1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) International Business Machines Corp., 2000-2004
4 */
5
6 /*
7 * jfs_dtree.c: directory B+-tree manager
8 *
9 * B+-tree with variable length key directory:
10 *
11 * each directory page is structured as an array of 32-byte
12 * directory entry slots initialized as a freelist
13 * to avoid search/compaction of free space at insertion.
14 * when an entry is inserted, a number of slots are allocated
15 * from the freelist as required to store variable length data
16 * of the entry; when the entry is deleted, slots of the entry
17 * are returned to freelist.
18 *
19 * leaf entry stores full name as key and file serial number
20 * (aka inode number) as data.
21 * internal/router entry stores sufffix compressed name
22 * as key and simple extent descriptor as data.
23 *
24 * each directory page maintains a sorted entry index table
25 * which stores the start slot index of sorted entries
26 * to allow binary search on the table.
27 *
28 * directory starts as a root/leaf page in on-disk inode
29 * inline data area.
30 * when it becomes full, it starts a leaf of a external extent
31 * of length of 1 block. each time the first leaf becomes full,
32 * it is extended rather than split (its size is doubled),
33 * until its length becoms 4 KBytes, from then the extent is split
34 * with new 4 Kbyte extent when it becomes full
35 * to reduce external fragmentation of small directories.
36 *
37 * blah, blah, blah, for linear scan of directory in pieces by
38 * readdir().
39 *
40 *
41 * case-insensitive directory file system
42 *
43 * names are stored in case-sensitive way in leaf entry.
44 * but stored, searched and compared in case-insensitive (uppercase) order
45 * (i.e., both search key and entry key are folded for search/compare):
46 * (note that case-sensitive order is BROKEN in storage, e.g.,
47 * sensitive: Ad, aB, aC, aD -> insensitive: aB, aC, aD, Ad
48 *
49 * entries which folds to the same key makes up a equivalent class
50 * whose members are stored as contiguous cluster (may cross page boundary)
51 * but whose order is arbitrary and acts as duplicate, e.g.,
52 * abc, Abc, aBc, abC)
53 *
54 * once match is found at leaf, requires scan forward/backward
55 * either for, in case-insensitive search, duplicate
56 * or for, in case-sensitive search, for exact match
57 *
58 * router entry must be created/stored in case-insensitive way
59 * in internal entry:
60 * (right most key of left page and left most key of right page
61 * are folded, and its suffix compression is propagated as router
62 * key in parent)
63 * (e.g., if split occurs <abc> and <aBd>, <ABD> trather than <aB>
64 * should be made the router key for the split)
65 *
66 * case-insensitive search:
67 *
68 * fold search key;
69 *
70 * case-insensitive search of B-tree:
71 * for internal entry, router key is already folded;
72 * for leaf entry, fold the entry key before comparison.
73 *
74 * if (leaf entry case-insensitive match found)
75 * if (next entry satisfies case-insensitive match)
76 * return EDUPLICATE;
77 * if (prev entry satisfies case-insensitive match)
78 * return EDUPLICATE;
79 * return match;
80 * else
81 * return no match;
82 *
83 * serialization:
84 * target directory inode lock is being held on entry/exit
85 * of all main directory service routines.
86 *
87 * log based recovery:
88 */
89
90 #include <linux/fs.h>
91 #include <linux/quotaops.h>
92 #include <linux/slab.h>
93 #include "jfs_incore.h"
94 #include "jfs_superblock.h"
95 #include "jfs_filsys.h"
96 #include "jfs_metapage.h"
97 #include "jfs_dmap.h"
98 #include "jfs_unicode.h"
99 #include "jfs_debug.h"
100
101 /* dtree split parameter */
102 struct dtsplit {
103 struct metapage *mp;
104 s16 index;
105 s16 nslot;
106 struct component_name *key;
107 ddata_t *data;
108 struct pxdlist *pxdlist;
109 };
110
111 #define DT_PAGE(IP, MP) BT_PAGE(IP, MP, dtpage_t, i_dtroot)
112
113 /* get page buffer for specified block address */
114 #define DT_GETPAGE(IP, BN, MP, SIZE, P, RC) \
115 do { \
116 BT_GETPAGE(IP, BN, MP, dtpage_t, SIZE, P, RC, i_dtroot); \
117 if (!(RC)) { \
118 if (((P)->header.nextindex > \
119 (((BN) == 0) ? DTROOTMAXSLOT : (P)->header.maxslot)) || \
120 ((BN) && (((P)->header.maxslot > DTPAGEMAXSLOT) || \
121 ((P)->header.stblindex >= DTPAGEMAXSLOT)))) { \
122 BT_PUTPAGE(MP); \
123 jfs_error((IP)->i_sb, \
124 "DT_GETPAGE: dtree page corrupt\n"); \
125 MP = NULL; \
126 RC = -EIO; \
127 } \
128 } \
129 } while (0)
130
131 /* for consistency */
132 #define DT_PUTPAGE(MP) BT_PUTPAGE(MP)
133
134 #define DT_GETSEARCH(IP, LEAF, BN, MP, P, INDEX) \
135 BT_GETSEARCH(IP, LEAF, BN, MP, dtpage_t, P, INDEX, i_dtroot)
136
137 /*
138 * forward references
139 */
140 static int dtSplitUp(tid_t tid, struct inode *ip,
141 struct dtsplit * split, struct btstack * btstack);
142
143 static int dtSplitPage(tid_t tid, struct inode *ip, struct dtsplit * split,
144 struct metapage ** rmpp, dtpage_t ** rpp, pxd_t * rxdp);
145
146 static int dtExtendPage(tid_t tid, struct inode *ip,
147 struct dtsplit * split, struct btstack * btstack);
148
149 static int dtSplitRoot(tid_t tid, struct inode *ip,
150 struct dtsplit * split, struct metapage ** rmpp);
151
152 static int dtDeleteUp(tid_t tid, struct inode *ip, struct metapage * fmp,
153 dtpage_t * fp, struct btstack * btstack);
154
155 static int dtRelink(tid_t tid, struct inode *ip, dtpage_t * p);
156
157 static int dtReadFirst(struct inode *ip, struct btstack * btstack);
158
159 static int dtReadNext(struct inode *ip,
160 loff_t * offset, struct btstack * btstack);
161
162 static int dtCompare(struct component_name * key, dtpage_t * p, int si);
163
164 static int ciCompare(struct component_name * key, dtpage_t * p, int si,
165 int flag);
166
167 static void dtGetKey(dtpage_t * p, int i, struct component_name * key,
168 int flag);
169
170 static int ciGetLeafPrefixKey(dtpage_t * lp, int li, dtpage_t * rp,
171 int ri, struct component_name * key, int flag);
172
173 static void dtInsertEntry(dtpage_t * p, int index, struct component_name * key,
174 ddata_t * data, struct dt_lock **);
175
176 static void dtMoveEntry(dtpage_t * sp, int si, dtpage_t * dp,
177 struct dt_lock ** sdtlock, struct dt_lock ** ddtlock,
178 int do_index);
179
180 static void dtDeleteEntry(dtpage_t * p, int fi, struct dt_lock ** dtlock);
181
182 static void dtTruncateEntry(dtpage_t * p, int ti, struct dt_lock ** dtlock);
183
184 static void dtLinelockFreelist(dtpage_t * p, int m, struct dt_lock ** dtlock);
185
186 #define ciToUpper(c) UniStrupr((c)->name)
187
188 /*
189 * read_index_page()
190 *
191 * Reads a page of a directory's index table.
192 * Having metadata mapped into the directory inode's address space
193 * presents a multitude of problems. We avoid this by mapping to
194 * the absolute address space outside of the *_metapage routines
195 */
read_index_page(struct inode * inode,s64 blkno)196 static struct metapage *read_index_page(struct inode *inode, s64 blkno)
197 {
198 int rc;
199 s64 xaddr;
200 int xflag;
201 s32 xlen;
202
203 rc = xtLookup(inode, blkno, 1, &xflag, &xaddr, &xlen, 1);
204 if (rc || (xaddr == 0))
205 return NULL;
206
207 return read_metapage(inode, xaddr, PSIZE, 1);
208 }
209
210 /*
211 * get_index_page()
212 *
213 * Same as get_index_page(), but get's a new page without reading
214 */
get_index_page(struct inode * inode,s64 blkno)215 static struct metapage *get_index_page(struct inode *inode, s64 blkno)
216 {
217 int rc;
218 s64 xaddr;
219 int xflag;
220 s32 xlen;
221
222 rc = xtLookup(inode, blkno, 1, &xflag, &xaddr, &xlen, 1);
223 if (rc || (xaddr == 0))
224 return NULL;
225
226 return get_metapage(inode, xaddr, PSIZE, 1);
227 }
228
229 /*
230 * find_index()
231 *
232 * Returns dtree page containing directory table entry for specified
233 * index and pointer to its entry.
234 *
235 * mp must be released by caller.
236 */
find_index(struct inode * ip,u32 index,struct metapage ** mp,s64 * lblock)237 static struct dir_table_slot *find_index(struct inode *ip, u32 index,
238 struct metapage ** mp, s64 *lblock)
239 {
240 struct jfs_inode_info *jfs_ip = JFS_IP(ip);
241 s64 blkno;
242 s64 offset;
243 int page_offset;
244 struct dir_table_slot *slot;
245 static int maxWarnings = 10;
246
247 if (index < 2) {
248 if (maxWarnings) {
249 jfs_warn("find_entry called with index = %d", index);
250 maxWarnings--;
251 }
252 return NULL;
253 }
254
255 if (index >= jfs_ip->next_index) {
256 jfs_warn("find_entry called with index >= next_index");
257 return NULL;
258 }
259
260 if (jfs_dirtable_inline(ip)) {
261 /*
262 * Inline directory table
263 */
264 *mp = NULL;
265 slot = &jfs_ip->i_dirtable[index - 2];
266 } else {
267 offset = (index - 2) * sizeof(struct dir_table_slot);
268 page_offset = offset & (PSIZE - 1);
269 blkno = ((offset + 1) >> L2PSIZE) <<
270 JFS_SBI(ip->i_sb)->l2nbperpage;
271
272 if (*mp && (*lblock != blkno)) {
273 release_metapage(*mp);
274 *mp = NULL;
275 }
276 if (!(*mp)) {
277 *lblock = blkno;
278 *mp = read_index_page(ip, blkno);
279 }
280 if (!(*mp)) {
281 jfs_err("free_index: error reading directory table");
282 return NULL;
283 }
284
285 slot =
286 (struct dir_table_slot *) ((char *) (*mp)->data +
287 page_offset);
288 }
289 return slot;
290 }
291
lock_index(tid_t tid,struct inode * ip,struct metapage * mp,u32 index)292 static inline void lock_index(tid_t tid, struct inode *ip, struct metapage * mp,
293 u32 index)
294 {
295 struct tlock *tlck;
296 struct linelock *llck;
297 struct lv *lv;
298
299 tlck = txLock(tid, ip, mp, tlckDATA);
300 llck = (struct linelock *) tlck->lock;
301
302 if (llck->index >= llck->maxcnt)
303 llck = txLinelock(llck);
304 lv = &llck->lv[llck->index];
305
306 /*
307 * Linelock slot size is twice the size of directory table
308 * slot size. 512 entries per page.
309 */
310 lv->offset = ((index - 2) & 511) >> 1;
311 lv->length = 1;
312 llck->index++;
313 }
314
315 /*
316 * add_index()
317 *
318 * Adds an entry to the directory index table. This is used to provide
319 * each directory entry with a persistent index in which to resume
320 * directory traversals
321 */
add_index(tid_t tid,struct inode * ip,s64 bn,int slot)322 static u32 add_index(tid_t tid, struct inode *ip, s64 bn, int slot)
323 {
324 struct super_block *sb = ip->i_sb;
325 struct jfs_sb_info *sbi = JFS_SBI(sb);
326 struct jfs_inode_info *jfs_ip = JFS_IP(ip);
327 u64 blkno;
328 struct dir_table_slot *dirtab_slot;
329 u32 index;
330 struct linelock *llck;
331 struct lv *lv;
332 struct metapage *mp;
333 s64 offset;
334 uint page_offset;
335 struct tlock *tlck;
336 s64 xaddr;
337
338 ASSERT(DO_INDEX(ip));
339
340 if (jfs_ip->next_index < 2) {
341 jfs_warn("add_index: next_index = %d. Resetting!",
342 jfs_ip->next_index);
343 jfs_ip->next_index = 2;
344 }
345
346 index = jfs_ip->next_index++;
347
348 if (index <= MAX_INLINE_DIRTABLE_ENTRY) {
349 /*
350 * i_size reflects size of index table, or 8 bytes per entry.
351 */
352 ip->i_size = (loff_t) (index - 1) << 3;
353
354 /*
355 * dir table fits inline within inode
356 */
357 dirtab_slot = &jfs_ip->i_dirtable[index-2];
358 dirtab_slot->flag = DIR_INDEX_VALID;
359 dirtab_slot->slot = slot;
360 DTSaddress(dirtab_slot, bn);
361
362 set_cflag(COMMIT_Dirtable, ip);
363
364 return index;
365 }
366 if (index == (MAX_INLINE_DIRTABLE_ENTRY + 1)) {
367 struct dir_table_slot temp_table[12];
368
369 /*
370 * It's time to move the inline table to an external
371 * page and begin to build the xtree
372 */
373 if (dquot_alloc_block(ip, sbi->nbperpage))
374 goto clean_up;
375 if (dbAlloc(ip, 0, sbi->nbperpage, &xaddr)) {
376 dquot_free_block(ip, sbi->nbperpage);
377 goto clean_up;
378 }
379
380 /*
381 * Save the table, we're going to overwrite it with the
382 * xtree root
383 */
384 memcpy(temp_table, &jfs_ip->i_dirtable, sizeof(temp_table));
385
386 /*
387 * Initialize empty x-tree
388 */
389 xtInitRoot(tid, ip);
390
391 /*
392 * Add the first block to the xtree
393 */
394 if (xtInsert(tid, ip, 0, 0, sbi->nbperpage, &xaddr, 0)) {
395 /* This really shouldn't fail */
396 jfs_warn("add_index: xtInsert failed!");
397 memcpy(&jfs_ip->i_dirtable, temp_table,
398 sizeof (temp_table));
399 dbFree(ip, xaddr, sbi->nbperpage);
400 dquot_free_block(ip, sbi->nbperpage);
401 goto clean_up;
402 }
403 ip->i_size = PSIZE;
404
405 mp = get_index_page(ip, 0);
406 if (!mp) {
407 jfs_err("add_index: get_metapage failed!");
408 xtTruncate(tid, ip, 0, COMMIT_PWMAP);
409 memcpy(&jfs_ip->i_dirtable, temp_table,
410 sizeof (temp_table));
411 goto clean_up;
412 }
413 tlck = txLock(tid, ip, mp, tlckDATA);
414 llck = (struct linelock *) & tlck->lock;
415 ASSERT(llck->index == 0);
416 lv = &llck->lv[0];
417
418 lv->offset = 0;
419 lv->length = 6; /* tlckDATA slot size is 16 bytes */
420 llck->index++;
421
422 memcpy(mp->data, temp_table, sizeof(temp_table));
423
424 mark_metapage_dirty(mp);
425 release_metapage(mp);
426
427 /*
428 * Logging is now directed by xtree tlocks
429 */
430 clear_cflag(COMMIT_Dirtable, ip);
431 }
432
433 offset = (index - 2) * sizeof(struct dir_table_slot);
434 page_offset = offset & (PSIZE - 1);
435 blkno = ((offset + 1) >> L2PSIZE) << sbi->l2nbperpage;
436 if (page_offset == 0) {
437 /*
438 * This will be the beginning of a new page
439 */
440 xaddr = 0;
441 if (xtInsert(tid, ip, 0, blkno, sbi->nbperpage, &xaddr, 0)) {
442 jfs_warn("add_index: xtInsert failed!");
443 goto clean_up;
444 }
445 ip->i_size += PSIZE;
446
447 if ((mp = get_index_page(ip, blkno)))
448 memset(mp->data, 0, PSIZE); /* Just looks better */
449 else
450 xtTruncate(tid, ip, offset, COMMIT_PWMAP);
451 } else
452 mp = read_index_page(ip, blkno);
453
454 if (!mp) {
455 jfs_err("add_index: get/read_metapage failed!");
456 goto clean_up;
457 }
458
459 lock_index(tid, ip, mp, index);
460
461 dirtab_slot =
462 (struct dir_table_slot *) ((char *) mp->data + page_offset);
463 dirtab_slot->flag = DIR_INDEX_VALID;
464 dirtab_slot->slot = slot;
465 DTSaddress(dirtab_slot, bn);
466
467 mark_metapage_dirty(mp);
468 release_metapage(mp);
469
470 return index;
471
472 clean_up:
473
474 jfs_ip->next_index--;
475
476 return 0;
477 }
478
479 /*
480 * free_index()
481 *
482 * Marks an entry to the directory index table as free.
