1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine (KVM) Hypervisor
4 *
5 * Copyright (C) 2006 Qumranet, Inc.
6 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
7 *
8 * Authors:
9 * Avi Kivity <avi@qumranet.com>
10 * Yaniv Kamay <yaniv@qumranet.com>
11 */
12
13 #include <kvm/iodev.h>
14
15 #include <linux/kvm_host.h>
16 #include <linux/kvm.h>
17 #include <linux/module.h>
18 #include <linux/errno.h>
19 #include <linux/percpu.h>
20 #include <linux/mm.h>
21 #include <linux/miscdevice.h>
22 #include <linux/vmalloc.h>
23 #include <linux/reboot.h>
24 #include <linux/debugfs.h>
25 #include <linux/highmem.h>
26 #include <linux/file.h>
27 #include <linux/syscore_ops.h>
28 #include <linux/cpu.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sched/mm.h>
31 #include <linux/sched/stat.h>
32 #include <linux/cpumask.h>
33 #include <linux/smp.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/profile.h>
36 #include <linux/kvm_para.h>
37 #include <linux/pagemap.h>
38 #include <linux/mman.h>
39 #include <linux/swap.h>
40 #include <linux/bitops.h>
41 #include <linux/spinlock.h>
42 #include <linux/compat.h>
43 #include <linux/srcu.h>
44 #include <linux/hugetlb.h>
45 #include <linux/slab.h>
46 #include <linux/sort.h>
47 #include <linux/bsearch.h>
48 #include <linux/io.h>
49 #include <linux/lockdep.h>
50 #include <linux/kthread.h>
51 #include <linux/suspend.h>
52
53 #include <asm/processor.h>
54 #include <asm/ioctl.h>
55 #include <linux/uaccess.h>
56
57 #include "coalesced_mmio.h"
58 #include "async_pf.h"
59 #include "kvm_mm.h"
60 #include "vfio.h"
61
62 #include <trace/events/ipi.h>
63
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/kvm.h>
66
67 #include <linux/kvm_dirty_ring.h>
68
69
70 /* Worst case buffer size needed for holding an integer. */
71 #define ITOA_MAX_LEN 12
72
73 MODULE_AUTHOR("Qumranet");
74 MODULE_DESCRIPTION("Kernel-based Virtual Machine (KVM) Hypervisor");
75 MODULE_LICENSE("GPL");
76
77 /* Architectures should define their poll value according to the halt latency */
78 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
79 module_param(halt_poll_ns, uint, 0644);
80 EXPORT_SYMBOL_GPL(halt_poll_ns);
81
82 /* Default doubles per-vcpu halt_poll_ns. */
83 unsigned int halt_poll_ns_grow = 2;
84 module_param(halt_poll_ns_grow, uint, 0644);
85 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
86
87 /* The start value to grow halt_poll_ns from */
88 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
89 module_param(halt_poll_ns_grow_start, uint, 0644);
90 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
91
92 /* Default halves per-vcpu halt_poll_ns. */
93 unsigned int halt_poll_ns_shrink = 2;
94 module_param(halt_poll_ns_shrink, uint, 0644);
95 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
96
97 /*
98 * Allow direct access (from KVM or the CPU) without MMU notifier protection
99 * to unpinned pages.
100 */
101 static bool allow_unsafe_mappings;
102 module_param(allow_unsafe_mappings, bool, 0444);
103
104 /*
105 * Ordering of locks:
106 *
107 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
108 */
109
110 DEFINE_MUTEX(kvm_lock);
111 LIST_HEAD(vm_list);
112
113 static struct kmem_cache *kvm_vcpu_cache;
114
115 static __read_mostly struct preempt_ops kvm_preempt_ops;
116 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
117
118 static struct dentry *kvm_debugfs_dir;
119
120 static const struct file_operations stat_fops_per_vm;
121
122 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
123 unsigned long arg);
124 #ifdef CONFIG_KVM_COMPAT
125 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
126 unsigned long arg);
127 #define KVM_COMPAT(c) .compat_ioctl = (c)
128 #else
129 /*
130 * For architectures that don't implement a compat infrastructure,
131 * adopt a double line of defense:
132 * - Prevent a compat task from opening /dev/kvm
133 * - If the open has been done by a 64bit task, and the KVM fd
134 * passed to a compat task, let the ioctls fail.
135 */
kvm_no_compat_ioctl(struct file * file,unsigned int ioctl,unsigned long arg)136 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
137 unsigned long arg) { return -EINVAL; }
138
kvm_no_compat_open(struct inode * inode,struct file * file)139 static int kvm_no_compat_open(struct inode *inode, struct file *file)
140 {
141 return is_compat_task() ? -ENODEV : 0;
142 }
143 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \
144 .open = kvm_no_compat_open
145 #endif
146 static int kvm_enable_virtualization(void);
147 static void kvm_disable_virtualization(void);
148
149 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
150
151 #define KVM_EVENT_CREATE_VM 0
152 #define KVM_EVENT_DESTROY_VM 1
153 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
154 static unsigned long long kvm_createvm_count;
155 static unsigned long long kvm_active_vms;
156
157 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
158
kvm_arch_guest_memory_reclaimed(struct kvm * kvm)159 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
160 {
161 }
162
163 /*
164 * Switches to specified vcpu, until a matching vcpu_put()
165 */
vcpu_load(struct kvm_vcpu * vcpu)166 void vcpu_load(struct kvm_vcpu *vcpu)
167 {
168 int cpu = get_cpu();
169
170 __this_cpu_write(kvm_running_vcpu, vcpu);
171 preempt_notifier_register(&vcpu->preempt_notifier);
172 kvm_arch_vcpu_load(vcpu, cpu);
173 put_cpu();
174 }
175 EXPORT_SYMBOL_GPL(vcpu_load);
176
vcpu_put(struct kvm_vcpu * vcpu)177 void vcpu_put(struct kvm_vcpu *vcpu)
178 {
179 preempt_disable();
180 kvm_arch_vcpu_put(vcpu);
181 preempt_notifier_unregister(&vcpu->preempt_notifier);
182 __this_cpu_write(kvm_running_vcpu, NULL);
183 preempt_enable();
184 }
185 EXPORT_SYMBOL_GPL(vcpu_put);
186
187 /* TODO: merge with kvm_arch_vcpu_should_kick */
kvm_request_needs_ipi(struct kvm_vcpu * vcpu,unsigned req)188 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
189 {
190 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
191
192 /*
193 * We need to wait for the VCPU to reenable interrupts and get out of
194 * READING_SHADOW_PAGE_TABLES mode.
195 */
196 if (req & KVM_REQUEST_WAIT)
197 return mode != OUTSIDE_GUEST_MODE;
198
199 /*
200 * Need to kick a running VCPU, but otherwise there is nothing to do.
201 */
202 return mode == IN_GUEST_MODE;
203 }
204
ack_kick(void * _completed)205 static void ack_kick(void *_completed)
206 {
207 }
208
kvm_kick_many_cpus(struct cpumask * cpus,bool wait)209 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
210 {
211 if (cpumask_empty(cpus))
212 return false;
213
214 smp_call_function_many(cpus, ack_kick, NULL, wait);
215 return true;
216 }
217
kvm_make_vcpu_request(struct kvm_vcpu * vcpu,unsigned int req,struct cpumask * tmp,int current_cpu)218 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
219 struct cpumask *tmp, int current_cpu)
220 {
221 int cpu;
222
223 if (likely(!(req & KVM_REQUEST_NO_ACTION)))
224 __kvm_make_request(req, vcpu);
225
226 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
227 return;
228
229 /*
230 * Note, the vCPU could get migrated to a different pCPU at any point
231 * after kvm_request_needs_ipi(), which could result in sending an IPI
232 * to the previous pCPU. But, that's OK because the purpose of the IPI
233 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
234 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
235 * after this point is also OK, as the requirement is only that KVM wait
236 * for vCPUs that were reading SPTEs _before_ any changes were
237 * finalized. See kvm_vcpu_kick() for more details on handling requests.
238 */
239 if (kvm_request_needs_ipi(vcpu, req)) {
240 cpu = READ_ONCE(vcpu->cpu);
241 if (cpu != -1 && cpu != current_cpu)
242 __cpumask_set_cpu(cpu, tmp);
243 }
244 }
245
kvm_make_vcpus_request_mask(struct kvm * kvm,unsigned int req,unsigned long * vcpu_bitmap)246 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
247 unsigned long *vcpu_bitmap)
248 {
249 struct kvm_vcpu *vcpu;
250 struct cpumask *cpus;
251 int i, me;
252 bool called;
253
254 me = get_cpu();
255
256 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
257 cpumask_clear(cpus);
258
259 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
260 vcpu = kvm_get_vcpu(kvm, i);
261 if (!vcpu)
262 continue;
263 kvm_make_vcpu_request(vcpu, req, cpus, me);
264 }
265
266 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
267 put_cpu();
268
269 return called;
270 }
271
kvm_make_all_cpus_request(struct kvm * kvm,unsigned int req)272 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
273 {
274 struct kvm_vcpu *vcpu;
275 struct cpumask *cpus;
276 unsigned long i;
277 bool called;
278 int me;
279
280 me = get_cpu();
281
282 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
283 cpumask_clear(cpus);
284
285 kvm_for_each_vcpu(i, vcpu, kvm)
286 kvm_make_vcpu_request(vcpu, req, cpus, me);
287
288 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
289 put_cpu();
290
291 return called;
292 }
293 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
294
kvm_flush_remote_tlbs(struct kvm * kvm)295 void kvm_flush_remote_tlbs(struct kvm *kvm)
296 {
297 ++kvm->stat.generic.remote_tlb_flush_requests;
298
299 /*
300 * We want to publish modifications to the page tables before reading
301 * mode. Pairs with a memory barrier in arch-specific code.
302 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
303 * and smp_mb in walk_shadow_page_lockless_begin/end.
304 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
305 *
306 * There is already an smp_mb__after_atomic() before
307 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
308 * barrier here.
309 */
310 if (!kvm_arch_flush_remote_tlbs(kvm)
311 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
312 ++kvm->stat.generic.remote_tlb_flush;
313 }
314 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
315
kvm_flush_remote_tlbs_range(struct kvm * kvm,gfn_t gfn,u64 nr_pages)316 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages)
317 {
318 if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages))
319 return;
320
321 /*
322 * Fall back to a flushing entire TLBs if the architecture range-based
323 * TLB invalidation is unsupported or can't be performed for whatever
324 * reason.
325 */
326 kvm_flush_remote_tlbs(kvm);
327 }
328
kvm_flush_remote_tlbs_memslot(struct kvm * kvm,const struct kvm_memory_slot * memslot)329 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
330 const struct kvm_memory_slot *memslot)
331 {
332 /*
333 * All current use cases for flushing the TLBs for a specific memslot
334 * are related to dirty logging, and many do the TLB flush out of
335 * mmu_lock. The interaction between the various operations on memslot
336 * must be serialized by slots_locks to ensure the TLB flush from one
337 * operation is observed by any other operation on the same memslot.
338 */
339 lockdep_assert_held(&kvm->slots_lock);
340 kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages);
341 }
342
kvm_flush_shadow_all(struct kvm * kvm)343 static void kvm_flush_shadow_all(struct kvm *kvm)
344 {
345 kvm_arch_flush_shadow_all(kvm);
346 kvm_arch_guest_memory_reclaimed(kvm);
347 }
348
349 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache * mc,gfp_t gfp_flags)350 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
351 gfp_t gfp_flags)
352 {
353 void *page;
354
355 gfp_flags |= mc->gfp_zero;
356
357 if (mc->kmem_cache)
358 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
359
360 page = (void *)__get_free_page(gfp_flags);
361 if (page && mc->init_value)
362 memset64(page, mc->init_value, PAGE_SIZE / sizeof(u64));
363 return page;
364 }
365
__kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache * mc,int capacity,int min)366 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
367 {
368 gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
369 void *obj;
370
371 if (mc->nobjs >= min)
372 return 0;
373
374 if (unlikely(!mc->objects)) {
375 if (WARN_ON_ONCE(!capacity))
376 return -EIO;
377
378 /*
379 * Custom init values can be used only for page allocations,
380 * and obviously conflict with __GFP_ZERO.
381 */
382 if (WARN_ON_ONCE(mc->init_value && (mc->kmem_cache || mc->gfp_zero)))
383 return -EIO;
384
385 mc->objects = kvmalloc_array(capacity, sizeof(void *), gfp);
386 if (!mc->objects)
387 return -ENOMEM;
388
389 mc->capacity = capacity;
390 }
391
392 /* It is illegal to request a different capacity across topups. */
393 if (WARN_ON_ONCE(mc->capacity != capacity))
394 return -EIO;
395
396 while (mc->nobjs < mc->capacity) {
397 obj = mmu_memory_cache_alloc_obj(mc, gfp);
398 if (!obj)
399 return mc->nobjs >= min ? 0 : -ENOMEM;
400 mc->objects[mc->nobjs++] = obj;
401 }
402 return 0;
403 }
404
kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache * mc,int min)405 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
406 {
407 return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
408 }
409
kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache * mc)410 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
411 {
412 return mc->nobjs;
413 }
414
kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache * mc)415 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
416 {
417 while (mc->nobjs) {
418 if (mc->kmem_cache)
419 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
420 else
421 free_page((unsigned long)mc->objects[--mc->nobjs]);
422 }
423
424 kvfree(mc->objects);
425
426 mc->objects = NULL;
427 mc->capacity = 0;
428 }
429
kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache * mc)430 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
431 {
432 void *p;
433
434 if (WARN_ON(!mc->nobjs))
435 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
436 else
437 p = mc->objects[--mc->nobjs];
438 BUG_ON(!p);
439 return p;
440 }
441 #endif
442
kvm_vcpu_init(struct kvm_vcpu * vcpu,struct kvm * kvm,unsigned id)443 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
444 {
445 mutex_init(&vcpu->mutex);
446 vcpu->cpu = -1;
447 vcpu->kvm = kvm;
448 vcpu->vcpu_id = id;
449 vcpu->pid = NULL;
450 rwlock_init(&vcpu->pid_lock);
451 #ifndef __KVM_HAVE_ARCH_WQP
452 rcuwait_init(&vcpu->wait);
453 #endif
454 kvm_async_pf_vcpu_init(vcpu);
455
456 kvm_vcpu_set_in_spin_loop(vcpu, false);
457 kvm_vcpu_set_dy_eligible(vcpu, false);
458 vcpu->preempted = false;
459 vcpu->ready = false;
460 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
461 vcpu->last_used_slot = NULL;
462
463 /* Fill the stats id string for the vcpu */
464 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
465 task_pid_nr(current), id);
466 }
467
kvm_vcpu_destroy(struct kvm_vcpu * vcpu)468 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
469 {
470 kvm_arch_vcpu_destroy(vcpu);
471 kvm_dirty_ring_free(&vcpu->dirty_ring);
472
473 /*
474 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
475 * the vcpu->pid pointer, and at destruction time all file descriptors
476 * are already gone.
477 */
478 put_pid(vcpu->pid);
479
480 free_page((unsigned long)vcpu->run);
481 kmem_cache_free(kvm_vcpu_cache, vcpu);
482 }
483
kvm_destroy_vcpus(struct kvm * kvm)484 void kvm_destroy_vcpus(struct kvm *kvm)
485 {
486 unsigned long i;
487 struct kvm_vcpu *vcpu;
488
489 kvm_for_each_vcpu(i, vcpu, kvm) {
490 kvm_vcpu_destroy(vcpu);
491 xa_erase(&kvm->vcpu_array, i);
492 }
493
494 atomic_set(&kvm->online_vcpus, 0);
495 }
496 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
497
498 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
mmu_notifier_to_kvm(struct mmu_notifier * mn)499 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
500 {
501 return container_of(mn, struct kvm, mmu_notifier);
502 }
503
504 typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
505
506 typedef void (*on_lock_fn_t)(struct kvm *kvm);
507
508 struct kvm_mmu_notifier_range {
509 /*
510 * 64-bit addresses, as KVM notifiers can operate on host virtual
511 * addresses (unsigned long) and guest physical addresses (64-bit).
512 */
513 u64 start;
514 u64 end;
515 union kvm_mmu_notifier_arg arg;
516 gfn_handler_t handler;
517 on_lock_fn_t on_lock;
518 bool flush_on_ret;
519 bool may_block;
520 };
521
522 /*
523 * The inner-most helper returns a tuple containing the return value from the
524 * arch- and action-specific handler, plus a flag indicating whether or not at
525 * least one memslot was found, i.e. if the handler found guest memory.
526 *
527 * Note, most notifiers are averse to booleans, so even though KVM tracks the
528 * return from arch code as a bool, outer helpers will cast it to an int. :-(
529 */
530 typedef struct kvm_mmu_notifier_return {
531 bool ret;
532 bool found_memslot;
533 } kvm_mn_ret_t;
534
535 /*
536 * Use a dedicated stub instead of NULL to indicate that there is no callback
537 * function/handler. The compiler technically can't guarantee that a real
538 * function will have a non-zero address, and so it will generate code to
539 * check for !NULL, whereas comparing against a stub will be elided at compile
540 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
541 */
kvm_null_fn(void)542 static void kvm_null_fn(void)
543 {
544
545 }
546 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
547
548 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
549 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \
550 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
551 node; \
552 node = interval_tree_iter_next(node, start, last)) \
553
__kvm_handle_hva_range(struct kvm * kvm,const struct kvm_mmu_notifier_range * range)554 static __always_inline kvm_mn_ret_t __kvm_handle_hva_range(struct kvm *kvm,
555 const struct kvm_mmu_notifier_range *range)
556 {
557 struct kvm_mmu_notifier_return r = {
558 .ret = false,
559 .found_memslot = false,
560 };
561 struct kvm_gfn_range gfn_range;
562 struct kvm_memory_slot *slot;
563 struct kvm_memslots *slots;
564 int i, idx;
565
566 if (WARN_ON_ONCE(range->end <= range->start))
567 return r;
568
569 /* A null handler is allowed if and only if on_lock() is provided. */
570 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
571 IS_KVM_NULL_FN(range->handler)))
572 return r;
573
574 idx = srcu_read_lock(&kvm->srcu);
575
576 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
577 struct interval_tree_node *node;
578
579 slots = __kvm_memslots(kvm, i);
580 kvm_for_each_memslot_in_hva_range(node, slots,
581 range->start, range->end - 1) {
582 unsigned long hva_start, hva_end;
583
584 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
585 hva_start = max_t(unsigned long, range->start, slot->userspace_addr);
586 hva_end = min_t(unsigned long, range->end,
587 slot->userspace_addr + (slot->npages << PAGE_SHIFT));
588
589 /*
590 * To optimize for the likely case where the address
591 * range is covered by zero or one memslots, don't
592 * bother making these conditional (to avoid writes on
593 * the second or later invocation of the handler).
