1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/pagevec.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmstat.h>
39 #include <linux/fault-inject.h>
40 #include <linux/compaction.h>
41 #include <trace/events/kmem.h>
42 #include <trace/events/oom.h>
43 #include <linux/prefetch.h>
44 #include <linux/mm_inline.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/migrate.h>
47 #include <linux/sched/mm.h>
48 #include <linux/page_owner.h>
49 #include <linux/page_table_check.h>
50 #include <linux/memcontrol.h>
51 #include <linux/ftrace.h>
52 #include <linux/lockdep.h>
53 #include <linux/psi.h>
54 #include <linux/khugepaged.h>
55 #include <linux/delayacct.h>
56 #include <linux/cacheinfo.h>
57 #include <linux/pgalloc_tag.h>
58 #include <asm/div64.h>
59 #include "internal.h"
60 #include "shuffle.h"
61 #include "page_reporting.h"
62
63 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
64 typedef int __bitwise fpi_t;
65
66 /* No special request */
67 #define FPI_NONE ((__force fpi_t)0)
68
69 /*
70 * Skip free page reporting notification for the (possibly merged) page.
71 * This does not hinder free page reporting from grabbing the page,
72 * reporting it and marking it "reported" - it only skips notifying
73 * the free page reporting infrastructure about a newly freed page. For
74 * example, used when temporarily pulling a page from a freelist and
75 * putting it back unmodified.
76 */
77 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
78
79 /*
80 * Place the (possibly merged) page to the tail of the freelist. Will ignore
81 * page shuffling (relevant code - e.g., memory onlining - is expected to
82 * shuffle the whole zone).
83 *
84 * Note: No code should rely on this flag for correctness - it's purely
85 * to allow for optimizations when handing back either fresh pages
86 * (memory onlining) or untouched pages (page isolation, free page
87 * reporting).
88 */
89 #define FPI_TO_TAIL ((__force fpi_t)BIT(1))
90
91 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
92 static DEFINE_MUTEX(pcp_batch_high_lock);
93 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
94
95 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
96 /*
97 * On SMP, spin_trylock is sufficient protection.
98 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
99 */
100 #define pcp_trylock_prepare(flags) do { } while (0)
101 #define pcp_trylock_finish(flag) do { } while (0)
102 #else
103
104 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
105 #define pcp_trylock_prepare(flags) local_irq_save(flags)
106 #define pcp_trylock_finish(flags) local_irq_restore(flags)
107 #endif
108
109 /*
110 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
111 * a migration causing the wrong PCP to be locked and remote memory being
112 * potentially allocated, pin the task to the CPU for the lookup+lock.
113 * preempt_disable is used on !RT because it is faster than migrate_disable.
114 * migrate_disable is used on RT because otherwise RT spinlock usage is
115 * interfered with and a high priority task cannot preempt the allocator.
116 */
117 #ifndef CONFIG_PREEMPT_RT
118 #define pcpu_task_pin() preempt_disable()
119 #define pcpu_task_unpin() preempt_enable()
120 #else
121 #define pcpu_task_pin() migrate_disable()
122 #define pcpu_task_unpin() migrate_enable()
123 #endif
124
125 /*
126 * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
127 * Return value should be used with equivalent unlock helper.
128 */
129 #define pcpu_spin_lock(type, member, ptr) \
130 ({ \
131 type *_ret; \
132 pcpu_task_pin(); \
133 _ret = this_cpu_ptr(ptr); \
134 spin_lock(&_ret->member); \
135 _ret; \
136 })
137
138 #define pcpu_spin_trylock(type, member, ptr) \
139 ({ \
140 type *_ret; \
141 pcpu_task_pin(); \
142 _ret = this_cpu_ptr(ptr); \
143 if (!spin_trylock(&_ret->member)) { \
144 pcpu_task_unpin(); \
145 _ret = NULL; \
146 } \
147 _ret; \
148 })
149
150 #define pcpu_spin_unlock(member, ptr) \
151 ({ \
152 spin_unlock(&ptr->member); \
153 pcpu_task_unpin(); \
154 })
155
156 /* struct per_cpu_pages specific helpers. */
157 #define pcp_spin_lock(ptr) \
158 pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
159
160 #define pcp_spin_trylock(ptr) \
161 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
162
163 #define pcp_spin_unlock(ptr) \
164 pcpu_spin_unlock(lock, ptr)
165
166 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
167 DEFINE_PER_CPU(int, numa_node);
168 EXPORT_PER_CPU_SYMBOL(numa_node);
169 #endif
170
171 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
172
173 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
174 /*
175 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
176 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
177 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
178 * defined in <linux/topology.h>.
179 */
180 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
181 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
182 #endif
183
184 static DEFINE_MUTEX(pcpu_drain_mutex);
185
186 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
187 volatile unsigned long latent_entropy __latent_entropy;
188 EXPORT_SYMBOL(latent_entropy);
189 #endif
190
191 /*
192 * Array of node states.
193 */
194 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
195 [N_POSSIBLE] = NODE_MASK_ALL,
196 [N_ONLINE] = { { [0] = 1UL } },
197 #ifndef CONFIG_NUMA
198 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
199 #ifdef CONFIG_HIGHMEM
200 [N_HIGH_MEMORY] = { { [0] = 1UL } },
201 #endif
202 [N_MEMORY] = { { [0] = 1UL } },
203 [N_CPU] = { { [0] = 1UL } },
204 #endif /* NUMA */
205 };
206 EXPORT_SYMBOL(node_states);
207
208 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
209
210 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
211 unsigned int pageblock_order __read_mostly;
212 #endif
213
214 static void __free_pages_ok(struct page *page, unsigned int order,
215 fpi_t fpi_flags);
216
217 /*
218 * results with 256, 32 in the lowmem_reserve sysctl:
219 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
220 * 1G machine -> (16M dma, 784M normal, 224M high)
221 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
222 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
223 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
224 *
225 * TBD: should special case ZONE_DMA32 machines here - in those we normally
226 * don't need any ZONE_NORMAL reservation
227 */
228 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
229 #ifdef CONFIG_ZONE_DMA
230 [ZONE_DMA] = 256,
231 #endif
232 #ifdef CONFIG_ZONE_DMA32
233 [ZONE_DMA32] = 256,
234 #endif
235 [ZONE_NORMAL] = 32,
236 #ifdef CONFIG_HIGHMEM
237 [ZONE_HIGHMEM] = 0,
238 #endif
239 [ZONE_MOVABLE] = 0,
240 };
241
242 char * const zone_names[MAX_NR_ZONES] = {
243 #ifdef CONFIG_ZONE_DMA
244 "DMA",
245 #endif
246 #ifdef CONFIG_ZONE_DMA32
247 "DMA32",
248 #endif
249 "Normal",
250 #ifdef CONFIG_HIGHMEM
251 "HighMem",
252 #endif
253 "Movable",
254 #ifdef CONFIG_ZONE_DEVICE
255 "Device",
256 #endif
257 };
258
259 const char * const migratetype_names[MIGRATE_TYPES] = {
260 "Unmovable",
261 "Movable",
262 "Reclaimable",
263 "HighAtomic",
264 #ifdef CONFIG_CMA
265 "CMA",
266 #endif
267 #ifdef CONFIG_MEMORY_ISOLATION
268 "Isolate",
269 #endif
270 };
271
272 int min_free_kbytes = 1024;
273 int user_min_free_kbytes = -1;
274 static int watermark_boost_factor __read_mostly = 15000;
275 static int watermark_scale_factor = 10;
276
277 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
278 int movable_zone;
279 EXPORT_SYMBOL(movable_zone);
280
281 #if MAX_NUMNODES > 1
282 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
283 unsigned int nr_online_nodes __read_mostly = 1;
284 EXPORT_SYMBOL(nr_node_ids);
285 EXPORT_SYMBOL(nr_online_nodes);
286 #endif
287
288 static bool page_contains_unaccepted(struct page *page, unsigned int order);
289 static bool cond_accept_memory(struct zone *zone, unsigned int order);
290 static bool __free_unaccepted(struct page *page);
291
292 int page_group_by_mobility_disabled __read_mostly;
293
294 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
295 /*
296 * During boot we initialize deferred pages on-demand, as needed, but once
297 * page_alloc_init_late() has finished, the deferred pages are all initialized,
298 * and we can permanently disable that path.
299 */
300 DEFINE_STATIC_KEY_TRUE(deferred_pages);
301
deferred_pages_enabled(void)302 static inline bool deferred_pages_enabled(void)
303 {
304 return static_branch_unlikely(&deferred_pages);
305 }
306
307 /*
308 * deferred_grow_zone() is __init, but it is called from
309 * get_page_from_freelist() during early boot until deferred_pages permanently
310 * disables this call. This is why we have refdata wrapper to avoid warning,
311 * and to ensure that the function body gets unloaded.
312 */
313 static bool __ref
_deferred_grow_zone(struct zone * zone,unsigned int order)314 _deferred_grow_zone(struct zone *zone, unsigned int order)
315 {
316 return deferred_grow_zone(zone, order);
317 }
318 #else
deferred_pages_enabled(void)319 static inline bool deferred_pages_enabled(void)
320 {
321 return false;
322 }
323
_deferred_grow_zone(struct zone * zone,unsigned int order)324 static inline bool _deferred_grow_zone(struct zone *zone, unsigned int order)
325 {
326 return false;
327 }
328 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
329
330 /* Return a pointer to the bitmap storing bits affecting a block of pages */
get_pageblock_bitmap(const struct page * page,unsigned long pfn)331 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
332 unsigned long pfn)
333 {
334 #ifdef CONFIG_SPARSEMEM
335 return section_to_usemap(__pfn_to_section(pfn));
336 #else
337 return page_zone(page)->pageblock_flags;
338 #endif /* CONFIG_SPARSEMEM */
339 }
340
pfn_to_bitidx(const struct page * page,unsigned long pfn)341 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
342 {
343 #ifdef CONFIG_SPARSEMEM
344 pfn &= (PAGES_PER_SECTION-1);
345 #else
346 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
347 #endif /* CONFIG_SPARSEMEM */
348 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
349 }
350
351 /**
352 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
353 * @page: The page within the block of interest
354 * @pfn: The target page frame number
355 * @mask: mask of bits that the caller is interested in
356 *
357 * Return: pageblock_bits flags
358 */
get_pfnblock_flags_mask(const struct page * page,unsigned long pfn,unsigned long mask)359 unsigned long get_pfnblock_flags_mask(const struct page *page,
360 unsigned long pfn, unsigned long mask)
361 {
362 unsigned long *bitmap;
363 unsigned long bitidx, word_bitidx;
364 unsigned long word;
365
366 bitmap = get_pageblock_bitmap(page, pfn);
367 bitidx = pfn_to_bitidx(page, pfn);
368 word_bitidx = bitidx / BITS_PER_LONG;
369 bitidx &= (BITS_PER_LONG-1);
370 /*
371 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
372 * a consistent read of the memory array, so that results, even though
373 * racy, are not corrupted.
374 */
375 word = READ_ONCE(bitmap[word_bitidx]);
376 return (word >> bitidx) & mask;
377 }
378
get_pfnblock_migratetype(const struct page * page,unsigned long pfn)379 static __always_inline int get_pfnblock_migratetype(const struct page *page,
380 unsigned long pfn)
381 {
382 return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
383 }
384
385 /**
386 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
387 * @page: The page within the block of interest
388 * @flags: The flags to set
389 * @pfn: The target page frame number
390 * @mask: mask of bits that the caller is interested in
391 */
set_pfnblock_flags_mask(struct page * page,unsigned long flags,unsigned long pfn,unsigned long mask)392 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
393 unsigned long pfn,
394 unsigned long mask)
395 {
396 unsigned long *bitmap;
397 unsigned long bitidx, word_bitidx;
398 unsigned long word;
399
400 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
401 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
402
403 bitmap = get_pageblock_bitmap(page, pfn);
404 bitidx = pfn_to_bitidx(page, pfn);
405 word_bitidx = bitidx / BITS_PER_LONG;
406 bitidx &= (BITS_PER_LONG-1);
407
408 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
409
410 mask <<= bitidx;
411 flags <<= bitidx;
412
413 word = READ_ONCE(bitmap[word_bitidx]);
414 do {
415 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
416 }
417
set_pageblock_migratetype(struct page * page,int migratetype)418 void set_pageblock_migratetype(struct page *page, int migratetype)
419 {
420 if (unlikely(page_group_by_mobility_disabled &&
421 migratetype < MIGRATE_PCPTYPES))
422 migratetype = MIGRATE_UNMOVABLE;
423
424 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
425 page_to_pfn(page), MIGRATETYPE_MASK);
426 }
427
428 #ifdef CONFIG_DEBUG_VM
page_outside_zone_boundaries(struct zone * zone,struct page * page)429 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
430 {
431 int ret;
432 unsigned seq;
433 unsigned long pfn = page_to_pfn(page);
434 unsigned long sp, start_pfn;
435
436 do {
437 seq = zone_span_seqbegin(zone);
438 start_pfn = zone->zone_start_pfn;
439 sp = zone->spanned_pages;
440 ret = !zone_spans_pfn(zone, pfn);
441 } while (zone_span_seqretry(zone, seq));
442
443 if (ret)
444 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
445 pfn, zone_to_nid(zone), zone->name,
446 start_pfn, start_pfn + sp);
447
448 return ret;
449 }
450
451 /*
452 * Temporary debugging check for pages not lying within a given zone.
453 */
bad_range(struct zone * zone,struct page * page)454 static bool __maybe_unused bad_range(struct zone *zone, struct page *page)
455 {
456 if (page_outside_zone_boundaries(zone, page))
457 return true;
458 if (zone != page_zone(page))
459 return true;
460
461 return false;
462 }
463 #else
bad_range(struct zone * zone,struct page * page)464 static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page)
465 {
466 return false;
467 }
468 #endif
469
bad_page(struct page * page,const char * reason)470 static void bad_page(struct page *page, const char *reason)
471 {
472 static unsigned long resume;
473 static unsigned long nr_shown;
474 static unsigned long nr_unshown;
475
476 /*
477 * Allow a burst of 60 reports, then keep quiet for that minute;
478 * or allow a steady drip of one report per second.
479 */
480 if (nr_shown == 60) {
481 if (time_before(jiffies, resume)) {
482 nr_unshown++;
483 goto out;
484 }
485 if (nr_unshown) {
486 pr_alert(
487 "BUG: Bad page state: %lu messages suppressed\n",
488 nr_unshown);
489 nr_unshown = 0;
490 }
491 nr_shown = 0;
492 }
493 if (nr_shown++ == 0)
494 resume = jiffies + 60 * HZ;
495
496 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
497 current->comm, page_to_pfn(page));
498 dump_page(page, reason);
499
500 print_modules();
501 dump_stack();
502 out:
503 /* Leave bad fields for debug, except PageBuddy could make trouble */
504 if (PageBuddy(page))
505 __ClearPageBuddy(page);
506 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
507 }
508
order_to_pindex(int migratetype,int order)509 static inline unsigned int order_to_pindex(int migratetype, int order)
510 {
511 bool __maybe_unused movable;
512
513 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
514 if (order > PAGE_ALLOC_COSTLY_ORDER) {
515 VM_BUG_ON(order != HPAGE_PMD_ORDER);
516
517 movable = migratetype == MIGRATE_MOVABLE;
518
519 return NR_LOWORDER_PCP_LISTS + movable;
520 }
521 #else
522 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
523 #endif
524
525 return (MIGRATE_PCPTYPES * order) + migratetype;
526 }
527
pindex_to_order(unsigned int pindex)528 static inline int pindex_to_order(unsigned int pindex)
529 {
530 int order = pindex / MIGRATE_PCPTYPES;
531
532 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
533 if (pindex >= NR_LOWORDER_PCP_LISTS)
534 order = HPAGE_PMD_ORDER;
535 #else
536 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
537 #endif
538
539 return order;
540 }
541
pcp_allowed_order(unsigned int order)542 static inline bool pcp_allowed_order(unsigned int order)
543 {
544 if (order <= PAGE_ALLOC_COSTLY_ORDER)
545 return true;
546 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
547 if (order == HPAGE_PMD_ORDER)
548 return true;
549 #endif
550 return false;
551 }
552
553 /*
554 * Higher-order pages are called "compound pages". They are structured thusly:
555 *
556 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
557 *
558 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
559 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
560 *
561 * The first tail page's ->compound_order holds the order of allocation.
562 * This usage means that zero-order pages may not be compound.
563 */
564
prep_compound_page(struct page * page,unsigned int order)565 void prep_compound_page(struct page *page, unsigned int order)
566 {
567 int i;
568 int nr_pages = 1 << order;
569
570 __SetPageHead(page);
571 for (i = 1; i < nr_pages; i++)
572 prep_compound_tail(page, i);
573
574 prep_compound_head(page, order);
575 }
576
set_buddy_order(struct page * page,unsigned int order)577 static inline void set_buddy_order(struct page *page, unsigned int order)
578 {
579 set_page_private(page, order);
580 __SetPageBuddy(page);
581 }
582
583 #ifdef CONFIG_COMPACTION
task_capc(struct zone * zone)584 static inline struct capture_control *task_capc(struct zone *zone)
585 {
586 struct capture_control *capc = current->capture_control;
587
588 return unlikely(capc) &&
589 !(current->flags & PF_KTHREAD) &&
590 !capc->page &&
591 capc->cc->zone == zone ? capc : NULL;
592 }
593
594 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)595 compaction_capture(struct capture_control *capc, struct page *page,
596 int order, int migratetype)
597 {
598 if (!capc || order != capc->cc->order)
599 return false;
600
601 /* Do not accidentally pollute CMA or isolated regions*/
602 if (is_migrate_cma(migratetype) ||
603 is_migrate_isolate(migratetype))
604 return false;
605
606 /*
607 * Do not let lower order allocations pollute a movable pageblock
608 * unless compaction is also requesting movable pages.
609 * This might let an unmovable request use a reclaimable pageblock
610 * and vice-versa but no more than normal fallback logic which can
611 * have trouble finding a high-order free page.
612 */
613 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE &&
614 capc->cc->migratetype != MIGRATE_MOVABLE)
615 return false;
616
617 capc->page = page;
618 return true;
619 }
620
621 #else
task_capc(struct zone * zone)622 static inline struct capture_control *task_capc(struct zone *zone)
623 {
624 return NULL;
625 }
626
627 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)628 compaction_capture(struct capture_control *capc, struct page *page,
629 int order, int migratetype)
630 {
631 return false;
632 }
633 #endif /* CONFIG_COMPACTION */
634
account_freepages(struct zone * zone,int nr_pages,int migratetype)635 static inline void account_freepages(struct zone *zone, int nr_pages,
636 int migratetype)
637 {
638 lockdep_assert_held(&zone->lock);
639
640 if (is_migrate_isolate(migratetype))
641 return;
642
643 __mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages);
644
645 if (is_migrate_cma(migratetype))
646 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages);
647 else if (is_migrate_highatomic(migratetype))
648 WRITE_ONCE(zone->nr_free_highatomic,
649 zone->nr_free_highatomic + nr_pages);
650 }
651
652 /* Used for pages not on another list */
__add_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype,bool tail)653 static inline void __add_to_free_list(struct page *page, struct zone *zone,
654 unsigned int order, int migratetype,
655 bool tail)
656 {
657 struct free_area *area = &zone->free_area[order];
658
659 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
660 "page type is %lu, passed migratetype is %d (nr=%d)\n",
661 get_pageblock_migratetype(page), migratetype, 1 << order);
662
663 if (tail)
664 list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
665 else
666 list_add(&page->buddy_list, &area->free_list[migratetype]);
667 area->nr_free++;
668 }
669
670 /*
671 * Used for pages which are on another list. Move the pages to the tail
672 * of the list - so the moved pages won't immediately be considered for
673 * allocation again (e.g., optimization for memory onlining).
674 */
move_to_free_list(struct page * page,struct zone * zone,unsigned int order,int old_mt,int new_mt)675 static inline void move_to_free_list(struct page *page, struct zone *zone,
676 unsigned int order, int old_mt, int new_mt)
677 {
678 struct free_area *area = &zone->free_area[order];
679
680 /* Free page moving can fail, so it happens before the type update */
681 VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt,
682 "page type is %lu, passed migratetype is %d (nr=%d)\n",
683 get_pageblock_migratetype(page), old_mt, 1 << order);
684
685 list_move_tail(&page->buddy_list, &area->free_list[new_mt]);
686
687 account_freepages(zone, -(1 << order), old_mt);
688 account_freepages(zone, 1 << order, new_mt);
689 }
690
__del_page_from_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)691 static inline void __del_page_from_free_list(struct page *page, struct zone *zone,
692 unsigned int order, int migratetype)
693 {
694 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
695 "page type is %lu, passed migratetype is %d (nr=%d)\n",
696 get_pageblock_migratetype(page), migratetype, 1 << order);
697
698 /* clear reported state and update reported page count */
699 if (page_reported(page))
700 __ClearPageReported(page);
701
702 list_del(&page->buddy_list);
703 __ClearPageBuddy(page);
704 set_page_private(page, 0);
705 zone->free_area[order].nr_free--;
706 }
707
del_page_from_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)708 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
709 unsigned int order, int migratetype)
710 {
711 __del_page_from_free_list(page, zone, order, migratetype);
712 account_freepages(zone, -(1 << order), migratetype);
713 }
714
get_page_from_free_area(struct free_area * area,int migratetype)715 static inline struct page *get_page_from_free_area(struct free_area *area,
716 int migratetype)
717 {
718 return list_first_entry_or_null(&area->free_list[migratetype],
719 struct page, buddy_list);
720 }
721
722 /*
723 * If this is less than the 2nd largest possible page, check if the buddy
724 * of the next-higher order is free. If it is, it's possible
725 * that pages are being freed that will coalesce soon. In case,
726 * that is happening, add the free page to the tail of the list
727 * so it's less likely to be used soon and more likely to be merged
728 * as a 2-level higher order page
729 */
730 static inline bool
buddy_merge_likely(unsigned long pfn,unsigned long buddy_pfn,struct page * page,unsigned int order)731 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
732 struct page *page, unsigned int order)
733 {
734 unsigned long higher_page_pfn;
735 struct page *higher_page;
736
737 if (order >= MAX_PAGE_ORDER - 1)
738 return false;
739
740 higher_page_pfn = buddy_pfn & pfn;
741 higher_page = page + (higher_page_pfn - pfn);
742
743 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
744 NULL) != NULL;
745 }
746
747 /*
748 * Freeing function for a buddy system allocator.
749 *
750 * The concept of a buddy system is to maintain direct-mapped table
751 * (containing bit values) for memory blocks of various "orders".
752 * The bottom level table contains the map for the smallest allocatable
753 * units of memory (here, pages), and each level above it describes
754 * pairs of units from the levels below, hence, "buddies".
755 * At a high level, all that happens here is marking the table entry
756 * at the bottom level available, and propagating the changes upward
757 * as necessary, plus some accounting needed to play nicely with other
758 * parts of the VM system.
759 * At each level, we keep a list of pages, which are heads of continuous
760 * free pages of length of (1 << order) and marked with PageBuddy.
761 * Page's order is recorded in page_private(page) field.
762 * So when we are allocating or freeing one, we can derive the state of the
763 * other. That is, if we allocate a small block, and both were
764 * free, the remainder of the region must be split into blocks.
765 * If a block is freed, and its buddy is also free, then this
766 * triggers coalescing into a block of larger size.
767 *
768 * -- nyc
769 */
770
__free_one_page(struct page * page,unsigned long pfn,struct zone * zone,unsigned int order,int migratetype,fpi_t fpi_flags)771 static inline void __free_one_page(struct page *page,
772 unsigned long pfn,
773 struct zone *zone, unsigned int order,
774 int migratetype, fpi_t fpi_flags)
775 {
776 struct capture_control *capc = task_capc(zone);
777 unsigned long buddy_pfn = 0;
778 unsigned long combined_pfn;
779 struct page *buddy;
780 bool to_tail;
781
782 VM_BUG_ON(!zone_is_initialized(zone));
783 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
784
785 VM_BUG_ON(migratetype == -1);
786 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
787 VM_BUG_ON_PAGE(bad_range(zone, page), page);
788
789 account_freepages(zone, 1 << order, migratetype);
790
791 while (order < MAX_PAGE_ORDER) {
792 int buddy_mt = migratetype;
793
794 if (compaction_capture(capc, page, order, migratetype)) {
795 account_freepages(zone, -(1 << order), migratetype);
796 return;
797 }
798
799 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
800 if (!buddy)
801 goto done_merging;
802
803 if (unlikely(order >= pageblock_order)) {
804 /*
805 * We want to prevent merge between freepages on pageblock
806 * without fallbacks and normal pageblock. Without this,
807 * pageblock isolation could cause incorrect freepage or CMA
808 * accounting or HIGHATOMIC accounting.
809 */
810 buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
811
812 if (migratetype != buddy_mt &&
813 (!migratetype_is_mergeable(migratetype) ||
814 !migratetype_is_mergeable(buddy_mt)))
815 goto done_merging;
816 }
817
818 /*
819 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
820 * merge with it and move up one order.
821 */
822 if (page_is_guard(buddy))
823 clear_page_guard(zone, buddy, order);
824 else
825 __del_page_from_free_list(buddy, zone, order, buddy_mt);
826
827 if (unlikely(buddy_mt != migratetype)) {
828 /*
829 * Match buddy type. This ensures that an
830 * expand() down the line puts the sub-blocks
831 * on the right freelists.
832 */
833 set_pageblock_migratetype(buddy, migratetype);
834 }
835
836 combined_pfn = buddy_pfn & pfn;
837 page = page + (combined_pfn - pfn);
838 pfn = combined_pfn;
839 order++;
840 }
841
842 done_merging:
843 set_buddy_order(page, order);
844
845 if (fpi_flags & FPI_TO_TAIL)
846 to_tail = true;
847 else if (is_shuffle_order(order))
848 to_tail = shuffle_pick_tail();
849 else
850 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
851
852 __add_to_free_list(page, zone, order, migratetype, to_tail);
853
854 /* Notify page reporting subsystem of freed page */
855 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
856 page_reporting_notify_free(order);
857 }
858
859 /*
860 * A bad page could be due to a number of fields. Instead of multiple branches,
861 * try and check multiple fields with one check. The caller must do a detailed
862 * check if necessary.
863 */
page_expected_state(struct page * page,unsigned long check_flags)864 static inline bool page_expected_state(struct page *page,
865 unsigned long check_flags)
866 {
867 if (unlikely(atomic_read(&page->_mapcount) != -1))
868 return false;
869
870 if (unlikely((unsigned long)page->mapping |
871 page_ref_count(page) |
872 #ifdef CONFIG_MEMCG
873 page->memcg_data |
874 #endif
875 #ifdef CONFIG_PAGE_POOL
876 ((page->pp_magic & ~0x3UL) == PP_SIGNATURE) |
877 #endif
878 (page->flags & check_flags)))
879 return false;
880
881 return true;
882 }
883
page_bad_reason(struct page * page,unsigned long flags)884 static const char *page_bad_reason(struct page *page, unsigned long flags)
885 {
886 const char *bad_reason = NULL;
887
888 if (unlikely(atomic_read(&page->_mapcount) != -1))
889 bad_reason = "nonzero mapcount";
890 if (unlikely(page->mapping != NULL))
891 bad_reason = "non-NULL mapping";
892 if (unlikely(page_ref_count(page) != 0))
893 bad_reason = "nonzero _refcount";
894 if (unlikely(page->flags & flags)) {
895 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
896 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
897 else
898 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
899 }
900 #ifdef CONFIG_MEMCG
901 if (unlikely(page->memcg_data))
902 bad_reason = "page still charged to cgroup";
903 #endif
904 #ifdef CONFIG_PAGE_POOL
905 if (unlikely((page->pp_magic & ~0x3UL) == PP_SIGNATURE))
906 bad_reason = "page_pool leak";
907 #endif
908 return bad_reason;
909 }
910
free_page_is_bad_report(struct page * page)911 static void free_page_is_bad_report(struct page *page)
912 {
913 bad_page(page,
914 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
915 }
916
free_page_is_bad(struct page * page)917 static inline bool free_page_is_bad(struct page *page)
918 {
919 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
920 return false;
921
922 /* Something has gone sideways, find it */
923 free_page_is_bad_report(page);
924 return true;
925 }
926
is_check_pages_enabled(void)927 static inline bool is_check_pages_enabled(void)
928 {
929 return static_branch_unlikely(&check_pages_enabled);
930 }
931
free_tail_page_prepare(struct page * head_page,struct page * page)932 static int free_tail_page_prepare(struct page *head_page, struct page *page)
933 {
934 struct folio *folio = (struct folio *)head_page;
935 int ret = 1;
936
937 /*
938 * We rely page->lru.next never has bit 0 set, unless the page
939 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
940 */
941 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
942
943 if (!is_check_pages_enabled()) {
944 ret = 0;
945 goto out;
946 }
947 switch (page - head_page) {
948 case 1:
949 /* the first tail page: these may be in place of ->mapping */
950 if (unlikely(folio_entire_mapcount(folio))) {
951 bad_page(page, "nonzero entire_mapcount");
952 goto out;
953 }
954 if (unlikely(folio_large_mapcount(folio))) {
955 bad_page(page, "nonzero large_mapcount");
956 goto out;
957 }
958 if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
959 bad_page(page, "nonzero nr_pages_mapped");
960 goto out;
961 }
962 if (unlikely(atomic_read(&folio->_pincount))) {
963 bad_page(page, "nonzero pincount");
964 goto out;
965 }
966 break;
967 case 2:
968 /* the second tail page: deferred_list overlaps ->mapping */
969 if (unlikely(!list_empty(&folio->_deferred_list))) {
970 bad_page(page, "on deferred list");
971 goto out;
972 }
973 break;
974 default:
975 if (page->mapping != TAIL_MAPPING) {
976 bad_page(page, "corrupted mapping in tail page");
977 goto out;
978 }
979 break;
980 }
981 if (unlikely(!PageTail(page))) {
982 bad_page(page, "PageTail not set");
983 goto out;
984 }
985 if (unlikely(compound_head(page) != head_page)) {
986 bad_page(page, "compound_head not consistent");
987 goto out;
988 }
989 ret = 0;
990 out:
991 page->mapping = NULL;
992 clear_compound_head(page);
993 return ret;
994 }
995
996 /*
997 * Skip KASAN memory poisoning when either:
998 *
999 * 1. For generic KASAN: deferred memory initialization has not yet completed.
