xref: /linux/net/core/page_pool.c (revision 8f7aa3d3c7323f4ca2768a9e74ebbe359c4f8f88)
1 /* SPDX-License-Identifier: GPL-2.0
2  *
3  * page_pool.c
4  *	Author:	Jesper Dangaard Brouer <netoptimizer@brouer.com>
5  *	Copyright (C) 2016 Red Hat, Inc.
6  */
7 
8 #include <linux/error-injection.h>
9 #include <linux/types.h>
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/device.h>
13 
14 #include <net/netdev_lock.h>
15 #include <net/netdev_rx_queue.h>
16 #include <net/page_pool/helpers.h>
17 #include <net/page_pool/memory_provider.h>
18 #include <net/xdp.h>
19 
20 #include <linux/dma-direction.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/page-flags.h>
23 #include <linux/mm.h> /* for put_page() */
24 #include <linux/poison.h>
25 #include <linux/ethtool.h>
26 #include <linux/netdevice.h>
27 
28 #include <trace/events/page_pool.h>
29 
30 #include "dev.h"
31 #include "mp_dmabuf_devmem.h"
32 #include "netmem_priv.h"
33 #include "page_pool_priv.h"
34 
35 DEFINE_STATIC_KEY_FALSE(page_pool_mem_providers);
36 
37 #define DEFER_TIME (msecs_to_jiffies(1000))
38 #define DEFER_WARN_INTERVAL (60 * HZ)
39 
40 #define BIAS_MAX	(LONG_MAX >> 1)
41 
42 #ifdef CONFIG_PAGE_POOL_STATS
43 static DEFINE_PER_CPU(struct page_pool_recycle_stats, pp_system_recycle_stats);
44 
45 /* alloc_stat_inc is intended to be used in softirq context */
46 #define alloc_stat_inc(pool, __stat)	(pool->alloc_stats.__stat++)
47 /* recycle_stat_inc is safe to use when preemption is possible. */
48 #define recycle_stat_inc(pool, __stat)							\
49 	do {										\
50 		struct page_pool_recycle_stats __percpu *s = pool->recycle_stats;	\
51 		this_cpu_inc(s->__stat);						\
52 	} while (0)
53 
54 #define recycle_stat_add(pool, __stat, val)						\
55 	do {										\
56 		struct page_pool_recycle_stats __percpu *s = pool->recycle_stats;	\
57 		this_cpu_add(s->__stat, val);						\
58 	} while (0)
59 
60 static const char pp_stats[][ETH_GSTRING_LEN] = {
61 	"rx_pp_alloc_fast",
62 	"rx_pp_alloc_slow",
63 	"rx_pp_alloc_slow_ho",
64 	"rx_pp_alloc_empty",
65 	"rx_pp_alloc_refill",
66 	"rx_pp_alloc_waive",
67 	"rx_pp_recycle_cached",
68 	"rx_pp_recycle_cache_full",
69 	"rx_pp_recycle_ring",
70 	"rx_pp_recycle_ring_full",
71 	"rx_pp_recycle_released_ref",
72 };
73 
74 /**
75  * page_pool_get_stats() - fetch page pool stats
76  * @pool:	pool from which page was allocated
77  * @stats:	struct page_pool_stats to fill in
78  *
79  * Retrieve statistics about the page_pool. This API is only available
80  * if the kernel has been configured with ``CONFIG_PAGE_POOL_STATS=y``.
81  * A pointer to a caller allocated struct page_pool_stats structure
82  * is passed to this API which is filled in. The caller can then report
83  * those stats to the user (perhaps via ethtool, debugfs, etc.).
84  */
85 bool page_pool_get_stats(const struct page_pool *pool,
86 			 struct page_pool_stats *stats)
87 {
88 	int cpu = 0;
89 
90 	if (!stats)
91 		return false;
92 
93 	/* The caller is responsible to initialize stats. */
94 	stats->alloc_stats.fast += pool->alloc_stats.fast;
95 	stats->alloc_stats.slow += pool->alloc_stats.slow;
96 	stats->alloc_stats.slow_high_order += pool->alloc_stats.slow_high_order;
97 	stats->alloc_stats.empty += pool->alloc_stats.empty;
98 	stats->alloc_stats.refill += pool->alloc_stats.refill;
99 	stats->alloc_stats.waive += pool->alloc_stats.waive;
100 
101 	for_each_possible_cpu(cpu) {
102 		const struct page_pool_recycle_stats *pcpu =
103 			per_cpu_ptr(pool->recycle_stats, cpu);
104 
105 		stats->recycle_stats.cached += pcpu->cached;
106 		stats->recycle_stats.cache_full += pcpu->cache_full;
107 		stats->recycle_stats.ring += pcpu->ring;
108 		stats->recycle_stats.ring_full += pcpu->ring_full;
109 		stats->recycle_stats.released_refcnt += pcpu->released_refcnt;
110 	}
111 
112 	return true;
113 }
114 EXPORT_SYMBOL(page_pool_get_stats);
115 
116 u8 *page_pool_ethtool_stats_get_strings(u8 *data)
117 {
118 	int i;
119 
120 	for (i = 0; i < ARRAY_SIZE(pp_stats); i++) {
121 		memcpy(data, pp_stats[i], ETH_GSTRING_LEN);
122 		data += ETH_GSTRING_LEN;
123 	}
124 
125 	return data;
126 }
127 EXPORT_SYMBOL(page_pool_ethtool_stats_get_strings);
128 
129 int page_pool_ethtool_stats_get_count(void)
130 {
131 	return ARRAY_SIZE(pp_stats);
132 }
133 EXPORT_SYMBOL(page_pool_ethtool_stats_get_count);
134 
135 u64 *page_pool_ethtool_stats_get(u64 *data, const void *stats)
136 {
137 	const struct page_pool_stats *pool_stats = stats;
138 
139 	*data++ = pool_stats->alloc_stats.fast;
140 	*data++ = pool_stats->alloc_stats.slow;
141 	*data++ = pool_stats->alloc_stats.slow_high_order;
142 	*data++ = pool_stats->alloc_stats.empty;
143 	*data++ = pool_stats->alloc_stats.refill;
144 	*data++ = pool_stats->alloc_stats.waive;
145 	*data++ = pool_stats->recycle_stats.cached;
146 	*data++ = pool_stats->recycle_stats.cache_full;
147 	*data++ = pool_stats->recycle_stats.ring;
148 	*data++ = pool_stats->recycle_stats.ring_full;
149 	*data++ = pool_stats->recycle_stats.released_refcnt;
150 
151 	return data;
152 }
153 EXPORT_SYMBOL(page_pool_ethtool_stats_get);
154 
155 #else
156 #define alloc_stat_inc(...)	do { } while (0)