483 */
free_index(tid_t tid,struct inode * ip,u32 index,u32 next)484 static void free_index(tid_t tid, struct inode *ip, u32 index, u32 next)
485 {
486 struct dir_table_slot *dirtab_slot;
487 s64 lblock;
488 struct metapage *mp = NULL;
489
490 dirtab_slot = find_index(ip, index, &mp, &lblock);
491
492 if (!dirtab_slot)
493 return;
494
495 dirtab_slot->flag = DIR_INDEX_FREE;
496 dirtab_slot->slot = dirtab_slot->addr1 = 0;
497 dirtab_slot->addr2 = cpu_to_le32(next);
498
499 if (mp) {
500 lock_index(tid, ip, mp, index);
501 mark_metapage_dirty(mp);
502 release_metapage(mp);
503 } else
504 set_cflag(COMMIT_Dirtable, ip);
505 }
506
507 /*
508 * modify_index()
509 *
510 * Changes an entry in the directory index table
511 */
modify_index(tid_t tid,struct inode * ip,u32 index,s64 bn,int slot,struct metapage ** mp,s64 * lblock)512 static void modify_index(tid_t tid, struct inode *ip, u32 index, s64 bn,
513 int slot, struct metapage ** mp, s64 *lblock)
514 {
515 struct dir_table_slot *dirtab_slot;
516
517 dirtab_slot = find_index(ip, index, mp, lblock);
518
519 if (!dirtab_slot)
520 return;
521
522 DTSaddress(dirtab_slot, bn);
523 dirtab_slot->slot = slot;
524
525 if (*mp) {
526 lock_index(tid, ip, *mp, index);
527 mark_metapage_dirty(*mp);
528 } else
529 set_cflag(COMMIT_Dirtable, ip);
530 }
531
532 /*
533 * read_index()
534 *
535 * reads a directory table slot
536 */
read_index(struct inode * ip,u32 index,struct dir_table_slot * dirtab_slot)537 static int read_index(struct inode *ip, u32 index,
538 struct dir_table_slot * dirtab_slot)
539 {
540 s64 lblock;
541 struct metapage *mp = NULL;
542 struct dir_table_slot *slot;
543
544 slot = find_index(ip, index, &mp, &lblock);
545 if (!slot) {
546 return -EIO;
547 }
548
549 memcpy(dirtab_slot, slot, sizeof(struct dir_table_slot));
550
551 if (mp)
552 release_metapage(mp);
553
554 return 0;
555 }
556
557 /*
558 * dtSearch()
559 *
560 * function:
561 * Search for the entry with specified key
562 *
563 * parameter:
564 *
565 * return: 0 - search result on stack, leaf page pinned;
566 * errno - I/O error
567 */
dtSearch(struct inode * ip,struct component_name * key,ino_t * data,struct btstack * btstack,int flag)568 int dtSearch(struct inode *ip, struct component_name * key, ino_t * data,
569 struct btstack * btstack, int flag)
570 {
571 int rc = 0;
572 int cmp = 1; /* init for empty page */
573 s64 bn;
574 struct metapage *mp;
575 dtpage_t *p;
576 s8 *stbl;
577 int base, index, lim;
578 struct btframe *btsp;
579 pxd_t *pxd;
580 int psize = 288; /* initial in-line directory */
581 ino_t inumber;
582 struct component_name ciKey;
583 struct super_block *sb = ip->i_sb;
584
585 ciKey.name = kmalloc_array(JFS_NAME_MAX + 1, sizeof(wchar_t),
586 GFP_NOFS);
587 if (!ciKey.name) {
588 rc = -ENOMEM;
589 goto dtSearch_Exit2;
590 }
591
592
593 /* uppercase search key for c-i directory */
594 UniStrcpy(ciKey.name, key->name);
595 ciKey.namlen = key->namlen;
596
597 /* only uppercase if case-insensitive support is on */
598 if ((JFS_SBI(sb)->mntflag & JFS_OS2) == JFS_OS2) {
599 ciToUpper(&ciKey);
600 }
601 BT_CLR(btstack); /* reset stack */
602
603 /* init level count for max pages to split */
604 btstack->nsplit = 1;
605
606 /*
607 * search down tree from root:
608 *
609 * between two consecutive entries of <Ki, Pi> and <Kj, Pj> of
610 * internal page, child page Pi contains entry with k, Ki <= K < Kj.
611 *
612 * if entry with search key K is not found
613 * internal page search find the entry with largest key Ki
614 * less than K which point to the child page to search;
615 * leaf page search find the entry with smallest key Kj
616 * greater than K so that the returned index is the position of
617 * the entry to be shifted right for insertion of new entry.
618 * for empty tree, search key is greater than any key of the tree.
619 *
620 * by convention, root bn = 0.
621 */
622 for (bn = 0;;) {
623 /* get/pin the page to search */
624 DT_GETPAGE(ip, bn, mp, psize, p, rc);
625 if (rc)
626 goto dtSearch_Exit1;
627
628 /* get sorted entry table of the page */
629 stbl = DT_GETSTBL(p);
630
631 /*
632 * binary search with search key K on the current page.
633 */
634 for (base = 0, lim = p->header.nextindex; lim; lim >>= 1) {
635 index = base + (lim >> 1);
636
637 if (stbl[index] < 0) {
638 rc = -EIO;
639 goto out;
640 }
641
642 if (p->header.flag & BT_LEAF) {
643 /* uppercase leaf name to compare */
644 cmp =
645 ciCompare(&ciKey, p, stbl[index],
646 JFS_SBI(sb)->mntflag);
647 } else {
648 /* router key is in uppercase */
649
650 cmp = dtCompare(&ciKey, p, stbl[index]);
651
652
653 }
654 if (cmp == 0) {
655 /*
656 * search hit
657 */
658 /* search hit - leaf page:
659 * return the entry found
660 */
661 if (p->header.flag & BT_LEAF) {
662 inumber = le32_to_cpu(
663 ((struct ldtentry *) & p->slot[stbl[index]])->inumber);
664
665 /*
666 * search for JFS_LOOKUP
667 */
668 if (flag == JFS_LOOKUP) {
669 *data = inumber;
670 rc = 0;
671 goto out;
672 }
673
674 /*
675 * search for JFS_CREATE
676 */
677 if (flag == JFS_CREATE) {
678 *data = inumber;
679 rc = -EEXIST;
680 goto out;
681 }
682
683 /*
684 * search for JFS_REMOVE or JFS_RENAME
685 */
686 if ((flag == JFS_REMOVE ||
687 flag == JFS_RENAME) &&
688 *data != inumber) {
689 rc = -ESTALE;
690 goto out;
691 }
692
693 /*
694 * JFS_REMOVE|JFS_FINDDIR|JFS_RENAME
695 */
696 /* save search result */
697 *data = inumber;
698 btsp = btstack->top;
699 btsp->bn = bn;
700 btsp->index = index;
701 btsp->mp = mp;
702
703 rc = 0;
704 goto dtSearch_Exit1;
705 }
706
707 /* search hit - internal page:
708 * descend/search its child page
709 */
710 goto getChild;
711 }
712
713 if (cmp > 0) {
714 base = index + 1;
715 --lim;
716 }
717 }
718
719 /*
720 * search miss
721 *
722 * base is the smallest index with key (Kj) greater than
723 * search key (K) and may be zero or (maxindex + 1) index.
724 */
725 /*
726 * search miss - leaf page
727 *
728 * return location of entry (base) where new entry with
729 * search key K is to be inserted.
730 */
731 if (p->header.flag & BT_LEAF) {
732 /*
733 * search for JFS_LOOKUP, JFS_REMOVE, or JFS_RENAME
734 */
735 if (flag == JFS_LOOKUP || flag == JFS_REMOVE ||
736 flag == JFS_RENAME) {
737 rc = -ENOENT;
738 goto out;
739 }
740
741 /*
742 * search for JFS_CREATE|JFS_FINDDIR:
743 *
744 * save search result
745 */
746 *data = 0;
747 btsp = btstack->top;
748 btsp->bn = bn;
749 btsp->index = base;
750 btsp->mp = mp;
751
752 rc = 0;
753 goto dtSearch_Exit1;
754 }
755
756 /*
757 * search miss - internal page
758 *
759 * if base is non-zero, decrement base by one to get the parent
760 * entry of the child page to search.
761 */
762 index = base ? base - 1 : base;
763
764 /*
765 * go down to child page
766 */
767 getChild:
768 /* update max. number of pages to split */
769 if (BT_STACK_FULL(btstack)) {
770 /* Something's corrupted, mark filesystem dirty so
771 * chkdsk will fix it.
772 */
773 jfs_error(sb, "stack overrun!\n");
774 BT_STACK_DUMP(btstack);
775 rc = -EIO;
776 goto out;
777 }
778 btstack->nsplit++;
779
780 /* push (bn, index) of the parent page/entry */
781 BT_PUSH(btstack, bn, index);
782
783 /* get the child page block number */
784 pxd = (pxd_t *) & p->slot[stbl[index]];
785 bn = addressPXD(pxd);
786 psize = lengthPXD(pxd) << JFS_SBI(ip->i_sb)->l2bsize;
787
788 /* unpin the parent page */
789 DT_PUTPAGE(mp);
790 }
791
792 out:
793 DT_PUTPAGE(mp);
794
795 dtSearch_Exit1:
796
797 kfree(ciKey.name);
798
799 dtSearch_Exit2:
800
801 return rc;
802 }
803
804
805 /*
806 * dtInsert()
807 *
808 * function: insert an entry to directory tree
809 *
810 * parameter:
811 *
812 * return: 0 - success;
813 * errno - failure;
814 */
dtInsert(tid_t tid,struct inode * ip,struct component_name * name,ino_t * fsn,struct btstack * btstack)815 int dtInsert(tid_t tid, struct inode *ip,
816 struct component_name * name, ino_t * fsn, struct btstack * btstack)
817 {
818 int rc = 0;
819 struct metapage *mp; /* meta-page buffer */
820 dtpage_t *p; /* base B+-tree index page */
821 s64 bn;
822 int index;
823 struct dtsplit split; /* split information */
824 ddata_t data;
825 struct dt_lock *dtlck;
826 int n;
827 struct tlock *tlck;
828 struct lv *lv;
829
830 /*
831 * retrieve search result
832 *
833 * dtSearch() returns (leaf page pinned, index at which to insert).
834 * n.b. dtSearch() may return index of (maxindex + 1) of
835 * the full page.
836 */
837 DT_GETSEARCH(ip, btstack->top, bn, mp, p, index);
838 if (p->header.freelist == 0)
839 return -EINVAL;
840
841 /*
842 * insert entry for new key
843 */
844 if (DO_INDEX(ip)) {
845 if (JFS_IP(ip)->next_index == DIREND) {
846 DT_PUTPAGE(mp);
847 return -EMLINK;
848 }
849 n = NDTLEAF(name->namlen);
850 data.leaf.tid = tid;
851 data.leaf.ip = ip;
852 } else {
853 n = NDTLEAF_LEGACY(name->namlen);
854 data.leaf.ip = NULL; /* signifies legacy directory format */
855 }
856 data.leaf.ino = *fsn;
857
858 /*
859 * leaf page does not have enough room for new entry:
860 *
861 * extend/split the leaf page;
862 *
863 * dtSplitUp() will insert the entry and unpin the leaf page.
864 */
865 if (n > p->header.freecnt) {
866 split.mp = mp;
867 split.index = index;
868 split.nslot = n;
869 split.key = name;
870 split.data = &data;
871 rc = dtSplitUp(tid, ip, &split, btstack);
872 return rc;
873 }
874
875 /*
876 * leaf page does have enough room for new entry:
877 *
878 * insert the new data entry into the leaf page;
879 */
880 BT_MARK_DIRTY(mp, ip);
881 /*
882 * acquire a transaction lock on the leaf page
883 */
884 tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
885 dtlck = (struct dt_lock *) & tlck->lock;
886 ASSERT(dtlck->index == 0);
887 lv = & dtlck->lv[0];
888
889 /* linelock header */
890 lv->offset = 0;
891 lv->length = 1;
892 dtlck->index++;
893
894 dtInsertEntry(p, index, name, &data, &dtlck);
895
896 /* linelock stbl of non-root leaf page */
897 if (!(p->header.flag & BT_ROOT)) {
898 if (dtlck->index >= dtlck->maxcnt)
899 dtlck = (struct dt_lock *) txLinelock(dtlck);
900 lv = & dtlck->lv[dtlck->index];
901 n = index >> L2DTSLOTSIZE;
902 lv->offset = p->header.stblindex + n;
903 lv->length =
904 ((p->header.nextindex - 1) >> L2DTSLOTSIZE) - n + 1;
905 dtlck->index++;
906 }
907
908 /* unpin the leaf page */
909 DT_PUTPAGE(mp);
910
911 return 0;
912 }
913
914
915 /*
916 * dtSplitUp()
917 *
918 * function: propagate insertion bottom up;
919 *
920 * parameter:
921 *
922 * return: 0 - success;
923 * errno - failure;
924 * leaf page unpinned;
925 */
dtSplitUp(tid_t tid,struct inode * ip,struct dtsplit * split,struct btstack * btstack)926 static int dtSplitUp(tid_t tid,
927 struct inode *ip, struct dtsplit * split, struct btstack * btstack)
928 {
929 struct jfs_sb_info *sbi = JFS_SBI(ip->i_sb);
930 int rc = 0;
931 struct metapage *smp;
932 dtpage_t *sp; /* split page */
933 struct metapage *rmp;
934 dtpage_t *rp; /* new right page split from sp */
935 pxd_t rpxd; /* new right page extent descriptor */
936 struct metapage *lmp;
937 dtpage_t *lp; /* left child page */
938 int skip; /* index of entry of insertion */
939 struct btframe *parent; /* parent page entry on traverse stack */
940 s64 xaddr, nxaddr;
941 int xlen, xsize;
942 struct pxdlist pxdlist;
943 pxd_t *pxd;
944 struct component_name key = { 0, NULL };
945 ddata_t *data = split->data;
946 int n;
947 struct dt_lock *dtlck;
948 struct tlock *tlck;
949 struct lv *lv;
950 int quota_allocation = 0;
951
952 /* get split page */
953 smp = split->mp;
954 sp = DT_PAGE(ip, smp);
955
956 key.name = kmalloc_array(JFS_NAME_MAX + 2, sizeof(wchar_t), GFP_NOFS);
957 if (!key.name) {
958 DT_PUTPAGE(smp);
959 rc = -ENOMEM;
960 goto dtSplitUp_Exit;
961 }
962
963 /*
964 * split leaf page
965 *
966 * The split routines insert the new entry, and
967 * acquire txLock as appropriate.
968 */
969 /*
970 * split root leaf page:
971 */
972 if (sp->header.flag & BT_ROOT) {
973 /*
974 * allocate a single extent child page
975 */
976 xlen = 1;
977 n = sbi->bsize >> L2DTSLOTSIZE;
978 n -= (n + 31) >> L2DTSLOTSIZE; /* stbl size */
979 n -= DTROOTMAXSLOT - sp->header.freecnt; /* header + entries */
980 if (n <= split->nslot)
981 xlen++;
982 if ((rc = dbAlloc(ip, 0, (s64) xlen, &xaddr))) {
983 DT_PUTPAGE(smp);
984 goto freeKeyName;
985 }
986
987 pxdlist.maxnpxd = 1;
988 pxdlist.npxd = 0;
989 pxd = &pxdlist.pxd[0];
990 PXDaddress(pxd, xaddr);
991 PXDlength(pxd, xlen);
992 split->pxdlist = &pxdlist;
993 rc = dtSplitRoot(tid, ip, split, &rmp);
994
995 if (rc)
996 dbFree(ip, xaddr, xlen);
997 else
998 DT_PUTPAGE(rmp);
999
1000 DT_PUTPAGE(smp);
1001
1002 if (!DO_INDEX(ip))
1003 ip->i_size = xlen << sbi->l2bsize;
1004
1005 goto freeKeyName;
1006 }
1007
1008 /*
1009 * extend first leaf page
1010 *
1011 * extend the 1st extent if less than buffer page size
1012 * (dtExtendPage() reurns leaf page unpinned)
1013 */
1014 pxd = &sp->header.self;
1015 xlen = lengthPXD(pxd);
1016 xsize = xlen << sbi->l2bsize;
1017 if (xsize < PSIZE) {
1018 xaddr = addressPXD(pxd);
1019 n = xsize >> L2DTSLOTSIZE;
1020 n -= (n + 31) >> L2DTSLOTSIZE; /* stbl size */
1021 if ((n + sp->header.freecnt) <= split->nslot)
1022 n = xlen + (xlen << 1);
1023 else
1024 n = xlen;
1025
1026 /* Allocate blocks to quota. */
1027 rc = dquot_alloc_block(ip, n);
1028 if (rc)
1029 goto extendOut;
1030 quota_allocation += n;
1031
1032 if ((rc = dbReAlloc(sbi->ipbmap, xaddr, (s64) xlen,
1033 (s64) n, &nxaddr)))
1034 goto extendOut;
1035
1036 pxdlist.maxnpxd = 1;
1037 pxdlist.npxd = 0;
1038 pxd = &pxdlist.pxd[0];
1039 PXDaddress(pxd, nxaddr);
1040 PXDlength(pxd, xlen + n);
1041 split->pxdlist = &pxdlist;
1042 if ((rc = dtExtendPage(tid, ip, split, btstack))) {
1043 nxaddr = addressPXD(pxd);
1044 if (xaddr != nxaddr) {
1045 /* free relocated extent */
1046 xlen = lengthPXD(pxd);
1047 dbFree(ip, nxaddr, (s64) xlen);
1048 } else {
1049 /* free extended delta */
1050 xlen = lengthPXD(pxd) - n;
1051 xaddr = addressPXD(pxd) + xlen;
1052 dbFree(ip, xaddr, (s64) n);
1053 }
1054 } else if (!DO_INDEX(ip))
1055 ip->i_size = lengthPXD(pxd) << sbi->l2bsize;
1056
1057
1058 extendOut:
1059 DT_PUTPAGE(smp);
1060 goto freeKeyName;
1061 }
1062
1063 /*
1064 * split leaf page <sp> into <sp> and a new right page <rp>.
1065 *
1066 * return <rp> pinned and its extent descriptor <rpxd>
1067 */
1068 /*
1069 * allocate new directory page extent and
1070 * new index page(s) to cover page split(s)
1071 *
1072 * allocation hint: ?
