1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * VFIO PCI config space virtualization
4 *
5 * Copyright (C) 2012 Red Hat, Inc. All rights reserved.
6 * Author: Alex Williamson <alex.williamson@redhat.com>
7 *
8 * Derived from original vfio:
9 * Copyright 2010 Cisco Systems, Inc. All rights reserved.
10 * Author: Tom Lyon, pugs@cisco.com
11 */
12
13 /*
14 * This code handles reading and writing of PCI configuration registers.
15 * This is hairy because we want to allow a lot of flexibility to the
16 * user driver, but cannot trust it with all of the config fields.
17 * Tables determine which fields can be read and written, as well as
18 * which fields are 'virtualized' - special actions and translations to
19 * make it appear to the user that he has control, when in fact things
20 * must be negotiated with the underlying OS.
21 */
22
23 #include <linux/fs.h>
24 #include <linux/pci.h>
25 #include <linux/uaccess.h>
26 #include <linux/vfio.h>
27 #include <linux/slab.h>
28
29 #include "vfio_pci_priv.h"
30
31 /* Fake capability ID for standard config space */
32 #define PCI_CAP_ID_BASIC 0
33
34 #define is_bar(offset) \
35 ((offset >= PCI_BASE_ADDRESS_0 && offset < PCI_BASE_ADDRESS_5 + 4) || \
36 (offset >= PCI_ROM_ADDRESS && offset < PCI_ROM_ADDRESS + 4))
37
38 /*
39 * Lengths of PCI Config Capabilities
40 * 0: Removed from the user visible capability list
41 * FF: Variable length
42 */
43 static const u8 pci_cap_length[PCI_CAP_ID_MAX + 1] = {
44 [PCI_CAP_ID_BASIC] = PCI_STD_HEADER_SIZEOF, /* pci config header */
45 [PCI_CAP_ID_PM] = PCI_PM_SIZEOF,
46 [PCI_CAP_ID_AGP] = PCI_AGP_SIZEOF,
47 [PCI_CAP_ID_VPD] = PCI_CAP_VPD_SIZEOF,
48 [PCI_CAP_ID_SLOTID] = 0, /* bridge - don't care */
49 [PCI_CAP_ID_MSI] = 0xFF, /* 10, 14, 20, or 24 */
50 [PCI_CAP_ID_CHSWP] = 0, /* cpci - not yet */
51 [PCI_CAP_ID_PCIX] = 0xFF, /* 8 or 24 */
52 [PCI_CAP_ID_HT] = 0xFF, /* hypertransport */
53 [PCI_CAP_ID_VNDR] = 0xFF, /* variable */
54 [PCI_CAP_ID_DBG] = 0, /* debug - don't care */
55 [PCI_CAP_ID_CCRC] = 0, /* cpci - not yet */
56 [PCI_CAP_ID_SHPC] = 0, /* hotswap - not yet */
57 [PCI_CAP_ID_SSVID] = 0, /* bridge - don't care */
58 [PCI_CAP_ID_AGP3] = 0, /* AGP8x - not yet */
59 [PCI_CAP_ID_SECDEV] = 0, /* secure device not yet */
60 [PCI_CAP_ID_EXP] = 0xFF, /* 20 or 44 */
61 [PCI_CAP_ID_MSIX] = PCI_CAP_MSIX_SIZEOF,
62 [PCI_CAP_ID_SATA] = 0xFF,
63 [PCI_CAP_ID_AF] = PCI_CAP_AF_SIZEOF,
64 };
65
66 /*
67 * Lengths of PCIe/PCI-X Extended Config Capabilities
68 * 0: Removed or masked from the user visible capability list
69 * FF: Variable length
70 */
71 static const u16 pci_ext_cap_length[PCI_EXT_CAP_ID_MAX + 1] = {
72 [PCI_EXT_CAP_ID_ERR] = PCI_ERR_ROOT_COMMAND,
73 [PCI_EXT_CAP_ID_VC] = 0xFF,
74 [PCI_EXT_CAP_ID_DSN] = PCI_EXT_CAP_DSN_SIZEOF,
75 [PCI_EXT_CAP_ID_PWR] = PCI_EXT_CAP_PWR_SIZEOF,
76 [PCI_EXT_CAP_ID_RCLD] = 0, /* root only - don't care */
77 [PCI_EXT_CAP_ID_RCILC] = 0, /* root only - don't care */
78 [PCI_EXT_CAP_ID_RCEC] = 0, /* root only - don't care */
79 [PCI_EXT_CAP_ID_MFVC] = 0xFF,
80 [PCI_EXT_CAP_ID_VC9] = 0xFF, /* same as CAP_ID_VC */
81 [PCI_EXT_CAP_ID_RCRB] = 0, /* root only - don't care */
82 [PCI_EXT_CAP_ID_VNDR] = 0xFF,
83 [PCI_EXT_CAP_ID_CAC] = 0, /* obsolete */
84 [PCI_EXT_CAP_ID_ACS] = 0xFF,
85 [PCI_EXT_CAP_ID_ARI] = PCI_EXT_CAP_ARI_SIZEOF,
86 [PCI_EXT_CAP_ID_ATS] = PCI_EXT_CAP_ATS_SIZEOF,
87 [PCI_EXT_CAP_ID_SRIOV] = PCI_EXT_CAP_SRIOV_SIZEOF,
88 [PCI_EXT_CAP_ID_MRIOV] = 0, /* not yet */
89 [PCI_EXT_CAP_ID_MCAST] = PCI_EXT_CAP_MCAST_ENDPOINT_SIZEOF,
90 [PCI_EXT_CAP_ID_PRI] = PCI_EXT_CAP_PRI_SIZEOF,
91 [PCI_EXT_CAP_ID_AMD_XXX] = 0, /* not yet */
92 [PCI_EXT_CAP_ID_REBAR] = 0xFF,
93 [PCI_EXT_CAP_ID_DPA] = 0xFF,
94 [PCI_EXT_CAP_ID_TPH] = 0xFF,
95 [PCI_EXT_CAP_ID_LTR] = PCI_EXT_CAP_LTR_SIZEOF,
96 [PCI_EXT_CAP_ID_SECPCI] = 0, /* not yet */
97 [PCI_EXT_CAP_ID_PMUX] = 0, /* not yet */
98 [PCI_EXT_CAP_ID_PASID] = 0, /* not yet */
99 [PCI_EXT_CAP_ID_DVSEC] = 0xFF,
100 };
101
102 /*
103 * Read/Write Permission Bits - one bit for each bit in capability
104 * Any field can be read if it exists, but what is read depends on
105 * whether the field is 'virtualized', or just pass through to the
106 * hardware. Any virtualized field is also virtualized for writes.
107 * Writes are only permitted if they have a 1 bit here.
108 */
109 struct perm_bits {
110 u8 *virt; /* read/write virtual data, not hw */
111 u8 *write; /* writeable bits */
112 int (*readfn)(struct vfio_pci_core_device *vdev, int pos, int count,
113 struct perm_bits *perm, int offset, __le32 *val);
114 int (*writefn)(struct vfio_pci_core_device *vdev, int pos, int count,
115 struct perm_bits *perm, int offset, __le32 val);
116 };
117
118 #define NO_VIRT 0
119 #define ALL_VIRT 0xFFFFFFFFU
120 #define NO_WRITE 0
121 #define ALL_WRITE 0xFFFFFFFFU
122
vfio_user_config_read(struct pci_dev * pdev,int offset,__le32 * val,int count)123 static int vfio_user_config_read(struct pci_dev *pdev, int offset,
124 __le32 *val, int count)
125 {
126 int ret = -EINVAL;
127 u32 tmp_val = 0;
128
129 switch (count) {
130 case 1:
131 {
132 u8 tmp;
133 ret = pci_user_read_config_byte(pdev, offset, &tmp);
134 tmp_val = tmp;
135 break;
136 }
137 case 2:
138 {
139 u16 tmp;
140 ret = pci_user_read_config_word(pdev, offset, &tmp);
141 tmp_val = tmp;
142 break;
143 }
144 case 4:
145 ret = pci_user_read_config_dword(pdev, offset, &tmp_val);
146 break;
147 }
148
149 *val = cpu_to_le32(tmp_val);
150
151 return ret;
152 }
153
vfio_user_config_write(struct pci_dev * pdev,int offset,__le32 val,int count)154 static int vfio_user_config_write(struct pci_dev *pdev, int offset,
155 __le32 val, int count)
156 {
157 int ret = -EINVAL;
158 u32 tmp_val = le32_to_cpu(val);
159
160 switch (count) {
161 case 1:
162 ret = pci_user_write_config_byte(pdev, offset, tmp_val);
163 break;
164 case 2:
165 ret = pci_user_write_config_word(pdev, offset, tmp_val);
166 break;
167 case 4:
168 ret = pci_user_write_config_dword(pdev, offset, tmp_val);
169 break;
170 }
171
172 return ret;
173 }
174
vfio_default_config_read(struct vfio_pci_core_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 * val)175 static int vfio_default_config_read(struct vfio_pci_core_device *vdev, int pos,
176 int count, struct perm_bits *perm,
177 int offset, __le32 *val)
178 {
179 __le32 virt = 0;
180
181 memcpy(val, vdev->vconfig + pos, count);
182
183 memcpy(&virt, perm->virt + offset, count);
184
185 /* Any non-virtualized bits? */
186 if (cpu_to_le32(~0U >> (32 - (count * 8))) != virt) {
187 struct pci_dev *pdev = vdev->pdev;
188 __le32 phys_val = 0;
189 int ret;
190
191 ret = vfio_user_config_read(pdev, pos, &phys_val, count);
192 if (ret)
193 return ret;
194
195 *val = (phys_val & ~virt) | (*val & virt);
196 }
197
198 return count;
199 }
200
vfio_default_config_write(struct vfio_pci_core_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)201 static int vfio_default_config_write(struct vfio_pci_core_device *vdev, int pos,
202 int count, struct perm_bits *perm,
203 int offset, __le32 val)
204 {
205 __le32 virt = 0, write = 0;
206
207 memcpy(&write, perm->write + offset, count);
208
209 if (!write)
210 return count; /* drop, no writable bits */
211
212 memcpy(&virt, perm->virt + offset, count);
213
214 /* Virtualized and writable bits go to vconfig */
215 if (write & virt) {
216 __le32 virt_val = 0;
217
218 memcpy(&virt_val, vdev->vconfig + pos, count);
219
220 virt_val &= ~(write & virt);
221 virt_val |= (val & (write & virt));
222
223 memcpy(vdev->vconfig + pos, &virt_val, count);
224 }
225
226 /* Non-virtualized and writable bits go to hardware */
227 if (write & ~virt) {
228 struct pci_dev *pdev = vdev->pdev;
229 __le32 phys_val = 0;
230 int ret;
231
232 ret = vfio_user_config_read(pdev, pos, &phys_val, count);
233 if (ret)
234 return ret;
235
236 phys_val &= ~(write & ~virt);
237 phys_val |= (val & (write & ~virt));
238
239 ret = vfio_user_config_write(pdev, pos, phys_val, count);
240 if (ret)
241 return ret;
242 }
243
244 return count;
245 }
246
247 /* Allow direct read from hardware, except for capability next pointer */
vfio_direct_config_read(struct vfio_pci_core_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 * val)248 static int vfio_direct_config_read(struct vfio_pci_core_device *vdev, int pos,
249 int count, struct perm_bits *perm,
250 int offset, __le32 *val)
251 {
252 int ret;
253
254 ret = vfio_user_config_read(vdev->pdev, pos, val, count);