157 #define recycle_stat_inc(...)	do { } while (0)
158 #define recycle_stat_add(...)	do { } while (0)
159 #endif
160 
161 static bool page_pool_producer_lock(struct page_pool *pool)
162 	__acquires(&pool->ring.producer_lock)
163 {
164 	bool in_softirq = in_softirq();
165 
166 	if (in_softirq)
167 		spin_lock(&pool->ring.producer_lock);
168 	else
169 		spin_lock_bh(&pool->ring.producer_lock);
170 
171 	return in_softirq;
172 }
173 
174 static void page_pool_producer_unlock(struct page_pool *pool,
175 				      bool in_softirq)
176 	__releases(&pool->ring.producer_lock)
177 {
178 	if (in_softirq)
179 		spin_unlock(&pool->ring.producer_lock);
180 	else
181 		spin_unlock_bh(&pool->ring.producer_lock);
182 }
183 
184 static void page_pool_struct_check(void)
185 {
186 	CACHELINE_ASSERT_GROUP_MEMBER(struct page_pool, frag, frag_users);
187 	CACHELINE_ASSERT_GROUP_MEMBER(struct page_pool, frag, frag_page);
188 	CACHELINE_ASSERT_GROUP_MEMBER(struct page_pool, frag, frag_offset);
189 	CACHELINE_ASSERT_GROUP_SIZE(struct page_pool, frag,
190 				    PAGE_POOL_FRAG_GROUP_ALIGN);
191 }
192 
193 static int page_pool_init(struct page_pool *pool,
194 			  const struct page_pool_params *params,
195 			  int cpuid)
196 {
197 	unsigned int ring_qsize = 1024; /* Default */
198 	struct netdev_rx_queue *rxq;
199 	int err;
200 
201 	page_pool_struct_check();
202 
203 	memcpy(&pool->p, &params->fast, sizeof(pool->p));
204 	memcpy(&pool->slow, &params->slow, sizeof(pool->slow));
205 
206 	pool->cpuid = cpuid;
207 	pool->dma_sync_for_cpu = true;
208 
209 	/* Validate only known flags were used */
210 	if (pool->slow.flags & ~PP_FLAG_ALL)
211 		return -EINVAL;
212 
213 	if (pool->p.pool_size)
214 		ring_qsize = min(pool->p.pool_size, 16384);
215 
216 	/* DMA direction is either DMA_FROM_DEVICE or DMA_BIDIRECTIONAL.
217 	 * DMA_BIDIRECTIONAL is for allowing page used for DMA sending,
218 	 * which is the XDP_TX use-case.
219 	 */
220 	if (pool->slow.flags & PP_FLAG_DMA_MAP) {
221 		if ((pool->p.dma_dir != DMA_FROM_DEVICE) &&
222 		    (pool->p.dma_dir != DMA_BIDIRECTIONAL))
223 			return -EINVAL;
224 
225 		pool->dma_map = true;
226 	}
227 
228 	if (pool->slow.flags & PP_FLAG_DMA_SYNC_DEV) {
229 		/* In order to request DMA-sync-for-device the page
230 		 * needs to be mapped
231 		 */
232 		if (!(pool->slow.flags & PP_FLAG_DMA_MAP))
233 			return -EINVAL;
234 
235 		if (!pool->p.max_len)
236 			return -EINVAL;
237 
238 		pool->dma_sync = true;
239 
240 		/* pool->p.offset has to be set according to the address
241 		 * offset used by the DMA engine to start copying rx data
242 		 */
243 	}
244 
245 	pool->has_init_callback = !!pool->slow.init_callback;
246 
247 #ifdef CONFIG_PAGE_POOL_STATS
248 	if (!(pool->slow.flags & PP_FLAG_SYSTEM_POOL)) {
249 		pool->recycle_stats = alloc_percpu(struct page_pool_recycle_stats);
250 		if (!pool->recycle_stats)
251 			return -ENOMEM;
252 	} else {
253 		/* For system page pool instance we use a singular stats object
254 		 * instead of allocating a separate percpu variable for each
255 		 * (also percpu) page pool instance.
256 		 */
257 		pool->recycle_stats = &pp_system_recycle_stats;
258 		pool->system = true;
259 	}
260 #endif
261 
262 	if (ptr_ring_init(&pool->ring, ring_qsize, GFP_KERNEL) < 0) {
263 #ifdef CONFIG_PAGE_POOL_STATS
264 		if (!pool->system)
265 			free_percpu(pool->recycle_stats);
266 #endif
267 		return -ENOMEM;
268 	}
269 
270 	atomic_set(&pool->pages_state_release_cnt, 0);
271 
272 	/* Driver calling page_pool_create() also call page_pool_destroy() */
273 	refcount_set(&pool->user_cnt, 1);
274 
275 	xa_init_flags(&pool->dma_mapped, XA_FLAGS_ALLOC1);
276 
277 	if (pool->slow.flags & PP_FLAG_ALLOW_UNREADABLE_NETMEM) {
278 		netdev_assert_locked(pool->slow.netdev);
279 		rxq = __netif_get_rx_queue(pool->slow.netdev,
280 					   pool->slow.queue_idx);
281 		pool->mp_priv = rxq->mp_params.mp_priv;
282 		pool->mp_ops = rxq->mp_params.mp_ops;
283 	}
284 
285 	if (pool->mp_ops) {
286 		if (!pool->dma_map || !pool->dma_sync) {
287 			err = -EOPNOTSUPP;
288 			goto free_ptr_ring;
289 		}
290 
291 		if (WARN_ON(!is_kernel_rodata((unsigned long)pool->mp_ops))) {
292 			err = -EFAULT;
293 			goto free_ptr_ring;
294 		}
295 
296 		err = pool->mp_ops->init(pool);
297 		if (err) {
298 			pr_warn("%s() mem-provider init failed %d\n", __func__,
299 				err);
300 			goto free_ptr_ring;
301 		}
302 
303 		static_branch_inc(&page_pool_mem_providers);
304 	} else if (pool->p.order > MAX_PAGE_ORDER) {
305 		err = -EINVAL;
306 		goto free_ptr_ring;
307 	}
308 
309 	return 0;
310 
311 free_ptr_ring:
312 	ptr_ring_cleanup(&pool->ring, NULL);
313 	xa_destroy(&pool->dma_mapped);
314 #ifdef CONFIG_PAGE_POOL_STATS
315 	if (!pool->system)
316 		free_percpu(pool->recycle_stats);
317 #endif
318 	return err;
319 }
320 
321 static void page_pool_uninit(struct page_pool *pool)
322 {
323 	ptr_ring_cleanup(&pool->ring, NULL);
324 	xa_destroy(&pool->dma_mapped);
325 
326 #ifdef CONFIG_PAGE_POOL_STATS
327 	if (!pool->system)
328 		free_percpu(pool->recycle_stats);
329 #endif
330 }
331 
332 /**
333  * page_pool_create_percpu() - create a page pool for a given cpu.