1000 * Tag-based KASAN modes skip pages freed via deferred memory initialization
1001 * using page tags instead (see below).
1002 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1003 * that error detection is disabled for accesses via the page address.
1004 *
1005 * Pages will have match-all tags in the following circumstances:
1006 *
1007 * 1. Pages are being initialized for the first time, including during deferred
1008 * memory init; see the call to page_kasan_tag_reset in __init_single_page.
1009 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1010 * exception of pages unpoisoned by kasan_unpoison_vmalloc.
1011 * 3. The allocation was excluded from being checked due to sampling,
1012 * see the call to kasan_unpoison_pages.
1013 *
1014 * Poisoning pages during deferred memory init will greatly lengthen the
1015 * process and cause problem in large memory systems as the deferred pages
1016 * initialization is done with interrupt disabled.
1017 *
1018 * Assuming that there will be no reference to those newly initialized
1019 * pages before they are ever allocated, this should have no effect on
1020 * KASAN memory tracking as the poison will be properly inserted at page
1021 * allocation time. The only corner case is when pages are allocated by
1022 * on-demand allocation and then freed again before the deferred pages
1023 * initialization is done, but this is not likely to happen.
1024 */
should_skip_kasan_poison(struct page * page)1025 static inline bool should_skip_kasan_poison(struct page *page)
1026 {
1027 if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1028 return deferred_pages_enabled();
1029
1030 return page_kasan_tag(page) == KASAN_TAG_KERNEL;
1031 }
1032
kernel_init_pages(struct page * page,int numpages)1033 static void kernel_init_pages(struct page *page, int numpages)
1034 {
1035 int i;
1036
1037 /* s390's use of memset() could override KASAN redzones. */
1038 kasan_disable_current();
1039 for (i = 0; i < numpages; i++)
1040 clear_highpage_kasan_tagged(page + i);
1041 kasan_enable_current();
1042 }
1043
free_pages_prepare(struct page * page,unsigned int order)1044 __always_inline bool free_pages_prepare(struct page *page,
1045 unsigned int order)
1046 {
1047 int bad = 0;
1048 bool skip_kasan_poison = should_skip_kasan_poison(page);
1049 bool init = want_init_on_free();
1050 bool compound = PageCompound(page);
1051 struct folio *folio = page_folio(page);
1052
1053 VM_BUG_ON_PAGE(PageTail(page), page);
1054
1055 trace_mm_page_free(page, order);
1056 kmsan_free_page(page, order);
1057
1058 if (memcg_kmem_online() && PageMemcgKmem(page))
1059 __memcg_kmem_uncharge_page(page, order);
1060
1061 /*
1062 * In rare cases, when truncation or holepunching raced with
1063 * munlock after VM_LOCKED was cleared, Mlocked may still be
1064 * found set here. This does not indicate a problem, unless
1065 * "unevictable_pgs_cleared" appears worryingly large.
1066 */
1067 if (unlikely(folio_test_mlocked(folio))) {
1068 long nr_pages = folio_nr_pages(folio);
1069
1070 __folio_clear_mlocked(folio);
1071 zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages);
1072 count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
1073 }
1074
1075 if (unlikely(PageHWPoison(page)) && !order) {
1076 /* Do not let hwpoison pages hit pcplists/buddy */
1077 reset_page_owner(page, order);
1078 page_table_check_free(page, order);
1079 pgalloc_tag_sub(page, 1 << order);
1080
1081 /*
1082 * The page is isolated and accounted for.
1083 * Mark the codetag as empty to avoid accounting error
1084 * when the page is freed by unpoison_memory().
1085 */
1086 clear_page_tag_ref(page);
1087 return false;
1088 }
1089
1090 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1091
1092 /*
1093 * Check tail pages before head page information is cleared to
1094 * avoid checking PageCompound for order-0 pages.
1095 */
1096 if (unlikely(order)) {
1097 int i;
1098
1099 if (compound)
1100 page[1].flags &= ~PAGE_FLAGS_SECOND;
1101 for (i = 1; i < (1 << order); i++) {
1102 if (compound)
1103 bad += free_tail_page_prepare(page, page + i);
1104 if (is_check_pages_enabled()) {
1105 if (free_page_is_bad(page + i)) {
1106 bad++;
1107 continue;
1108 }
1109 }
1110 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1111 }
1112 }
1113 if (PageMappingFlags(page)) {
1114 if (PageAnon(page))
1115 mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1);
1116 page->mapping = NULL;
1117 }
1118 if (is_check_pages_enabled()) {
1119 if (free_page_is_bad(page))
1120 bad++;
1121 if (bad)
1122 return false;
1123 }
1124
1125 page_cpupid_reset_last(page);
1126 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1127 reset_page_owner(page, order);
1128 page_table_check_free(page, order);
1129 pgalloc_tag_sub(page, 1 << order);
1130
1131 if (!PageHighMem(page)) {
1132 debug_check_no_locks_freed(page_address(page),
1133 PAGE_SIZE << order);
1134 debug_check_no_obj_freed(page_address(page),
1135 PAGE_SIZE << order);
1136 }
1137
1138 kernel_poison_pages(page, 1 << order);
1139
1140 /*
1141 * As memory initialization might be integrated into KASAN,
1142 * KASAN poisoning and memory initialization code must be
1143 * kept together to avoid discrepancies in behavior.
1144 *
1145 * With hardware tag-based KASAN, memory tags must be set before the
1146 * page becomes unavailable via debug_pagealloc or arch_free_page.
1147 */
1148 if (!skip_kasan_poison) {
1149 kasan_poison_pages(page, order, init);
1150
1151 /* Memory is already initialized if KASAN did it internally. */
1152 if (kasan_has_integrated_init())
1153 init = false;
1154 }
1155 if (init)
1156 kernel_init_pages(page, 1 << order);
1157
1158 /*
1159 * arch_free_page() can make the page's contents inaccessible. s390
1160 * does this. So nothing which can access the page's contents should
1161 * happen after this.
1162 */
1163 arch_free_page(page, order);
1164
1165 debug_pagealloc_unmap_pages(page, 1 << order);
1166
1167 return true;
1168 }
1169
1170 /*
1171 * Frees a number of pages from the PCP lists
1172 * Assumes all pages on list are in same zone.
1173 * count is the number of pages to free.
1174 */
free_pcppages_bulk(struct zone * zone,int count,struct per_cpu_pages * pcp,int pindex)1175 static void free_pcppages_bulk(struct zone *zone, int count,
1176 struct per_cpu_pages *pcp,
1177 int pindex)
1178 {
1179 unsigned long flags;
1180 unsigned int order;
1181 struct page *page;
1182
1183 /*
1184 * Ensure proper count is passed which otherwise would stuck in the
1185 * below while (list_empty(list)) loop.
1186 */
1187 count = min(pcp->count, count);
1188
1189 /* Ensure requested pindex is drained first. */
1190 pindex = pindex - 1;
1191
1192 spin_lock_irqsave(&zone->lock, flags);
1193
1194 while (count > 0) {
1195 struct list_head *list;
1196 int nr_pages;
1197
1198 /* Remove pages from lists in a round-robin fashion. */
1199 do {
1200 if (++pindex > NR_PCP_LISTS - 1)
1201 pindex = 0;
1202 list = &pcp->lists[pindex];
1203 } while (list_empty(list));
1204
1205 order = pindex_to_order(pindex);
1206 nr_pages = 1 << order;
1207 do {
1208 unsigned long pfn;
1209 int mt;
1210
1211 page = list_last_entry(list, struct page, pcp_list);
1212 pfn = page_to_pfn(page);
1213 mt = get_pfnblock_migratetype(page, pfn);
1214
1215 /* must delete to avoid corrupting pcp list */
1216 list_del(&page->pcp_list);
1217 count -= nr_pages;
1218 pcp->count -= nr_pages;
1219
1220 __free_one_page(page, pfn, zone, order, mt, FPI_NONE);
1221 trace_mm_page_pcpu_drain(page, order, mt);
1222 } while (count > 0 && !list_empty(list));
1223 }
1224
1225 spin_unlock_irqrestore(&zone->lock, flags);
1226 }
1227
1228 /* Split a multi-block free page into its individual pageblocks. */
split_large_buddy(struct zone * zone,struct page * page,unsigned long pfn,int order,fpi_t fpi)1229 static void split_large_buddy(struct zone *zone, struct page *page,
1230 unsigned long pfn, int order, fpi_t fpi)
1231 {
1232 unsigned long end = pfn + (1 << order);
1233
1234 VM_WARN_ON_ONCE(!IS_ALIGNED(pfn, 1 << order));
1235 /* Caller removed page from freelist, buddy info cleared! */
1236 VM_WARN_ON_ONCE(PageBuddy(page));
1237
1238 if (order > pageblock_order)
1239 order = pageblock_order;
1240
1241 while (pfn != end) {
1242 int mt = get_pfnblock_migratetype(page, pfn);
1243
1244 __free_one_page(page, pfn, zone, order, mt, fpi);
1245 pfn += 1 << order;
1246 page = pfn_to_page(pfn);
1247 }
1248 }
1249
free_one_page(struct zone * zone,struct page * page,unsigned long pfn,unsigned int order,fpi_t fpi_flags)1250 static void free_one_page(struct zone *zone, struct page *page,
1251 unsigned long pfn, unsigned int order,
1252 fpi_t fpi_flags)
1253 {
1254 unsigned long flags;
1255
1256 spin_lock_irqsave(&zone->lock, flags);
1257 split_large_buddy(zone, page, pfn, order, fpi_flags);
1258 spin_unlock_irqrestore(&zone->lock, flags);
1259
1260 __count_vm_events(PGFREE, 1 << order);
1261 }
1262
__free_pages_ok(struct page * page,unsigned int order,fpi_t fpi_flags)1263 static void __free_pages_ok(struct page *page, unsigned int order,
1264 fpi_t fpi_flags)
1265 {
1266 unsigned long pfn = page_to_pfn(page);
1267 struct zone *zone = page_zone(page);
1268
1269 if (free_pages_prepare(page, order))
1270 free_one_page(zone, page, pfn, order, fpi_flags);
1271 }
1272
__free_pages_core(struct page * page,unsigned int order,enum meminit_context context)1273 void __meminit __free_pages_core(struct page *page, unsigned int order,
1274 enum meminit_context context)
1275 {
1276 unsigned int nr_pages = 1 << order;
1277 struct page *p = page;
1278 unsigned int loop;
1279
1280 /*
1281 * When initializing the memmap, __init_single_page() sets the refcount
1282 * of all pages to 1 ("allocated"/"not free"). We have to set the
1283 * refcount of all involved pages to 0.
1284 *
1285 * Note that hotplugged memory pages are initialized to PageOffline().
1286 * Pages freed from memblock might be marked as reserved.
1287 */
1288 if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) &&
1289 unlikely(context == MEMINIT_HOTPLUG)) {
1290 for (loop = 0; loop < nr_pages; loop++, p++) {
1291 VM_WARN_ON_ONCE(PageReserved(p));
1292 __ClearPageOffline(p);
1293 set_page_count(p, 0);
1294 }
1295
1296 /*
1297 * Freeing the page with debug_pagealloc enabled will try to
1298 * unmap it; some archs don't like double-unmappings, so
1299 * map it first.
1300 */
1301 debug_pagealloc_map_pages(page, nr_pages);
1302 adjust_managed_page_count(page, nr_pages);
1303 } else {
1304 for (loop = 0; loop < nr_pages; loop++, p++) {
1305 __ClearPageReserved(p);
1306 set_page_count(p, 0);
1307 }
1308
1309 /* memblock adjusts totalram_pages() manually. */
1310 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1311 }
1312
1313 if (page_contains_unaccepted(page, order)) {
1314 if (order == MAX_PAGE_ORDER && __free_unaccepted(page))
1315 return;
1316
1317 accept_memory(page_to_phys(page), PAGE_SIZE << order);
1318 }
1319
1320 /*
1321 * Bypass PCP and place fresh pages right to the tail, primarily
1322 * relevant for memory onlining.
1323 */
1324 __free_pages_ok(page, order, FPI_TO_TAIL);
1325 }
1326
1327 /*
1328 * Check that the whole (or subset of) a pageblock given by the interval of
1329 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1330 * with the migration of free compaction scanner.
1331 *
1332 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1333 *
1334 * It's possible on some configurations to have a setup like node0 node1 node0
1335 * i.e. it's possible that all pages within a zones range of pages do not
1336 * belong to a single zone. We assume that a border between node0 and node1
1337 * can occur within a single pageblock, but not a node0 node1 node0
1338 * interleaving within a single pageblock. It is therefore sufficient to check
1339 * the first and last page of a pageblock and avoid checking each individual
1340 * page in a pageblock.
1341 *
1342 * Note: the function may return non-NULL struct page even for a page block
1343 * which contains a memory hole (i.e. there is no physical memory for a subset
1344 * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which
1345 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1346 * even though the start pfn is online and valid. This should be safe most of
1347 * the time because struct pages are still initialized via init_unavailable_range()
1348 * and pfn walkers shouldn't touch any physical memory range for which they do
1349 * not recognize any specific metadata in struct pages.
1350 */
__pageblock_pfn_to_page(unsigned long start_pfn,unsigned long end_pfn,struct zone * zone)1351 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1352 unsigned long end_pfn, struct zone *zone)
1353 {
1354 struct page *start_page;
1355 struct page *end_page;
1356
1357 /* end_pfn is one past the range we are checking */
1358 end_pfn--;
1359
1360 if (!pfn_valid(end_pfn))
1361 return NULL;
1362
1363 start_page = pfn_to_online_page(start_pfn);
1364 if (!start_page)
1365 return NULL;
1366
1367 if (page_zone(start_page) != zone)
1368 return NULL;
1369
1370 end_page = pfn_to_page(end_pfn);
1371
1372 /* This gives a shorter code than deriving page_zone(end_page) */
1373 if (page_zone_id(start_page) != page_zone_id(end_page))
1374 return NULL;
1375
1376 return start_page;
1377 }
1378
1379 /*
1380 * The order of subdivision here is critical for the IO subsystem.
1381 * Please do not alter this order without good reasons and regression
1382 * testing. Specifically, as large blocks of memory are subdivided,
1383 * the order in which smaller blocks are delivered depends on the order
1384 * they're subdivided in this function. This is the primary factor
1385 * influencing the order in which pages are delivered to the IO
1386 * subsystem according to empirical testing, and this is also justified
1387 * by considering the behavior of a buddy system containing a single
1388 * large block of memory acted on by a series of small allocations.
1389 * This behavior is a critical factor in sglist merging's success.
1390 *
1391 * -- nyc
1392 */
expand(struct zone * zone,struct page * page,int low,int high,int migratetype)1393 static inline unsigned int expand(struct zone *zone, struct page *page, int low,
1394 int high, int migratetype)
1395 {
1396 unsigned int size = 1 << high;
1397 unsigned int nr_added = 0;
1398
1399 while (high > low) {
1400 high--;
1401 size >>= 1;
1402 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1403
1404 /*
1405 * Mark as guard pages (or page), that will allow to
1406 * merge back to allocator when buddy will be freed.
1407 * Corresponding page table entries will not be touched,
1408 * pages will stay not present in virtual address space
1409 */
1410 if (set_page_guard(zone, &page[size], high))
1411 continue;
1412
1413 __add_to_free_list(&page[size], zone, high, migratetype, false);
1414 set_buddy_order(&page[size], high);
1415 nr_added += size;
1416 }
1417
1418 return nr_added;
1419 }
1420
page_del_and_expand(struct zone * zone,struct page * page,int low,int high,int migratetype)1421 static __always_inline void page_del_and_expand(struct zone *zone,
1422 struct page *page, int low,
1423 int high, int migratetype)
1424 {
1425 int nr_pages = 1 << high;
1426
1427 __del_page_from_free_list(page, zone, high, migratetype);
1428 nr_pages -= expand(zone, page, low, high, migratetype);
1429 account_freepages(zone, -nr_pages, migratetype);
1430 }
1431
check_new_page_bad(struct page * page)1432 static void check_new_page_bad(struct page *page)
1433 {
1434 if (unlikely(page->flags & __PG_HWPOISON)) {
1435 /* Don't complain about hwpoisoned pages */
1436 if (PageBuddy(page))
1437 __ClearPageBuddy(page);
1438 return;
1439 }
1440
1441 bad_page(page,
1442 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1443 }
1444
1445 /*
1446 * This page is about to be returned from the page allocator
1447 */
check_new_page(struct page * page)1448 static bool check_new_page(struct page *page)
1449 {
1450 if (likely(page_expected_state(page,
1451 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1452 return false;
1453
1454 check_new_page_bad(page);
1455 return true;
1456 }
1457
check_new_pages(struct page * page,unsigned int order)1458 static inline bool check_new_pages(struct page *page, unsigned int order)
1459 {
1460 if (is_check_pages_enabled()) {
1461 for (int i = 0; i < (1 << order); i++) {
1462 struct page *p = page + i;
1463
1464 if (check_new_page(p))
1465 return true;
1466 }
1467 }
1468
1469 return false;
1470 }
1471
should_skip_kasan_unpoison(gfp_t flags)1472 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1473 {
1474 /* Don't skip if a software KASAN mode is enabled. */
1475 if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1476 IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1477 return false;
1478
1479 /* Skip, if hardware tag-based KASAN is not enabled. */
1480 if (!kasan_hw_tags_enabled())
1481 return true;
1482
1483 /*
1484 * With hardware tag-based KASAN enabled, skip if this has been
1485 * requested via __GFP_SKIP_KASAN.
1486 */
1487 return flags & __GFP_SKIP_KASAN;
1488 }
1489
should_skip_init(gfp_t flags)1490 static inline bool should_skip_init(gfp_t flags)
1491 {
1492 /* Don't skip, if hardware tag-based KASAN is not enabled. */
1493 if (!kasan_hw_tags_enabled())
1494 return false;
1495
1496 /* For hardware tag-based KASAN, skip if requested. */
1497 return (flags & __GFP_SKIP_ZERO);
1498 }
1499
post_alloc_hook(struct page * page,unsigned int order,gfp_t gfp_flags)1500 inline void post_alloc_hook(struct page *page, unsigned int order,
1501 gfp_t gfp_flags)
1502 {
1503 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1504 !should_skip_init(gfp_flags);
1505 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1506 int i;
1507
1508 set_page_private(page, 0);
1509 set_page_refcounted(page);
1510
1511 arch_alloc_page(page, order);
1512 debug_pagealloc_map_pages(page, 1 << order);
1513
1514 /*
1515 * Page unpoisoning must happen before memory initialization.
1516 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1517 * allocations and the page unpoisoning code will complain.
1518 */
1519 kernel_unpoison_pages(page, 1 << order);
1520
1521 /*
1522 * As memory initialization might be integrated into KASAN,
1523 * KASAN unpoisoning and memory initializion code must be
1524 * kept together to avoid discrepancies in behavior.
1525 */
1526
1527 /*
1528 * If memory tags should be zeroed
1529 * (which happens only when memory should be initialized as well).
1530 */
1531 if (zero_tags) {
1532 /* Initialize both memory and memory tags. */
1533 for (i = 0; i != 1 << order; ++i)
1534 tag_clear_highpage(page + i);
1535
1536 /* Take note that memory was initialized by the loop above. */
1537 init = false;
1538 }
1539 if (!should_skip_kasan_unpoison(gfp_flags) &&
1540 kasan_unpoison_pages(page, order, init)) {
1541 /* Take note that memory was initialized by KASAN. */
1542 if (kasan_has_integrated_init())
1543 init = false;
1544 } else {
1545 /*
1546 * If memory tags have not been set by KASAN, reset the page
1547 * tags to ensure page_address() dereferencing does not fault.
1548 */
1549 for (i = 0; i != 1 << order; ++i)
1550 page_kasan_tag_reset(page + i);
1551 }
1552 /* If memory is still not initialized, initialize it now. */
1553 if (init)
1554 kernel_init_pages(page, 1 << order);
1555
1556 set_page_owner(page, order, gfp_flags);
1557 page_table_check_alloc(page, order);
1558 pgalloc_tag_add(page, current, 1 << order);
1559 }
1560
prep_new_page(struct page * page,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags)1561 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1562 unsigned int alloc_flags)
1563 {
1564 post_alloc_hook(page, order, gfp_flags);
1565
1566 if (order && (gfp_flags & __GFP_COMP))
1567 prep_compound_page(page, order);
1568
1569 /*
1570 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1571 * allocate the page. The expectation is that the caller is taking
1572 * steps that will free more memory. The caller should avoid the page
1573 * being used for !PFMEMALLOC purposes.
1574 */
1575 if (alloc_flags & ALLOC_NO_WATERMARKS)
1576 set_page_pfmemalloc(page);
1577 else
1578 clear_page_pfmemalloc(page);
1579 }
1580
1581 /*
1582 * Go through the free lists for the given migratetype and remove
1583 * the smallest available page from the freelists
1584 */
1585 static __always_inline
__rmqueue_smallest(struct zone * zone,unsigned int order,int migratetype)1586 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1587 int migratetype)
1588 {
1589 unsigned int current_order;
1590 struct free_area *area;
1591 struct page *page;
1592
1593 /* Find a page of the appropriate size in the preferred list */
1594 for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
1595 area = &(zone->free_area[current_order]);
1596 page = get_page_from_free_area(area, migratetype);
1597 if (!page)
1598 continue;
1599
1600 page_del_and_expand(zone, page, order, current_order,
1601 migratetype);
1602 trace_mm_page_alloc_zone_locked(page, order, migratetype,
1603 pcp_allowed_order(order) &&
1604 migratetype < MIGRATE_PCPTYPES);
1605 return page;
1606 }
1607
1608 return NULL;
1609 }
1610
1611
1612 /*
1613 * This array describes the order lists are fallen back to when
1614 * the free lists for the desirable migrate type are depleted
1615 *
1616 * The other migratetypes do not have fallbacks.
1617 */
1618 static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = {
1619 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE },
1620 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1621 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE },
1622 };
1623
1624 #ifdef CONFIG_CMA
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)1625 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1626 unsigned int order)
1627 {
1628 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1629 }
1630 #else
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)1631 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1632 unsigned int order) { return NULL; }
1633 #endif
1634
1635 /*
1636 * Change the type of a block and move all its free pages to that
1637 * type's freelist.
1638 */
__move_freepages_block(struct zone * zone,unsigned long start_pfn,int old_mt,int new_mt)1639 static int __move_freepages_block(struct zone *zone, unsigned long start_pfn,
1640 int old_mt, int new_mt)
1641 {
1642 struct page *page;
1643 unsigned long pfn, end_pfn;
1644 unsigned int order;
1645 int pages_moved = 0;
1646
1647 VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1));
1648 end_pfn = pageblock_end_pfn(start_pfn);
1649
1650 for (pfn = start_pfn; pfn < end_pfn;) {
1651 page = pfn_to_page(pfn);
1652 if (!PageBuddy(page)) {
1653 pfn++;
1654 continue;
1655 }
1656
1657 /* Make sure we are not inadvertently changing nodes */
1658 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1659 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1660
1661 order = buddy_order(page);
1662
1663 move_to_free_list(page, zone, order, old_mt, new_mt);
1664
1665 pfn += 1 << order;
1666 pages_moved += 1 << order;
1667 }
1668
1669 set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt);
1670
1671 return pages_moved;
1672 }
1673
prep_move_freepages_block(struct zone * zone,struct page * page,unsigned long * start_pfn,int * num_free,int * num_movable)1674 static bool prep_move_freepages_block(struct zone *zone, struct page *page,
1675 unsigned long *start_pfn,
1676 int *num_free, int *num_movable)
1677 {
1678 unsigned long pfn, start, end;
1679
1680 pfn = page_to_pfn(page);
1681 start = pageblock_start_pfn(pfn);
1682 end = pageblock_end_pfn(pfn);
1683
1684 /*
1685 * The caller only has the lock for @zone, don't touch ranges
1686 * that straddle into other zones. While we could move part of
1687 * the range that's inside the zone, this call is usually
1688 * accompanied by other operations such as migratetype updates
1689 * which also should be locked.
1690 */
1691 if (!zone_spans_pfn(zone, start))
1692 return false;
1693 if (!zone_spans_pfn(zone, end - 1))
1694 return false;
1695
1696 *start_pfn = start;
1697
1698 if (num_free) {
1699 *num_free = 0;
1700 *num_movable = 0;
1701 for (pfn = start; pfn < end;) {
1702 page = pfn_to_page(pfn);
1703 if (PageBuddy(page)) {
1704 int nr = 1 << buddy_order(page);
1705
1706 *num_free += nr;
1707 pfn += nr;
1708 continue;
1709 }
1710 /*
1711 * We assume that pages that could be isolated for
1712 * migration are movable. But we don't actually try
1713 * isolating, as that would be expensive.
1714 */
1715 if (PageLRU(page) || __PageMovable(page))
1716 (*num_movable)++;
1717 pfn++;
1718 }
1719 }
1720
1721 return true;
1722 }
1723
move_freepages_block(struct zone * zone,struct page * page,int old_mt,int new_mt)1724 static int move_freepages_block(struct zone *zone, struct page *page,
1725 int old_mt, int new_mt)
1726 {
1727 unsigned long start_pfn;
1728
1729 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1730 return -1;
1731
1732 return __move_freepages_block(zone, start_pfn, old_mt, new_mt);
1733 }
1734
1735 #ifdef CONFIG_MEMORY_ISOLATION
1736 /* Look for a buddy that straddles start_pfn */
find_large_buddy(unsigned long start_pfn)1737 static unsigned long find_large_buddy(unsigned long start_pfn)
1738 {
1739 int order = 0;
1740 struct page *page;
1741 unsigned long pfn = start_pfn;
1742
1743 while (!PageBuddy(page = pfn_to_page(pfn))) {
1744 /* Nothing found */
1745 if (++order > MAX_PAGE_ORDER)
1746 return start_pfn;
1747 pfn &= ~0UL << order;
1748 }
1749
1750 /*
1751 * Found a preceding buddy, but does it straddle?
1752 */
1753 if (pfn + (1 << buddy_order(page)) > start_pfn)
1754 return pfn;
1755
1756 /* Nothing found */
1757 return start_pfn;
1758 }
1759
1760 /**
1761 * move_freepages_block_isolate - move free pages in block for page isolation
1762 * @zone: the zone
1763 * @page: the pageblock page
1764 * @migratetype: migratetype to set on the pageblock
1765 *
1766 * This is similar to move_freepages_block(), but handles the special
1767 * case encountered in page isolation, where the block of interest
1768 * might be part of a larger buddy spanning multiple pageblocks.
1769 *
1770 * Unlike the regular page allocator path, which moves pages while
1771 * stealing buddies off the freelist, page isolation is interested in
1772 * arbitrary pfn ranges that may have overlapping buddies on both ends.
1773 *
1774 * This function handles that. Straddling buddies are split into
1775 * individual pageblocks. Only the block of interest is moved.
1776 *
1777 * Returns %true if pages could be moved, %false otherwise.
1778 */
move_freepages_block_isolate(struct zone * zone,struct page * page,int migratetype)1779 bool move_freepages_block_isolate(struct zone *zone, struct page *page,
1780 int migratetype)
1781 {
1782 unsigned long start_pfn, pfn;
1783
1784 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1785 return false;
1786
1787 /* No splits needed if buddies can't span multiple blocks */
1788 if (pageblock_order == MAX_PAGE_ORDER)
1789 goto move;
1790
1791 /* We're a tail block in a larger buddy */
1792 pfn = find_large_buddy(start_pfn);
1793 if (pfn != start_pfn) {
1794 struct page *buddy = pfn_to_page(pfn);
1795 int order = buddy_order(buddy);
1796
1797 del_page_from_free_list(buddy, zone, order,
1798 get_pfnblock_migratetype(buddy, pfn));
1799 set_pageblock_migratetype(page, migratetype);
1800 split_large_buddy(zone, buddy, pfn, order, FPI_NONE);
1801 return true;
1802 }
1803
1804 /* We're the starting block of a larger buddy */
1805 if (PageBuddy(page) && buddy_order(page) > pageblock_order) {
1806 int order = buddy_order(page);
1807
1808 del_page_from_free_list(page, zone, order,
1809 get_pfnblock_migratetype(page, pfn));
1810 set_pageblock_migratetype(page, migratetype);
1811 split_large_buddy(zone, page, pfn, order, FPI_NONE);
1812 return true;
1813 }
1814 move:
1815 __move_freepages_block(zone, start_pfn,
1816 get_pfnblock_migratetype(page, start_pfn),
1817 migratetype);
1818 return true;
1819 }
1820 #endif /* CONFIG_MEMORY_ISOLATION */
1821
change_pageblock_range(struct page * pageblock_page,int start_order,int migratetype)1822 static void change_pageblock_range(struct page *pageblock_page,
1823 int start_order, int migratetype)
1824 {
1825 int nr_pageblocks = 1 << (start_order - pageblock_order);
1826
1827 while (nr_pageblocks--) {
1828 set_pageblock_migratetype(pageblock_page, migratetype);
1829 pageblock_page += pageblock_nr_pages;
1830 }
1831 }
1832
1833 /*
1834 * When we are falling back to another migratetype during allocation, try to
1835 * steal extra free pages from the same pageblocks to satisfy further
1836 * allocations, instead of polluting multiple pageblocks.