1073 */
1074 n = btstack->nsplit;
1075 pxdlist.maxnpxd = pxdlist.npxd = 0;
1076 xlen = sbi->nbperpage;
1077 for (pxd = pxdlist.pxd; n > 0; n--, pxd++) {
1078 if ((rc = dbAlloc(ip, 0, (s64) xlen, &xaddr)) == 0) {
1079 PXDaddress(pxd, xaddr);
1080 PXDlength(pxd, xlen);
1081 pxdlist.maxnpxd++;
1082 continue;
1083 }
1084
1085 DT_PUTPAGE(smp);
1086
1087 /* undo allocation */
1088 goto splitOut;
1089 }
1090
1091 split->pxdlist = &pxdlist;
1092 if ((rc = dtSplitPage(tid, ip, split, &rmp, &rp, &rpxd))) {
1093 DT_PUTPAGE(smp);
1094
1095 /* undo allocation */
1096 goto splitOut;
1097 }
1098
1099 if (!DO_INDEX(ip))
1100 ip->i_size += PSIZE;
1101
1102 /*
1103 * propagate up the router entry for the leaf page just split
1104 *
1105 * insert a router entry for the new page into the parent page,
1106 * propagate the insert/split up the tree by walking back the stack
1107 * of (bn of parent page, index of child page entry in parent page)
1108 * that were traversed during the search for the page that split.
1109 *
1110 * the propagation of insert/split up the tree stops if the root
1111 * splits or the page inserted into doesn't have to split to hold
1112 * the new entry.
1113 *
1114 * the parent entry for the split page remains the same, and
1115 * a new entry is inserted at its right with the first key and
1116 * block number of the new right page.
1117 *
1118 * There are a maximum of 4 pages pinned at any time:
1119 * two children, left parent and right parent (when the parent splits).
1120 * keep the child pages pinned while working on the parent.
1121 * make sure that all pins are released at exit.
1122 */
1123 while ((parent = BT_POP(btstack)) != NULL) {
1124 /* parent page specified by stack frame <parent> */
1125
1126 /* keep current child pages (<lp>, <rp>) pinned */
1127 lmp = smp;
1128 lp = sp;
1129
1130 /*
1131 * insert router entry in parent for new right child page <rp>
1132 */
1133 /* get the parent page <sp> */
1134 DT_GETPAGE(ip, parent->bn, smp, PSIZE, sp, rc);
1135 if (rc) {
1136 DT_PUTPAGE(lmp);
1137 DT_PUTPAGE(rmp);
1138 goto splitOut;
1139 }
1140
1141 /*
1142 * The new key entry goes ONE AFTER the index of parent entry,
1143 * because the split was to the right.
1144 */
1145 skip = parent->index + 1;
1146
1147 /*
1148 * compute the key for the router entry
1149 *
1150 * key suffix compression:
1151 * for internal pages that have leaf pages as children,
1152 * retain only what's needed to distinguish between
1153 * the new entry and the entry on the page to its left.
1154 * If the keys compare equal, retain the entire key.
1155 *
1156 * note that compression is performed only at computing
1157 * router key at the lowest internal level.
1158 * further compression of the key between pairs of higher
1159 * level internal pages loses too much information and
1160 * the search may fail.
1161 * (e.g., two adjacent leaf pages of {a, ..., x} {xx, ...,}
1162 * results in two adjacent parent entries (a)(xx).
1163 * if split occurs between these two entries, and
1164 * if compression is applied, the router key of parent entry
1165 * of right page (x) will divert search for x into right
1166 * subtree and miss x in the left subtree.)
1167 *
1168 * the entire key must be retained for the next-to-leftmost
1169 * internal key at any level of the tree, or search may fail
1170 * (e.g., ?)
1171 */
1172 switch (rp->header.flag & BT_TYPE) {
1173 case BT_LEAF:
1174 /*
1175 * compute the length of prefix for suffix compression
1176 * between last entry of left page and first entry
1177 * of right page
1178 */
1179 if ((sp->header.flag & BT_ROOT && skip > 1) ||
1180 sp->header.prev != 0 || skip > 1) {
1181 /* compute uppercase router prefix key */
1182 rc = ciGetLeafPrefixKey(lp,
1183 lp->header.nextindex-1,
1184 rp, 0, &key,
1185 sbi->mntflag);
1186 if (rc) {
1187 DT_PUTPAGE(lmp);
1188 DT_PUTPAGE(rmp);
1189 DT_PUTPAGE(smp);
1190 goto splitOut;
1191 }
1192 } else {
1193 /* next to leftmost entry of
1194 lowest internal level */
1195
1196 /* compute uppercase router key */
1197 dtGetKey(rp, 0, &key, sbi->mntflag);
1198 key.name[key.namlen] = 0;
1199
1200 if ((sbi->mntflag & JFS_OS2) == JFS_OS2)
1201 ciToUpper(&key);
1202 }
1203
1204 n = NDTINTERNAL(key.namlen);
1205 break;
1206
1207 case BT_INTERNAL:
1208 dtGetKey(rp, 0, &key, sbi->mntflag);
1209 n = NDTINTERNAL(key.namlen);
1210 break;
1211
1212 default:
1213 jfs_err("dtSplitUp(): UFO!");
1214 break;
1215 }
1216
1217 /* unpin left child page */
1218 DT_PUTPAGE(lmp);
1219
1220 /*
1221 * compute the data for the router entry
1222 */
1223 data->xd = rpxd; /* child page xd */
1224
1225 /*
1226 * parent page is full - split the parent page
1227 */
1228 if (n > sp->header.freecnt) {
1229 /* init for parent page split */
1230 split->mp = smp;
1231 split->index = skip; /* index at insert */
1232 split->nslot = n;
1233 split->key = &key;
1234 /* split->data = data; */
1235
1236 /* unpin right child page */
1237 DT_PUTPAGE(rmp);
1238
1239 /* The split routines insert the new entry,
1240 * acquire txLock as appropriate.
1241 * return <rp> pinned and its block number <rbn>.
1242 */
1243 rc = (sp->header.flag & BT_ROOT) ?
1244 dtSplitRoot(tid, ip, split, &rmp) :
1245 dtSplitPage(tid, ip, split, &rmp, &rp, &rpxd);
1246 if (rc) {
1247 DT_PUTPAGE(smp);
1248 goto splitOut;
1249 }
1250
1251 /* smp and rmp are pinned */
1252 }
1253 /*
1254 * parent page is not full - insert router entry in parent page
1255 */
1256 else {
1257 BT_MARK_DIRTY(smp, ip);
1258 /*
1259 * acquire a transaction lock on the parent page
1260 */
1261 tlck = txLock(tid, ip, smp, tlckDTREE | tlckENTRY);
1262 dtlck = (struct dt_lock *) & tlck->lock;
1263 ASSERT(dtlck->index == 0);
1264 lv = & dtlck->lv[0];
1265
1266 /* linelock header */
1267 lv->offset = 0;
1268 lv->length = 1;
1269 dtlck->index++;
1270
1271 /* linelock stbl of non-root parent page */
1272 if (!(sp->header.flag & BT_ROOT)) {
1273 lv++;
1274 n = skip >> L2DTSLOTSIZE;
1275 lv->offset = sp->header.stblindex + n;
1276 lv->length =
1277 ((sp->header.nextindex -
1278 1) >> L2DTSLOTSIZE) - n + 1;
1279 dtlck->index++;
1280 }
1281
1282 dtInsertEntry(sp, skip, &key, data, &dtlck);
1283
1284 /* exit propagate up */
1285 break;
1286 }
1287 }
1288
1289 /* unpin current split and its right page */
1290 DT_PUTPAGE(smp);
1291 DT_PUTPAGE(rmp);
1292
1293 /*
1294 * free remaining extents allocated for split
1295 */
1296 splitOut:
1297 n = pxdlist.npxd;
1298 pxd = &pxdlist.pxd[n];
1299 for (; n < pxdlist.maxnpxd; n++, pxd++)
1300 dbFree(ip, addressPXD(pxd), (s64) lengthPXD(pxd));
1301
1302 freeKeyName:
1303 kfree(key.name);
1304
1305 /* Rollback quota allocation */
1306 if (rc && quota_allocation)
1307 dquot_free_block(ip, quota_allocation);
1308
1309 dtSplitUp_Exit:
1310
1311 return rc;
1312 }
1313
1314
1315 /*
1316 * dtSplitPage()
1317 *
1318 * function: Split a non-root page of a btree.
1319 *
1320 * parameter:
1321 *
1322 * return: 0 - success;
1323 * errno - failure;
1324 * return split and new page pinned;
1325 */
dtSplitPage(tid_t tid,struct inode * ip,struct dtsplit * split,struct metapage ** rmpp,dtpage_t ** rpp,pxd_t * rpxdp)1326 static int dtSplitPage(tid_t tid, struct inode *ip, struct dtsplit * split,
1327 struct metapage ** rmpp, dtpage_t ** rpp, pxd_t * rpxdp)
1328 {
1329 int rc = 0;
1330 struct metapage *smp;
1331 dtpage_t *sp;
1332 struct metapage *rmp;
1333 dtpage_t *rp; /* new right page allocated */
1334 s64 rbn; /* new right page block number */
1335 struct metapage *mp;
1336 dtpage_t *p;
1337 s64 nextbn;
1338 struct pxdlist *pxdlist;
1339 pxd_t *pxd;
1340 int skip, nextindex, half, left, nxt, off, si;
1341 struct ldtentry *ldtentry;
1342 struct idtentry *idtentry;
1343 u8 *stbl;
1344 struct dtslot *f;
1345 int fsi, stblsize;
1346 int n;
1347 struct dt_lock *sdtlck, *rdtlck;
1348 struct tlock *tlck;
1349 struct dt_lock *dtlck;
1350 struct lv *slv, *rlv, *lv;
1351
1352 /* get split page */
1353 smp = split->mp;
1354 sp = DT_PAGE(ip, smp);
1355
1356 /*
1357 * allocate the new right page for the split
1358 */
1359 pxdlist = split->pxdlist;
1360 pxd = &pxdlist->pxd[pxdlist->npxd];
1361 pxdlist->npxd++;
1362 rbn = addressPXD(pxd);
1363 rmp = get_metapage(ip, rbn, PSIZE, 1);
1364 if (rmp == NULL)
1365 return -EIO;
1366
1367 /* Allocate blocks to quota. */
1368 rc = dquot_alloc_block(ip, lengthPXD(pxd));
1369 if (rc) {
1370 release_metapage(rmp);
1371 return rc;
1372 }
1373
1374 jfs_info("dtSplitPage: ip:0x%p smp:0x%p rmp:0x%p", ip, smp, rmp);
1375
1376 BT_MARK_DIRTY(rmp, ip);
1377 /*
1378 * acquire a transaction lock on the new right page
1379 */
1380 tlck = txLock(tid, ip, rmp, tlckDTREE | tlckNEW);
1381 rdtlck = (struct dt_lock *) & tlck->lock;
1382
1383 rp = (dtpage_t *) rmp->data;
1384 *rpp = rp;
1385 rp->header.self = *pxd;
1386
1387 BT_MARK_DIRTY(smp, ip);
1388 /*
1389 * acquire a transaction lock on the split page
1390 *
1391 * action:
1392 */
1393 tlck = txLock(tid, ip, smp, tlckDTREE | tlckENTRY);
1394 sdtlck = (struct dt_lock *) & tlck->lock;
1395
1396 /* linelock header of split page */
1397 ASSERT(sdtlck->index == 0);
1398 slv = & sdtlck->lv[0];
1399 slv->offset = 0;
1400 slv->length = 1;
1401 sdtlck->index++;
1402
1403 /*
1404 * initialize/update sibling pointers between sp and rp
1405 */
1406 nextbn = le64_to_cpu(sp->header.next);
1407 rp->header.next = cpu_to_le64(nextbn);
1408 rp->header.prev = cpu_to_le64(addressPXD(&sp->header.self));
1409 sp->header.next = cpu_to_le64(rbn);
1410
1411 /*
1412 * initialize new right page
1413 */
1414 rp->header.flag = sp->header.flag;
1415
1416 /* compute sorted entry table at start of extent data area */
1417 rp->header.nextindex = 0;
1418 rp->header.stblindex = 1;
1419
1420 n = PSIZE >> L2DTSLOTSIZE;
1421 rp->header.maxslot = n;
1422 stblsize = (n + 31) >> L2DTSLOTSIZE; /* in unit of slot */
1423
1424 /* init freelist */
1425 fsi = rp->header.stblindex + stblsize;
1426 rp->header.freelist = fsi;
1427 rp->header.freecnt = rp->header.maxslot - fsi;
1428
1429 /*
1430 * sequential append at tail: append without split
1431 *
1432 * If splitting the last page on a level because of appending
1433 * a entry to it (skip is maxentry), it's likely that the access is
1434 * sequential. Adding an empty page on the side of the level is less
1435 * work and can push the fill factor much higher than normal.
1436 * If we're wrong it's no big deal, we'll just do the split the right
1437 * way next time.
1438 * (It may look like it's equally easy to do a similar hack for
1439 * reverse sorted data, that is, split the tree left,
1440 * but it's not. Be my guest.)
1441 */
1442 if (nextbn == 0 && split->index == sp->header.nextindex) {
1443 /* linelock header + stbl (first slot) of new page */
1444 rlv = & rdtlck->lv[rdtlck->index];
1445 rlv->offset = 0;
1446 rlv->length = 2;
1447 rdtlck->index++;
1448
1449 /*
1450 * initialize freelist of new right page
1451 */
1452 f = &rp->slot[fsi];
1453 for (fsi++; fsi < rp->header.maxslot; f++, fsi++)
1454 f->next = fsi;
1455 f->next = -1;
1456
1457 /* insert entry at the first entry of the new right page */
1458 dtInsertEntry(rp, 0, split->key, split->data, &rdtlck);
1459
1460 goto out;
1461 }
1462
1463 /*
1464 * non-sequential insert (at possibly middle page)
1465 */
1466
1467 /*
1468 * update prev pointer of previous right sibling page;
1469 */
1470 if (nextbn != 0) {
1471 DT_GETPAGE(ip, nextbn, mp, PSIZE, p, rc);
1472 if (rc) {
1473 discard_metapage(rmp);
1474 return rc;
1475 }
1476
1477 BT_MARK_DIRTY(mp, ip);
1478 /*
1479 * acquire a transaction lock on the next page
1480 */
1481 tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK);
1482 jfs_info("dtSplitPage: tlck = 0x%p, ip = 0x%p, mp=0x%p",
1483 tlck, ip, mp);
1484 dtlck = (struct dt_lock *) & tlck->lock;
1485
1486 /* linelock header of previous right sibling page */
1487 lv = & dtlck->lv[dtlck->index];
1488 lv->offset = 0;
1489 lv->length = 1;
1490 dtlck->index++;
1491
1492 p->header.prev = cpu_to_le64(rbn);
1493
1494 DT_PUTPAGE(mp);
1495 }
1496
1497 /*
1498 * split the data between the split and right pages.