334  * @params: parameters, see struct page_pool_params
335  * @cpuid: cpu identifier
336  */
337 struct page_pool *
338 page_pool_create_percpu(const struct page_pool_params *params, int cpuid)
339 {
340 	struct page_pool *pool;
341 	int err;
342 
343 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, params->nid);
344 	if (!pool)
345 		return ERR_PTR(-ENOMEM);
346 
347 	err = page_pool_init(pool, params, cpuid);
348 	if (err < 0)
349 		goto err_free;
350 
351 	err = page_pool_list(pool);
352 	if (err)
353 		goto err_uninit;
354 
355 	return pool;
356 
357 err_uninit:
358 	page_pool_uninit(pool);
359 err_free:
360 	pr_warn("%s() gave up with errno %d\n", __func__, err);
361 	kfree(pool);
362 	return ERR_PTR(err);
363 }
364 EXPORT_SYMBOL(page_pool_create_percpu);
365 
366 /**
367  * page_pool_create() - create a page pool
368  * @params: parameters, see struct page_pool_params
369  */
370 struct page_pool *page_pool_create(const struct page_pool_params *params)
371 {
372 	return page_pool_create_percpu(params, -1);
373 }
374 EXPORT_SYMBOL(page_pool_create);
375 
376 static void page_pool_return_netmem(struct page_pool *pool, netmem_ref netmem);
377 
378 static noinline netmem_ref page_pool_refill_alloc_cache(struct page_pool *pool)
379 {
380 	struct ptr_ring *r = &pool->ring;
381 	netmem_ref netmem;
382 	int pref_nid; /* preferred NUMA node */
383 
384 	/* Quicker fallback, avoid locks when ring is empty */
385 	if (__ptr_ring_empty(r)) {
386 		alloc_stat_inc(pool, empty);
387 		return 0;
388 	}
389 
390 	/* Softirq guarantee CPU and thus NUMA node is stable. This,
391 	 * assumes CPU refilling driver RX-ring will also run RX-NAPI.
392 	 */
393 #ifdef CONFIG_NUMA
394 	pref_nid = (pool->p.nid == NUMA_NO_NODE) ? numa_mem_id() : pool->p.nid;
395 #else
396 	/* Ignore pool->p.nid setting if !CONFIG_NUMA, helps compiler */
397 	pref_nid = numa_mem_id(); /* will be zero like page_to_nid() */
398 #endif
399 
400 	/* Refill alloc array, but only if NUMA match */
401 	do {
402 		netmem = (__force netmem_ref)__ptr_ring_consume(r);
403 		if (unlikely(!netmem))
404 			break;
405 
406 		if (likely(netmem_is_pref_nid(netmem, pref_nid))) {
407 			pool->alloc.cache[pool->alloc.count++] = netmem;
408 		} else {
409 			/* NUMA mismatch;
410 			 * (1) release 1 page to page-allocator and
411 			 * (2) break out to fallthrough to alloc_pages_node.
412 			 * This limit stress on page buddy alloactor.
413 			 */
414 			page_pool_return_netmem(pool, netmem);
415 			alloc_stat_inc(pool, waive);
416 			netmem = 0;
417 			break;
418 		}
419 	} while (pool->alloc.count < PP_ALLOC_CACHE_REFILL);
420 
421 	/* Return last page */
422 	if (likely(pool->alloc.count > 0)) {
423 		netmem = pool->alloc.cache[--pool->alloc.count];
424 		alloc_stat_inc(pool, refill);
425 	}
426 
427 	return netmem;
428 }
429 
430 /* fast path */
431 static netmem_ref __page_pool_get_cached(struct page_pool *pool)
432 {
433 	netmem_ref netmem;
434 
435 	/* Caller MUST guarantee safe non-concurrent access, e.g. softirq */
436 	if (likely(pool->alloc.count)) {
437 		/* Fast-path */
438 		netmem = pool->alloc.cache[--pool->alloc.count];
439 		alloc_stat_inc(pool, fast);
440 	} else {
441 		netmem = page_pool_refill_alloc_cache(pool);
442 	}
443 
444 	return netmem;
445 }
446 
447 static void __page_pool_dma_sync_for_device(const struct page_pool *pool,
448 					    netmem_ref netmem,
449 					    u32 dma_sync_size)
450 {
451 #if defined(CONFIG_HAS_DMA) && defined(CONFIG_DMA_NEED_SYNC)
452 	dma_addr_t dma_addr = page_pool_get_dma_addr_netmem(netmem);
453 
454 	dma_sync_size = min(dma_sync_size, pool->p.max_len);
455 	__dma_sync_single_for_device(pool->p.dev, dma_addr + pool->p.offset,
456 				     dma_sync_size, pool->p.dma_dir);
457 #endif
458 }
459 
460 static __always_inline void
461 page_pool_dma_sync_for_device(const struct page_pool *pool,
462 			      netmem_ref netmem,
463 			      u32 dma_sync_size)
464 {
465 	if (pool->dma_sync && dma_dev_need_sync(pool->p.dev)) {
466 		rcu_read_lock();
467 		/* re-check under rcu_read_lock() to sync with page_pool_scrub() */
468 		if (pool->dma_sync)
469 			__page_pool_dma_sync_for_device(pool, netmem,
470 							dma_sync_size);
471 		rcu_read_unlock();
472 	}
473 }
474 
475 static int page_pool_register_dma_index(struct page_pool *pool,
476 					netmem_ref netmem, gfp_t gfp)
477 {
478 	int err = 0;
479 	u32 id;
480 
481 	if (unlikely(!PP_DMA_INDEX_BITS))
482 		goto out;
483 
484 	if (in_softirq())
485 		err = xa_alloc(&pool->dma_mapped, &id, netmem_to_page(netmem),
486 			       PP_DMA_INDEX_LIMIT, gfp);
487 	else
488 		err = xa_alloc_bh(&pool->dma_mapped, &id, netmem_to_page(netmem),
489 				  PP_DMA_INDEX_LIMIT, gfp);
490 	if (err) {
491 		WARN_ONCE(err != -ENOMEM, "couldn't track DMA mapping, please report to netdev@");
492 		goto out;
493 	}
494 
495 	netmem_set_dma_index(netmem, id);
496 out:
497 	return err;
498 }
499 
500 static int page_pool_release_dma_index(struct page_pool *pool,
501 				       netmem_ref netmem)
502 {
503 	struct page *old, *page = netmem_to_page(netmem);
504 	unsigned long id;
505 
506 	if (unlikely(!PP_DMA_INDEX_BITS))
507 		return 0;
508 
509 	id = netmem_get_dma_index(netmem);
510 	if (!id)
511 		return -1;
512 
513 	if (in_softirq())
514 		old = xa_cmpxchg(&pool->dma_mapped, id, page, NULL, 0);
515 	else
516 		old = xa_cmpxchg_bh(&pool->dma_mapped, id, page, NULL, 0);
517 	if (old != page)
518 		return -1;
519 
520 	netmem_set_dma_index(netmem, 0);
521 
522 	return 0;
523 }
524 
525 static bool page_pool_dma_map(struct page_pool *pool, netmem_ref netmem, gfp_t gfp)
526 {
527 	dma_addr_t dma;
528 	int err;
529 
530 	/* Setup DMA mapping: use 'struct page' area for storing DMA-addr
531 	 * since dma_addr_t can be either 32 or 64 bits and does not always fit
532 	 * into page private data (i.e 32bit cpu with 64bit DMA caps)
533 	 * This mapping is kept for lifetime of page, until leaving pool.
