640 	list_for_each_entry(waiter, &ev->wq.head, wait.entry)
641 		WRITE_ONCE(waiter->activated, true);
642 
643 	wake_up_all(&ev->wq);
644 }
645 
646 /* Assumes that p is current. */
kfd_set_event(struct kfd_process * p,uint32_t event_id)647 int kfd_set_event(struct kfd_process *p, uint32_t event_id)
648 {
649 	int ret = 0;
650 	struct kfd_event *ev;
651 
652 	rcu_read_lock();
653 
654 	ev = lookup_event_by_id(p, event_id);
655 	if (!ev) {
656 		ret = -EINVAL;
657 		goto unlock_rcu;
658 	}
659 	spin_lock(&ev->lock);
660 
661 	if (event_can_be_cpu_signaled(ev))
662 		set_event(ev);
663 	else
664 		ret = -EINVAL;
665 
666 	spin_unlock(&ev->lock);
667 unlock_rcu:
668 	rcu_read_unlock();
669 	return ret;
670 }
671 
reset_event(struct kfd_event * ev)672 static void reset_event(struct kfd_event *ev)
673 {
674 	ev->signaled = false;
675 }
676 
677 /* Assumes that p is current. */
kfd_reset_event(struct kfd_process * p,uint32_t event_id)678 int kfd_reset_event(struct kfd_process *p, uint32_t event_id)
679 {
680 	int ret = 0;
681 	struct kfd_event *ev;
682 
683 	rcu_read_lock();
684 
685 	ev = lookup_event_by_id(p, event_id);
686 	if (!ev) {
687 		ret = -EINVAL;
688 		goto unlock_rcu;
689 	}
690 	spin_lock(&ev->lock);
691 
692 	if (event_can_be_cpu_signaled(ev))
693 		reset_event(ev);
694 	else
695 		ret = -EINVAL;
696 
697 	spin_unlock(&ev->lock);
698 unlock_rcu:
699 	rcu_read_unlock();
700 	return ret;
701 
702 }
703 
acknowledge_signal(struct kfd_process * p,struct kfd_event * ev)704 static void acknowledge_signal(struct kfd_process *p, struct kfd_event *ev)
705 {
706 	WRITE_ONCE(page_slots(p->signal_page)[ev->event_id], UNSIGNALED_EVENT_SLOT);
707 }
708 
set_event_from_interrupt(struct kfd_process * p,struct kfd_event * ev)709 static void set_event_from_interrupt(struct kfd_process *p,
710 					struct kfd_event *ev)
711 {
712 	if (ev && event_can_be_gpu_signaled(ev)) {
713 		acknowledge_signal(p, ev);
714 		spin_lock(&ev->lock);
715 		set_event(ev);
716 		spin_unlock(&ev->lock);
717 	}
718 }
719 
kfd_signal_event_interrupt(u32 pasid,uint32_t partial_id,uint32_t valid_id_bits)720 void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id,
721 				uint32_t valid_id_bits)
722 {
723 	struct kfd_event *ev = NULL;
724 
725 	/*
726 	 * Because we are called from arbitrary context (workqueue) as opposed
727 	 * to process context, kfd_process could attempt to exit while we are
728 	 * running so the lookup function increments the process ref count.
729 	 */
730 	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
731 
732 	if (!p)
733 		return; /* Presumably process exited. */
734 
735 	rcu_read_lock();
736 
737 	if (valid_id_bits)
738 		ev = lookup_signaled_event_by_partial_id(p, partial_id,
739 							 valid_id_bits);
740 	if (ev) {
741 		set_event_from_interrupt(p, ev);
742 	} else if (p->signal_page) {
743 		/*
744 		 * Partial ID lookup failed. Assume that the event ID
745 		 * in the interrupt payload was invalid and do an
746 		 * exhaustive search of signaled events.