1837 *
1838 * If we are stealing a relatively large buddy page, it is likely there will
1839 * be more free pages in the pageblock, so try to steal them all. For
1840 * reclaimable and unmovable allocations, we steal regardless of page size,
1841 * as fragmentation caused by those allocations polluting movable pageblocks
1842 * is worse than movable allocations stealing from unmovable and reclaimable
1843 * pageblocks.
1844 */
can_steal_fallback(unsigned int order,int start_mt)1845 static bool can_steal_fallback(unsigned int order, int start_mt)
1846 {
1847 /*
1848 * Leaving this order check is intended, although there is
1849 * relaxed order check in next check. The reason is that
1850 * we can actually steal whole pageblock if this condition met,
1851 * but, below check doesn't guarantee it and that is just heuristic
1852 * so could be changed anytime.
1853 */
1854 if (order >= pageblock_order)
1855 return true;
1856
1857 if (order >= pageblock_order / 2 ||
1858 start_mt == MIGRATE_RECLAIMABLE ||
1859 start_mt == MIGRATE_UNMOVABLE ||
1860 page_group_by_mobility_disabled)
1861 return true;
1862
1863 return false;
1864 }
1865
boost_watermark(struct zone * zone)1866 static inline bool boost_watermark(struct zone *zone)
1867 {
1868 unsigned long max_boost;
1869
1870 if (!watermark_boost_factor)
1871 return false;
1872 /*
1873 * Don't bother in zones that are unlikely to produce results.
1874 * On small machines, including kdump capture kernels running
1875 * in a small area, boosting the watermark can cause an out of
1876 * memory situation immediately.
1877 */
1878 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1879 return false;
1880
1881 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1882 watermark_boost_factor, 10000);
1883
1884 /*
1885 * high watermark may be uninitialised if fragmentation occurs
1886 * very early in boot so do not boost. We do not fall
1887 * through and boost by pageblock_nr_pages as failing
1888 * allocations that early means that reclaim is not going
1889 * to help and it may even be impossible to reclaim the
1890 * boosted watermark resulting in a hang.
1891 */
1892 if (!max_boost)
1893 return false;
1894
1895 max_boost = max(pageblock_nr_pages, max_boost);
1896
1897 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1898 max_boost);
1899
1900 return true;
1901 }
1902
1903 /*
1904 * This function implements actual steal behaviour. If order is large enough, we
1905 * can claim the whole pageblock for the requested migratetype. If not, we check
1906 * the pageblock for constituent pages; if at least half of the pages are free
1907 * or compatible, we can still claim the whole block, so pages freed in the
1908 * future will be put on the correct free list. Otherwise, we isolate exactly
1909 * the order we need from the fallback block and leave its migratetype alone.
1910 */
1911 static struct page *
steal_suitable_fallback(struct zone * zone,struct page * page,int current_order,int order,int start_type,unsigned int alloc_flags,bool whole_block)1912 steal_suitable_fallback(struct zone *zone, struct page *page,
1913 int current_order, int order, int start_type,
1914 unsigned int alloc_flags, bool whole_block)
1915 {
1916 int free_pages, movable_pages, alike_pages;
1917 unsigned long start_pfn;
1918 int block_type;
1919
1920 block_type = get_pageblock_migratetype(page);
1921
1922 /*
1923 * This can happen due to races and we want to prevent broken
1924 * highatomic accounting.
1925 */
1926 if (is_migrate_highatomic(block_type))
1927 goto single_page;
1928
1929 /* Take ownership for orders >= pageblock_order */
1930 if (current_order >= pageblock_order) {
1931 unsigned int nr_added;
1932
1933 del_page_from_free_list(page, zone, current_order, block_type);
1934 change_pageblock_range(page, current_order, start_type);
1935 nr_added = expand(zone, page, order, current_order, start_type);
1936 account_freepages(zone, nr_added, start_type);
1937 return page;
1938 }
1939
1940 /*
1941 * Boost watermarks to increase reclaim pressure to reduce the
1942 * likelihood of future fallbacks. Wake kswapd now as the node
1943 * may be balanced overall and kswapd will not wake naturally.
1944 */
1945 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1946 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1947
1948 /* We are not allowed to try stealing from the whole block */
1949 if (!whole_block)
1950 goto single_page;
1951
1952 /* moving whole block can fail due to zone boundary conditions */
1953 if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages,
1954 &movable_pages))
1955 goto single_page;
1956
1957 /*
1958 * Determine how many pages are compatible with our allocation.
1959 * For movable allocation, it's the number of movable pages which
1960 * we just obtained. For other types it's a bit more tricky.
1961 */
1962 if (start_type == MIGRATE_MOVABLE) {
1963 alike_pages = movable_pages;
1964 } else {
1965 /*
1966 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1967 * to MOVABLE pageblock, consider all non-movable pages as
1968 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1969 * vice versa, be conservative since we can't distinguish the
1970 * exact migratetype of non-movable pages.
1971 */
1972 if (block_type == MIGRATE_MOVABLE)
1973 alike_pages = pageblock_nr_pages
1974 - (free_pages + movable_pages);
1975 else
1976 alike_pages = 0;
1977 }
1978 /*
1979 * If a sufficient number of pages in the block are either free or of
1980 * compatible migratability as our allocation, claim the whole block.
1981 */
1982 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
1983 page_group_by_mobility_disabled) {
1984 __move_freepages_block(zone, start_pfn, block_type, start_type);
1985 return __rmqueue_smallest(zone, order, start_type);
1986 }
1987
1988 single_page:
1989 page_del_and_expand(zone, page, order, current_order, block_type);
1990 return page;
1991 }
1992
1993 /*
1994 * Check whether there is a suitable fallback freepage with requested order.
1995 * If only_stealable is true, this function returns fallback_mt only if
1996 * we can steal other freepages all together. This would help to reduce
1997 * fragmentation due to mixed migratetype pages in one pageblock.
1998 */
find_suitable_fallback(struct free_area * area,unsigned int order,int migratetype,bool only_stealable,bool * can_steal)1999 int find_suitable_fallback(struct free_area *area, unsigned int order,
2000 int migratetype, bool only_stealable, bool *can_steal)
2001 {
2002 int i;
2003 int fallback_mt;
2004
2005 if (area->nr_free == 0)
2006 return -1;
2007
2008 *can_steal = false;
2009 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
2010 fallback_mt = fallbacks[migratetype][i];
2011 if (free_area_empty(area, fallback_mt))
2012 continue;
2013
2014 if (can_steal_fallback(order, migratetype))
2015 *can_steal = true;
2016
2017 if (!only_stealable)
2018 return fallback_mt;
2019
2020 if (*can_steal)
2021 return fallback_mt;
2022 }
2023
2024 return -1;
2025 }
2026
2027 /*
2028 * Reserve the pageblock(s) surrounding an allocation request for
2029 * exclusive use of high-order atomic allocations if there are no
2030 * empty page blocks that contain a page with a suitable order
2031 */
reserve_highatomic_pageblock(struct page * page,int order,struct zone * zone)2032 static void reserve_highatomic_pageblock(struct page *page, int order,
2033 struct zone *zone)
2034 {
2035 int mt;
2036 unsigned long max_managed, flags;
2037
2038 /*
2039 * The number reserved as: minimum is 1 pageblock, maximum is
2040 * roughly 1% of a zone. But if 1% of a zone falls below a
2041 * pageblock size, then don't reserve any pageblocks.
2042 * Check is race-prone but harmless.
2043 */
2044 if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages)
2045 return;
2046 max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages);
2047 if (zone->nr_reserved_highatomic >= max_managed)
2048 return;
2049
2050 spin_lock_irqsave(&zone->lock, flags);
2051
2052 /* Recheck the nr_reserved_highatomic limit under the lock */
2053 if (zone->nr_reserved_highatomic >= max_managed)
2054 goto out_unlock;
2055
2056 /* Yoink! */
2057 mt = get_pageblock_migratetype(page);
2058 /* Only reserve normal pageblocks (i.e., they can merge with others) */
2059 if (!migratetype_is_mergeable(mt))
2060 goto out_unlock;
2061
2062 if (order < pageblock_order) {
2063 if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1)
2064 goto out_unlock;
2065 zone->nr_reserved_highatomic += pageblock_nr_pages;
2066 } else {
2067 change_pageblock_range(page, order, MIGRATE_HIGHATOMIC);
2068 zone->nr_reserved_highatomic += 1 << order;
2069 }
2070
2071 out_unlock:
2072 spin_unlock_irqrestore(&zone->lock, flags);
2073 }
2074
2075 /*
2076 * Used when an allocation is about to fail under memory pressure. This
2077 * potentially hurts the reliability of high-order allocations when under
2078 * intense memory pressure but failed atomic allocations should be easier
2079 * to recover from than an OOM.
2080 *
2081 * If @force is true, try to unreserve pageblocks even though highatomic
2082 * pageblock is exhausted.
2083 */
unreserve_highatomic_pageblock(const struct alloc_context * ac,bool force)2084 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2085 bool force)
2086 {
2087 struct zonelist *zonelist = ac->zonelist;
2088 unsigned long flags;
2089 struct zoneref *z;
2090 struct zone *zone;
2091 struct page *page;
2092 int order;
2093 int ret;
2094
2095 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2096 ac->nodemask) {
2097 /*
2098 * Preserve at least one pageblock unless memory pressure
2099 * is really high.
2100 */
2101 if (!force && zone->nr_reserved_highatomic <=
2102 pageblock_nr_pages)
2103 continue;
2104
2105 spin_lock_irqsave(&zone->lock, flags);
2106 for (order = 0; order < NR_PAGE_ORDERS; order++) {
2107 struct free_area *area = &(zone->free_area[order]);
2108 int mt;
2109
2110 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2111 if (!page)
2112 continue;
2113
2114 mt = get_pageblock_migratetype(page);
2115 /*
2116 * In page freeing path, migratetype change is racy so
2117 * we can counter several free pages in a pageblock
2118 * in this loop although we changed the pageblock type
2119 * from highatomic to ac->migratetype. So we should
2120 * adjust the count once.
2121 */
2122 if (is_migrate_highatomic(mt)) {
2123 unsigned long size;
2124 /*
2125 * It should never happen but changes to
2126 * locking could inadvertently allow a per-cpu
2127 * drain to add pages to MIGRATE_HIGHATOMIC
2128 * while unreserving so be safe and watch for
2129 * underflows.
2130 */
2131 size = max(pageblock_nr_pages, 1UL << order);
2132 size = min(size, zone->nr_reserved_highatomic);
2133 zone->nr_reserved_highatomic -= size;
2134 }
2135
2136 /*
2137 * Convert to ac->migratetype and avoid the normal
2138 * pageblock stealing heuristics. Minimally, the caller
2139 * is doing the work and needs the pages. More
2140 * importantly, if the block was always converted to
2141 * MIGRATE_UNMOVABLE or another type then the number
2142 * of pageblocks that cannot be completely freed
2143 * may increase.
2144 */
2145 if (order < pageblock_order)
2146 ret = move_freepages_block(zone, page, mt,
2147 ac->migratetype);
2148 else {
2149 move_to_free_list(page, zone, order, mt,
2150 ac->migratetype);
2151 change_pageblock_range(page, order,
2152 ac->migratetype);
2153 ret = 1;
2154 }
2155 /*
2156 * Reserving the block(s) already succeeded,
2157 * so this should not fail on zone boundaries.
2158 */
2159 WARN_ON_ONCE(ret == -1);
2160 if (ret > 0) {
2161 spin_unlock_irqrestore(&zone->lock, flags);
2162 return ret;
2163 }
2164 }
2165 spin_unlock_irqrestore(&zone->lock, flags);
2166 }
2167
2168 return false;
2169 }
2170
2171 /*
2172 * Try finding a free buddy page on the fallback list and put it on the free
2173 * list of requested migratetype, possibly along with other pages from the same
2174 * block, depending on fragmentation avoidance heuristics. Returns true if
2175 * fallback was found so that __rmqueue_smallest() can grab it.
2176 *
2177 * The use of signed ints for order and current_order is a deliberate
2178 * deviation from the rest of this file, to make the for loop
2179 * condition simpler.
2180 */
2181 static __always_inline struct page *
__rmqueue_fallback(struct zone * zone,int order,int start_migratetype,unsigned int alloc_flags)2182 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2183 unsigned int alloc_flags)
2184 {
2185 struct free_area *area;
2186 int current_order;
2187 int min_order = order;
2188 struct page *page;
2189 int fallback_mt;
2190 bool can_steal;
2191
2192 /*
2193 * Do not steal pages from freelists belonging to other pageblocks
2194 * i.e. orders < pageblock_order. If there are no local zones free,
2195 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2196 */
2197 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2198 min_order = pageblock_order;
2199
2200 /*
2201 * Find the largest available free page in the other list. This roughly
2202 * approximates finding the pageblock with the most free pages, which
2203 * would be too costly to do exactly.
2204 */
2205 for (current_order = MAX_PAGE_ORDER; current_order >= min_order;
2206 --current_order) {
2207 area = &(zone->free_area[current_order]);
2208 fallback_mt = find_suitable_fallback(area, current_order,
2209 start_migratetype, false, &can_steal);
2210 if (fallback_mt == -1)
2211 continue;
2212
2213 /*
2214 * We cannot steal all free pages from the pageblock and the
2215 * requested migratetype is movable. In that case it's better to
2216 * steal and split the smallest available page instead of the
2217 * largest available page, because even if the next movable
2218 * allocation falls back into a different pageblock than this
2219 * one, it won't cause permanent fragmentation.
2220 */
2221 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2222 && current_order > order)
2223 goto find_smallest;
2224
2225 goto do_steal;
2226 }
2227
2228 return NULL;
2229
2230 find_smallest:
2231 for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
2232 area = &(zone->free_area[current_order]);
2233 fallback_mt = find_suitable_fallback(area, current_order,
2234 start_migratetype, false, &can_steal);
2235 if (fallback_mt != -1)
2236 break;
2237 }
2238
2239 /*
2240 * This should not happen - we already found a suitable fallback
2241 * when looking for the largest page.
2242 */
2243 VM_BUG_ON(current_order > MAX_PAGE_ORDER);
2244
2245 do_steal:
2246 page = get_page_from_free_area(area, fallback_mt);
2247
2248 /* take off list, maybe claim block, expand remainder */
2249 page = steal_suitable_fallback(zone, page, current_order, order,
2250 start_migratetype, alloc_flags, can_steal);
2251
2252 trace_mm_page_alloc_extfrag(page, order, current_order,
2253 start_migratetype, fallback_mt);
2254
2255 return page;
2256 }
2257
2258 /*
2259 * Do the hard work of removing an element from the buddy allocator.
2260 * Call me with the zone->lock already held.
2261 */
2262 static __always_inline struct page *
__rmqueue(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)2263 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2264 unsigned int alloc_flags)
2265 {
2266 struct page *page;
2267
2268 if (IS_ENABLED(CONFIG_CMA)) {
2269 /*
2270 * Balance movable allocations between regular and CMA areas by
2271 * allocating from CMA when over half of the zone's free memory
2272 * is in the CMA area.
2273 */
2274 if (alloc_flags & ALLOC_CMA &&
2275 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2276 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2277 page = __rmqueue_cma_fallback(zone, order);
2278 if (page)
2279 return page;
2280 }
2281 }
2282
2283 page = __rmqueue_smallest(zone, order, migratetype);
2284 if (unlikely(!page)) {
2285 if (alloc_flags & ALLOC_CMA)
2286 page = __rmqueue_cma_fallback(zone, order);
2287
2288 if (!page)
2289 page = __rmqueue_fallback(zone, order, migratetype,
2290 alloc_flags);
2291 }
2292 return page;
2293 }
2294
2295 /*
2296 * Obtain a specified number of elements from the buddy allocator, all under
2297 * a single hold of the lock, for efficiency. Add them to the supplied list.
2298 * Returns the number of new pages which were placed at *list.
2299 */
rmqueue_bulk(struct zone * zone,unsigned int order,unsigned long count,struct list_head * list,int migratetype,unsigned int alloc_flags)2300 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2301 unsigned long count, struct list_head *list,
2302 int migratetype, unsigned int alloc_flags)
2303 {
2304 unsigned long flags;
2305 int i;
2306
2307 spin_lock_irqsave(&zone->lock, flags);
2308 for (i = 0; i < count; ++i) {
2309 struct page *page = __rmqueue(zone, order, migratetype,
2310 alloc_flags);
2311 if (unlikely(page == NULL))
2312 break;
2313
2314 /*
2315 * Split buddy pages returned by expand() are received here in
2316 * physical page order. The page is added to the tail of
2317 * caller's list. From the callers perspective, the linked list
2318 * is ordered by page number under some conditions. This is
2319 * useful for IO devices that can forward direction from the
2320 * head, thus also in the physical page order. This is useful
2321 * for IO devices that can merge IO requests if the physical
2322 * pages are ordered properly.
2323 */
2324 list_add_tail(&page->pcp_list, list);
2325 }
2326 spin_unlock_irqrestore(&zone->lock, flags);
2327
2328 return i;
2329 }
2330
2331 /*
2332 * Called from the vmstat counter updater to decay the PCP high.
2333 * Return whether there are addition works to do.
2334 */
decay_pcp_high(struct zone * zone,struct per_cpu_pages * pcp)2335 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp)
2336 {
2337 int high_min, to_drain, batch;
2338 int todo = 0;
2339
2340 high_min = READ_ONCE(pcp->high_min);
2341 batch = READ_ONCE(pcp->batch);
2342 /*
2343 * Decrease pcp->high periodically to try to free possible
2344 * idle PCP pages. And, avoid to free too many pages to
2345 * control latency. This caps pcp->high decrement too.
2346 */
2347 if (pcp->high > high_min) {
2348 pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2349 pcp->high - (pcp->high >> 3), high_min);
2350 if (pcp->high > high_min)
2351 todo++;
2352 }
2353
2354 to_drain = pcp->count - pcp->high;
2355 if (to_drain > 0) {
2356 spin_lock(&pcp->lock);
2357 free_pcppages_bulk(zone, to_drain, pcp, 0);
2358 spin_unlock(&pcp->lock);
2359 todo++;
2360 }
2361
2362 return todo;
2363 }
2364
2365 #ifdef CONFIG_NUMA
2366 /*
2367 * Called from the vmstat counter updater to drain pagesets of this
2368 * currently executing processor on remote nodes after they have
2369 * expired.
2370 */
drain_zone_pages(struct zone * zone,struct per_cpu_pages * pcp)2371 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2372 {
2373 int to_drain, batch;
2374
2375 batch = READ_ONCE(pcp->batch);
2376 to_drain = min(pcp->count, batch);
2377 if (to_drain > 0) {
2378 spin_lock(&pcp->lock);
2379 free_pcppages_bulk(zone, to_drain, pcp, 0);
2380 spin_unlock(&pcp->lock);
2381 }
2382 }
2383 #endif
2384
2385 /*
2386 * Drain pcplists of the indicated processor and zone.
2387 */
drain_pages_zone(unsigned int cpu,struct zone * zone)2388 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2389 {
2390 struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2391 int count;
2392
2393 do {
2394 spin_lock(&pcp->lock);
2395 count = pcp->count;
2396 if (count) {
2397 int to_drain = min(count,
2398 pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX);
2399
2400 free_pcppages_bulk(zone, to_drain, pcp, 0);
2401 count -= to_drain;
2402 }
2403 spin_unlock(&pcp->lock);
2404 } while (count);
2405 }
2406
2407 /*
2408 * Drain pcplists of all zones on the indicated processor.
2409 */
drain_pages(unsigned int cpu)2410 static void drain_pages(unsigned int cpu)
2411 {
2412 struct zone *zone;
2413
2414 for_each_populated_zone(zone) {
2415 drain_pages_zone(cpu, zone);
2416 }
2417 }
2418
2419 /*
2420 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2421 */
drain_local_pages(struct zone * zone)2422 void drain_local_pages(struct zone *zone)
2423 {
2424 int cpu = smp_processor_id();
2425
2426 if (zone)
2427 drain_pages_zone(cpu, zone);
2428 else
2429 drain_pages(cpu);
2430 }
2431
2432 /*
2433 * The implementation of drain_all_pages(), exposing an extra parameter to
2434 * drain on all cpus.
2435 *
2436 * drain_all_pages() is optimized to only execute on cpus where pcplists are
2437 * not empty. The check for non-emptiness can however race with a free to
2438 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2439 * that need the guarantee that every CPU has drained can disable the
2440 * optimizing racy check.
2441 */
__drain_all_pages(struct zone * zone,bool force_all_cpus)2442 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2443 {
2444 int cpu;
2445
2446 /*
2447 * Allocate in the BSS so we won't require allocation in
2448 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2449 */
2450 static cpumask_t cpus_with_pcps;
2451
2452 /*
2453 * Do not drain if one is already in progress unless it's specific to
2454 * a zone. Such callers are primarily CMA and memory hotplug and need
2455 * the drain to be complete when the call returns.
2456 */
2457 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2458 if (!zone)
2459 return;
2460 mutex_lock(&pcpu_drain_mutex);
2461 }
2462
2463 /*
2464 * We don't care about racing with CPU hotplug event
2465 * as offline notification will cause the notified
2466 * cpu to drain that CPU pcps and on_each_cpu_mask
2467 * disables preemption as part of its processing
2468 */
2469 for_each_online_cpu(cpu) {
2470 struct per_cpu_pages *pcp;
2471 struct zone *z;
2472 bool has_pcps = false;
2473
2474 if (force_all_cpus) {
2475 /*
2476 * The pcp.count check is racy, some callers need a
2477 * guarantee that no cpu is missed.
2478 */
2479 has_pcps = true;
2480 } else if (zone) {
2481 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2482 if (pcp->count)
2483 has_pcps = true;
2484 } else {
2485 for_each_populated_zone(z) {
2486 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2487 if (pcp->count) {
2488 has_pcps = true;
2489 break;
2490 }
2491 }
2492 }
2493
2494 if (has_pcps)
2495 cpumask_set_cpu(cpu, &cpus_with_pcps);
2496 else
2497 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2498 }
2499
2500 for_each_cpu(cpu, &cpus_with_pcps) {
2501 if (zone)
2502 drain_pages_zone(cpu, zone);
2503 else
2504 drain_pages(cpu);
2505 }
2506
2507 mutex_unlock(&pcpu_drain_mutex);
2508 }
2509
2510 /*
2511 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2512 *
2513 * When zone parameter is non-NULL, spill just the single zone's pages.
2514 */
drain_all_pages(struct zone * zone)2515 void drain_all_pages(struct zone *zone)
2516 {
2517 __drain_all_pages(zone, false);
2518 }
2519
nr_pcp_free(struct per_cpu_pages * pcp,int batch,int high,bool free_high)2520 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high)
2521 {
2522 int min_nr_free, max_nr_free;
2523
2524 /* Free as much as possible if batch freeing high-order pages. */
2525 if (unlikely(free_high))
2526 return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX);
2527
2528 /* Check for PCP disabled or boot pageset */
2529 if (unlikely(high < batch))
2530 return 1;
2531
2532 /* Leave at least pcp->batch pages on the list */
2533 min_nr_free = batch;
2534 max_nr_free = high - batch;
2535
2536 /*
2537 * Increase the batch number to the number of the consecutive
2538 * freed pages to reduce zone lock contention.
2539 */
2540 batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free);
2541
2542 return batch;
2543 }
2544
nr_pcp_high(struct per_cpu_pages * pcp,struct zone * zone,int batch,bool free_high)2545 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2546 int batch, bool free_high)
2547 {
2548 int high, high_min, high_max;
2549
2550 high_min = READ_ONCE(pcp->high_min);
2551 high_max = READ_ONCE(pcp->high_max);
2552 high = pcp->high = clamp(pcp->high, high_min, high_max);
2553
2554 if (unlikely(!high))
2555 return 0;
2556
2557 if (unlikely(free_high)) {
2558 pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2559 high_min);
2560 return 0;
2561 }
2562
2563 /*
2564 * If reclaim is active, limit the number of pages that can be
2565 * stored on pcp lists
2566 */
2567 if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) {
2568 int free_count = max_t(int, pcp->free_count, batch);
2569
2570 pcp->high = max(high - free_count, high_min);
2571 return min(batch << 2, pcp->high);
2572 }
2573
2574 if (high_min == high_max)
2575 return high;
2576
2577 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) {
2578 int free_count = max_t(int, pcp->free_count, batch);
2579
2580 pcp->high = max(high - free_count, high_min);
2581 high = max(pcp->count, high_min);
2582 } else if (pcp->count >= high) {
2583 int need_high = pcp->free_count + batch;
2584
2585 /* pcp->high should be large enough to hold batch freed pages */
2586 if (pcp->high < need_high)
2587 pcp->high = clamp(need_high, high_min, high_max);
2588 }
2589
2590 return high;
2591 }
2592
free_unref_page_commit(struct zone * zone,struct per_cpu_pages * pcp,struct page * page,int migratetype,unsigned int order)2593 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2594 struct page *page, int migratetype,
2595 unsigned int order)
2596 {
2597 int high, batch;
2598 int pindex;
2599 bool free_high = false;
2600
2601 /*
2602 * On freeing, reduce the number of pages that are batch allocated.
2603 * See nr_pcp_alloc() where alloc_factor is increased for subsequent
2604 * allocations.
2605 */
2606 pcp->alloc_factor >>= 1;
2607 __count_vm_events(PGFREE, 1 << order);
2608 pindex = order_to_pindex(migratetype, order);
2609 list_add(&page->pcp_list, &pcp->lists[pindex]);
2610 pcp->count += 1 << order;
2611
2612 batch = READ_ONCE(pcp->batch);
2613 /*
2614 * As high-order pages other than THP's stored on PCP can contribute
2615 * to fragmentation, limit the number stored when PCP is heavily
2616 * freeing without allocation. The remainder after bulk freeing
2617 * stops will be drained from vmstat refresh context.
2618 */
2619 if (order && order <= PAGE_ALLOC_COSTLY_ORDER) {
2620 free_high = (pcp->free_count >= batch &&
2621 (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) &&
2622 (!(pcp->flags & PCPF_FREE_HIGH_BATCH) ||
2623 pcp->count >= READ_ONCE(batch)));
2624 pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER;
2625 } else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) {
2626 pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER;
2627 }
2628 if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX))
2629 pcp->free_count += (1 << order);
2630 high = nr_pcp_high(pcp, zone, batch, free_high);
2631 if (pcp->count >= high) {
2632 free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high),
2633 pcp, pindex);
2634 if (test_bit(ZONE_BELOW_HIGH, &zone->flags) &&
2635 zone_watermark_ok(zone, 0, high_wmark_pages(zone),
2636 ZONE_MOVABLE, 0))
2637 clear_bit(ZONE_BELOW_HIGH, &zone->flags);
2638 }
2639 }
2640
2641 /*
2642 * Free a pcp page
2643 */
free_unref_page(struct page * page,unsigned int order)2644 void free_unref_page(struct page *page, unsigned int order)
2645 {
2646 unsigned long __maybe_unused UP_flags;
2647 struct per_cpu_pages *pcp;
2648 struct zone *zone;
2649 unsigned long pfn = page_to_pfn(page);
2650 int migratetype;
2651
2652 if (!pcp_allowed_order(order)) {
2653 __free_pages_ok(page, order, FPI_NONE);
2654 return;
2655 }
2656
2657 if (!free_pages_prepare(page, order))
2658 return;
2659
2660 /*
2661 * We only track unmovable, reclaimable and movable on pcp lists.
2662 * Place ISOLATE pages on the isolated list because they are being
2663 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2664 * get those areas back if necessary. Otherwise, we may have to free
2665 * excessively into the page allocator
2666 */
2667 migratetype = get_pfnblock_migratetype(page, pfn);
2668 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2669 if (unlikely(is_migrate_isolate(migratetype))) {
2670 free_one_page(page_zone(page), page, pfn, order, FPI_NONE);
2671 return;
2672 }
2673 migratetype = MIGRATE_MOVABLE;
2674 }
2675
2676 zone = page_zone(page);
2677 pcp_trylock_prepare(UP_flags);
2678 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2679 if (pcp) {
2680 free_unref_page_commit(zone, pcp, page, migratetype, order);
2681 pcp_spin_unlock(pcp);
2682 } else {
2683 free_one_page(zone, page, pfn, order, FPI_NONE);
2684 }
2685 pcp_trylock_finish(UP_flags);
2686 }
2687
2688 /*
2689 * Free a batch of folios
2690 */
free_unref_folios(struct folio_batch * folios)2691 void free_unref_folios(struct folio_batch *folios)
2692 {
2693 unsigned long __maybe_unused UP_flags;
2694 struct per_cpu_pages *pcp = NULL;
2695 struct zone *locked_zone = NULL;
2696 int i, j;
2697
2698 /* Prepare folios for freeing */
2699 for (i = 0, j = 0; i < folios->nr; i++) {
2700 struct folio *folio = folios->folios[i];
2701 unsigned long pfn = folio_pfn(folio);
2702 unsigned int order = folio_order(folio);
2703
2704 if (!free_pages_prepare(&folio->page, order))
2705 continue;
2706 /*
2707 * Free orders not handled on the PCP directly to the
2708 * allocator.