594 */
595 gfn_range.arg = range->arg;
596 gfn_range.may_block = range->may_block;
597 /*
598 * HVA-based notifications aren't relevant to private
599 * mappings as they don't have a userspace mapping.
600 */
601 gfn_range.attr_filter = KVM_FILTER_SHARED;
602
603 /*
604 * {gfn(page) | page intersects with [hva_start, hva_end)} =
605 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
606 */
607 gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
608 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
609 gfn_range.slot = slot;
610
611 if (!r.found_memslot) {
612 r.found_memslot = true;
613 KVM_MMU_LOCK(kvm);
614 if (!IS_KVM_NULL_FN(range->on_lock))
615 range->on_lock(kvm);
616
617 if (IS_KVM_NULL_FN(range->handler))
618 goto mmu_unlock;
619 }
620 r.ret |= range->handler(kvm, &gfn_range);
621 }
622 }
623
624 if (range->flush_on_ret && r.ret)
625 kvm_flush_remote_tlbs(kvm);
626
627 mmu_unlock:
628 if (r.found_memslot)
629 KVM_MMU_UNLOCK(kvm);
630
631 srcu_read_unlock(&kvm->srcu, idx);
632
633 return r;
634 }
635
kvm_handle_hva_range(struct mmu_notifier * mn,unsigned long start,unsigned long end,gfn_handler_t handler,bool flush_on_ret)636 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
637 unsigned long start,
638 unsigned long end,
639 gfn_handler_t handler,
640 bool flush_on_ret)
641 {
642 struct kvm *kvm = mmu_notifier_to_kvm(mn);
643 const struct kvm_mmu_notifier_range range = {
644 .start = start,
645 .end = end,
646 .handler = handler,
647 .on_lock = (void *)kvm_null_fn,
648 .flush_on_ret = flush_on_ret,
649 .may_block = false,
650 };
651
652 return __kvm_handle_hva_range(kvm, &range).ret;
653 }
654
kvm_handle_hva_range_no_flush(struct mmu_notifier * mn,unsigned long start,unsigned long end,gfn_handler_t handler)655 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
656 unsigned long start,
657 unsigned long end,
658 gfn_handler_t handler)
659 {
660 return kvm_handle_hva_range(mn, start, end, handler, false);
661 }
662
kvm_mmu_invalidate_begin(struct kvm * kvm)663 void kvm_mmu_invalidate_begin(struct kvm *kvm)
664 {
665 lockdep_assert_held_write(&kvm->mmu_lock);
666 /*
667 * The count increase must become visible at unlock time as no
668 * spte can be established without taking the mmu_lock and
669 * count is also read inside the mmu_lock critical section.
670 */
671 kvm->mmu_invalidate_in_progress++;
672
673 if (likely(kvm->mmu_invalidate_in_progress == 1)) {
674 kvm->mmu_invalidate_range_start = INVALID_GPA;
675 kvm->mmu_invalidate_range_end = INVALID_GPA;
676 }
677 }
678
kvm_mmu_invalidate_range_add(struct kvm * kvm,gfn_t start,gfn_t end)679 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end)
680 {
681 lockdep_assert_held_write(&kvm->mmu_lock);
682
683 WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress);
684
685 if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) {
686 kvm->mmu_invalidate_range_start = start;
687 kvm->mmu_invalidate_range_end = end;
688 } else {
689 /*
690 * Fully tracking multiple concurrent ranges has diminishing
691 * returns. Keep things simple and just find the minimal range
692 * which includes the current and new ranges. As there won't be
693 * enough information to subtract a range after its invalidate
694 * completes, any ranges invalidated concurrently will
695 * accumulate and persist until all outstanding invalidates
696 * complete.
697 */
698 kvm->mmu_invalidate_range_start =
699 min(kvm->mmu_invalidate_range_start, start);
700 kvm->mmu_invalidate_range_end =
701 max(kvm->mmu_invalidate_range_end, end);
702 }
703 }
704
kvm_mmu_unmap_gfn_range(struct kvm * kvm,struct kvm_gfn_range * range)705 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
706 {
707 kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
708 return kvm_unmap_gfn_range(kvm, range);
709 }
710
kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier * mn,const struct mmu_notifier_range * range)711 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
712 const struct mmu_notifier_range *range)
713 {
714 struct kvm *kvm = mmu_notifier_to_kvm(mn);
715 const struct kvm_mmu_notifier_range hva_range = {
716 .start = range->start,
717 .end = range->end,
718 .handler = kvm_mmu_unmap_gfn_range,
719 .on_lock = kvm_mmu_invalidate_begin,
720 .flush_on_ret = true,
721 .may_block = mmu_notifier_range_blockable(range),
722 };
723
724 trace_kvm_unmap_hva_range(range->start, range->end);
725
726 /*
727 * Prevent memslot modification between range_start() and range_end()
728 * so that conditionally locking provides the same result in both
729 * functions. Without that guarantee, the mmu_invalidate_in_progress
730 * adjustments will be imbalanced.
731 *
732 * Pairs with the decrement in range_end().
733 */
734 spin_lock(&kvm->mn_invalidate_lock);
735 kvm->mn_active_invalidate_count++;
736 spin_unlock(&kvm->mn_invalidate_lock);
737
738 /*
739 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
740 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
741 * each cache's lock. There are relatively few caches in existence at
742 * any given time, and the caches themselves can check for hva overlap,
743 * i.e. don't need to rely on memslot overlap checks for performance.
744 * Because this runs without holding mmu_lock, the pfn caches must use
745 * mn_active_invalidate_count (see above) instead of
746 * mmu_invalidate_in_progress.
747 */
748 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end);
749
750 /*
751 * If one or more memslots were found and thus zapped, notify arch code
752 * that guest memory has been reclaimed. This needs to be done *after*
753 * dropping mmu_lock, as x86's reclaim path is slooooow.
754 */
755 if (__kvm_handle_hva_range(kvm, &hva_range).found_memslot)
756 kvm_arch_guest_memory_reclaimed(kvm);
757
758 return 0;
759 }
760
kvm_mmu_invalidate_end(struct kvm * kvm)761 void kvm_mmu_invalidate_end(struct kvm *kvm)
762 {
763 lockdep_assert_held_write(&kvm->mmu_lock);
764
765 /*
766 * This sequence increase will notify the kvm page fault that
767 * the page that is going to be mapped in the spte could have
768 * been freed.
769 */
770 kvm->mmu_invalidate_seq++;
771 smp_wmb();
772 /*
773 * The above sequence increase must be visible before the
774 * below count decrease, which is ensured by the smp_wmb above
775 * in conjunction with the smp_rmb in mmu_invalidate_retry().
776 */
777 kvm->mmu_invalidate_in_progress--;
778 KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm);
779
780 /*
781 * Assert that at least one range was added between start() and end().
782 * Not adding a range isn't fatal, but it is a KVM bug.
783 */
784 WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA);
785 }
786
kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier * mn,const struct mmu_notifier_range * range)787 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
788 const struct mmu_notifier_range *range)
789 {
790 struct kvm *kvm = mmu_notifier_to_kvm(mn);
791 const struct kvm_mmu_notifier_range hva_range = {
792 .start = range->start,
793 .end = range->end,
794 .handler = (void *)kvm_null_fn,
795 .on_lock = kvm_mmu_invalidate_end,
796 .flush_on_ret = false,
797 .may_block = mmu_notifier_range_blockable(range),
798 };
799 bool wake;
800
801 __kvm_handle_hva_range(kvm, &hva_range);
802
803 /* Pairs with the increment in range_start(). */
804 spin_lock(&kvm->mn_invalidate_lock);
805 if (!WARN_ON_ONCE(!kvm->mn_active_invalidate_count))
806 --kvm->mn_active_invalidate_count;
807 wake = !kvm->mn_active_invalidate_count;
808 spin_unlock(&kvm->mn_invalidate_lock);
809
810 /*
811 * There can only be one waiter, since the wait happens under
812 * slots_lock.
813 */
814 if (wake)
815 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
816 }
817
kvm_mmu_notifier_clear_flush_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)818 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
819 struct mm_struct *mm,
820 unsigned long start,
821 unsigned long end)
822 {
823 trace_kvm_age_hva(start, end);
824
825 return kvm_handle_hva_range(mn, start, end, kvm_age_gfn,
826 !IS_ENABLED(CONFIG_KVM_ELIDE_TLB_FLUSH_IF_YOUNG));
827 }
828
kvm_mmu_notifier_clear_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)829 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
830 struct mm_struct *mm,
831 unsigned long start,
832 unsigned long end)
833 {
834 trace_kvm_age_hva(start, end);
835
836 /*
837 * Even though we do not flush TLB, this will still adversely
838 * affect performance on pre-Haswell Intel EPT, where there is
839 * no EPT Access Bit to clear so that we have to tear down EPT
840 * tables instead. If we find this unacceptable, we can always
841 * add a parameter to kvm_age_hva so that it effectively doesn't
842 * do anything on clear_young.
843 *
844 * Also note that currently we never issue secondary TLB flushes
845 * from clear_young, leaving this job up to the regular system
846 * cadence. If we find this inaccurate, we might come up with a
847 * more sophisticated heuristic later.
848 */
849 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
850 }
851
kvm_mmu_notifier_test_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address)852 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
853 struct mm_struct *mm,
854 unsigned long address)
855 {
856 trace_kvm_test_age_hva(address);
857
858 return kvm_handle_hva_range_no_flush(mn, address, address + 1,
859 kvm_test_age_gfn);
860 }
861
kvm_mmu_notifier_release(struct mmu_notifier * mn,struct mm_struct * mm)862 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
863 struct mm_struct *mm)
864 {
865 struct kvm *kvm = mmu_notifier_to_kvm(mn);
866 int idx;
867
868 idx = srcu_read_lock(&kvm->srcu);
869 kvm_flush_shadow_all(kvm);
870 srcu_read_unlock(&kvm->srcu, idx);
871 }
872
873 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
874 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
875 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
876 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
877 .clear_young = kvm_mmu_notifier_clear_young,
878 .test_young = kvm_mmu_notifier_test_young,
879 .release = kvm_mmu_notifier_release,
880 };
881
kvm_init_mmu_notifier(struct kvm * kvm)882 static int kvm_init_mmu_notifier(struct kvm *kvm)
883 {
884 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
885 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
886 }
887
888 #else /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */
889
kvm_init_mmu_notifier(struct kvm * kvm)890 static int kvm_init_mmu_notifier(struct kvm *kvm)
891 {
892 return 0;
893 }
894
895 #endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */
896
897 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
kvm_pm_notifier_call(struct notifier_block * bl,unsigned long state,void * unused)898 static int kvm_pm_notifier_call(struct notifier_block *bl,
899 unsigned long state,
900 void *unused)
901 {
902 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
903
904 return kvm_arch_pm_notifier(kvm, state);
905 }
906
kvm_init_pm_notifier(struct kvm * kvm)907 static void kvm_init_pm_notifier(struct kvm *kvm)
908 {
909 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
910 /* Suspend KVM before we suspend ftrace, RCU, etc. */
911 kvm->pm_notifier.priority = INT_MAX;
912 register_pm_notifier(&kvm->pm_notifier);
913 }
914
kvm_destroy_pm_notifier(struct kvm * kvm)915 static void kvm_destroy_pm_notifier(struct kvm *kvm)
916 {
917 unregister_pm_notifier(&kvm->pm_notifier);
918 }
919 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
kvm_init_pm_notifier(struct kvm * kvm)920 static void kvm_init_pm_notifier(struct kvm *kvm)
921 {
922 }
923
kvm_destroy_pm_notifier(struct kvm * kvm)924 static void kvm_destroy_pm_notifier(struct kvm *kvm)
925 {
926 }
927 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
928
kvm_destroy_dirty_bitmap(struct kvm_memory_slot * memslot)929 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
930 {
931 if (!memslot->dirty_bitmap)
932 return;
933
934 vfree(memslot->dirty_bitmap);
935 memslot->dirty_bitmap = NULL;
936 }
937
938 /* This does not remove the slot from struct kvm_memslots data structures */
kvm_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)939 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
940 {
941 if (slot->flags & KVM_MEM_GUEST_MEMFD)
942 kvm_gmem_unbind(slot);
943
944 kvm_destroy_dirty_bitmap(slot);
945
946 kvm_arch_free_memslot(kvm, slot);
947
948 kfree(slot);
949 }
950
kvm_free_memslots(struct kvm * kvm,struct kvm_memslots * slots)951 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
952 {
953 struct hlist_node *idnode;
954 struct kvm_memory_slot *memslot;
955 int bkt;
956
957 /*
958 * The same memslot objects live in both active and inactive sets,
959 * arbitrarily free using index '1' so the second invocation of this
960 * function isn't operating over a structure with dangling pointers
961 * (even though this function isn't actually touching them).
962 */
963 if (!slots->node_idx)
964 return;
965
966 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
967 kvm_free_memslot(kvm, memslot);
968 }
969
kvm_stats_debugfs_mode(const struct _kvm_stats_desc * pdesc)970 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
971 {
972 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
973 case KVM_STATS_TYPE_INSTANT:
974 return 0444;
975 case KVM_STATS_TYPE_CUMULATIVE:
976 case KVM_STATS_TYPE_PEAK:
977 default:
978 return 0644;
979 }
980 }
981
982
kvm_destroy_vm_debugfs(struct kvm * kvm)983 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
984 {
985 int i;
986 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
987 kvm_vcpu_stats_header.num_desc;
988
989 if (IS_ERR(kvm->debugfs_dentry))
990 return;
991
992 debugfs_remove_recursive(kvm->debugfs_dentry);
993
994 if (kvm->debugfs_stat_data) {
995 for (i = 0; i < kvm_debugfs_num_entries; i++)
996 kfree(kvm->debugfs_stat_data[i]);
997 kfree(kvm->debugfs_stat_data);
998 }
999 }
1000
kvm_create_vm_debugfs(struct kvm * kvm,const char * fdname)1001 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1002 {
1003 static DEFINE_MUTEX(kvm_debugfs_lock);
1004 struct dentry *dent;
1005 char dir_name[ITOA_MAX_LEN * 2];
1006 struct kvm_stat_data *stat_data;
1007 const struct _kvm_stats_desc *pdesc;
1008 int i, ret = -ENOMEM;
1009 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1010 kvm_vcpu_stats_header.num_desc;
1011
1012 if (!debugfs_initialized())
1013 return 0;
1014
1015 snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1016 mutex_lock(&kvm_debugfs_lock);
1017 dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1018 if (dent) {
1019 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1020 dput(dent);
1021 mutex_unlock(&kvm_debugfs_lock);
1022 return 0;
1023 }
1024 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1025 mutex_unlock(&kvm_debugfs_lock);
1026 if (IS_ERR(dent))
1027 return 0;
1028
1029 kvm->debugfs_dentry = dent;
1030 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1031 sizeof(*kvm->debugfs_stat_data),
1032 GFP_KERNEL_ACCOUNT);
1033 if (!kvm->debugfs_stat_data)
1034 goto out_err;
1035
1036 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1037 pdesc = &kvm_vm_stats_desc[i];
1038 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1039 if (!stat_data)
1040 goto out_err;
1041
1042 stat_data->kvm = kvm;
1043 stat_data->desc = pdesc;
1044 stat_data->kind = KVM_STAT_VM;
1045 kvm->debugfs_stat_data[i] = stat_data;
1046 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1047 kvm->debugfs_dentry, stat_data,
1048 &stat_fops_per_vm);
1049 }
1050
1051 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1052 pdesc = &kvm_vcpu_stats_desc[i];
1053 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1054 if (!stat_data)
1055 goto out_err;
1056
1057 stat_data->kvm = kvm;
1058 stat_data->desc = pdesc;
1059 stat_data->kind = KVM_STAT_VCPU;
1060 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1061 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1062 kvm->debugfs_dentry, stat_data,
1063 &stat_fops_per_vm);
1064 }
1065
1066 kvm_arch_create_vm_debugfs(kvm);
1067 return 0;
1068 out_err:
1069 kvm_destroy_vm_debugfs(kvm);
1070 return ret;
1071 }
1072
1073 /*
1074 * Called just after removing the VM from the vm_list, but before doing any
1075 * other destruction.
1076 */
kvm_arch_pre_destroy_vm(struct kvm * kvm)1077 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1078 {
1079 }
1080
1081 /*
1082 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should
1083 * be setup already, so we can create arch-specific debugfs entries under it.
1084 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1085 * a per-arch destroy interface is not needed.
1086 */
kvm_arch_create_vm_debugfs(struct kvm * kvm)1087 void __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1088 {
1089 }
1090
kvm_create_vm(unsigned long type,const char * fdname)1091 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1092 {
1093 struct kvm *kvm = kvm_arch_alloc_vm();
1094 struct kvm_memslots *slots;
1095 int r, i, j;
1096
1097 if (!kvm)
1098 return ERR_PTR(-ENOMEM);
1099
1100 KVM_MMU_LOCK_INIT(kvm);
1101 mmgrab(current->mm);
1102 kvm->mm = current->mm;
1103 kvm_eventfd_init(kvm);
1104 mutex_init(&kvm->lock);
1105 mutex_init(&kvm->irq_lock);
1106 mutex_init(&kvm->slots_lock);
1107 mutex_init(&kvm->slots_arch_lock);
1108 spin_lock_init(&kvm->mn_invalidate_lock);
1109 rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1110 xa_init(&kvm->vcpu_array);
1111 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1112 xa_init(&kvm->mem_attr_array);
1113 #endif
1114
1115 INIT_LIST_HEAD(&kvm->gpc_list);
1116 spin_lock_init(&kvm->gpc_lock);
1117
1118 INIT_LIST_HEAD(&kvm->devices);
1119 kvm->max_vcpus = KVM_MAX_VCPUS;
1120
1121 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1122
1123 /*
1124 * Force subsequent debugfs file creations to fail if the VM directory
1125 * is not created (by kvm_create_vm_debugfs()).