255 if (ret)
256 return ret;
257
258 if (pos >= PCI_CFG_SPACE_SIZE) { /* Extended cap header mangling */
259 if (offset < 4)
260 memcpy(val, vdev->vconfig + pos, count);
261 } else if (pos >= PCI_STD_HEADER_SIZEOF) { /* Std cap mangling */
262 if (offset == PCI_CAP_LIST_ID && count > 1)
263 memcpy(val, vdev->vconfig + pos,
264 min(PCI_CAP_FLAGS, count));
265 else if (offset == PCI_CAP_LIST_NEXT)
266 memcpy(val, vdev->vconfig + pos, 1);
267 }
268
269 return count;
270 }
271
272 /* Raw access skips any kind of virtualization */
vfio_raw_config_write(struct vfio_pci_core_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)273 static int vfio_raw_config_write(struct vfio_pci_core_device *vdev, int pos,
274 int count, struct perm_bits *perm,
275 int offset, __le32 val)
276 {
277 int ret;
278
279 ret = vfio_user_config_write(vdev->pdev, pos, val, count);
280 if (ret)
281 return ret;
282
283 return count;
284 }
285
vfio_raw_config_read(struct vfio_pci_core_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 * val)286 static int vfio_raw_config_read(struct vfio_pci_core_device *vdev, int pos,
287 int count, struct perm_bits *perm,
288 int offset, __le32 *val)
289 {
290 int ret;
291
292 ret = vfio_user_config_read(vdev->pdev, pos, val, count);
293 if (ret)
294 return ret;
295
296 return count;
297 }
298
299 /* Virt access uses only virtualization */
vfio_virt_config_write(struct vfio_pci_core_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)300 static int vfio_virt_config_write(struct vfio_pci_core_device *vdev, int pos,
301 int count, struct perm_bits *perm,
302 int offset, __le32 val)
303 {
304 memcpy(vdev->vconfig + pos, &val, count);
305 return count;
306 }
307
vfio_virt_config_read(struct vfio_pci_core_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 * val)308 static int vfio_virt_config_read(struct vfio_pci_core_device *vdev, int pos,
309 int count, struct perm_bits *perm,
310 int offset, __le32 *val)
311 {
312 memcpy(val, vdev->vconfig + pos, count);
313 return count;
314 }
315
316 static struct perm_bits direct_ro_perms = {
317 .readfn = vfio_direct_config_read,
318 };
319
320 /* Default capability regions to read-only, no-virtualization */
321 static struct perm_bits cap_perms[PCI_CAP_ID_MAX + 1] = {
322 [0 ... PCI_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
323 };
324 static struct perm_bits ecap_perms[PCI_EXT_CAP_ID_MAX + 1] = {
325 [0 ... PCI_EXT_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
326 };
327 /*
328 * Default unassigned regions to raw read-write access. Some devices
329 * require this to function as they hide registers between the gaps in
330 * config space (be2net). Like MMIO and I/O port registers, we have
331 * to trust the hardware isolation.
332 */
333 static struct perm_bits unassigned_perms = {
334 .readfn = vfio_raw_config_read,
335 .writefn = vfio_raw_config_write
336 };
337
338 static struct perm_bits virt_perms = {
339 .readfn = vfio_virt_config_read,
340 .writefn = vfio_virt_config_write
341 };
342
free_perm_bits(struct perm_bits * perm)343 static void free_perm_bits(struct perm_bits *perm)
344 {
345 kfree(perm->virt);
346 kfree(perm->write);
347 perm->virt = NULL;
348 perm->write = NULL;
349 }
350
alloc_perm_bits(struct perm_bits * perm,int size)351 static int alloc_perm_bits(struct perm_bits *perm, int size)
352 {
353 /*
354 * Round up all permission bits to the next dword, this lets us
355 * ignore whether a read/write exceeds the defined capability
356 * structure. We can do this because:
357 * - Standard config space is already dword aligned
358 * - Capabilities are all dword aligned (bits 0:1 of next reserved)
359 * - Express capabilities defined as dword aligned
360 */
361 size = round_up(size, 4);
362
363 /*
364 * Zero state is
365 * - All Readable, None Writeable, None Virtualized
366 */
367 perm->virt = kzalloc(size, GFP_KERNEL);
368 perm->write = kzalloc(size, GFP_KERNEL);
369 if (!perm->virt || !perm->write) {
370 free_perm_bits(perm);
371 return -ENOMEM;
372 }
373
374 perm->readfn = vfio_default_config_read;
375 perm->writefn = vfio_default_config_write;
376
377 return 0;
378 }
379
380 /*
381 * Helper functions for filling in permission tables
382 */
p_setb(struct perm_bits * p,int off,u8 virt,u8 write)383 static inline void p_setb(struct perm_bits *p, int off, u8 virt, u8 write)
384 {
385 p->virt[off] = virt;
386 p->write[off] = write;
387 }
388
389 /* Handle endian-ness - pci and tables are little-endian */
p_setw(struct perm_bits * p,int off,u16 virt,u16 write)390 static inline void p_setw(struct perm_bits *p, int off, u16 virt, u16 write)
391 {
392 *(__le16 *)(&p->virt[off]) = cpu_to_le16(virt);
393 *(__le16 *)(&p->write[off]) = cpu_to_le16(write);
394 }
395
396 /* Handle endian-ness - pci and tables are little-endian */
p_setd(struct perm_bits * p,int off,u32 virt,u32 write)397 static inline void p_setd(struct perm_bits *p, int off, u32 virt, u32 write)
398 {
399 *(__le32 *)(&p->virt[off]) = cpu_to_le32(virt);
400 *(__le32 *)(&p->write[off]) = cpu_to_le32(write);
401 }
402
403 /* Caller should hold memory_lock semaphore */
__vfio_pci_memory_enabled(struct vfio_pci_core_device * vdev)404 bool __vfio_pci_memory_enabled(struct vfio_pci_core_device *vdev)
405 {
406 struct pci_dev *pdev = vdev->pdev;
407 u16 cmd = le16_to_cpu(*(__le16 *)&vdev->vconfig[PCI_COMMAND]);
408
409 /*
410 * Memory region cannot be accessed if device power state is D3.
411 *
412 * SR-IOV VF memory enable is handled by the MSE bit in the
413 * PF SR-IOV capability, there's therefore no need to trigger
414 * faults based on the virtual value.
415 */
416 return pdev->current_state < PCI_D3hot &&
417 (pdev->no_command_memory || (cmd & PCI_COMMAND_MEMORY));
418 }
419
420 /*
421 * Restore the *real* BARs after we detect a FLR or backdoor reset.
422 * (backdoor = some device specific technique that we didn't catch)
423 */
vfio_bar_restore(struct vfio_pci_core_device * vdev)424 static void vfio_bar_restore(struct vfio_pci_core_device *vdev)
425 {
426 struct pci_dev *pdev = vdev->pdev;
427 u32 *rbar = vdev->rbar;
428 u16 cmd;
429 int i;
430
431 if (pdev->is_virtfn)
432 return;
433
434 pci_info(pdev, "%s: reset recovery - restoring BARs\n", __func__);
435
436 for (i = PCI_BASE_ADDRESS_0; i <= PCI_BASE_ADDRESS_5; i += 4, rbar++)
437 pci_user_write_config_dword(pdev, i, *rbar);
438
439 pci_user_write_config_dword(pdev, PCI_ROM_ADDRESS, *rbar);
440
441 if (vdev->nointx) {
442 pci_user_read_config_word(pdev, PCI_COMMAND, &cmd);
443 cmd |= PCI_COMMAND_INTX_DISABLE;
444 pci_user_write_config_word(pdev, PCI_COMMAND, cmd);
445 }
446 }
447
vfio_generate_bar_flags(struct pci_dev * pdev,int bar)448 static __le32 vfio_generate_bar_flags(struct pci_dev *pdev, int bar)
449 {
450 unsigned long flags = pci_resource_flags(pdev, bar);
451 u32 val;
452
453 if (flags & IORESOURCE_IO)
454 return cpu_to_le32(PCI_BASE_ADDRESS_SPACE_IO);
455
456 val = PCI_BASE_ADDRESS_SPACE_MEMORY;
457
458 if (flags & IORESOURCE_PREFETCH)
459 val |= PCI_BASE_ADDRESS_MEM_PREFETCH;
460
461 if (flags & IORESOURCE_MEM_64)
462 val |= PCI_BASE_ADDRESS_MEM_TYPE_64;
463
464 return cpu_to_le32(val);
465 }
466
467 /*
468 * Pretend we're hardware and tweak the values of the *virtual* PCI BARs
469 * to reflect the hardware capabilities. This implements BAR sizing.
470 */
vfio_bar_fixup(struct vfio_pci_core_device * vdev)471 static void vfio_bar_fixup(struct vfio_pci_core_device *vdev)
472 {
473 struct pci_dev *pdev = vdev->pdev;
474 int i;
475 __le32 *vbar;
476 u64 mask;
477
478 if (!vdev->bardirty)
479 return;
480
481 vbar = (__le32 *)&vdev->vconfig[PCI_BASE_ADDRESS_0];
482
483 for (i = 0; i < PCI_STD_NUM_BARS; i++, vbar++) {
484 int bar = i + PCI_STD_RESOURCES;
485
486 if (!pci_resource_start(pdev, bar)) {
487 *vbar = 0; /* Unmapped by host = unimplemented to user */
488 continue;
489 }
490
491 mask = ~(pci_resource_len(pdev, bar) - 1);
492
493 *vbar &= cpu_to_le32((u32)mask);
494 *vbar |= vfio_generate_bar_flags(pdev, bar);
495
496 if (*vbar & cpu_to_le32(PCI_BASE_ADDRESS_MEM_TYPE_64)) {
497 vbar++;
498 *vbar &= cpu_to_le32((u32)(mask >> 32));
499 i++;
500 }
501 }
502
503 vbar = (__le32 *)&vdev->vconfig[PCI_ROM_ADDRESS];
504
505 /*
506 * NB. REGION_INFO will have reported zero size if we weren't able
507 * to read the ROM, but we still return the actual BAR size here if
508 * it exists (or the shadow ROM space).