534 	 */
535 	dma = dma_map_page_attrs(pool->p.dev, netmem_to_page(netmem), 0,
536 				 (PAGE_SIZE << pool->p.order), pool->p.dma_dir,
537 				 DMA_ATTR_SKIP_CPU_SYNC |
538 					 DMA_ATTR_WEAK_ORDERING);
539 	if (dma_mapping_error(pool->p.dev, dma))
540 		return false;
541 
542 	if (page_pool_set_dma_addr_netmem(netmem, dma)) {
543 		WARN_ONCE(1, "unexpected DMA address, please report to netdev@");
544 		goto unmap_failed;
545 	}
546 
547 	err = page_pool_register_dma_index(pool, netmem, gfp);
548 	if (err)
549 		goto unset_failed;
550 
551 	page_pool_dma_sync_for_device(pool, netmem, pool->p.max_len);
552 
553 	return true;
554 
555 unset_failed:
556 	page_pool_set_dma_addr_netmem(netmem, 0);
557 unmap_failed:
558 	dma_unmap_page_attrs(pool->p.dev, dma,
559 			     PAGE_SIZE << pool->p.order, pool->p.dma_dir,
560 			     DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING);
561 	return false;
562 }
563 
564 static struct page *__page_pool_alloc_page_order(struct page_pool *pool,
565 						 gfp_t gfp)
566 {
567 	struct page *page;
568 
569 	gfp |= __GFP_COMP;
570 	page = alloc_pages_node(pool->p.nid, gfp, pool->p.order);
571 	if (unlikely(!page))
572 		return NULL;
573 
574 	if (pool->dma_map && unlikely(!page_pool_dma_map(pool, page_to_netmem(page), gfp))) {
575 		put_page(page);
576 		return NULL;
577 	}
578 
579 	alloc_stat_inc(pool, slow_high_order);
580 	page_pool_set_pp_info(pool, page_to_netmem(page));
581 
582 	/* Track how many pages are held 'in-flight' */
583 	pool->pages_state_hold_cnt++;
584 	trace_page_pool_state_hold(pool, page_to_netmem(page),
585 				   pool->pages_state_hold_cnt);
586 	return page;
587 }
588 
589 /* slow path */
590 static noinline netmem_ref __page_pool_alloc_netmems_slow(struct page_pool *pool,
591 							  gfp_t gfp)
592 {
593 	const int bulk = PP_ALLOC_CACHE_REFILL;
594 	unsigned int pp_order = pool->p.order;
595 	bool dma_map = pool->dma_map;
596 	netmem_ref netmem;
597 	int i, nr_pages;
598 
599 	/* Unconditionally set NOWARN if allocating from NAPI.
600 	 * Drivers forget to set it, and OOM reports on packet Rx are useless.
601 	 */
602 	if ((gfp & GFP_ATOMIC) == GFP_ATOMIC)
603 		gfp |= __GFP_NOWARN;
604 
605 	/* Don't support bulk alloc for high-order pages */
606 	if (unlikely(pp_order))
607 		return page_to_netmem(__page_pool_alloc_page_order(pool, gfp));
608 
609 	/* Unnecessary as alloc cache is empty, but guarantees zero count */
610 	if (unlikely(pool->alloc.count > 0))
611 		return pool->alloc.cache[--pool->alloc.count];
612 
613 	/* Mark empty alloc.cache slots "empty" for alloc_pages_bulk */
614 	memset(&pool->alloc.cache, 0, sizeof(void *) * bulk);
615 
616 	nr_pages = alloc_pages_bulk_node(gfp, pool->p.nid, bulk,
617 					 (struct page **)pool->alloc.cache);
618 	if (unlikely(!nr_pages))
619 		return 0;
620 
621 	/* Pages have been filled into alloc.cache array, but count is zero and
622 	 * page element have not been (possibly) DMA mapped.
623 	 */
624 	for (i = 0; i < nr_pages; i++) {
625 		netmem = pool->alloc.cache[i];
626 		if (dma_map && unlikely(!page_pool_dma_map(pool, netmem, gfp))) {
627 			put_page(netmem_to_page(netmem));
628 			continue;
629 		}
630 
631 		page_pool_set_pp_info(pool, netmem);
632 		pool->alloc.cache[pool->alloc.count++] = netmem;
633 		/* Track how many pages are held 'in-flight' */
634 		pool->pages_state_hold_cnt++;
635 		trace_page_pool_state_hold(pool, netmem,
636 					   pool->pages_state_hold_cnt);
637 	}
638 
639 	/* Return last page */
640 	if (likely(pool->alloc.count > 0)) {
641 		netmem = pool->alloc.cache[--pool->alloc.count];
642 		alloc_stat_inc(pool, slow);
643 	} else {
644 		netmem = 0;
645 	}
646 
647 	/* When page just alloc'ed is should/must have refcnt 1. */
648 	return netmem;
649 }
650 
651 /* For using page_pool replace: alloc_pages() API calls, but provide
652  * synchronization guarantee for allocation side.