1126 */
1127 kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1128
1129 snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1130 task_pid_nr(current));
1131
1132 r = -ENOMEM;
1133 if (init_srcu_struct(&kvm->srcu))
1134 goto out_err_no_srcu;
1135 if (init_srcu_struct(&kvm->irq_srcu))
1136 goto out_err_no_irq_srcu;
1137
1138 r = kvm_init_irq_routing(kvm);
1139 if (r)
1140 goto out_err_no_irq_routing;
1141
1142 refcount_set(&kvm->users_count, 1);
1143
1144 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1145 for (j = 0; j < 2; j++) {
1146 slots = &kvm->__memslots[i][j];
1147
1148 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1149 slots->hva_tree = RB_ROOT_CACHED;
1150 slots->gfn_tree = RB_ROOT;
1151 hash_init(slots->id_hash);
1152 slots->node_idx = j;
1153
1154 /* Generations must be different for each address space. */
1155 slots->generation = i;
1156 }
1157
1158 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1159 }
1160
1161 r = -ENOMEM;
1162 for (i = 0; i < KVM_NR_BUSES; i++) {
1163 rcu_assign_pointer(kvm->buses[i],
1164 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1165 if (!kvm->buses[i])
1166 goto out_err_no_arch_destroy_vm;
1167 }
1168
1169 r = kvm_arch_init_vm(kvm, type);
1170 if (r)
1171 goto out_err_no_arch_destroy_vm;
1172
1173 r = kvm_enable_virtualization();
1174 if (r)
1175 goto out_err_no_disable;
1176
1177 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1178 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1179 #endif
1180
1181 r = kvm_init_mmu_notifier(kvm);
1182 if (r)
1183 goto out_err_no_mmu_notifier;
1184
1185 r = kvm_coalesced_mmio_init(kvm);
1186 if (r < 0)
1187 goto out_no_coalesced_mmio;
1188
1189 r = kvm_create_vm_debugfs(kvm, fdname);
1190 if (r)
1191 goto out_err_no_debugfs;
1192
1193 mutex_lock(&kvm_lock);
1194 list_add(&kvm->vm_list, &vm_list);
1195 mutex_unlock(&kvm_lock);
1196
1197 preempt_notifier_inc();
1198 kvm_init_pm_notifier(kvm);
1199
1200 return kvm;
1201
1202 out_err_no_debugfs:
1203 kvm_coalesced_mmio_free(kvm);
1204 out_no_coalesced_mmio:
1205 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1206 if (kvm->mmu_notifier.ops)
1207 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1208 #endif
1209 out_err_no_mmu_notifier:
1210 kvm_disable_virtualization();
1211 out_err_no_disable:
1212 kvm_arch_destroy_vm(kvm);
1213 out_err_no_arch_destroy_vm:
1214 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1215 for (i = 0; i < KVM_NR_BUSES; i++)
1216 kfree(kvm_get_bus(kvm, i));
1217 kvm_free_irq_routing(kvm);
1218 out_err_no_irq_routing:
1219 cleanup_srcu_struct(&kvm->irq_srcu);
1220 out_err_no_irq_srcu:
1221 cleanup_srcu_struct(&kvm->srcu);
1222 out_err_no_srcu:
1223 kvm_arch_free_vm(kvm);
1224 mmdrop(current->mm);
1225 return ERR_PTR(r);
1226 }
1227
kvm_destroy_devices(struct kvm * kvm)1228 static void kvm_destroy_devices(struct kvm *kvm)
1229 {
1230 struct kvm_device *dev, *tmp;
1231
1232 /*
1233 * We do not need to take the kvm->lock here, because nobody else
1234 * has a reference to the struct kvm at this point and therefore
1235 * cannot access the devices list anyhow.
1236 *
1237 * The device list is generally managed as an rculist, but list_del()
1238 * is used intentionally here. If a bug in KVM introduced a reader that
1239 * was not backed by a reference on the kvm struct, the hope is that
1240 * it'd consume the poisoned forward pointer instead of suffering a
1241 * use-after-free, even though this cannot be guaranteed.
1242 */
1243 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1244 list_del(&dev->vm_node);
1245 dev->ops->destroy(dev);
1246 }
1247 }
1248
kvm_destroy_vm(struct kvm * kvm)1249 static void kvm_destroy_vm(struct kvm *kvm)
1250 {
1251 int i;
1252 struct mm_struct *mm = kvm->mm;
1253
1254 kvm_destroy_pm_notifier(kvm);
1255 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1256 kvm_destroy_vm_debugfs(kvm);
1257 kvm_arch_sync_events(kvm);
1258 mutex_lock(&kvm_lock);
1259 list_del(&kvm->vm_list);
1260 mutex_unlock(&kvm_lock);
1261 kvm_arch_pre_destroy_vm(kvm);
1262
1263 kvm_free_irq_routing(kvm);
1264 for (i = 0; i < KVM_NR_BUSES; i++) {
1265 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1266
1267 if (bus)
1268 kvm_io_bus_destroy(bus);
1269 kvm->buses[i] = NULL;
1270 }
1271 kvm_coalesced_mmio_free(kvm);
1272 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1273 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1274 /*
1275 * At this point, pending calls to invalidate_range_start()
1276 * have completed but no more MMU notifiers will run, so
1277 * mn_active_invalidate_count may remain unbalanced.
1278 * No threads can be waiting in kvm_swap_active_memslots() as the
1279 * last reference on KVM has been dropped, but freeing
1280 * memslots would deadlock without this manual intervention.
1281 *
1282 * If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU
1283 * notifier between a start() and end(), then there shouldn't be any
1284 * in-progress invalidations.
1285 */
1286 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1287 if (kvm->mn_active_invalidate_count)
1288 kvm->mn_active_invalidate_count = 0;
1289 else
1290 WARN_ON(kvm->mmu_invalidate_in_progress);
1291 #else
1292 kvm_flush_shadow_all(kvm);
1293 #endif
1294 kvm_arch_destroy_vm(kvm);
1295 kvm_destroy_devices(kvm);
1296 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1297 kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1298 kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1299 }
1300 cleanup_srcu_struct(&kvm->irq_srcu);
1301 cleanup_srcu_struct(&kvm->srcu);
1302 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1303 xa_destroy(&kvm->mem_attr_array);
1304 #endif
1305 kvm_arch_free_vm(kvm);
1306 preempt_notifier_dec();
1307 kvm_disable_virtualization();
1308 mmdrop(mm);
1309 }
1310
kvm_get_kvm(struct kvm * kvm)1311 void kvm_get_kvm(struct kvm *kvm)
1312 {
1313 refcount_inc(&kvm->users_count);
1314 }
1315 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1316
1317 /*
1318 * Make sure the vm is not during destruction, which is a safe version of
1319 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise.
1320 */
kvm_get_kvm_safe(struct kvm * kvm)1321 bool kvm_get_kvm_safe(struct kvm *kvm)
1322 {
1323 return refcount_inc_not_zero(&kvm->users_count);
1324 }
1325 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1326
kvm_put_kvm(struct kvm * kvm)1327 void kvm_put_kvm(struct kvm *kvm)
1328 {
1329 if (refcount_dec_and_test(&kvm->users_count))
1330 kvm_destroy_vm(kvm);
1331 }
1332 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1333
1334 /*
1335 * Used to put a reference that was taken on behalf of an object associated
1336 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1337 * of the new file descriptor fails and the reference cannot be transferred to
1338 * its final owner. In such cases, the caller is still actively using @kvm and
1339 * will fail miserably if the refcount unexpectedly hits zero.
1340 */
kvm_put_kvm_no_destroy(struct kvm * kvm)1341 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1342 {
1343 WARN_ON(refcount_dec_and_test(&kvm->users_count));
1344 }
1345 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1346
kvm_vm_release(struct inode * inode,struct file * filp)1347 static int kvm_vm_release(struct inode *inode, struct file *filp)
1348 {
1349 struct kvm *kvm = filp->private_data;
1350
1351 kvm_irqfd_release(kvm);
1352
1353 kvm_put_kvm(kvm);
1354 return 0;
1355 }
1356
1357 /*
1358 * Allocation size is twice as large as the actual dirty bitmap size.
1359 * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1360 */
kvm_alloc_dirty_bitmap(struct kvm_memory_slot * memslot)1361 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1362 {
1363 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1364
1365 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1366 if (!memslot->dirty_bitmap)
1367 return -ENOMEM;
1368
1369 return 0;
1370 }
1371
kvm_get_inactive_memslots(struct kvm * kvm,int as_id)1372 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1373 {
1374 struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1375 int node_idx_inactive = active->node_idx ^ 1;
1376
1377 return &kvm->__memslots[as_id][node_idx_inactive];
1378 }
1379
1380 /*
1381 * Helper to get the address space ID when one of memslot pointers may be NULL.
1382 * This also serves as a sanity that at least one of the pointers is non-NULL,
1383 * and that their address space IDs don't diverge.
1384 */
kvm_memslots_get_as_id(struct kvm_memory_slot * a,struct kvm_memory_slot * b)1385 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1386 struct kvm_memory_slot *b)
1387 {
1388 if (WARN_ON_ONCE(!a && !b))
1389 return 0;
1390
1391 if (!a)
1392 return b->as_id;
1393 if (!b)
1394 return a->as_id;
1395
1396 WARN_ON_ONCE(a->as_id != b->as_id);
1397 return a->as_id;
1398 }
1399
kvm_insert_gfn_node(struct kvm_memslots * slots,struct kvm_memory_slot * slot)1400 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1401 struct kvm_memory_slot *slot)
1402 {
1403 struct rb_root *gfn_tree = &slots->gfn_tree;
1404 struct rb_node **node, *parent;
1405 int idx = slots->node_idx;
1406
1407 parent = NULL;
1408 for (node = &gfn_tree->rb_node; *node; ) {
1409 struct kvm_memory_slot *tmp;
1410
1411 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1412 parent = *node;
1413 if (slot->base_gfn < tmp->base_gfn)
1414 node = &(*node)->rb_left;
1415 else if (slot->base_gfn > tmp->base_gfn)
1416 node = &(*node)->rb_right;
1417 else
1418 BUG();
1419 }
1420
1421 rb_link_node(&slot->gfn_node[idx], parent, node);
1422 rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1423 }
1424
kvm_erase_gfn_node(struct kvm_memslots * slots,struct kvm_memory_slot * slot)1425 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1426 struct kvm_memory_slot *slot)
1427 {
1428 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1429 }
1430
kvm_replace_gfn_node(struct kvm_memslots * slots,struct kvm_memory_slot * old,struct kvm_memory_slot * new)1431 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1432 struct kvm_memory_slot *old,
1433 struct kvm_memory_slot *new)
1434 {
1435 int idx = slots->node_idx;
1436
1437 WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1438
1439 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1440 &slots->gfn_tree);
1441 }
1442
1443 /*
1444 * Replace @old with @new in the inactive memslots.
1445 *
1446 * With NULL @old this simply adds @new.
1447 * With NULL @new this simply removes @old.
1448 *
1449 * If @new is non-NULL its hva_node[slots_idx] range has to be set
1450 * appropriately.
1451 */
kvm_replace_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * new)1452 static void kvm_replace_memslot(struct kvm *kvm,
1453 struct kvm_memory_slot *old,
1454 struct kvm_memory_slot *new)
1455 {
1456 int as_id = kvm_memslots_get_as_id(old, new);
1457 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1458 int idx = slots->node_idx;
1459
1460 if (old) {
1461 hash_del(&old->id_node[idx]);
1462 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1463
1464 if ((long)old == atomic_long_read(&slots->last_used_slot))
1465 atomic_long_set(&slots->last_used_slot, (long)new);
1466
1467 if (!new) {
1468 kvm_erase_gfn_node(slots, old);
1469 return;
1470 }
1471 }
1472
1473 /*
1474 * Initialize @new's hva range. Do this even when replacing an @old
1475 * slot, kvm_copy_memslot() deliberately does not touch node data.
1476 */
1477 new->hva_node[idx].start = new->userspace_addr;
1478 new->hva_node[idx].last = new->userspace_addr +
1479 (new->npages << PAGE_SHIFT) - 1;
1480
1481 /*
1482 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(),
1483 * hva_node needs to be swapped with remove+insert even though hva can't
1484 * change when replacing an existing slot.
1485 */
1486 hash_add(slots->id_hash, &new->id_node[idx], new->id);
1487 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1488
1489 /*
1490 * If the memslot gfn is unchanged, rb_replace_node() can be used to
1491 * switch the node in the gfn tree instead of removing the old and
1492 * inserting the new as two separate operations. Replacement is a
1493 * single O(1) operation versus two O(log(n)) operations for
1494 * remove+insert.
1495 */
1496 if (old && old->base_gfn == new->base_gfn) {
1497 kvm_replace_gfn_node(slots, old, new);
1498 } else {
1499 if (old)
1500 kvm_erase_gfn_node(slots, old);
1501 kvm_insert_gfn_node(slots, new);
1502 }
1503 }
1504
1505 /*
1506 * Flags that do not access any of the extra space of struct
1507 * kvm_userspace_memory_region2. KVM_SET_USER_MEMORY_REGION_V1_FLAGS
1508 * only allows these.
1509 */
1510 #define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \
1511 (KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY)
1512
check_memory_region_flags(struct kvm * kvm,const struct kvm_userspace_memory_region2 * mem)1513 static int check_memory_region_flags(struct kvm *kvm,
1514 const struct kvm_userspace_memory_region2 *mem)
1515 {
1516 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1517
1518 if (kvm_arch_has_private_mem(kvm))
1519 valid_flags |= KVM_MEM_GUEST_MEMFD;
1520
1521 /* Dirty logging private memory is not currently supported. */
1522 if (mem->flags & KVM_MEM_GUEST_MEMFD)
1523 valid_flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
1524
1525 /*
1526 * GUEST_MEMFD is incompatible with read-only memslots, as writes to
1527 * read-only memslots have emulated MMIO, not page fault, semantics,
1528 * and KVM doesn't allow emulated MMIO for private memory.
1529 */
1530 if (kvm_arch_has_readonly_mem(kvm) &&
1531 !(mem->flags & KVM_MEM_GUEST_MEMFD))
1532 valid_flags |= KVM_MEM_READONLY;
1533
1534 if (mem->flags & ~valid_flags)
1535 return -EINVAL;
1536
1537 return 0;
1538 }
1539
kvm_swap_active_memslots(struct kvm * kvm,int as_id)1540 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1541 {
1542 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1543
1544 /* Grab the generation from the activate memslots. */
1545 u64 gen = __kvm_memslots(kvm, as_id)->generation;
1546
1547 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1548 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1549
1550 /*
1551 * Do not store the new memslots while there are invalidations in
1552 * progress, otherwise the locking in invalidate_range_start and
1553 * invalidate_range_end will be unbalanced.
1554 */
1555 spin_lock(&kvm->mn_invalidate_lock);
1556 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1557 while (kvm->mn_active_invalidate_count) {
1558 set_current_state(TASK_UNINTERRUPTIBLE);
1559 spin_unlock(&kvm->mn_invalidate_lock);
1560 schedule();
1561 spin_lock(&kvm->mn_invalidate_lock);
1562 }
1563 finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1564 rcu_assign_pointer(kvm->memslots[as_id], slots);
1565 spin_unlock(&kvm->mn_invalidate_lock);
1566
1567 /*
1568 * Acquired in kvm_set_memslot. Must be released before synchronize
1569 * SRCU below in order to avoid deadlock with another thread
1570 * acquiring the slots_arch_lock in an srcu critical section.
1571 */
1572 mutex_unlock(&kvm->slots_arch_lock);
1573
1574 synchronize_srcu_expedited(&kvm->srcu);
1575
1576 /*
1577 * Increment the new memslot generation a second time, dropping the
1578 * update in-progress flag and incrementing the generation based on
1579 * the number of address spaces. This provides a unique and easily
1580 * identifiable generation number while the memslots are in flux.
1581 */
1582 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1583
1584 /*
1585 * Generations must be unique even across address spaces. We do not need
1586 * a global counter for that, instead the generation space is evenly split
1587 * across address spaces. For example, with two address spaces, address
1588 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1589 * use generations 1, 3, 5, ...
1590 */
1591 gen += kvm_arch_nr_memslot_as_ids(kvm);
1592
1593 kvm_arch_memslots_updated(kvm, gen);
1594
1595 slots->generation = gen;
1596 }
1597
kvm_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)1598 static int kvm_prepare_memory_region(struct kvm *kvm,
1599 const struct kvm_memory_slot *old,
1600 struct kvm_memory_slot *new,
1601 enum kvm_mr_change change)
1602 {
1603 int r;
1604
1605 /*
1606 * If dirty logging is disabled, nullify the bitmap; the old bitmap
1607 * will be freed on "commit". If logging is enabled in both old and
1608 * new, reuse the existing bitmap. If logging is enabled only in the
1609 * new and KVM isn't using a ring buffer, allocate and initialize a
1610 * new bitmap.
1611 */
1612 if (change != KVM_MR_DELETE) {
1613 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1614 new->dirty_bitmap = NULL;
1615 else if (old && old->dirty_bitmap)
1616 new->dirty_bitmap = old->dirty_bitmap;
1617 else if (kvm_use_dirty_bitmap(kvm)) {
1618 r = kvm_alloc_dirty_bitmap(new);
1619 if (r)
1620 return r;
1621
1622 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1623 bitmap_set(new->dirty_bitmap, 0, new->npages);
1624 }
1625 }
1626
1627 r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1628
1629 /* Free the bitmap on failure if it was allocated above. */
1630 if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1631 kvm_destroy_dirty_bitmap(new);
1632
1633 return r;
1634 }
1635
kvm_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)1636 static void kvm_commit_memory_region(struct kvm *kvm,
1637 struct kvm_memory_slot *old,
1638 const struct kvm_memory_slot *new,
1639 enum kvm_mr_change change)
1640 {
1641 int old_flags = old ? old->flags : 0;
1642 int new_flags = new ? new->flags : 0;
1643 /*
1644 * Update the total number of memslot pages before calling the arch
1645 * hook so that architectures can consume the result directly.
1646 */
1647 if (change == KVM_MR_DELETE)
1648 kvm->nr_memslot_pages -= old->npages;
1649 else if (change == KVM_MR_CREATE)
1650 kvm->nr_memslot_pages += new->npages;
1651
1652 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1653 int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1654 atomic_set(&kvm->nr_memslots_dirty_logging,
1655 atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1656 }
1657
1658 kvm_arch_commit_memory_region(kvm, old, new, change);
1659
1660 switch (change) {
1661 case KVM_MR_CREATE:
1662 /* Nothing more to do. */
1663 break;
1664 case KVM_MR_DELETE:
1665 /* Free the old memslot and all its metadata. */
1666 kvm_free_memslot(kvm, old);
1667 break;
1668 case KVM_MR_MOVE:
1669 case KVM_MR_FLAGS_ONLY:
1670 /*
1671 * Free the dirty bitmap as needed; the below check encompasses
1672 * both the flags and whether a ring buffer is being used)
1673 */
1674 if (old->dirty_bitmap && !new->dirty_bitmap)
1675 kvm_destroy_dirty_bitmap(old);
1676
1677 /*
1678 * The final quirk. Free the detached, old slot, but only its
1679 * memory, not any metadata. Metadata, including arch specific
1680 * data, may be reused by @new.