509 */
510 if (pci_resource_start(pdev, PCI_ROM_RESOURCE)) {
511 mask = ~(pci_resource_len(pdev, PCI_ROM_RESOURCE) - 1);
512 mask |= PCI_ROM_ADDRESS_ENABLE;
513 *vbar &= cpu_to_le32((u32)mask);
514 } else if (pdev->rom && pdev->romlen) {
515 mask = ~(roundup_pow_of_two(pdev->romlen) - 1);
516 mask |= PCI_ROM_ADDRESS_ENABLE;
517 *vbar &= cpu_to_le32((u32)mask);
518 } else {
519 *vbar = 0;
520 }
521
522 vdev->bardirty = false;
523 }
524
vfio_basic_config_read(struct vfio_pci_core_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 * val)525 static int vfio_basic_config_read(struct vfio_pci_core_device *vdev, int pos,
526 int count, struct perm_bits *perm,
527 int offset, __le32 *val)
528 {
529 if (is_bar(offset)) /* pos == offset for basic config */
530 vfio_bar_fixup(vdev);
531
532 count = vfio_default_config_read(vdev, pos, count, perm, offset, val);
533
534 /* Mask in virtual memory enable */
535 if (offset == PCI_COMMAND && vdev->pdev->no_command_memory) {
536 u16 cmd = le16_to_cpu(*(__le16 *)&vdev->vconfig[PCI_COMMAND]);
537 u32 tmp_val = le32_to_cpu(*val);
538
539 tmp_val |= cmd & PCI_COMMAND_MEMORY;
540 *val = cpu_to_le32(tmp_val);
541 }
542
543 return count;
544 }
545
546 /* Test whether BARs match the value we think they should contain */
vfio_need_bar_restore(struct vfio_pci_core_device * vdev)547 static bool vfio_need_bar_restore(struct vfio_pci_core_device *vdev)
548 {
549 int i = 0, pos = PCI_BASE_ADDRESS_0, ret;
550 u32 bar;
551
552 for (; pos <= PCI_BASE_ADDRESS_5; i++, pos += 4) {
553 if (vdev->rbar[i]) {
554 ret = pci_user_read_config_dword(vdev->pdev, pos, &bar);
555 if (ret || vdev->rbar[i] != bar)
556 return true;
557 }
558 }
559
560 return false;
561 }
562
vfio_basic_config_write(struct vfio_pci_core_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)563 static int vfio_basic_config_write(struct vfio_pci_core_device *vdev, int pos,
564 int count, struct perm_bits *perm,
565 int offset, __le32 val)
566 {
567 struct pci_dev *pdev = vdev->pdev;
568 __le16 *virt_cmd;
569 u16 new_cmd = 0;
570 int ret;
571
572 virt_cmd = (__le16 *)&vdev->vconfig[PCI_COMMAND];
573
574 if (offset == PCI_COMMAND) {
575 bool phys_mem, virt_mem, new_mem, phys_io, virt_io, new_io;
576 u16 phys_cmd;
577
578 ret = pci_user_read_config_word(pdev, PCI_COMMAND, &phys_cmd);
579 if (ret)
580 return ret;
581
582 new_cmd = le32_to_cpu(val);
583
584 phys_io = !!(phys_cmd & PCI_COMMAND_IO);
585 virt_io = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_IO);
586 new_io = !!(new_cmd & PCI_COMMAND_IO);
587
588 phys_mem = !!(phys_cmd & PCI_COMMAND_MEMORY);
589 virt_mem = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_MEMORY);
590 new_mem = !!(new_cmd & PCI_COMMAND_MEMORY);
591
592 if (!new_mem)
593 vfio_pci_zap_and_down_write_memory_lock(vdev);
594 else
595 down_write(&vdev->memory_lock);
596
597 /*
598 * If the user is writing mem/io enable (new_mem/io) and we
599 * think it's already enabled (virt_mem/io), but the hardware
600 * shows it disabled (phys_mem/io, then the device has
601 * undergone some kind of backdoor reset and needs to be
602 * restored before we allow it to enable the bars.
603 * SR-IOV devices will trigger this - for mem enable let's
604 * catch this now and for io enable it will be caught later
605 */
606 if ((new_mem && virt_mem && !phys_mem &&
607 !pdev->no_command_memory) ||
608 (new_io && virt_io && !phys_io) ||
609 vfio_need_bar_restore(vdev))
610 vfio_bar_restore(vdev);
611 }
612
613 count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
614 if (count < 0) {
615 if (offset == PCI_COMMAND)
616 up_write(&vdev->memory_lock);
617 return count;
618 }
619
620 /*
621 * Save current memory/io enable bits in vconfig to allow for
622 * the test above next time.
623 */
624 if (offset == PCI_COMMAND) {
625 u16 mask = PCI_COMMAND_MEMORY | PCI_COMMAND_IO;
626
627 *virt_cmd &= cpu_to_le16(~mask);
628 *virt_cmd |= cpu_to_le16(new_cmd & mask);
629
630 up_write(&vdev->memory_lock);
631 }
632
633 /* Emulate INTx disable */
634 if (offset >= PCI_COMMAND && offset <= PCI_COMMAND + 1) {
635 bool virt_intx_disable;
636
637 virt_intx_disable = !!(le16_to_cpu(*virt_cmd) &
638 PCI_COMMAND_INTX_DISABLE);
639
640 if (virt_intx_disable && !vdev->virq_disabled) {
641 vdev->virq_disabled = true;
642 vfio_pci_intx_mask(vdev);
643 } else if (!virt_intx_disable && vdev->virq_disabled) {
644 vdev->virq_disabled = false;
645 vfio_pci_intx_unmask(vdev);
646 }
647 }
648
649 if (is_bar(offset))
650 vdev->bardirty = true;
651
652 return count;
653 }
654
655 /* Permissions for the Basic PCI Header */
init_pci_cap_basic_perm(struct perm_bits * perm)656 static int __init init_pci_cap_basic_perm(struct perm_bits *perm)
657 {
658 if (alloc_perm_bits(perm, PCI_STD_HEADER_SIZEOF))
659 return -ENOMEM;
660
661 perm->readfn = vfio_basic_config_read;
662 perm->writefn = vfio_basic_config_write;
663
664 /* Virtualized for SR-IOV functions, which just have FFFF */
665 p_setw(perm, PCI_VENDOR_ID, (u16)ALL_VIRT, NO_WRITE);
666 p_setw(perm, PCI_DEVICE_ID, (u16)ALL_VIRT, NO_WRITE);
667
668 /*
669 * Virtualize INTx disable, we use it internally for interrupt
670 * control and can emulate it for non-PCI 2.3 devices.
671 */
672 p_setw(perm, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE, (u16)ALL_WRITE);
673
674 /* Virtualize capability list, we might want to skip/disable */
675 p_setw(perm, PCI_STATUS, PCI_STATUS_CAP_LIST, NO_WRITE);
676
677 /* No harm to write */
678 p_setb(perm, PCI_CACHE_LINE_SIZE, NO_VIRT, (u8)ALL_WRITE);
679 p_setb(perm, PCI_LATENCY_TIMER, NO_VIRT, (u8)ALL_WRITE);
680 p_setb(perm, PCI_BIST, NO_VIRT, (u8)ALL_WRITE);
681
682 /* Virtualize all bars, can't touch the real ones */
683 p_setd(perm, PCI_BASE_ADDRESS_0, ALL_VIRT, ALL_WRITE);
684 p_setd(perm, PCI_BASE_ADDRESS_1, ALL_VIRT, ALL_WRITE);
685 p_setd(perm, PCI_BASE_ADDRESS_2, ALL_VIRT, ALL_WRITE);
686 p_setd(perm, PCI_BASE_ADDRESS_3, ALL_VIRT, ALL_WRITE);
687 p_setd(perm, PCI_BASE_ADDRESS_4, ALL_VIRT, ALL_WRITE);
688 p_setd(perm, PCI_BASE_ADDRESS_5, ALL_VIRT, ALL_WRITE);
689 p_setd(perm, PCI_ROM_ADDRESS, ALL_VIRT, ALL_WRITE);
690
691 /* Allow us to adjust capability chain */
692 p_setb(perm, PCI_CAPABILITY_LIST, (u8)ALL_VIRT, NO_WRITE);
693
694 /* Sometimes used by sw, just virtualize */
695 p_setb(perm, PCI_INTERRUPT_LINE, (u8)ALL_VIRT, (u8)ALL_WRITE);
696
697 /* Virtualize interrupt pin to allow hiding INTx */
698 p_setb(perm, PCI_INTERRUPT_PIN, (u8)ALL_VIRT, (u8)NO_WRITE);
699
700 return 0;
701 }
702
703 /*
704 * It takes all the required locks to protect the access of power related
705 * variables and then invokes vfio_pci_set_power_state().
706 */
vfio_lock_and_set_power_state(struct vfio_pci_core_device * vdev,pci_power_t state)707 static void vfio_lock_and_set_power_state(struct vfio_pci_core_device *vdev,
708 pci_power_t state)
709 {
710 if (state >= PCI_D3hot)
711 vfio_pci_zap_and_down_write_memory_lock(vdev);
712 else
713 down_write(&vdev->memory_lock);
714
715 vfio_pci_set_power_state(vdev, state);
716 up_write(&vdev->memory_lock);
717 }
718
vfio_pm_config_write(struct vfio_pci_core_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)719 static int vfio_pm_config_write(struct vfio_pci_core_device *vdev, int pos,
720 int count, struct perm_bits *perm,
721 int offset, __le32 val)
722 {
723 count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
724 if (count < 0)
725 return count;
726
727 if (offset == PCI_PM_CTRL) {
728 pci_power_t state;
729
730 switch (le32_to_cpu(val) & PCI_PM_CTRL_STATE_MASK) {
731 case 0:
732 state = PCI_D0;
733 break;
734 case 1:
735 state = PCI_D1;
736 break;
737 case 2:
738 state = PCI_D2;
739 break;
740 case 3:
741 state = PCI_D3hot;
742 break;
743 }
744
745 vfio_lock_and_set_power_state(vdev, state);
746 }
747
748 return count;
749 }
750
751 /* Permissions for the Power Management capability */
init_pci_cap_pm_perm(struct perm_bits * perm)752 static int __init init_pci_cap_pm_perm(struct perm_bits *perm)
753 {
754 if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_PM]))
755 return -ENOMEM;
756
757 perm->writefn = vfio_pm_config_write;
758
759 /*
760 * We always virtualize the next field so we can remove
761 * capabilities from the chain if we want to.