653  */
654 netmem_ref page_pool_alloc_netmems(struct page_pool *pool, gfp_t gfp)
655 {
656 	netmem_ref netmem;
657 
658 	/* Fast-path: Get a page from cache */
659 	netmem = __page_pool_get_cached(pool);
660 	if (netmem)
661 		return netmem;
662 
663 	/* Slow-path: cache empty, do real allocation */
664 	if (static_branch_unlikely(&page_pool_mem_providers) && pool->mp_ops)
665 		netmem = pool->mp_ops->alloc_netmems(pool, gfp);
666 	else
667 		netmem = __page_pool_alloc_netmems_slow(pool, gfp);
668 	return netmem;
669 }
670 EXPORT_SYMBOL(page_pool_alloc_netmems);
671 ALLOW_ERROR_INJECTION(page_pool_alloc_netmems, NULL);
672 
673 struct page *page_pool_alloc_pages(struct page_pool *pool, gfp_t gfp)
674 {
675 	return netmem_to_page(page_pool_alloc_netmems(pool, gfp));
676 }
677 EXPORT_SYMBOL(page_pool_alloc_pages);
678 
679 /* Calculate distance between two u32 values, valid if distance is below 2^(31)
680  *  https://en.wikipedia.org/wiki/Serial_number_arithmetic#General_Solution
681  */
682 #define _distance(a, b)	(s32)((a) - (b))
683 
684 s32 page_pool_inflight(const struct page_pool *pool, bool strict)
685 {
686 	u32 release_cnt = atomic_read(&pool->pages_state_release_cnt);
687 	u32 hold_cnt = READ_ONCE(pool->pages_state_hold_cnt);
688 	s32 inflight;
689 
690 	inflight = _distance(hold_cnt, release_cnt);
691 
692 	if (strict) {
693 		trace_page_pool_release(pool, inflight, hold_cnt, release_cnt);
694 		WARN(inflight < 0, "Negative(%d) inflight packet-pages",
695 		     inflight);
696 	} else {
697 		inflight = max(0, inflight);
698 	}
699 
700 	return inflight;
701 }
702 
703 void page_pool_set_pp_info(struct page_pool *pool, netmem_ref netmem)
704 {
705 	netmem_set_pp(netmem, pool);
706 	netmem_or_pp_magic(netmem, PP_SIGNATURE);
707 
708 	/* Ensuring all pages have been split into one fragment initially:
709 	 * page_pool_set_pp_info() is only called once for every page when it
710 	 * is allocated from the page allocator and page_pool_fragment_page()
711 	 * is dirtying the same cache line as the page->pp_magic above, so
712 	 * the overhead is negligible.
713 	 */
714 	page_pool_fragment_netmem(netmem, 1);
715 	if (pool->has_init_callback)
716 		pool->slow.init_callback(netmem, pool->slow.init_arg);
717 }
718 
719 void page_pool_clear_pp_info(netmem_ref netmem)
720 {
721 	netmem_clear_pp_magic(netmem);
722 	netmem_set_pp(netmem, NULL);
723 }
724 
725 static __always_inline void __page_pool_release_netmem_dma(struct page_pool *pool,
726 							   netmem_ref netmem)
727 {
728 	dma_addr_t dma;
729 
730 	if (!pool->dma_map)
731 		/* Always account for inflight pages, even if we didn't
732 		 * map them
733 		 */
734 		return;
735 
736 	if (page_pool_release_dma_index(pool, netmem))
737 		return;
738 
739 	dma = page_pool_get_dma_addr_netmem(netmem);
740 
741 	/* When page is unmapped, it cannot be returned to our pool */
742 	dma_unmap_page_attrs(pool->p.dev, dma,
743 			     PAGE_SIZE << pool->p.order, pool->p.dma_dir,
744 			     DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING);
745 	page_pool_set_dma_addr_netmem(netmem, 0);
746 }
747 
748 /* Disconnects a page (from a page_pool).  API users can have a need
749  * to disconnect a page (from a page_pool), to allow it to be used as
750  * a regular page (that will eventually be returned to the normal
751  * page-allocator via put_page).
752  */
753 static void page_pool_return_netmem(struct page_pool *pool, netmem_ref netmem)
754 {
755 	int count;
756 	bool put;
757 
758 	put = true;
759 	if (static_branch_unlikely(&page_pool_mem_providers) && pool->mp_ops)
760 		put = pool->mp_ops->release_netmem(pool, netmem);
761 	else
762 		__page_pool_release_netmem_dma(pool, netmem);
763 
764 	/* This may be the last page returned, releasing the pool, so
765 	 * it is not safe to reference pool afterwards.
766 	 */
767 	count = atomic_inc_return_relaxed(&pool->pages_state_release_cnt);
768 	trace_page_pool_state_release(pool, netmem, count);
769 
770 	if (put) {
771 		page_pool_clear_pp_info(netmem);
772 		put_page(netmem_to_page(netmem));
773 	}
774 	/* An optimization would be to call __free_pages(page, pool->p.order)
775 	 * knowing page is not part of page-cache (thus avoiding a
776 	 * __page_cache_release() call).
777 	 */
778 }
779 
780 static bool page_pool_recycle_in_ring(struct page_pool *pool, netmem_ref netmem)
781 {
782 	bool in_softirq, ret;
783 
784 	/* BH protection not needed if current is softirq */
785 	in_softirq = page_pool_producer_lock(pool);
786 	ret = !__ptr_ring_produce(&pool->ring, (__force void *)netmem);
787 	if (ret)
788 		recycle_stat_inc(pool, ring);
789 	page_pool_producer_unlock(pool, in_softirq);
790 
791 	return ret;
792 }
793 
794 /* Only allow direct recycling in special circumstances, into the
795  * alloc side cache.  E.g. during RX-NAPI processing for XDP_DROP use-case.
796  *
797  * Caller must provide appropriate safe context.
798  */
799 static bool page_pool_recycle_in_cache(netmem_ref netmem,
800 				       struct page_pool *pool)
801 {
802 	if (unlikely(pool->alloc.count == PP_ALLOC_CACHE_SIZE)) {
803 		recycle_stat_inc(pool, cache_full);
804 		return false;
805 	}
806 
807 	/* Caller MUST have verified/know (page_ref_count(page) == 1) */
808 	pool->alloc.cache[pool->alloc.count++] = netmem;
809 	recycle_stat_inc(pool, cached);
810 	return true;
811 }
812 
813 static bool __page_pool_page_can_be_recycled(netmem_ref netmem)
814 {
815 	return netmem_is_net_iov(netmem) ||
816 	       (page_ref_count(netmem_to_page(netmem)) == 1 &&
817 		!page_is_pfmemalloc(netmem_to_page(netmem)));
818 }
819 
820 /* If the page refcnt == 1, this will try to recycle the page.
821  * If pool->dma_sync is set, we'll try to sync the DMA area for
822  * the configured size min(dma_sync_size, pool->max_len).
823  * If the page refcnt != 1, then the page will be returned to memory
824  * subsystem.
825  */
826 static __always_inline netmem_ref
827 __page_pool_put_page(struct page_pool *pool, netmem_ref netmem,
828 		     unsigned int dma_sync_size, bool allow_direct)
829 {
830 	lockdep_assert_no_hardirq();
831 
832 	/* This allocator is optimized for the XDP mode that uses
833 	 * one-frame-per-page, but have fallbacks that act like the
834 	 * regular page allocator APIs.
835 	 *
836 	 * refcnt == 1 means page_pool owns page, and can recycle it.