747 		 */
748 		uint64_t *slots = page_slots(p->signal_page);
749 		uint32_t id;
750 
751 		/*
752 		 * If id is valid but slot is not signaled, GPU may signal the same event twice
753 		 * before driver have chance to process the first interrupt, then signal slot is
754 		 * auto-reset after set_event wakeup the user space, just drop the second event as
755 		 * the application only need wakeup once.
756 		 */
757 		if ((valid_id_bits > 31 || (1U << valid_id_bits) >= KFD_SIGNAL_EVENT_LIMIT) &&
758 		    partial_id < KFD_SIGNAL_EVENT_LIMIT && slots[partial_id] == UNSIGNALED_EVENT_SLOT)
759 			goto out_unlock;
760 
761 		if (valid_id_bits)
762 			pr_debug_ratelimited("Partial ID invalid: %u (%u valid bits)\n",
763 					     partial_id, valid_id_bits);
764 
765 		if (p->signal_event_count < KFD_SIGNAL_EVENT_LIMIT / 64) {
766 			/* With relatively few events, it's faster to
767 			 * iterate over the event IDR
768 			 */
769 			idr_for_each_entry(&p->event_idr, ev, id) {
770 				if (id >= KFD_SIGNAL_EVENT_LIMIT)
771 					break;
772 
773 				if (READ_ONCE(slots[id]) != UNSIGNALED_EVENT_SLOT)
774 					set_event_from_interrupt(p, ev);
775 			}
776 		} else {
777 			/* With relatively many events, it's faster to
778 			 * iterate over the signal slots and lookup
779 			 * only signaled events from the IDR.
780 			 */
781 			for (id = 1; id < KFD_SIGNAL_EVENT_LIMIT; id++)
782 				if (READ_ONCE(slots[id]) != UNSIGNALED_EVENT_SLOT) {
783 					ev = lookup_event_by_id(p, id);
784 					set_event_from_interrupt(p, ev);
785 				}
786 		}
787 	}
788 
789 out_unlock:
790 	rcu_read_unlock();
791 	kfd_unref_process(p);
792 }
793 
alloc_event_waiters(uint32_t num_events)794 static struct kfd_event_waiter *alloc_event_waiters(uint32_t num_events)
795 {
796 	struct kfd_event_waiter *event_waiters;
797 	uint32_t i;
798 
799 	event_waiters = kcalloc(num_events, sizeof(struct kfd_event_waiter),
800 				GFP_KERNEL);
801 	if (!event_waiters)
802 		return NULL;
803 
804 	for (i = 0; i < num_events; i++)
805 		init_wait(&event_waiters[i].wait);
806 
807 	return event_waiters;
808 }
809 
init_event_waiter(struct kfd_process * p,struct kfd_event_waiter * waiter,struct kfd_event_data * event_data)810 static int init_event_waiter(struct kfd_process *p,
811 		struct kfd_event_waiter *waiter,
812 		struct kfd_event_data *event_data)
813 {
814 	struct kfd_event *ev = lookup_event_by_id(p, event_data->event_id);
815 
816 	if (!ev)
817 		return -EINVAL;
818 
819 	spin_lock(&ev->lock);
820 	waiter->event = ev;
821 	waiter->activated = ev->signaled;
822 	ev->signaled = ev->signaled && !ev->auto_reset;
823 
824 	/* last_event_age = 0 reserved for backward compatible */
825 	if (waiter->event->type == KFD_EVENT_TYPE_SIGNAL &&
826 		event_data->signal_event_data.last_event_age) {
827 		waiter->event_age_enabled = true;
828 		if (ev->event_age != event_data->signal_event_data.last_event_age)
829 			waiter->activated = true;
830 	}
831 
832 	if (!waiter->activated)
833 		add_wait_queue(&ev->wq, &waiter->wait);
834 	spin_unlock(&ev->lock);
835 
836 	return 0;
837 }
838 
839 /* test_event_condition - Test condition of events being waited for
840  * @all:           Return completion only if all events have signaled
841  * @num_events:    Number of events to wait for
842  * @event_waiters: Array of event waiters, one per event
843  *
844  * Returns KFD_IOC_WAIT_RESULT_COMPLETE if all (or one) event(s) have
845  * signaled. Returns KFD_IOC_WAIT_RESULT_TIMEOUT if no (or not all)
846  * events have signaled. Returns KFD_IOC_WAIT_RESULT_FAIL if any of
847  * the events have been destroyed.