762 */
763 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
764
765 /*
766 * The guests can't process PME events. If any PME event will be
767 * generated, then it will be mostly handled in the host and the
768 * host will clear the PME_STATUS. So virtualize PME_Support bits.
769 * The vconfig bits will be cleared during device capability
770 * initialization.
771 */
772 p_setw(perm, PCI_PM_PMC, PCI_PM_CAP_PME_MASK, NO_WRITE);
773
774 /*
775 * Power management is defined *per function*, so we can let
776 * the user change power state, but we trap and initiate the
777 * change ourselves, so the state bits are read-only.
778 *
779 * The guest can't process PME from D3cold so virtualize PME_Status
780 * and PME_En bits. The vconfig bits will be cleared during device
781 * capability initialization.
782 */
783 p_setd(perm, PCI_PM_CTRL,
784 PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS,
785 ~(PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS |
786 PCI_PM_CTRL_STATE_MASK));
787
788 return 0;
789 }
790
vfio_vpd_config_write(struct vfio_pci_core_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)791 static int vfio_vpd_config_write(struct vfio_pci_core_device *vdev, int pos,
792 int count, struct perm_bits *perm,
793 int offset, __le32 val)
794 {
795 struct pci_dev *pdev = vdev->pdev;
796 __le16 *paddr = (__le16 *)(vdev->vconfig + pos - offset + PCI_VPD_ADDR);
797 __le32 *pdata = (__le32 *)(vdev->vconfig + pos - offset + PCI_VPD_DATA);
798 u16 addr;
799 u32 data;
800
801 /*
802 * Write through to emulation. If the write includes the upper byte
803 * of PCI_VPD_ADDR, then the PCI_VPD_ADDR_F bit is written and we
804 * have work to do.
805 */
806 count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
807 if (count < 0 || offset > PCI_VPD_ADDR + 1 ||
808 offset + count <= PCI_VPD_ADDR + 1)
809 return count;
810
811 addr = le16_to_cpu(*paddr);
812
813 if (addr & PCI_VPD_ADDR_F) {
814 data = le32_to_cpu(*pdata);
815 if (pci_write_vpd(pdev, addr & ~PCI_VPD_ADDR_F, 4, &data) != 4)
816 return count;
817 } else {
818 data = 0;
819 if (pci_read_vpd(pdev, addr, 4, &data) < 0)
820 return count;
821 *pdata = cpu_to_le32(data);
822 }
823
824 /*
825 * Toggle PCI_VPD_ADDR_F in the emulated PCI_VPD_ADDR register to
826 * signal completion. If an error occurs above, we assume that not
827 * toggling this bit will induce a driver timeout.
828 */
829 addr ^= PCI_VPD_ADDR_F;
830 *paddr = cpu_to_le16(addr);
831
832 return count;
833 }
834
835 /* Permissions for Vital Product Data capability */
init_pci_cap_vpd_perm(struct perm_bits * perm)836 static int __init init_pci_cap_vpd_perm(struct perm_bits *perm)
837 {
838 if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_VPD]))
839 return -ENOMEM;
840
841 perm->writefn = vfio_vpd_config_write;
842
843 /*
844 * We always virtualize the next field so we can remove
845 * capabilities from the chain if we want to.
846 */
847 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
848
849 /*
850 * Both the address and data registers are virtualized to
851 * enable access through the pci_vpd_read/write functions
852 */
853 p_setw(perm, PCI_VPD_ADDR, (u16)ALL_VIRT, (u16)ALL_WRITE);
854 p_setd(perm, PCI_VPD_DATA, ALL_VIRT, ALL_WRITE);
855
856 return 0;
857 }
858
859 /* Permissions for PCI-X capability */
init_pci_cap_pcix_perm(struct perm_bits * perm)860 static int __init init_pci_cap_pcix_perm(struct perm_bits *perm)
861 {
862 /* Alloc 24, but only 8 are used in v0 */
863 if (alloc_perm_bits(perm, PCI_CAP_PCIX_SIZEOF_V2))
864 return -ENOMEM;
865
866 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
867
868 p_setw(perm, PCI_X_CMD, NO_VIRT, (u16)ALL_WRITE);
869 p_setd(perm, PCI_X_ECC_CSR, NO_VIRT, ALL_WRITE);
870 return 0;
871 }
872
vfio_exp_config_write(struct vfio_pci_core_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)873 static int vfio_exp_config_write(struct vfio_pci_core_device *vdev, int pos,
874 int count, struct perm_bits *perm,
875 int offset, __le32 val)
876 {
877 __le16 *ctrl = (__le16 *)(vdev->vconfig + pos -
878 offset + PCI_EXP_DEVCTL);
879 int readrq = le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ;
880
881 count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
882 if (count < 0)
883 return count;
884
885 /*
886 * The FLR bit is virtualized, if set and the device supports PCIe
887 * FLR, issue a reset_function. Regardless, clear the bit, the spec
888 * requires it to be always read as zero. NB, reset_function might
889 * not use a PCIe FLR, we don't have that level of granularity.
890 */
891 if (*ctrl & cpu_to_le16(PCI_EXP_DEVCTL_BCR_FLR)) {
892 u32 cap;
893 int ret;
894
895 *ctrl &= ~cpu_to_le16(PCI_EXP_DEVCTL_BCR_FLR);
896
897 ret = pci_user_read_config_dword(vdev->pdev,
898 pos - offset + PCI_EXP_DEVCAP,
899 &cap);
900
901 if (!ret && (cap & PCI_EXP_DEVCAP_FLR)) {
902 vfio_pci_zap_and_down_write_memory_lock(vdev);
903 pci_try_reset_function(vdev->pdev);
904 up_write(&vdev->memory_lock);
905 }
906 }
907
908 /*
909 * MPS is virtualized to the user, writes do not change the physical
910 * register since determining a proper MPS value requires a system wide
911 * device view. The MRRS is largely independent of MPS, but since the
912 * user does not have that system-wide view, they might set a safe, but
913 * inefficiently low value. Here we allow writes through to hardware,
914 * but we set the floor to the physical device MPS setting, so that
915 * we can at least use full TLPs, as defined by the MPS value.
916 *
917 * NB, if any devices actually depend on an artificially low MRRS
918 * setting, this will need to be revisited, perhaps with a quirk
919 * though pcie_set_readrq().
920 */
921 if (readrq != (le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ)) {
922 readrq = 128 <<
923 ((le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ) >> 12);
924 readrq = max(readrq, pcie_get_mps(vdev->pdev));
925
926 pcie_set_readrq(vdev->pdev, readrq);
927 }
928
929 return count;
930 }
931
932 /* Permissions for PCI Express capability */
init_pci_cap_exp_perm(struct perm_bits * perm)933 static int __init init_pci_cap_exp_perm(struct perm_bits *perm)
934 {
935 /* Alloc largest of possible sizes */
936 if (alloc_perm_bits(perm, PCI_CAP_EXP_ENDPOINT_SIZEOF_V2))
937 return -ENOMEM;
938
939 perm->writefn = vfio_exp_config_write;
940
941 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
942
943 /*
944 * Allow writes to device control fields, except devctl_phantom,
945 * which could confuse IOMMU, MPS, which can break communication
946 * with other physical devices, and the ARI bit in devctl2, which
947 * is set at probe time. FLR and MRRS get virtualized via our
948 * writefn.
949 */
950 p_setw(perm, PCI_EXP_DEVCTL,
951 PCI_EXP_DEVCTL_BCR_FLR | PCI_EXP_DEVCTL_PAYLOAD |
952 PCI_EXP_DEVCTL_READRQ, ~PCI_EXP_DEVCTL_PHANTOM);
953 p_setw(perm, PCI_EXP_DEVCTL2, NO_VIRT, ~PCI_EXP_DEVCTL2_ARI);
954 return 0;
955 }
956
vfio_af_config_write(struct vfio_pci_core_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)957 static int vfio_af_config_write(struct vfio_pci_core_device *vdev, int pos,
958 int count, struct perm_bits *perm,
959 int offset, __le32 val)
960 {
961 u8 *ctrl = vdev->vconfig + pos - offset + PCI_AF_CTRL;
962
963 count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
964 if (count < 0)
965 return count;
966
967 /*
968 * The FLR bit is virtualized, if set and the device supports AF
969 * FLR, issue a reset_function. Regardless, clear the bit, the spec
970 * requires it to be always read as zero. NB, reset_function might
971 * not use an AF FLR, we don't have that level of granularity.
972 */
973 if (*ctrl & PCI_AF_CTRL_FLR) {
974 u8 cap;
975 int ret;
976
977 *ctrl &= ~PCI_AF_CTRL_FLR;
978
979 ret = pci_user_read_config_byte(vdev->pdev,
980 pos - offset + PCI_AF_CAP,
981 &cap);
982
983 if (!ret && (cap & PCI_AF_CAP_FLR) && (cap & PCI_AF_CAP_TP)) {
984 vfio_pci_zap_and_down_write_memory_lock(vdev);
985 pci_try_reset_function(vdev->pdev);
986 up_write(&vdev->memory_lock);
987 }
988 }
989
990 return count;
991 }
992
993 /* Permissions for Advanced Function capability */
init_pci_cap_af_perm(struct perm_bits * perm)994 static int __init init_pci_cap_af_perm(struct perm_bits *perm)
995 {
996 if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_AF]))
997 return -ENOMEM;
998
999 perm->writefn = vfio_af_config_write;
1000
1001 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
1002 p_setb(perm, PCI_AF_CTRL, PCI_AF_CTRL_FLR, PCI_AF_CTRL_FLR);
1003 return 0;
1004 }
1005
1006 /* Permissions for Advanced Error Reporting extended capability */
init_pci_ext_cap_err_perm(struct perm_bits * perm)1007 static int __init init_pci_ext_cap_err_perm(struct perm_bits *perm)
1008 {
1009 u32 mask;
1010
1011 if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_ERR]))
1012 return -ENOMEM;
1013
1014 /*
1015 * Virtualize the first dword of all express capabilities
1016 * because it includes the next pointer. This lets us later
1017 * remove capabilities from the chain if we need to.