1681 */
1682 kfree(old);
1683 break;
1684 default:
1685 BUG();
1686 }
1687 }
1688
1689 /*
1690 * Activate @new, which must be installed in the inactive slots by the caller,
1691 * by swapping the active slots and then propagating @new to @old once @old is
1692 * unreachable and can be safely modified.
1693 *
1694 * With NULL @old this simply adds @new to @active (while swapping the sets).
1695 * With NULL @new this simply removes @old from @active and frees it
1696 * (while also swapping the sets).
1697 */
kvm_activate_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * new)1698 static void kvm_activate_memslot(struct kvm *kvm,
1699 struct kvm_memory_slot *old,
1700 struct kvm_memory_slot *new)
1701 {
1702 int as_id = kvm_memslots_get_as_id(old, new);
1703
1704 kvm_swap_active_memslots(kvm, as_id);
1705
1706 /* Propagate the new memslot to the now inactive memslots. */
1707 kvm_replace_memslot(kvm, old, new);
1708 }
1709
kvm_copy_memslot(struct kvm_memory_slot * dest,const struct kvm_memory_slot * src)1710 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1711 const struct kvm_memory_slot *src)
1712 {
1713 dest->base_gfn = src->base_gfn;
1714 dest->npages = src->npages;
1715 dest->dirty_bitmap = src->dirty_bitmap;
1716 dest->arch = src->arch;
1717 dest->userspace_addr = src->userspace_addr;
1718 dest->flags = src->flags;
1719 dest->id = src->id;
1720 dest->as_id = src->as_id;
1721 }
1722
kvm_invalidate_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * invalid_slot)1723 static void kvm_invalidate_memslot(struct kvm *kvm,
1724 struct kvm_memory_slot *old,
1725 struct kvm_memory_slot *invalid_slot)
1726 {
1727 /*
1728 * Mark the current slot INVALID. As with all memslot modifications,
1729 * this must be done on an unreachable slot to avoid modifying the
1730 * current slot in the active tree.
1731 */
1732 kvm_copy_memslot(invalid_slot, old);
1733 invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1734 kvm_replace_memslot(kvm, old, invalid_slot);
1735
1736 /*
1737 * Activate the slot that is now marked INVALID, but don't propagate
1738 * the slot to the now inactive slots. The slot is either going to be
1739 * deleted or recreated as a new slot.
1740 */
1741 kvm_swap_active_memslots(kvm, old->as_id);
1742
1743 /*
1744 * From this point no new shadow pages pointing to a deleted, or moved,
1745 * memslot will be created. Validation of sp->gfn happens in:
1746 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1747 * - kvm_is_visible_gfn (mmu_check_root)
1748 */
1749 kvm_arch_flush_shadow_memslot(kvm, old);
1750 kvm_arch_guest_memory_reclaimed(kvm);
1751
1752 /* Was released by kvm_swap_active_memslots(), reacquire. */
1753 mutex_lock(&kvm->slots_arch_lock);
1754
1755 /*
1756 * Copy the arch-specific field of the newly-installed slot back to the
1757 * old slot as the arch data could have changed between releasing
1758 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock
1759 * above. Writers are required to retrieve memslots *after* acquiring
1760 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1761 */
1762 old->arch = invalid_slot->arch;
1763 }
1764
kvm_create_memslot(struct kvm * kvm,struct kvm_memory_slot * new)1765 static void kvm_create_memslot(struct kvm *kvm,
1766 struct kvm_memory_slot *new)
1767 {
1768 /* Add the new memslot to the inactive set and activate. */
1769 kvm_replace_memslot(kvm, NULL, new);
1770 kvm_activate_memslot(kvm, NULL, new);
1771 }
1772
kvm_delete_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * invalid_slot)1773 static void kvm_delete_memslot(struct kvm *kvm,
1774 struct kvm_memory_slot *old,
1775 struct kvm_memory_slot *invalid_slot)
1776 {
1777 /*
1778 * Remove the old memslot (in the inactive memslots) by passing NULL as
1779 * the "new" slot, and for the invalid version in the active slots.
1780 */
1781 kvm_replace_memslot(kvm, old, NULL);
1782 kvm_activate_memslot(kvm, invalid_slot, NULL);
1783 }
1784
kvm_move_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * new,struct kvm_memory_slot * invalid_slot)1785 static void kvm_move_memslot(struct kvm *kvm,
1786 struct kvm_memory_slot *old,
1787 struct kvm_memory_slot *new,
1788 struct kvm_memory_slot *invalid_slot)
1789 {
1790 /*
1791 * Replace the old memslot in the inactive slots, and then swap slots
1792 * and replace the current INVALID with the new as well.
1793 */
1794 kvm_replace_memslot(kvm, old, new);
1795 kvm_activate_memslot(kvm, invalid_slot, new);
1796 }
1797
kvm_update_flags_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * new)1798 static void kvm_update_flags_memslot(struct kvm *kvm,
1799 struct kvm_memory_slot *old,
1800 struct kvm_memory_slot *new)
1801 {
1802 /*
1803 * Similar to the MOVE case, but the slot doesn't need to be zapped as
1804 * an intermediate step. Instead, the old memslot is simply replaced
1805 * with a new, updated copy in both memslot sets.
1806 */
1807 kvm_replace_memslot(kvm, old, new);
1808 kvm_activate_memslot(kvm, old, new);
1809 }
1810
kvm_set_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)1811 static int kvm_set_memslot(struct kvm *kvm,
1812 struct kvm_memory_slot *old,
1813 struct kvm_memory_slot *new,
1814 enum kvm_mr_change change)
1815 {
1816 struct kvm_memory_slot *invalid_slot;
1817 int r;
1818
1819 /*
1820 * Released in kvm_swap_active_memslots().
1821 *
1822 * Must be held from before the current memslots are copied until after
1823 * the new memslots are installed with rcu_assign_pointer, then
1824 * released before the synchronize srcu in kvm_swap_active_memslots().
1825 *
1826 * When modifying memslots outside of the slots_lock, must be held
1827 * before reading the pointer to the current memslots until after all
1828 * changes to those memslots are complete.
1829 *
1830 * These rules ensure that installing new memslots does not lose
1831 * changes made to the previous memslots.
1832 */
1833 mutex_lock(&kvm->slots_arch_lock);
1834
1835 /*
1836 * Invalidate the old slot if it's being deleted or moved. This is
1837 * done prior to actually deleting/moving the memslot to allow vCPUs to
1838 * continue running by ensuring there are no mappings or shadow pages
1839 * for the memslot when it is deleted/moved. Without pre-invalidation
1840 * (and without a lock), a window would exist between effecting the
1841 * delete/move and committing the changes in arch code where KVM or a
1842 * guest could access a non-existent memslot.
1843 *
1844 * Modifications are done on a temporary, unreachable slot. The old
1845 * slot needs to be preserved in case a later step fails and the
1846 * invalidation needs to be reverted.
1847 */
1848 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1849 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1850 if (!invalid_slot) {
1851 mutex_unlock(&kvm->slots_arch_lock);
1852 return -ENOMEM;
1853 }
1854 kvm_invalidate_memslot(kvm, old, invalid_slot);
1855 }
1856
1857 r = kvm_prepare_memory_region(kvm, old, new, change);
1858 if (r) {
1859 /*
1860 * For DELETE/MOVE, revert the above INVALID change. No
1861 * modifications required since the original slot was preserved
1862 * in the inactive slots. Changing the active memslots also
1863 * release slots_arch_lock.
1864 */
1865 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1866 kvm_activate_memslot(kvm, invalid_slot, old);
1867 kfree(invalid_slot);
1868 } else {
1869 mutex_unlock(&kvm->slots_arch_lock);
1870 }
1871 return r;
1872 }
1873
1874 /*
1875 * For DELETE and MOVE, the working slot is now active as the INVALID
1876 * version of the old slot. MOVE is particularly special as it reuses
1877 * the old slot and returns a copy of the old slot (in working_slot).
1878 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the
1879 * old slot is detached but otherwise preserved.
1880 */
1881 if (change == KVM_MR_CREATE)
1882 kvm_create_memslot(kvm, new);
1883 else if (change == KVM_MR_DELETE)
1884 kvm_delete_memslot(kvm, old, invalid_slot);
1885 else if (change == KVM_MR_MOVE)
1886 kvm_move_memslot(kvm, old, new, invalid_slot);
1887 else if (change == KVM_MR_FLAGS_ONLY)
1888 kvm_update_flags_memslot(kvm, old, new);
1889 else
1890 BUG();
1891
1892 /* Free the temporary INVALID slot used for DELETE and MOVE. */
1893 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1894 kfree(invalid_slot);
1895
1896 /*
1897 * No need to refresh new->arch, changes after dropping slots_arch_lock
1898 * will directly hit the final, active memslot. Architectures are
1899 * responsible for knowing that new->arch may be stale.
1900 */
1901 kvm_commit_memory_region(kvm, old, new, change);
1902
1903 return 0;
1904 }
1905
kvm_check_memslot_overlap(struct kvm_memslots * slots,int id,gfn_t start,gfn_t end)1906 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1907 gfn_t start, gfn_t end)
1908 {
1909 struct kvm_memslot_iter iter;
1910
1911 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1912 if (iter.slot->id != id)
1913 return true;
1914 }
1915
1916 return false;
1917 }
1918
kvm_set_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region2 * mem)1919 static int kvm_set_memory_region(struct kvm *kvm,
1920 const struct kvm_userspace_memory_region2 *mem)
1921 {
1922 struct kvm_memory_slot *old, *new;
1923 struct kvm_memslots *slots;
1924 enum kvm_mr_change change;
1925 unsigned long npages;
1926 gfn_t base_gfn;
1927 int as_id, id;
1928 int r;
1929
1930 lockdep_assert_held(&kvm->slots_lock);
1931
1932 r = check_memory_region_flags(kvm, mem);
1933 if (r)
1934 return r;
1935
1936 as_id = mem->slot >> 16;
1937 id = (u16)mem->slot;
1938
1939 /* General sanity checks */
1940 if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1941 (mem->memory_size != (unsigned long)mem->memory_size))
1942 return -EINVAL;
1943 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1944 return -EINVAL;
1945 /* We can read the guest memory with __xxx_user() later on. */
1946 if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1947 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1948 !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1949 mem->memory_size))
1950 return -EINVAL;
1951 if (mem->flags & KVM_MEM_GUEST_MEMFD &&
1952 (mem->guest_memfd_offset & (PAGE_SIZE - 1) ||
1953 mem->guest_memfd_offset + mem->memory_size < mem->guest_memfd_offset))
1954 return -EINVAL;
1955 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_MEM_SLOTS_NUM)
1956 return -EINVAL;
1957 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1958 return -EINVAL;
1959
1960 /*
1961 * The size of userspace-defined memory regions is restricted in order
1962 * to play nice with dirty bitmap operations, which are indexed with an
1963 * "unsigned int". KVM's internal memory regions don't support dirty
1964 * logging, and so are exempt.
1965 */
1966 if (id < KVM_USER_MEM_SLOTS &&
1967 (mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
1968 return -EINVAL;
1969
1970 slots = __kvm_memslots(kvm, as_id);
1971
1972 /*
1973 * Note, the old memslot (and the pointer itself!) may be invalidated
1974 * and/or destroyed by kvm_set_memslot().
1975 */
1976 old = id_to_memslot(slots, id);
1977
1978 if (!mem->memory_size) {
1979 if (!old || !old->npages)
1980 return -EINVAL;
1981
1982 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
1983 return -EIO;
1984
1985 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
1986 }
1987
1988 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
1989 npages = (mem->memory_size >> PAGE_SHIFT);
1990
1991 if (!old || !old->npages) {
1992 change = KVM_MR_CREATE;
1993
1994 /*
1995 * To simplify KVM internals, the total number of pages across
1996 * all memslots must fit in an unsigned long.
1997 */
1998 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
1999 return -EINVAL;
2000 } else { /* Modify an existing slot. */
2001 /* Private memslots are immutable, they can only be deleted. */
2002 if (mem->flags & KVM_MEM_GUEST_MEMFD)
2003 return -EINVAL;
2004 if ((mem->userspace_addr != old->userspace_addr) ||
2005 (npages != old->npages) ||
2006 ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
2007 return -EINVAL;
2008
2009 if (base_gfn != old->base_gfn)
2010 change = KVM_MR_MOVE;
2011 else if (mem->flags != old->flags)
2012 change = KVM_MR_FLAGS_ONLY;
2013 else /* Nothing to change. */
2014 return 0;
2015 }
2016
2017 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2018 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2019 return -EEXIST;
2020
2021 /* Allocate a slot that will persist in the memslot. */
2022 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2023 if (!new)
2024 return -ENOMEM;
2025
2026 new->as_id = as_id;
2027 new->id = id;
2028 new->base_gfn = base_gfn;
2029 new->npages = npages;
2030 new->flags = mem->flags;
2031 new->userspace_addr = mem->userspace_addr;
2032 if (mem->flags & KVM_MEM_GUEST_MEMFD) {
2033 r = kvm_gmem_bind(kvm, new, mem->guest_memfd, mem->guest_memfd_offset);
2034 if (r)
2035 goto out;
2036 }
2037
2038 r = kvm_set_memslot(kvm, old, new, change);
2039 if (r)
2040 goto out_unbind;
2041
2042 return 0;
2043
2044 out_unbind:
2045 if (mem->flags & KVM_MEM_GUEST_MEMFD)
2046 kvm_gmem_unbind(new);
2047 out:
2048 kfree(new);
2049 return r;
2050 }
2051
kvm_set_internal_memslot(struct kvm * kvm,const struct kvm_userspace_memory_region2 * mem)2052 int kvm_set_internal_memslot(struct kvm *kvm,
2053 const struct kvm_userspace_memory_region2 *mem)
2054 {
2055 if (WARN_ON_ONCE(mem->slot < KVM_USER_MEM_SLOTS))
2056 return -EINVAL;
2057
2058 if (WARN_ON_ONCE(mem->flags))
2059 return -EINVAL;
2060
2061 return kvm_set_memory_region(kvm, mem);
2062 }
2063 EXPORT_SYMBOL_GPL(kvm_set_internal_memslot);
2064
kvm_vm_ioctl_set_memory_region(struct kvm * kvm,struct kvm_userspace_memory_region2 * mem)2065 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2066 struct kvm_userspace_memory_region2 *mem)
2067 {
2068 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2069 return -EINVAL;
2070
2071 guard(mutex)(&kvm->slots_lock);
2072 return kvm_set_memory_region(kvm, mem);
2073 }
2074
2075 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2076 /**
2077 * kvm_get_dirty_log - get a snapshot of dirty pages
2078 * @kvm: pointer to kvm instance
2079 * @log: slot id and address to which we copy the log
2080 * @is_dirty: set to '1' if any dirty pages were found
2081 * @memslot: set to the associated memslot, always valid on success
2082 */
kvm_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log,int * is_dirty,struct kvm_memory_slot ** memslot)2083 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2084 int *is_dirty, struct kvm_memory_slot **memslot)
2085 {
2086 struct kvm_memslots *slots;
2087 int i, as_id, id;
2088 unsigned long n;
2089 unsigned long any = 0;
2090
2091 /* Dirty ring tracking may be exclusive to dirty log tracking */
2092 if (!kvm_use_dirty_bitmap(kvm))
2093 return -ENXIO;
2094
2095 *memslot = NULL;
2096 *is_dirty = 0;
2097
2098 as_id = log->slot >> 16;
2099 id = (u16)log->slot;
2100 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2101 return -EINVAL;
2102
2103 slots = __kvm_memslots(kvm, as_id);
2104 *memslot = id_to_memslot(slots, id);
2105 if (!(*memslot) || !(*memslot)->dirty_bitmap)
2106 return -ENOENT;
2107
2108 kvm_arch_sync_dirty_log(kvm, *memslot);
2109
2110 n = kvm_dirty_bitmap_bytes(*memslot);
2111
2112 for (i = 0; !any && i < n/sizeof(long); ++i)
2113 any = (*memslot)->dirty_bitmap[i];
2114
2115 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2116 return -EFAULT;
2117
2118 if (any)
2119 *is_dirty = 1;
2120 return 0;
2121 }
2122 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2123
2124 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2125 /**
2126 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2127 * and reenable dirty page tracking for the corresponding pages.
2128 * @kvm: pointer to kvm instance
2129 * @log: slot id and address to which we copy the log
2130 *
2131 * We need to keep it in mind that VCPU threads can write to the bitmap
2132 * concurrently. So, to avoid losing track of dirty pages we keep the
2133 * following order:
2134 *
2135 * 1. Take a snapshot of the bit and clear it if needed.
2136 * 2. Write protect the corresponding page.
2137 * 3. Copy the snapshot to the userspace.
2138 * 4. Upon return caller flushes TLB's if needed.
2139 *
2140 * Between 2 and 4, the guest may write to the page using the remaining TLB
2141 * entry. This is not a problem because the page is reported dirty using
2142 * the snapshot taken before and step 4 ensures that writes done after
2143 * exiting to userspace will be logged for the next call.
2144 *
2145 */
kvm_get_dirty_log_protect(struct kvm * kvm,struct kvm_dirty_log * log)2146 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2147 {
2148 struct kvm_memslots *slots;
2149 struct kvm_memory_slot *memslot;
2150 int i, as_id, id;
2151 unsigned long n;
2152 unsigned long *dirty_bitmap;
2153 unsigned long *dirty_bitmap_buffer;
2154 bool flush;
2155
2156 /* Dirty ring tracking may be exclusive to dirty log tracking */
2157 if (!kvm_use_dirty_bitmap(kvm))
2158 return -ENXIO;
2159
2160 as_id = log->slot >> 16;
2161 id = (u16)log->slot;
2162 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2163 return -EINVAL;
2164
2165 slots = __kvm_memslots(kvm, as_id);
2166 memslot = id_to_memslot(slots, id);
2167 if (!memslot || !memslot->dirty_bitmap)
2168 return -ENOENT;
2169
2170 dirty_bitmap = memslot->dirty_bitmap;
2171
2172 kvm_arch_sync_dirty_log(kvm, memslot);
2173
2174 n = kvm_dirty_bitmap_bytes(memslot);
2175 flush = false;
2176 if (kvm->manual_dirty_log_protect) {
2177 /*
2178 * Unlike kvm_get_dirty_log, we always return false in *flush,
2179 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
2180 * is some code duplication between this function and
2181 * kvm_get_dirty_log, but hopefully all architecture
2182 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2183 * can be eliminated.