848  */
test_event_condition(bool all,uint32_t num_events,struct kfd_event_waiter * event_waiters)849 static uint32_t test_event_condition(bool all, uint32_t num_events,
850 				struct kfd_event_waiter *event_waiters)
851 {
852 	uint32_t i;
853 	uint32_t activated_count = 0;
854 
855 	for (i = 0; i < num_events; i++) {
856 		if (!READ_ONCE(event_waiters[i].event))
857 			return KFD_IOC_WAIT_RESULT_FAIL;
858 
859 		if (READ_ONCE(event_waiters[i].activated)) {
860 			if (!all)
861 				return KFD_IOC_WAIT_RESULT_COMPLETE;
862 
863 			activated_count++;
864 		}
865 	}
866 
867 	return activated_count == num_events ?
868 		KFD_IOC_WAIT_RESULT_COMPLETE : KFD_IOC_WAIT_RESULT_TIMEOUT;
869 }
870 
871 /*
872  * Copy event specific data, if defined.
873  * Currently only memory exception events have additional data to copy to user
874  */
copy_signaled_event_data(uint32_t num_events,struct kfd_event_waiter * event_waiters,struct kfd_event_data __user * data)875 static int copy_signaled_event_data(uint32_t num_events,
876 		struct kfd_event_waiter *event_waiters,
877 		struct kfd_event_data __user *data)
878 {
879 	void *src;
880 	void __user *dst;
881 	struct kfd_event_waiter *waiter;
882 	struct kfd_event *event;
883 	uint32_t i, size = 0;
884 
885 	for (i = 0; i < num_events; i++) {
886 		waiter = &event_waiters[i];
887 		event = waiter->event;
888 		if (!event)
889 			return -EINVAL; /* event was destroyed */
890 		if (waiter->activated) {
891 			if (event->type == KFD_EVENT_TYPE_MEMORY) {
892 				dst = &data[i].memory_exception_data;
893 				src = &event->memory_exception_data;
894 				size = sizeof(struct kfd_hsa_memory_exception_data);
895 			} else if (event->type == KFD_EVENT_TYPE_HW_EXCEPTION) {
896 				dst = &data[i].memory_exception_data;
897 				src = &event->hw_exception_data;
898 				size = sizeof(struct kfd_hsa_hw_exception_data);
899 			} else if (event->type == KFD_EVENT_TYPE_SIGNAL &&
900 				waiter->event_age_enabled) {
901 				dst = &data[i].signal_event_data.last_event_age;
902 				src = &event->event_age;
903 				size = sizeof(u64);
904 			}
905 			if (size && copy_to_user(dst, src, size))
906 				return -EFAULT;
907 		}
908 	}
909 
910 	return 0;
911 }
912 
user_timeout_to_jiffies(uint32_t user_timeout_ms)913 static long user_timeout_to_jiffies(uint32_t user_timeout_ms)
914 {
915 	if (user_timeout_ms == KFD_EVENT_TIMEOUT_IMMEDIATE)
916 		return 0;
917 
918 	if (user_timeout_ms == KFD_EVENT_TIMEOUT_INFINITE)
919 		return MAX_SCHEDULE_TIMEOUT;
920 
921 	/*
922 	 * msecs_to_jiffies interprets all values above 2^31-1 as infinite,
923 	 * but we consider them finite.
924 	 * This hack is wrong, but nobody is likely to notice.