1018 */
1019 p_setd(perm, 0, ALL_VIRT, NO_WRITE);
1020
1021 /* Writable bits mask */
1022 mask = PCI_ERR_UNC_UND | /* Undefined */
1023 PCI_ERR_UNC_DLP | /* Data Link Protocol */
1024 PCI_ERR_UNC_SURPDN | /* Surprise Down */
1025 PCI_ERR_UNC_POISON_TLP | /* Poisoned TLP */
1026 PCI_ERR_UNC_FCP | /* Flow Control Protocol */
1027 PCI_ERR_UNC_COMP_TIME | /* Completion Timeout */
1028 PCI_ERR_UNC_COMP_ABORT | /* Completer Abort */
1029 PCI_ERR_UNC_UNX_COMP | /* Unexpected Completion */
1030 PCI_ERR_UNC_RX_OVER | /* Receiver Overflow */
1031 PCI_ERR_UNC_MALF_TLP | /* Malformed TLP */
1032 PCI_ERR_UNC_ECRC | /* ECRC Error Status */
1033 PCI_ERR_UNC_UNSUP | /* Unsupported Request */
1034 PCI_ERR_UNC_ACSV | /* ACS Violation */
1035 PCI_ERR_UNC_INTN | /* internal error */
1036 PCI_ERR_UNC_MCBTLP | /* MC blocked TLP */
1037 PCI_ERR_UNC_ATOMEG | /* Atomic egress blocked */
1038 PCI_ERR_UNC_TLPPRE; /* TLP prefix blocked */
1039 p_setd(perm, PCI_ERR_UNCOR_STATUS, NO_VIRT, mask);
1040 p_setd(perm, PCI_ERR_UNCOR_MASK, NO_VIRT, mask);
1041 p_setd(perm, PCI_ERR_UNCOR_SEVER, NO_VIRT, mask);
1042
1043 mask = PCI_ERR_COR_RCVR | /* Receiver Error Status */
1044 PCI_ERR_COR_BAD_TLP | /* Bad TLP Status */
1045 PCI_ERR_COR_BAD_DLLP | /* Bad DLLP Status */
1046 PCI_ERR_COR_REP_ROLL | /* REPLAY_NUM Rollover */
1047 PCI_ERR_COR_REP_TIMER | /* Replay Timer Timeout */
1048 PCI_ERR_COR_ADV_NFAT | /* Advisory Non-Fatal */
1049 PCI_ERR_COR_INTERNAL | /* Corrected Internal */
1050 PCI_ERR_COR_LOG_OVER; /* Header Log Overflow */
1051 p_setd(perm, PCI_ERR_COR_STATUS, NO_VIRT, mask);
1052 p_setd(perm, PCI_ERR_COR_MASK, NO_VIRT, mask);
1053
1054 mask = PCI_ERR_CAP_ECRC_GENE | /* ECRC Generation Enable */
1055 PCI_ERR_CAP_ECRC_CHKE; /* ECRC Check Enable */
1056 p_setd(perm, PCI_ERR_CAP, NO_VIRT, mask);
1057 return 0;
1058 }
1059
1060 /* Permissions for Power Budgeting extended capability */
init_pci_ext_cap_pwr_perm(struct perm_bits * perm)1061 static int __init init_pci_ext_cap_pwr_perm(struct perm_bits *perm)
1062 {
1063 if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_PWR]))
1064 return -ENOMEM;
1065
1066 p_setd(perm, 0, ALL_VIRT, NO_WRITE);
1067
1068 /* Writing the data selector is OK, the info is still read-only */
1069 p_setb(perm, PCI_PWR_DATA, NO_VIRT, (u8)ALL_WRITE);
1070 return 0;
1071 }
1072
1073 /*
1074 * Initialize the shared permission tables
1075 */
vfio_pci_uninit_perm_bits(void)1076 void vfio_pci_uninit_perm_bits(void)
1077 {
1078 free_perm_bits(&cap_perms[PCI_CAP_ID_BASIC]);
1079
1080 free_perm_bits(&cap_perms[PCI_CAP_ID_PM]);
1081 free_perm_bits(&cap_perms[PCI_CAP_ID_VPD]);
1082 free_perm_bits(&cap_perms[PCI_CAP_ID_PCIX]);
1083 free_perm_bits(&cap_perms[PCI_CAP_ID_EXP]);
1084 free_perm_bits(&cap_perms[PCI_CAP_ID_AF]);
1085
1086 free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
1087 free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
1088 }
1089
vfio_pci_init_perm_bits(void)1090 int __init vfio_pci_init_perm_bits(void)
1091 {
1092 int ret;
1093
1094 /* Basic config space */
1095 ret = init_pci_cap_basic_perm(&cap_perms[PCI_CAP_ID_BASIC]);
1096
1097 /* Capabilities */
1098 ret |= init_pci_cap_pm_perm(&cap_perms[PCI_CAP_ID_PM]);
1099 ret |= init_pci_cap_vpd_perm(&cap_perms[PCI_CAP_ID_VPD]);
1100 ret |= init_pci_cap_pcix_perm(&cap_perms[PCI_CAP_ID_PCIX]);
1101 cap_perms[PCI_CAP_ID_VNDR].writefn = vfio_raw_config_write;
1102 ret |= init_pci_cap_exp_perm(&cap_perms[PCI_CAP_ID_EXP]);
1103 ret |= init_pci_cap_af_perm(&cap_perms[PCI_CAP_ID_AF]);
1104
1105 /* Extended capabilities */
1106 ret |= init_pci_ext_cap_err_perm(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
1107 ret |= init_pci_ext_cap_pwr_perm(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
1108 ecap_perms[PCI_EXT_CAP_ID_VNDR].writefn = vfio_raw_config_write;
1109 ecap_perms[PCI_EXT_CAP_ID_DVSEC].writefn = vfio_raw_config_write;
1110
1111 if (ret)
1112 vfio_pci_uninit_perm_bits();
1113
1114 return ret;
1115 }
1116
vfio_find_cap_start(struct vfio_pci_core_device * vdev,int pos)1117 static int vfio_find_cap_start(struct vfio_pci_core_device *vdev, int pos)
1118 {
1119 u8 cap;
1120 int base = (pos >= PCI_CFG_SPACE_SIZE) ? PCI_CFG_SPACE_SIZE :
1121 PCI_STD_HEADER_SIZEOF;
1122 cap = vdev->pci_config_map[pos];
1123
1124 if (cap == PCI_CAP_ID_BASIC)
1125 return 0;
1126
1127 /* XXX Can we have to abutting capabilities of the same type? */
1128 while (pos - 1 >= base && vdev->pci_config_map[pos - 1] == cap)
1129 pos--;
1130
1131 return pos;
1132 }
1133
vfio_msi_config_read(struct vfio_pci_core_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 * val)1134 static int vfio_msi_config_read(struct vfio_pci_core_device *vdev, int pos,
1135 int count, struct perm_bits *perm,
1136 int offset, __le32 *val)
1137 {
1138 /* Update max available queue size from msi_qmax */
1139 if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
1140 __le16 *flags;
1141 int start;
1142
1143 start = vfio_find_cap_start(vdev, pos);
1144
1145 flags = (__le16 *)&vdev->vconfig[start];
1146
1147 *flags &= cpu_to_le16(~PCI_MSI_FLAGS_QMASK);
1148 *flags |= cpu_to_le16(vdev->msi_qmax << 1);
1149 }
1150
1151 return vfio_default_config_read(vdev, pos, count, perm, offset, val);
1152 }
1153
vfio_msi_config_write(struct vfio_pci_core_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)1154 static int vfio_msi_config_write(struct vfio_pci_core_device *vdev, int pos,
1155 int count, struct perm_bits *perm,
1156 int offset, __le32 val)
1157 {
1158 count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
1159 if (count < 0)
1160 return count;
1161
1162 /* Fixup and write configured queue size and enable to hardware */
1163 if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
1164 __le16 *pflags;
1165 u16 flags;
1166 int start, ret;
1167
1168 start = vfio_find_cap_start(vdev, pos);
1169
1170 pflags = (__le16 *)&vdev->vconfig[start + PCI_MSI_FLAGS];
1171
1172 flags = le16_to_cpu(*pflags);
1173
1174 /* MSI is enabled via ioctl */
1175 if (vdev->irq_type != VFIO_PCI_MSI_IRQ_INDEX)
1176 flags &= ~PCI_MSI_FLAGS_ENABLE;
1177
1178 /* Check queue size */
1179 if ((flags & PCI_MSI_FLAGS_QSIZE) >> 4 > vdev->msi_qmax) {
1180 flags &= ~PCI_MSI_FLAGS_QSIZE;
1181 flags |= vdev->msi_qmax << 4;
1182 }
1183
1184 /* Write back to virt and to hardware */
1185 *pflags = cpu_to_le16(flags);
1186 ret = pci_user_write_config_word(vdev->pdev,
1187 start + PCI_MSI_FLAGS,
1188 flags);
1189 if (ret)
1190 return ret;
1191 }
1192
1193 return count;
1194 }
1195
1196 /*
1197 * MSI determination is per-device, so this routine gets used beyond
1198 * initialization time. Don't add __init
1199 */
init_pci_cap_msi_perm(struct perm_bits * perm,int len,u16 flags)1200 static int init_pci_cap_msi_perm(struct perm_bits *perm, int len, u16 flags)
1201 {
1202 if (alloc_perm_bits(perm, len))
1203 return -ENOMEM;
1204
1205 perm->readfn = vfio_msi_config_read;
1206 perm->writefn = vfio_msi_config_write;
1207
1208 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
1209
1210 /*
1211 * The upper byte of the control register is reserved,
1212 * just setup the lower byte.