1499 */
1500 skip = split->index;
1501 half = (PSIZE >> L2DTSLOTSIZE) >> 1; /* swag */
1502 left = 0;
1503
1504 /*
1505 * compute fill factor for split pages
1506 *
1507 * <nxt> traces the next entry to move to rp
1508 * <off> traces the next entry to stay in sp
1509 */
1510 stbl = (u8 *) & sp->slot[sp->header.stblindex];
1511 nextindex = sp->header.nextindex;
1512 for (nxt = off = 0; nxt < nextindex; ++off) {
1513 if (off == skip)
1514 /* check for fill factor with new entry size */
1515 n = split->nslot;
1516 else {
1517 si = stbl[nxt];
1518 switch (sp->header.flag & BT_TYPE) {
1519 case BT_LEAF:
1520 ldtentry = (struct ldtentry *) & sp->slot[si];
1521 if (DO_INDEX(ip))
1522 n = NDTLEAF(ldtentry->namlen);
1523 else
1524 n = NDTLEAF_LEGACY(ldtentry->
1525 namlen);
1526 break;
1527
1528 case BT_INTERNAL:
1529 idtentry = (struct idtentry *) & sp->slot[si];
1530 n = NDTINTERNAL(idtentry->namlen);
1531 break;
1532
1533 default:
1534 break;
1535 }
1536
1537 ++nxt; /* advance to next entry to move in sp */
1538 }
1539
1540 left += n;
1541 if (left >= half)
1542 break;
1543 }
1544
1545 /* <nxt> poins to the 1st entry to move */
1546
1547 /*
1548 * move entries to right page
1549 *
1550 * dtMoveEntry() initializes rp and reserves entry for insertion
1551 *
1552 * split page moved out entries are linelocked;
1553 * new/right page moved in entries are linelocked;
1554 */
1555 /* linelock header + stbl of new right page */
1556 rlv = & rdtlck->lv[rdtlck->index];
1557 rlv->offset = 0;
1558 rlv->length = 5;
1559 rdtlck->index++;
1560
1561 dtMoveEntry(sp, nxt, rp, &sdtlck, &rdtlck, DO_INDEX(ip));
1562
1563 sp->header.nextindex = nxt;
1564
1565 /*
1566 * finalize freelist of new right page
1567 */
1568 fsi = rp->header.freelist;
1569 f = &rp->slot[fsi];
1570 for (fsi++; fsi < rp->header.maxslot; f++, fsi++)
1571 f->next = fsi;
1572 f->next = -1;
1573
1574 /*
1575 * Update directory index table for entries now in right page
1576 */
1577 if ((rp->header.flag & BT_LEAF) && DO_INDEX(ip)) {
1578 s64 lblock;
1579
1580 mp = NULL;
1581 stbl = DT_GETSTBL(rp);
1582 for (n = 0; n < rp->header.nextindex; n++) {
1583 ldtentry = (struct ldtentry *) & rp->slot[stbl[n]];
1584 modify_index(tid, ip, le32_to_cpu(ldtentry->index),
1585 rbn, n, &mp, &lblock);
1586 }
1587 if (mp)
1588 release_metapage(mp);
1589 }
1590
1591 /*
1592 * the skipped index was on the left page,
1593 */
1594 if (skip <= off) {
1595 /* insert the new entry in the split page */
1596 dtInsertEntry(sp, skip, split->key, split->data, &sdtlck);
1597
1598 /* linelock stbl of split page */
1599 if (sdtlck->index >= sdtlck->maxcnt)
1600 sdtlck = (struct dt_lock *) txLinelock(sdtlck);
1601 slv = & sdtlck->lv[sdtlck->index];
1602 n = skip >> L2DTSLOTSIZE;
1603 slv->offset = sp->header.stblindex + n;
1604 slv->length =
1605 ((sp->header.nextindex - 1) >> L2DTSLOTSIZE) - n + 1;
1606 sdtlck->index++;
1607 }
1608 /*
1609 * the skipped index was on the right page,
1610 */
1611 else {
1612 /* adjust the skip index to reflect the new position */
1613 skip -= nxt;
1614
1615 /* insert the new entry in the right page */
1616 dtInsertEntry(rp, skip, split->key, split->data, &rdtlck);
1617 }
1618
1619 out:
1620 *rmpp = rmp;
1621 *rpxdp = *pxd;
1622
1623 return rc;
1624 }
1625
1626
1627 /*
1628 * dtExtendPage()
1629 *
1630 * function: extend 1st/only directory leaf page
1631 *
1632 * parameter:
1633 *
1634 * return: 0 - success;
1635 * errno - failure;
1636 * return extended page pinned;
1637 */
dtExtendPage(tid_t tid,struct inode * ip,struct dtsplit * split,struct btstack * btstack)1638 static int dtExtendPage(tid_t tid,
1639 struct inode *ip, struct dtsplit * split, struct btstack * btstack)
1640 {
1641 struct super_block *sb = ip->i_sb;
1642 int rc;
1643 struct metapage *smp, *pmp, *mp;
1644 dtpage_t *sp, *pp;
1645 struct pxdlist *pxdlist;
1646 pxd_t *pxd, *tpxd;
1647 int xlen, xsize;
1648 int newstblindex, newstblsize;
1649 int oldstblindex, oldstblsize;
1650 int fsi, last;
1651 struct dtslot *f;
1652 struct btframe *parent;
1653 int n;
1654 struct dt_lock *dtlck;
1655 s64 xaddr, txaddr;
1656 struct tlock *tlck;
1657 struct pxd_lock *pxdlock;
1658 struct lv *lv;
1659 uint type;
1660 struct ldtentry *ldtentry;
1661 u8 *stbl;
1662
1663 /* get page to extend */
1664 smp = split->mp;
1665 sp = DT_PAGE(ip, smp);
1666
1667 /* get parent/root page */
1668 parent = BT_POP(btstack);
1669 DT_GETPAGE(ip, parent->bn, pmp, PSIZE, pp, rc);
1670 if (rc)
1671 return (rc);
1672
1673 /*
1674 * extend the extent
1675 */
1676 pxdlist = split->pxdlist;
1677 pxd = &pxdlist->pxd[pxdlist->npxd];
1678 pxdlist->npxd++;
1679
1680 xaddr = addressPXD(pxd);
1681 tpxd = &sp->header.self;
1682 txaddr = addressPXD(tpxd);
1683 /* in-place extension */
1684 if (xaddr == txaddr) {
1685 type = tlckEXTEND;
1686 }
1687 /* relocation */
1688 else {
1689 type = tlckNEW;
1690
1691 /* save moved extent descriptor for later free */
1692 tlck = txMaplock(tid, ip, tlckDTREE | tlckRELOCATE);
1693 pxdlock = (struct pxd_lock *) & tlck->lock;
1694 pxdlock->flag = mlckFREEPXD;
1695 pxdlock->pxd = sp->header.self;
1696 pxdlock->index = 1;
1697
1698 /*
1699 * Update directory index table to reflect new page address
1700 */
1701 if (DO_INDEX(ip)) {
1702 s64 lblock;
1703
1704 mp = NULL;
1705 stbl = DT_GETSTBL(sp);
1706 for (n = 0; n < sp->header.nextindex; n++) {
1707 ldtentry =
1708 (struct ldtentry *) & sp->slot[stbl[n]];
1709 modify_index(tid, ip,
1710 le32_to_cpu(ldtentry->index),
1711 xaddr, n, &mp, &lblock);
1712 }
1713 if (mp)
1714 release_metapage(mp);
1715 }
1716 }
1717
1718 /*
1719 * extend the page
1720 */
1721 sp->header.self = *pxd;
1722
1723 jfs_info("dtExtendPage: ip:0x%p smp:0x%p sp:0x%p", ip, smp, sp);
1724
1725 BT_MARK_DIRTY(smp, ip);
1726 /*
1727 * acquire a transaction lock on the extended/leaf page
1728 */
1729 tlck = txLock(tid, ip, smp, tlckDTREE | type);
1730 dtlck = (struct dt_lock *) & tlck->lock;
1731 lv = & dtlck->lv[0];
1732
1733 /* update buffer extent descriptor of extended page */
1734 xlen = lengthPXD(pxd);
1735 xsize = xlen << JFS_SBI(sb)->l2bsize;
1736
1737 /*
1738 * copy old stbl to new stbl at start of extended area
1739 */
1740 oldstblindex = sp->header.stblindex;
1741 oldstblsize = (sp->header.maxslot + 31) >> L2DTSLOTSIZE;
1742 newstblindex = sp->header.maxslot;
1743 n = xsize >> L2DTSLOTSIZE;
1744 newstblsize = (n + 31) >> L2DTSLOTSIZE;
1745 memcpy(&sp->slot[newstblindex], &sp->slot[oldstblindex],
1746 sp->header.nextindex);
1747
1748 /*
1749 * in-line extension: linelock old area of extended page
1750 */
1751 if (type == tlckEXTEND) {
1752 /* linelock header */
1753 lv->offset = 0;
1754 lv->length = 1;
1755 dtlck->index++;
1756 lv++;
1757
1758 /* linelock new stbl of extended page */
1759 lv->offset = newstblindex;
1760 lv->length = newstblsize;
1761 }
1762 /*
1763 * relocation: linelock whole relocated area
1764 */
1765 else {
1766 lv->offset = 0;
1767 lv->length = sp->header.maxslot + newstblsize;
1768 }
1769
1770 dtlck->index++;
1771
1772 sp->header.maxslot = n;
1773 sp->header.stblindex = newstblindex;
1774 /* sp->header.nextindex remains the same */
1775
1776 /*
1777 * add old stbl region at head of freelist
1778 */
1779 fsi = oldstblindex;
1780 f = &sp->slot[fsi];
1781 last = sp->header.freelist;
1782 for (n = 0; n < oldstblsize; n++, fsi++, f++) {
1783 f->next = last;
1784 last = fsi;
1785 }
1786 sp->header.freelist = last;
1787 sp->header.freecnt += oldstblsize;
1788
1789 /*
1790 * append free region of newly extended area at tail of freelist
1791 */
1792 /* init free region of newly extended area */
1793 fsi = n = newstblindex + newstblsize;
1794 f = &sp->slot[fsi];
1795 for (fsi++; fsi < sp->header.maxslot; f++, fsi++)
1796 f->next = fsi;
1797 f->next = -1;
1798
1799 /* append new free region at tail of old freelist */
1800 fsi = sp->header.freelist;
1801 if (fsi == -1)
1802 sp->header.freelist = n;
1803 else {
1804 do {
1805 f = &sp->slot[fsi];
1806 fsi = f->next;
1807 } while (fsi != -1);
1808
1809 f->next = n;
1810 }
1811
1812 sp->header.freecnt += sp->header.maxslot - n;
1813
1814 /*
1815 * insert the new entry
1816 */
1817 dtInsertEntry(sp, split->index, split->key, split->data, &dtlck);
1818
1819 BT_MARK_DIRTY(pmp, ip);
1820 /*
1821 * linelock any freeslots residing in old extent
1822 */
1823 if (type == tlckEXTEND) {
1824 n = sp->header.maxslot >> 2;
1825 if (sp->header.freelist < n)
1826 dtLinelockFreelist(sp, n, &dtlck);
1827 }
1828
1829 /*
1830 * update parent entry on the parent/root page
1831 */
1832 /*
1833 * acquire a transaction lock on the parent/root page
1834 */
1835 tlck = txLock(tid, ip, pmp, tlckDTREE | tlckENTRY);
1836 dtlck = (struct dt_lock *) & tlck->lock;
1837 lv = & dtlck->lv[dtlck->index];
1838
1839 /* linelock parent entry - 1st slot */
1840 lv->offset = 1;
1841 lv->length = 1;
1842 dtlck->index++;
1843
1844 /* update the parent pxd for page extension */
1845 tpxd = (pxd_t *) & pp->slot[1];
1846 *tpxd = *pxd;
1847
1848 DT_PUTPAGE(pmp);
1849 return 0;
1850 }
1851
1852
1853 /*
1854 * dtSplitRoot()
1855 *
1856 * function:
1857 * split the full root page into
1858 * original/root/split page and new right page
1859 * i.e., root remains fixed in tree anchor (inode) and
1860 * the root is copied to a single new right child page
1861 * since root page << non-root page, and
1862 * the split root page contains a single entry for the
1863 * new right child page.
1864 *
1865 * parameter:
1866 *
1867 * return: 0 - success;
1868 * errno - failure;
1869 * return new page pinned;
1870 */
dtSplitRoot(tid_t tid,struct inode * ip,struct dtsplit * split,struct metapage ** rmpp)1871 static int dtSplitRoot(tid_t tid,
1872 struct inode *ip, struct dtsplit * split, struct metapage ** rmpp)
1873 {
1874 struct super_block *sb = ip->i_sb;
1875 struct metapage *smp;
1876 dtroot_t *sp;
1877 struct metapage *rmp;
1878 dtpage_t *rp;
1879 s64 rbn;
1880 int xlen;
1881 int xsize;
1882 struct dtslot *f;
1883 s8 *stbl;
1884 int fsi, stblsize, n;
1885 struct idtentry *s;
1886 pxd_t *ppxd;
1887 struct pxdlist *pxdlist;
1888 pxd_t *pxd;
1889 struct dt_lock *dtlck;
1890 struct tlock *tlck;
1891 struct lv *lv;
1892 int rc;
1893
1894 /* get split root page */
1895 smp = split->mp;
1896 sp = &JFS_IP(ip)->i_dtroot;
1897
1898 /*
1899 * allocate/initialize a single (right) child page
1900 *
1901 * N.B. at first split, a one (or two) block to fit new entry
1902 * is allocated; at subsequent split, a full page is allocated;
1903 */
1904 pxdlist = split->pxdlist;
1905 pxd = &pxdlist->pxd[pxdlist->npxd];
1906 pxdlist->npxd++;
1907 rbn = addressPXD(pxd);
1908 xlen = lengthPXD(pxd);
1909 xsize = xlen << JFS_SBI(sb)->l2bsize;
1910 rmp = get_metapage(ip, rbn, xsize, 1);
1911 if (!rmp)
1912 return -EIO;
1913
1914 rp = rmp->data;
1915
1916 /* Allocate blocks to quota. */
1917 rc = dquot_alloc_block(ip, lengthPXD(pxd));
1918 if (rc) {
1919 release_metapage(rmp);
1920 return rc;
1921 }
1922
1923 BT_MARK_DIRTY(rmp, ip);
1924 /*
1925 * acquire a transaction lock on the new right page
1926 */
1927 tlck = txLock(tid, ip, rmp, tlckDTREE | tlckNEW);
1928 dtlck = (struct dt_lock *) & tlck->lock;
1929
1930 rp->header.flag =
1931 (sp->header.flag & BT_LEAF) ? BT_LEAF : BT_INTERNAL;
1932 rp->header.self = *pxd;
1933
1934 /* initialize sibling pointers */
1935 rp->header.next = 0;
1936 rp->header.prev = 0;
1937
1938 /*
1939 * move in-line root page into new right page extent
1940 */
1941 /* linelock header + copied entries + new stbl (1st slot) in new page */
1942 ASSERT(dtlck->index == 0);
1943 lv = & dtlck->lv[0];
1944 lv->offset = 0;
1945 lv->length = 10; /* 1 + 8 + 1 */
1946 dtlck->index++;
1947
1948 n = xsize >> L2DTSLOTSIZE;
1949 rp->header.maxslot = n;
1950 stblsize = (n + 31) >> L2DTSLOTSIZE;
1951
1952 /* copy old stbl to new stbl at start of extended area */
1953 rp->header.stblindex = DTROOTMAXSLOT;
1954 stbl = (s8 *) & rp->slot[DTROOTMAXSLOT];
1955 memcpy(stbl, sp->header.stbl, sp->header.nextindex);
1956 rp->header.nextindex = sp->header.nextindex;
1957
1958 /* copy old data area to start of new data area */
1959 memcpy(&rp->slot[1], &sp->slot[1], IDATASIZE);
1960
1961 /*
1962 * append free region of newly extended area at tail of freelist
1963 */
1964 /* init free region of newly extended area */
1965 fsi = n = DTROOTMAXSLOT + stblsize;
1966 f = &rp->slot[fsi];
1967 for (fsi++; fsi < rp->header.maxslot; f++, fsi++)
1968 f->next = fsi;
1969 f->next = -1;
1970
1971 /* append new free region at tail of old freelist */
1972 fsi = sp->header.freelist;
1973 if (fsi == -1)
1974 rp->header.freelist = n;
1975 else {
1976 rp->header.freelist = fsi;
1977
1978 do {
1979 f = &rp->slot[fsi];
1980 fsi = f->next;
1981 } while (fsi >= 0);
1982
1983 f->next = n;
1984 }
1985
1986 rp->header.freecnt = sp->header.freecnt + rp->header.maxslot - n;
1987
1988 /*
1989 * Update directory index table for entries now in right page
1990 */
1991 if ((rp->header.flag & BT_LEAF) && DO_INDEX(ip)) {
1992 s64 lblock;
1993 struct metapage *mp = NULL;
1994 struct ldtentry *ldtentry;
1995
1996 stbl = DT_GETSTBL(rp);
1997 for (n = 0; n < rp->header.nextindex; n++) {
1998 ldtentry = (struct ldtentry *) & rp->slot[stbl[n]];
1999 modify_index(tid, ip, le32_to_cpu(ldtentry->index),
2000 rbn, n, &mp, &lblock);
2001 }
2002 if (mp)
2003 release_metapage(mp);
2004 }
2005 /*
2006 * insert the new entry into the new right/child page
2007 * (skip index in the new right page will not change)
2008 */
2009 dtInsertEntry(rp, split->index, split->key, split->data, &dtlck);
2010
2011 /*
2012 * reset parent/root page
2013 *
2014 * set the 1st entry offset to 0, which force the left-most key
2015 * at any level of the tree to be less than any search key.
2016 *
2017 * The btree comparison code guarantees that the left-most key on any
2018 * level of the tree is never used, so it doesn't need to be filled in.
2019 */
2020 BT_MARK_DIRTY(smp, ip);
2021 /*
2022 * acquire a transaction lock on the root page (in-memory inode)
2023 */
2024 tlck = txLock(tid, ip, smp, tlckDTREE | tlckNEW | tlckBTROOT);
2025 dtlck = (struct dt_lock *) & tlck->lock;
2026
2027 /* linelock root */
2028 ASSERT(dtlck->index == 0);
2029 lv = & dtlck->lv[0];
2030 lv->offset = 0;
2031 lv->length = DTROOTMAXSLOT;
2032 dtlck->index++;
2033
2034 /* update page header of root */
2035 if (sp->header.flag & BT_LEAF) {
2036 sp->header.flag &= ~BT_LEAF;
2037 sp->header.flag |= BT_INTERNAL;
2038 }
2039
2040 /* init the first entry */
2041 s = (struct idtentry *) & sp->slot[DTENTRYSTART];
2042 ppxd = (pxd_t *) s;
2043 *ppxd = *pxd;
2044 s->next = -1;
2045 s->namlen = 0;
2046
2047 stbl = sp->header.stbl;
2048 stbl[0] = DTENTRYSTART;
2049 sp->header.nextindex = 1;
2050
2051 /* init freelist */
2052 fsi = DTENTRYSTART + 1;
2053 f = &sp->slot[fsi];
2054
2055 /* init free region of remaining area */
2056 for (fsi++; fsi < DTROOTMAXSLOT; f++, fsi++)
2057 f->next = fsi;
2058 f->next = -1;
2059
2060 sp->header.freelist = DTENTRYSTART + 1;
2061 sp->header.freecnt = DTROOTMAXSLOT - (DTENTRYSTART + 1);
2062
2063 *rmpp = rmp;
2064
2065 return 0;
2066 }
2067
2068
2069 /*
2070 * dtDelete()
2071 *
2072 * function: delete the entry(s) referenced by a key.
2073 *
2074 * parameter:
2075 *
2076 * return:
2077 */
dtDelete(tid_t tid,struct inode * ip,struct component_name * key,ino_t * ino,int flag)2078 int dtDelete(tid_t tid,
2079 struct inode *ip, struct component_name * key, ino_t * ino, int flag)
2080 {
2081 int rc = 0;
2082 s64 bn;
2083 struct metapage *mp, *imp;
2084 dtpage_t *p;
2085 int index;
2086 struct btstack btstack;
2087 struct dt_lock *dtlck;
2088 struct tlock *tlck;
2089 struct lv *lv;
2090 int i;
2091 struct ldtentry *ldtentry;
2092 u8 *stbl;
2093 u32 table_index, next_index;
2094 struct metapage *nmp;
2095 dtpage_t *np;
2096
2097 /*
2098 * search for the entry to delete:
2099 *
2100 * dtSearch() returns (leaf page pinned, index at which to delete).