925 	 */
926 	user_timeout_ms = min_t(uint32_t, user_timeout_ms, 0x7FFFFFFF);
927 
928 	return msecs_to_jiffies(user_timeout_ms) + 1;
929 }
930 
free_waiters(uint32_t num_events,struct kfd_event_waiter * waiters,bool undo_auto_reset)931 static void free_waiters(uint32_t num_events, struct kfd_event_waiter *waiters,
932 			 bool undo_auto_reset)
933 {
934 	uint32_t i;
935 
936 	for (i = 0; i < num_events; i++)
937 		if (waiters[i].event) {
938 			spin_lock(&waiters[i].event->lock);
939 			remove_wait_queue(&waiters[i].event->wq,
940 					  &waiters[i].wait);
941 			if (undo_auto_reset && waiters[i].activated &&
942 			    waiters[i].event && waiters[i].event->auto_reset)
943 				set_event(waiters[i].event);
944 			spin_unlock(&waiters[i].event->lock);
945 		}
946 
947 	kfree(waiters);
948 }
949 
kfd_wait_on_events(struct kfd_process * p,uint32_t num_events,void __user * data,bool all,uint32_t * user_timeout_ms,uint32_t * wait_result)950 int kfd_wait_on_events(struct kfd_process *p,
951 		       uint32_t num_events, void __user *data,
952 		       bool all, uint32_t *user_timeout_ms,
953 		       uint32_t *wait_result)
954 {
955 	struct kfd_event_data __user *events =
956 			(struct kfd_event_data __user *) data;
957 	uint32_t i;
958 	int ret = 0;
959 
960 	struct kfd_event_waiter *event_waiters = NULL;
961 	long timeout = user_timeout_to_jiffies(*user_timeout_ms);
962 
963 	event_waiters = alloc_event_waiters(num_events);
964 	if (!event_waiters) {
965 		ret = -ENOMEM;
966 		goto out;
967 	}
968 
969 	/* Use p->event_mutex here to protect against concurrent creation and
970 	 * destruction of events while we initialize event_waiters.
971 	 */
972 	mutex_lock(&p->event_mutex);
973 
974 	for (i = 0; i < num_events; i++) {
975 		struct kfd_event_data event_data;
976 
977 		if (copy_from_user(&event_data, &events[i],
978 				sizeof(struct kfd_event_data))) {
979 			ret = -EFAULT;
980 			goto out_unlock;
981 		}
982 
983 		ret = init_event_waiter(p, &event_waiters[i], &event_data);
984 		if (ret)
985 			goto out_unlock;
986 	}
987 
988 	/* Check condition once. */
989 	*wait_result = test_event_condition(all, num_events, event_waiters);
990 	if (*wait_result == KFD_IOC_WAIT_RESULT_COMPLETE) {
991 		ret = copy_signaled_event_data(num_events,
992 					       event_waiters, events);
993 		goto out_unlock;
994 	} else if (WARN_ON(*wait_result == KFD_IOC_WAIT_RESULT_FAIL)) {
995 		/* This should not happen. Events shouldn't be
996 		 * destroyed while we're holding the event_mutex
997 		 */
998 		goto out_unlock;
999 	}
1000 
1001 	mutex_unlock(&p->event_mutex);
1002 
1003 	while (true) {
1004 		if (fatal_signal_pending(current)) {
1005 			ret = -EINTR;
1006 			break;
1007 		}
1008 
1009 		if (signal_pending(current)) {
1010 			ret = -ERESTARTSYS;
1011 			if (*user_timeout_ms != KFD_EVENT_TIMEOUT_IMMEDIATE &&
1012 			    *user_timeout_ms != KFD_EVENT_TIMEOUT_INFINITE)
1013 				*user_timeout_ms = jiffies_to_msecs(
1014 					max(0l, timeout-1));
1015 			break;
1016 		}
1017 
1018 		/* Set task state to interruptible sleep before
1019 		 * checking wake-up conditions. A concurrent wake-up
1020 		 * will put the task back into runnable state. In that
1021 		 * case schedule_timeout will not put the task to
1022 		 * sleep and we'll get a chance to re-check the
1023 		 * updated conditions almost immediately. Otherwise,
1024 		 * this race condition would lead to a soft hang or a
1025 		 * very long sleep.