1213 */
1214 p_setb(perm, PCI_MSI_FLAGS, (u8)ALL_VIRT, (u8)ALL_WRITE);
1215 p_setd(perm, PCI_MSI_ADDRESS_LO, ALL_VIRT, ALL_WRITE);
1216 if (flags & PCI_MSI_FLAGS_64BIT) {
1217 p_setd(perm, PCI_MSI_ADDRESS_HI, ALL_VIRT, ALL_WRITE);
1218 p_setw(perm, PCI_MSI_DATA_64, (u16)ALL_VIRT, (u16)ALL_WRITE);
1219 if (flags & PCI_MSI_FLAGS_MASKBIT) {
1220 p_setd(perm, PCI_MSI_MASK_64, NO_VIRT, ALL_WRITE);
1221 p_setd(perm, PCI_MSI_PENDING_64, NO_VIRT, ALL_WRITE);
1222 }
1223 } else {
1224 p_setw(perm, PCI_MSI_DATA_32, (u16)ALL_VIRT, (u16)ALL_WRITE);
1225 if (flags & PCI_MSI_FLAGS_MASKBIT) {
1226 p_setd(perm, PCI_MSI_MASK_32, NO_VIRT, ALL_WRITE);
1227 p_setd(perm, PCI_MSI_PENDING_32, NO_VIRT, ALL_WRITE);
1228 }
1229 }
1230 return 0;
1231 }
1232
1233 /* Determine MSI CAP field length; initialize msi_perms on 1st call per vdev */
vfio_msi_cap_len(struct vfio_pci_core_device * vdev,u8 pos)1234 static int vfio_msi_cap_len(struct vfio_pci_core_device *vdev, u8 pos)
1235 {
1236 struct pci_dev *pdev = vdev->pdev;
1237 int len, ret;
1238 u16 flags;
1239
1240 ret = pci_read_config_word(pdev, pos + PCI_MSI_FLAGS, &flags);
1241 if (ret)
1242 return pcibios_err_to_errno(ret);
1243
1244 len = 10; /* Minimum size */
1245 if (flags & PCI_MSI_FLAGS_64BIT)
1246 len += 4;
1247 if (flags & PCI_MSI_FLAGS_MASKBIT)
1248 len += 10;
1249
1250 if (vdev->msi_perm)
1251 return len;
1252
1253 vdev->msi_perm = kmalloc(sizeof(struct perm_bits), GFP_KERNEL_ACCOUNT);
1254 if (!vdev->msi_perm)
1255 return -ENOMEM;
1256
1257 ret = init_pci_cap_msi_perm(vdev->msi_perm, len, flags);
1258 if (ret) {
1259 kfree(vdev->msi_perm);
1260 return ret;
1261 }
1262
1263 return len;
1264 }
1265
1266 /* Determine extended capability length for VC (2 & 9) and MFVC */
vfio_vc_cap_len(struct vfio_pci_core_device * vdev,u16 pos)1267 static int vfio_vc_cap_len(struct vfio_pci_core_device *vdev, u16 pos)
1268 {
1269 struct pci_dev *pdev = vdev->pdev;
1270 u32 tmp;
1271 int ret, evcc, phases, vc_arb;
1272 int len = PCI_CAP_VC_BASE_SIZEOF;
1273
1274 ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP1, &tmp);
1275 if (ret)
1276 return pcibios_err_to_errno(ret);
1277
1278 evcc = tmp & PCI_VC_CAP1_EVCC; /* extended vc count */
1279 ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP2, &tmp);
1280 if (ret)
1281 return pcibios_err_to_errno(ret);
1282
1283 if (tmp & PCI_VC_CAP2_128_PHASE)
1284 phases = 128;
1285 else if (tmp & PCI_VC_CAP2_64_PHASE)
1286 phases = 64;
1287 else if (tmp & PCI_VC_CAP2_32_PHASE)
1288 phases = 32;
1289 else
1290 phases = 0;
1291
1292 vc_arb = phases * 4;
1293
1294 /*
1295 * Port arbitration tables are root & switch only;
1296 * function arbitration tables are function 0 only.
1297 * In either case, we'll never let user write them so
1298 * we don't care how big they are
1299 */
1300 len += (1 + evcc) * PCI_CAP_VC_PER_VC_SIZEOF;
1301 if (vc_arb) {
1302 len = round_up(len, 16);
1303 len += vc_arb / 8;
1304 }
1305 return len;
1306 }
1307
vfio_cap_len(struct vfio_pci_core_device * vdev,u8 cap,u8 pos)1308 static int vfio_cap_len(struct vfio_pci_core_device *vdev, u8 cap, u8 pos)
1309 {
1310 struct pci_dev *pdev = vdev->pdev;
1311 u32 dword;
1312 u16 word;
1313 u8 byte;
1314 int ret;
1315
1316 switch (cap) {
1317 case PCI_CAP_ID_MSI:
1318 return vfio_msi_cap_len(vdev, pos);
1319 case PCI_CAP_ID_PCIX:
1320 ret = pci_read_config_word(pdev, pos + PCI_X_CMD, &word);
1321 if (ret)
1322 return pcibios_err_to_errno(ret);
1323
1324 if (PCI_X_CMD_VERSION(word)) {
1325 if (pdev->cfg_size > PCI_CFG_SPACE_SIZE) {
1326 /* Test for extended capabilities */
1327 pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE,
1328 &dword);
1329 vdev->extended_caps = (dword != 0);
1330 }
1331 return PCI_CAP_PCIX_SIZEOF_V2;
1332 } else
1333 return PCI_CAP_PCIX_SIZEOF_V0;
1334 case PCI_CAP_ID_VNDR:
1335 /* length follows next field */
1336 ret = pci_read_config_byte(pdev, pos + PCI_CAP_FLAGS, &byte);
1337 if (ret)
1338 return pcibios_err_to_errno(ret);
1339
1340 return byte;
1341 case PCI_CAP_ID_EXP:
1342 if (pdev->cfg_size > PCI_CFG_SPACE_SIZE) {
1343 /* Test for extended capabilities */
1344 pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE, &dword);
1345 vdev->extended_caps = (dword != 0);
1346 }
1347
1348 /* length based on version and type */
1349 if ((pcie_caps_reg(pdev) & PCI_EXP_FLAGS_VERS) == 1) {
1350 if (pci_pcie_type(pdev) == PCI_EXP_TYPE_RC_END)
1351 return 0xc; /* "All Devices" only, no link */
1352 return PCI_CAP_EXP_ENDPOINT_SIZEOF_V1;
1353 } else {
1354 if (pci_pcie_type(pdev) == PCI_EXP_TYPE_RC_END)
1355 return 0x2c; /* No link */
1356 return PCI_CAP_EXP_ENDPOINT_SIZEOF_V2;
1357 }
1358 case PCI_CAP_ID_HT:
1359 ret = pci_read_config_byte(pdev, pos + 3, &byte);
1360 if (ret)
1361 return pcibios_err_to_errno(ret);
1362
1363 return (byte & HT_3BIT_CAP_MASK) ?
1364 HT_CAP_SIZEOF_SHORT : HT_CAP_SIZEOF_LONG;
1365 case PCI_CAP_ID_SATA:
1366 ret = pci_read_config_byte(pdev, pos + PCI_SATA_REGS, &byte);
1367 if (ret)
1368 return pcibios_err_to_errno(ret);
1369
1370 byte &= PCI_SATA_REGS_MASK;
1371 if (byte == PCI_SATA_REGS_INLINE)
1372 return PCI_SATA_SIZEOF_LONG;
1373 else
1374 return PCI_SATA_SIZEOF_SHORT;
1375 default:
1376 pci_warn(pdev, "%s: unknown length for PCI cap %#x@%#x\n",
1377 __func__, cap, pos);
1378 }
1379
1380 return 0;
1381 }
1382
vfio_ext_cap_len(struct vfio_pci_core_device * vdev,u16 ecap,u16 epos)1383 static int vfio_ext_cap_len(struct vfio_pci_core_device *vdev, u16 ecap, u16 epos)
1384 {
1385 struct pci_dev *pdev = vdev->pdev;
1386 u8 byte;
1387 u32 dword;
1388 int ret;
1389
1390 switch (ecap) {
1391 case PCI_EXT_CAP_ID_VNDR:
1392 ret = pci_read_config_dword(pdev, epos + PCI_VNDR_HEADER,
1393 &dword);
1394 if (ret)
1395 return pcibios_err_to_errno(ret);
1396
1397 return PCI_VNDR_HEADER_LEN(dword);
1398 case PCI_EXT_CAP_ID_VC:
1399 case PCI_EXT_CAP_ID_VC9:
1400 case PCI_EXT_CAP_ID_MFVC:
1401 return vfio_vc_cap_len(vdev, epos);
1402 case PCI_EXT_CAP_ID_ACS:
1403 ret = pci_read_config_byte(pdev, epos + PCI_ACS_CAP, &byte);
1404 if (ret)
1405 return pcibios_err_to_errno(ret);
1406
1407 if (byte & PCI_ACS_EC) {
1408 int bits;
1409
1410 ret = pci_read_config_byte(pdev,
1411 epos + PCI_ACS_EGRESS_BITS,
1412 &byte);
1413 if (ret)
1414 return pcibios_err_to_errno(ret);
1415
1416 bits = byte ? round_up(byte, 32) : 256;
1417 return 8 + (bits / 8);
1418 }
1419 return 8;
1420
1421 case PCI_EXT_CAP_ID_REBAR:
1422 ret = pci_read_config_byte(pdev, epos + PCI_REBAR_CTRL, &byte);
1423 if (ret)
1424 return pcibios_err_to_errno(ret);
1425
1426 byte &= PCI_REBAR_CTRL_NBAR_MASK;
1427 byte >>= PCI_REBAR_CTRL_NBAR_SHIFT;
1428
1429 return 4 + (byte * 8);
1430 case PCI_EXT_CAP_ID_DPA:
1431 ret = pci_read_config_byte(pdev, epos + PCI_DPA_CAP, &byte);
1432 if (ret)
1433 return pcibios_err_to_errno(ret);
1434
1435 byte &= PCI_DPA_CAP_SUBSTATE_MASK;
1436 return PCI_DPA_BASE_SIZEOF + byte + 1;
1437 case PCI_EXT_CAP_ID_TPH:
1438 ret = pci_read_config_dword(pdev, epos + PCI_TPH_CAP, &dword);
1439 if (ret)
1440 return pcibios_err_to_errno(ret);
1441
1442 if ((dword & PCI_TPH_CAP_LOC_MASK) == PCI_TPH_LOC_CAP) {
1443 int sts;
1444
1445 sts = dword & PCI_TPH_CAP_ST_MASK;
1446 sts >>= PCI_TPH_CAP_ST_SHIFT;
1447 return PCI_TPH_BASE_SIZEOF + (sts * 2) + 2;
1448 }
1449 return PCI_TPH_BASE_SIZEOF;
1450 case PCI_EXT_CAP_ID_DVSEC:
1451 ret = pci_read_config_dword(pdev, epos + PCI_DVSEC_HEADER1, &dword);
1452 if (ret)
1453 return pcibios_err_to_errno(ret);
1454 return PCI_DVSEC_HEADER1_LEN(dword);
1455 default:
1456 pci_warn(pdev, "%s: unknown length for PCI ecap %#x@%#x\n",
1457 __func__, ecap, epos);
1458 }
1459
1460 return 0;
1461 }
1462
vfio_update_pm_vconfig_bytes(struct vfio_pci_core_device * vdev,int offset)1463 static void vfio_update_pm_vconfig_bytes(struct vfio_pci_core_device *vdev,
1464 int offset)
1465 {
1466 __le16 *pmc = (__le16 *)&vdev->vconfig[offset + PCI_PM_PMC];
1467 __le16 *ctrl = (__le16 *)&vdev->vconfig[offset + PCI_PM_CTRL];
1468
1469 /* Clear vconfig PME_Support, PME_Status, and PME_En bits */
1470 *pmc &= ~cpu_to_le16(PCI_PM_CAP_PME_MASK);
1471 *ctrl &= ~cpu_to_le16(PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS);
1472 }
1473
vfio_fill_vconfig_bytes(struct vfio_pci_core_device * vdev,int offset,int size)1474 static int vfio_fill_vconfig_bytes(struct vfio_pci_core_device *vdev,
1475 int offset, int size)
1476 {
1477 struct pci_dev *pdev = vdev->pdev;
1478 int ret = 0;
1479
1480 /*
1481 * We try to read physical config space in the largest chunks
1482 * we can, assuming that all of the fields support dword access.