2101 */
2102 if ((rc = dtSearch(ip, key, ino, &btstack, flag)))
2103 return rc;
2104
2105 /* retrieve search result */
2106 DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
2107
2108 /*
2109 * We need to find put the index of the next entry into the
2110 * directory index table in order to resume a readdir from this
2111 * entry.
2112 */
2113 if (DO_INDEX(ip)) {
2114 stbl = DT_GETSTBL(p);
2115 ldtentry = (struct ldtentry *) & p->slot[stbl[index]];
2116 table_index = le32_to_cpu(ldtentry->index);
2117 if (index == (p->header.nextindex - 1)) {
2118 /*
2119 * Last entry in this leaf page
2120 */
2121 if ((p->header.flag & BT_ROOT)
2122 || (p->header.next == 0))
2123 next_index = -1;
2124 else {
2125 /* Read next leaf page */
2126 DT_GETPAGE(ip, le64_to_cpu(p->header.next),
2127 nmp, PSIZE, np, rc);
2128 if (rc)
2129 next_index = -1;
2130 else {
2131 stbl = DT_GETSTBL(np);
2132 ldtentry =
2133 (struct ldtentry *) & np->
2134 slot[stbl[0]];
2135 next_index =
2136 le32_to_cpu(ldtentry->index);
2137 DT_PUTPAGE(nmp);
2138 }
2139 }
2140 } else {
2141 ldtentry =
2142 (struct ldtentry *) & p->slot[stbl[index + 1]];
2143 next_index = le32_to_cpu(ldtentry->index);
2144 }
2145 free_index(tid, ip, table_index, next_index);
2146 }
2147 /*
2148 * the leaf page becomes empty, delete the page
2149 */
2150 if (p->header.nextindex == 1) {
2151 /* delete empty page */
2152 rc = dtDeleteUp(tid, ip, mp, p, &btstack);
2153 }
2154 /*
2155 * the leaf page has other entries remaining:
2156 *
2157 * delete the entry from the leaf page.
2158 */
2159 else {
2160 BT_MARK_DIRTY(mp, ip);
2161 /*
2162 * acquire a transaction lock on the leaf page
2163 */
2164 tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
2165 dtlck = (struct dt_lock *) & tlck->lock;
2166
2167 /*
2168 * Do not assume that dtlck->index will be zero. During a
2169 * rename within a directory, this transaction may have
2170 * modified this page already when adding the new entry.
2171 */
2172
2173 /* linelock header */
2174 if (dtlck->index >= dtlck->maxcnt)
2175 dtlck = (struct dt_lock *) txLinelock(dtlck);
2176 lv = & dtlck->lv[dtlck->index];
2177 lv->offset = 0;
2178 lv->length = 1;
2179 dtlck->index++;
2180
2181 /* linelock stbl of non-root leaf page */
2182 if (!(p->header.flag & BT_ROOT)) {
2183 if (dtlck->index >= dtlck->maxcnt)
2184 dtlck = (struct dt_lock *) txLinelock(dtlck);
2185 lv = & dtlck->lv[dtlck->index];
2186 i = index >> L2DTSLOTSIZE;
2187 lv->offset = p->header.stblindex + i;
2188 lv->length =
2189 ((p->header.nextindex - 1) >> L2DTSLOTSIZE) -
2190 i + 1;
2191 dtlck->index++;
2192 }
2193
2194 /* free the leaf entry */
2195 dtDeleteEntry(p, index, &dtlck);
2196
2197 /*
2198 * Update directory index table for entries moved in stbl
2199 */
2200 if (DO_INDEX(ip) && index < p->header.nextindex) {
2201 s64 lblock;
2202
2203 imp = NULL;
2204 stbl = DT_GETSTBL(p);
2205 for (i = index; i < p->header.nextindex; i++) {
2206 ldtentry =
2207 (struct ldtentry *) & p->slot[stbl[i]];
2208 modify_index(tid, ip,
2209 le32_to_cpu(ldtentry->index),
2210 bn, i, &imp, &lblock);
2211 }
2212 if (imp)
2213 release_metapage(imp);
2214 }
2215
2216 DT_PUTPAGE(mp);
2217 }
2218
2219 return rc;
2220 }
2221
2222
2223 /*
2224 * dtDeleteUp()
2225 *
2226 * function:
2227 * free empty pages as propagating deletion up the tree
2228 *
2229 * parameter:
2230 *
2231 * return:
2232 */
dtDeleteUp(tid_t tid,struct inode * ip,struct metapage * fmp,dtpage_t * fp,struct btstack * btstack)2233 static int dtDeleteUp(tid_t tid, struct inode *ip,
2234 struct metapage * fmp, dtpage_t * fp, struct btstack * btstack)
2235 {
2236 int rc = 0;
2237 struct metapage *mp;
2238 dtpage_t *p;
2239 int index, nextindex;
2240 int xlen;
2241 struct btframe *parent;
2242 struct dt_lock *dtlck;
2243 struct tlock *tlck;
2244 struct lv *lv;
2245 struct pxd_lock *pxdlock;
2246 int i;
2247
2248 /*
2249 * keep the root leaf page which has become empty
2250 */
2251 if (BT_IS_ROOT(fmp)) {
2252 /*
2253 * reset the root
2254 *
2255 * dtInitRoot() acquires txlock on the root
2256 */
2257 dtInitRoot(tid, ip, PARENT(ip));
2258
2259 DT_PUTPAGE(fmp);
2260
2261 return 0;
2262 }
2263
2264 /*
2265 * free the non-root leaf page
2266 */
2267 /*
2268 * acquire a transaction lock on the page
2269 *
2270 * write FREEXTENT|NOREDOPAGE log record
2271 * N.B. linelock is overlaid as freed extent descriptor, and
2272 * the buffer page is freed;
2273 */
2274 tlck = txMaplock(tid, ip, tlckDTREE | tlckFREE);
2275 pxdlock = (struct pxd_lock *) & tlck->lock;
2276 pxdlock->flag = mlckFREEPXD;
2277 pxdlock->pxd = fp->header.self;
2278 pxdlock->index = 1;
2279
2280 /* update sibling pointers */
2281 if ((rc = dtRelink(tid, ip, fp))) {
2282 BT_PUTPAGE(fmp);
2283 return rc;
2284 }
2285
2286 xlen = lengthPXD(&fp->header.self);
2287
2288 /* Free quota allocation. */
2289 dquot_free_block(ip, xlen);
2290
2291 /* free/invalidate its buffer page */
2292 discard_metapage(fmp);
2293
2294 /*
2295 * propagate page deletion up the directory tree
2296 *
2297 * If the delete from the parent page makes it empty,
2298 * continue all the way up the tree.
2299 * stop if the root page is reached (which is never deleted) or
2300 * if the entry deletion does not empty the page.
2301 */
2302 while ((parent = BT_POP(btstack)) != NULL) {
2303 /* pin the parent page <sp> */
2304 DT_GETPAGE(ip, parent->bn, mp, PSIZE, p, rc);
2305 if (rc)
2306 return rc;
2307
2308 /*
2309 * free the extent of the child page deleted
2310 */
2311 index = parent->index;
2312
2313 /*
2314 * delete the entry for the child page from parent
2315 */
2316 nextindex = p->header.nextindex;
2317
2318 /*
2319 * the parent has the single entry being deleted:
2320 *
2321 * free the parent page which has become empty.
2322 */
2323 if (nextindex == 1) {
2324 /*
2325 * keep the root internal page which has become empty
2326 */
2327 if (p->header.flag & BT_ROOT) {
2328 /*
2329 * reset the root
2330 *
2331 * dtInitRoot() acquires txlock on the root
2332 */
2333 dtInitRoot(tid, ip, PARENT(ip));
2334
2335 DT_PUTPAGE(mp);
2336
2337 return 0;
2338 }
2339 /*
2340 * free the parent page
2341 */
2342 else {
2343 /*
2344 * acquire a transaction lock on the page
2345 *
2346 * write FREEXTENT|NOREDOPAGE log record
2347 */
2348 tlck =
2349 txMaplock(tid, ip,
2350 tlckDTREE | tlckFREE);
2351 pxdlock = (struct pxd_lock *) & tlck->lock;
2352 pxdlock->flag = mlckFREEPXD;
2353 pxdlock->pxd = p->header.self;
2354 pxdlock->index = 1;
2355
2356 /* update sibling pointers */
2357 if ((rc = dtRelink(tid, ip, p))) {
2358 DT_PUTPAGE(mp);
2359 return rc;
2360 }
2361
2362 xlen = lengthPXD(&p->header.self);
2363
2364 /* Free quota allocation */
2365 dquot_free_block(ip, xlen);
2366
2367 /* free/invalidate its buffer page */
2368 discard_metapage(mp);
2369
2370 /* propagate up */
2371 continue;
2372 }
2373 }
2374
2375 /*
2376 * the parent has other entries remaining:
2377 *
2378 * delete the router entry from the parent page.
2379 */
2380 BT_MARK_DIRTY(mp, ip);
2381 /*
2382 * acquire a transaction lock on the page
2383 *
2384 * action: router entry deletion
2385 */
2386 tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
2387 dtlck = (struct dt_lock *) & tlck->lock;
2388
2389 /* linelock header */
2390 if (dtlck->index >= dtlck->maxcnt)
2391 dtlck = (struct dt_lock *) txLinelock(dtlck);
2392 lv = & dtlck->lv[dtlck->index];
2393 lv->offset = 0;
2394 lv->length = 1;
2395 dtlck->index++;
2396
2397 /* linelock stbl of non-root leaf page */
2398 if (!(p->header.flag & BT_ROOT)) {
2399 if (dtlck->index < dtlck->maxcnt)
2400 lv++;
2401 else {
2402 dtlck = (struct dt_lock *) txLinelock(dtlck);
2403 lv = & dtlck->lv[0];
2404 }
2405 i = index >> L2DTSLOTSIZE;
2406 lv->offset = p->header.stblindex + i;
2407 lv->length =
2408 ((p->header.nextindex - 1) >> L2DTSLOTSIZE) -
2409 i + 1;
2410 dtlck->index++;
2411 }
2412
2413 /* free the router entry */
2414 dtDeleteEntry(p, index, &dtlck);
2415
2416 /* reset key of new leftmost entry of level (for consistency) */
2417 if (index == 0 &&
2418 ((p->header.flag & BT_ROOT) || p->header.prev == 0))
2419 dtTruncateEntry(p, 0, &dtlck);
2420
2421 /* unpin the parent page */
2422 DT_PUTPAGE(mp);
2423
2424 /* exit propagation up */
2425 break;
2426 }
2427
2428 if (!DO_INDEX(ip))
2429 ip->i_size -= PSIZE;
2430
2431 return 0;
2432 }
2433
2434 /*
2435 * dtRelink()
2436 *
2437 * function:
2438 * link around a freed page.
2439 *
2440 * parameter:
2441 * fp: page to be freed
2442 *
2443 * return:
2444 */
dtRelink(tid_t tid,struct inode * ip,dtpage_t * p)2445 static int dtRelink(tid_t tid, struct inode *ip, dtpage_t * p)
2446 {
2447 int rc;
2448 struct metapage *mp;
2449 s64 nextbn, prevbn;
2450 struct tlock *tlck;
2451 struct dt_lock *dtlck;
2452 struct lv *lv;
2453
2454 nextbn = le64_to_cpu(p->header.next);
2455 prevbn = le64_to_cpu(p->header.prev);
2456
2457 /* update prev pointer of the next page */
2458 if (nextbn != 0) {
2459 DT_GETPAGE(ip, nextbn, mp, PSIZE, p, rc);
2460 if (rc)
2461 return rc;
2462
2463 BT_MARK_DIRTY(mp, ip);
2464 /*
2465 * acquire a transaction lock on the next page
2466 *
2467 * action: update prev pointer;
2468 */
2469 tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK);
2470 jfs_info("dtRelink nextbn: tlck = 0x%p, ip = 0x%p, mp=0x%p",
2471 tlck, ip, mp);
2472 dtlck = (struct dt_lock *) & tlck->lock;
2473
2474 /* linelock header */
2475 if (dtlck->index >= dtlck->maxcnt)
2476 dtlck = (struct dt_lock *) txLinelock(dtlck);
2477 lv = & dtlck->lv[dtlck->index];
2478 lv->offset = 0;
2479 lv->length = 1;
2480 dtlck->index++;
2481
2482 p->header.prev = cpu_to_le64(prevbn);
2483 DT_PUTPAGE(mp);
2484 }
2485
2486 /* update next pointer of the previous page */
2487 if (prevbn != 0) {
2488 DT_GETPAGE(ip, prevbn, mp, PSIZE, p, rc);
2489 if (rc)
2490 return rc;
2491
2492 BT_MARK_DIRTY(mp, ip);
2493 /*
2494 * acquire a transaction lock on the prev page
2495 *
2496 * action: update next pointer;
2497 */
2498 tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK);
2499 jfs_info("dtRelink prevbn: tlck = 0x%p, ip = 0x%p, mp=0x%p",
2500 tlck, ip, mp);
2501 dtlck = (struct dt_lock *) & tlck->lock;
2502
2503 /* linelock header */
2504 if (dtlck->index >= dtlck->maxcnt)
2505 dtlck = (struct dt_lock *) txLinelock(dtlck);
2506 lv = & dtlck->lv[dtlck->index];
2507 lv->offset = 0;
2508 lv->length = 1;
2509 dtlck->index++;
2510
2511 p->header.next = cpu_to_le64(nextbn);
2512 DT_PUTPAGE(mp);
2513 }
2514
2515 return 0;
2516 }
2517
2518
2519 /*
2520 * dtInitRoot()
2521 *
2522 * initialize directory root (inline in inode)
2523 */
dtInitRoot(tid_t tid,struct inode * ip,u32 idotdot)2524 void dtInitRoot(tid_t tid, struct inode *ip, u32 idotdot)
2525 {
2526 struct jfs_inode_info *jfs_ip = JFS_IP(ip);
2527 dtroot_t *p;
2528 int fsi;
2529 struct dtslot *f;
2530 struct tlock *tlck;
2531 struct dt_lock *dtlck;
2532 struct lv *lv;
2533 u16 xflag_save;
2534
2535 /*
2536 * If this was previously an non-empty directory, we need to remove
2537 * the old directory table.
2538 */
2539 if (DO_INDEX(ip)) {
2540 if (!jfs_dirtable_inline(ip)) {
2541 struct tblock *tblk = tid_to_tblock(tid);
2542 /*
2543 * We're playing games with the tid's xflag. If
2544 * we're removing a regular file, the file's xtree
2545 * is committed with COMMIT_PMAP, but we always
2546 * commit the directories xtree with COMMIT_PWMAP.
2547 */
2548 xflag_save = tblk->xflag;
2549 tblk->xflag = 0;
2550 /*
2551 * xtTruncate isn't guaranteed to fully truncate
2552 * the xtree. The caller needs to check i_size
2553 * after committing the transaction to see if
2554 * additional truncation is needed. The
2555 * COMMIT_Stale flag tells caller that we
2556 * initiated the truncation.
2557 */
2558 xtTruncate(tid, ip, 0, COMMIT_PWMAP);
2559 set_cflag(COMMIT_Stale, ip);
2560
2561 tblk->xflag = xflag_save;
2562 } else
2563 ip->i_size = 1;
2564
2565 jfs_ip->next_index = 2;
2566 } else
2567 ip->i_size = IDATASIZE;
2568
2569 /*
2570 * acquire a transaction lock on the root
2571 *
2572 * action: directory initialization;
2573 */
2574 tlck = txLock(tid, ip, (struct metapage *) & jfs_ip->bxflag,
2575 tlckDTREE | tlckENTRY | tlckBTROOT);
2576 dtlck = (struct dt_lock *) & tlck->lock;
2577
2578 /* linelock root */
2579 ASSERT(dtlck->index == 0);
2580 lv = & dtlck->lv[0];
2581 lv->offset = 0;
2582 lv->length = DTROOTMAXSLOT;
2583 dtlck->index++;
2584
2585 p = &jfs_ip->i_dtroot;
2586
2587 p->header.flag = DXD_INDEX | BT_ROOT | BT_LEAF;
2588
2589 p->header.nextindex = 0;
2590
2591 /* init freelist */
2592 fsi = 1;
2593 f = &p->slot[fsi];
2594
2595 /* init data area of root */
2596 for (fsi++; fsi < DTROOTMAXSLOT; f++, fsi++)
2597 f->next = fsi;
2598 f->next = -1;
2599
2600 p->header.freelist = 1;
2601 p->header.freecnt = 8;
2602
2603 /* init '..' entry */
2604 p->header.idotdot = cpu_to_le32(idotdot);
2605
2606 return;
2607 }
2608
2609 /*
2610 * add_missing_indices()
2611 *
2612 * function: Fix dtree page in which one or more entries has an invalid index.
2613 * fsck.jfs should really fix this, but it currently does not.
2614 * Called from jfs_readdir when bad index is detected.