2709 */
2710 if (!pcp_allowed_order(order)) {
2711 free_one_page(folio_zone(folio), &folio->page,
2712 pfn, order, FPI_NONE);
2713 continue;
2714 }
2715 folio->private = (void *)(unsigned long)order;
2716 if (j != i)
2717 folios->folios[j] = folio;
2718 j++;
2719 }
2720 folios->nr = j;
2721
2722 for (i = 0; i < folios->nr; i++) {
2723 struct folio *folio = folios->folios[i];
2724 struct zone *zone = folio_zone(folio);
2725 unsigned long pfn = folio_pfn(folio);
2726 unsigned int order = (unsigned long)folio->private;
2727 int migratetype;
2728
2729 folio->private = NULL;
2730 migratetype = get_pfnblock_migratetype(&folio->page, pfn);
2731
2732 /* Different zone requires a different pcp lock */
2733 if (zone != locked_zone ||
2734 is_migrate_isolate(migratetype)) {
2735 if (pcp) {
2736 pcp_spin_unlock(pcp);
2737 pcp_trylock_finish(UP_flags);
2738 locked_zone = NULL;
2739 pcp = NULL;
2740 }
2741
2742 /*
2743 * Free isolated pages directly to the
2744 * allocator, see comment in free_unref_page.
2745 */
2746 if (is_migrate_isolate(migratetype)) {
2747 free_one_page(zone, &folio->page, pfn,
2748 order, FPI_NONE);
2749 continue;
2750 }
2751
2752 /*
2753 * trylock is necessary as folios may be getting freed
2754 * from IRQ or SoftIRQ context after an IO completion.
2755 */
2756 pcp_trylock_prepare(UP_flags);
2757 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2758 if (unlikely(!pcp)) {
2759 pcp_trylock_finish(UP_flags);
2760 free_one_page(zone, &folio->page, pfn,
2761 order, FPI_NONE);
2762 continue;
2763 }
2764 locked_zone = zone;
2765 }
2766
2767 /*
2768 * Non-isolated types over MIGRATE_PCPTYPES get added
2769 * to the MIGRATE_MOVABLE pcp list.
2770 */
2771 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2772 migratetype = MIGRATE_MOVABLE;
2773
2774 trace_mm_page_free_batched(&folio->page);
2775 free_unref_page_commit(zone, pcp, &folio->page, migratetype,
2776 order);
2777 }
2778
2779 if (pcp) {
2780 pcp_spin_unlock(pcp);
2781 pcp_trylock_finish(UP_flags);
2782 }
2783 folio_batch_reinit(folios);
2784 }
2785
2786 /*
2787 * split_page takes a non-compound higher-order page, and splits it into
2788 * n (1<<order) sub-pages: page[0..n]
2789 * Each sub-page must be freed individually.
2790 *
2791 * Note: this is probably too low level an operation for use in drivers.
2792 * Please consult with lkml before using this in your driver.
2793 */
split_page(struct page * page,unsigned int order)2794 void split_page(struct page *page, unsigned int order)
2795 {
2796 int i;
2797
2798 VM_BUG_ON_PAGE(PageCompound(page), page);
2799 VM_BUG_ON_PAGE(!page_count(page), page);
2800
2801 for (i = 1; i < (1 << order); i++)
2802 set_page_refcounted(page + i);
2803 split_page_owner(page, order, 0);
2804 pgalloc_tag_split(page_folio(page), order, 0);
2805 split_page_memcg(page, order, 0);
2806 }
2807 EXPORT_SYMBOL_GPL(split_page);
2808
__isolate_free_page(struct page * page,unsigned int order)2809 int __isolate_free_page(struct page *page, unsigned int order)
2810 {
2811 struct zone *zone = page_zone(page);
2812 int mt = get_pageblock_migratetype(page);
2813
2814 if (!is_migrate_isolate(mt)) {
2815 unsigned long watermark;
2816 /*
2817 * Obey watermarks as if the page was being allocated. We can
2818 * emulate a high-order watermark check with a raised order-0
2819 * watermark, because we already know our high-order page
2820 * exists.
2821 */
2822 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2823 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2824 return 0;
2825 }
2826
2827 del_page_from_free_list(page, zone, order, mt);
2828
2829 /*
2830 * Set the pageblock if the isolated page is at least half of a
2831 * pageblock
2832 */
2833 if (order >= pageblock_order - 1) {
2834 struct page *endpage = page + (1 << order) - 1;
2835 for (; page < endpage; page += pageblock_nr_pages) {
2836 int mt = get_pageblock_migratetype(page);
2837 /*
2838 * Only change normal pageblocks (i.e., they can merge
2839 * with others)
2840 */
2841 if (migratetype_is_mergeable(mt))
2842 move_freepages_block(zone, page, mt,
2843 MIGRATE_MOVABLE);
2844 }
2845 }
2846
2847 return 1UL << order;
2848 }
2849
2850 /**
2851 * __putback_isolated_page - Return a now-isolated page back where we got it
2852 * @page: Page that was isolated
2853 * @order: Order of the isolated page
2854 * @mt: The page's pageblock's migratetype
2855 *
2856 * This function is meant to return a page pulled from the free lists via
2857 * __isolate_free_page back to the free lists they were pulled from.
2858 */
__putback_isolated_page(struct page * page,unsigned int order,int mt)2859 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2860 {
2861 struct zone *zone = page_zone(page);
2862
2863 /* zone lock should be held when this function is called */
2864 lockdep_assert_held(&zone->lock);
2865
2866 /* Return isolated page to tail of freelist. */
2867 __free_one_page(page, page_to_pfn(page), zone, order, mt,
2868 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2869 }
2870
2871 /*
2872 * Update NUMA hit/miss statistics
2873 */
zone_statistics(struct zone * preferred_zone,struct zone * z,long nr_account)2874 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2875 long nr_account)
2876 {
2877 #ifdef CONFIG_NUMA
2878 enum numa_stat_item local_stat = NUMA_LOCAL;
2879
2880 /* skip numa counters update if numa stats is disabled */
2881 if (!static_branch_likely(&vm_numa_stat_key))
2882 return;
2883
2884 if (zone_to_nid(z) != numa_node_id())
2885 local_stat = NUMA_OTHER;
2886
2887 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2888 __count_numa_events(z, NUMA_HIT, nr_account);
2889 else {
2890 __count_numa_events(z, NUMA_MISS, nr_account);
2891 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2892 }
2893 __count_numa_events(z, local_stat, nr_account);
2894 #endif
2895 }
2896
2897 static __always_inline
rmqueue_buddy(struct zone * preferred_zone,struct zone * zone,unsigned int order,unsigned int alloc_flags,int migratetype)2898 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2899 unsigned int order, unsigned int alloc_flags,
2900 int migratetype)
2901 {
2902 struct page *page;
2903 unsigned long flags;
2904
2905 do {
2906 page = NULL;
2907 spin_lock_irqsave(&zone->lock, flags);
2908 if (alloc_flags & ALLOC_HIGHATOMIC)
2909 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2910 if (!page) {
2911 page = __rmqueue(zone, order, migratetype, alloc_flags);
2912
2913 /*
2914 * If the allocation fails, allow OOM handling and
2915 * order-0 (atomic) allocs access to HIGHATOMIC
2916 * reserves as failing now is worse than failing a
2917 * high-order atomic allocation in the future.
2918 */
2919 if (!page && (alloc_flags & (ALLOC_OOM|ALLOC_NON_BLOCK)))
2920 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2921
2922 if (!page) {
2923 spin_unlock_irqrestore(&zone->lock, flags);
2924 return NULL;
2925 }
2926 }
2927 spin_unlock_irqrestore(&zone->lock, flags);
2928 } while (check_new_pages(page, order));
2929
2930 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2931 zone_statistics(preferred_zone, zone, 1);
2932
2933 return page;
2934 }
2935
nr_pcp_alloc(struct per_cpu_pages * pcp,struct zone * zone,int order)2936 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order)
2937 {
2938 int high, base_batch, batch, max_nr_alloc;
2939 int high_max, high_min;
2940
2941 base_batch = READ_ONCE(pcp->batch);
2942 high_min = READ_ONCE(pcp->high_min);
2943 high_max = READ_ONCE(pcp->high_max);
2944 high = pcp->high = clamp(pcp->high, high_min, high_max);
2945
2946 /* Check for PCP disabled or boot pageset */
2947 if (unlikely(high < base_batch))
2948 return 1;
2949
2950 if (order)
2951 batch = base_batch;
2952 else
2953 batch = (base_batch << pcp->alloc_factor);
2954
2955 /*
2956 * If we had larger pcp->high, we could avoid to allocate from
2957 * zone.
2958 */
2959 if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags))
2960 high = pcp->high = min(high + batch, high_max);
2961
2962 if (!order) {
2963 max_nr_alloc = max(high - pcp->count - base_batch, base_batch);
2964 /*
2965 * Double the number of pages allocated each time there is
2966 * subsequent allocation of order-0 pages without any freeing.
2967 */
2968 if (batch <= max_nr_alloc &&
2969 pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX)
2970 pcp->alloc_factor++;
2971 batch = min(batch, max_nr_alloc);
2972 }
2973
2974 /*
2975 * Scale batch relative to order if batch implies free pages
2976 * can be stored on the PCP. Batch can be 1 for small zones or
2977 * for boot pagesets which should never store free pages as
2978 * the pages may belong to arbitrary zones.
2979 */
2980 if (batch > 1)
2981 batch = max(batch >> order, 2);
2982
2983 return batch;
2984 }
2985
2986 /* Remove page from the per-cpu list, caller must protect the list */
2987 static inline
__rmqueue_pcplist(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags,struct per_cpu_pages * pcp,struct list_head * list)2988 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2989 int migratetype,
2990 unsigned int alloc_flags,
2991 struct per_cpu_pages *pcp,
2992 struct list_head *list)
2993 {
2994 struct page *page;
2995
2996 do {
2997 if (list_empty(list)) {
2998 int batch = nr_pcp_alloc(pcp, zone, order);
2999 int alloced;
3000
3001 alloced = rmqueue_bulk(zone, order,
3002 batch, list,
3003 migratetype, alloc_flags);
3004
3005 pcp->count += alloced << order;
3006 if (unlikely(list_empty(list)))
3007 return NULL;
3008 }
3009
3010 page = list_first_entry(list, struct page, pcp_list);
3011 list_del(&page->pcp_list);
3012 pcp->count -= 1 << order;
3013 } while (check_new_pages(page, order));
3014
3015 return page;
3016 }
3017
3018 /* Lock and remove page from the per-cpu list */
rmqueue_pcplist(struct zone * preferred_zone,struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)3019 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3020 struct zone *zone, unsigned int order,
3021 int migratetype, unsigned int alloc_flags)
3022 {
3023 struct per_cpu_pages *pcp;
3024 struct list_head *list;
3025 struct page *page;
3026 unsigned long __maybe_unused UP_flags;
3027
3028 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
3029 pcp_trylock_prepare(UP_flags);
3030 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3031 if (!pcp) {
3032 pcp_trylock_finish(UP_flags);
3033 return NULL;
3034 }
3035
3036 /*
3037 * On allocation, reduce the number of pages that are batch freed.
3038 * See nr_pcp_free() where free_factor is increased for subsequent
3039 * frees.
3040 */
3041 pcp->free_count >>= 1;
3042 list = &pcp->lists[order_to_pindex(migratetype, order)];
3043 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3044 pcp_spin_unlock(pcp);
3045 pcp_trylock_finish(UP_flags);
3046 if (page) {
3047 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3048 zone_statistics(preferred_zone, zone, 1);
3049 }
3050 return page;
3051 }
3052
3053 /*
3054 * Allocate a page from the given zone.
3055 * Use pcplists for THP or "cheap" high-order allocations.
3056 */
3057
3058 /*
3059 * Do not instrument rmqueue() with KMSAN. This function may call
3060 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
3061 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3062 * may call rmqueue() again, which will result in a deadlock.
3063 */
3064 __no_sanitize_memory
3065 static inline
rmqueue(struct zone * preferred_zone,struct zone * zone,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags,int migratetype)3066 struct page *rmqueue(struct zone *preferred_zone,
3067 struct zone *zone, unsigned int order,
3068 gfp_t gfp_flags, unsigned int alloc_flags,
3069 int migratetype)
3070 {
3071 struct page *page;
3072
3073 if (likely(pcp_allowed_order(order))) {
3074 page = rmqueue_pcplist(preferred_zone, zone, order,
3075 migratetype, alloc_flags);
3076 if (likely(page))
3077 goto out;
3078 }
3079
3080 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3081 migratetype);
3082
3083 out:
3084 /* Separate test+clear to avoid unnecessary atomics */
3085 if ((alloc_flags & ALLOC_KSWAPD) &&
3086 unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3087 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3088 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3089 }
3090
3091 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3092 return page;
3093 }
3094
__zone_watermark_unusable_free(struct zone * z,unsigned int order,unsigned int alloc_flags)3095 static inline long __zone_watermark_unusable_free(struct zone *z,
3096 unsigned int order, unsigned int alloc_flags)
3097 {
3098 long unusable_free = (1 << order) - 1;
3099
3100 /*
3101 * If the caller does not have rights to reserves below the min
3102 * watermark then subtract the free pages reserved for highatomic.
3103 */
3104 if (likely(!(alloc_flags & ALLOC_RESERVES)))
3105 unusable_free += READ_ONCE(z->nr_free_highatomic);
3106
3107 #ifdef CONFIG_CMA
3108 /* If allocation can't use CMA areas don't use free CMA pages */
3109 if (!(alloc_flags & ALLOC_CMA))
3110 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3111 #endif
3112
3113 return unusable_free;
3114 }
3115
3116 /*
3117 * Return true if free base pages are above 'mark'. For high-order checks it
3118 * will return true of the order-0 watermark is reached and there is at least
3119 * one free page of a suitable size. Checking now avoids taking the zone lock
3120 * to check in the allocation paths if no pages are free.
3121 */
__zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,long free_pages)3122 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3123 int highest_zoneidx, unsigned int alloc_flags,
3124 long free_pages)
3125 {
3126 long min = mark;
3127 int o;
3128
3129 /* free_pages may go negative - that's OK */
3130 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3131
3132 if (unlikely(alloc_flags & ALLOC_RESERVES)) {
3133 /*
3134 * __GFP_HIGH allows access to 50% of the min reserve as well
3135 * as OOM.
3136 */
3137 if (alloc_flags & ALLOC_MIN_RESERVE) {
3138 min -= min / 2;
3139
3140 /*
3141 * Non-blocking allocations (e.g. GFP_ATOMIC) can
3142 * access more reserves than just __GFP_HIGH. Other
3143 * non-blocking allocations requests such as GFP_NOWAIT
3144 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
3145 * access to the min reserve.
3146 */
3147 if (alloc_flags & ALLOC_NON_BLOCK)
3148 min -= min / 4;
3149 }
3150
3151 /*
3152 * OOM victims can try even harder than the normal reserve
3153 * users on the grounds that it's definitely going to be in
3154 * the exit path shortly and free memory. Any allocation it
3155 * makes during the free path will be small and short-lived.
3156 */
3157 if (alloc_flags & ALLOC_OOM)
3158 min -= min / 2;
3159 }
3160
3161 /*
3162 * Check watermarks for an order-0 allocation request. If these
3163 * are not met, then a high-order request also cannot go ahead
3164 * even if a suitable page happened to be free.
3165 */
3166 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3167 return false;
3168
3169 /* If this is an order-0 request then the watermark is fine */
3170 if (!order)
3171 return true;
3172
3173 /* For a high-order request, check at least one suitable page is free */
3174 for (o = order; o < NR_PAGE_ORDERS; o++) {
3175 struct free_area *area = &z->free_area[o];
3176 int mt;
3177
3178 if (!area->nr_free)
3179 continue;
3180
3181 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3182 if (!free_area_empty(area, mt))
3183 return true;
3184 }
3185
3186 #ifdef CONFIG_CMA
3187 if ((alloc_flags & ALLOC_CMA) &&
3188 !free_area_empty(area, MIGRATE_CMA)) {
3189 return true;
3190 }
3191 #endif
3192 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3193 !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3194 return true;
3195 }
3196 }
3197 return false;
3198 }
3199
zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags)3200 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3201 int highest_zoneidx, unsigned int alloc_flags)
3202 {
3203 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3204 zone_page_state(z, NR_FREE_PAGES));
3205 }
3206
zone_watermark_fast(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,gfp_t gfp_mask)3207 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3208 unsigned long mark, int highest_zoneidx,
3209 unsigned int alloc_flags, gfp_t gfp_mask)
3210 {
3211 long free_pages;
3212
3213 free_pages = zone_page_state(z, NR_FREE_PAGES);
3214
3215 /*
3216 * Fast check for order-0 only. If this fails then the reserves
3217 * need to be calculated.
3218 */
3219 if (!order) {
3220 long usable_free;
3221 long reserved;
3222
3223 usable_free = free_pages;
3224 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3225
3226 /* reserved may over estimate high-atomic reserves. */
3227 usable_free -= min(usable_free, reserved);
3228 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3229 return true;
3230 }
3231
3232 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3233 free_pages))
3234 return true;
3235
3236 /*
3237 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3238 * when checking the min watermark. The min watermark is the
3239 * point where boosting is ignored so that kswapd is woken up
3240 * when below the low watermark.
3241 */
3242 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3243 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3244 mark = z->_watermark[WMARK_MIN];
3245 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3246 alloc_flags, free_pages);
3247 }
3248
3249 return false;
3250 }
3251
zone_watermark_ok_safe(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx)3252 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3253 unsigned long mark, int highest_zoneidx)
3254 {
3255 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3256
3257 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3258 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3259
3260 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3261 free_pages);
3262 }
3263
3264 #ifdef CONFIG_NUMA
3265 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3266
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3267 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3268 {
3269 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3270 node_reclaim_distance;
3271 }
3272 #else /* CONFIG_NUMA */
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3273 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3274 {
3275 return true;
3276 }
3277 #endif /* CONFIG_NUMA */
3278
3279 /*
3280 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3281 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3282 * premature use of a lower zone may cause lowmem pressure problems that
3283 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3284 * probably too small. It only makes sense to spread allocations to avoid
3285 * fragmentation between the Normal and DMA32 zones.
3286 */
3287 static inline unsigned int
alloc_flags_nofragment(struct zone * zone,gfp_t gfp_mask)3288 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3289 {
3290 unsigned int alloc_flags;
3291
3292 /*
3293 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3294 * to save a branch.
3295 */
3296 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3297
3298 #ifdef CONFIG_ZONE_DMA32
3299 if (!zone)
3300 return alloc_flags;
3301
3302 if (zone_idx(zone) != ZONE_NORMAL)
3303 return alloc_flags;
3304
3305 /*
3306 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3307 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3308 * on UMA that if Normal is populated then so is DMA32.
3309 */
3310 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3311 if (nr_online_nodes > 1 && !populated_zone(--zone))
3312 return alloc_flags;
3313
3314 alloc_flags |= ALLOC_NOFRAGMENT;
3315 #endif /* CONFIG_ZONE_DMA32 */
3316 return alloc_flags;
3317 }
3318
3319 /* Must be called after current_gfp_context() which can change gfp_mask */
gfp_to_alloc_flags_cma(gfp_t gfp_mask,unsigned int alloc_flags)3320 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3321 unsigned int alloc_flags)
3322 {
3323 #ifdef CONFIG_CMA
3324 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3325 alloc_flags |= ALLOC_CMA;
3326 #endif
3327 return alloc_flags;
3328 }
3329
3330 /*
3331 * get_page_from_freelist goes through the zonelist trying to allocate
3332 * a page.
3333 */
3334 static struct page *
get_page_from_freelist(gfp_t gfp_mask,unsigned int order,int alloc_flags,const struct alloc_context * ac)3335 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3336 const struct alloc_context *ac)
3337 {
3338 struct zoneref *z;
3339 struct zone *zone;
3340 struct pglist_data *last_pgdat = NULL;
3341 bool last_pgdat_dirty_ok = false;
3342 bool no_fallback;
3343
3344 retry:
3345 /*
3346 * Scan zonelist, looking for a zone with enough free.
3347 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3348 */
3349 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3350 z = ac->preferred_zoneref;
3351 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3352 ac->nodemask) {
3353 struct page *page;
3354 unsigned long mark;
3355
3356 if (cpusets_enabled() &&
3357 (alloc_flags & ALLOC_CPUSET) &&
3358 !__cpuset_zone_allowed(zone, gfp_mask))
3359 continue;
3360 /*
3361 * When allocating a page cache page for writing, we
3362 * want to get it from a node that is within its dirty
3363 * limit, such that no single node holds more than its
3364 * proportional share of globally allowed dirty pages.
3365 * The dirty limits take into account the node's
3366 * lowmem reserves and high watermark so that kswapd
3367 * should be able to balance it without having to
3368 * write pages from its LRU list.
3369 *
3370 * XXX: For now, allow allocations to potentially
3371 * exceed the per-node dirty limit in the slowpath
3372 * (spread_dirty_pages unset) before going into reclaim,
3373 * which is important when on a NUMA setup the allowed
3374 * nodes are together not big enough to reach the
3375 * global limit. The proper fix for these situations
3376 * will require awareness of nodes in the
3377 * dirty-throttling and the flusher threads.
3378 */
3379 if (ac->spread_dirty_pages) {
3380 if (last_pgdat != zone->zone_pgdat) {
3381 last_pgdat = zone->zone_pgdat;
3382 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3383 }
3384
3385 if (!last_pgdat_dirty_ok)
3386 continue;
3387 }
3388
3389 if (no_fallback && nr_online_nodes > 1 &&
3390 zone != zonelist_zone(ac->preferred_zoneref)) {
3391 int local_nid;
3392
3393 /*
3394 * If moving to a remote node, retry but allow
3395 * fragmenting fallbacks. Locality is more important
3396 * than fragmentation avoidance.
3397 */
3398 local_nid = zonelist_node_idx(ac->preferred_zoneref);
3399 if (zone_to_nid(zone) != local_nid) {
3400 alloc_flags &= ~ALLOC_NOFRAGMENT;
3401 goto retry;
3402 }
3403 }
3404
3405 cond_accept_memory(zone, order);
3406
3407 /*
3408 * Detect whether the number of free pages is below high
3409 * watermark. If so, we will decrease pcp->high and free
3410 * PCP pages in free path to reduce the possibility of
3411 * premature page reclaiming. Detection is done here to
3412 * avoid to do that in hotter free path.
3413 */
3414 if (test_bit(ZONE_BELOW_HIGH, &zone->flags))
3415 goto check_alloc_wmark;
3416
3417 mark = high_wmark_pages(zone);
3418 if (zone_watermark_fast(zone, order, mark,
3419 ac->highest_zoneidx, alloc_flags,
3420 gfp_mask))
3421 goto try_this_zone;
3422 else
3423 set_bit(ZONE_BELOW_HIGH, &zone->flags);
3424
3425 check_alloc_wmark:
3426 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3427 if (!zone_watermark_fast(zone, order, mark,
3428 ac->highest_zoneidx, alloc_flags,
3429 gfp_mask)) {
3430 int ret;
3431
3432 if (cond_accept_memory(zone, order))
3433 goto try_this_zone;
3434
3435 /*
3436 * Watermark failed for this zone, but see if we can
3437 * grow this zone if it contains deferred pages.
3438 */
3439 if (deferred_pages_enabled()) {
3440 if (_deferred_grow_zone(zone, order))
3441 goto try_this_zone;
3442 }
3443 /* Checked here to keep the fast path fast */
3444 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3445 if (alloc_flags & ALLOC_NO_WATERMARKS)
3446 goto try_this_zone;
3447
3448 if (!node_reclaim_enabled() ||
3449 !zone_allows_reclaim(zonelist_zone(ac->preferred_zoneref), zone))
3450 continue;
3451
3452 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3453 switch (ret) {
3454 case NODE_RECLAIM_NOSCAN:
3455 /* did not scan */
3456 continue;
3457 case NODE_RECLAIM_FULL:
3458 /* scanned but unreclaimable */
3459 continue;
3460 default:
3461 /* did we reclaim enough */
3462 if (zone_watermark_ok(zone, order, mark,
3463 ac->highest_zoneidx, alloc_flags))
3464 goto try_this_zone;
3465
3466 continue;
3467 }
3468 }
3469
3470 try_this_zone:
3471 page = rmqueue(zonelist_zone(ac->preferred_zoneref), zone, order,
3472 gfp_mask, alloc_flags, ac->migratetype);
3473 if (page) {
3474 prep_new_page(page, order, gfp_mask, alloc_flags);
3475
3476 /*
3477 * If this is a high-order atomic allocation then check
3478 * if the pageblock should be reserved for the future
3479 */
3480 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3481 reserve_highatomic_pageblock(page, order, zone);
3482
3483 return page;
3484 } else {
3485 if (cond_accept_memory(zone, order))
3486 goto try_this_zone;
3487
3488 /* Try again if zone has deferred pages */
3489 if (deferred_pages_enabled()) {
3490 if (_deferred_grow_zone(zone, order))
3491 goto try_this_zone;
3492 }
3493 }
3494 }
3495
3496 /*
3497 * It's possible on a UMA machine to get through all zones that are
3498 * fragmented. If avoiding fragmentation, reset and try again.
3499 */
3500 if (no_fallback) {
3501 alloc_flags &= ~ALLOC_NOFRAGMENT;
3502 goto retry;
3503 }
3504
3505 return NULL;
3506 }
3507
warn_alloc_show_mem(gfp_t gfp_mask,nodemask_t * nodemask)3508 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3509 {
3510 unsigned int filter = SHOW_MEM_FILTER_NODES;
3511
3512 /*
3513 * This documents exceptions given to allocations in certain
3514 * contexts that are allowed to allocate outside current's set
3515 * of allowed nodes.
3516 */
3517 if (!(gfp_mask & __GFP_NOMEMALLOC))
3518 if (tsk_is_oom_victim(current) ||
3519 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3520 filter &= ~SHOW_MEM_FILTER_NODES;
3521 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3522 filter &= ~SHOW_MEM_FILTER_NODES;
3523
3524 __show_mem(filter, nodemask, gfp_zone(gfp_mask));
3525 }
3526
warn_alloc(gfp_t gfp_mask,nodemask_t * nodemask,const char * fmt,...)3527 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3528 {
3529 struct va_format vaf;
3530 va_list args;
3531 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3532
3533 if ((gfp_mask & __GFP_NOWARN) ||
3534 !__ratelimit(&nopage_rs) ||
3535 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3536 return;
3537
3538 va_start(args, fmt);
3539 vaf.fmt = fmt;
3540 vaf.va = &args;
3541 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3542 current->comm, &vaf, gfp_mask, &gfp_mask,
3543 nodemask_pr_args(nodemask));
3544 va_end(args);
3545
3546 cpuset_print_current_mems_allowed();
3547 pr_cont("\n");
3548 dump_stack();
3549 warn_alloc_show_mem(gfp_mask, nodemask);
3550 }
3551
3552 static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac)3553 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3554 unsigned int alloc_flags,
3555 const struct alloc_context *ac)
3556 {
3557 struct page *page;
3558
3559 page = get_page_from_freelist(gfp_mask, order,
3560 alloc_flags|ALLOC_CPUSET, ac);
3561 /*
3562 * fallback to ignore cpuset restriction if our nodes
3563 * are depleted
3564 */
3565 if (!page)
3566 page = get_page_from_freelist(gfp_mask, order,
3567 alloc_flags, ac);
3568
3569 return page;
3570 }
3571
3572 static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac,unsigned long * did_some_progress)3573 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3574 const struct alloc_context *ac, unsigned long *did_some_progress)
3575 {
3576 struct oom_control oc = {
3577 .zonelist = ac->zonelist,
3578 .nodemask = ac->nodemask,
3579 .memcg = NULL,
3580 .gfp_mask = gfp_mask,
3581 .order = order,
3582 };
3583 struct page *page;
3584
3585 *did_some_progress = 0;
3586
3587 /*
3588 * Acquire the oom lock. If that fails, somebody else is
3589 * making progress for us.
3590 */
3591 if (!mutex_trylock(&oom_lock)) {
3592 *did_some_progress = 1;
3593 schedule_timeout_uninterruptible(1);
3594 return NULL;
3595 }
3596
3597 /*
3598 * Go through the zonelist yet one more time, keep very high watermark
3599 * here, this is only to catch a parallel oom killing, we must fail if
3600 * we're still under heavy pressure. But make sure that this reclaim
3601 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3602 * allocation which will never fail due to oom_lock already held.
3603 */
3604 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3605 ~__GFP_DIRECT_RECLAIM, order,
3606 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3607 if (page)
3608 goto out;
3609
3610 /* Coredumps can quickly deplete all memory reserves */
3611 if (current->flags & PF_DUMPCORE)
3612 goto out;
3613 /* The OOM killer will not help higher order allocs */
3614 if (order > PAGE_ALLOC_COSTLY_ORDER)
3615 goto out;
3616 /*
3617 * We have already exhausted all our reclaim opportunities without any
3618 * success so it is time to admit defeat. We will skip the OOM killer
3619 * because it is very likely that the caller has a more reasonable
3620 * fallback than shooting a random task.