1483 * pci_save_state() makes this same assumption and seems to do ok.
1484 */
1485 while (size) {
1486 int filled;
1487
1488 if (size >= 4 && !(offset % 4)) {
1489 __le32 *dwordp = (__le32 *)&vdev->vconfig[offset];
1490 u32 dword;
1491
1492 ret = pci_read_config_dword(pdev, offset, &dword);
1493 if (ret)
1494 return ret;
1495 *dwordp = cpu_to_le32(dword);
1496 filled = 4;
1497 } else if (size >= 2 && !(offset % 2)) {
1498 __le16 *wordp = (__le16 *)&vdev->vconfig[offset];
1499 u16 word;
1500
1501 ret = pci_read_config_word(pdev, offset, &word);
1502 if (ret)
1503 return ret;
1504 *wordp = cpu_to_le16(word);
1505 filled = 2;
1506 } else {
1507 u8 *byte = &vdev->vconfig[offset];
1508 ret = pci_read_config_byte(pdev, offset, byte);
1509 if (ret)
1510 return ret;
1511 filled = 1;
1512 }
1513
1514 offset += filled;
1515 size -= filled;
1516 }
1517
1518 return ret;
1519 }
1520
vfio_cap_init(struct vfio_pci_core_device * vdev)1521 static int vfio_cap_init(struct vfio_pci_core_device *vdev)
1522 {
1523 struct pci_dev *pdev = vdev->pdev;
1524 u8 *map = vdev->pci_config_map;
1525 u16 status;
1526 u8 pos, *prev, cap;
1527 int loops, ret, caps = 0;
1528
1529 /* Any capabilities? */
1530 ret = pci_read_config_word(pdev, PCI_STATUS, &status);
1531 if (ret)
1532 return ret;
1533
1534 if (!(status & PCI_STATUS_CAP_LIST))
1535 return 0; /* Done */
1536
1537 ret = pci_read_config_byte(pdev, PCI_CAPABILITY_LIST, &pos);
1538 if (ret)
1539 return ret;
1540
1541 /* Mark the previous position in case we want to skip a capability */
1542 prev = &vdev->vconfig[PCI_CAPABILITY_LIST];
1543
1544 /* We can bound our loop, capabilities are dword aligned */
1545 loops = (PCI_CFG_SPACE_SIZE - PCI_STD_HEADER_SIZEOF) / PCI_CAP_SIZEOF;
1546 while (pos && loops--) {
1547 u8 next;
1548 int i, len = 0;
1549
1550 ret = pci_read_config_byte(pdev, pos, &cap);
1551 if (ret)
1552 return ret;
1553
1554 ret = pci_read_config_byte(pdev,
1555 pos + PCI_CAP_LIST_NEXT, &next);
1556 if (ret)
1557 return ret;
1558
1559 /*
1560 * ID 0 is a NULL capability, conflicting with our fake
1561 * PCI_CAP_ID_BASIC. As it has no content, consider it
1562 * hidden for now.
1563 */
1564 if (cap && cap <= PCI_CAP_ID_MAX) {
1565 len = pci_cap_length[cap];
1566 if (len == 0xFF) { /* Variable length */
1567 len = vfio_cap_len(vdev, cap, pos);
1568 if (len < 0)
1569 return len;
1570 }
1571 }
1572
1573 if (!len) {
1574 pci_dbg(pdev, "%s: hiding cap %#x@%#x\n", __func__,
1575 cap, pos);
1576 *prev = next;
1577 pos = next;
1578 continue;
1579 }
1580
1581 /* Sanity check, do we overlap other capabilities? */
1582 for (i = 0; i < len; i++) {
1583 if (likely(map[pos + i] == PCI_CAP_ID_INVALID))
1584 continue;
1585
1586 pci_warn(pdev, "%s: PCI config conflict @%#x, was cap %#x now cap %#x\n",
1587 __func__, pos + i, map[pos + i], cap);
1588 }
1589
1590 BUILD_BUG_ON(PCI_CAP_ID_MAX >= PCI_CAP_ID_INVALID_VIRT);
1591
1592 memset(map + pos, cap, len);
1593 ret = vfio_fill_vconfig_bytes(vdev, pos, len);
1594 if (ret)
1595 return ret;
1596
1597 if (cap == PCI_CAP_ID_PM)
1598 vfio_update_pm_vconfig_bytes(vdev, pos);
1599
1600 prev = &vdev->vconfig[pos + PCI_CAP_LIST_NEXT];
1601 pos = next;
1602 caps++;
1603 }
1604
1605 /* If we didn't fill any capabilities, clear the status flag */
1606 if (!caps) {
1607 __le16 *vstatus = (__le16 *)&vdev->vconfig[PCI_STATUS];
1608 *vstatus &= ~cpu_to_le16(PCI_STATUS_CAP_LIST);
1609 }
1610
1611 return 0;
1612 }
1613
vfio_ecap_init(struct vfio_pci_core_device * vdev)1614 static int vfio_ecap_init(struct vfio_pci_core_device *vdev)
1615 {
1616 struct pci_dev *pdev = vdev->pdev;
1617 u8 *map = vdev->pci_config_map;
1618 u16 epos;
1619 __le32 *prev = NULL;
1620 int loops, ret, ecaps = 0;
1621
1622 if (!vdev->extended_caps)
1623 return 0;
1624
1625 epos = PCI_CFG_SPACE_SIZE;
1626
1627 loops = (pdev->cfg_size - PCI_CFG_SPACE_SIZE) / PCI_CAP_SIZEOF;
1628
1629 while (loops-- && epos >= PCI_CFG_SPACE_SIZE) {
1630 u32 header;
1631 u16 ecap;
1632 int i, len = 0;
1633 bool hidden = false;
1634
1635 ret = pci_read_config_dword(pdev, epos, &header);
1636 if (ret)
1637 return ret;
1638
1639 ecap = PCI_EXT_CAP_ID(header);
1640
1641 if (ecap <= PCI_EXT_CAP_ID_MAX) {
1642 len = pci_ext_cap_length[ecap];
1643 if (len == 0xFF) {
1644 len = vfio_ext_cap_len(vdev, ecap, epos);
1645 if (len < 0)
1646 return len;
1647 }
1648 }
1649
1650 if (!len) {
1651 pci_dbg(pdev, "%s: hiding ecap %#x@%#x\n",
1652 __func__, ecap, epos);
1653
1654 /* If not the first in the chain, we can skip over it */
1655 if (prev) {
1656 u32 val = epos = PCI_EXT_CAP_NEXT(header);
1657 *prev &= cpu_to_le32(~(0xffcU << 20));
1658 *prev |= cpu_to_le32(val << 20);
1659 continue;
1660 }
1661
1662 /*
1663 * Otherwise, fill in a placeholder, the direct
1664 * readfn will virtualize this automatically
1665 */
1666 len = PCI_CAP_SIZEOF;
1667 hidden = true;
1668 }
1669
1670 for (i = 0; i < len; i++) {
1671 if (likely(map[epos + i] == PCI_CAP_ID_INVALID))
1672 continue;
1673
1674 pci_warn(pdev, "%s: PCI config conflict @%#x, was ecap %#x now ecap %#x\n",
1675 __func__, epos + i, map[epos + i], ecap);
1676 }
1677
1678 /*
1679 * Even though ecap is 2 bytes, we're currently a long way
1680 * from exceeding 1 byte capabilities. If we ever make it
1681 * up to 0xFE we'll need to up this to a two-byte, byte map.
1682 */
1683 BUILD_BUG_ON(PCI_EXT_CAP_ID_MAX >= PCI_CAP_ID_INVALID_VIRT);
1684
1685 memset(map + epos, ecap, len);
1686 ret = vfio_fill_vconfig_bytes(vdev, epos, len);
1687 if (ret)
1688 return ret;
1689
1690 /*
1691 * If we're just using this capability to anchor the list,
1692 * hide the real ID. Only count real ecaps. XXX PCI spec
1693 * indicates to use cap id = 0, version = 0, next = 0 if
1694 * ecaps are absent, hope users check all the way to next.
1695 */
1696 if (hidden)
1697 *(__le32 *)&vdev->vconfig[epos] &=
1698 cpu_to_le32((0xffcU << 20));
1699 else
1700 ecaps++;
1701
1702 prev = (__le32 *)&vdev->vconfig[epos];
1703 epos = PCI_EXT_CAP_NEXT(header);
1704 }
1705
1706 if (!ecaps)
1707 *(u32 *)&vdev->vconfig[PCI_CFG_SPACE_SIZE] = 0;
1708
1709 return 0;
1710 }
1711
1712 /*
1713 * Nag about hardware bugs, hopefully to have vendors fix them, but at least
1714 * to collect a list of dependencies for the VF INTx pin quirk below.
1715 */
1716 static const struct pci_device_id known_bogus_vf_intx_pin[] = {
1717 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x270c) },
1718 {}
1719 };
1720
1721 /*
1722 * For each device we allocate a pci_config_map that indicates the
1723 * capability occupying each dword and thus the struct perm_bits we
1724 * use for read and write. We also allocate a virtualized config
1725 * space which tracks reads and writes to bits that we emulate for
1726 * the user. Initial values filled from device.
1727 *
1728 * Using shared struct perm_bits between all vfio-pci devices saves
1729 * us from allocating cfg_size buffers for virt and write for every
1730 * device. We could remove vconfig and allocate individual buffers
1731 * for each area requiring emulated bits, but the array of pointers
1732 * would be comparable in size (at least for standard config space).
1733 */
vfio_config_init(struct vfio_pci_core_device * vdev)1734 int vfio_config_init(struct vfio_pci_core_device *vdev)
1735 {
1736 struct pci_dev *pdev = vdev->pdev;
1737 u8 *map, *vconfig;
1738 int ret;
1739
1740 /*
1741 * Config space, caps and ecaps are all dword aligned, so we could
1742 * use one byte per dword to record the type. However, there are
1743 * no requirements on the length of a capability, so the gap between
1744 * capabilities needs byte granularity.
1745 */
1746 map = kmalloc(pdev->cfg_size, GFP_KERNEL_ACCOUNT);
1747 if (!map)
1748 return -ENOMEM;
1749
1750 vconfig = kmalloc(pdev->cfg_size, GFP_KERNEL_ACCOUNT);
1751 if (!vconfig) {
1752 kfree(map);
1753 return -ENOMEM;
1754 }
1755
1756 vdev->pci_config_map = map;
1757 vdev->vconfig = vconfig;
1758
1759 memset(map, PCI_CAP_ID_BASIC, PCI_STD_HEADER_SIZEOF);
1760 memset(map + PCI_STD_HEADER_SIZEOF, PCI_CAP_ID_INVALID,
1761 pdev->cfg_size - PCI_STD_HEADER_SIZEOF);
1762
1763 ret = vfio_fill_vconfig_bytes(vdev, 0, PCI_STD_HEADER_SIZEOF);
1764 if (ret)
1765 goto out;
1766
1767 vdev->bardirty = true;
1768
1769 /*
1770 * XXX can we just pci_load_saved_state/pci_restore_state?