2615 */
add_missing_indices(struct inode * inode,s64 bn)2616 static void add_missing_indices(struct inode *inode, s64 bn)
2617 {
2618 struct ldtentry *d;
2619 struct dt_lock *dtlck;
2620 int i;
2621 uint index;
2622 struct lv *lv;
2623 struct metapage *mp;
2624 dtpage_t *p;
2625 int rc;
2626 s8 *stbl;
2627 tid_t tid;
2628 struct tlock *tlck;
2629
2630 tid = txBegin(inode->i_sb, 0);
2631
2632 DT_GETPAGE(inode, bn, mp, PSIZE, p, rc);
2633
2634 if (rc) {
2635 printk(KERN_ERR "DT_GETPAGE failed!\n");
2636 goto end;
2637 }
2638 BT_MARK_DIRTY(mp, inode);
2639
2640 ASSERT(p->header.flag & BT_LEAF);
2641
2642 tlck = txLock(tid, inode, mp, tlckDTREE | tlckENTRY);
2643 if (BT_IS_ROOT(mp))
2644 tlck->type |= tlckBTROOT;
2645
2646 dtlck = (struct dt_lock *) &tlck->lock;
2647
2648 stbl = DT_GETSTBL(p);
2649 for (i = 0; i < p->header.nextindex; i++) {
2650 d = (struct ldtentry *) &p->slot[stbl[i]];
2651 index = le32_to_cpu(d->index);
2652 if ((index < 2) || (index >= JFS_IP(inode)->next_index)) {
2653 d->index = cpu_to_le32(add_index(tid, inode, bn, i));
2654 if (dtlck->index >= dtlck->maxcnt)
2655 dtlck = (struct dt_lock *) txLinelock(dtlck);
2656 lv = &dtlck->lv[dtlck->index];
2657 lv->offset = stbl[i];
2658 lv->length = 1;
2659 dtlck->index++;
2660 }
2661 }
2662
2663 DT_PUTPAGE(mp);
2664 (void) txCommit(tid, 1, &inode, 0);
2665 end:
2666 txEnd(tid);
2667 }
2668
2669 /*
2670 * Buffer to hold directory entry info while traversing a dtree page
2671 * before being fed to the filldir function
2672 */
2673 struct jfs_dirent {
2674 loff_t position;
2675 int ino;
2676 u16 name_len;
2677 char name[];
2678 };
2679
2680 /*
2681 * function to determine next variable-sized jfs_dirent in buffer
2682 */
next_jfs_dirent(struct jfs_dirent * dirent)2683 static inline struct jfs_dirent *next_jfs_dirent(struct jfs_dirent *dirent)
2684 {
2685 return (struct jfs_dirent *)
2686 ((char *)dirent +
2687 ((sizeof (struct jfs_dirent) + dirent->name_len + 1 +
2688 sizeof (loff_t) - 1) &
2689 ~(sizeof (loff_t) - 1)));
2690 }
2691
2692 /*
2693 * jfs_readdir()
2694 *
2695 * function: read directory entries sequentially
2696 * from the specified entry offset
2697 *
2698 * parameter:
2699 *
2700 * return: offset = (pn, index) of start entry
2701 * of next jfs_readdir()/dtRead()
2702 */
jfs_readdir(struct file * file,struct dir_context * ctx)2703 int jfs_readdir(struct file *file, struct dir_context *ctx)
2704 {
2705 struct inode *ip = file_inode(file);
2706 struct nls_table *codepage = JFS_SBI(ip->i_sb)->nls_tab;
2707 int rc = 0;
2708 loff_t dtpos; /* legacy OS/2 style position */
2709 struct dtoffset {
2710 s16 pn;
2711 s16 index;
2712 s32 unused;
2713 } *dtoffset = (struct dtoffset *) &dtpos;
2714 s64 bn;
2715 struct metapage *mp;
2716 dtpage_t *p;
2717 int index;
2718 s8 *stbl;
2719 struct btstack btstack;
2720 int i, next;
2721 struct ldtentry *d;
2722 struct dtslot *t;
2723 int d_namleft, len, outlen;
2724 unsigned long dirent_buf;
2725 char *name_ptr;
2726 u32 dir_index;
2727 int do_index = 0;
2728 uint loop_count = 0;
2729 struct jfs_dirent *jfs_dirent;
2730 int jfs_dirents;
2731 int overflow, fix_page, page_fixed = 0;
2732 static int unique_pos = 2; /* If we can't fix broken index */
2733
2734 if (ctx->pos == DIREND)
2735 return 0;
2736
2737 if (DO_INDEX(ip)) {
2738 /*
2739 * persistent index is stored in directory entries.
2740 * Special cases: 0 = .
2741 * 1 = ..
2742 * -1 = End of directory
2743 */
2744 do_index = 1;
2745
2746 dir_index = (u32) ctx->pos;
2747
2748 /*
2749 * NFSv4 reserves cookies 1 and 2 for . and .. so the value
2750 * we return to the vfs is one greater than the one we use
2751 * internally.
2752 */
2753 if (dir_index)
2754 dir_index--;
2755
2756 if (dir_index > 1) {
2757 struct dir_table_slot dirtab_slot;
2758
2759 if (dtEmpty(ip) ||
2760 (dir_index >= JFS_IP(ip)->next_index)) {
2761 /* Stale position. Directory has shrunk */
2762 ctx->pos = DIREND;
2763 return 0;
2764 }
2765 repeat:
2766 rc = read_index(ip, dir_index, &dirtab_slot);
2767 if (rc) {
2768 ctx->pos = DIREND;
2769 return rc;
2770 }
2771 if (dirtab_slot.flag == DIR_INDEX_FREE) {
2772 if (loop_count++ > JFS_IP(ip)->next_index) {
2773 jfs_err("jfs_readdir detected infinite loop!");
2774 ctx->pos = DIREND;
2775 return 0;
2776 }
2777 dir_index = le32_to_cpu(dirtab_slot.addr2);
2778 if (dir_index == -1) {
2779 ctx->pos = DIREND;
2780 return 0;
2781 }
2782 goto repeat;
2783 }
2784 bn = addressDTS(&dirtab_slot);
2785 index = dirtab_slot.slot;
2786 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
2787 if (rc) {
2788 ctx->pos = DIREND;
2789 return 0;
2790 }
2791 if (p->header.flag & BT_INTERNAL) {
2792 jfs_err("jfs_readdir: bad index table");
2793 DT_PUTPAGE(mp);
2794 ctx->pos = DIREND;
2795 return 0;
2796 }
2797 } else {
2798 if (dir_index == 0) {
2799 /*
2800 * self "."
2801 */
2802 ctx->pos = 1;
2803 if (!dir_emit(ctx, ".", 1, ip->i_ino, DT_DIR))
2804 return 0;
2805 }
2806 /*
2807 * parent ".."
2808 */
2809 ctx->pos = 2;
2810 if (!dir_emit(ctx, "..", 2, PARENT(ip), DT_DIR))
2811 return 0;
2812
2813 /*
2814 * Find first entry of left-most leaf
2815 */
2816 if (dtEmpty(ip)) {
2817 ctx->pos = DIREND;
2818 return 0;
2819 }
2820
2821 if ((rc = dtReadFirst(ip, &btstack)))
2822 return rc;
2823
2824 DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
2825 }
2826 } else {
2827 /*
2828 * Legacy filesystem - OS/2 & Linux JFS < 0.3.6
2829 *
2830 * pn = 0; index = 1: First entry "."
2831 * pn = 0; index = 2: Second entry ".."
2832 * pn > 0: Real entries, pn=1 -> leftmost page
2833 * pn = index = -1: No more entries
2834 */
2835 dtpos = ctx->pos;
2836 if (dtpos < 2) {
2837 /* build "." entry */
2838 ctx->pos = 1;
2839 if (!dir_emit(ctx, ".", 1, ip->i_ino, DT_DIR))
2840 return 0;
2841 dtoffset->index = 2;
2842 ctx->pos = dtpos;
2843 }
2844
2845 if (dtoffset->pn == 0) {
2846 if (dtoffset->index == 2) {
2847 /* build ".." entry */
2848 if (!dir_emit(ctx, "..", 2, PARENT(ip), DT_DIR))
2849 return 0;
2850 } else {
2851 jfs_err("jfs_readdir called with invalid offset!");
2852 }
2853 dtoffset->pn = 1;
2854 dtoffset->index = 0;
2855 ctx->pos = dtpos;
2856 }
2857
2858 if (dtEmpty(ip)) {
2859 ctx->pos = DIREND;
2860 return 0;
2861 }
2862
2863 if ((rc = dtReadNext(ip, &ctx->pos, &btstack))) {
2864 jfs_err("jfs_readdir: unexpected rc = %d from dtReadNext",
2865 rc);
2866 ctx->pos = DIREND;
2867 return 0;
2868 }
2869 /* get start leaf page and index */
2870 DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
2871
2872 /* offset beyond directory eof ? */
2873 if (bn < 0) {
2874 ctx->pos = DIREND;
2875 return 0;
2876 }
2877 }
2878
2879 dirent_buf = __get_free_page(GFP_KERNEL);
2880 if (dirent_buf == 0) {
2881 DT_PUTPAGE(mp);
2882 jfs_warn("jfs_readdir: __get_free_page failed!");
2883 ctx->pos = DIREND;
2884 return -ENOMEM;
2885 }
2886
2887 while (1) {
2888 jfs_dirent = (struct jfs_dirent *) dirent_buf;
2889 jfs_dirents = 0;
2890 overflow = fix_page = 0;
2891
2892 stbl = DT_GETSTBL(p);
2893
2894 for (i = index; i < p->header.nextindex; i++) {
2895 if (stbl[i] < 0 || stbl[i] > 127) {
2896 jfs_err("JFS: Invalid stbl[%d] = %d for inode %ld, block = %lld",
2897 i, stbl[i], (long)ip->i_ino, (long long)bn);
2898 free_page(dirent_buf);
2899 DT_PUTPAGE(mp);
2900 return -EIO;
2901 }
2902
2903 d = (struct ldtentry *) & p->slot[stbl[i]];
2904
2905 if (((long) jfs_dirent + d->namlen + 1) >
2906 (dirent_buf + PAGE_SIZE)) {
2907 /* DBCS codepages could overrun dirent_buf */
2908 index = i;
2909 overflow = 1;
2910 break;
2911 }
2912
2913 d_namleft = d->namlen;
2914 name_ptr = jfs_dirent->name;
2915 jfs_dirent->ino = le32_to_cpu(d->inumber);
2916
2917 if (do_index) {
2918 len = min(d_namleft, DTLHDRDATALEN);
2919 jfs_dirent->position = le32_to_cpu(d->index);
2920 /*
2921 * d->index should always be valid, but it
2922 * isn't. fsck.jfs doesn't create the
2923 * directory index for the lost+found
2924 * directory. Rather than let it go,
2925 * we can try to fix it.
2926 */
2927 if ((jfs_dirent->position < 2) ||
2928 (jfs_dirent->position >=
2929 JFS_IP(ip)->next_index)) {
2930 if (!page_fixed && !isReadOnly(ip)) {
2931 fix_page = 1;
2932 /*
2933 * setting overflow and setting
2934 * index to i will cause the
2935 * same page to be processed
2936 * again starting here
2937 */
2938 overflow = 1;
2939 index = i;
2940 break;
2941 }
2942 jfs_dirent->position = unique_pos++;
2943 }
2944 /*
2945 * We add 1 to the index because we may
2946 * use a value of 2 internally, and NFSv4
2947 * doesn't like that.
2948 */
2949 jfs_dirent->position++;
2950 } else {
2951 jfs_dirent->position = dtpos;
2952 len = min(d_namleft, DTLHDRDATALEN_LEGACY);
2953 }
2954
2955 /* copy the name of head/only segment */
2956 outlen = jfs_strfromUCS_le(name_ptr, d->name, len,
2957 codepage);
2958 jfs_dirent->name_len = outlen;
2959
2960 /* copy name in the additional segment(s) */
2961 next = d->next;
2962 while (next >= 0) {
2963 t = (struct dtslot *) & p->slot[next];
2964 name_ptr += outlen;
2965 d_namleft -= len;
2966 /* Sanity Check */
2967 if (d_namleft == 0) {
2968 jfs_error(ip->i_sb,
2969 "JFS:Dtree error: ino = %ld, bn=%lld, index = %d\n",
2970 (long)ip->i_ino,
2971 (long long)bn,
2972 i);
2973 goto skip_one;
2974 }
2975 len = min(d_namleft, DTSLOTDATALEN);
2976 outlen = jfs_strfromUCS_le(name_ptr, t->name,
2977 len, codepage);
2978 jfs_dirent->name_len += outlen;
2979
2980 next = t->next;
2981 }
2982
2983 jfs_dirents++;
2984 jfs_dirent = next_jfs_dirent(jfs_dirent);
2985 skip_one:
2986 if (!do_index)
2987 dtoffset->index++;
2988 }
2989
2990 if (!overflow) {
2991 /* Point to next leaf page */
2992 if (p->header.flag & BT_ROOT)
2993 bn = 0;
2994 else {
2995 bn = le64_to_cpu(p->header.next);
2996 index = 0;
2997 /* update offset (pn:index) for new page */
2998 if (!do_index) {
2999 dtoffset->pn++;
3000 dtoffset->index = 0;
3001 }
3002 }
3003 page_fixed = 0;
3004 }
3005
3006 /* unpin previous leaf page */
3007 DT_PUTPAGE(mp);
3008
3009 jfs_dirent = (struct jfs_dirent *) dirent_buf;
3010 while (jfs_dirents--) {
3011 ctx->pos = jfs_dirent->position;
3012 if (!dir_emit(ctx, jfs_dirent->name,
3013 jfs_dirent->name_len,
3014 jfs_dirent->ino, DT_UNKNOWN))
3015 goto out;
3016 jfs_dirent = next_jfs_dirent(jfs_dirent);
3017 }
3018
3019 if (fix_page) {
3020 add_missing_indices(ip, bn);
3021 page_fixed = 1;
3022 }
3023
3024 if (!overflow && (bn == 0)) {
3025 ctx->pos = DIREND;
3026 break;
3027 }
3028
3029 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3030 if (rc) {
3031 free_page(dirent_buf);
3032 return rc;
3033 }
3034 }
3035
3036 out:
3037 free_page(dirent_buf);
3038
3039 return rc;
3040 }
3041
3042
3043 /*
3044 * dtReadFirst()
3045 *
3046 * function: get the leftmost page of the directory
3047 */
dtReadFirst(struct inode * ip,struct btstack * btstack)3048 static int dtReadFirst(struct inode *ip, struct btstack * btstack)
3049 {
3050 int rc = 0;
3051 s64 bn;
3052 int psize = 288; /* initial in-line directory */
3053 struct metapage *mp;
3054 dtpage_t *p;
3055 s8 *stbl;
3056 struct btframe *btsp;
3057 pxd_t *xd;
3058
3059 BT_CLR(btstack); /* reset stack */
3060
3061 /*
3062 * descend leftmost path of the tree
3063 *
3064 * by convention, root bn = 0.