837 	 *
838 	 * page is NOT reusable when allocated when system is under
839 	 * some pressure. (page_is_pfmemalloc)
840 	 */
841 	if (likely(__page_pool_page_can_be_recycled(netmem))) {
842 		/* Read barrier done in page_ref_count / READ_ONCE */
843 
844 		page_pool_dma_sync_for_device(pool, netmem, dma_sync_size);
845 
846 		if (allow_direct && page_pool_recycle_in_cache(netmem, pool))
847 			return 0;
848 
849 		/* Page found as candidate for recycling */
850 		return netmem;
851 	}
852 
853 	/* Fallback/non-XDP mode: API user have elevated refcnt.
854 	 *
855 	 * Many drivers split up the page into fragments, and some
856 	 * want to keep doing this to save memory and do refcnt based
857 	 * recycling. Support this use case too, to ease drivers
858 	 * switching between XDP/non-XDP.
859 	 *
860 	 * In-case page_pool maintains the DMA mapping, API user must
861 	 * call page_pool_put_page once.  In this elevated refcnt
862 	 * case, the DMA is unmapped/released, as driver is likely
863 	 * doing refcnt based recycle tricks, meaning another process
864 	 * will be invoking put_page.
865 	 */
866 	recycle_stat_inc(pool, released_refcnt);
867 	page_pool_return_netmem(pool, netmem);
868 
869 	return 0;
870 }
871 
872 static bool page_pool_napi_local(const struct page_pool *pool)
873 {
874 	const struct napi_struct *napi;
875 	u32 cpuid;
876 
877 	/* On PREEMPT_RT the softirq can be preempted by the consumer */
878 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
879 		return false;
880 
881 	if (unlikely(!in_softirq()))
882 		return false;
883 
884 	/* Allow direct recycle if we have reasons to believe that we are
885 	 * in the same context as the consumer would run, so there's
886 	 * no possible race.
887 	 * __page_pool_put_page() makes sure we're not in hardirq context
888 	 * and interrupts are enabled prior to accessing the cache.
889 	 */
890 	cpuid = smp_processor_id();
891 	if (READ_ONCE(pool->cpuid) == cpuid)
892 		return true;
893 
894 	napi = READ_ONCE(pool->p.napi);
895 
896 	return napi && READ_ONCE(napi->list_owner) == cpuid;
897 }
898 
899 void page_pool_put_unrefed_netmem(struct page_pool *pool, netmem_ref netmem,
900 				  unsigned int dma_sync_size, bool allow_direct)
901 {
902 	if (!allow_direct)
903 		allow_direct = page_pool_napi_local(pool);
904 
905 	netmem = __page_pool_put_page(pool, netmem, dma_sync_size,
906 				      allow_direct);
907 	if (netmem && !page_pool_recycle_in_ring(pool, netmem)) {
908 		/* Cache full, fallback to free pages */
909 		recycle_stat_inc(pool, ring_full);
910 		page_pool_return_netmem(pool, netmem);
911 	}
912 }
913 EXPORT_SYMBOL(page_pool_put_unrefed_netmem);
914 
915 void page_pool_put_unrefed_page(struct page_pool *pool, struct page *page,
916 				unsigned int dma_sync_size, bool allow_direct)
917 {
918 	page_pool_put_unrefed_netmem(pool, page_to_netmem(page), dma_sync_size,
919 				     allow_direct);
920 }
921 EXPORT_SYMBOL(page_pool_put_unrefed_page);
922 
923 static void page_pool_recycle_ring_bulk(struct page_pool *pool,
924 					netmem_ref *bulk,
925 					u32 bulk_len)
926 {
927 	bool in_softirq;
928 	u32 i;
929 
930 	/* Bulk produce into ptr_ring page_pool cache */
931 	in_softirq = page_pool_producer_lock(pool);
932 
933 	for (i = 0; i < bulk_len; i++) {
934 		if (__ptr_ring_produce(&pool->ring, (__force void *)bulk[i])) {
935 			/* ring full */
936 			recycle_stat_inc(pool, ring_full);
937 			break;
938 		}
939 	}
940 
941 	page_pool_producer_unlock(pool, in_softirq);
942 	recycle_stat_add(pool, ring, i);
943 
944 	/* Hopefully all pages were returned into ptr_ring */
945 	if (likely(i == bulk_len))
946 		return;
947 
948 	/*
949 	 * ptr_ring cache is full, free remaining pages outside producer lock
950 	 * since put_page() with refcnt == 1 can be an expensive operation.
951 	 */
952 	for (; i < bulk_len; i++)
953 		page_pool_return_netmem(pool, bulk[i]);
954 }
955 
956 /**
957  * page_pool_put_netmem_bulk() - release references on multiple netmems
958  * @data:	array holding netmem references
959  * @count:	number of entries in @data
960  *
961  * Tries to refill a number of netmems into the ptr_ring cache holding ptr_ring
962  * producer lock. If the ptr_ring is full, page_pool_put_netmem_bulk()
963  * will release leftover netmems to the memory provider.
964  * page_pool_put_netmem_bulk() is suitable to be run inside the driver NAPI tx
965  * completion loop for the XDP_REDIRECT use case.
966  *
967  * Please note the caller must not use data area after running
968  * page_pool_put_netmem_bulk(), as this function overwrites it.
969  */
970 void page_pool_put_netmem_bulk(netmem_ref *data, u32 count)
971 {
972 	u32 bulk_len = 0;
973 
974 	for (u32 i = 0; i < count; i++) {
975 		netmem_ref netmem = netmem_compound_head(data[i]);
976 
977 		if (page_pool_unref_and_test(netmem))
978 			data[bulk_len++] = netmem;
979 	}
980 
981 	count = bulk_len;
982 	while (count) {
983 		netmem_ref bulk[XDP_BULK_QUEUE_SIZE];
984 		struct page_pool *pool = NULL;
985 		bool allow_direct;
986 		u32 foreign = 0;
987 
988 		bulk_len = 0;
989 
990 		for (u32 i = 0; i < count; i++) {
991 			struct page_pool *netmem_pp;
992 			netmem_ref netmem = data[i];
993 
994 			netmem_pp = netmem_get_pp(netmem);
995 			if (unlikely(!pool)) {
996 				pool = netmem_pp;
997 				allow_direct = page_pool_napi_local(pool);
998 			} else if (netmem_pp != pool) {
999 				/*
1000 				 * If the netmem belongs to a different
1001 				 * page_pool, save it for another round.