1771 * may need to rebuild vconfig after that
1772 */
1773
1774 /* For restore after reset */
1775 vdev->rbar[0] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_0]);
1776 vdev->rbar[1] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_1]);
1777 vdev->rbar[2] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_2]);
1778 vdev->rbar[3] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_3]);
1779 vdev->rbar[4] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_4]);
1780 vdev->rbar[5] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_5]);
1781 vdev->rbar[6] = le32_to_cpu(*(__le32 *)&vconfig[PCI_ROM_ADDRESS]);
1782
1783 if (pdev->is_virtfn) {
1784 *(__le16 *)&vconfig[PCI_VENDOR_ID] = cpu_to_le16(pdev->vendor);
1785 *(__le16 *)&vconfig[PCI_DEVICE_ID] = cpu_to_le16(pdev->device);
1786
1787 /*
1788 * Per SR-IOV spec rev 1.1, 3.4.1.18 the interrupt pin register
1789 * does not apply to VFs and VFs must implement this register
1790 * as read-only with value zero. Userspace is not readily able
1791 * to identify whether a device is a VF and thus that the pin
1792 * definition on the device is bogus should it violate this
1793 * requirement. We already virtualize the pin register for
1794 * other purposes, so we simply need to replace the bogus value
1795 * and consider VFs when we determine INTx IRQ count.
1796 */
1797 if (vconfig[PCI_INTERRUPT_PIN] &&
1798 !pci_match_id(known_bogus_vf_intx_pin, pdev))
1799 pci_warn(pdev,
1800 "Hardware bug: VF reports bogus INTx pin %d\n",
1801 vconfig[PCI_INTERRUPT_PIN]);
1802
1803 vconfig[PCI_INTERRUPT_PIN] = 0; /* Gratuitous for good VFs */
1804 }
1805 if (pdev->no_command_memory) {
1806 /*
1807 * VFs and devices that set pdev->no_command_memory do not
1808 * implement the memory enable bit of the COMMAND register
1809 * therefore we'll not have it set in our initial copy of
1810 * config space after pci_enable_device(). For consistency
1811 * with PFs, set the virtual enable bit here.
1812 */
1813 *(__le16 *)&vconfig[PCI_COMMAND] |=
1814 cpu_to_le16(PCI_COMMAND_MEMORY);
1815 }
1816
1817 if (!IS_ENABLED(CONFIG_VFIO_PCI_INTX) || vdev->nointx ||
1818 !vdev->pdev->irq || vdev->pdev->irq == IRQ_NOTCONNECTED)
1819 vconfig[PCI_INTERRUPT_PIN] = 0;
1820
1821 ret = vfio_cap_init(vdev);
1822 if (ret)
1823 goto out;
1824
1825 ret = vfio_ecap_init(vdev);
1826 if (ret)
1827 goto out;
1828
1829 return 0;
1830
1831 out:
1832 kfree(map);
1833 vdev->pci_config_map = NULL;
1834 kfree(vconfig);
1835 vdev->vconfig = NULL;
1836 return pcibios_err_to_errno(ret);
1837 }
1838
vfio_config_free(struct vfio_pci_core_device * vdev)1839 void vfio_config_free(struct vfio_pci_core_device *vdev)
1840 {
1841 kfree(vdev->vconfig);
1842 vdev->vconfig = NULL;
1843 kfree(vdev->pci_config_map);
1844 vdev->pci_config_map = NULL;
1845 if (vdev->msi_perm) {
1846 free_perm_bits(vdev->msi_perm);
1847 kfree(vdev->msi_perm);
1848 vdev->msi_perm = NULL;
1849 }
1850 }
1851
1852 /*
1853 * Find the remaining number of bytes in a dword that match the given
1854 * position. Stop at either the end of the capability or the dword boundary.
1855 */
vfio_pci_cap_remaining_dword(struct vfio_pci_core_device * vdev,loff_t pos)1856 static size_t vfio_pci_cap_remaining_dword(struct vfio_pci_core_device *vdev,
1857 loff_t pos)
1858 {
1859 u8 cap = vdev->pci_config_map[pos];
1860 size_t i;
1861
1862 for (i = 1; (pos + i) % 4 && vdev->pci_config_map[pos + i] == cap; i++)
1863 /* nop */;
1864
1865 return i;
1866 }
1867
vfio_config_do_rw(struct vfio_pci_core_device * vdev,char __user * buf,size_t count,loff_t * ppos,bool iswrite)1868 static ssize_t vfio_config_do_rw(struct vfio_pci_core_device *vdev, char __user *buf,
1869 size_t count, loff_t *ppos, bool iswrite)
1870 {
1871 struct pci_dev *pdev = vdev->pdev;
1872 struct perm_bits *perm;
1873 __le32 val = 0;
1874 int cap_start = 0, offset;
1875 u8 cap_id;
1876 ssize_t ret;
1877
1878 if (*ppos < 0 || *ppos >= pdev->cfg_size ||
1879 *ppos + count > pdev->cfg_size)
1880 return -EFAULT;
1881
1882 /*
1883 * Chop accesses into aligned chunks containing no more than a
1884 * single capability. Caller increments to the next chunk.
1885 */
1886 count = min(count, vfio_pci_cap_remaining_dword(vdev, *ppos));
1887 if (count >= 4 && !(*ppos % 4))
1888 count = 4;
1889 else if (count >= 2 && !(*ppos % 2))
1890 count = 2;
1891 else
1892 count = 1;
1893
1894 ret = count;
1895
1896 cap_id = vdev->pci_config_map[*ppos];
1897
1898 if (cap_id == PCI_CAP_ID_INVALID) {
1899 perm = &unassigned_perms;
1900 cap_start = *ppos;
1901 } else if (cap_id == PCI_CAP_ID_INVALID_VIRT) {
1902 perm = &virt_perms;
1903 cap_start = *ppos;
1904 } else {
1905 if (*ppos >= PCI_CFG_SPACE_SIZE) {
1906 /*
1907 * We can get a cap_id that exceeds PCI_EXT_CAP_ID_MAX
1908 * if we're hiding an unknown capability at the start
1909 * of the extended capability list. Use default, ro
1910 * access, which will virtualize the id and next values.
1911 */
1912 if (cap_id > PCI_EXT_CAP_ID_MAX)
1913 perm = &direct_ro_perms;
1914 else
1915 perm = &ecap_perms[cap_id];
1916
1917 cap_start = vfio_find_cap_start(vdev, *ppos);
1918 } else {
1919 WARN_ON(cap_id > PCI_CAP_ID_MAX);
1920
1921 perm = &cap_perms[cap_id];
1922
1923 if (cap_id == PCI_CAP_ID_MSI)
1924 perm = vdev->msi_perm;
1925
1926 if (cap_id > PCI_CAP_ID_BASIC)
1927 cap_start = vfio_find_cap_start(vdev, *ppos);
1928 }
1929 }
1930
1931 WARN_ON(!cap_start && cap_id != PCI_CAP_ID_BASIC);
1932 WARN_ON(cap_start > *ppos);
1933
1934 offset = *ppos - cap_start;
1935
1936 if (iswrite) {
1937 if (!perm->writefn)
1938 return ret;
1939
1940 if (copy_from_user(&val, buf, count))
1941 return -EFAULT;
1942
1943 ret = perm->writefn(vdev, *ppos, count, perm, offset, val);
1944 } else {
1945 if (perm->readfn) {
1946 ret = perm->readfn(vdev, *ppos, count,
1947 perm, offset, &val);
1948 if (ret < 0)
1949 return ret;
1950 }
1951
1952 if (copy_to_user(buf, &val, count))
1953 return -EFAULT;
1954 }
1955
1956 return ret;
1957 }
1958
vfio_pci_config_rw(struct vfio_pci_core_device * vdev,char __user * buf,size_t count,loff_t * ppos,bool iswrite)1959 ssize_t vfio_pci_config_rw(struct vfio_pci_core_device *vdev, char __user *buf,
1960 size_t count, loff_t *ppos, bool iswrite)
1961 {
1962 size_t done = 0;
1963 int ret = 0;
1964 loff_t pos = *ppos;
1965
1966 pos &= VFIO_PCI_OFFSET_MASK;
1967
1968 while (count) {
1969 ret = vfio_config_do_rw(vdev, buf, count, &pos, iswrite);
1970 if (ret < 0)
1971 return ret;
1972
1973 count -= ret;
1974 done += ret;
1975 buf += ret;
1976 pos += ret;
1977 }
1978
1979 *ppos += done;
1980
1981 return done;
1982 }
1983
1984 /**
1985 * vfio_pci_core_range_intersect_range() - Determine overlap between a buffer
1986 * and register offset ranges.
1987 * @buf_start: start offset of the buffer
1988 * @buf_cnt: number of buffer bytes
1989 * @reg_start: start register offset
1990 * @reg_cnt: number of register bytes
1991 * @buf_offset: start offset of overlap in the buffer
1992 * @intersect_count: number of overlapping bytes
1993 * @register_offset: start offset of overlap in register
1994 *
1995 * Returns: true if there is overlap, false if not.
1996 * The overlap start and size is returned through function args.
1997 */
vfio_pci_core_range_intersect_range(loff_t buf_start,size_t buf_cnt,loff_t reg_start,size_t reg_cnt,loff_t * buf_offset,size_t * intersect_count,size_t * register_offset)1998 bool vfio_pci_core_range_intersect_range(loff_t buf_start, size_t buf_cnt,
1999 loff_t reg_start, size_t reg_cnt,
2000 loff_t *buf_offset,
2001 size_t *intersect_count,
2002 size_t *register_offset)
2003 {
2004 if (buf_start <= reg_start &&
2005 buf_start + buf_cnt > reg_start) {
2006 *buf_offset = reg_start - buf_start;
2007 *intersect_count = min_t(size_t, reg_cnt,
2008 buf_start + buf_cnt - reg_start);
2009 *register_offset = 0;
2010 return true;
2011 }
2012
2013 if (buf_start > reg_start &&
2014 buf_start < reg_start + reg_cnt) {
2015 *buf_offset = 0;
2016 *intersect_count = min_t(size_t, buf_cnt,
2017 reg_start + reg_cnt - buf_start);
2018 *register_offset = buf_start - reg_start;
2019 return true;
2020 }
2021
2022 return false;
2023 }
2024 EXPORT_SYMBOL_GPL(vfio_pci_core_range_intersect_range);
2025