3621 *
3622 * The OOM killer may not free memory on a specific node.
3623 */
3624 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3625 goto out;
3626 /* The OOM killer does not needlessly kill tasks for lowmem */
3627 if (ac->highest_zoneidx < ZONE_NORMAL)
3628 goto out;
3629 if (pm_suspended_storage())
3630 goto out;
3631 /*
3632 * XXX: GFP_NOFS allocations should rather fail than rely on
3633 * other request to make a forward progress.
3634 * We are in an unfortunate situation where out_of_memory cannot
3635 * do much for this context but let's try it to at least get
3636 * access to memory reserved if the current task is killed (see
3637 * out_of_memory). Once filesystems are ready to handle allocation
3638 * failures more gracefully we should just bail out here.
3639 */
3640
3641 /* Exhausted what can be done so it's blame time */
3642 if (out_of_memory(&oc) ||
3643 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3644 *did_some_progress = 1;
3645
3646 /*
3647 * Help non-failing allocations by giving them access to memory
3648 * reserves
3649 */
3650 if (gfp_mask & __GFP_NOFAIL)
3651 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3652 ALLOC_NO_WATERMARKS, ac);
3653 }
3654 out:
3655 mutex_unlock(&oom_lock);
3656 return page;
3657 }
3658
3659 /*
3660 * Maximum number of compaction retries with a progress before OOM
3661 * killer is consider as the only way to move forward.
3662 */
3663 #define MAX_COMPACT_RETRIES 16
3664
3665 #ifdef CONFIG_COMPACTION
3666 /* Try memory compaction for high-order allocations before reclaim */
3667 static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)3668 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3669 unsigned int alloc_flags, const struct alloc_context *ac,
3670 enum compact_priority prio, enum compact_result *compact_result)
3671 {
3672 struct page *page = NULL;
3673 unsigned long pflags;
3674 unsigned int noreclaim_flag;
3675
3676 if (!order)
3677 return NULL;
3678
3679 psi_memstall_enter(&pflags);
3680 delayacct_compact_start();
3681 noreclaim_flag = memalloc_noreclaim_save();
3682
3683 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3684 prio, &page);
3685
3686 memalloc_noreclaim_restore(noreclaim_flag);
3687 psi_memstall_leave(&pflags);
3688 delayacct_compact_end();
3689
3690 if (*compact_result == COMPACT_SKIPPED)
3691 return NULL;
3692 /*
3693 * At least in one zone compaction wasn't deferred or skipped, so let's
3694 * count a compaction stall
3695 */
3696 count_vm_event(COMPACTSTALL);
3697
3698 /* Prep a captured page if available */
3699 if (page)
3700 prep_new_page(page, order, gfp_mask, alloc_flags);
3701
3702 /* Try get a page from the freelist if available */
3703 if (!page)
3704 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3705
3706 if (page) {
3707 struct zone *zone = page_zone(page);
3708
3709 zone->compact_blockskip_flush = false;
3710 compaction_defer_reset(zone, order, true);
3711 count_vm_event(COMPACTSUCCESS);
3712 return page;
3713 }
3714
3715 /*
3716 * It's bad if compaction run occurs and fails. The most likely reason
3717 * is that pages exist, but not enough to satisfy watermarks.
3718 */
3719 count_vm_event(COMPACTFAIL);
3720
3721 cond_resched();
3722
3723 return NULL;
3724 }
3725
3726 static inline bool
should_compact_retry(struct alloc_context * ac,int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)3727 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3728 enum compact_result compact_result,
3729 enum compact_priority *compact_priority,
3730 int *compaction_retries)
3731 {
3732 int max_retries = MAX_COMPACT_RETRIES;
3733 int min_priority;
3734 bool ret = false;
3735 int retries = *compaction_retries;
3736 enum compact_priority priority = *compact_priority;
3737
3738 if (!order)
3739 return false;
3740
3741 if (fatal_signal_pending(current))
3742 return false;
3743
3744 /*
3745 * Compaction was skipped due to a lack of free order-0
3746 * migration targets. Continue if reclaim can help.
3747 */
3748 if (compact_result == COMPACT_SKIPPED) {
3749 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3750 goto out;
3751 }
3752
3753 /*
3754 * Compaction managed to coalesce some page blocks, but the
3755 * allocation failed presumably due to a race. Retry some.
3756 */
3757 if (compact_result == COMPACT_SUCCESS) {
3758 /*
3759 * !costly requests are much more important than
3760 * __GFP_RETRY_MAYFAIL costly ones because they are de
3761 * facto nofail and invoke OOM killer to move on while
3762 * costly can fail and users are ready to cope with
3763 * that. 1/4 retries is rather arbitrary but we would
3764 * need much more detailed feedback from compaction to
3765 * make a better decision.
3766 */
3767 if (order > PAGE_ALLOC_COSTLY_ORDER)
3768 max_retries /= 4;
3769
3770 if (++(*compaction_retries) <= max_retries) {
3771 ret = true;
3772 goto out;
3773 }
3774 }
3775
3776 /*
3777 * Compaction failed. Retry with increasing priority.
3778 */
3779 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3780 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3781
3782 if (*compact_priority > min_priority) {
3783 (*compact_priority)--;
3784 *compaction_retries = 0;
3785 ret = true;
3786 }
3787 out:
3788 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3789 return ret;
3790 }
3791 #else
3792 static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)3793 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3794 unsigned int alloc_flags, const struct alloc_context *ac,
3795 enum compact_priority prio, enum compact_result *compact_result)
3796 {
3797 *compact_result = COMPACT_SKIPPED;
3798 return NULL;
3799 }
3800
3801 static inline bool
should_compact_retry(struct alloc_context * ac,unsigned int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)3802 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3803 enum compact_result compact_result,
3804 enum compact_priority *compact_priority,
3805 int *compaction_retries)
3806 {
3807 struct zone *zone;
3808 struct zoneref *z;
3809
3810 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3811 return false;
3812
3813 /*
3814 * There are setups with compaction disabled which would prefer to loop
3815 * inside the allocator rather than hit the oom killer prematurely.
3816 * Let's give them a good hope and keep retrying while the order-0
3817 * watermarks are OK.
3818 */
3819 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3820 ac->highest_zoneidx, ac->nodemask) {
3821 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3822 ac->highest_zoneidx, alloc_flags))
3823 return true;
3824 }
3825 return false;
3826 }
3827 #endif /* CONFIG_COMPACTION */
3828
3829 #ifdef CONFIG_LOCKDEP
3830 static struct lockdep_map __fs_reclaim_map =
3831 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3832
__need_reclaim(gfp_t gfp_mask)3833 static bool __need_reclaim(gfp_t gfp_mask)
3834 {
3835 /* no reclaim without waiting on it */
3836 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3837 return false;
3838
3839 /* this guy won't enter reclaim */
3840 if (current->flags & PF_MEMALLOC)
3841 return false;
3842
3843 if (gfp_mask & __GFP_NOLOCKDEP)
3844 return false;
3845
3846 return true;
3847 }
3848
__fs_reclaim_acquire(unsigned long ip)3849 void __fs_reclaim_acquire(unsigned long ip)
3850 {
3851 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3852 }
3853
__fs_reclaim_release(unsigned long ip)3854 void __fs_reclaim_release(unsigned long ip)
3855 {
3856 lock_release(&__fs_reclaim_map, ip);
3857 }
3858
fs_reclaim_acquire(gfp_t gfp_mask)3859 void fs_reclaim_acquire(gfp_t gfp_mask)
3860 {
3861 gfp_mask = current_gfp_context(gfp_mask);
3862
3863 if (__need_reclaim(gfp_mask)) {
3864 if (gfp_mask & __GFP_FS)
3865 __fs_reclaim_acquire(_RET_IP_);
3866
3867 #ifdef CONFIG_MMU_NOTIFIER
3868 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3869 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3870 #endif
3871
3872 }
3873 }
3874 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3875
fs_reclaim_release(gfp_t gfp_mask)3876 void fs_reclaim_release(gfp_t gfp_mask)
3877 {
3878 gfp_mask = current_gfp_context(gfp_mask);
3879
3880 if (__need_reclaim(gfp_mask)) {
3881 if (gfp_mask & __GFP_FS)
3882 __fs_reclaim_release(_RET_IP_);
3883 }
3884 }
3885 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3886 #endif
3887
3888 /*
3889 * Zonelists may change due to hotplug during allocation. Detect when zonelists
3890 * have been rebuilt so allocation retries. Reader side does not lock and
3891 * retries the allocation if zonelist changes. Writer side is protected by the
3892 * embedded spin_lock.
3893 */
3894 static DEFINE_SEQLOCK(zonelist_update_seq);
3895
zonelist_iter_begin(void)3896 static unsigned int zonelist_iter_begin(void)
3897 {
3898 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3899 return read_seqbegin(&zonelist_update_seq);
3900
3901 return 0;
3902 }
3903
check_retry_zonelist(unsigned int seq)3904 static unsigned int check_retry_zonelist(unsigned int seq)
3905 {
3906 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3907 return read_seqretry(&zonelist_update_seq, seq);
3908
3909 return seq;
3910 }
3911
3912 /* Perform direct synchronous page reclaim */
3913 static unsigned long
__perform_reclaim(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac)3914 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3915 const struct alloc_context *ac)
3916 {
3917 unsigned int noreclaim_flag;
3918 unsigned long progress;
3919
3920 cond_resched();
3921
3922 /* We now go into synchronous reclaim */
3923 cpuset_memory_pressure_bump();
3924 fs_reclaim_acquire(gfp_mask);
3925 noreclaim_flag = memalloc_noreclaim_save();
3926
3927 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3928 ac->nodemask);
3929
3930 memalloc_noreclaim_restore(noreclaim_flag);
3931 fs_reclaim_release(gfp_mask);
3932
3933 cond_resched();
3934
3935 return progress;
3936 }
3937
3938 /* The really slow allocator path where we enter direct reclaim */
3939 static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,unsigned long * did_some_progress)3940 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3941 unsigned int alloc_flags, const struct alloc_context *ac,
3942 unsigned long *did_some_progress)
3943 {
3944 struct page *page = NULL;
3945 unsigned long pflags;
3946 bool drained = false;
3947
3948 psi_memstall_enter(&pflags);
3949 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3950 if (unlikely(!(*did_some_progress)))
3951 goto out;
3952
3953 retry:
3954 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3955
3956 /*
3957 * If an allocation failed after direct reclaim, it could be because
3958 * pages are pinned on the per-cpu lists or in high alloc reserves.
3959 * Shrink them and try again
3960 */
3961 if (!page && !drained) {
3962 unreserve_highatomic_pageblock(ac, false);
3963 drain_all_pages(NULL);
3964 drained = true;
3965 goto retry;
3966 }
3967 out:
3968 psi_memstall_leave(&pflags);
3969
3970 return page;
3971 }
3972
wake_all_kswapds(unsigned int order,gfp_t gfp_mask,const struct alloc_context * ac)3973 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3974 const struct alloc_context *ac)
3975 {
3976 struct zoneref *z;
3977 struct zone *zone;
3978 pg_data_t *last_pgdat = NULL;
3979 enum zone_type highest_zoneidx = ac->highest_zoneidx;
3980
3981 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
3982 ac->nodemask) {
3983 if (!managed_zone(zone))
3984 continue;
3985 if (last_pgdat != zone->zone_pgdat) {
3986 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
3987 last_pgdat = zone->zone_pgdat;
3988 }
3989 }
3990 }
3991
3992 static inline unsigned int
gfp_to_alloc_flags(gfp_t gfp_mask,unsigned int order)3993 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
3994 {
3995 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3996
3997 /*
3998 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
3999 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4000 * to save two branches.
4001 */
4002 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
4003 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4004
4005 /*
4006 * The caller may dip into page reserves a bit more if the caller
4007 * cannot run direct reclaim, or if the caller has realtime scheduling
4008 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4009 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
4010 */
4011 alloc_flags |= (__force int)
4012 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4013
4014 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
4015 /*
4016 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4017 * if it can't schedule.
4018 */
4019 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
4020 alloc_flags |= ALLOC_NON_BLOCK;
4021
4022 if (order > 0)
4023 alloc_flags |= ALLOC_HIGHATOMIC;
4024 }
4025
4026 /*
4027 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
4028 * GFP_ATOMIC) rather than fail, see the comment for
4029 * cpuset_node_allowed().
4030 */
4031 if (alloc_flags & ALLOC_MIN_RESERVE)
4032 alloc_flags &= ~ALLOC_CPUSET;
4033 } else if (unlikely(rt_or_dl_task(current)) && in_task())
4034 alloc_flags |= ALLOC_MIN_RESERVE;
4035
4036 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4037
4038 return alloc_flags;
4039 }
4040
oom_reserves_allowed(struct task_struct * tsk)4041 static bool oom_reserves_allowed(struct task_struct *tsk)
4042 {
4043 if (!tsk_is_oom_victim(tsk))
4044 return false;
4045
4046 /*
4047 * !MMU doesn't have oom reaper so give access to memory reserves
4048 * only to the thread with TIF_MEMDIE set
4049 */
4050 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4051 return false;
4052
4053 return true;
4054 }
4055
4056 /*
4057 * Distinguish requests which really need access to full memory
4058 * reserves from oom victims which can live with a portion of it
4059 */
__gfp_pfmemalloc_flags(gfp_t gfp_mask)4060 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4061 {
4062 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4063 return 0;
4064 if (gfp_mask & __GFP_MEMALLOC)
4065 return ALLOC_NO_WATERMARKS;
4066 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4067 return ALLOC_NO_WATERMARKS;
4068 if (!in_interrupt()) {
4069 if (current->flags & PF_MEMALLOC)
4070 return ALLOC_NO_WATERMARKS;
4071 else if (oom_reserves_allowed(current))
4072 return ALLOC_OOM;
4073 }
4074
4075 return 0;
4076 }
4077
gfp_pfmemalloc_allowed(gfp_t gfp_mask)4078 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4079 {
4080 return !!__gfp_pfmemalloc_flags(gfp_mask);
4081 }
4082
4083 /*
4084 * Checks whether it makes sense to retry the reclaim to make a forward progress
4085 * for the given allocation request.
4086 *
4087 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4088 * without success, or when we couldn't even meet the watermark if we
4089 * reclaimed all remaining pages on the LRU lists.
4090 *
4091 * Returns true if a retry is viable or false to enter the oom path.
4092 */
4093 static inline bool
should_reclaim_retry(gfp_t gfp_mask,unsigned order,struct alloc_context * ac,int alloc_flags,bool did_some_progress,int * no_progress_loops)4094 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4095 struct alloc_context *ac, int alloc_flags,
4096 bool did_some_progress, int *no_progress_loops)
4097 {
4098 struct zone *zone;
4099 struct zoneref *z;
4100 bool ret = false;
4101
4102 /*
4103 * Costly allocations might have made a progress but this doesn't mean
4104 * their order will become available due to high fragmentation so
4105 * always increment the no progress counter for them
4106 */
4107 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4108 *no_progress_loops = 0;
4109 else
4110 (*no_progress_loops)++;
4111
4112 if (*no_progress_loops > MAX_RECLAIM_RETRIES)
4113 goto out;
4114
4115
4116 /*
4117 * Keep reclaiming pages while there is a chance this will lead
4118 * somewhere. If none of the target zones can satisfy our allocation
4119 * request even if all reclaimable pages are considered then we are
4120 * screwed and have to go OOM.
4121 */
4122 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4123 ac->highest_zoneidx, ac->nodemask) {
4124 unsigned long available;
4125 unsigned long reclaimable;
4126 unsigned long min_wmark = min_wmark_pages(zone);
4127 bool wmark;
4128
4129 if (cpusets_enabled() &&
4130 (alloc_flags & ALLOC_CPUSET) &&
4131 !__cpuset_zone_allowed(zone, gfp_mask))
4132 continue;
4133
4134 available = reclaimable = zone_reclaimable_pages(zone);
4135 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4136
4137 /*
4138 * Would the allocation succeed if we reclaimed all
4139 * reclaimable pages?
4140 */
4141 wmark = __zone_watermark_ok(zone, order, min_wmark,
4142 ac->highest_zoneidx, alloc_flags, available);
4143 trace_reclaim_retry_zone(z, order, reclaimable,
4144 available, min_wmark, *no_progress_loops, wmark);
4145 if (wmark) {
4146 ret = true;
4147 break;
4148 }
4149 }
4150
4151 /*
4152 * Memory allocation/reclaim might be called from a WQ context and the
4153 * current implementation of the WQ concurrency control doesn't
4154 * recognize that a particular WQ is congested if the worker thread is
4155 * looping without ever sleeping. Therefore we have to do a short sleep
4156 * here rather than calling cond_resched().
4157 */
4158 if (current->flags & PF_WQ_WORKER)
4159 schedule_timeout_uninterruptible(1);
4160 else
4161 cond_resched();
4162 out:
4163 /* Before OOM, exhaust highatomic_reserve */
4164 if (!ret)
4165 return unreserve_highatomic_pageblock(ac, true);
4166
4167 return ret;
4168 }
4169
4170 static inline bool
check_retry_cpuset(int cpuset_mems_cookie,struct alloc_context * ac)4171 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4172 {
4173 /*
4174 * It's possible that cpuset's mems_allowed and the nodemask from
4175 * mempolicy don't intersect. This should be normally dealt with by
4176 * policy_nodemask(), but it's possible to race with cpuset update in
4177 * such a way the check therein was true, and then it became false
4178 * before we got our cpuset_mems_cookie here.
4179 * This assumes that for all allocations, ac->nodemask can come only
4180 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4181 * when it does not intersect with the cpuset restrictions) or the
4182 * caller can deal with a violated nodemask.
4183 */
4184 if (cpusets_enabled() && ac->nodemask &&
4185 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4186 ac->nodemask = NULL;
4187 return true;
4188 }
4189
4190 /*
4191 * When updating a task's mems_allowed or mempolicy nodemask, it is
4192 * possible to race with parallel threads in such a way that our
4193 * allocation can fail while the mask is being updated. If we are about
4194 * to fail, check if the cpuset changed during allocation and if so,
4195 * retry.
4196 */
4197 if (read_mems_allowed_retry(cpuset_mems_cookie))
4198 return true;
4199
4200 return false;
4201 }
4202
4203 static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask,unsigned int order,struct alloc_context * ac)4204 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4205 struct alloc_context *ac)
4206 {
4207 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4208 bool can_compact = gfp_compaction_allowed(gfp_mask);
4209 bool nofail = gfp_mask & __GFP_NOFAIL;
4210 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4211 struct page *page = NULL;
4212 unsigned int alloc_flags;
4213 unsigned long did_some_progress;
4214 enum compact_priority compact_priority;
4215 enum compact_result compact_result;
4216 int compaction_retries;
4217 int no_progress_loops;
4218 unsigned int cpuset_mems_cookie;
4219 unsigned int zonelist_iter_cookie;
4220 int reserve_flags;
4221
4222 if (unlikely(nofail)) {
4223 /*
4224 * We most definitely don't want callers attempting to
4225 * allocate greater than order-1 page units with __GFP_NOFAIL.
4226 */
4227 WARN_ON_ONCE(order > 1);
4228 /*
4229 * Also we don't support __GFP_NOFAIL without __GFP_DIRECT_RECLAIM,
4230 * otherwise, we may result in lockup.
4231 */
4232 WARN_ON_ONCE(!can_direct_reclaim);
4233 /*
4234 * PF_MEMALLOC request from this context is rather bizarre
4235 * because we cannot reclaim anything and only can loop waiting
4236 * for somebody to do a work for us.
4237 */
4238 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4239 }
4240
4241 restart:
4242 compaction_retries = 0;
4243 no_progress_loops = 0;
4244 compact_priority = DEF_COMPACT_PRIORITY;
4245 cpuset_mems_cookie = read_mems_allowed_begin();
4246 zonelist_iter_cookie = zonelist_iter_begin();
4247
4248 /*
4249 * The fast path uses conservative alloc_flags to succeed only until
4250 * kswapd needs to be woken up, and to avoid the cost of setting up
4251 * alloc_flags precisely. So we do that now.
4252 */
4253 alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
4254
4255 /*
4256 * We need to recalculate the starting point for the zonelist iterator
4257 * because we might have used different nodemask in the fast path, or
4258 * there was a cpuset modification and we are retrying - otherwise we
4259 * could end up iterating over non-eligible zones endlessly.
4260 */
4261 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4262 ac->highest_zoneidx, ac->nodemask);
4263 if (!zonelist_zone(ac->preferred_zoneref))
4264 goto nopage;
4265
4266 /*
4267 * Check for insane configurations where the cpuset doesn't contain
4268 * any suitable zone to satisfy the request - e.g. non-movable
4269 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4270 */
4271 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4272 struct zoneref *z = first_zones_zonelist(ac->zonelist,
4273 ac->highest_zoneidx,
4274 &cpuset_current_mems_allowed);
4275 if (!zonelist_zone(z))
4276 goto nopage;
4277 }
4278
4279 if (alloc_flags & ALLOC_KSWAPD)
4280 wake_all_kswapds(order, gfp_mask, ac);
4281
4282 /*
4283 * The adjusted alloc_flags might result in immediate success, so try
4284 * that first
4285 */
4286 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4287 if (page)
4288 goto got_pg;
4289
4290 /*
4291 * For costly allocations, try direct compaction first, as it's likely
4292 * that we have enough base pages and don't need to reclaim. For non-
4293 * movable high-order allocations, do that as well, as compaction will
4294 * try prevent permanent fragmentation by migrating from blocks of the
4295 * same migratetype.
4296 * Don't try this for allocations that are allowed to ignore
4297 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4298 */
4299 if (can_direct_reclaim && can_compact &&
4300 (costly_order ||
4301 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4302 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4303 page = __alloc_pages_direct_compact(gfp_mask, order,
4304 alloc_flags, ac,
4305 INIT_COMPACT_PRIORITY,
4306 &compact_result);
4307 if (page)
4308 goto got_pg;
4309
4310 /*
4311 * Checks for costly allocations with __GFP_NORETRY, which
4312 * includes some THP page fault allocations
4313 */
4314 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4315 /*
4316 * If allocating entire pageblock(s) and compaction
4317 * failed because all zones are below low watermarks
4318 * or is prohibited because it recently failed at this
4319 * order, fail immediately unless the allocator has
4320 * requested compaction and reclaim retry.
4321 *
4322 * Reclaim is
4323 * - potentially very expensive because zones are far
4324 * below their low watermarks or this is part of very
4325 * bursty high order allocations,
4326 * - not guaranteed to help because isolate_freepages()
4327 * may not iterate over freed pages as part of its
4328 * linear scan, and
4329 * - unlikely to make entire pageblocks free on its
4330 * own.
4331 */
4332 if (compact_result == COMPACT_SKIPPED ||
4333 compact_result == COMPACT_DEFERRED)
4334 goto nopage;
4335
4336 /*
4337 * Looks like reclaim/compaction is worth trying, but
4338 * sync compaction could be very expensive, so keep
4339 * using async compaction.
4340 */
4341 compact_priority = INIT_COMPACT_PRIORITY;
4342 }
4343 }
4344
4345 retry:
4346 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4347 if (alloc_flags & ALLOC_KSWAPD)
4348 wake_all_kswapds(order, gfp_mask, ac);
4349
4350 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4351 if (reserve_flags)
4352 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4353 (alloc_flags & ALLOC_KSWAPD);
4354
4355 /*
4356 * Reset the nodemask and zonelist iterators if memory policies can be
4357 * ignored. These allocations are high priority and system rather than
4358 * user oriented.
4359 */
4360 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4361 ac->nodemask = NULL;
4362 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4363 ac->highest_zoneidx, ac->nodemask);
4364 }
4365
4366 /* Attempt with potentially adjusted zonelist and alloc_flags */
4367 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4368 if (page)
4369 goto got_pg;
4370
4371 /* Caller is not willing to reclaim, we can't balance anything */
4372 if (!can_direct_reclaim)
4373 goto nopage;
4374
4375 /* Avoid recursion of direct reclaim */
4376 if (current->flags & PF_MEMALLOC)
4377 goto nopage;
4378
4379 /* Try direct reclaim and then allocating */
4380 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4381 &did_some_progress);
4382 if (page)
4383 goto got_pg;
4384
4385 /* Try direct compaction and then allocating */
4386 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4387 compact_priority, &compact_result);
4388 if (page)
4389 goto got_pg;
4390
4391 /* Do not loop if specifically requested */
4392 if (gfp_mask & __GFP_NORETRY)
4393 goto nopage;
4394
4395 /*
4396 * Do not retry costly high order allocations unless they are
4397 * __GFP_RETRY_MAYFAIL and we can compact
4398 */
4399 if (costly_order && (!can_compact ||
4400 !(gfp_mask & __GFP_RETRY_MAYFAIL)))
4401 goto nopage;
4402
4403 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4404 did_some_progress > 0, &no_progress_loops))
4405 goto retry;
4406
4407 /*
4408 * It doesn't make any sense to retry for the compaction if the order-0
4409 * reclaim is not able to make any progress because the current
4410 * implementation of the compaction depends on the sufficient amount
4411 * of free memory (see __compaction_suitable)
4412 */
4413 if (did_some_progress > 0 && can_compact &&
4414 should_compact_retry(ac, order, alloc_flags,
4415 compact_result, &compact_priority,
4416 &compaction_retries))
4417 goto retry;
4418
4419
4420 /*
4421 * Deal with possible cpuset update races or zonelist updates to avoid
4422 * a unnecessary OOM kill.
4423 */
4424 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4425 check_retry_zonelist(zonelist_iter_cookie))
4426 goto restart;
4427
4428 /* Reclaim has failed us, start killing things */
4429 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4430 if (page)
4431 goto got_pg;
4432
4433 /* Avoid allocations with no watermarks from looping endlessly */
4434 if (tsk_is_oom_victim(current) &&
4435 (alloc_flags & ALLOC_OOM ||
4436 (gfp_mask & __GFP_NOMEMALLOC)))
4437 goto nopage;
4438
4439 /* Retry as long as the OOM killer is making progress */
4440 if (did_some_progress) {
4441 no_progress_loops = 0;
4442 goto retry;
4443 }
4444
4445 nopage:
4446 /*
4447 * Deal with possible cpuset update races or zonelist updates to avoid
4448 * a unnecessary OOM kill.
4449 */
4450 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4451 check_retry_zonelist(zonelist_iter_cookie))
4452 goto restart;
4453
4454 /*
4455 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4456 * we always retry
4457 */
4458 if (unlikely(nofail)) {
4459 /*
4460 * Lacking direct_reclaim we can't do anything to reclaim memory,
4461 * we disregard these unreasonable nofail requests and still
4462 * return NULL
4463 */
4464 if (!can_direct_reclaim)
4465 goto fail;
4466
4467 /*
4468 * Help non-failing allocations by giving some access to memory
4469 * reserves normally used for high priority non-blocking
4470 * allocations but do not use ALLOC_NO_WATERMARKS because this
4471 * could deplete whole memory reserves which would just make
4472 * the situation worse.
4473 */
4474 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4475 if (page)
4476 goto got_pg;
4477
4478 cond_resched();
4479 goto retry;
4480 }
4481 fail:
4482 warn_alloc(gfp_mask, ac->nodemask,
4483 "page allocation failure: order:%u", order);
4484 got_pg:
4485 return page;
4486 }
4487
prepare_alloc_pages(gfp_t gfp_mask,unsigned int order,int preferred_nid,nodemask_t * nodemask,struct alloc_context * ac,gfp_t * alloc_gfp,unsigned int * alloc_flags)4488 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4489 int preferred_nid, nodemask_t *nodemask,
4490 struct alloc_context *ac, gfp_t *alloc_gfp,
4491 unsigned int *alloc_flags)
4492 {
4493 ac->highest_zoneidx = gfp_zone(gfp_mask);
4494 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4495 ac->nodemask = nodemask;
4496 ac->migratetype = gfp_migratetype(gfp_mask);
4497
4498 if (cpusets_enabled()) {
4499 *alloc_gfp |= __GFP_HARDWALL;
4500 /*
4501 * When we are in the interrupt context, it is irrelevant
4502 * to the current task context. It means that any node ok.
4503 */
4504 if (in_task() && !ac->nodemask)
4505 ac->nodemask = &cpuset_current_mems_allowed;
4506 else
4507 *alloc_flags |= ALLOC_CPUSET;
4508 }
4509
4510 might_alloc(gfp_mask);
4511
4512 if (should_fail_alloc_page(gfp_mask, order))
4513 return false;
4514
4515 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4516
4517 /* Dirty zone balancing only done in the fast path */
4518 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4519
4520 /*
4521 * The preferred zone is used for statistics but crucially it is
4522 * also used as the starting point for the zonelist iterator. It
4523 * may get reset for allocations that ignore memory policies.
4524 */
4525 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4526 ac->highest_zoneidx, ac->nodemask);
4527
4528 return true;
4529 }
4530
4531 /*
4532 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4533 * @gfp: GFP flags for the allocation
4534 * @preferred_nid: The preferred NUMA node ID to allocate from
4535 * @nodemask: Set of nodes to allocate from, may be NULL
4536 * @nr_pages: The number of pages desired on the list or array
4537 * @page_list: Optional list to store the allocated pages
4538 * @page_array: Optional array to store the pages
4539 *
4540 * This is a batched version of the page allocator that attempts to
4541 * allocate nr_pages quickly. Pages are added to page_list if page_list
4542 * is not NULL, otherwise it is assumed that the page_array is valid.