1026 		 */
1027 		set_current_state(TASK_INTERRUPTIBLE);
1028 
1029 		*wait_result = test_event_condition(all, num_events,
1030 						    event_waiters);
1031 		if (*wait_result != KFD_IOC_WAIT_RESULT_TIMEOUT)
1032 			break;
1033 
1034 		if (timeout <= 0)
1035 			break;
1036 
1037 		timeout = schedule_timeout(timeout);
1038 	}
1039 	__set_current_state(TASK_RUNNING);
1040 
1041 	mutex_lock(&p->event_mutex);
1042 	/* copy_signaled_event_data may sleep. So this has to happen
1043 	 * after the task state is set back to RUNNING.
1044 	 *
1045 	 * The event may also have been destroyed after signaling. So
1046 	 * copy_signaled_event_data also must confirm that the event
1047 	 * still exists. Therefore this must be under the p->event_mutex
1048 	 * which is also held when events are destroyed.
1049 	 */
1050 	if (!ret && *wait_result == KFD_IOC_WAIT_RESULT_COMPLETE)
1051 		ret = copy_signaled_event_data(num_events,
1052 					       event_waiters, events);
1053 
1054 out_unlock:
1055 	free_waiters(num_events, event_waiters, ret == -ERESTARTSYS);
1056 	mutex_unlock(&p->event_mutex);
1057 out:
1058 	if (ret)
1059 		*wait_result = KFD_IOC_WAIT_RESULT_FAIL;
1060 	else if (*wait_result == KFD_IOC_WAIT_RESULT_FAIL)
1061 		ret = -EIO;
1062 
1063 	return ret;
1064 }
1065 
kfd_event_mmap(struct kfd_process * p,struct vm_area_struct * vma)1066 int kfd_event_mmap(struct kfd_process *p, struct vm_area_struct *vma)
1067 {
1068 	unsigned long pfn;
1069 	struct kfd_signal_page *page;
1070 	int ret;
1071 
1072 	/* check required size doesn't exceed the allocated size */
1073 	if (get_order(KFD_SIGNAL_EVENT_LIMIT * 8) <
1074 			get_order(vma->vm_end - vma->vm_start)) {
1075 		pr_err("Event page mmap requested illegal size\n");
1076 		return -EINVAL;
1077 	}
1078 
1079 	page = p->signal_page;
1080 	if (!page) {
1081 		/* Probably KFD bug, but mmap is user-accessible. */
1082 		pr_debug("Signal page could not be found\n");
1083 		return -EINVAL;
1084 	}
1085 
1086 	pfn = __pa(page->kernel_address);
1087 	pfn >>= PAGE_SHIFT;
1088 
1089 	vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE
1090 		       | VM_DONTDUMP | VM_PFNMAP);
1091 
1092 	pr_debug("Mapping signal page\n");
1093 	pr_debug("     start user address  == 0x%08lx\n", vma->vm_start);
1094 	pr_debug("     end user address    == 0x%08lx\n", vma->vm_end);
1095 	pr_debug("     pfn                 == 0x%016lX\n", pfn);
1096 	pr_debug("     vm_flags            == 0x%08lX\n", vma->vm_flags);
1097 	pr_debug("     size                == 0x%08lX\n",
1098 			vma->vm_end - vma->vm_start);
1099 
1100 	page->user_address = (uint64_t __user *)vma->vm_start;
1101 
1102 	/* mapping the page to user process */
1103 	ret = remap_pfn_range(vma, vma->vm_start, pfn,
1104 			vma->vm_end - vma->vm_start, vma->vm_page_prot);
1105 	if (!ret)
1106 		p->signal_mapped_size = vma->vm_end - vma->vm_start;
1107 
1108 	return ret;
1109 }
1110 
1111 /*
1112  * Assumes that p is not going away.