3065 */
3066 for (bn = 0;;) {
3067 DT_GETPAGE(ip, bn, mp, psize, p, rc);
3068 if (rc)
3069 return rc;
3070
3071 /*
3072 * leftmost leaf page
3073 */
3074 if (p->header.flag & BT_LEAF) {
3075 /* return leftmost entry */
3076 btsp = btstack->top;
3077 btsp->bn = bn;
3078 btsp->index = 0;
3079 btsp->mp = mp;
3080
3081 return 0;
3082 }
3083
3084 /*
3085 * descend down to leftmost child page
3086 */
3087 if (BT_STACK_FULL(btstack)) {
3088 DT_PUTPAGE(mp);
3089 jfs_error(ip->i_sb, "btstack overrun\n");
3090 BT_STACK_DUMP(btstack);
3091 return -EIO;
3092 }
3093 /* push (bn, index) of the parent page/entry */
3094 BT_PUSH(btstack, bn, 0);
3095
3096 /* get the leftmost entry */
3097 stbl = DT_GETSTBL(p);
3098
3099 if (stbl[0] < 0 || stbl[0] > 127) {
3100 DT_PUTPAGE(mp);
3101 jfs_error(ip->i_sb, "stbl[0] out of bound\n");
3102 return -EIO;
3103 }
3104
3105 xd = (pxd_t *) & p->slot[stbl[0]];
3106
3107 /* get the child page block address */
3108 bn = addressPXD(xd);
3109 psize = lengthPXD(xd) << JFS_SBI(ip->i_sb)->l2bsize;
3110
3111 /* unpin the parent page */
3112 DT_PUTPAGE(mp);
3113 }
3114 }
3115
3116
3117 /*
3118 * dtReadNext()
3119 *
3120 * function: get the page of the specified offset (pn:index)
3121 *
3122 * return: if (offset > eof), bn = -1;
3123 *
3124 * note: if index > nextindex of the target leaf page,
3125 * start with 1st entry of next leaf page;
3126 */
dtReadNext(struct inode * ip,loff_t * offset,struct btstack * btstack)3127 static int dtReadNext(struct inode *ip, loff_t * offset,
3128 struct btstack * btstack)
3129 {
3130 int rc = 0;
3131 struct dtoffset {
3132 s16 pn;
3133 s16 index;
3134 s32 unused;
3135 } *dtoffset = (struct dtoffset *) offset;
3136 s64 bn;
3137 struct metapage *mp;
3138 dtpage_t *p;
3139 int index;
3140 int pn;
3141 s8 *stbl;
3142 struct btframe *btsp, *parent;
3143 pxd_t *xd;
3144
3145 /*
3146 * get leftmost leaf page pinned
3147 */
3148 if ((rc = dtReadFirst(ip, btstack)))
3149 return rc;
3150
3151 /* get leaf page */
3152 DT_GETSEARCH(ip, btstack->top, bn, mp, p, index);
3153
3154 /* get the start offset (pn:index) */
3155 pn = dtoffset->pn - 1; /* Now pn = 0 represents leftmost leaf */
3156 index = dtoffset->index;
3157
3158 /* start at leftmost page ? */
3159 if (pn == 0) {
3160 /* offset beyond eof ? */
3161 if (index < p->header.nextindex)
3162 goto out;
3163
3164 if (p->header.flag & BT_ROOT) {
3165 bn = -1;
3166 goto out;
3167 }
3168
3169 /* start with 1st entry of next leaf page */
3170 dtoffset->pn++;
3171 dtoffset->index = index = 0;
3172 goto a;
3173 }
3174
3175 /* start at non-leftmost page: scan parent pages for large pn */
3176 if (p->header.flag & BT_ROOT) {
3177 bn = -1;
3178 goto out;
3179 }
3180
3181 /* start after next leaf page ? */
3182 if (pn > 1)
3183 goto b;
3184
3185 /* get leaf page pn = 1 */
3186 a:
3187 bn = le64_to_cpu(p->header.next);
3188
3189 /* unpin leaf page */
3190 DT_PUTPAGE(mp);
3191
3192 /* offset beyond eof ? */
3193 if (bn == 0) {
3194 bn = -1;
3195 goto out;
3196 }
3197
3198 goto c;
3199
3200 /*
3201 * scan last internal page level to get target leaf page
3202 */
3203 b:
3204 /* unpin leftmost leaf page */
3205 DT_PUTPAGE(mp);
3206
3207 /* get left most parent page */
3208 btsp = btstack->top;
3209 parent = btsp - 1;
3210 bn = parent->bn;
3211 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3212 if (rc)
3213 return rc;
3214
3215 /* scan parent pages at last internal page level */
3216 while (pn >= p->header.nextindex) {
3217 pn -= p->header.nextindex;
3218
3219 /* get next parent page address */
3220 bn = le64_to_cpu(p->header.next);
3221
3222 /* unpin current parent page */
3223 DT_PUTPAGE(mp);
3224
3225 /* offset beyond eof ? */
3226 if (bn == 0) {
3227 bn = -1;
3228 goto out;
3229 }
3230
3231 /* get next parent page */
3232 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3233 if (rc)
3234 return rc;
3235
3236 /* update parent page stack frame */
3237 parent->bn = bn;
3238 }
3239
3240 /* get leaf page address */
3241 stbl = DT_GETSTBL(p);
3242 xd = (pxd_t *) & p->slot[stbl[pn]];
3243 bn = addressPXD(xd);
3244
3245 /* unpin parent page */
3246 DT_PUTPAGE(mp);
3247
3248 /*
3249 * get target leaf page
3250 */
3251 c:
3252 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3253 if (rc)
3254 return rc;
3255
3256 /*
3257 * leaf page has been completed:
3258 * start with 1st entry of next leaf page
3259 */
3260 if (index >= p->header.nextindex) {
3261 bn = le64_to_cpu(p->header.next);
3262
3263 /* unpin leaf page */
3264 DT_PUTPAGE(mp);
3265
3266 /* offset beyond eof ? */
3267 if (bn == 0) {
3268 bn = -1;
3269 goto out;
3270 }
3271
3272 /* get next leaf page */
3273 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3274 if (rc)
3275 return rc;
3276
3277 /* start with 1st entry of next leaf page */
3278 dtoffset->pn++;
3279 dtoffset->index = 0;
3280 }
3281
3282 out:
3283 /* return target leaf page pinned */
3284 btsp = btstack->top;
3285 btsp->bn = bn;
3286 btsp->index = dtoffset->index;
3287 btsp->mp = mp;
3288
3289 return 0;
3290 }
3291
3292
3293 /*
3294 * dtCompare()
3295 *
3296 * function: compare search key with an internal entry
3297 *
3298 * return:
3299 * < 0 if k is < record
3300 * = 0 if k is = record
3301 * > 0 if k is > record
3302 */
dtCompare(struct component_name * key,dtpage_t * p,int si)3303 static int dtCompare(struct component_name * key, /* search key */
3304 dtpage_t * p, /* directory page */
3305 int si)
3306 { /* entry slot index */
3307 wchar_t *kname;
3308 __le16 *name;
3309 int klen, namlen, len, rc;
3310 struct idtentry *ih;
3311 struct dtslot *t;
3312
3313 /*
3314 * force the left-most key on internal pages, at any level of
3315 * the tree, to be less than any search key.
3316 * this obviates having to update the leftmost key on an internal
3317 * page when the user inserts a new key in the tree smaller than
3318 * anything that has been stored.
3319 *
3320 * (? if/when dtSearch() narrows down to 1st entry (index = 0),
3321 * at any internal page at any level of the tree,
3322 * it descends to child of the entry anyway -
3323 * ? make the entry as min size dummy entry)
3324 *
3325 * if (e->index == 0 && h->prevpg == P_INVALID && !(h->flags & BT_LEAF))
3326 * return (1);
3327 */
3328
3329 kname = key->name;
3330 klen = key->namlen;
3331
3332 ih = (struct idtentry *) & p->slot[si];
3333 si = ih->next;
3334 name = ih->name;
3335 namlen = ih->namlen;
3336 len = min(namlen, DTIHDRDATALEN);
3337
3338 /* compare with head/only segment */
3339 len = min(klen, len);
3340 if ((rc = UniStrncmp_le(kname, name, len)))
3341 return rc;
3342
3343 klen -= len;
3344 namlen -= len;
3345
3346 /* compare with additional segment(s) */
3347 kname += len;
3348 while (klen > 0 && namlen > 0) {
3349 /* compare with next name segment */
3350 t = (struct dtslot *) & p->slot[si];
3351 len = min(namlen, DTSLOTDATALEN);
3352 len = min(klen, len);
3353 name = t->name;
3354 if ((rc = UniStrncmp_le(kname, name, len)))
3355 return rc;
3356
3357 klen -= len;
3358 namlen -= len;
3359 kname += len;
3360 si = t->next;
3361 }
3362
3363 return (klen - namlen);
3364 }
3365
3366
3367
3368
3369 /*
3370 * ciCompare()
3371 *
3372 * function: compare search key with an (leaf/internal) entry
3373 *
3374 * return:
3375 * < 0 if k is < record
3376 * = 0 if k is = record
3377 * > 0 if k is > record
3378 */
ciCompare(struct component_name * key,dtpage_t * p,int si,int flag)3379 static int ciCompare(struct component_name * key, /* search key */
3380 dtpage_t * p, /* directory page */
3381 int si, /* entry slot index */
3382 int flag)
3383 {
3384 wchar_t *kname, x;
3385 __le16 *name;
3386 int klen, namlen, len, rc;
3387 struct ldtentry *lh;
3388 struct idtentry *ih;
3389 struct dtslot *t;
3390 int i;
3391
3392 /*
3393 * force the left-most key on internal pages, at any level of
3394 * the tree, to be less than any search key.
3395 * this obviates having to update the leftmost key on an internal
3396 * page when the user inserts a new key in the tree smaller than
3397 * anything that has been stored.
3398 *
3399 * (? if/when dtSearch() narrows down to 1st entry (index = 0),
3400 * at any internal page at any level of the tree,
3401 * it descends to child of the entry anyway -
3402 * ? make the entry as min size dummy entry)
3403 *
3404 * if (e->index == 0 && h->prevpg == P_INVALID && !(h->flags & BT_LEAF))
3405 * return (1);
3406 */
3407
3408 kname = key->name;
3409 klen = key->namlen;
3410
3411 /*
3412 * leaf page entry
3413 */
3414 if (p->header.flag & BT_LEAF) {
3415 lh = (struct ldtentry *) & p->slot[si];
3416 si = lh->next;
3417 name = lh->name;
3418 namlen = lh->namlen;
3419 if (flag & JFS_DIR_INDEX)
3420 len = min(namlen, DTLHDRDATALEN);
3421 else
3422 len = min(namlen, DTLHDRDATALEN_LEGACY);
3423 }
3424 /*
3425 * internal page entry
3426 */
3427 else {
3428 ih = (struct idtentry *) & p->slot[si];
3429 si = ih->next;
3430 name = ih->name;
3431 namlen = ih->namlen;
3432 len = min(namlen, DTIHDRDATALEN);
3433 }
3434
3435 /* compare with head/only segment */
3436 len = min(klen, len);
3437 for (i = 0; i < len; i++, kname++, name++) {
3438 /* only uppercase if case-insensitive support is on */
3439 if ((flag & JFS_OS2) == JFS_OS2)
3440 x = UniToupper(le16_to_cpu(*name));
3441 else
3442 x = le16_to_cpu(*name);
3443 if ((rc = *kname - x))
3444 return rc;
3445 }
3446
3447 klen -= len;
3448 namlen -= len;
3449
3450 /* compare with additional segment(s) */
3451 while (klen > 0 && namlen > 0) {
3452 /* compare with next name segment */
3453 t = (struct dtslot *) & p->slot[si];
3454 len = min(namlen, DTSLOTDATALEN);
3455 len = min(klen, len);
3456 name = t->name;
3457 for (i = 0; i < len; i++, kname++, name++) {
3458 /* only uppercase if case-insensitive support is on */
3459 if ((flag & JFS_OS2) == JFS_OS2)
3460 x = UniToupper(le16_to_cpu(*name));
3461 else
3462 x = le16_to_cpu(*name);
3463
3464 if ((rc = *kname - x))
3465 return rc;
3466 }
3467
3468 klen -= len;
3469 namlen -= len;
3470 si = t->next;
3471 }
3472
3473 return (klen - namlen);
3474 }
3475
3476
3477 /*
3478 * ciGetLeafPrefixKey()
3479 *
3480 * function: compute prefix of suffix compression
3481 * from two adjacent leaf entries
3482 * across page boundary
3483 *
3484 * return: non-zero on error
3485 *
3486 */
ciGetLeafPrefixKey(dtpage_t * lp,int li,dtpage_t * rp,int ri,struct component_name * key,int flag)3487 static int ciGetLeafPrefixKey(dtpage_t * lp, int li, dtpage_t * rp,
3488 int ri, struct component_name * key, int flag)
3489 {
3490 int klen, namlen;
3491 wchar_t *pl, *pr, *kname;
3492 struct component_name lkey;
3493 struct component_name rkey;
3494
3495 lkey.name = kmalloc_array(JFS_NAME_MAX + 1, sizeof(wchar_t),
3496 GFP_KERNEL);
3497 if (lkey.name == NULL)
3498 return -ENOMEM;
3499
3500 rkey.name = kmalloc_array(JFS_NAME_MAX + 1, sizeof(wchar_t),
3501 GFP_KERNEL);
3502 if (rkey.name == NULL) {
3503 kfree(lkey.name);
3504 return -ENOMEM;
3505 }
3506
3507 /* get left and right key */
3508 dtGetKey(lp, li, &lkey, flag);
3509 lkey.name[lkey.namlen] = 0;
3510
3511 if ((flag & JFS_OS2) == JFS_OS2)
3512 ciToUpper(&lkey);
3513
3514 dtGetKey(rp, ri, &rkey, flag);
3515 rkey.name[rkey.namlen] = 0;
3516
3517
3518 if ((flag & JFS_OS2) == JFS_OS2)
3519 ciToUpper(&rkey);
3520
3521 /* compute prefix */
3522 klen = 0;
3523 kname = key->name;
3524 namlen = min(lkey.namlen, rkey.namlen);
3525 for (pl = lkey.name, pr = rkey.name;
3526 namlen; pl++, pr++, namlen--, klen++, kname++) {
3527 *kname = *pr;
3528 if (*pl != *pr) {
3529 key->namlen = klen + 1;
3530 goto free_names;
3531 }
3532 }
3533
3534 /* l->namlen <= r->namlen since l <= r */
3535 if (lkey.namlen < rkey.namlen) {
3536 *kname = *pr;
3537 key->namlen = klen + 1;
3538 } else /* l->namelen == r->namelen */
3539 key->namlen = klen;
3540
3541 free_names:
3542 kfree(lkey.name);
3543 kfree(rkey.name);
3544 return 0;
3545 }
3546
3547
3548
3549 /*
3550 * dtGetKey()
3551 *
3552 * function: get key of the entry
3553 */
dtGetKey(dtpage_t * p,int i,struct component_name * key,int flag)3554 static void dtGetKey(dtpage_t * p, int i, /* entry index */
3555 struct component_name * key, int flag)
3556 {
3557 int si;
3558 s8 *stbl;
3559 struct ldtentry *lh;
3560 struct idtentry *ih;
3561 struct dtslot *t;
3562 int namlen, len;
3563 wchar_t *kname;
3564 __le16 *name;
3565
3566 /* get entry */
3567 stbl = DT_GETSTBL(p);
3568 si = stbl[i];
3569 if (p->header.flag & BT_LEAF) {
3570 lh = (struct ldtentry *) & p->slot[si];
3571 si = lh->next;
3572 namlen = lh->namlen;
3573 name = lh->name;
3574 if (flag & JFS_DIR_INDEX)
3575 len = min(namlen, DTLHDRDATALEN);
3576 else
3577 len = min(namlen, DTLHDRDATALEN_LEGACY);
3578 } else {
3579 ih = (struct idtentry *) & p->slot[si];
3580 si = ih->next;
3581 namlen = ih->namlen;
3582 name = ih->name;
3583 len = min(namlen, DTIHDRDATALEN);
3584 }
3585
3586 key->namlen = namlen;
3587 kname = key->name;
3588
3589 /*
3590 * move head/only segment
3591 */
3592 UniStrncpy_from_le(kname, name, len);
3593
3594 /*
3595 * move additional segment(s)
3596 */
3597 while (si >= 0) {
3598 /* get next segment */
3599 t = &p->slot[si];
3600 kname += len;
3601 namlen -= len;
3602 len = min(namlen, DTSLOTDATALEN);
3603 UniStrncpy_from_le(kname, t->name, len);
3604
3605 si = t->next;
3606 }
3607 }
3608
3609
3610 /*
3611 * dtInsertEntry()
3612 *
3613 * function: allocate free slot(s) and
3614 * write a leaf/internal entry
3615 *
3616 * return: entry slot index
3617 */
dtInsertEntry(dtpage_t * p,int index,struct component_name * key,ddata_t * data,struct dt_lock ** dtlock)3618 static void dtInsertEntry(dtpage_t * p, int index, struct component_name * key,
3619 ddata_t * data, struct dt_lock ** dtlock)
3620 {
3621 struct dtslot *h, *t;
3622 struct ldtentry *lh = NULL;
3623 struct idtentry *ih = NULL;
3624 int hsi, fsi, klen, len, nextindex;
3625 wchar_t *kname;
3626 __le16 *name;
3627 s8 *stbl;
3628 pxd_t *xd;
3629 struct dt_lock *dtlck = *dtlock;
3630 struct lv *lv;
3631 int xsi, n;
3632 s64 bn = 0;
3633 struct metapage *mp = NULL;
3634
3635 klen = key->namlen;
3636 kname = key->name;
3637
3638 /* allocate a free slot */
3639 hsi = fsi = p->header.freelist;
3640 h = &p->slot[fsi];
3641 p->header.freelist = h->next;
3642 --p->header.freecnt;
3643
3644 /* open new linelock */
3645 if (dtlck->index >= dtlck->maxcnt)
3646 dtlck = (struct dt_lock *) txLinelock(dtlck);
3647
3648 lv = & dtlck->lv[dtlck->index];
3649 lv->offset = hsi;
3650
3651 /* write head/only segment */
3652 if (p->header.flag & BT_LEAF) {
3653 lh = (struct ldtentry *) h;
3654 lh->next = h->next;
3655 lh->inumber = cpu_to_le32(data->leaf.ino);
3656 lh->namlen = klen;
3657 name = lh->name;
3658 if (data->leaf.ip) {
3659 len = min(klen, DTLHDRDATALEN);
3660 if (!(p->header.flag & BT_ROOT))
3661 bn = addressPXD(&p->header.self);
3662 lh->index = cpu_to_le32(add_index(data->leaf.tid,
3663 data->leaf.ip,
3664 bn, index));
3665 } else
3666 len = min(klen, DTLHDRDATALEN_LEGACY);
3667 } else {
3668 ih = (struct idtentry *) h;
3669 ih->next = h->next;
3670 xd = (pxd_t *) ih;
3671 *xd = data->xd;
3672 ih->namlen = klen;
3673 name = ih->name;
3674 len = min(klen, DTIHDRDATALEN);
3675 }
3676
3677 UniStrncpy_to_le(name, kname, len);
3678
3679 n = 1;
3680 xsi = hsi;
3681
3682 /* write additional segment(s) */
3683 t = h;
3684 klen -= len;
3685 while (klen) {
3686 /* get free slot */
3687 fsi = p->header.freelist;
3688 t = &p->slot[fsi];
3689 p->header.freelist = t->next;
3690 --p->header.freecnt;
3691
3692 /* is next slot contiguous ? */
3693 if (fsi != xsi + 1) {
3694 /* close current linelock */
3695 lv->length = n;
3696 dtlck->index++;
3697
3698 /* open new linelock */
3699 if (dtlck->index < dtlck->maxcnt)
3700 lv++;
3701 else {
3702 dtlck = (struct dt_lock *) txLinelock(dtlck);
3703 lv = & dtlck->lv[0];
3704 }
3705
3706 lv->offset = fsi;
3707 n = 0;
3708 }
3709
3710 kname += len;
3711 len = min(klen, DTSLOTDATALEN);
3712 UniStrncpy_to_le(t->name, kname, len);
3713
3714 n++;
3715 xsi = fsi;
3716 klen -= len;
3717 }
3718
3719 /* close current linelock */
3720 lv->length = n;
3721 dtlck->index++;
3722
3723 *dtlock = dtlck;
3724
3725 /* terminate last/only segment */
3726 if (h == t) {
3727 /* single segment entry */
3728 if (p->header.flag & BT_LEAF)
3729 lh->next = -1;
3730 else
3731 ih->next = -1;
3732 } else
3733 /* multi-segment entry */
3734 t->next = -1;
3735
3736 /* if insert into middle, shift right succeeding entries in stbl */
3737 stbl = DT_GETSTBL(p);
3738 nextindex = p->header.nextindex;
3739 if (index < nextindex) {
3740 memmove(stbl + index + 1, stbl + index, nextindex - index);
3741
3742 if ((p->header.flag & BT_LEAF) && data->leaf.ip) {
3743 s64 lblock;
3744
3745 /*
3746 * Need to update slot number for entries that moved
3747 * in the stbl
3748 */
3749 mp = NULL;
3750 for (n = index + 1; n <= nextindex; n++) {
3751 lh = (struct ldtentry *) & (p->slot[stbl[n]]);
3752 modify_index(data->leaf.tid, data->leaf.ip,
3753 le32_to_cpu(lh->index), bn, n,
3754 &mp, &lblock);
3755 }
3756 if (mp)
3757 release_metapage(mp);
3758 }
3759 }
3760
3761 stbl[index] = hsi;
3762
3763 /* advance next available entry index of stbl */
3764 ++p->header.nextindex;
3765 }
3766
3767
3768 /*
3769 * dtMoveEntry()
3770 *
3771 * function: move entries from split/left page to new/right page
3772 *
3773 * nextindex of dst page and freelist/freecnt of both pages
3774 * are updated.