2184 */
2185 dirty_bitmap_buffer = dirty_bitmap;
2186 } else {
2187 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2188 memset(dirty_bitmap_buffer, 0, n);
2189
2190 KVM_MMU_LOCK(kvm);
2191 for (i = 0; i < n / sizeof(long); i++) {
2192 unsigned long mask;
2193 gfn_t offset;
2194
2195 if (!dirty_bitmap[i])
2196 continue;
2197
2198 flush = true;
2199 mask = xchg(&dirty_bitmap[i], 0);
2200 dirty_bitmap_buffer[i] = mask;
2201
2202 offset = i * BITS_PER_LONG;
2203 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2204 offset, mask);
2205 }
2206 KVM_MMU_UNLOCK(kvm);
2207 }
2208
2209 if (flush)
2210 kvm_flush_remote_tlbs_memslot(kvm, memslot);
2211
2212 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2213 return -EFAULT;
2214 return 0;
2215 }
2216
2217
2218 /**
2219 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2220 * @kvm: kvm instance
2221 * @log: slot id and address to which we copy the log
2222 *
2223 * Steps 1-4 below provide general overview of dirty page logging. See
2224 * kvm_get_dirty_log_protect() function description for additional details.
2225 *
2226 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2227 * always flush the TLB (step 4) even if previous step failed and the dirty
2228 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2229 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2230 * writes will be marked dirty for next log read.
2231 *
2232 * 1. Take a snapshot of the bit and clear it if needed.
2233 * 2. Write protect the corresponding page.
2234 * 3. Copy the snapshot to the userspace.
2235 * 4. Flush TLB's if needed.
2236 */
kvm_vm_ioctl_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log)2237 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2238 struct kvm_dirty_log *log)
2239 {
2240 int r;
2241
2242 mutex_lock(&kvm->slots_lock);
2243
2244 r = kvm_get_dirty_log_protect(kvm, log);
2245
2246 mutex_unlock(&kvm->slots_lock);
2247 return r;
2248 }
2249
2250 /**
2251 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2252 * and reenable dirty page tracking for the corresponding pages.
2253 * @kvm: pointer to kvm instance
2254 * @log: slot id and address from which to fetch the bitmap of dirty pages
2255 */
kvm_clear_dirty_log_protect(struct kvm * kvm,struct kvm_clear_dirty_log * log)2256 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2257 struct kvm_clear_dirty_log *log)
2258 {
2259 struct kvm_memslots *slots;
2260 struct kvm_memory_slot *memslot;
2261 int as_id, id;
2262 gfn_t offset;
2263 unsigned long i, n;
2264 unsigned long *dirty_bitmap;
2265 unsigned long *dirty_bitmap_buffer;
2266 bool flush;
2267
2268 /* Dirty ring tracking may be exclusive to dirty log tracking */
2269 if (!kvm_use_dirty_bitmap(kvm))
2270 return -ENXIO;
2271
2272 as_id = log->slot >> 16;
2273 id = (u16)log->slot;
2274 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2275 return -EINVAL;
2276
2277 if (log->first_page & 63)
2278 return -EINVAL;
2279
2280 slots = __kvm_memslots(kvm, as_id);
2281 memslot = id_to_memslot(slots, id);
2282 if (!memslot || !memslot->dirty_bitmap)
2283 return -ENOENT;
2284
2285 dirty_bitmap = memslot->dirty_bitmap;
2286
2287 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2288
2289 if (log->first_page > memslot->npages ||
2290 log->num_pages > memslot->npages - log->first_page ||
2291 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2292 return -EINVAL;
2293
2294 kvm_arch_sync_dirty_log(kvm, memslot);
2295
2296 flush = false;
2297 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2298 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2299 return -EFAULT;
2300
2301 KVM_MMU_LOCK(kvm);
2302 for (offset = log->first_page, i = offset / BITS_PER_LONG,
2303 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2304 i++, offset += BITS_PER_LONG) {
2305 unsigned long mask = *dirty_bitmap_buffer++;
2306 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2307 if (!mask)
2308 continue;
2309
2310 mask &= atomic_long_fetch_andnot(mask, p);
2311
2312 /*
2313 * mask contains the bits that really have been cleared. This
2314 * never includes any bits beyond the length of the memslot (if
2315 * the length is not aligned to 64 pages), therefore it is not
2316 * a problem if userspace sets them in log->dirty_bitmap.
2317 */
2318 if (mask) {
2319 flush = true;
2320 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2321 offset, mask);
2322 }
2323 }
2324 KVM_MMU_UNLOCK(kvm);
2325
2326 if (flush)
2327 kvm_flush_remote_tlbs_memslot(kvm, memslot);
2328
2329 return 0;
2330 }
2331
kvm_vm_ioctl_clear_dirty_log(struct kvm * kvm,struct kvm_clear_dirty_log * log)2332 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2333 struct kvm_clear_dirty_log *log)
2334 {
2335 int r;
2336
2337 mutex_lock(&kvm->slots_lock);
2338
2339 r = kvm_clear_dirty_log_protect(kvm, log);
2340
2341 mutex_unlock(&kvm->slots_lock);
2342 return r;
2343 }
2344 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2345
2346 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
kvm_supported_mem_attributes(struct kvm * kvm)2347 static u64 kvm_supported_mem_attributes(struct kvm *kvm)
2348 {
2349 if (!kvm || kvm_arch_has_private_mem(kvm))
2350 return KVM_MEMORY_ATTRIBUTE_PRIVATE;
2351
2352 return 0;
2353 }
2354
2355 /*
2356 * Returns true if _all_ gfns in the range [@start, @end) have attributes
2357 * such that the bits in @mask match @attrs.
2358 */
kvm_range_has_memory_attributes(struct kvm * kvm,gfn_t start,gfn_t end,unsigned long mask,unsigned long attrs)2359 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2360 unsigned long mask, unsigned long attrs)
2361 {
2362 XA_STATE(xas, &kvm->mem_attr_array, start);
2363 unsigned long index;
2364 void *entry;
2365
2366 mask &= kvm_supported_mem_attributes(kvm);
2367 if (attrs & ~mask)
2368 return false;
2369
2370 if (end == start + 1)
2371 return (kvm_get_memory_attributes(kvm, start) & mask) == attrs;
2372
2373 guard(rcu)();
2374 if (!attrs)
2375 return !xas_find(&xas, end - 1);
2376
2377 for (index = start; index < end; index++) {
2378 do {
2379 entry = xas_next(&xas);
2380 } while (xas_retry(&xas, entry));
2381
2382 if (xas.xa_index != index ||
2383 (xa_to_value(entry) & mask) != attrs)
2384 return false;
2385 }
2386
2387 return true;
2388 }
2389
kvm_handle_gfn_range(struct kvm * kvm,struct kvm_mmu_notifier_range * range)2390 static __always_inline void kvm_handle_gfn_range(struct kvm *kvm,
2391 struct kvm_mmu_notifier_range *range)
2392 {
2393 struct kvm_gfn_range gfn_range;
2394 struct kvm_memory_slot *slot;
2395 struct kvm_memslots *slots;
2396 struct kvm_memslot_iter iter;
2397 bool found_memslot = false;
2398 bool ret = false;
2399 int i;
2400
2401 gfn_range.arg = range->arg;
2402 gfn_range.may_block = range->may_block;
2403
2404 /*
2405 * If/when KVM supports more attributes beyond private .vs shared, this
2406 * _could_ set KVM_FILTER_{SHARED,PRIVATE} appropriately if the entire target
2407 * range already has the desired private vs. shared state (it's unclear
2408 * if that is a net win). For now, KVM reaches this point if and only
2409 * if the private flag is being toggled, i.e. all mappings are in play.
2410 */
2411
2412 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
2413 slots = __kvm_memslots(kvm, i);
2414
2415 kvm_for_each_memslot_in_gfn_range(&iter, slots, range->start, range->end) {
2416 slot = iter.slot;
2417 gfn_range.slot = slot;
2418
2419 gfn_range.start = max(range->start, slot->base_gfn);
2420 gfn_range.end = min(range->end, slot->base_gfn + slot->npages);
2421 if (gfn_range.start >= gfn_range.end)
2422 continue;
2423
2424 if (!found_memslot) {
2425 found_memslot = true;
2426 KVM_MMU_LOCK(kvm);
2427 if (!IS_KVM_NULL_FN(range->on_lock))
2428 range->on_lock(kvm);
2429 }
2430
2431 ret |= range->handler(kvm, &gfn_range);
2432 }
2433 }
2434
2435 if (range->flush_on_ret && ret)
2436 kvm_flush_remote_tlbs(kvm);
2437
2438 if (found_memslot)
2439 KVM_MMU_UNLOCK(kvm);
2440 }
2441
kvm_pre_set_memory_attributes(struct kvm * kvm,struct kvm_gfn_range * range)2442 static bool kvm_pre_set_memory_attributes(struct kvm *kvm,
2443 struct kvm_gfn_range *range)
2444 {
2445 /*
2446 * Unconditionally add the range to the invalidation set, regardless of
2447 * whether or not the arch callback actually needs to zap SPTEs. E.g.
2448 * if KVM supports RWX attributes in the future and the attributes are
2449 * going from R=>RW, zapping isn't strictly necessary. Unconditionally
2450 * adding the range allows KVM to require that MMU invalidations add at
2451 * least one range between begin() and end(), e.g. allows KVM to detect
2452 * bugs where the add() is missed. Relaxing the rule *might* be safe,
2453 * but it's not obvious that allowing new mappings while the attributes
2454 * are in flux is desirable or worth the complexity.
2455 */
2456 kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
2457
2458 return kvm_arch_pre_set_memory_attributes(kvm, range);
2459 }
2460
2461 /* Set @attributes for the gfn range [@start, @end). */
kvm_vm_set_mem_attributes(struct kvm * kvm,gfn_t start,gfn_t end,unsigned long attributes)2462 static int kvm_vm_set_mem_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2463 unsigned long attributes)
2464 {
2465 struct kvm_mmu_notifier_range pre_set_range = {
2466 .start = start,
2467 .end = end,
2468 .arg.attributes = attributes,
2469 .handler = kvm_pre_set_memory_attributes,
2470 .on_lock = kvm_mmu_invalidate_begin,
2471 .flush_on_ret = true,
2472 .may_block = true,
2473 };
2474 struct kvm_mmu_notifier_range post_set_range = {
2475 .start = start,
2476 .end = end,
2477 .arg.attributes = attributes,
2478 .handler = kvm_arch_post_set_memory_attributes,
2479 .on_lock = kvm_mmu_invalidate_end,
2480 .may_block = true,
2481 };
2482 unsigned long i;
2483 void *entry;
2484 int r = 0;
2485
2486 entry = attributes ? xa_mk_value(attributes) : NULL;
2487
2488 mutex_lock(&kvm->slots_lock);
2489
2490 /* Nothing to do if the entire range as the desired attributes. */
2491 if (kvm_range_has_memory_attributes(kvm, start, end, ~0, attributes))
2492 goto out_unlock;
2493
2494 /*
2495 * Reserve memory ahead of time to avoid having to deal with failures
2496 * partway through setting the new attributes.
2497 */
2498 for (i = start; i < end; i++) {
2499 r = xa_reserve(&kvm->mem_attr_array, i, GFP_KERNEL_ACCOUNT);
2500 if (r)
2501 goto out_unlock;
2502 }
2503
2504 kvm_handle_gfn_range(kvm, &pre_set_range);
2505
2506 for (i = start; i < end; i++) {
2507 r = xa_err(xa_store(&kvm->mem_attr_array, i, entry,
2508 GFP_KERNEL_ACCOUNT));
2509 KVM_BUG_ON(r, kvm);
2510 }
2511
2512 kvm_handle_gfn_range(kvm, &post_set_range);
2513
2514 out_unlock:
2515 mutex_unlock(&kvm->slots_lock);
2516
2517 return r;
2518 }
kvm_vm_ioctl_set_mem_attributes(struct kvm * kvm,struct kvm_memory_attributes * attrs)2519 static int kvm_vm_ioctl_set_mem_attributes(struct kvm *kvm,
2520 struct kvm_memory_attributes *attrs)
2521 {
2522 gfn_t start, end;
2523
2524 /* flags is currently not used. */
2525 if (attrs->flags)
2526 return -EINVAL;
2527 if (attrs->attributes & ~kvm_supported_mem_attributes(kvm))
2528 return -EINVAL;
2529 if (attrs->size == 0 || attrs->address + attrs->size < attrs->address)
2530 return -EINVAL;
2531 if (!PAGE_ALIGNED(attrs->address) || !PAGE_ALIGNED(attrs->size))
2532 return -EINVAL;
2533
2534 start = attrs->address >> PAGE_SHIFT;
2535 end = (attrs->address + attrs->size) >> PAGE_SHIFT;
2536
2537 /*
2538 * xarray tracks data using "unsigned long", and as a result so does
2539 * KVM. For simplicity, supports generic attributes only on 64-bit
2540 * architectures.
2541 */
2542 BUILD_BUG_ON(sizeof(attrs->attributes) != sizeof(unsigned long));
2543
2544 return kvm_vm_set_mem_attributes(kvm, start, end, attrs->attributes);
2545 }
2546 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2547
gfn_to_memslot(struct kvm * kvm,gfn_t gfn)2548 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2549 {
2550 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2551 }
2552 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2553
kvm_vcpu_gfn_to_memslot(struct kvm_vcpu * vcpu,gfn_t gfn)2554 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2555 {
2556 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2557 u64 gen = slots->generation;
2558 struct kvm_memory_slot *slot;
2559
2560 /*
2561 * This also protects against using a memslot from a different address space,
2562 * since different address spaces have different generation numbers.
2563 */
2564 if (unlikely(gen != vcpu->last_used_slot_gen)) {
2565 vcpu->last_used_slot = NULL;
2566 vcpu->last_used_slot_gen = gen;
2567 }
2568
2569 slot = try_get_memslot(vcpu->last_used_slot, gfn);
2570 if (slot)
2571 return slot;
2572
2573 /*
2574 * Fall back to searching all memslots. We purposely use
2575 * search_memslots() instead of __gfn_to_memslot() to avoid
2576 * thrashing the VM-wide last_used_slot in kvm_memslots.
2577 */
2578 slot = search_memslots(slots, gfn, false);
2579 if (slot) {
2580 vcpu->last_used_slot = slot;
2581 return slot;
2582 }
2583
2584 return NULL;
2585 }
2586
kvm_is_visible_gfn(struct kvm * kvm,gfn_t gfn)2587 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2588 {
2589 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2590
2591 return kvm_is_visible_memslot(memslot);
2592 }
2593 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2594
kvm_vcpu_is_visible_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)2595 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2596 {
2597 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2598
2599 return kvm_is_visible_memslot(memslot);
2600 }
2601 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2602
kvm_host_page_size(struct kvm_vcpu * vcpu,gfn_t gfn)2603 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2604 {
2605 struct vm_area_struct *vma;
2606 unsigned long addr, size;
2607
2608 size = PAGE_SIZE;
2609
2610 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2611 if (kvm_is_error_hva(addr))
2612 return PAGE_SIZE;
2613
2614 mmap_read_lock(current->mm);
2615 vma = find_vma(current->mm, addr);
2616 if (!vma)
2617 goto out;
2618
2619 size = vma_kernel_pagesize(vma);
2620
2621 out:
2622 mmap_read_unlock(current->mm);
2623
2624 return size;
2625 }
2626
memslot_is_readonly(const struct kvm_memory_slot * slot)2627 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2628 {
2629 return slot->flags & KVM_MEM_READONLY;
2630 }
2631
__gfn_to_hva_many(const struct kvm_memory_slot * slot,gfn_t gfn,gfn_t * nr_pages,bool write)2632 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2633 gfn_t *nr_pages, bool write)
2634 {
2635 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2636 return KVM_HVA_ERR_BAD;
2637
2638 if (memslot_is_readonly(slot) && write)
2639 return KVM_HVA_ERR_RO_BAD;
2640
2641 if (nr_pages)
2642 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2643
2644 return __gfn_to_hva_memslot(slot, gfn);
2645 }
2646
gfn_to_hva_many(struct kvm_memory_slot * slot,gfn_t gfn,gfn_t * nr_pages)2647 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2648 gfn_t *nr_pages)
2649 {
2650 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2651 }
2652
gfn_to_hva_memslot(struct kvm_memory_slot * slot,gfn_t gfn)2653 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2654 gfn_t gfn)
2655 {
2656 return gfn_to_hva_many(slot, gfn, NULL);
2657 }
2658 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2659
gfn_to_hva(struct kvm * kvm,gfn_t gfn)2660 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2661 {
2662 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2663 }
2664 EXPORT_SYMBOL_GPL(gfn_to_hva);
2665
kvm_vcpu_gfn_to_hva(struct kvm_vcpu * vcpu,gfn_t gfn)2666 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2667 {
2668 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2669 }
2670 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2671
2672 /*
2673 * Return the hva of a @gfn and the R/W attribute if possible.
2674 *
2675 * @slot: the kvm_memory_slot which contains @gfn
2676 * @gfn: the gfn to be translated
2677 * @writable: used to return the read/write attribute of the @slot if the hva
2678 * is valid and @writable is not NULL
2679 */
gfn_to_hva_memslot_prot(struct kvm_memory_slot * slot,gfn_t gfn,bool * writable)2680 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2681 gfn_t gfn, bool *writable)
2682 {
2683 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2684
2685 if (!kvm_is_error_hva(hva) && writable)
2686 *writable = !memslot_is_readonly(slot);
2687
2688 return hva;
2689 }
2690
gfn_to_hva_prot(struct kvm * kvm,gfn_t gfn,bool * writable)2691 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2692 {
2693 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2694
2695 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2696 }
2697
kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu * vcpu,gfn_t gfn,bool * writable)2698 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2699 {
2700 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2701
2702 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2703 }
2704
kvm_is_ad_tracked_page(struct page * page)2705 static bool kvm_is_ad_tracked_page(struct page *page)
2706 {
2707 /*
2708 * Per page-flags.h, pages tagged PG_reserved "should in general not be
2709 * touched (e.g. set dirty) except by its owner".
2710 */
2711 return !PageReserved(page);
2712 }
2713
kvm_set_page_dirty(struct page * page)2714 static void kvm_set_page_dirty(struct page *page)
2715 {
2716 if (kvm_is_ad_tracked_page(page))
2717 SetPageDirty(page);
2718 }
2719
kvm_set_page_accessed(struct page * page)2720 static void kvm_set_page_accessed(struct page *page)
2721 {
2722 if (kvm_is_ad_tracked_page(page))
2723 mark_page_accessed(page);
2724 }
2725
kvm_release_page_clean(struct page * page)2726 void kvm_release_page_clean(struct page *page)
2727 {
2728 if (!page)
2729 return;
2730
2731 kvm_set_page_accessed(page);
2732 put_page(page);
2733 }
2734 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2735
kvm_release_page_dirty(struct page * page)2736 void kvm_release_page_dirty(struct page *page)
2737 {
2738 if (!page)
2739 return;
2740
2741 kvm_set_page_dirty(page);
2742 kvm_release_page_clean(page);
2743 }
2744 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2745
kvm_resolve_pfn(struct kvm_follow_pfn * kfp,struct page * page,struct follow_pfnmap_args * map,bool writable)2746 static kvm_pfn_t kvm_resolve_pfn(struct kvm_follow_pfn *kfp, struct page *page,
2747 struct follow_pfnmap_args *map, bool writable)
2748 {
2749 kvm_pfn_t pfn;
2750
2751 WARN_ON_ONCE(!!page == !!map);
2752
2753 if (kfp->map_writable)
2754 *kfp->map_writable = writable;
2755
2756 if (map)
2757 pfn = map->pfn;
2758 else
2759 pfn = page_to_pfn(page);
2760
2761 *kfp->refcounted_page = page;
2762
2763 return pfn;
2764 }
2765
2766 /*
2767 * The fast path to get the writable pfn which will be stored in @pfn,
2768 * true indicates success, otherwise false is returned.