1113  */
lookup_events_by_type_and_signal(struct kfd_process * p,int type,void * event_data)1114 static void lookup_events_by_type_and_signal(struct kfd_process *p,
1115 		int type, void *event_data)
1116 {
1117 	struct kfd_hsa_memory_exception_data *ev_data;
1118 	struct kfd_event *ev;
1119 	uint32_t id;
1120 	bool send_signal = true;
1121 
1122 	ev_data = (struct kfd_hsa_memory_exception_data *) event_data;
1123 
1124 	rcu_read_lock();
1125 
1126 	id = KFD_FIRST_NONSIGNAL_EVENT_ID;
1127 	idr_for_each_entry_continue(&p->event_idr, ev, id)
1128 		if (ev->type == type) {
1129 			send_signal = false;
1130 			dev_dbg(kfd_device,
1131 					"Event found: id %X type %d",
1132 					ev->event_id, ev->type);
1133 			spin_lock(&ev->lock);
1134 			set_event(ev);
1135 			if (ev->type == KFD_EVENT_TYPE_MEMORY && ev_data)
1136 				ev->memory_exception_data = *ev_data;
1137 			spin_unlock(&ev->lock);
1138 		}
1139 
1140 	if (type == KFD_EVENT_TYPE_MEMORY) {
1141 		dev_warn(kfd_device,
1142 			"Sending SIGSEGV to process %d (pasid 0x%x)",
1143 				p->lead_thread->pid, p->pasid);
1144 		send_sig(SIGSEGV, p->lead_thread, 0);
1145 	}
1146 
1147 	/* Send SIGTERM no event of type "type" has been found*/
1148 	if (send_signal) {
1149 		if (send_sigterm) {
1150 			dev_warn(kfd_device,
1151 				"Sending SIGTERM to process %d (pasid 0x%x)",
1152 					p->lead_thread->pid, p->pasid);
1153 			send_sig(SIGTERM, p->lead_thread, 0);
1154 		} else {
1155 			dev_err(kfd_device,
1156 				"Process %d (pasid 0x%x) got unhandled exception",
1157 				p->lead_thread->pid, p->pasid);
1158 		}
1159 	}
1160 
1161 	rcu_read_unlock();
1162 }
1163 
kfd_signal_hw_exception_event(u32 pasid)1164 void kfd_signal_hw_exception_event(u32 pasid)
1165 {
1166 	/*
1167 	 * Because we are called from arbitrary context (workqueue) as opposed
1168 	 * to process context, kfd_process could attempt to exit while we are
1169 	 * running so the lookup function increments the process ref count.