1002 				 */
1003 				data[foreign++] = netmem;
1004 				continue;
1005 			}
1006 
1007 			netmem = __page_pool_put_page(pool, netmem, -1,
1008 						      allow_direct);
1009 			/* Approved for bulk recycling in ptr_ring cache */
1010 			if (netmem)
1011 				bulk[bulk_len++] = netmem;
1012 		}
1013 
1014 		if (bulk_len)
1015 			page_pool_recycle_ring_bulk(pool, bulk, bulk_len);
1016 
1017 		count = foreign;
1018 	}
1019 }
1020 EXPORT_SYMBOL(page_pool_put_netmem_bulk);
1021 
1022 static netmem_ref page_pool_drain_frag(struct page_pool *pool,
1023 				       netmem_ref netmem)
1024 {
1025 	long drain_count = BIAS_MAX - pool->frag_users;
1026 
1027 	/* Some user is still using the page frag */
1028 	if (likely(page_pool_unref_netmem(netmem, drain_count)))
1029 		return 0;
1030 
1031 	if (__page_pool_page_can_be_recycled(netmem)) {
1032 		page_pool_dma_sync_for_device(pool, netmem, -1);
1033 		return netmem;
1034 	}
1035 
1036 	page_pool_return_netmem(pool, netmem);
1037 	return 0;
1038 }
1039 
1040 static void page_pool_free_frag(struct page_pool *pool)
1041 {
1042 	long drain_count = BIAS_MAX - pool->frag_users;
1043 	netmem_ref netmem = pool->frag_page;
1044 
1045 	pool->frag_page = 0;
1046 
1047 	if (!netmem || page_pool_unref_netmem(netmem, drain_count))
1048 		return;
1049 
1050 	page_pool_return_netmem(pool, netmem);
1051 }
1052 
1053 netmem_ref page_pool_alloc_frag_netmem(struct page_pool *pool,
1054 				       unsigned int *offset, unsigned int size,
1055 				       gfp_t gfp)
1056 {
1057 	unsigned int max_size = PAGE_SIZE << pool->p.order;
1058 	netmem_ref netmem = pool->frag_page;
1059 
1060 	if (WARN_ON(size > max_size))
1061 		return 0;
1062 
1063 	size = ALIGN(size, dma_get_cache_alignment());
1064 	*offset = pool->frag_offset;
1065 
1066 	if (netmem && *offset + size > max_size) {
1067 		netmem = page_pool_drain_frag(pool, netmem);
1068 		if (netmem) {
1069 			recycle_stat_inc(pool, cached);
1070 			alloc_stat_inc(pool, fast);
1071 			goto frag_reset;
1072 		}
1073 	}
1074 
1075 	if (!netmem) {
1076 		netmem = page_pool_alloc_netmems(pool, gfp);
1077 		if (unlikely(!netmem)) {
1078 			pool->frag_page = 0;
1079 			return 0;
1080 		}
1081 
1082 		pool->frag_page = netmem;
1083 
1084 frag_reset:
1085 		pool->frag_users = 1;
1086 		*offset = 0;
1087 		pool->frag_offset = size;
1088 		page_pool_fragment_netmem(netmem, BIAS_MAX);
1089 		return netmem;
1090 	}
1091 
1092 	pool->frag_users++;
1093 	pool->frag_offset = *offset + size;
1094 	return netmem;
1095 }
1096 EXPORT_SYMBOL(page_pool_alloc_frag_netmem);
1097 
1098 struct page *page_pool_alloc_frag(struct page_pool *pool, unsigned int *offset,
1099 				  unsigned int size, gfp_t gfp)
1100 {
1101 	return netmem_to_page(page_pool_alloc_frag_netmem(pool, offset, size,
1102 							  gfp));
1103 }
1104 EXPORT_SYMBOL(page_pool_alloc_frag);
1105 
1106 static void page_pool_empty_ring(struct page_pool *pool)
1107 {
1108 	netmem_ref netmem;
1109 
1110 	/* Empty recycle ring */
1111 	while ((netmem = (__force netmem_ref)ptr_ring_consume_bh(&pool->ring))) {
1112 		/* Verify the refcnt invariant of cached pages */
1113 		if (!(netmem_ref_count(netmem) == 1))
1114 			pr_crit("%s() page_pool refcnt %d violation\n",
1115 				__func__, netmem_ref_count(netmem));
1116 
1117 		page_pool_return_netmem(pool, netmem);
1118 	}
1119 }
1120 
1121 static void __page_pool_destroy(struct page_pool *pool)
1122 {
1123 	if (pool->disconnect)
1124 		pool->disconnect(pool);
1125 
1126 	page_pool_unlist(pool);
1127 	page_pool_uninit(pool);
1128 
1129 	if (pool->mp_ops) {
1130 		pool->mp_ops->destroy(pool);
1131 		static_branch_dec(&page_pool_mem_providers);
1132 	}
1133 
1134 	kfree(pool);
1135 }
1136 
1137 static void page_pool_empty_alloc_cache_once(struct page_pool *pool)
1138 {
1139 	netmem_ref netmem;
1140 
1141 	if (pool->destroy_cnt)
1142 		return;
1143 
1144 	/* Empty alloc cache, assume caller made sure this is
1145 	 * no-longer in use, and page_pool_alloc_pages() cannot be
1146 	 * call concurrently.
1147 	 */
1148 	while (pool->alloc.count) {
1149 		netmem = pool->alloc.cache[--pool->alloc.count];
1150 		page_pool_return_netmem(pool, netmem);
1151 	}
1152 }
1153 
1154 static void page_pool_scrub(struct page_pool *pool)
1155 {
1156 	unsigned long id;
1157 	void *ptr;
1158 
1159 	page_pool_empty_alloc_cache_once(pool);
1160 	if (!pool->destroy_cnt++ && pool->dma_map) {
1161 		if (pool->dma_sync) {
1162 			/* Disable page_pool_dma_sync_for_device() */
1163 			pool->dma_sync = false;
1164 
1165 			/* Make sure all concurrent returns that may see the old
1166 			 * value of dma_sync (and thus perform a sync) have
1167 			 * finished before doing the unmapping below. Skip the
1168 			 * wait if the device doesn't actually need syncing, or
1169 			 * if there are no outstanding mapped pages.
1170 			 */
1171 			if (dma_dev_need_sync(pool->p.dev) &&
1172 			    !xa_empty(&pool->dma_mapped))
1173 				synchronize_net();
1174 		}
1175 
1176 		xa_for_each(&pool->dma_mapped, id, ptr)
1177 			__page_pool_release_netmem_dma(pool, page_to_netmem((struct page *)ptr));
1178 	}
1179 
1180 	/* No more consumers should exist, but producers could still
1181 	 * be in-flight.