4543 *
4544 * For lists, nr_pages is the number of pages that should be allocated.
4545 *
4546 * For arrays, only NULL elements are populated with pages and nr_pages
4547 * is the maximum number of pages that will be stored in the array.
4548 *
4549 * Returns the number of pages on the list or array.
4550 */
alloc_pages_bulk_noprof(gfp_t gfp,int preferred_nid,nodemask_t * nodemask,int nr_pages,struct list_head * page_list,struct page ** page_array)4551 unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid,
4552 nodemask_t *nodemask, int nr_pages,
4553 struct list_head *page_list,
4554 struct page **page_array)
4555 {
4556 struct page *page;
4557 unsigned long __maybe_unused UP_flags;
4558 struct zone *zone;
4559 struct zoneref *z;
4560 struct per_cpu_pages *pcp;
4561 struct list_head *pcp_list;
4562 struct alloc_context ac;
4563 gfp_t alloc_gfp;
4564 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4565 int nr_populated = 0, nr_account = 0;
4566
4567 /*
4568 * Skip populated array elements to determine if any pages need
4569 * to be allocated before disabling IRQs.
4570 */
4571 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4572 nr_populated++;
4573
4574 /* No pages requested? */
4575 if (unlikely(nr_pages <= 0))
4576 goto out;
4577
4578 /* Already populated array? */
4579 if (unlikely(page_array && nr_pages - nr_populated == 0))
4580 goto out;
4581
4582 /* Bulk allocator does not support memcg accounting. */
4583 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4584 goto failed;
4585
4586 /* Use the single page allocator for one page. */
4587 if (nr_pages - nr_populated == 1)
4588 goto failed;
4589
4590 #ifdef CONFIG_PAGE_OWNER
4591 /*
4592 * PAGE_OWNER may recurse into the allocator to allocate space to
4593 * save the stack with pagesets.lock held. Releasing/reacquiring
4594 * removes much of the performance benefit of bulk allocation so
4595 * force the caller to allocate one page at a time as it'll have
4596 * similar performance to added complexity to the bulk allocator.
4597 */
4598 if (static_branch_unlikely(&page_owner_inited))
4599 goto failed;
4600 #endif
4601
4602 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4603 gfp &= gfp_allowed_mask;
4604 alloc_gfp = gfp;
4605 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4606 goto out;
4607 gfp = alloc_gfp;
4608
4609 /* Find an allowed local zone that meets the low watermark. */
4610 z = ac.preferred_zoneref;
4611 for_next_zone_zonelist_nodemask(zone, z, ac.highest_zoneidx, ac.nodemask) {
4612 unsigned long mark;
4613
4614 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4615 !__cpuset_zone_allowed(zone, gfp)) {
4616 continue;
4617 }
4618
4619 if (nr_online_nodes > 1 && zone != zonelist_zone(ac.preferred_zoneref) &&
4620 zone_to_nid(zone) != zonelist_node_idx(ac.preferred_zoneref)) {
4621 goto failed;
4622 }
4623
4624 cond_accept_memory(zone, 0);
4625 retry_this_zone:
4626 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4627 if (zone_watermark_fast(zone, 0, mark,
4628 zonelist_zone_idx(ac.preferred_zoneref),
4629 alloc_flags, gfp)) {
4630 break;
4631 }
4632
4633 if (cond_accept_memory(zone, 0))
4634 goto retry_this_zone;
4635
4636 /* Try again if zone has deferred pages */
4637 if (deferred_pages_enabled()) {
4638 if (_deferred_grow_zone(zone, 0))
4639 goto retry_this_zone;
4640 }
4641 }
4642
4643 /*
4644 * If there are no allowed local zones that meets the watermarks then
4645 * try to allocate a single page and reclaim if necessary.
4646 */
4647 if (unlikely(!zone))
4648 goto failed;
4649
4650 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4651 pcp_trylock_prepare(UP_flags);
4652 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4653 if (!pcp)
4654 goto failed_irq;
4655
4656 /* Attempt the batch allocation */
4657 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4658 while (nr_populated < nr_pages) {
4659
4660 /* Skip existing pages */
4661 if (page_array && page_array[nr_populated]) {
4662 nr_populated++;
4663 continue;
4664 }
4665
4666 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4667 pcp, pcp_list);
4668 if (unlikely(!page)) {
4669 /* Try and allocate at least one page */
4670 if (!nr_account) {
4671 pcp_spin_unlock(pcp);
4672 goto failed_irq;
4673 }
4674 break;
4675 }
4676 nr_account++;
4677
4678 prep_new_page(page, 0, gfp, 0);
4679 if (page_list)
4680 list_add(&page->lru, page_list);
4681 else
4682 page_array[nr_populated] = page;
4683 nr_populated++;
4684 }
4685
4686 pcp_spin_unlock(pcp);
4687 pcp_trylock_finish(UP_flags);
4688
4689 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4690 zone_statistics(zonelist_zone(ac.preferred_zoneref), zone, nr_account);
4691
4692 out:
4693 return nr_populated;
4694
4695 failed_irq:
4696 pcp_trylock_finish(UP_flags);
4697
4698 failed:
4699 page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask);
4700 if (page) {
4701 if (page_list)
4702 list_add(&page->lru, page_list);
4703 else
4704 page_array[nr_populated] = page;
4705 nr_populated++;
4706 }
4707
4708 goto out;
4709 }
4710 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof);
4711
4712 /*
4713 * This is the 'heart' of the zoned buddy allocator.
4714 */
__alloc_pages_noprof(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)4715 struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order,
4716 int preferred_nid, nodemask_t *nodemask)
4717 {
4718 struct page *page;
4719 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4720 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4721 struct alloc_context ac = { };
4722
4723 /*
4724 * There are several places where we assume that the order value is sane
4725 * so bail out early if the request is out of bound.
4726 */
4727 if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp))
4728 return NULL;
4729
4730 gfp &= gfp_allowed_mask;
4731 /*
4732 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4733 * resp. GFP_NOIO which has to be inherited for all allocation requests
4734 * from a particular context which has been marked by
4735 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4736 * movable zones are not used during allocation.
4737 */
4738 gfp = current_gfp_context(gfp);
4739 alloc_gfp = gfp;
4740 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4741 &alloc_gfp, &alloc_flags))
4742 return NULL;
4743
4744 /*
4745 * Forbid the first pass from falling back to types that fragment
4746 * memory until all local zones are considered.
4747 */
4748 alloc_flags |= alloc_flags_nofragment(zonelist_zone(ac.preferred_zoneref), gfp);
4749
4750 /* First allocation attempt */
4751 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4752 if (likely(page))
4753 goto out;
4754
4755 alloc_gfp = gfp;
4756 ac.spread_dirty_pages = false;
4757
4758 /*
4759 * Restore the original nodemask if it was potentially replaced with
4760 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4761 */
4762 ac.nodemask = nodemask;
4763
4764 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4765
4766 out:
4767 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4768 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4769 __free_pages(page, order);
4770 page = NULL;
4771 }
4772
4773 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4774 kmsan_alloc_page(page, order, alloc_gfp);
4775
4776 return page;
4777 }
4778 EXPORT_SYMBOL(__alloc_pages_noprof);
4779
__folio_alloc_noprof(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)4780 struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid,
4781 nodemask_t *nodemask)
4782 {
4783 struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order,
4784 preferred_nid, nodemask);
4785 return page_rmappable_folio(page);
4786 }
4787 EXPORT_SYMBOL(__folio_alloc_noprof);
4788
4789 /*
4790 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4791 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4792 * you need to access high mem.
4793 */
get_free_pages_noprof(gfp_t gfp_mask,unsigned int order)4794 unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order)
4795 {
4796 struct page *page;
4797
4798 page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order);
4799 if (!page)
4800 return 0;
4801 return (unsigned long) page_address(page);
4802 }
4803 EXPORT_SYMBOL(get_free_pages_noprof);
4804
get_zeroed_page_noprof(gfp_t gfp_mask)4805 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask)
4806 {
4807 return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0);
4808 }
4809 EXPORT_SYMBOL(get_zeroed_page_noprof);
4810
4811 /**
4812 * __free_pages - Free pages allocated with alloc_pages().
4813 * @page: The page pointer returned from alloc_pages().
4814 * @order: The order of the allocation.
4815 *
4816 * This function can free multi-page allocations that are not compound
4817 * pages. It does not check that the @order passed in matches that of
4818 * the allocation, so it is easy to leak memory. Freeing more memory
4819 * than was allocated will probably emit a warning.
4820 *
4821 * If the last reference to this page is speculative, it will be released
4822 * by put_page() which only frees the first page of a non-compound
4823 * allocation. To prevent the remaining pages from being leaked, we free
4824 * the subsequent pages here. If you want to use the page's reference
4825 * count to decide when to free the allocation, you should allocate a
4826 * compound page, and use put_page() instead of __free_pages().
4827 *
4828 * Context: May be called in interrupt context or while holding a normal
4829 * spinlock, but not in NMI context or while holding a raw spinlock.
4830 */
__free_pages(struct page * page,unsigned int order)4831 void __free_pages(struct page *page, unsigned int order)
4832 {
4833 /* get PageHead before we drop reference */
4834 int head = PageHead(page);
4835 struct alloc_tag *tag = pgalloc_tag_get(page);
4836
4837 if (put_page_testzero(page))
4838 free_unref_page(page, order);
4839 else if (!head) {
4840 pgalloc_tag_sub_pages(tag, (1 << order) - 1);
4841 while (order-- > 0)
4842 free_unref_page(page + (1 << order), order);
4843 }
4844 }
4845 EXPORT_SYMBOL(__free_pages);
4846
free_pages(unsigned long addr,unsigned int order)4847 void free_pages(unsigned long addr, unsigned int order)
4848 {
4849 if (addr != 0) {
4850 VM_BUG_ON(!virt_addr_valid((void *)addr));
4851 __free_pages(virt_to_page((void *)addr), order);
4852 }
4853 }
4854
4855 EXPORT_SYMBOL(free_pages);
4856
4857 /*
4858 * Page Fragment:
4859 * An arbitrary-length arbitrary-offset area of memory which resides
4860 * within a 0 or higher order page. Multiple fragments within that page
4861 * are individually refcounted, in the page's reference counter.
4862 *
4863 * The page_frag functions below provide a simple allocation framework for
4864 * page fragments. This is used by the network stack and network device
4865 * drivers to provide a backing region of memory for use as either an
4866 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4867 */
__page_frag_cache_refill(struct page_frag_cache * nc,gfp_t gfp_mask)4868 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4869 gfp_t gfp_mask)
4870 {
4871 struct page *page = NULL;
4872 gfp_t gfp = gfp_mask;
4873
4874 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4875 gfp_mask = (gfp_mask & ~__GFP_DIRECT_RECLAIM) | __GFP_COMP |
4876 __GFP_NOWARN | __GFP_NORETRY | __GFP_NOMEMALLOC;
4877 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4878 PAGE_FRAG_CACHE_MAX_ORDER);
4879 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4880 #endif
4881 if (unlikely(!page))
4882 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4883
4884 nc->va = page ? page_address(page) : NULL;
4885
4886 return page;
4887 }
4888
page_frag_cache_drain(struct page_frag_cache * nc)4889 void page_frag_cache_drain(struct page_frag_cache *nc)
4890 {
4891 if (!nc->va)
4892 return;
4893
4894 __page_frag_cache_drain(virt_to_head_page(nc->va), nc->pagecnt_bias);
4895 nc->va = NULL;
4896 }
4897 EXPORT_SYMBOL(page_frag_cache_drain);
4898
__page_frag_cache_drain(struct page * page,unsigned int count)4899 void __page_frag_cache_drain(struct page *page, unsigned int count)
4900 {
4901 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4902
4903 if (page_ref_sub_and_test(page, count))
4904 free_unref_page(page, compound_order(page));
4905 }
4906 EXPORT_SYMBOL(__page_frag_cache_drain);
4907
__page_frag_alloc_align(struct page_frag_cache * nc,unsigned int fragsz,gfp_t gfp_mask,unsigned int align_mask)4908 void *__page_frag_alloc_align(struct page_frag_cache *nc,
4909 unsigned int fragsz, gfp_t gfp_mask,
4910 unsigned int align_mask)
4911 {
4912 unsigned int size = PAGE_SIZE;
4913 struct page *page;
4914 int offset;
4915
4916 if (unlikely(!nc->va)) {
4917 refill:
4918 page = __page_frag_cache_refill(nc, gfp_mask);
4919 if (!page)
4920 return NULL;
4921
4922 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4923 /* if size can vary use size else just use PAGE_SIZE */
4924 size = nc->size;
4925 #endif
4926 /* Even if we own the page, we do not use atomic_set().
4927 * This would break get_page_unless_zero() users.
4928 */
4929 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4930
4931 /* reset page count bias and offset to start of new frag */
4932 nc->pfmemalloc = page_is_pfmemalloc(page);
4933 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4934 nc->offset = size;
4935 }
4936
4937 offset = nc->offset - fragsz;
4938 if (unlikely(offset < 0)) {
4939 page = virt_to_page(nc->va);
4940
4941 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4942 goto refill;
4943
4944 if (unlikely(nc->pfmemalloc)) {
4945 free_unref_page(page, compound_order(page));
4946 goto refill;
4947 }
4948
4949 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4950 /* if size can vary use size else just use PAGE_SIZE */
4951 size = nc->size;
4952 #endif
4953 /* OK, page count is 0, we can safely set it */
4954 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4955
4956 /* reset page count bias and offset to start of new frag */
4957 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4958 offset = size - fragsz;
4959 if (unlikely(offset < 0)) {
4960 /*
4961 * The caller is trying to allocate a fragment
4962 * with fragsz > PAGE_SIZE but the cache isn't big
4963 * enough to satisfy the request, this may
4964 * happen in low memory conditions.
4965 * We don't release the cache page because
4966 * it could make memory pressure worse
4967 * so we simply return NULL here.
4968 */
4969 return NULL;
4970 }
4971 }
4972
4973 nc->pagecnt_bias--;
4974 offset &= align_mask;
4975 nc->offset = offset;
4976
4977 return nc->va + offset;
4978 }
4979 EXPORT_SYMBOL(__page_frag_alloc_align);
4980
4981 /*
4982 * Frees a page fragment allocated out of either a compound or order 0 page.
4983 */
page_frag_free(void * addr)4984 void page_frag_free(void *addr)
4985 {
4986 struct page *page = virt_to_head_page(addr);
4987
4988 if (unlikely(put_page_testzero(page)))
4989 free_unref_page(page, compound_order(page));
4990 }
4991 EXPORT_SYMBOL(page_frag_free);
4992
make_alloc_exact(unsigned long addr,unsigned int order,size_t size)4993 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4994 size_t size)
4995 {
4996 if (addr) {
4997 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4998 struct page *page = virt_to_page((void *)addr);
4999 struct page *last = page + nr;
5000
5001 split_page_owner(page, order, 0);
5002 pgalloc_tag_split(page_folio(page), order, 0);
5003 split_page_memcg(page, order, 0);
5004 while (page < --last)
5005 set_page_refcounted(last);
5006
5007 last = page + (1UL << order);
5008 for (page += nr; page < last; page++)
5009 __free_pages_ok(page, 0, FPI_TO_TAIL);
5010 }
5011 return (void *)addr;
5012 }
5013
5014 /**
5015 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5016 * @size: the number of bytes to allocate
5017 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5018 *
5019 * This function is similar to alloc_pages(), except that it allocates the
5020 * minimum number of pages to satisfy the request. alloc_pages() can only
5021 * allocate memory in power-of-two pages.
5022 *
5023 * This function is also limited by MAX_PAGE_ORDER.
5024 *
5025 * Memory allocated by this function must be released by free_pages_exact().
5026 *
5027 * Return: pointer to the allocated area or %NULL in case of error.
5028 */
alloc_pages_exact_noprof(size_t size,gfp_t gfp_mask)5029 void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask)
5030 {
5031 unsigned int order = get_order(size);
5032 unsigned long addr;
5033
5034 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5035 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5036
5037 addr = get_free_pages_noprof(gfp_mask, order);
5038 return make_alloc_exact(addr, order, size);
5039 }
5040 EXPORT_SYMBOL(alloc_pages_exact_noprof);
5041
5042 /**
5043 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5044 * pages on a node.
5045 * @nid: the preferred node ID where memory should be allocated
5046 * @size: the number of bytes to allocate
5047 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5048 *
5049 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5050 * back.
5051 *
5052 * Return: pointer to the allocated area or %NULL in case of error.
5053 */
alloc_pages_exact_nid_noprof(int nid,size_t size,gfp_t gfp_mask)5054 void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask)
5055 {
5056 unsigned int order = get_order(size);
5057 struct page *p;
5058
5059 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5060 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5061
5062 p = alloc_pages_node_noprof(nid, gfp_mask, order);
5063 if (!p)
5064 return NULL;
5065 return make_alloc_exact((unsigned long)page_address(p), order, size);
5066 }
5067
5068 /**
5069 * free_pages_exact - release memory allocated via alloc_pages_exact()
5070 * @virt: the value returned by alloc_pages_exact.
5071 * @size: size of allocation, same value as passed to alloc_pages_exact().
5072 *
5073 * Release the memory allocated by a previous call to alloc_pages_exact.
5074 */
free_pages_exact(void * virt,size_t size)5075 void free_pages_exact(void *virt, size_t size)
5076 {
5077 unsigned long addr = (unsigned long)virt;
5078 unsigned long end = addr + PAGE_ALIGN(size);
5079
5080 while (addr < end) {
5081 free_page(addr);
5082 addr += PAGE_SIZE;
5083 }
5084 }
5085 EXPORT_SYMBOL(free_pages_exact);
5086
5087 /**
5088 * nr_free_zone_pages - count number of pages beyond high watermark
5089 * @offset: The zone index of the highest zone
5090 *
5091 * nr_free_zone_pages() counts the number of pages which are beyond the
5092 * high watermark within all zones at or below a given zone index. For each
5093 * zone, the number of pages is calculated as:
5094 *
5095 * nr_free_zone_pages = managed_pages - high_pages
5096 *
5097 * Return: number of pages beyond high watermark.
5098 */
nr_free_zone_pages(int offset)5099 static unsigned long nr_free_zone_pages(int offset)
5100 {
5101 struct zoneref *z;
5102 struct zone *zone;
5103
5104 /* Just pick one node, since fallback list is circular */
5105 unsigned long sum = 0;
5106
5107 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5108
5109 for_each_zone_zonelist(zone, z, zonelist, offset) {
5110 unsigned long size = zone_managed_pages(zone);
5111 unsigned long high = high_wmark_pages(zone);
5112 if (size > high)
5113 sum += size - high;
5114 }
5115
5116 return sum;
5117 }
5118
5119 /**
5120 * nr_free_buffer_pages - count number of pages beyond high watermark
5121 *
5122 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5123 * watermark within ZONE_DMA and ZONE_NORMAL.
5124 *
5125 * Return: number of pages beyond high watermark within ZONE_DMA and
5126 * ZONE_NORMAL.
5127 */
nr_free_buffer_pages(void)5128 unsigned long nr_free_buffer_pages(void)
5129 {
5130 return nr_free_zone_pages(gfp_zone(GFP_USER));
5131 }
5132 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5133
zoneref_set_zone(struct zone * zone,struct zoneref * zoneref)5134 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5135 {
5136 zoneref->zone = zone;
5137 zoneref->zone_idx = zone_idx(zone);
5138 }
5139
5140 /*
5141 * Builds allocation fallback zone lists.
5142 *
5143 * Add all populated zones of a node to the zonelist.
5144 */
build_zonerefs_node(pg_data_t * pgdat,struct zoneref * zonerefs)5145 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5146 {
5147 struct zone *zone;
5148 enum zone_type zone_type = MAX_NR_ZONES;
5149 int nr_zones = 0;
5150
5151 do {
5152 zone_type--;
5153 zone = pgdat->node_zones + zone_type;
5154 if (populated_zone(zone)) {
5155 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5156 check_highest_zone(zone_type);
5157 }
5158 } while (zone_type);
5159
5160 return nr_zones;
5161 }
5162
5163 #ifdef CONFIG_NUMA
5164
__parse_numa_zonelist_order(char * s)5165 static int __parse_numa_zonelist_order(char *s)
5166 {
5167 /*
5168 * We used to support different zonelists modes but they turned
5169 * out to be just not useful. Let's keep the warning in place
5170 * if somebody still use the cmd line parameter so that we do
5171 * not fail it silently
5172 */
5173 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5174 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
5175 return -EINVAL;
5176 }
5177 return 0;
5178 }
5179
5180 static char numa_zonelist_order[] = "Node";
5181 #define NUMA_ZONELIST_ORDER_LEN 16
5182 /*
5183 * sysctl handler for numa_zonelist_order
5184 */
numa_zonelist_order_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5185 static int numa_zonelist_order_handler(const struct ctl_table *table, int write,
5186 void *buffer, size_t *length, loff_t *ppos)
5187 {
5188 if (write)
5189 return __parse_numa_zonelist_order(buffer);
5190 return proc_dostring(table, write, buffer, length, ppos);
5191 }
5192
5193 static int node_load[MAX_NUMNODES];
5194
5195 /**
5196 * find_next_best_node - find the next node that should appear in a given node's fallback list
5197 * @node: node whose fallback list we're appending
5198 * @used_node_mask: nodemask_t of already used nodes
5199 *
5200 * We use a number of factors to determine which is the next node that should
5201 * appear on a given node's fallback list. The node should not have appeared
5202 * already in @node's fallback list, and it should be the next closest node
5203 * according to the distance array (which contains arbitrary distance values
5204 * from each node to each node in the system), and should also prefer nodes
5205 * with no CPUs, since presumably they'll have very little allocation pressure
5206 * on them otherwise.
5207 *
5208 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5209 */
find_next_best_node(int node,nodemask_t * used_node_mask)5210 int find_next_best_node(int node, nodemask_t *used_node_mask)
5211 {
5212 int n, val;
5213 int min_val = INT_MAX;
5214 int best_node = NUMA_NO_NODE;
5215
5216 /*
5217 * Use the local node if we haven't already, but for memoryless local
5218 * node, we should skip it and fall back to other nodes.
5219 */
5220 if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) {
5221 node_set(node, *used_node_mask);
5222 return node;
5223 }
5224
5225 for_each_node_state(n, N_MEMORY) {
5226
5227 /* Don't want a node to appear more than once */
5228 if (node_isset(n, *used_node_mask))
5229 continue;
5230
5231 /* Use the distance array to find the distance */
5232 val = node_distance(node, n);
5233
5234 /* Penalize nodes under us ("prefer the next node") */
5235 val += (n < node);
5236
5237 /* Give preference to headless and unused nodes */
5238 if (!cpumask_empty(cpumask_of_node(n)))
5239 val += PENALTY_FOR_NODE_WITH_CPUS;
5240
5241 /* Slight preference for less loaded node */
5242 val *= MAX_NUMNODES;
5243 val += node_load[n];
5244
5245 if (val < min_val) {
5246 min_val = val;
5247 best_node = n;
5248 }
5249 }
5250
5251 if (best_node >= 0)
5252 node_set(best_node, *used_node_mask);
5253
5254 return best_node;
5255 }
5256
5257
5258 /*
5259 * Build zonelists ordered by node and zones within node.
5260 * This results in maximum locality--normal zone overflows into local
5261 * DMA zone, if any--but risks exhausting DMA zone.
5262 */
build_zonelists_in_node_order(pg_data_t * pgdat,int * node_order,unsigned nr_nodes)5263 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5264 unsigned nr_nodes)
5265 {
5266 struct zoneref *zonerefs;
5267 int i;
5268
5269 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5270
5271 for (i = 0; i < nr_nodes; i++) {
5272 int nr_zones;
5273
5274 pg_data_t *node = NODE_DATA(node_order[i]);
5275
5276 nr_zones = build_zonerefs_node(node, zonerefs);
5277 zonerefs += nr_zones;
5278 }
5279 zonerefs->zone = NULL;
5280 zonerefs->zone_idx = 0;
5281 }
5282
5283 /*
5284 * Build __GFP_THISNODE zonelists
5285 */
build_thisnode_zonelists(pg_data_t * pgdat)5286 static void build_thisnode_zonelists(pg_data_t *pgdat)
5287 {
5288 struct zoneref *zonerefs;
5289 int nr_zones;
5290
5291 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5292 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5293 zonerefs += nr_zones;
5294 zonerefs->zone = NULL;
5295 zonerefs->zone_idx = 0;
5296 }
5297
5298 /*
5299 * Build zonelists ordered by zone and nodes within zones.
5300 * This results in conserving DMA zone[s] until all Normal memory is
5301 * exhausted, but results in overflowing to remote node while memory
5302 * may still exist in local DMA zone.
5303 */
5304
build_zonelists(pg_data_t * pgdat)5305 static void build_zonelists(pg_data_t *pgdat)
5306 {
5307 static int node_order[MAX_NUMNODES];
5308 int node, nr_nodes = 0;
5309 nodemask_t used_mask = NODE_MASK_NONE;
5310 int local_node, prev_node;
5311
5312 /* NUMA-aware ordering of nodes */
5313 local_node = pgdat->node_id;
5314 prev_node = local_node;
5315
5316 memset(node_order, 0, sizeof(node_order));
5317 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5318 /*
5319 * We don't want to pressure a particular node.
5320 * So adding penalty to the first node in same
5321 * distance group to make it round-robin.
5322 */
5323 if (node_distance(local_node, node) !=
5324 node_distance(local_node, prev_node))
5325 node_load[node] += 1;
5326
5327 node_order[nr_nodes++] = node;
5328 prev_node = node;
5329 }
5330
5331 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5332 build_thisnode_zonelists(pgdat);
5333 pr_info("Fallback order for Node %d: ", local_node);
5334 for (node = 0; node < nr_nodes; node++)
5335 pr_cont("%d ", node_order[node]);
5336 pr_cont("\n");
5337 }
5338
5339 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5340 /*
5341 * Return node id of node used for "local" allocations.
5342 * I.e., first node id of first zone in arg node's generic zonelist.
5343 * Used for initializing percpu 'numa_mem', which is used primarily
5344 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5345 */
local_memory_node(int node)5346 int local_memory_node(int node)
5347 {
5348 struct zoneref *z;
5349
5350 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5351 gfp_zone(GFP_KERNEL),
5352 NULL);
5353 return zonelist_node_idx(z);
5354 }
5355 #endif
5356
5357 static void setup_min_unmapped_ratio(void);
5358 static void setup_min_slab_ratio(void);
5359 #else /* CONFIG_NUMA */
5360
build_zonelists(pg_data_t * pgdat)5361 static void build_zonelists(pg_data_t *pgdat)
5362 {
5363 struct zoneref *zonerefs;
5364 int nr_zones;
5365
5366 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5367 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5368 zonerefs += nr_zones;
5369
5370 zonerefs->zone = NULL;
5371 zonerefs->zone_idx = 0;
5372 }
5373
5374 #endif /* CONFIG_NUMA */
5375
5376 /*
5377 * Boot pageset table. One per cpu which is going to be used for all
5378 * zones and all nodes. The parameters will be set in such a way
5379 * that an item put on a list will immediately be handed over to
5380 * the buddy list. This is safe since pageset manipulation is done
5381 * with interrupts disabled.
5382 *
5383 * The boot_pagesets must be kept even after bootup is complete for
5384 * unused processors and/or zones. They do play a role for bootstrapping
5385 * hotplugged processors.
5386 *
5387 * zoneinfo_show() and maybe other functions do
5388 * not check if the processor is online before following the pageset pointer.
5389 * Other parts of the kernel may not check if the zone is available.
5390 */
5391 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5392 /* These effectively disable the pcplists in the boot pageset completely */
5393 #define BOOT_PAGESET_HIGH 0
5394 #define BOOT_PAGESET_BATCH 1
5395 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5396 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5397
__build_all_zonelists(void * data)5398 static void __build_all_zonelists(void *data)
5399 {
5400 int nid;
5401 int __maybe_unused cpu;
5402 pg_data_t *self = data;
5403 unsigned long flags;
5404
5405 /*
5406 * The zonelist_update_seq must be acquired with irqsave because the
5407 * reader can be invoked from IRQ with GFP_ATOMIC.
5408 */
5409 write_seqlock_irqsave(&zonelist_update_seq, flags);
5410 /*
5411 * Also disable synchronous printk() to prevent any printk() from
5412 * trying to hold port->lock, for
5413 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5414 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5415 */
5416 printk_deferred_enter();
5417
5418 #ifdef CONFIG_NUMA
5419 memset(node_load, 0, sizeof(node_load));
5420 #endif
5421
5422 /*
5423 * This node is hotadded and no memory is yet present. So just
5424 * building zonelists is fine - no need to touch other nodes.
5425 */
5426 if (self && !node_online(self->node_id)) {
5427 build_zonelists(self);
5428 } else {
5429 /*
5430 * All possible nodes have pgdat preallocated
5431 * in free_area_init
5432 */
5433 for_each_node(nid) {
5434 pg_data_t *pgdat = NODE_DATA(nid);
5435
5436 build_zonelists(pgdat);
5437 }
5438
5439 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5440 /*
5441 * We now know the "local memory node" for each node--
5442 * i.e., the node of the first zone in the generic zonelist.