2769 */
hva_to_pfn_fast(struct kvm_follow_pfn * kfp,kvm_pfn_t * pfn)2770 static bool hva_to_pfn_fast(struct kvm_follow_pfn *kfp, kvm_pfn_t *pfn)
2771 {
2772 struct page *page;
2773 bool r;
2774
2775 /*
2776 * Try the fast-only path when the caller wants to pin/get the page for
2777 * writing. If the caller only wants to read the page, KVM must go
2778 * down the full, slow path in order to avoid racing an operation that
2779 * breaks Copy-on-Write (CoW), e.g. so that KVM doesn't end up pointing
2780 * at the old, read-only page while mm/ points at a new, writable page.
2781 */
2782 if (!((kfp->flags & FOLL_WRITE) || kfp->map_writable))
2783 return false;
2784
2785 if (kfp->pin)
2786 r = pin_user_pages_fast(kfp->hva, 1, FOLL_WRITE, &page) == 1;
2787 else
2788 r = get_user_page_fast_only(kfp->hva, FOLL_WRITE, &page);
2789
2790 if (r) {
2791 *pfn = kvm_resolve_pfn(kfp, page, NULL, true);
2792 return true;
2793 }
2794
2795 return false;
2796 }
2797
2798 /*
2799 * The slow path to get the pfn of the specified host virtual address,
2800 * 1 indicates success, -errno is returned if error is detected.
2801 */
hva_to_pfn_slow(struct kvm_follow_pfn * kfp,kvm_pfn_t * pfn)2802 static int hva_to_pfn_slow(struct kvm_follow_pfn *kfp, kvm_pfn_t *pfn)
2803 {
2804 /*
2805 * When a VCPU accesses a page that is not mapped into the secondary
2806 * MMU, we lookup the page using GUP to map it, so the guest VCPU can
2807 * make progress. We always want to honor NUMA hinting faults in that
2808 * case, because GUP usage corresponds to memory accesses from the VCPU.
2809 * Otherwise, we'd not trigger NUMA hinting faults once a page is
2810 * mapped into the secondary MMU and gets accessed by a VCPU.
2811 *
2812 * Note that get_user_page_fast_only() and FOLL_WRITE for now
2813 * implicitly honor NUMA hinting faults and don't need this flag.
2814 */
2815 unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT | kfp->flags;
2816 struct page *page, *wpage;
2817 int npages;
2818
2819 if (kfp->pin)
2820 npages = pin_user_pages_unlocked(kfp->hva, 1, &page, flags);
2821 else
2822 npages = get_user_pages_unlocked(kfp->hva, 1, &page, flags);
2823 if (npages != 1)
2824 return npages;
2825
2826 /*
2827 * Pinning is mutually exclusive with opportunistically mapping a read
2828 * fault as writable, as KVM should never pin pages when mapping memory
2829 * into the guest (pinning is only for direct accesses from KVM).
2830 */
2831 if (WARN_ON_ONCE(kfp->map_writable && kfp->pin))
2832 goto out;
2833
2834 /* map read fault as writable if possible */
2835 if (!(flags & FOLL_WRITE) && kfp->map_writable &&
2836 get_user_page_fast_only(kfp->hva, FOLL_WRITE, &wpage)) {
2837 put_page(page);
2838 page = wpage;
2839 flags |= FOLL_WRITE;
2840 }
2841
2842 out:
2843 *pfn = kvm_resolve_pfn(kfp, page, NULL, flags & FOLL_WRITE);
2844 return npages;
2845 }
2846
vma_is_valid(struct vm_area_struct * vma,bool write_fault)2847 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2848 {
2849 if (unlikely(!(vma->vm_flags & VM_READ)))
2850 return false;
2851
2852 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2853 return false;
2854
2855 return true;
2856 }
2857
hva_to_pfn_remapped(struct vm_area_struct * vma,struct kvm_follow_pfn * kfp,kvm_pfn_t * p_pfn)2858 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2859 struct kvm_follow_pfn *kfp, kvm_pfn_t *p_pfn)
2860 {
2861 struct follow_pfnmap_args args = { .vma = vma, .address = kfp->hva };
2862 bool write_fault = kfp->flags & FOLL_WRITE;
2863 int r;
2864
2865 /*
2866 * Remapped memory cannot be pinned in any meaningful sense. Bail if
2867 * the caller wants to pin the page, i.e. access the page outside of
2868 * MMU notifier protection, and unsafe umappings are disallowed.
2869 */
2870 if (kfp->pin && !allow_unsafe_mappings)
2871 return -EINVAL;
2872
2873 r = follow_pfnmap_start(&args);
2874 if (r) {
2875 /*
2876 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2877 * not call the fault handler, so do it here.
2878 */
2879 bool unlocked = false;
2880 r = fixup_user_fault(current->mm, kfp->hva,
2881 (write_fault ? FAULT_FLAG_WRITE : 0),
2882 &unlocked);
2883 if (unlocked)
2884 return -EAGAIN;
2885 if (r)
2886 return r;
2887
2888 r = follow_pfnmap_start(&args);
2889 if (r)
2890 return r;
2891 }
2892
2893 if (write_fault && !args.writable) {
2894 *p_pfn = KVM_PFN_ERR_RO_FAULT;
2895 goto out;
2896 }
2897
2898 *p_pfn = kvm_resolve_pfn(kfp, NULL, &args, args.writable);
2899 out:
2900 follow_pfnmap_end(&args);
2901 return r;
2902 }
2903
hva_to_pfn(struct kvm_follow_pfn * kfp)2904 kvm_pfn_t hva_to_pfn(struct kvm_follow_pfn *kfp)
2905 {
2906 struct vm_area_struct *vma;
2907 kvm_pfn_t pfn;
2908 int npages, r;
2909
2910 might_sleep();
2911
2912 if (WARN_ON_ONCE(!kfp->refcounted_page))
2913 return KVM_PFN_ERR_FAULT;
2914
2915 if (hva_to_pfn_fast(kfp, &pfn))
2916 return pfn;
2917
2918 npages = hva_to_pfn_slow(kfp, &pfn);
2919 if (npages == 1)
2920 return pfn;
2921 if (npages == -EINTR || npages == -EAGAIN)
2922 return KVM_PFN_ERR_SIGPENDING;
2923 if (npages == -EHWPOISON)
2924 return KVM_PFN_ERR_HWPOISON;
2925
2926 mmap_read_lock(current->mm);
2927 retry:
2928 vma = vma_lookup(current->mm, kfp->hva);
2929
2930 if (vma == NULL)
2931 pfn = KVM_PFN_ERR_FAULT;
2932 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2933 r = hva_to_pfn_remapped(vma, kfp, &pfn);
2934 if (r == -EAGAIN)
2935 goto retry;
2936 if (r < 0)
2937 pfn = KVM_PFN_ERR_FAULT;
2938 } else {
2939 if ((kfp->flags & FOLL_NOWAIT) &&
2940 vma_is_valid(vma, kfp->flags & FOLL_WRITE))
2941 pfn = KVM_PFN_ERR_NEEDS_IO;
2942 else
2943 pfn = KVM_PFN_ERR_FAULT;
2944 }
2945 mmap_read_unlock(current->mm);
2946 return pfn;
2947 }
2948
kvm_follow_pfn(struct kvm_follow_pfn * kfp)2949 static kvm_pfn_t kvm_follow_pfn(struct kvm_follow_pfn *kfp)
2950 {
2951 kfp->hva = __gfn_to_hva_many(kfp->slot, kfp->gfn, NULL,
2952 kfp->flags & FOLL_WRITE);
2953
2954 if (kfp->hva == KVM_HVA_ERR_RO_BAD)
2955 return KVM_PFN_ERR_RO_FAULT;
2956
2957 if (kvm_is_error_hva(kfp->hva))
2958 return KVM_PFN_NOSLOT;
2959
2960 if (memslot_is_readonly(kfp->slot) && kfp->map_writable) {
2961 *kfp->map_writable = false;
2962 kfp->map_writable = NULL;
2963 }
2964
2965 return hva_to_pfn(kfp);
2966 }
2967
__kvm_faultin_pfn(const struct kvm_memory_slot * slot,gfn_t gfn,unsigned int foll,bool * writable,struct page ** refcounted_page)2968 kvm_pfn_t __kvm_faultin_pfn(const struct kvm_memory_slot *slot, gfn_t gfn,
2969 unsigned int foll, bool *writable,
2970 struct page **refcounted_page)
2971 {
2972 struct kvm_follow_pfn kfp = {
2973 .slot = slot,
2974 .gfn = gfn,
2975 .flags = foll,
2976 .map_writable = writable,
2977 .refcounted_page = refcounted_page,
2978 };
2979
2980 if (WARN_ON_ONCE(!writable || !refcounted_page))
2981 return KVM_PFN_ERR_FAULT;
2982
2983 *writable = false;
2984 *refcounted_page = NULL;
2985
2986 return kvm_follow_pfn(&kfp);
2987 }
2988 EXPORT_SYMBOL_GPL(__kvm_faultin_pfn);
2989
kvm_prefetch_pages(struct kvm_memory_slot * slot,gfn_t gfn,struct page ** pages,int nr_pages)2990 int kvm_prefetch_pages(struct kvm_memory_slot *slot, gfn_t gfn,
2991 struct page **pages, int nr_pages)
2992 {
2993 unsigned long addr;
2994 gfn_t entry = 0;
2995
2996 addr = gfn_to_hva_many(slot, gfn, &entry);
2997 if (kvm_is_error_hva(addr))
2998 return -1;
2999
3000 if (entry < nr_pages)
3001 return 0;
3002
3003 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
3004 }
3005 EXPORT_SYMBOL_GPL(kvm_prefetch_pages);
3006
3007 /*
3008 * Don't use this API unless you are absolutely, positively certain that KVM
3009 * needs to get a struct page, e.g. to pin the page for firmware DMA.
3010 *
3011 * FIXME: Users of this API likely need to FOLL_PIN the page, not just elevate
3012 * its refcount.
3013 */
__gfn_to_page(struct kvm * kvm,gfn_t gfn,bool write)3014 struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn, bool write)
3015 {
3016 struct page *refcounted_page = NULL;
3017 struct kvm_follow_pfn kfp = {
3018 .slot = gfn_to_memslot(kvm, gfn),
3019 .gfn = gfn,
3020 .flags = write ? FOLL_WRITE : 0,
3021 .refcounted_page = &refcounted_page,
3022 };
3023
3024 (void)kvm_follow_pfn(&kfp);
3025 return refcounted_page;
3026 }
3027 EXPORT_SYMBOL_GPL(__gfn_to_page);
3028
__kvm_vcpu_map(struct kvm_vcpu * vcpu,gfn_t gfn,struct kvm_host_map * map,bool writable)3029 int __kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
3030 bool writable)
3031 {
3032 struct kvm_follow_pfn kfp = {
3033 .slot = gfn_to_memslot(vcpu->kvm, gfn),
3034 .gfn = gfn,
3035 .flags = writable ? FOLL_WRITE : 0,
3036 .refcounted_page = &map->pinned_page,
3037 .pin = true,
3038 };
3039
3040 map->pinned_page = NULL;
3041 map->page = NULL;
3042 map->hva = NULL;
3043 map->gfn = gfn;
3044 map->writable = writable;
3045
3046 map->pfn = kvm_follow_pfn(&kfp);
3047 if (is_error_noslot_pfn(map->pfn))
3048 return -EINVAL;
3049
3050 if (pfn_valid(map->pfn)) {
3051 map->page = pfn_to_page(map->pfn);
3052 map->hva = kmap(map->page);
3053 #ifdef CONFIG_HAS_IOMEM
3054 } else {
3055 map->hva = memremap(pfn_to_hpa(map->pfn), PAGE_SIZE, MEMREMAP_WB);
3056 #endif
3057 }
3058
3059 return map->hva ? 0 : -EFAULT;
3060 }
3061 EXPORT_SYMBOL_GPL(__kvm_vcpu_map);
3062
kvm_vcpu_unmap(struct kvm_vcpu * vcpu,struct kvm_host_map * map)3063 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map)
3064 {
3065 if (!map->hva)
3066 return;
3067
3068 if (map->page)
3069 kunmap(map->page);
3070 #ifdef CONFIG_HAS_IOMEM
3071 else
3072 memunmap(map->hva);
3073 #endif
3074
3075 if (map->writable)
3076 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
3077
3078 if (map->pinned_page) {
3079 if (map->writable)
3080 kvm_set_page_dirty(map->pinned_page);
3081 kvm_set_page_accessed(map->pinned_page);
3082 unpin_user_page(map->pinned_page);
3083 }
3084
3085 map->hva = NULL;
3086 map->page = NULL;
3087 map->pinned_page = NULL;
3088 }
3089 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
3090
next_segment(unsigned long len,int offset)3091 static int next_segment(unsigned long len, int offset)
3092 {
3093 if (len > PAGE_SIZE - offset)
3094 return PAGE_SIZE - offset;
3095 else
3096 return len;
3097 }
3098
3099 /* Copy @len bytes from guest memory at '(@gfn * PAGE_SIZE) + @offset' to @data */
__kvm_read_guest_page(struct kvm_memory_slot * slot,gfn_t gfn,void * data,int offset,int len)3100 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
3101 void *data, int offset, int len)
3102 {
3103 int r;
3104 unsigned long addr;
3105
3106 if (WARN_ON_ONCE(offset + len > PAGE_SIZE))
3107 return -EFAULT;
3108
3109 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3110 if (kvm_is_error_hva(addr))
3111 return -EFAULT;
3112 r = __copy_from_user(data, (void __user *)addr + offset, len);
3113 if (r)
3114 return -EFAULT;
3115 return 0;
3116 }
3117
kvm_read_guest_page(struct kvm * kvm,gfn_t gfn,void * data,int offset,int len)3118 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3119 int len)
3120 {
3121 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3122
3123 return __kvm_read_guest_page(slot, gfn, data, offset, len);
3124 }
3125 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3126
kvm_vcpu_read_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,void * data,int offset,int len)3127 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3128 int offset, int len)
3129 {
3130 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3131
3132 return __kvm_read_guest_page(slot, gfn, data, offset, len);
3133 }
3134 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3135
kvm_read_guest(struct kvm * kvm,gpa_t gpa,void * data,unsigned long len)3136 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3137 {
3138 gfn_t gfn = gpa >> PAGE_SHIFT;
3139 int seg;
3140 int offset = offset_in_page(gpa);
3141 int ret;
3142
3143 while ((seg = next_segment(len, offset)) != 0) {
3144 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3145 if (ret < 0)
3146 return ret;
3147 offset = 0;
3148 len -= seg;
3149 data += seg;
3150 ++gfn;
3151 }
3152 return 0;
3153 }
3154 EXPORT_SYMBOL_GPL(kvm_read_guest);
3155
kvm_vcpu_read_guest(struct kvm_vcpu * vcpu,gpa_t gpa,void * data,unsigned long len)3156 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3157 {
3158 gfn_t gfn = gpa >> PAGE_SHIFT;
3159 int seg;
3160 int offset = offset_in_page(gpa);
3161 int ret;
3162
3163 while ((seg = next_segment(len, offset)) != 0) {
3164 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3165 if (ret < 0)
3166 return ret;
3167 offset = 0;
3168 len -= seg;
3169 data += seg;
3170 ++gfn;
3171 }
3172 return 0;
3173 }
3174 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3175
__kvm_read_guest_atomic(struct kvm_memory_slot * slot,gfn_t gfn,void * data,int offset,unsigned long len)3176 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3177 void *data, int offset, unsigned long len)
3178 {
3179 int r;
3180 unsigned long addr;
3181
3182 if (WARN_ON_ONCE(offset + len > PAGE_SIZE))
3183 return -EFAULT;
3184
3185 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3186 if (kvm_is_error_hva(addr))
3187 return -EFAULT;
3188 pagefault_disable();
3189 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3190 pagefault_enable();
3191 if (r)
3192 return -EFAULT;
3193 return 0;
3194 }
3195
kvm_vcpu_read_guest_atomic(struct kvm_vcpu * vcpu,gpa_t gpa,void * data,unsigned long len)3196 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3197 void *data, unsigned long len)
3198 {
3199 gfn_t gfn = gpa >> PAGE_SHIFT;
3200 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3201 int offset = offset_in_page(gpa);
3202
3203 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3204 }
3205 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3206
3207 /* Copy @len bytes from @data into guest memory at '(@gfn * PAGE_SIZE) + @offset' */
__kvm_write_guest_page(struct kvm * kvm,struct kvm_memory_slot * memslot,gfn_t gfn,const void * data,int offset,int len)3208 static int __kvm_write_guest_page(struct kvm *kvm,
3209 struct kvm_memory_slot *memslot, gfn_t gfn,
3210 const void *data, int offset, int len)
3211 {
3212 int r;
3213 unsigned long addr;
3214
3215 if (WARN_ON_ONCE(offset + len > PAGE_SIZE))
3216 return -EFAULT;
3217
3218 addr = gfn_to_hva_memslot(memslot, gfn);
3219 if (kvm_is_error_hva(addr))
3220 return -EFAULT;
3221 r = __copy_to_user((void __user *)addr + offset, data, len);
3222 if (r)
3223 return -EFAULT;
3224 mark_page_dirty_in_slot(kvm, memslot, gfn);
3225 return 0;
3226 }
3227
kvm_write_guest_page(struct kvm * kvm,gfn_t gfn,const void * data,int offset,int len)3228 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3229 const void *data, int offset, int len)
3230 {
3231 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3232
3233 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3234 }
3235 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3236
kvm_vcpu_write_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,const void * data,int offset,int len)3237 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3238 const void *data, int offset, int len)
3239 {
3240 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3241
3242 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3243 }
3244 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3245
kvm_write_guest(struct kvm * kvm,gpa_t gpa,const void * data,unsigned long len)3246 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3247 unsigned long len)
3248 {
3249 gfn_t gfn = gpa >> PAGE_SHIFT;
3250 int seg;
3251 int offset = offset_in_page(gpa);
3252 int ret;
3253
3254 while ((seg = next_segment(len, offset)) != 0) {
3255 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3256 if (ret < 0)
3257 return ret;
3258 offset = 0;
3259 len -= seg;
3260 data += seg;
3261 ++gfn;
3262 }
3263 return 0;
3264 }
3265 EXPORT_SYMBOL_GPL(kvm_write_guest);
3266
kvm_vcpu_write_guest(struct kvm_vcpu * vcpu,gpa_t gpa,const void * data,unsigned long len)3267 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3268 unsigned long len)
3269 {
3270 gfn_t gfn = gpa >> PAGE_SHIFT;
3271 int seg;
3272 int offset = offset_in_page(gpa);
3273 int ret;
3274
3275 while ((seg = next_segment(len, offset)) != 0) {
3276 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3277 if (ret < 0)
3278 return ret;
3279 offset = 0;
3280 len -= seg;
3281 data += seg;
3282 ++gfn;
3283 }
3284 return 0;
3285 }
3286 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3287
__kvm_gfn_to_hva_cache_init(struct kvm_memslots * slots,struct gfn_to_hva_cache * ghc,gpa_t gpa,unsigned long len)3288 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3289 struct gfn_to_hva_cache *ghc,
3290 gpa_t gpa, unsigned long len)
3291 {
3292 int offset = offset_in_page(gpa);
3293 gfn_t start_gfn = gpa >> PAGE_SHIFT;
3294 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3295 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3296 gfn_t nr_pages_avail;
3297
3298 /* Update ghc->generation before performing any error checks. */
3299 ghc->generation = slots->generation;
3300
3301 if (start_gfn > end_gfn) {
3302 ghc->hva = KVM_HVA_ERR_BAD;
3303 return -EINVAL;
3304 }
3305
3306 /*
3307 * If the requested region crosses two memslots, we still
3308 * verify that the entire region is valid here.