1182 	 */
1183 	page_pool_empty_ring(pool);
1184 }
1185 
1186 static int page_pool_release(struct page_pool *pool)
1187 {
1188 	bool in_softirq;
1189 	int inflight;
1190 
1191 	page_pool_scrub(pool);
1192 	inflight = page_pool_inflight(pool, true);
1193 	/* Acquire producer lock to make sure producers have exited. */
1194 	in_softirq = page_pool_producer_lock(pool);
1195 	page_pool_producer_unlock(pool, in_softirq);
1196 	if (!inflight)
1197 		__page_pool_destroy(pool);
1198 
1199 	return inflight;
1200 }
1201 
1202 static void page_pool_release_retry(struct work_struct *wq)
1203 {
1204 	struct delayed_work *dwq = to_delayed_work(wq);
1205 	struct page_pool *pool = container_of(dwq, typeof(*pool), release_dw);
1206 	void *netdev;
1207 	int inflight;
1208 
1209 	inflight = page_pool_release(pool);
1210 	/* In rare cases, a driver bug may cause inflight to go negative.
1211 	 * Don't reschedule release if inflight is 0 or negative.
1212 	 * - If 0, the page_pool has been destroyed
1213 	 * - if negative, we will never recover
1214 	 * in both cases no reschedule is necessary.
1215 	 */
1216 	if (inflight <= 0)
1217 		return;
1218 
1219 	/* Periodic warning for page pools the user can't see */
1220 	netdev = READ_ONCE(pool->slow.netdev);
1221 	if (time_after_eq(jiffies, pool->defer_warn) &&
1222 	    (!netdev || netdev == NET_PTR_POISON)) {
1223 		int sec = (s32)((u32)jiffies - (u32)pool->defer_start) / HZ;
1224 
1225 		pr_warn("%s() stalled pool shutdown: id %u, %d inflight %d sec\n",
1226 			__func__, pool->user.id, inflight, sec);
1227 		pool->defer_warn = jiffies + DEFER_WARN_INTERVAL;
1228 	}
1229 
1230 	/* Still not ready to be disconnected, retry later */
1231 	schedule_delayed_work(&pool->release_dw, DEFER_TIME);
1232 }
1233 
1234 void page_pool_use_xdp_mem(struct page_pool *pool, void (*disconnect)(void *),
1235 			   const struct xdp_mem_info *mem)
1236 {
1237 	refcount_inc(&pool->user_cnt);
1238 	pool->disconnect = disconnect;
1239 	pool->xdp_mem_id = mem->id;
1240 }
1241 
1242 /**
1243  * page_pool_enable_direct_recycling() - mark page pool as owned by NAPI
1244  * @pool: page pool to modify
1245  * @napi: NAPI instance to associate the page pool with
1246  *
1247  * Associate a page pool with a NAPI instance for lockless page recycling.
1248  * This is useful when a new page pool has to be added to a NAPI instance
1249  * without disabling that NAPI instance, to mark the point at which control
1250  * path "hands over" the page pool to the NAPI instance. In most cases driver
1251  * can simply set the @napi field in struct page_pool_params, and does not
1252  * have to call this helper.
1253  *
1254  * The function is idempotent, but does not implement any refcounting.
1255  * Single page_pool_disable_direct_recycling() will disable recycling,
1256  * no matter how many times enable was called.
1257  */
1258 void page_pool_enable_direct_recycling(struct page_pool *pool,
1259 				       struct napi_struct *napi)
1260 {
1261 	if (READ_ONCE(pool->p.napi) == napi)
1262 		return;
1263 	WARN_ON(!napi || pool->p.napi);
1264 
1265 	mutex_lock(&page_pools_lock);
1266 	WRITE_ONCE(pool->p.napi, napi);
1267 	mutex_unlock(&page_pools_lock);
1268 }
1269 EXPORT_SYMBOL(page_pool_enable_direct_recycling);
1270 
1271 void page_pool_disable_direct_recycling(struct page_pool *pool)
1272 {
1273 	/* Disable direct recycling based on pool->cpuid.
1274 	 * Paired with READ_ONCE() in page_pool_napi_local().
1275 	 */
1276 	WRITE_ONCE(pool->cpuid, -1);
1277 
1278 	if (!pool->p.napi)
1279 		return;
1280 
1281 	napi_assert_will_not_race(pool->p.napi);
1282 
1283 	mutex_lock(&page_pools_lock);
1284 	WRITE_ONCE(pool->p.napi, NULL);
1285 	mutex_unlock(&page_pools_lock);
1286 }
1287 EXPORT_SYMBOL(page_pool_disable_direct_recycling);
1288 
1289 void page_pool_destroy(struct page_pool *pool)
1290 {
1291 	if (!pool)
1292 		return;
1293 
1294 	if (!page_pool_put(pool))
1295 		return;
1296 
1297 	page_pool_disable_direct_recycling(pool);
1298 	page_pool_free_frag(pool);
1299 
1300 	if (!page_pool_release(pool))
1301 		return;
1302 
1303 	page_pool_detached(pool);
1304 	pool->defer_start = jiffies;
1305 	pool->defer_warn  = jiffies + DEFER_WARN_INTERVAL;
1306 
1307 	INIT_DELAYED_WORK(&pool->release_dw, page_pool_release_retry);
1308 	schedule_delayed_work(&pool->release_dw, DEFER_TIME);
1309 }
1310 EXPORT_SYMBOL(page_pool_destroy);
1311 
1312 /* Caller must provide appropriate safe context, e.g. NAPI. */
1313 void page_pool_update_nid(struct page_pool *pool, int new_nid)
1314 {
1315 	netmem_ref netmem;
1316 
1317 	trace_page_pool_update_nid(pool, new_nid);
1318 	pool->p.nid = new_nid;
1319 
1320 	/* Flush pool alloc cache, as refill will check NUMA node */
1321 	while (pool->alloc.count) {
1322 		netmem = pool->alloc.cache[--pool->alloc.count];
1323 		page_pool_return_netmem(pool, netmem);
1324 	}
1325 }
1326 EXPORT_SYMBOL(page_pool_update_nid);
1327 
1328 bool net_mp_niov_set_dma_addr(struct net_iov *niov, dma_addr_t addr)
1329 {
1330 	return page_pool_set_dma_addr_netmem(net_iov_to_netmem(niov), addr);
1331 }
1332 
1333 /* Associate a niov with a page pool. Should follow with a matching
1334  * net_mp_niov_clear_page_pool()
1335  */
1336 void net_mp_niov_set_page_pool(struct page_pool *pool, struct net_iov *niov)
1337 {
1338 	netmem_ref netmem = net_iov_to_netmem(niov);
1339 
1340 	page_pool_set_pp_info(pool, netmem);
1341 
1342 	pool->pages_state_hold_cnt++;
1343 	trace_page_pool_state_hold(pool, netmem, pool->pages_state_hold_cnt);
1344 }
1345 
1346 /* Disassociate a niov from a page pool. Should only be used in the
1347  * ->release_netmem() path.
1348  */
1349 void net_mp_niov_clear_page_pool(struct net_iov *niov)
1350 {
1351 	netmem_ref netmem = net_iov_to_netmem(niov);
1352 
1353 	page_pool_clear_pp_info(netmem);
1354 }
1355