1170 	 */
1171 	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
1172 
1173 	if (!p)
1174 		return; /* Presumably process exited. */
1175 
1176 	lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_HW_EXCEPTION, NULL);
1177 	kfd_unref_process(p);
1178 }
1179 
kfd_signal_vm_fault_event(struct kfd_node * dev,u32 pasid,struct kfd_vm_fault_info * info,struct kfd_hsa_memory_exception_data * data)1180 void kfd_signal_vm_fault_event(struct kfd_node *dev, u32 pasid,
1181 				struct kfd_vm_fault_info *info,
1182 				struct kfd_hsa_memory_exception_data *data)
1183 {
1184 	struct kfd_event *ev;
1185 	uint32_t id;
1186 	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
1187 	struct kfd_hsa_memory_exception_data memory_exception_data;
1188 	int user_gpu_id;
1189 
1190 	if (!p)
1191 		return; /* Presumably process exited. */
1192 
1193 	user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id);
1194 	if (unlikely(user_gpu_id == -EINVAL)) {
1195 		WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id);
1196 		return;
1197 	}
1198 
1199 	/* SoC15 chips and onwards will pass in data from now on. */
1200 	if (!data) {
1201 		memset(&memory_exception_data, 0, sizeof(memory_exception_data));
1202 		memory_exception_data.gpu_id = user_gpu_id;
1203 		memory_exception_data.failure.imprecise = true;
1204 
1205 		/* Set failure reason */
1206 		if (info) {
1207 			memory_exception_data.va = (info->page_addr) <<
1208 								PAGE_SHIFT;
1209 			memory_exception_data.failure.NotPresent =
1210 				info->prot_valid ? 1 : 0;
1211 			memory_exception_data.failure.NoExecute =
1212 				info->prot_exec ? 1 : 0;
1213 			memory_exception_data.failure.ReadOnly =
1214 				info->prot_write ? 1 : 0;
1215 			memory_exception_data.failure.imprecise = 0;
1216 		}
1217 	}
1218 
1219 	rcu_read_lock();
1220 
1221 	id = KFD_FIRST_NONSIGNAL_EVENT_ID;
1222 	idr_for_each_entry_continue(&p->event_idr, ev, id)
1223 		if (ev->type == KFD_EVENT_TYPE_MEMORY) {
1224 			spin_lock(&ev->lock);
1225 			ev->memory_exception_data = data ? *data :
1226 							memory_exception_data;
1227 			set_event(ev);
1228 			spin_unlock(&ev->lock);
1229 		}
1230 
1231 	rcu_read_unlock();
1232 	kfd_unref_process(p);
1233 }
1234 
kfd_signal_reset_event(struct kfd_node * dev)1235 void kfd_signal_reset_event(struct kfd_node *dev)
1236 {
1237 	struct kfd_hsa_hw_exception_data hw_exception_data;
1238 	struct kfd_hsa_memory_exception_data memory_exception_data;
1239 	struct kfd_process *p;
1240 	struct kfd_event *ev;
1241 	unsigned int temp;
1242 	uint32_t id, idx;
1243 	int reset_cause = atomic_read(&dev->sram_ecc_flag) ?
1244 			KFD_HW_EXCEPTION_ECC :
1245 			KFD_HW_EXCEPTION_GPU_HANG;
1246 
1247 	/* Whole gpu reset caused by GPU hang and memory is lost */
1248 	memset(&hw_exception_data, 0, sizeof(hw_exception_data));
1249 	hw_exception_data.memory_lost = 1;
1250 	hw_exception_data.reset_cause = reset_cause;
1251 
1252 	memset(&memory_exception_data, 0, sizeof(memory_exception_data));
1253 	memory_exception_data.ErrorType = KFD_MEM_ERR_SRAM_ECC;
1254 	memory_exception_data.failure.imprecise = true;
1255 
1256 	idx = srcu_read_lock(&kfd_processes_srcu);
1257 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1258 		int user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id);
1259 		struct kfd_process_device *pdd = kfd_get_process_device_data(dev, p);
1260 
1261 		if (unlikely(user_gpu_id == -EINVAL)) {
1262 			WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id);
1263 			continue;
1264 		}