5443 * Set up numa_mem percpu variable for on-line cpus. During
5444 * boot, only the boot cpu should be on-line; we'll init the
5445 * secondary cpus' numa_mem as they come on-line. During
5446 * node/memory hotplug, we'll fixup all on-line cpus.
5447 */
5448 for_each_online_cpu(cpu)
5449 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5450 #endif
5451 }
5452
5453 printk_deferred_exit();
5454 write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5455 }
5456
5457 static noinline void __init
build_all_zonelists_init(void)5458 build_all_zonelists_init(void)
5459 {
5460 int cpu;
5461
5462 __build_all_zonelists(NULL);
5463
5464 /*
5465 * Initialize the boot_pagesets that are going to be used
5466 * for bootstrapping processors. The real pagesets for
5467 * each zone will be allocated later when the per cpu
5468 * allocator is available.
5469 *
5470 * boot_pagesets are used also for bootstrapping offline
5471 * cpus if the system is already booted because the pagesets
5472 * are needed to initialize allocators on a specific cpu too.
5473 * F.e. the percpu allocator needs the page allocator which
5474 * needs the percpu allocator in order to allocate its pagesets
5475 * (a chicken-egg dilemma).
5476 */
5477 for_each_possible_cpu(cpu)
5478 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5479
5480 mminit_verify_zonelist();
5481 cpuset_init_current_mems_allowed();
5482 }
5483
5484 /*
5485 * unless system_state == SYSTEM_BOOTING.
5486 *
5487 * __ref due to call of __init annotated helper build_all_zonelists_init
5488 * [protected by SYSTEM_BOOTING].
5489 */
build_all_zonelists(pg_data_t * pgdat)5490 void __ref build_all_zonelists(pg_data_t *pgdat)
5491 {
5492 unsigned long vm_total_pages;
5493
5494 if (system_state == SYSTEM_BOOTING) {
5495 build_all_zonelists_init();
5496 } else {
5497 __build_all_zonelists(pgdat);
5498 /* cpuset refresh routine should be here */
5499 }
5500 /* Get the number of free pages beyond high watermark in all zones. */
5501 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5502 /*
5503 * Disable grouping by mobility if the number of pages in the
5504 * system is too low to allow the mechanism to work. It would be
5505 * more accurate, but expensive to check per-zone. This check is
5506 * made on memory-hotadd so a system can start with mobility
5507 * disabled and enable it later
5508 */
5509 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5510 page_group_by_mobility_disabled = 1;
5511 else
5512 page_group_by_mobility_disabled = 0;
5513
5514 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
5515 nr_online_nodes,
5516 page_group_by_mobility_disabled ? "off" : "on",
5517 vm_total_pages);
5518 #ifdef CONFIG_NUMA
5519 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5520 #endif
5521 }
5522
zone_batchsize(struct zone * zone)5523 static int zone_batchsize(struct zone *zone)
5524 {
5525 #ifdef CONFIG_MMU
5526 int batch;
5527
5528 /*
5529 * The number of pages to batch allocate is either ~0.1%
5530 * of the zone or 1MB, whichever is smaller. The batch
5531 * size is striking a balance between allocation latency
5532 * and zone lock contention.
5533 */
5534 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5535 batch /= 4; /* We effectively *= 4 below */
5536 if (batch < 1)
5537 batch = 1;
5538
5539 /*
5540 * Clamp the batch to a 2^n - 1 value. Having a power
5541 * of 2 value was found to be more likely to have
5542 * suboptimal cache aliasing properties in some cases.
5543 *
5544 * For example if 2 tasks are alternately allocating
5545 * batches of pages, one task can end up with a lot
5546 * of pages of one half of the possible page colors
5547 * and the other with pages of the other colors.
5548 */
5549 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5550
5551 return batch;
5552
5553 #else
5554 /* The deferral and batching of frees should be suppressed under NOMMU
5555 * conditions.
5556 *
5557 * The problem is that NOMMU needs to be able to allocate large chunks
5558 * of contiguous memory as there's no hardware page translation to
5559 * assemble apparent contiguous memory from discontiguous pages.
5560 *
5561 * Queueing large contiguous runs of pages for batching, however,
5562 * causes the pages to actually be freed in smaller chunks. As there
5563 * can be a significant delay between the individual batches being
5564 * recycled, this leads to the once large chunks of space being
5565 * fragmented and becoming unavailable for high-order allocations.
5566 */
5567 return 0;
5568 #endif
5569 }
5570
5571 static int percpu_pagelist_high_fraction;
zone_highsize(struct zone * zone,int batch,int cpu_online,int high_fraction)5572 static int zone_highsize(struct zone *zone, int batch, int cpu_online,
5573 int high_fraction)
5574 {
5575 #ifdef CONFIG_MMU
5576 int high;
5577 int nr_split_cpus;
5578 unsigned long total_pages;
5579
5580 if (!high_fraction) {
5581 /*
5582 * By default, the high value of the pcp is based on the zone
5583 * low watermark so that if they are full then background
5584 * reclaim will not be started prematurely.
5585 */
5586 total_pages = low_wmark_pages(zone);
5587 } else {
5588 /*
5589 * If percpu_pagelist_high_fraction is configured, the high
5590 * value is based on a fraction of the managed pages in the
5591 * zone.
5592 */
5593 total_pages = zone_managed_pages(zone) / high_fraction;
5594 }
5595
5596 /*
5597 * Split the high value across all online CPUs local to the zone. Note
5598 * that early in boot that CPUs may not be online yet and that during
5599 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5600 * onlined. For memory nodes that have no CPUs, split the high value
5601 * across all online CPUs to mitigate the risk that reclaim is triggered
5602 * prematurely due to pages stored on pcp lists.
5603 */
5604 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5605 if (!nr_split_cpus)
5606 nr_split_cpus = num_online_cpus();
5607 high = total_pages / nr_split_cpus;
5608
5609 /*
5610 * Ensure high is at least batch*4. The multiple is based on the
5611 * historical relationship between high and batch.
5612 */
5613 high = max(high, batch << 2);
5614
5615 return high;
5616 #else
5617 return 0;
5618 #endif
5619 }
5620
5621 /*
5622 * pcp->high and pcp->batch values are related and generally batch is lower
5623 * than high. They are also related to pcp->count such that count is lower
5624 * than high, and as soon as it reaches high, the pcplist is flushed.
5625 *
5626 * However, guaranteeing these relations at all times would require e.g. write
5627 * barriers here but also careful usage of read barriers at the read side, and
5628 * thus be prone to error and bad for performance. Thus the update only prevents
5629 * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max
5630 * should ensure they can cope with those fields changing asynchronously, and
5631 * fully trust only the pcp->count field on the local CPU with interrupts
5632 * disabled.
5633 *
5634 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5635 * outside of boot time (or some other assurance that no concurrent updaters
5636 * exist).
5637 */
pageset_update(struct per_cpu_pages * pcp,unsigned long high_min,unsigned long high_max,unsigned long batch)5638 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min,
5639 unsigned long high_max, unsigned long batch)
5640 {
5641 WRITE_ONCE(pcp->batch, batch);
5642 WRITE_ONCE(pcp->high_min, high_min);
5643 WRITE_ONCE(pcp->high_max, high_max);
5644 }
5645
per_cpu_pages_init(struct per_cpu_pages * pcp,struct per_cpu_zonestat * pzstats)5646 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5647 {
5648 int pindex;
5649
5650 memset(pcp, 0, sizeof(*pcp));
5651 memset(pzstats, 0, sizeof(*pzstats));
5652
5653 spin_lock_init(&pcp->lock);
5654 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5655 INIT_LIST_HEAD(&pcp->lists[pindex]);
5656
5657 /*
5658 * Set batch and high values safe for a boot pageset. A true percpu
5659 * pageset's initialization will update them subsequently. Here we don't
5660 * need to be as careful as pageset_update() as nobody can access the
5661 * pageset yet.
5662 */
5663 pcp->high_min = BOOT_PAGESET_HIGH;
5664 pcp->high_max = BOOT_PAGESET_HIGH;
5665 pcp->batch = BOOT_PAGESET_BATCH;
5666 pcp->free_count = 0;
5667 }
5668
__zone_set_pageset_high_and_batch(struct zone * zone,unsigned long high_min,unsigned long high_max,unsigned long batch)5669 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min,
5670 unsigned long high_max, unsigned long batch)
5671 {
5672 struct per_cpu_pages *pcp;
5673 int cpu;
5674
5675 for_each_possible_cpu(cpu) {
5676 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5677 pageset_update(pcp, high_min, high_max, batch);
5678 }
5679 }
5680
5681 /*
5682 * Calculate and set new high and batch values for all per-cpu pagesets of a
5683 * zone based on the zone's size.
5684 */
zone_set_pageset_high_and_batch(struct zone * zone,int cpu_online)5685 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5686 {
5687 int new_high_min, new_high_max, new_batch;
5688
5689 new_batch = max(1, zone_batchsize(zone));
5690 if (percpu_pagelist_high_fraction) {
5691 new_high_min = zone_highsize(zone, new_batch, cpu_online,
5692 percpu_pagelist_high_fraction);
5693 /*
5694 * PCP high is tuned manually, disable auto-tuning via
5695 * setting high_min and high_max to the manual value.
5696 */
5697 new_high_max = new_high_min;
5698 } else {
5699 new_high_min = zone_highsize(zone, new_batch, cpu_online, 0);
5700 new_high_max = zone_highsize(zone, new_batch, cpu_online,
5701 MIN_PERCPU_PAGELIST_HIGH_FRACTION);
5702 }
5703
5704 if (zone->pageset_high_min == new_high_min &&
5705 zone->pageset_high_max == new_high_max &&
5706 zone->pageset_batch == new_batch)
5707 return;
5708
5709 zone->pageset_high_min = new_high_min;
5710 zone->pageset_high_max = new_high_max;
5711 zone->pageset_batch = new_batch;
5712
5713 __zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max,
5714 new_batch);
5715 }
5716
setup_zone_pageset(struct zone * zone)5717 void __meminit setup_zone_pageset(struct zone *zone)
5718 {
5719 int cpu;
5720
5721 /* Size may be 0 on !SMP && !NUMA */
5722 if (sizeof(struct per_cpu_zonestat) > 0)
5723 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5724
5725 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5726 for_each_possible_cpu(cpu) {
5727 struct per_cpu_pages *pcp;
5728 struct per_cpu_zonestat *pzstats;
5729
5730 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5731 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5732 per_cpu_pages_init(pcp, pzstats);
5733 }
5734
5735 zone_set_pageset_high_and_batch(zone, 0);
5736 }
5737
5738 /*
5739 * The zone indicated has a new number of managed_pages; batch sizes and percpu
5740 * page high values need to be recalculated.
5741 */
zone_pcp_update(struct zone * zone,int cpu_online)5742 static void zone_pcp_update(struct zone *zone, int cpu_online)
5743 {
5744 mutex_lock(&pcp_batch_high_lock);
5745 zone_set_pageset_high_and_batch(zone, cpu_online);
5746 mutex_unlock(&pcp_batch_high_lock);
5747 }
5748
zone_pcp_update_cacheinfo(struct zone * zone,unsigned int cpu)5749 static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu)
5750 {
5751 struct per_cpu_pages *pcp;
5752 struct cpu_cacheinfo *cci;
5753
5754 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5755 cci = get_cpu_cacheinfo(cpu);
5756 /*
5757 * If data cache slice of CPU is large enough, "pcp->batch"
5758 * pages can be preserved in PCP before draining PCP for
5759 * consecutive high-order pages freeing without allocation.
5760 * This can reduce zone lock contention without hurting
5761 * cache-hot pages sharing.
5762 */
5763 spin_lock(&pcp->lock);
5764 if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch)
5765 pcp->flags |= PCPF_FREE_HIGH_BATCH;
5766 else
5767 pcp->flags &= ~PCPF_FREE_HIGH_BATCH;
5768 spin_unlock(&pcp->lock);
5769 }
5770
setup_pcp_cacheinfo(unsigned int cpu)5771 void setup_pcp_cacheinfo(unsigned int cpu)
5772 {
5773 struct zone *zone;
5774
5775 for_each_populated_zone(zone)
5776 zone_pcp_update_cacheinfo(zone, cpu);
5777 }
5778
5779 /*
5780 * Allocate per cpu pagesets and initialize them.
5781 * Before this call only boot pagesets were available.
5782 */
setup_per_cpu_pageset(void)5783 void __init setup_per_cpu_pageset(void)
5784 {
5785 struct pglist_data *pgdat;
5786 struct zone *zone;
5787 int __maybe_unused cpu;
5788
5789 for_each_populated_zone(zone)
5790 setup_zone_pageset(zone);
5791
5792 #ifdef CONFIG_NUMA
5793 /*
5794 * Unpopulated zones continue using the boot pagesets.
5795 * The numa stats for these pagesets need to be reset.
5796 * Otherwise, they will end up skewing the stats of
5797 * the nodes these zones are associated with.
5798 */
5799 for_each_possible_cpu(cpu) {
5800 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5801 memset(pzstats->vm_numa_event, 0,
5802 sizeof(pzstats->vm_numa_event));
5803 }
5804 #endif
5805
5806 for_each_online_pgdat(pgdat)
5807 pgdat->per_cpu_nodestats =
5808 alloc_percpu(struct per_cpu_nodestat);
5809 }
5810
zone_pcp_init(struct zone * zone)5811 __meminit void zone_pcp_init(struct zone *zone)
5812 {
5813 /*
5814 * per cpu subsystem is not up at this point. The following code
5815 * relies on the ability of the linker to provide the
5816 * offset of a (static) per cpu variable into the per cpu area.
5817 */
5818 zone->per_cpu_pageset = &boot_pageset;
5819 zone->per_cpu_zonestats = &boot_zonestats;
5820 zone->pageset_high_min = BOOT_PAGESET_HIGH;
5821 zone->pageset_high_max = BOOT_PAGESET_HIGH;
5822 zone->pageset_batch = BOOT_PAGESET_BATCH;
5823
5824 if (populated_zone(zone))
5825 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5826 zone->present_pages, zone_batchsize(zone));
5827 }
5828
adjust_managed_page_count(struct page * page,long count)5829 void adjust_managed_page_count(struct page *page, long count)
5830 {
5831 atomic_long_add(count, &page_zone(page)->managed_pages);
5832 totalram_pages_add(count);
5833 }
5834 EXPORT_SYMBOL(adjust_managed_page_count);
5835
free_reserved_area(void * start,void * end,int poison,const char * s)5836 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5837 {
5838 void *pos;
5839 unsigned long pages = 0;
5840
5841 start = (void *)PAGE_ALIGN((unsigned long)start);
5842 end = (void *)((unsigned long)end & PAGE_MASK);
5843 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5844 struct page *page = virt_to_page(pos);
5845 void *direct_map_addr;
5846
5847 /*
5848 * 'direct_map_addr' might be different from 'pos'
5849 * because some architectures' virt_to_page()
5850 * work with aliases. Getting the direct map
5851 * address ensures that we get a _writeable_
5852 * alias for the memset().
5853 */
5854 direct_map_addr = page_address(page);
5855 /*
5856 * Perform a kasan-unchecked memset() since this memory
5857 * has not been initialized.
5858 */
5859 direct_map_addr = kasan_reset_tag(direct_map_addr);
5860 if ((unsigned int)poison <= 0xFF)
5861 memset(direct_map_addr, poison, PAGE_SIZE);
5862
5863 free_reserved_page(page);
5864 }
5865
5866 if (pages && s)
5867 pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5868
5869 return pages;
5870 }
5871
free_reserved_page(struct page * page)5872 void free_reserved_page(struct page *page)
5873 {
5874 clear_page_tag_ref(page);
5875 ClearPageReserved(page);
5876 init_page_count(page);
5877 __free_page(page);
5878 adjust_managed_page_count(page, 1);
5879 }
5880 EXPORT_SYMBOL(free_reserved_page);
5881
page_alloc_cpu_dead(unsigned int cpu)5882 static int page_alloc_cpu_dead(unsigned int cpu)
5883 {
5884 struct zone *zone;
5885
5886 lru_add_drain_cpu(cpu);
5887 mlock_drain_remote(cpu);
5888 drain_pages(cpu);
5889
5890 /*
5891 * Spill the event counters of the dead processor
5892 * into the current processors event counters.
5893 * This artificially elevates the count of the current
5894 * processor.
5895 */
5896 vm_events_fold_cpu(cpu);
5897
5898 /*
5899 * Zero the differential counters of the dead processor
5900 * so that the vm statistics are consistent.
5901 *
5902 * This is only okay since the processor is dead and cannot
5903 * race with what we are doing.
5904 */
5905 cpu_vm_stats_fold(cpu);
5906
5907 for_each_populated_zone(zone)
5908 zone_pcp_update(zone, 0);
5909
5910 return 0;
5911 }
5912
page_alloc_cpu_online(unsigned int cpu)5913 static int page_alloc_cpu_online(unsigned int cpu)
5914 {
5915 struct zone *zone;
5916
5917 for_each_populated_zone(zone)
5918 zone_pcp_update(zone, 1);
5919 return 0;
5920 }
5921
page_alloc_init_cpuhp(void)5922 void __init page_alloc_init_cpuhp(void)
5923 {
5924 int ret;
5925
5926 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5927 "mm/page_alloc:pcp",
5928 page_alloc_cpu_online,
5929 page_alloc_cpu_dead);
5930 WARN_ON(ret < 0);
5931 }
5932
5933 /*
5934 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5935 * or min_free_kbytes changes.
5936 */
calculate_totalreserve_pages(void)5937 static void calculate_totalreserve_pages(void)
5938 {
5939 struct pglist_data *pgdat;
5940 unsigned long reserve_pages = 0;
5941 enum zone_type i, j;
5942
5943 for_each_online_pgdat(pgdat) {
5944
5945 pgdat->totalreserve_pages = 0;
5946
5947 for (i = 0; i < MAX_NR_ZONES; i++) {
5948 struct zone *zone = pgdat->node_zones + i;
5949 long max = 0;
5950 unsigned long managed_pages = zone_managed_pages(zone);
5951
5952 /* Find valid and maximum lowmem_reserve in the zone */
5953 for (j = i; j < MAX_NR_ZONES; j++) {
5954 if (zone->lowmem_reserve[j] > max)
5955 max = zone->lowmem_reserve[j];
5956 }
5957
5958 /* we treat the high watermark as reserved pages. */
5959 max += high_wmark_pages(zone);
5960
5961 if (max > managed_pages)
5962 max = managed_pages;
5963
5964 pgdat->totalreserve_pages += max;
5965
5966 reserve_pages += max;
5967 }
5968 }
5969 totalreserve_pages = reserve_pages;
5970 }
5971
5972 /*
5973 * setup_per_zone_lowmem_reserve - called whenever
5974 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
5975 * has a correct pages reserved value, so an adequate number of
5976 * pages are left in the zone after a successful __alloc_pages().
5977 */
setup_per_zone_lowmem_reserve(void)5978 static void setup_per_zone_lowmem_reserve(void)
5979 {
5980 struct pglist_data *pgdat;
5981 enum zone_type i, j;
5982
5983 for_each_online_pgdat(pgdat) {
5984 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5985 struct zone *zone = &pgdat->node_zones[i];
5986 int ratio = sysctl_lowmem_reserve_ratio[i];
5987 bool clear = !ratio || !zone_managed_pages(zone);
5988 unsigned long managed_pages = 0;
5989
5990 for (j = i + 1; j < MAX_NR_ZONES; j++) {
5991 struct zone *upper_zone = &pgdat->node_zones[j];
5992 bool empty = !zone_managed_pages(upper_zone);
5993
5994 managed_pages += zone_managed_pages(upper_zone);
5995
5996 if (clear || empty)
5997 zone->lowmem_reserve[j] = 0;
5998 else
5999 zone->lowmem_reserve[j] = managed_pages / ratio;
6000 }
6001 }
6002 }
6003
6004 /* update totalreserve_pages */
6005 calculate_totalreserve_pages();
6006 }
6007
__setup_per_zone_wmarks(void)6008 static void __setup_per_zone_wmarks(void)
6009 {
6010 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6011 unsigned long lowmem_pages = 0;
6012 struct zone *zone;
6013 unsigned long flags;
6014
6015 /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
6016 for_each_zone(zone) {
6017 if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
6018 lowmem_pages += zone_managed_pages(zone);
6019 }
6020
6021 for_each_zone(zone) {
6022 u64 tmp;
6023
6024 spin_lock_irqsave(&zone->lock, flags);
6025 tmp = (u64)pages_min * zone_managed_pages(zone);
6026 tmp = div64_ul(tmp, lowmem_pages);
6027 if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
6028 /*
6029 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6030 * need highmem and movable zones pages, so cap pages_min
6031 * to a small value here.
6032 *
6033 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6034 * deltas control async page reclaim, and so should
6035 * not be capped for highmem and movable zones.
6036 */
6037 unsigned long min_pages;
6038
6039 min_pages = zone_managed_pages(zone) / 1024;
6040 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6041 zone->_watermark[WMARK_MIN] = min_pages;
6042 } else {
6043 /*
6044 * If it's a lowmem zone, reserve a number of pages
6045 * proportionate to the zone's size.
6046 */
6047 zone->_watermark[WMARK_MIN] = tmp;
6048 }
6049
6050 /*
6051 * Set the kswapd watermarks distance according to the
6052 * scale factor in proportion to available memory, but
6053 * ensure a minimum size on small systems.
6054 */
6055 tmp = max_t(u64, tmp >> 2,
6056 mult_frac(zone_managed_pages(zone),
6057 watermark_scale_factor, 10000));
6058
6059 zone->watermark_boost = 0;
6060 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6061 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
6062 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
6063
6064 spin_unlock_irqrestore(&zone->lock, flags);
6065 }
6066
6067 /* update totalreserve_pages */
6068 calculate_totalreserve_pages();
6069 }
6070
6071 /**
6072 * setup_per_zone_wmarks - called when min_free_kbytes changes
6073 * or when memory is hot-{added|removed}
6074 *
6075 * Ensures that the watermark[min,low,high] values for each zone are set
6076 * correctly with respect to min_free_kbytes.
6077 */
setup_per_zone_wmarks(void)6078 void setup_per_zone_wmarks(void)
6079 {
6080 struct zone *zone;
6081 static DEFINE_SPINLOCK(lock);
6082
6083 spin_lock(&lock);
6084 __setup_per_zone_wmarks();
6085 spin_unlock(&lock);
6086
6087 /*
6088 * The watermark size have changed so update the pcpu batch
6089 * and high limits or the limits may be inappropriate.
6090 */
6091 for_each_zone(zone)
6092 zone_pcp_update(zone, 0);
6093 }
6094
6095 /*
6096 * Initialise min_free_kbytes.
6097 *
6098 * For small machines we want it small (128k min). For large machines
6099 * we want it large (256MB max). But it is not linear, because network
6100 * bandwidth does not increase linearly with machine size. We use
6101 *
6102 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6103 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6104 *
6105 * which yields
6106 *
6107 * 16MB: 512k
6108 * 32MB: 724k
6109 * 64MB: 1024k
6110 * 128MB: 1448k
6111 * 256MB: 2048k
6112 * 512MB: 2896k
6113 * 1024MB: 4096k
6114 * 2048MB: 5792k
6115 * 4096MB: 8192k
6116 * 8192MB: 11584k
6117 * 16384MB: 16384k
6118 */
calculate_min_free_kbytes(void)6119 void calculate_min_free_kbytes(void)
6120 {
6121 unsigned long lowmem_kbytes;
6122 int new_min_free_kbytes;
6123
6124 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6125 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6126
6127 if (new_min_free_kbytes > user_min_free_kbytes)
6128 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
6129 else
6130 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6131 new_min_free_kbytes, user_min_free_kbytes);
6132
6133 }
6134
init_per_zone_wmark_min(void)6135 int __meminit init_per_zone_wmark_min(void)
6136 {
6137 calculate_min_free_kbytes();
6138 setup_per_zone_wmarks();
6139 refresh_zone_stat_thresholds();
6140 setup_per_zone_lowmem_reserve();
6141
6142 #ifdef CONFIG_NUMA
6143 setup_min_unmapped_ratio();
6144 setup_min_slab_ratio();
6145 #endif
6146
6147 khugepaged_min_free_kbytes_update();
6148
6149 return 0;
6150 }
postcore_initcall(init_per_zone_wmark_min)6151 postcore_initcall(init_per_zone_wmark_min)
6152
6153 /*
6154 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6155 * that we can call two helper functions whenever min_free_kbytes
6156 * changes.
6157 */
6158 static int min_free_kbytes_sysctl_handler(const struct ctl_table *table, int write,
6159 void *buffer, size_t *length, loff_t *ppos)
6160 {
6161 int rc;
6162
6163 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6164 if (rc)
6165 return rc;
6166
6167 if (write) {
6168 user_min_free_kbytes = min_free_kbytes;
6169 setup_per_zone_wmarks();
6170 }
6171 return 0;
6172 }
6173
watermark_scale_factor_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6174 static int watermark_scale_factor_sysctl_handler(const struct ctl_table *table, int write,
6175 void *buffer, size_t *length, loff_t *ppos)
6176 {
6177 int rc;
6178
6179 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6180 if (rc)
6181 return rc;
6182
6183 if (write)
6184 setup_per_zone_wmarks();
6185
6186 return 0;
6187 }
6188
6189 #ifdef CONFIG_NUMA
setup_min_unmapped_ratio(void)6190 static void setup_min_unmapped_ratio(void)
6191 {
6192 pg_data_t *pgdat;
6193 struct zone *zone;
6194
6195 for_each_online_pgdat(pgdat)
6196 pgdat->min_unmapped_pages = 0;
6197
6198 for_each_zone(zone)
6199 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6200 sysctl_min_unmapped_ratio) / 100;
6201 }
6202
6203
sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6204 static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table *table, int write,
6205 void *buffer, size_t *length, loff_t *ppos)
6206 {
6207 int rc;
6208
6209 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6210 if (rc)
6211 return rc;
6212
6213 setup_min_unmapped_ratio();
6214
6215 return 0;
6216 }
6217
setup_min_slab_ratio(void)6218 static void setup_min_slab_ratio(void)
6219 {
6220 pg_data_t *pgdat;
6221 struct zone *zone;
6222
6223 for_each_online_pgdat(pgdat)
6224 pgdat->min_slab_pages = 0;
6225
6226 for_each_zone(zone)
6227 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6228 sysctl_min_slab_ratio) / 100;
6229 }
6230
sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6231 static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table *table, int write,
6232 void *buffer, size_t *length, loff_t *ppos)
6233 {
6234 int rc;
6235
6236 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6237 if (rc)
6238 return rc;
6239
6240 setup_min_slab_ratio();
6241
6242 return 0;
6243 }
6244 #endif
6245
6246 /*
6247 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6248 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6249 * whenever sysctl_lowmem_reserve_ratio changes.
6250 *
6251 * The reserve ratio obviously has absolutely no relation with the
6252 * minimum watermarks. The lowmem reserve ratio can only make sense
6253 * if in function of the boot time zone sizes.
6254 */
lowmem_reserve_ratio_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6255 static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table *table,
6256 int write, void *buffer, size_t *length, loff_t *ppos)
6257 {
6258 int i;
6259
6260 proc_dointvec_minmax(table, write, buffer, length, ppos);
6261
6262 for (i = 0; i < MAX_NR_ZONES; i++) {
6263 if (sysctl_lowmem_reserve_ratio[i] < 1)
6264 sysctl_lowmem_reserve_ratio[i] = 0;
6265 }
6266
6267 setup_per_zone_lowmem_reserve();
6268 return 0;
6269 }
6270
6271 /*
6272 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6273 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6274 * pagelist can have before it gets flushed back to buddy allocator.