3775 */
dtMoveEntry(dtpage_t * sp,int si,dtpage_t * dp,struct dt_lock ** sdtlock,struct dt_lock ** ddtlock,int do_index)3776 static void dtMoveEntry(dtpage_t * sp, int si, dtpage_t * dp,
3777 struct dt_lock ** sdtlock, struct dt_lock ** ddtlock,
3778 int do_index)
3779 {
3780 int ssi, next; /* src slot index */
3781 int di; /* dst entry index */
3782 int dsi; /* dst slot index */
3783 s8 *sstbl, *dstbl; /* sorted entry table */
3784 int snamlen, len;
3785 struct ldtentry *slh, *dlh = NULL;
3786 struct idtentry *sih, *dih = NULL;
3787 struct dtslot *h, *s, *d;
3788 struct dt_lock *sdtlck = *sdtlock, *ddtlck = *ddtlock;
3789 struct lv *slv, *dlv;
3790 int xssi, ns, nd;
3791 int sfsi;
3792
3793 sstbl = (s8 *) & sp->slot[sp->header.stblindex];
3794 dstbl = (s8 *) & dp->slot[dp->header.stblindex];
3795
3796 dsi = dp->header.freelist; /* first (whole page) free slot */
3797 sfsi = sp->header.freelist;
3798
3799 /* linelock destination entry slot */
3800 dlv = & ddtlck->lv[ddtlck->index];
3801 dlv->offset = dsi;
3802
3803 /* linelock source entry slot */
3804 slv = & sdtlck->lv[sdtlck->index];
3805 slv->offset = sstbl[si];
3806 xssi = slv->offset - 1;
3807
3808 /*
3809 * move entries
3810 */
3811 ns = nd = 0;
3812 for (di = 0; si < sp->header.nextindex; si++, di++) {
3813 ssi = sstbl[si];
3814 dstbl[di] = dsi;
3815
3816 /* is next slot contiguous ? */
3817 if (ssi != xssi + 1) {
3818 /* close current linelock */
3819 slv->length = ns;
3820 sdtlck->index++;
3821
3822 /* open new linelock */
3823 if (sdtlck->index < sdtlck->maxcnt)
3824 slv++;
3825 else {
3826 sdtlck = (struct dt_lock *) txLinelock(sdtlck);
3827 slv = & sdtlck->lv[0];
3828 }
3829
3830 slv->offset = ssi;
3831 ns = 0;
3832 }
3833
3834 /*
3835 * move head/only segment of an entry
3836 */
3837 /* get dst slot */
3838 h = d = &dp->slot[dsi];
3839
3840 /* get src slot and move */
3841 s = &sp->slot[ssi];
3842 if (sp->header.flag & BT_LEAF) {
3843 /* get source entry */
3844 slh = (struct ldtentry *) s;
3845 dlh = (struct ldtentry *) h;
3846 snamlen = slh->namlen;
3847
3848 if (do_index) {
3849 len = min(snamlen, DTLHDRDATALEN);
3850 dlh->index = slh->index; /* little-endian */
3851 } else
3852 len = min(snamlen, DTLHDRDATALEN_LEGACY);
3853
3854 memcpy(dlh, slh, 6 + len * 2);
3855
3856 next = slh->next;
3857
3858 /* update dst head/only segment next field */
3859 dsi++;
3860 dlh->next = dsi;
3861 } else {
3862 sih = (struct idtentry *) s;
3863 snamlen = sih->namlen;
3864
3865 len = min(snamlen, DTIHDRDATALEN);
3866 dih = (struct idtentry *) h;
3867 memcpy(dih, sih, 10 + len * 2);
3868 next = sih->next;
3869
3870 dsi++;
3871 dih->next = dsi;
3872 }
3873
3874 /* free src head/only segment */
3875 s->next = sfsi;
3876 s->cnt = 1;
3877 sfsi = ssi;
3878
3879 ns++;
3880 nd++;
3881 xssi = ssi;
3882
3883 /*
3884 * move additional segment(s) of the entry
3885 */
3886 snamlen -= len;
3887 while ((ssi = next) >= 0) {
3888 /* is next slot contiguous ? */
3889 if (ssi != xssi + 1) {
3890 /* close current linelock */
3891 slv->length = ns;
3892 sdtlck->index++;
3893
3894 /* open new linelock */
3895 if (sdtlck->index < sdtlck->maxcnt)
3896 slv++;
3897 else {
3898 sdtlck =
3899 (struct dt_lock *)
3900 txLinelock(sdtlck);
3901 slv = & sdtlck->lv[0];
3902 }
3903
3904 slv->offset = ssi;
3905 ns = 0;
3906 }
3907
3908 /* get next source segment */
3909 s = &sp->slot[ssi];
3910
3911 /* get next destination free slot */
3912 d++;
3913
3914 len = min(snamlen, DTSLOTDATALEN);
3915 UniStrncpy_le(d->name, s->name, len);
3916
3917 ns++;
3918 nd++;
3919 xssi = ssi;
3920
3921 dsi++;
3922 d->next = dsi;
3923
3924 /* free source segment */
3925 next = s->next;
3926 s->next = sfsi;
3927 s->cnt = 1;
3928 sfsi = ssi;
3929
3930 snamlen -= len;
3931 } /* end while */
3932
3933 /* terminate dst last/only segment */
3934 if (h == d) {
3935 /* single segment entry */
3936 if (dp->header.flag & BT_LEAF)
3937 dlh->next = -1;
3938 else
3939 dih->next = -1;
3940 } else
3941 /* multi-segment entry */
3942 d->next = -1;
3943 } /* end for */
3944
3945 /* close current linelock */
3946 slv->length = ns;
3947 sdtlck->index++;
3948 *sdtlock = sdtlck;
3949
3950 dlv->length = nd;
3951 ddtlck->index++;
3952 *ddtlock = ddtlck;
3953
3954 /* update source header */
3955 sp->header.freelist = sfsi;
3956 sp->header.freecnt += nd;
3957
3958 /* update destination header */
3959 dp->header.nextindex = di;
3960
3961 dp->header.freelist = dsi;
3962 dp->header.freecnt -= nd;
3963 }
3964
3965
3966 /*
3967 * dtDeleteEntry()
3968 *
3969 * function: free a (leaf/internal) entry
3970 *
3971 * log freelist header, stbl, and each segment slot of entry
3972 * (even though last/only segment next field is modified,
3973 * physical image logging requires all segment slots of
3974 * the entry logged to avoid applying previous updates
3975 * to the same slots)
3976 */
dtDeleteEntry(dtpage_t * p,int fi,struct dt_lock ** dtlock)3977 static void dtDeleteEntry(dtpage_t * p, int fi, struct dt_lock ** dtlock)
3978 {
3979 int fsi; /* free entry slot index */
3980 s8 *stbl;
3981 struct dtslot *t;
3982 int si, freecnt;
3983 struct dt_lock *dtlck = *dtlock;
3984 struct lv *lv;
3985 int xsi, n;
3986
3987 /* get free entry slot index */
3988 stbl = DT_GETSTBL(p);
3989 fsi = stbl[fi];
3990
3991 /* open new linelock */
3992 if (dtlck->index >= dtlck->maxcnt)
3993 dtlck = (struct dt_lock *) txLinelock(dtlck);
3994 lv = & dtlck->lv[dtlck->index];
3995
3996 lv->offset = fsi;
3997
3998 /* get the head/only segment */
3999 t = &p->slot[fsi];
4000 if (p->header.flag & BT_LEAF)
4001 si = ((struct ldtentry *) t)->next;
4002 else
4003 si = ((struct idtentry *) t)->next;
4004 t->next = si;
4005 t->cnt = 1;
4006
4007 n = freecnt = 1;
4008 xsi = fsi;
4009
4010 /* find the last/only segment */
4011 while (si >= 0) {
4012 /* is next slot contiguous ? */
4013 if (si != xsi + 1) {
4014 /* close current linelock */
4015 lv->length = n;
4016 dtlck->index++;
4017
4018 /* open new linelock */
4019 if (dtlck->index < dtlck->maxcnt)
4020 lv++;
4021 else {
4022 dtlck = (struct dt_lock *) txLinelock(dtlck);
4023 lv = & dtlck->lv[0];
4024 }
4025
4026 lv->offset = si;
4027 n = 0;
4028 }
4029
4030 n++;
4031 xsi = si;
4032 freecnt++;
4033
4034 t = &p->slot[si];
4035 t->cnt = 1;
4036 si = t->next;
4037 }
4038
4039 /* close current linelock */
4040 lv->length = n;
4041 dtlck->index++;
4042
4043 *dtlock = dtlck;
4044
4045 /* update freelist */
4046 t->next = p->header.freelist;
4047 p->header.freelist = fsi;
4048 p->header.freecnt += freecnt;
4049
4050 /* if delete from middle,
4051 * shift left the succedding entries in the stbl
4052 */
4053 si = p->header.nextindex;
4054 if (fi < si - 1)
4055 memmove(&stbl[fi], &stbl[fi + 1], si - fi - 1);
4056
4057 p->header.nextindex--;
4058 }
4059
4060
4061 /*
4062 * dtTruncateEntry()
4063 *
4064 * function: truncate a (leaf/internal) entry
4065 *
4066 * log freelist header, stbl, and each segment slot of entry
4067 * (even though last/only segment next field is modified,
4068 * physical image logging requires all segment slots of
4069 * the entry logged to avoid applying previous updates
4070 * to the same slots)
4071 */
dtTruncateEntry(dtpage_t * p,int ti,struct dt_lock ** dtlock)4072 static void dtTruncateEntry(dtpage_t * p, int ti, struct dt_lock ** dtlock)
4073 {
4074 int tsi; /* truncate entry slot index */
4075 s8 *stbl;
4076 struct dtslot *t;
4077 int si, freecnt;
4078 struct dt_lock *dtlck = *dtlock;
4079 struct lv *lv;
4080 int fsi, xsi, n;
4081
4082 /* get free entry slot index */
4083 stbl = DT_GETSTBL(p);
4084 tsi = stbl[ti];
4085
4086 /* open new linelock */
4087 if (dtlck->index >= dtlck->maxcnt)
4088 dtlck = (struct dt_lock *) txLinelock(dtlck);
4089 lv = & dtlck->lv[dtlck->index];
4090
4091 lv->offset = tsi;
4092
4093 /* get the head/only segment */
4094 t = &p->slot[tsi];
4095 ASSERT(p->header.flag & BT_INTERNAL);
4096 ((struct idtentry *) t)->namlen = 0;
4097 si = ((struct idtentry *) t)->next;
4098 ((struct idtentry *) t)->next = -1;
4099
4100 n = 1;
4101 freecnt = 0;
4102 fsi = si;
4103 xsi = tsi;
4104
4105 /* find the last/only segment */
4106 while (si >= 0) {
4107 /* is next slot contiguous ? */
4108 if (si != xsi + 1) {
4109 /* close current linelock */
4110 lv->length = n;
4111 dtlck->index++;
4112
4113 /* open new linelock */
4114 if (dtlck->index < dtlck->maxcnt)
4115 lv++;
4116 else {
4117 dtlck = (struct dt_lock *) txLinelock(dtlck);
4118 lv = & dtlck->lv[0];
4119 }
4120
4121 lv->offset = si;
4122 n = 0;
4123 }
4124
4125 n++;
4126 xsi = si;
4127 freecnt++;
4128
4129 t = &p->slot[si];
4130 t->cnt = 1;
4131 si = t->next;
4132 }
4133
4134 /* close current linelock */
4135 lv->length = n;
4136 dtlck->index++;
4137
4138 *dtlock = dtlck;
4139
4140 /* update freelist */
4141 if (freecnt == 0)
4142 return;
4143 t->next = p->header.freelist;
4144 p->header.freelist = fsi;
4145 p->header.freecnt += freecnt;
4146 }
4147
4148
4149 /*
4150 * dtLinelockFreelist()
4151 */
dtLinelockFreelist(dtpage_t * p,int m,struct dt_lock ** dtlock)4152 static void dtLinelockFreelist(dtpage_t * p, /* directory page */
4153 int m, /* max slot index */
4154 struct dt_lock ** dtlock)
4155 {
4156 int fsi; /* free entry slot index */
4157 struct dtslot *t;
4158 int si;
4159 struct dt_lock *dtlck = *dtlock;
4160 struct lv *lv;
4161 int xsi, n;
4162
4163 /* get free entry slot index */
4164 fsi = p->header.freelist;
4165
4166 /* open new linelock */
4167 if (dtlck->index >= dtlck->maxcnt)
4168 dtlck = (struct dt_lock *) txLinelock(dtlck);
4169 lv = & dtlck->lv[dtlck->index];
4170
4171 lv->offset = fsi;
4172
4173 n = 1;
4174 xsi = fsi;
4175
4176 t = &p->slot[fsi];
4177 si = t->next;
4178
4179 /* find the last/only segment */
4180 while (si < m && si >= 0) {
4181 /* is next slot contiguous ? */
4182 if (si != xsi + 1) {
4183 /* close current linelock */
4184 lv->length = n;
4185 dtlck->index++;
4186
4187 /* open new linelock */
4188 if (dtlck->index < dtlck->maxcnt)
4189 lv++;
4190 else {
4191 dtlck = (struct dt_lock *) txLinelock(dtlck);
4192 lv = & dtlck->lv[0];
4193 }
4194
4195 lv->offset = si;
4196 n = 0;
4197 }
4198
4199 n++;
4200 xsi = si;
4201
4202 t = &p->slot[si];
4203 si = t->next;
4204 }
4205
4206 /* close current linelock */
4207 lv->length = n;
4208 dtlck->index++;
4209
4210 *dtlock = dtlck;
4211 }
4212
4213
4214 /*
4215 * NAME: dtModify
4216 *
4217 * FUNCTION: Modify the inode number part of a directory entry
4218 *
4219 * PARAMETERS:
4220 * tid - Transaction id
4221 * ip - Inode of parent directory
4222 * key - Name of entry to be modified
4223 * orig_ino - Original inode number expected in entry
4224 * new_ino - New inode number to put into entry
4225 * flag - JFS_RENAME
4226 *
4227 * RETURNS:
4228 * -ESTALE - If entry found does not match orig_ino passed in
4229 * -ENOENT - If no entry can be found to match key
4230 * 0 - If successfully modified entry
4231 */
dtModify(tid_t tid,struct inode * ip,struct component_name * key,ino_t * orig_ino,ino_t new_ino,int flag)4232 int dtModify(tid_t tid, struct inode *ip,
4233 struct component_name * key, ino_t * orig_ino, ino_t new_ino, int flag)
4234 {
4235 int rc;
4236 s64 bn;
4237 struct metapage *mp;
4238 dtpage_t *p;
4239 int index;
4240 struct btstack btstack;
4241 struct tlock *tlck;
4242 struct dt_lock *dtlck;
4243 struct lv *lv;
4244 s8 *stbl;
4245 int entry_si; /* entry slot index */
4246 struct ldtentry *entry;
4247
4248 /*
4249 * search for the entry to modify:
4250 *
4251 * dtSearch() returns (leaf page pinned, index at which to modify).
4252 */
4253 if ((rc = dtSearch(ip, key, orig_ino, &btstack, flag)))
4254 return rc;
4255
4256 /* retrieve search result */
4257 DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
4258
4259 BT_MARK_DIRTY(mp, ip);
4260 /*
4261 * acquire a transaction lock on the leaf page of named entry
4262 */
4263 tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
4264 dtlck = (struct dt_lock *) & tlck->lock;
4265
4266 /* get slot index of the entry */
4267 stbl = DT_GETSTBL(p);
4268 entry_si = stbl[index];
4269
4270 /* linelock entry */
4271 ASSERT(dtlck->index == 0);
4272 lv = & dtlck->lv[0];
4273 lv->offset = entry_si;
4274 lv->length = 1;
4275 dtlck->index++;
4276
4277 /* get the head/only segment */
4278 entry = (struct ldtentry *) & p->slot[entry_si];
4279
4280 /* substitute the inode number of the entry */
4281 entry->inumber = cpu_to_le32(new_ino);
4282
4283 /* unpin the leaf page */
4284 DT_PUTPAGE(mp);
4285
4286 return 0;
4287 }
4288