1265 
1266 		if (unlikely(!pdd)) {
1267 			WARN_ONCE(1, "Could not get device data from pasid:0x%x\n", p->pasid);
1268 			continue;
1269 		}
1270 
1271 		if (dev->dqm->detect_hang_count && !pdd->has_reset_queue)
1272 			continue;
1273 
1274 		if (dev->dqm->detect_hang_count) {
1275 			struct amdgpu_task_info *ti;
1276 
1277 			ti = amdgpu_vm_get_task_info_pasid(dev->adev, p->pasid);
1278 			if (ti) {
1279 				dev_err(dev->adev->dev,
1280 					"Queues reset on process %s tid %d thread %s pid %d\n",
1281 					ti->process_name, ti->tgid, ti->task_name, ti->pid);
1282 				amdgpu_vm_put_task_info(ti);
1283 			}
1284 		}
1285 
1286 		rcu_read_lock();
1287 
1288 		id = KFD_FIRST_NONSIGNAL_EVENT_ID;
1289 		idr_for_each_entry_continue(&p->event_idr, ev, id) {
1290 			if (ev->type == KFD_EVENT_TYPE_HW_EXCEPTION) {
1291 				spin_lock(&ev->lock);
1292 				ev->hw_exception_data = hw_exception_data;
1293 				ev->hw_exception_data.gpu_id = user_gpu_id;
1294 				set_event(ev);
1295 				spin_unlock(&ev->lock);
1296 			}
1297 			if (ev->type == KFD_EVENT_TYPE_MEMORY &&
1298 			    reset_cause == KFD_HW_EXCEPTION_ECC) {
1299 				spin_lock(&ev->lock);
1300 				ev->memory_exception_data = memory_exception_data;
1301 				ev->memory_exception_data.gpu_id = user_gpu_id;
1302 				set_event(ev);
1303 				spin_unlock(&ev->lock);
1304 			}
1305 		}
1306 
1307 		rcu_read_unlock();
1308 	}
1309 	srcu_read_unlock(&kfd_processes_srcu, idx);
1310 }
1311 
kfd_signal_poison_consumed_event(struct kfd_node * dev,u32 pasid)1312 void kfd_signal_poison_consumed_event(struct kfd_node *dev, u32 pasid)
1313 {
1314 	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
1315 	struct kfd_hsa_memory_exception_data memory_exception_data;
1316 	struct kfd_hsa_hw_exception_data hw_exception_data;
1317 	struct kfd_event *ev;
1318 	uint32_t id = KFD_FIRST_NONSIGNAL_EVENT_ID;
1319 	int user_gpu_id;
1320 
1321 	if (!p) {
1322 		dev_warn(dev->adev->dev, "Not find process with pasid:%d\n", pasid);
1323 		return; /* Presumably process exited. */
1324 	}
1325 
1326 	user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id);
1327 	if (unlikely(user_gpu_id == -EINVAL)) {
1328 		WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id);
1329 		return;
1330 	}
1331 
1332 	memset(&hw_exception_data, 0, sizeof(hw_exception_data));
1333 	hw_exception_data.gpu_id = user_gpu_id;
1334 	hw_exception_data.memory_lost = 1;
1335 	hw_exception_data.reset_cause = KFD_HW_EXCEPTION_ECC;
1336 
1337 	memset(&memory_exception_data, 0, sizeof(memory_exception_data));
1338 	memory_exception_data.ErrorType = KFD_MEM_ERR_POISON_CONSUMED;
1339 	memory_exception_data.gpu_id = user_gpu_id;
1340 	memory_exception_data.failure.imprecise = true;
1341 
1342 	rcu_read_lock();
1343 
1344 	idr_for_each_entry_continue(&p->event_idr, ev, id) {
1345 		if (ev->type == KFD_EVENT_TYPE_HW_EXCEPTION) {
1346 			spin_lock(&ev->lock);
1347 			ev->hw_exception_data = hw_exception_data;
1348 			set_event(ev);
1349 			spin_unlock(&ev->lock);
1350 		}
1351 
1352 		if (ev->type == KFD_EVENT_TYPE_MEMORY) {
1353 			spin_lock(&ev->lock);
1354 			ev->memory_exception_data = memory_exception_data;
1355 			set_event(ev);
1356 			spin_unlock(&ev->lock);
1357 		}
1358 	}
1359 
1360 	dev_warn(dev->adev->dev, "Send SIGBUS to process %s(pasid:%d)\n",
1361 		p->lead_thread->comm, pasid);
1362 	rcu_read_unlock();
1363 
1364 	/* user application will handle SIGBUS signal */
1365 	send_sig(SIGBUS, p->lead_thread, 0);
1366 
1367 	kfd_unref_process(p);
1368 }
1369