6275 */
percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6276 static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table *table,
6277 int write, void *buffer, size_t *length, loff_t *ppos)
6278 {
6279 struct zone *zone;
6280 int old_percpu_pagelist_high_fraction;
6281 int ret;
6282
6283 mutex_lock(&pcp_batch_high_lock);
6284 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
6285
6286 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6287 if (!write || ret < 0)
6288 goto out;
6289
6290 /* Sanity checking to avoid pcp imbalance */
6291 if (percpu_pagelist_high_fraction &&
6292 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6293 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
6294 ret = -EINVAL;
6295 goto out;
6296 }
6297
6298 /* No change? */
6299 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
6300 goto out;
6301
6302 for_each_populated_zone(zone)
6303 zone_set_pageset_high_and_batch(zone, 0);
6304 out:
6305 mutex_unlock(&pcp_batch_high_lock);
6306 return ret;
6307 }
6308
6309 static struct ctl_table page_alloc_sysctl_table[] = {
6310 {
6311 .procname = "min_free_kbytes",
6312 .data = &min_free_kbytes,
6313 .maxlen = sizeof(min_free_kbytes),
6314 .mode = 0644,
6315 .proc_handler = min_free_kbytes_sysctl_handler,
6316 .extra1 = SYSCTL_ZERO,
6317 },
6318 {
6319 .procname = "watermark_boost_factor",
6320 .data = &watermark_boost_factor,
6321 .maxlen = sizeof(watermark_boost_factor),
6322 .mode = 0644,
6323 .proc_handler = proc_dointvec_minmax,
6324 .extra1 = SYSCTL_ZERO,
6325 },
6326 {
6327 .procname = "watermark_scale_factor",
6328 .data = &watermark_scale_factor,
6329 .maxlen = sizeof(watermark_scale_factor),
6330 .mode = 0644,
6331 .proc_handler = watermark_scale_factor_sysctl_handler,
6332 .extra1 = SYSCTL_ONE,
6333 .extra2 = SYSCTL_THREE_THOUSAND,
6334 },
6335 {
6336 .procname = "percpu_pagelist_high_fraction",
6337 .data = &percpu_pagelist_high_fraction,
6338 .maxlen = sizeof(percpu_pagelist_high_fraction),
6339 .mode = 0644,
6340 .proc_handler = percpu_pagelist_high_fraction_sysctl_handler,
6341 .extra1 = SYSCTL_ZERO,
6342 },
6343 {
6344 .procname = "lowmem_reserve_ratio",
6345 .data = &sysctl_lowmem_reserve_ratio,
6346 .maxlen = sizeof(sysctl_lowmem_reserve_ratio),
6347 .mode = 0644,
6348 .proc_handler = lowmem_reserve_ratio_sysctl_handler,
6349 },
6350 #ifdef CONFIG_NUMA
6351 {
6352 .procname = "numa_zonelist_order",
6353 .data = &numa_zonelist_order,
6354 .maxlen = NUMA_ZONELIST_ORDER_LEN,
6355 .mode = 0644,
6356 .proc_handler = numa_zonelist_order_handler,
6357 },
6358 {
6359 .procname = "min_unmapped_ratio",
6360 .data = &sysctl_min_unmapped_ratio,
6361 .maxlen = sizeof(sysctl_min_unmapped_ratio),
6362 .mode = 0644,
6363 .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler,
6364 .extra1 = SYSCTL_ZERO,
6365 .extra2 = SYSCTL_ONE_HUNDRED,
6366 },
6367 {
6368 .procname = "min_slab_ratio",
6369 .data = &sysctl_min_slab_ratio,
6370 .maxlen = sizeof(sysctl_min_slab_ratio),
6371 .mode = 0644,
6372 .proc_handler = sysctl_min_slab_ratio_sysctl_handler,
6373 .extra1 = SYSCTL_ZERO,
6374 .extra2 = SYSCTL_ONE_HUNDRED,
6375 },
6376 #endif
6377 };
6378
page_alloc_sysctl_init(void)6379 void __init page_alloc_sysctl_init(void)
6380 {
6381 register_sysctl_init("vm", page_alloc_sysctl_table);
6382 }
6383
6384 #ifdef CONFIG_CONTIG_ALLOC
6385 /* Usage: See admin-guide/dynamic-debug-howto.rst */
alloc_contig_dump_pages(struct list_head * page_list)6386 static void alloc_contig_dump_pages(struct list_head *page_list)
6387 {
6388 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6389
6390 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6391 struct page *page;
6392
6393 dump_stack();
6394 list_for_each_entry(page, page_list, lru)
6395 dump_page(page, "migration failure");
6396 }
6397 }
6398
6399 /*
6400 * [start, end) must belong to a single zone.
6401 * @migratetype: using migratetype to filter the type of migration in
6402 * trace_mm_alloc_contig_migrate_range_info.
6403 */
__alloc_contig_migrate_range(struct compact_control * cc,unsigned long start,unsigned long end,int migratetype)6404 int __alloc_contig_migrate_range(struct compact_control *cc,
6405 unsigned long start, unsigned long end,
6406 int migratetype)
6407 {
6408 /* This function is based on compact_zone() from compaction.c. */
6409 unsigned int nr_reclaimed;
6410 unsigned long pfn = start;
6411 unsigned int tries = 0;
6412 int ret = 0;
6413 struct migration_target_control mtc = {
6414 .nid = zone_to_nid(cc->zone),
6415 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6416 .reason = MR_CONTIG_RANGE,
6417 };
6418 struct page *page;
6419 unsigned long total_mapped = 0;
6420 unsigned long total_migrated = 0;
6421 unsigned long total_reclaimed = 0;
6422
6423 lru_cache_disable();
6424
6425 while (pfn < end || !list_empty(&cc->migratepages)) {
6426 if (fatal_signal_pending(current)) {
6427 ret = -EINTR;
6428 break;
6429 }
6430
6431 if (list_empty(&cc->migratepages)) {
6432 cc->nr_migratepages = 0;
6433 ret = isolate_migratepages_range(cc, pfn, end);
6434 if (ret && ret != -EAGAIN)
6435 break;
6436 pfn = cc->migrate_pfn;
6437 tries = 0;
6438 } else if (++tries == 5) {
6439 ret = -EBUSY;
6440 break;
6441 }
6442
6443 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6444 &cc->migratepages);
6445 cc->nr_migratepages -= nr_reclaimed;
6446
6447 if (trace_mm_alloc_contig_migrate_range_info_enabled()) {
6448 total_reclaimed += nr_reclaimed;
6449 list_for_each_entry(page, &cc->migratepages, lru) {
6450 struct folio *folio = page_folio(page);
6451
6452 total_mapped += folio_mapped(folio) *
6453 folio_nr_pages(folio);
6454 }
6455 }
6456
6457 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6458 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6459
6460 if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret)
6461 total_migrated += cc->nr_migratepages;
6462
6463 /*
6464 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6465 * to retry again over this error, so do the same here.
6466 */
6467 if (ret == -ENOMEM)
6468 break;
6469 }
6470
6471 lru_cache_enable();
6472 if (ret < 0) {
6473 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6474 alloc_contig_dump_pages(&cc->migratepages);
6475 putback_movable_pages(&cc->migratepages);
6476 }
6477
6478 trace_mm_alloc_contig_migrate_range_info(start, end, migratetype,
6479 total_migrated,
6480 total_reclaimed,
6481 total_mapped);
6482 return (ret < 0) ? ret : 0;
6483 }
6484
split_free_pages(struct list_head * list)6485 static void split_free_pages(struct list_head *list)
6486 {
6487 int order;
6488
6489 for (order = 0; order < NR_PAGE_ORDERS; order++) {
6490 struct page *page, *next;
6491 int nr_pages = 1 << order;
6492
6493 list_for_each_entry_safe(page, next, &list[order], lru) {
6494 int i;
6495
6496 post_alloc_hook(page, order, __GFP_MOVABLE);
6497 if (!order)
6498 continue;
6499
6500 split_page(page, order);
6501
6502 /* Add all subpages to the order-0 head, in sequence. */
6503 list_del(&page->lru);
6504 for (i = 0; i < nr_pages; i++)
6505 list_add_tail(&page[i].lru, &list[0]);
6506 }
6507 }
6508 }
6509
6510 /**
6511 * alloc_contig_range() -- tries to allocate given range of pages
6512 * @start: start PFN to allocate
6513 * @end: one-past-the-last PFN to allocate
6514 * @migratetype: migratetype of the underlying pageblocks (either
6515 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6516 * in range must have the same migratetype and it must
6517 * be either of the two.
6518 * @gfp_mask: GFP mask to use during compaction
6519 *
6520 * The PFN range does not have to be pageblock aligned. The PFN range must
6521 * belong to a single zone.
6522 *
6523 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6524 * pageblocks in the range. Once isolated, the pageblocks should not
6525 * be modified by others.
6526 *
6527 * Return: zero on success or negative error code. On success all
6528 * pages which PFN is in [start, end) are allocated for the caller and
6529 * need to be freed with free_contig_range().
6530 */
alloc_contig_range_noprof(unsigned long start,unsigned long end,unsigned migratetype,gfp_t gfp_mask)6531 int alloc_contig_range_noprof(unsigned long start, unsigned long end,
6532 unsigned migratetype, gfp_t gfp_mask)
6533 {
6534 unsigned long outer_start, outer_end;
6535 int ret = 0;
6536
6537 struct compact_control cc = {
6538 .nr_migratepages = 0,
6539 .order = -1,
6540 .zone = page_zone(pfn_to_page(start)),
6541 .mode = MIGRATE_SYNC,
6542 .ignore_skip_hint = true,
6543 .no_set_skip_hint = true,
6544 .gfp_mask = current_gfp_context(gfp_mask),
6545 .alloc_contig = true,
6546 };
6547 INIT_LIST_HEAD(&cc.migratepages);
6548
6549 /*
6550 * What we do here is we mark all pageblocks in range as
6551 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6552 * have different sizes, and due to the way page allocator
6553 * work, start_isolate_page_range() has special handlings for this.
6554 *
6555 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6556 * migrate the pages from an unaligned range (ie. pages that
6557 * we are interested in). This will put all the pages in
6558 * range back to page allocator as MIGRATE_ISOLATE.
6559 *
6560 * When this is done, we take the pages in range from page
6561 * allocator removing them from the buddy system. This way
6562 * page allocator will never consider using them.
6563 *
6564 * This lets us mark the pageblocks back as
6565 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6566 * aligned range but not in the unaligned, original range are
6567 * put back to page allocator so that buddy can use them.
6568 */
6569
6570 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6571 if (ret)
6572 goto done;
6573
6574 drain_all_pages(cc.zone);
6575
6576 /*
6577 * In case of -EBUSY, we'd like to know which page causes problem.
6578 * So, just fall through. test_pages_isolated() has a tracepoint
6579 * which will report the busy page.
6580 *
6581 * It is possible that busy pages could become available before
6582 * the call to test_pages_isolated, and the range will actually be
6583 * allocated. So, if we fall through be sure to clear ret so that
6584 * -EBUSY is not accidentally used or returned to caller.
6585 */
6586 ret = __alloc_contig_migrate_range(&cc, start, end, migratetype);
6587 if (ret && ret != -EBUSY)
6588 goto done;
6589 ret = 0;
6590
6591 /*
6592 * Pages from [start, end) are within a pageblock_nr_pages
6593 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6594 * more, all pages in [start, end) are free in page allocator.
6595 * What we are going to do is to allocate all pages from
6596 * [start, end) (that is remove them from page allocator).
6597 *
6598 * The only problem is that pages at the beginning and at the
6599 * end of interesting range may be not aligned with pages that
6600 * page allocator holds, ie. they can be part of higher order
6601 * pages. Because of this, we reserve the bigger range and
6602 * once this is done free the pages we are not interested in.
6603 *
6604 * We don't have to hold zone->lock here because the pages are
6605 * isolated thus they won't get removed from buddy.
6606 */
6607 outer_start = find_large_buddy(start);
6608
6609 /* Make sure the range is really isolated. */
6610 if (test_pages_isolated(outer_start, end, 0)) {
6611 ret = -EBUSY;
6612 goto done;
6613 }
6614
6615 /* Grab isolated pages from freelists. */
6616 outer_end = isolate_freepages_range(&cc, outer_start, end);
6617 if (!outer_end) {
6618 ret = -EBUSY;
6619 goto done;
6620 }
6621
6622 if (!(gfp_mask & __GFP_COMP)) {
6623 split_free_pages(cc.freepages);
6624
6625 /* Free head and tail (if any) */
6626 if (start != outer_start)
6627 free_contig_range(outer_start, start - outer_start);
6628 if (end != outer_end)
6629 free_contig_range(end, outer_end - end);
6630 } else if (start == outer_start && end == outer_end && is_power_of_2(end - start)) {
6631 struct page *head = pfn_to_page(start);
6632 int order = ilog2(end - start);
6633
6634 check_new_pages(head, order);
6635 prep_new_page(head, order, gfp_mask, 0);
6636 } else {
6637 ret = -EINVAL;
6638 WARN(true, "PFN range: requested [%lu, %lu), allocated [%lu, %lu)\n",
6639 start, end, outer_start, outer_end);
6640 }
6641 done:
6642 undo_isolate_page_range(start, end, migratetype);
6643 return ret;
6644 }
6645 EXPORT_SYMBOL(alloc_contig_range_noprof);
6646
__alloc_contig_pages(unsigned long start_pfn,unsigned long nr_pages,gfp_t gfp_mask)6647 static int __alloc_contig_pages(unsigned long start_pfn,
6648 unsigned long nr_pages, gfp_t gfp_mask)
6649 {
6650 unsigned long end_pfn = start_pfn + nr_pages;
6651
6652 return alloc_contig_range_noprof(start_pfn, end_pfn, MIGRATE_MOVABLE,
6653 gfp_mask);
6654 }
6655
pfn_range_valid_contig(struct zone * z,unsigned long start_pfn,unsigned long nr_pages)6656 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6657 unsigned long nr_pages)
6658 {
6659 unsigned long i, end_pfn = start_pfn + nr_pages;
6660 struct page *page;
6661
6662 for (i = start_pfn; i < end_pfn; i++) {
6663 page = pfn_to_online_page(i);
6664 if (!page)
6665 return false;
6666
6667 if (page_zone(page) != z)
6668 return false;
6669
6670 if (PageReserved(page))
6671 return false;
6672
6673 if (PageHuge(page))
6674 return false;
6675 }
6676 return true;
6677 }
6678
zone_spans_last_pfn(const struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)6679 static bool zone_spans_last_pfn(const struct zone *zone,
6680 unsigned long start_pfn, unsigned long nr_pages)
6681 {
6682 unsigned long last_pfn = start_pfn + nr_pages - 1;
6683
6684 return zone_spans_pfn(zone, last_pfn);
6685 }
6686
6687 /**
6688 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6689 * @nr_pages: Number of contiguous pages to allocate
6690 * @gfp_mask: GFP mask to limit search and used during compaction
6691 * @nid: Target node
6692 * @nodemask: Mask for other possible nodes
6693 *
6694 * This routine is a wrapper around alloc_contig_range(). It scans over zones
6695 * on an applicable zonelist to find a contiguous pfn range which can then be
6696 * tried for allocation with alloc_contig_range(). This routine is intended
6697 * for allocation requests which can not be fulfilled with the buddy allocator.
6698 *
6699 * The allocated memory is always aligned to a page boundary. If nr_pages is a
6700 * power of two, then allocated range is also guaranteed to be aligned to same
6701 * nr_pages (e.g. 1GB request would be aligned to 1GB).
6702 *
6703 * Allocated pages can be freed with free_contig_range() or by manually calling
6704 * __free_page() on each allocated page.
6705 *
6706 * Return: pointer to contiguous pages on success, or NULL if not successful.
6707 */
alloc_contig_pages_noprof(unsigned long nr_pages,gfp_t gfp_mask,int nid,nodemask_t * nodemask)6708 struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask,
6709 int nid, nodemask_t *nodemask)
6710 {
6711 unsigned long ret, pfn, flags;
6712 struct zonelist *zonelist;
6713 struct zone *zone;
6714 struct zoneref *z;
6715
6716 zonelist = node_zonelist(nid, gfp_mask);
6717 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6718 gfp_zone(gfp_mask), nodemask) {
6719 spin_lock_irqsave(&zone->lock, flags);
6720
6721 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6722 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6723 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6724 /*
6725 * We release the zone lock here because
6726 * alloc_contig_range() will also lock the zone
6727 * at some point. If there's an allocation
6728 * spinning on this lock, it may win the race
6729 * and cause alloc_contig_range() to fail...
6730 */
6731 spin_unlock_irqrestore(&zone->lock, flags);
6732 ret = __alloc_contig_pages(pfn, nr_pages,
6733 gfp_mask);
6734 if (!ret)
6735 return pfn_to_page(pfn);
6736 spin_lock_irqsave(&zone->lock, flags);
6737 }
6738 pfn += nr_pages;
6739 }
6740 spin_unlock_irqrestore(&zone->lock, flags);
6741 }
6742 return NULL;
6743 }
6744 #endif /* CONFIG_CONTIG_ALLOC */
6745
free_contig_range(unsigned long pfn,unsigned long nr_pages)6746 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6747 {
6748 unsigned long count = 0;
6749 struct folio *folio = pfn_folio(pfn);
6750
6751 if (folio_test_large(folio)) {
6752 int expected = folio_nr_pages(folio);
6753
6754 if (nr_pages == expected)
6755 folio_put(folio);
6756 else
6757 WARN(true, "PFN %lu: nr_pages %lu != expected %d\n",
6758 pfn, nr_pages, expected);
6759 return;
6760 }
6761
6762 for (; nr_pages--; pfn++) {
6763 struct page *page = pfn_to_page(pfn);
6764
6765 count += page_count(page) != 1;
6766 __free_page(page);
6767 }
6768 WARN(count != 0, "%lu pages are still in use!\n", count);
6769 }
6770 EXPORT_SYMBOL(free_contig_range);
6771
6772 /*
6773 * Effectively disable pcplists for the zone by setting the high limit to 0
6774 * and draining all cpus. A concurrent page freeing on another CPU that's about
6775 * to put the page on pcplist will either finish before the drain and the page
6776 * will be drained, or observe the new high limit and skip the pcplist.
6777 *
6778 * Must be paired with a call to zone_pcp_enable().
6779 */
zone_pcp_disable(struct zone * zone)6780 void zone_pcp_disable(struct zone *zone)
6781 {
6782 mutex_lock(&pcp_batch_high_lock);
6783 __zone_set_pageset_high_and_batch(zone, 0, 0, 1);
6784 __drain_all_pages(zone, true);
6785 }
6786
zone_pcp_enable(struct zone * zone)6787 void zone_pcp_enable(struct zone *zone)
6788 {
6789 __zone_set_pageset_high_and_batch(zone, zone->pageset_high_min,
6790 zone->pageset_high_max, zone->pageset_batch);
6791 mutex_unlock(&pcp_batch_high_lock);
6792 }
6793
zone_pcp_reset(struct zone * zone)6794 void zone_pcp_reset(struct zone *zone)
6795 {
6796 int cpu;
6797 struct per_cpu_zonestat *pzstats;
6798
6799 if (zone->per_cpu_pageset != &boot_pageset) {
6800 for_each_online_cpu(cpu) {
6801 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6802 drain_zonestat(zone, pzstats);
6803 }
6804 free_percpu(zone->per_cpu_pageset);
6805 zone->per_cpu_pageset = &boot_pageset;
6806 if (zone->per_cpu_zonestats != &boot_zonestats) {
6807 free_percpu(zone->per_cpu_zonestats);
6808 zone->per_cpu_zonestats = &boot_zonestats;
6809 }
6810 }
6811 }
6812
6813 #ifdef CONFIG_MEMORY_HOTREMOVE
6814 /*
6815 * All pages in the range must be in a single zone, must not contain holes,
6816 * must span full sections, and must be isolated before calling this function.
6817 *
6818 * Returns the number of managed (non-PageOffline()) pages in the range: the
6819 * number of pages for which memory offlining code must adjust managed page
6820 * counters using adjust_managed_page_count().
6821 */
__offline_isolated_pages(unsigned long start_pfn,unsigned long end_pfn)6822 unsigned long __offline_isolated_pages(unsigned long start_pfn,
6823 unsigned long end_pfn)
6824 {
6825 unsigned long already_offline = 0, flags;
6826 unsigned long pfn = start_pfn;
6827 struct page *page;
6828 struct zone *zone;
6829 unsigned int order;
6830
6831 offline_mem_sections(pfn, end_pfn);
6832 zone = page_zone(pfn_to_page(pfn));
6833 spin_lock_irqsave(&zone->lock, flags);
6834 while (pfn < end_pfn) {
6835 page = pfn_to_page(pfn);
6836 /*
6837 * The HWPoisoned page may be not in buddy system, and
6838 * page_count() is not 0.
6839 */
6840 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6841 pfn++;
6842 continue;
6843 }
6844 /*
6845 * At this point all remaining PageOffline() pages have a
6846 * reference count of 0 and can simply be skipped.
6847 */
6848 if (PageOffline(page)) {
6849 BUG_ON(page_count(page));
6850 BUG_ON(PageBuddy(page));
6851 already_offline++;
6852 pfn++;
6853 continue;
6854 }
6855
6856 BUG_ON(page_count(page));
6857 BUG_ON(!PageBuddy(page));
6858 VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE);
6859 order = buddy_order(page);
6860 del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE);
6861 pfn += (1 << order);
6862 }
6863 spin_unlock_irqrestore(&zone->lock, flags);
6864
6865 return end_pfn - start_pfn - already_offline;
6866 }
6867 #endif
6868
6869 /*
6870 * This function returns a stable result only if called under zone lock.
6871 */
is_free_buddy_page(const struct page * page)6872 bool is_free_buddy_page(const struct page *page)
6873 {
6874 unsigned long pfn = page_to_pfn(page);
6875 unsigned int order;
6876
6877 for (order = 0; order < NR_PAGE_ORDERS; order++) {
6878 const struct page *head = page - (pfn & ((1 << order) - 1));
6879
6880 if (PageBuddy(head) &&
6881 buddy_order_unsafe(head) >= order)
6882 break;
6883 }
6884
6885 return order <= MAX_PAGE_ORDER;
6886 }
6887 EXPORT_SYMBOL(is_free_buddy_page);
6888
6889 #ifdef CONFIG_MEMORY_FAILURE
add_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype,bool tail)6890 static inline void add_to_free_list(struct page *page, struct zone *zone,
6891 unsigned int order, int migratetype,
6892 bool tail)
6893 {
6894 __add_to_free_list(page, zone, order, migratetype, tail);
6895 account_freepages(zone, 1 << order, migratetype);
6896 }
6897
6898 /*
6899 * Break down a higher-order page in sub-pages, and keep our target out of
6900 * buddy allocator.
6901 */
break_down_buddy_pages(struct zone * zone,struct page * page,struct page * target,int low,int high,int migratetype)6902 static void break_down_buddy_pages(struct zone *zone, struct page *page,
6903 struct page *target, int low, int high,
6904 int migratetype)
6905 {
6906 unsigned long size = 1 << high;
6907 struct page *current_buddy;
6908
6909 while (high > low) {
6910 high--;
6911 size >>= 1;
6912
6913 if (target >= &page[size]) {
6914 current_buddy = page;
6915 page = page + size;
6916 } else {
6917 current_buddy = page + size;
6918 }
6919
6920 if (set_page_guard(zone, current_buddy, high))
6921 continue;
6922
6923 add_to_free_list(current_buddy, zone, high, migratetype, false);
6924 set_buddy_order(current_buddy, high);
6925 }
6926 }
6927
6928 /*
6929 * Take a page that will be marked as poisoned off the buddy allocator.
6930 */
take_page_off_buddy(struct page * page)6931 bool take_page_off_buddy(struct page *page)
6932 {
6933 struct zone *zone = page_zone(page);
6934 unsigned long pfn = page_to_pfn(page);
6935 unsigned long flags;
6936 unsigned int order;
6937 bool ret = false;
6938
6939 spin_lock_irqsave(&zone->lock, flags);
6940 for (order = 0; order < NR_PAGE_ORDERS; order++) {
6941 struct page *page_head = page - (pfn & ((1 << order) - 1));
6942 int page_order = buddy_order(page_head);
6943
6944 if (PageBuddy(page_head) && page_order >= order) {
6945 unsigned long pfn_head = page_to_pfn(page_head);
6946 int migratetype = get_pfnblock_migratetype(page_head,
6947 pfn_head);
6948
6949 del_page_from_free_list(page_head, zone, page_order,
6950 migratetype);
6951 break_down_buddy_pages(zone, page_head, page, 0,
6952 page_order, migratetype);
6953 SetPageHWPoisonTakenOff(page);
6954 ret = true;
6955 break;
6956 }
6957 if (page_count(page_head) > 0)
6958 break;
6959 }
6960 spin_unlock_irqrestore(&zone->lock, flags);
6961 return ret;
6962 }
6963
6964 /*
6965 * Cancel takeoff done by take_page_off_buddy().
6966 */
put_page_back_buddy(struct page * page)6967 bool put_page_back_buddy(struct page *page)
6968 {
6969 struct zone *zone = page_zone(page);
6970 unsigned long flags;
6971 bool ret = false;
6972
6973 spin_lock_irqsave(&zone->lock, flags);
6974 if (put_page_testzero(page)) {
6975 unsigned long pfn = page_to_pfn(page);
6976 int migratetype = get_pfnblock_migratetype(page, pfn);
6977
6978 ClearPageHWPoisonTakenOff(page);
6979 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6980 if (TestClearPageHWPoison(page)) {
6981 ret = true;
6982 }
6983 }
6984 spin_unlock_irqrestore(&zone->lock, flags);
6985
6986 return ret;
6987 }
6988 #endif
6989
6990 #ifdef CONFIG_ZONE_DMA
has_managed_dma(void)6991 bool has_managed_dma(void)
6992 {
6993 struct pglist_data *pgdat;
6994
6995 for_each_online_pgdat(pgdat) {
6996 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6997
6998 if (managed_zone(zone))
6999 return true;
7000 }
7001 return false;
7002 }
7003 #endif /* CONFIG_ZONE_DMA */
7004
7005 #ifdef CONFIG_UNACCEPTED_MEMORY
7006
7007 /* Counts number of zones with unaccepted pages. */
7008 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
7009
7010 static bool lazy_accept = true;
7011
accept_memory_parse(char * p)7012 static int __init accept_memory_parse(char *p)
7013 {
7014 if (!strcmp(p, "lazy")) {
7015 lazy_accept = true;
7016 return 0;
7017 } else if (!strcmp(p, "eager")) {
7018 lazy_accept = false;
7019 return 0;
7020 } else {
7021 return -EINVAL;
7022 }
7023 }
7024 early_param("accept_memory", accept_memory_parse);
7025
page_contains_unaccepted(struct page * page,unsigned int order)7026 static bool page_contains_unaccepted(struct page *page, unsigned int order)
7027 {
7028 phys_addr_t start = page_to_phys(page);
7029
7030 return range_contains_unaccepted_memory(start, PAGE_SIZE << order);
7031 }
7032
__accept_page(struct zone * zone,unsigned long * flags,struct page * page)7033 static void __accept_page(struct zone *zone, unsigned long *flags,
7034 struct page *page)
7035 {
7036 bool last;
7037
7038 list_del(&page->lru);
7039 last = list_empty(&zone->unaccepted_pages);
7040
7041 account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
7042 __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
7043 __ClearPageUnaccepted(page);
7044 spin_unlock_irqrestore(&zone->lock, *flags);
7045
7046 accept_memory(page_to_phys(page), PAGE_SIZE << MAX_PAGE_ORDER);
7047
7048 __free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL);
7049
7050 if (last)
7051 static_branch_dec(&zones_with_unaccepted_pages);
7052 }
7053
accept_page(struct page * page)7054 void accept_page(struct page *page)
7055 {
7056 struct zone *zone = page_zone(page);
7057 unsigned long flags;
7058
7059 spin_lock_irqsave(&zone->lock, flags);
7060 if (!PageUnaccepted(page)) {
7061 spin_unlock_irqrestore(&zone->lock, flags);
7062 return;
7063 }
7064
7065 /* Unlocks zone->lock */
7066 __accept_page(zone, &flags, page);
7067 }
7068
try_to_accept_memory_one(struct zone * zone)7069 static bool try_to_accept_memory_one(struct zone *zone)
7070 {
7071 unsigned long flags;
7072 struct page *page;
7073
7074 spin_lock_irqsave(&zone->lock, flags);
7075 page = list_first_entry_or_null(&zone->unaccepted_pages,
7076 struct page, lru);
7077 if (!page) {
7078 spin_unlock_irqrestore(&zone->lock, flags);
7079 return false;
7080 }
7081
7082 /* Unlocks zone->lock */
7083 __accept_page(zone, &flags, page);
7084
7085 return true;
7086 }
7087
has_unaccepted_memory(void)7088 static inline bool has_unaccepted_memory(void)
7089 {
7090 return static_branch_unlikely(&zones_with_unaccepted_pages);
7091 }
7092
cond_accept_memory(struct zone * zone,unsigned int order)7093 static bool cond_accept_memory(struct zone *zone, unsigned int order)
7094 {
7095 long to_accept;
7096 bool ret = false;
7097
7098 if (!has_unaccepted_memory())
7099 return false;
7100
7101 if (list_empty(&zone->unaccepted_pages))
7102 return false;
7103
7104 /* How much to accept to get to promo watermark? */
7105 to_accept = promo_wmark_pages(zone) -
7106 (zone_page_state(zone, NR_FREE_PAGES) -
7107 __zone_watermark_unusable_free(zone, order, 0) -
7108 zone_page_state(zone, NR_UNACCEPTED));
7109
7110 while (to_accept > 0) {
7111 if (!try_to_accept_memory_one(zone))
7112 break;
7113 ret = true;
7114 to_accept -= MAX_ORDER_NR_PAGES;
7115 }
7116
7117 return ret;
7118 }
7119
__free_unaccepted(struct page * page)7120 static bool __free_unaccepted(struct page *page)
7121 {
7122 struct zone *zone = page_zone(page);
7123 unsigned long flags;
7124 bool first = false;
7125
7126 if (!lazy_accept)
7127 return false;
7128
7129 spin_lock_irqsave(&zone->lock, flags);
7130 first = list_empty(&zone->unaccepted_pages);
7131 list_add_tail(&page->lru, &zone->unaccepted_pages);
7132 account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
7133 __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
7134 __SetPageUnaccepted(page);
7135 spin_unlock_irqrestore(&zone->lock, flags);
7136
7137 if (first)
7138 static_branch_inc(&zones_with_unaccepted_pages);
7139
7140 return true;
7141 }
7142
7143 #else
7144
page_contains_unaccepted(struct page * page,unsigned int order)7145 static bool page_contains_unaccepted(struct page *page, unsigned int order)
7146 {
7147 return false;
7148 }
7149
cond_accept_memory(struct zone * zone,unsigned int order)7150 static bool cond_accept_memory(struct zone *zone, unsigned int order)
7151 {
7152 return false;
7153 }
7154
__free_unaccepted(struct page * page)7155 static bool __free_unaccepted(struct page *page)
7156 {
7157 BUILD_BUG();
7158 return false;
7159 }
7160
7161 #endif /* CONFIG_UNACCEPTED_MEMORY */
7162