3309 */
3310 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3311 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3312 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3313 &nr_pages_avail);
3314 if (kvm_is_error_hva(ghc->hva))
3315 return -EFAULT;
3316 }
3317
3318 /* Use the slow path for cross page reads and writes. */
3319 if (nr_pages_needed == 1)
3320 ghc->hva += offset;
3321 else
3322 ghc->memslot = NULL;
3323
3324 ghc->gpa = gpa;
3325 ghc->len = len;
3326 return 0;
3327 }
3328
kvm_gfn_to_hva_cache_init(struct kvm * kvm,struct gfn_to_hva_cache * ghc,gpa_t gpa,unsigned long len)3329 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3330 gpa_t gpa, unsigned long len)
3331 {
3332 struct kvm_memslots *slots = kvm_memslots(kvm);
3333 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3334 }
3335 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3336
kvm_write_guest_offset_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned int offset,unsigned long len)3337 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3338 void *data, unsigned int offset,
3339 unsigned long len)
3340 {
3341 struct kvm_memslots *slots = kvm_memslots(kvm);
3342 int r;
3343 gpa_t gpa = ghc->gpa + offset;
3344
3345 if (WARN_ON_ONCE(len + offset > ghc->len))
3346 return -EINVAL;
3347
3348 if (slots->generation != ghc->generation) {
3349 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3350 return -EFAULT;
3351 }
3352
3353 if (kvm_is_error_hva(ghc->hva))
3354 return -EFAULT;
3355
3356 if (unlikely(!ghc->memslot))
3357 return kvm_write_guest(kvm, gpa, data, len);
3358
3359 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3360 if (r)
3361 return -EFAULT;
3362 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3363
3364 return 0;
3365 }
3366 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3367
kvm_write_guest_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned long len)3368 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3369 void *data, unsigned long len)
3370 {
3371 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3372 }
3373 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3374
kvm_read_guest_offset_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned int offset,unsigned long len)3375 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3376 void *data, unsigned int offset,
3377 unsigned long len)
3378 {
3379 struct kvm_memslots *slots = kvm_memslots(kvm);
3380 int r;
3381 gpa_t gpa = ghc->gpa + offset;
3382
3383 if (WARN_ON_ONCE(len + offset > ghc->len))
3384 return -EINVAL;
3385
3386 if (slots->generation != ghc->generation) {
3387 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3388 return -EFAULT;
3389 }
3390
3391 if (kvm_is_error_hva(ghc->hva))
3392 return -EFAULT;
3393
3394 if (unlikely(!ghc->memslot))
3395 return kvm_read_guest(kvm, gpa, data, len);
3396
3397 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3398 if (r)
3399 return -EFAULT;
3400
3401 return 0;
3402 }
3403 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3404
kvm_read_guest_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned long len)3405 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3406 void *data, unsigned long len)
3407 {
3408 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3409 }
3410 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3411
kvm_clear_guest(struct kvm * kvm,gpa_t gpa,unsigned long len)3412 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3413 {
3414 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3415 gfn_t gfn = gpa >> PAGE_SHIFT;
3416 int seg;
3417 int offset = offset_in_page(gpa);
3418 int ret;
3419
3420 while ((seg = next_segment(len, offset)) != 0) {
3421 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, seg);
3422 if (ret < 0)
3423 return ret;
3424 offset = 0;
3425 len -= seg;
3426 ++gfn;
3427 }
3428 return 0;
3429 }
3430 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3431
mark_page_dirty_in_slot(struct kvm * kvm,const struct kvm_memory_slot * memslot,gfn_t gfn)3432 void mark_page_dirty_in_slot(struct kvm *kvm,
3433 const struct kvm_memory_slot *memslot,
3434 gfn_t gfn)
3435 {
3436 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3437
3438 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3439 if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3440 return;
3441
3442 WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3443 #endif
3444
3445 if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3446 unsigned long rel_gfn = gfn - memslot->base_gfn;
3447 u32 slot = (memslot->as_id << 16) | memslot->id;
3448
3449 if (kvm->dirty_ring_size && vcpu)
3450 kvm_dirty_ring_push(vcpu, slot, rel_gfn);
3451 else if (memslot->dirty_bitmap)
3452 set_bit_le(rel_gfn, memslot->dirty_bitmap);
3453 }
3454 }
3455 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3456
mark_page_dirty(struct kvm * kvm,gfn_t gfn)3457 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3458 {
3459 struct kvm_memory_slot *memslot;
3460
3461 memslot = gfn_to_memslot(kvm, gfn);
3462 mark_page_dirty_in_slot(kvm, memslot, gfn);
3463 }
3464 EXPORT_SYMBOL_GPL(mark_page_dirty);
3465
kvm_vcpu_mark_page_dirty(struct kvm_vcpu * vcpu,gfn_t gfn)3466 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3467 {
3468 struct kvm_memory_slot *memslot;
3469
3470 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3471 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3472 }
3473 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3474
kvm_sigset_activate(struct kvm_vcpu * vcpu)3475 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3476 {
3477 if (!vcpu->sigset_active)
3478 return;
3479
3480 /*
3481 * This does a lockless modification of ->real_blocked, which is fine
3482 * because, only current can change ->real_blocked and all readers of
3483 * ->real_blocked don't care as long ->real_blocked is always a subset
3484 * of ->blocked.
3485 */
3486 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked);
3487 }
3488
kvm_sigset_deactivate(struct kvm_vcpu * vcpu)3489 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3490 {
3491 if (!vcpu->sigset_active)
3492 return;
3493
3494 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL);
3495 sigemptyset(¤t->real_blocked);
3496 }
3497
grow_halt_poll_ns(struct kvm_vcpu * vcpu)3498 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3499 {
3500 unsigned int old, val, grow, grow_start;
3501
3502 old = val = vcpu->halt_poll_ns;
3503 grow_start = READ_ONCE(halt_poll_ns_grow_start);
3504 grow = READ_ONCE(halt_poll_ns_grow);
3505 if (!grow)
3506 goto out;
3507
3508 val *= grow;
3509 if (val < grow_start)
3510 val = grow_start;
3511
3512 vcpu->halt_poll_ns = val;
3513 out:
3514 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3515 }
3516
shrink_halt_poll_ns(struct kvm_vcpu * vcpu)3517 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3518 {
3519 unsigned int old, val, shrink, grow_start;
3520
3521 old = val = vcpu->halt_poll_ns;
3522 shrink = READ_ONCE(halt_poll_ns_shrink);
3523 grow_start = READ_ONCE(halt_poll_ns_grow_start);
3524 if (shrink == 0)
3525 val = 0;
3526 else
3527 val /= shrink;
3528
3529 if (val < grow_start)
3530 val = 0;
3531
3532 vcpu->halt_poll_ns = val;
3533 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3534 }
3535
kvm_vcpu_check_block(struct kvm_vcpu * vcpu)3536 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3537 {
3538 int ret = -EINTR;
3539 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3540
3541 if (kvm_arch_vcpu_runnable(vcpu))
3542 goto out;
3543 if (kvm_cpu_has_pending_timer(vcpu))
3544 goto out;
3545 if (signal_pending(current))
3546 goto out;
3547 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3548 goto out;
3549
3550 ret = 0;
3551 out:
3552 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3553 return ret;
3554 }
3555
3556 /*
3557 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3558 * pending. This is mostly used when halting a vCPU, but may also be used
3559 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3560 */
kvm_vcpu_block(struct kvm_vcpu * vcpu)3561 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3562 {
3563 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3564 bool waited = false;
3565
3566 vcpu->stat.generic.blocking = 1;
3567
3568 preempt_disable();
3569 kvm_arch_vcpu_blocking(vcpu);
3570 prepare_to_rcuwait(wait);
3571 preempt_enable();
3572
3573 for (;;) {
3574 set_current_state(TASK_INTERRUPTIBLE);
3575
3576 if (kvm_vcpu_check_block(vcpu) < 0)
3577 break;
3578
3579 waited = true;
3580 schedule();
3581 }
3582
3583 preempt_disable();
3584 finish_rcuwait(wait);
3585 kvm_arch_vcpu_unblocking(vcpu);
3586 preempt_enable();
3587
3588 vcpu->stat.generic.blocking = 0;
3589
3590 return waited;
3591 }
3592
update_halt_poll_stats(struct kvm_vcpu * vcpu,ktime_t start,ktime_t end,bool success)3593 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3594 ktime_t end, bool success)
3595 {
3596 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3597 u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3598
3599 ++vcpu->stat.generic.halt_attempted_poll;
3600
3601 if (success) {
3602 ++vcpu->stat.generic.halt_successful_poll;
3603
3604 if (!vcpu_valid_wakeup(vcpu))
3605 ++vcpu->stat.generic.halt_poll_invalid;
3606
3607 stats->halt_poll_success_ns += poll_ns;
3608 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3609 } else {
3610 stats->halt_poll_fail_ns += poll_ns;
3611 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3612 }
3613 }
3614
kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu * vcpu)3615 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3616 {
3617 struct kvm *kvm = vcpu->kvm;
3618
3619 if (kvm->override_halt_poll_ns) {
3620 /*
3621 * Ensure kvm->max_halt_poll_ns is not read before
3622 * kvm->override_halt_poll_ns.
3623 *
3624 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3625 */
3626 smp_rmb();
3627 return READ_ONCE(kvm->max_halt_poll_ns);
3628 }
3629
3630 return READ_ONCE(halt_poll_ns);
3631 }
3632
3633 /*
3634 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt
3635 * polling is enabled, busy wait for a short time before blocking to avoid the
3636 * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3637 * is halted.
3638 */
kvm_vcpu_halt(struct kvm_vcpu * vcpu)3639 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3640 {
3641 unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3642 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3643 ktime_t start, cur, poll_end;
3644 bool waited = false;
3645 bool do_halt_poll;
3646 u64 halt_ns;
3647
3648 if (vcpu->halt_poll_ns > max_halt_poll_ns)
3649 vcpu->halt_poll_ns = max_halt_poll_ns;
3650
3651 do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3652
3653 start = cur = poll_end = ktime_get();
3654 if (do_halt_poll) {
3655 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3656
3657 do {
3658 if (kvm_vcpu_check_block(vcpu) < 0)
3659 goto out;
3660 cpu_relax();
3661 poll_end = cur = ktime_get();
3662 } while (kvm_vcpu_can_poll(cur, stop));
3663 }
3664
3665 waited = kvm_vcpu_block(vcpu);
3666
3667 cur = ktime_get();
3668 if (waited) {
3669 vcpu->stat.generic.halt_wait_ns +=
3670 ktime_to_ns(cur) - ktime_to_ns(poll_end);
3671 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3672 ktime_to_ns(cur) - ktime_to_ns(poll_end));
3673 }
3674 out:
3675 /* The total time the vCPU was "halted", including polling time. */
3676 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3677
3678 /*
3679 * Note, halt-polling is considered successful so long as the vCPU was
3680 * never actually scheduled out, i.e. even if the wake event arrived
3681 * after of the halt-polling loop itself, but before the full wait.
3682 */
3683 if (do_halt_poll)
3684 update_halt_poll_stats(vcpu, start, poll_end, !waited);
3685
3686 if (halt_poll_allowed) {
3687 /* Recompute the max halt poll time in case it changed. */
3688 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3689
3690 if (!vcpu_valid_wakeup(vcpu)) {
3691 shrink_halt_poll_ns(vcpu);
3692 } else if (max_halt_poll_ns) {
3693 if (halt_ns <= vcpu->halt_poll_ns)
3694 ;
3695 /* we had a long block, shrink polling */
3696 else if (vcpu->halt_poll_ns &&
3697 halt_ns > max_halt_poll_ns)
3698 shrink_halt_poll_ns(vcpu);
3699 /* we had a short halt and our poll time is too small */
3700 else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3701 halt_ns < max_halt_poll_ns)
3702 grow_halt_poll_ns(vcpu);
3703 } else {
3704 vcpu->halt_poll_ns = 0;
3705 }
3706 }
3707
3708 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3709 }
3710 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3711
kvm_vcpu_wake_up(struct kvm_vcpu * vcpu)3712 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3713 {
3714 if (__kvm_vcpu_wake_up(vcpu)) {
3715 WRITE_ONCE(vcpu->ready, true);
3716 ++vcpu->stat.generic.halt_wakeup;
3717 return true;
3718 }
3719
3720 return false;
3721 }
3722 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3723
3724 #ifndef CONFIG_S390
3725 /*
3726 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3727 */
kvm_vcpu_kick(struct kvm_vcpu * vcpu)3728 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3729 {
3730 int me, cpu;
3731
3732 if (kvm_vcpu_wake_up(vcpu))
3733 return;
3734
3735 me = get_cpu();
3736 /*
3737 * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3738 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should
3739 * kick" check does not need atomic operations if kvm_vcpu_kick is used
3740 * within the vCPU thread itself.
3741 */
3742 if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3743 if (vcpu->mode == IN_GUEST_MODE)
3744 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3745 goto out;
3746 }
3747
3748 /*
3749 * Note, the vCPU could get migrated to a different pCPU at any point
3750 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3751 * IPI to the previous pCPU. But, that's ok because the purpose of the
3752 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3753 * vCPU also requires it to leave IN_GUEST_MODE.
3754 */
3755 if (kvm_arch_vcpu_should_kick(vcpu)) {
3756 cpu = READ_ONCE(vcpu->cpu);
3757 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3758 smp_send_reschedule(cpu);
3759 }
3760 out:
3761 put_cpu();
3762 }
3763 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3764 #endif /* !CONFIG_S390 */
3765
kvm_vcpu_yield_to(struct kvm_vcpu * target)3766 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3767 {
3768 struct task_struct *task = NULL;
3769 int ret;
3770
3771 if (!read_trylock(&target->pid_lock))
3772 return 0;
3773
3774 if (target->pid)
3775 task = get_pid_task(target->pid, PIDTYPE_PID);
3776
3777 read_unlock(&target->pid_lock);
3778
3779 if (!task)
3780 return 0;
3781 ret = yield_to(task, 1);
3782 put_task_struct(task);
3783
3784 return ret;
3785 }
3786 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3787
3788 /*
3789 * Helper that checks whether a VCPU is eligible for directed yield.
3790 * Most eligible candidate to yield is decided by following heuristics:
3791 *
3792 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3793 * (preempted lock holder), indicated by @in_spin_loop.
3794 * Set at the beginning and cleared at the end of interception/PLE handler.
3795 *
3796 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3797 * chance last time (mostly it has become eligible now since we have probably
3798 * yielded to lockholder in last iteration. This is done by toggling
3799 * @dy_eligible each time a VCPU checked for eligibility.)
3800 *
3801 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3802 * to preempted lock-holder could result in wrong VCPU selection and CPU
3803 * burning. Giving priority for a potential lock-holder increases lock
3804 * progress.
3805 *
3806 * Since algorithm is based on heuristics, accessing another VCPU data without
3807 * locking does not harm. It may result in trying to yield to same VCPU, fail
3808 * and continue with next VCPU and so on.
3809 */
kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu * vcpu)3810 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3811 {
3812 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3813 bool eligible;
3814
3815 eligible = !vcpu->spin_loop.in_spin_loop ||
3816 vcpu->spin_loop.dy_eligible;
3817
3818 if (vcpu->spin_loop.in_spin_loop)
3819 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3820
3821 return eligible;
3822 #else
3823 return true;
3824 #endif
3825 }
3826
3827 /*
3828 * Unlike kvm_arch_vcpu_runnable, this function is called outside
3829 * a vcpu_load/vcpu_put pair. However, for most architectures
3830 * kvm_arch_vcpu_runnable does not require vcpu_load.
3831 */
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)3832 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3833 {
3834 return kvm_arch_vcpu_runnable(vcpu);
3835 }
3836
vcpu_dy_runnable(struct kvm_vcpu * vcpu)3837 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3838 {
3839 if (kvm_arch_dy_runnable(vcpu))
3840 return true;
3841
3842 #ifdef CONFIG_KVM_ASYNC_PF
3843 if (!list_empty_careful(&vcpu->async_pf.done))
3844 return true;
3845 #endif
3846
3847 return false;
3848 }
3849
3850 /*
3851 * By default, simply query the target vCPU's current mode when checking if a
3852 * vCPU was preempted in kernel mode. All architectures except x86 (or more
3853 * specifical, except VMX) allow querying whether or not a vCPU is in kernel
3854 * mode even if the vCPU is NOT loaded, i.e. using kvm_arch_vcpu_in_kernel()
3855 * directly for cross-vCPU checks is functionally correct and accurate.
3856 */
kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu * vcpu)3857 bool __weak kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu)
3858 {
3859 return kvm_arch_vcpu_in_kernel(vcpu);
3860 }
3861
kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu * vcpu)3862 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3863 {
3864 return false;
3865 }
3866
kvm_vcpu_on_spin(struct kvm_vcpu * me,bool yield_to_kernel_mode)3867 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3868 {
3869 int nr_vcpus, start, i, idx, yielded;
3870 struct kvm *kvm = me->kvm;
3871 struct kvm_vcpu *vcpu;
3872 int try = 3;
3873
3874 nr_vcpus = atomic_read(&kvm->online_vcpus);
3875 if (nr_vcpus < 2)
3876 return;
3877
3878 /* Pairs with the smp_wmb() in kvm_vm_ioctl_create_vcpu(). */
3879 smp_rmb();
3880
3881 kvm_vcpu_set_in_spin_loop(me, true);
3882
3883 /*
3884 * The current vCPU ("me") is spinning in kernel mode, i.e. is likely
3885 * waiting for a resource to become available. Attempt to yield to a
3886 * vCPU that is runnable, but not currently running, e.g. because the
3887 * vCPU was preempted by a higher priority task. With luck, the vCPU
3888 * that was preempted is holding a lock or some other resource that the
3889 * current vCPU is waiting to acquire, and yielding to the other vCPU
3890 * will allow it to make forward progress and release the lock (or kick
3891 * the spinning vCPU, etc).
3892 *
3893 * Since KVM has no insight into what exactly the guest is doing,
3894 * approximate a round-robin selection by iterating over all vCPUs,
3895 * starting at the last boosted vCPU. I.e. if N=kvm->last_boosted_vcpu,
3896 * iterate over vCPU[N+1]..vCPU[N-1], wrapping as needed.
3897 *
3898 * Note, this is inherently racy, e.g. if multiple vCPUs are spinning,
3899 * they may all try to yield to the same vCPU(s). But as above, this
3900 * is all best effort due to KVM's lack of visibility into the guest.
3901 */
3902 start = READ_ONCE(kvm->last_boosted_vcpu) + 1;
3903 for (i = 0; i < nr_vcpus; i++) {
3904 idx = (start + i) % nr_vcpus;
3905 if (idx == me->vcpu_idx)
3906 continue;
3907
3908 vcpu = xa_load(&kvm->vcpu_array, idx);
3909 if (!READ_ONCE(vcpu->ready))
3910 continue;
3911 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
3912 continue;
3913
3914 /*
3915 * Treat the target vCPU as being in-kernel if it has a pending
3916 * interrupt, as the vCPU trying to yield may be spinning
3917 * waiting on IPI delivery, i.e. the target vCPU is in-kernel
3918 * for the purposes of directed yield.
3919 */
3920 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3921 !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3922 !kvm_arch_vcpu_preempted_in_kernel(vcpu))
3923 continue;
3924
3925 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3926 continue;
3927
3928 yielded = kvm_vcpu_yield_to(vcpu);
3929 if (yielded > 0) {
3930 WRITE_ONCE(kvm->last_boosted_vcpu, i);
3931 break;
3932 } else if (yielded < 0 && !--try) {
3933 break;
3934 }
3935 }
3936 kvm_vcpu_set_in_spin_loop(me, false);
3937
3938 /* Ensure vcpu is not eligible during next spinloop */
3939 kvm_vcpu_set_dy_eligible(me, false);
3940 }
3941 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3942
kvm_page_in_dirty_ring(struct kvm * kvm,unsigned long pgoff)3943 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3944 {
3945 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3946 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3947 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3948 kvm->dirty_ring_size / PAGE_SIZE);
3949 #else
3950 return false;
3951 #endif
3952 }
3953
kvm_vcpu_fault(struct vm_fault * vmf)3954 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3955 {
3956 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3957 struct page *page;
3958
3959 if (vmf->pgoff == 0)
3960 page = virt_to_page(vcpu->run);
3961 #ifdef CONFIG_X86
3962 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3963 page = virt_to_page(vcpu->arch.pio_data);
3964 #endif
3965 #ifdef CONFIG_KVM_MMIO
3966 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3967 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3968 #endif
3969 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3970 page = kvm_dirty_ring_get_page(
3971 &vcpu->dirty_ring,
3972 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3973 else
3974 return kvm_arch_vcpu_fault(vcpu, vmf);
3975 get_page(page);
3976 vmf->page = page;
3977 return 0;
3978 }
3979
3980 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3981 .fault = kvm_vcpu_fault,
3982 };
3983
kvm_vcpu_mmap(struct file * file,struct vm_area_struct * vma)3984 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3985 {
3986 struct kvm_vcpu *vcpu = file->private_data;
3987 unsigned long pages = vma_pages(vma);
3988
3989 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3990 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3991 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3992 return -EINVAL;
3993
3994 vma->vm_ops = &kvm_vcpu_vm_ops;
3995 return 0;
3996 }
3997
kvm_vcpu_release(struct inode * inode,struct file * filp)3998 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3999 {
4000 struct kvm_vcpu *vcpu = filp->private_data;
4001
4002 kvm_put_kvm(vcpu->kvm);
4003 return 0;
4004 }
4005
4006 static struct file_operations kvm_vcpu_fops = {
4007 .release = kvm_vcpu_release,
4008 .unlocked_ioctl = kvm_vcpu_ioctl,
4009 .mmap = kvm_vcpu_mmap,
4010 .llseek = noop_llseek,
4011 KVM_COMPAT(kvm_vcpu_compat_ioctl),
4012 };
4013
4014 /*
4015 * Allocates an inode for the vcpu.
4016 */
create_vcpu_fd(struct kvm_vcpu * vcpu)4017 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
4018 {
4019 char name[8 + 1 + ITOA_MAX_LEN + 1];
4020
4021 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
4022 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
4023 }
4024
4025 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
vcpu_get_pid(void * data,u64 * val)4026 static int vcpu_get_pid(void *data, u64 *val)
4027 {
4028 struct kvm_vcpu *vcpu = data;
4029
4030 read_lock(&vcpu->pid_lock);
4031 *val = pid_nr(vcpu->pid);
4032 read_unlock(&vcpu->pid_lock);
4033 return 0;
4034 }
4035
4036 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
4037
kvm_create_vcpu_debugfs(struct kvm_vcpu * vcpu)4038 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
4039 {
4040 struct dentry *debugfs_dentry;
4041 char dir_name[ITOA_MAX_LEN * 2];
4042
4043 if (!debugfs_initialized())
4044 return;
4045
4046 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
4047 debugfs_dentry = debugfs_create_dir(dir_name,
4048 vcpu->kvm->debugfs_dentry);
4049 debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
4050 &vcpu_get_pid_fops);
4051
4052 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
4053 }
4054 #endif
4055
4056 /*
4057 * Creates some virtual cpus. Good luck creating more than one.
4058 */
kvm_vm_ioctl_create_vcpu(struct kvm * kvm,unsigned long id)4059 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, unsigned long id)
4060 {
4061 int r;
4062 struct kvm_vcpu *vcpu;
4063 struct page *page;
4064
4065 /*
4066 * KVM tracks vCPU IDs as 'int', be kind to userspace and reject
4067 * too-large values instead of silently truncating.
4068 *
4069 * Ensure KVM_MAX_VCPU_IDS isn't pushed above INT_MAX without first
4070 * changing the storage type (at the very least, IDs should be tracked
4071 * as unsigned ints).
4072 */
4073 BUILD_BUG_ON(KVM_MAX_VCPU_IDS > INT_MAX);
4074 if (id >= KVM_MAX_VCPU_IDS)
4075 return -EINVAL;
4076
4077 mutex_lock(&kvm->lock);
4078 if (kvm->created_vcpus >= kvm->max_vcpus) {
4079 mutex_unlock(&kvm->lock);
4080 return -EINVAL;
4081 }
4082
4083 r = kvm_arch_vcpu_precreate(kvm, id);
4084 if (r) {
4085 mutex_unlock(&kvm->lock);
4086 return r;
4087 }
4088
4089 kvm->created_vcpus++;
4090 mutex_unlock(&kvm->lock);
4091
4092 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
4093 if (!vcpu) {
4094 r = -ENOMEM;
4095 goto vcpu_decrement;
4096 }
4097
4098 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
4099 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
4100 if (!page) {
4101 r = -ENOMEM;
4102 goto vcpu_free;
4103 }
4104 vcpu->run = page_address(page);
4105
4106 kvm_vcpu_init(vcpu, kvm, id);
4107
4108 r = kvm_arch_vcpu_create(vcpu);
4109 if (r)
4110 goto vcpu_free_run_page;
4111
4112 if (kvm->dirty_ring_size) {
4113 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
4114 id, kvm->dirty_ring_size);
4115 if (r)
4116 goto arch_vcpu_destroy;
4117 }
4118
4119 mutex_lock(&kvm->lock);
4120
4121 if (kvm_get_vcpu_by_id(kvm, id)) {
4122 r = -EEXIST;
4123 goto unlock_vcpu_destroy;
4124 }
4125
4126 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
4127 r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT);
4128 WARN_ON_ONCE(r == -EBUSY);
4129 if (r)
4130 goto unlock_vcpu_destroy;
4131
4132 /*
4133 * Now it's all set up, let userspace reach it. Grab the vCPU's mutex
4134 * so that userspace can't invoke vCPU ioctl()s until the vCPU is fully
4135 * visible (per online_vcpus), e.g. so that KVM doesn't get tricked
4136 * into a NULL-pointer dereference because KVM thinks the _current_
4137 * vCPU doesn't exist. As a bonus, taking vcpu->mutex ensures lockdep
4138 * knows it's taken *inside* kvm->lock.
4139 */
4140 mutex_lock(&vcpu->mutex);
4141 kvm_get_kvm(kvm);
4142 r = create_vcpu_fd(vcpu);
4143 if (r < 0)
4144 goto kvm_put_xa_erase;
4145
4146 /*
4147 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu
4148 * pointer before kvm->online_vcpu's incremented value.
4149 */
4150 smp_wmb();
4151 atomic_inc(&kvm->online_vcpus);
4152 mutex_unlock(&vcpu->mutex);
4153
4154 mutex_unlock(&kvm->lock);
4155 kvm_arch_vcpu_postcreate(vcpu);
4156 kvm_create_vcpu_debugfs(vcpu);
4157 return r;
4158
4159 kvm_put_xa_erase:
4160 mutex_unlock(&vcpu->mutex);
4161 kvm_put_kvm_no_destroy(kvm);
4162 xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx);
4163 unlock_vcpu_destroy:
4164 mutex_unlock(&kvm->lock);
4165 kvm_dirty_ring_free(&vcpu->dirty_ring);
4166 arch_vcpu_destroy:
4167 kvm_arch_vcpu_destroy(vcpu);
4168 vcpu_free_run_page:
4169 free_page((unsigned long)vcpu->run);
4170 vcpu_free:
4171 kmem_cache_free(kvm_vcpu_cache, vcpu);
4172 vcpu_decrement:
4173 mutex_lock(&kvm->lock);
4174 kvm->created_vcpus--;
4175 mutex_unlock(&kvm->lock);
4176 return r;
4177 }
4178
kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu * vcpu,sigset_t * sigset)4179 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4180 {
4181 if (sigset) {
4182 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4183 vcpu->sigset_active = 1;
4184 vcpu->sigset = *sigset;
4185 } else
4186 vcpu->sigset_active = 0;
4187 return 0;
4188 }
4189
kvm_vcpu_stats_read(struct file * file,char __user * user_buffer,size_t size,loff_t * offset)4190 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4191 size_t size, loff_t *offset)
4192 {
4193 struct kvm_vcpu *vcpu = file->private_data;
4194
4195 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4196 &kvm_vcpu_stats_desc[0], &vcpu->stat,
4197 sizeof(vcpu->stat), user_buffer, size, offset);
4198 }
4199
kvm_vcpu_stats_release(struct inode * inode,struct file * file)4200 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file)
4201 {
4202 struct kvm_vcpu *vcpu = file->private_data;
4203
4204 kvm_put_kvm(vcpu->kvm);
4205 return 0;
4206 }
4207
4208 static const struct file_operations kvm_vcpu_stats_fops = {
4209 .owner = THIS_MODULE,
4210 .read = kvm_vcpu_stats_read,
4211 .release = kvm_vcpu_stats_release,
4212 .llseek = noop_llseek,
4213 };
4214
kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu * vcpu)4215 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4216 {
4217 int fd;
4218 struct file *file;
4219 char name[15 + ITOA_MAX_LEN + 1];
4220
4221 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4222
4223 fd = get_unused_fd_flags(O_CLOEXEC);
4224 if (fd < 0)
4225 return fd;
4226
4227 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4228 if (IS_ERR(file)) {
4229 put_unused_fd(fd);
4230 return PTR_ERR(file);
4231 }
4232
4233 kvm_get_kvm(vcpu->kvm);
4234
4235 file->f_mode |= FMODE_PREAD;
4236 fd_install(fd, file);
4237
4238 return fd;
4239 }
4240
4241 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
kvm_vcpu_pre_fault_memory(struct kvm_vcpu * vcpu,struct kvm_pre_fault_memory * range)4242 static int kvm_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu,
4243 struct kvm_pre_fault_memory *range)
4244 {
4245 int idx;
4246 long r;
4247 u64 full_size;
4248
4249 if (range->flags)
4250 return -EINVAL;
4251
4252 if (!PAGE_ALIGNED(range->gpa) ||
4253 !PAGE_ALIGNED(range->size) ||
4254 range->gpa + range->size <= range->gpa)
4255 return -EINVAL;
4256
4257 vcpu_load(vcpu);
4258 idx = srcu_read_lock(&vcpu->kvm->srcu);
4259
4260 full_size = range->size;
4261 do {
4262 if (signal_pending(current)) {
4263 r = -EINTR;
4264 break;
4265 }
4266
4267 r = kvm_arch_vcpu_pre_fault_memory(vcpu, range);
4268 if (WARN_ON_ONCE(r == 0 || r == -EIO))
4269 break;
4270
4271 if (r < 0)
4272 break;
4273
4274 range->size -= r;
4275 range->gpa += r;
4276 cond_resched();
4277 } while (range->size);
4278
4279 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4280 vcpu_put(vcpu);
4281
4282 /* Return success if at least one page was mapped successfully. */
4283 return full_size == range->size ? r : 0;
4284 }
4285 #endif
4286
kvm_wait_for_vcpu_online(struct kvm_vcpu * vcpu)4287 static int kvm_wait_for_vcpu_online(struct kvm_vcpu *vcpu)
4288 {
4289 struct kvm *kvm = vcpu->kvm;
4290
4291 /*
4292 * In practice, this happy path will always be taken, as a well-behaved
4293 * VMM will never invoke a vCPU ioctl() before KVM_CREATE_VCPU returns.
4294 */
4295 if (likely(vcpu->vcpu_idx < atomic_read(&kvm->online_vcpus)))
4296 return 0;
4297
4298 /*
4299 * Acquire and release the vCPU's mutex to wait for vCPU creation to
4300 * complete (kvm_vm_ioctl_create_vcpu() holds the mutex until the vCPU
4301 * is fully online).
4302 */
4303 if (mutex_lock_killable(&vcpu->mutex))
4304 return -EINTR;
4305
4306 mutex_unlock(&vcpu->mutex);
4307
4308 if (WARN_ON_ONCE(!kvm_get_vcpu(kvm, vcpu->vcpu_idx)))
4309 return -EIO;
4310
4311 return 0;
4312 }
4313
kvm_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4314 static long kvm_vcpu_ioctl(struct file *filp,
4315 unsigned int ioctl, unsigned long arg)
4316 {
4317 struct kvm_vcpu *vcpu = filp->private_data;
4318 void __user *argp = (void __user *)arg;
4319 int r;
4320 struct kvm_fpu *fpu = NULL;
4321 struct kvm_sregs *kvm_sregs = NULL;
4322
4323 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4324 return -EIO;
4325
4326 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4327 return -EINVAL;
4328
4329 /*
4330 * Wait for the vCPU to be online before handling the ioctl(), as KVM
4331 * assumes the vCPU is reachable via vcpu_array, i.e. may dereference
4332 * a NULL pointer if userspace invokes an ioctl() before KVM is ready.
4333 */
4334 r = kvm_wait_for_vcpu_online(vcpu);
4335 if (r)
4336 return r;
4337
4338 /*
4339 * Some architectures have vcpu ioctls that are asynchronous to vcpu
4340 * execution; mutex_lock() would break them.
4341 */
4342 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4343 if (r != -ENOIOCTLCMD)
4344 return r;
4345
4346 if (mutex_lock_killable(&vcpu->mutex))
4347 return -EINTR;
4348 switch (ioctl) {
4349 case KVM_RUN: {
4350 struct pid *oldpid;
4351 r = -EINVAL;
4352 if (arg)
4353 goto out;
4354
4355 /*
4356 * Note, vcpu->pid is primarily protected by vcpu->mutex. The
4357 * dedicated r/w lock allows other tasks, e.g. other vCPUs, to
4358 * read vcpu->pid while this vCPU is in KVM_RUN, e.g. to yield
4359 * directly to this vCPU
4360 */
4361 oldpid = vcpu->pid;
4362 if (unlikely(oldpid != task_pid(current))) {
4363 /* The thread running this VCPU changed. */
4364 struct pid *newpid;
4365
4366 r = kvm_arch_vcpu_run_pid_change(vcpu);
4367 if (r)
4368 break;
4369
4370 newpid = get_task_pid(current, PIDTYPE_PID);
4371 write_lock(&vcpu->pid_lock);
4372 vcpu->pid = newpid;
4373 write_unlock(&vcpu->pid_lock);
4374
4375 put_pid(oldpid);
4376 }
4377 vcpu->wants_to_run = !READ_ONCE(vcpu->run->immediate_exit__unsafe);
4378 r = kvm_arch_vcpu_ioctl_run(vcpu);
4379 vcpu->wants_to_run = false;
4380
4381 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4382 break;
4383 }
4384 case KVM_GET_REGS: {
4385 struct kvm_regs *kvm_regs;
4386
4387 r = -ENOMEM;
4388 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
4389 if (!kvm_regs)
4390 goto out;
4391 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4392 if (r)
4393 goto out_free1;
4394 r = -EFAULT;
4395 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4396 goto out_free1;
4397 r = 0;
4398 out_free1:
4399 kfree(kvm_regs);
4400 break;
4401 }
4402 case KVM_SET_REGS: {
4403 struct kvm_regs *kvm_regs;
4404
4405 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4406 if (IS_ERR(kvm_regs)) {
4407 r = PTR_ERR(kvm_regs);
4408 goto out;
4409 }
4410 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4411 kfree(kvm_regs);
4412 break;
4413 }
4414 case KVM_GET_SREGS: {
4415 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
4416 r = -ENOMEM;
4417 if (!kvm_sregs)
4418 goto out;
4419 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4420 if (r)
4421 goto out;
4422 r = -EFAULT;
4423 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4424 goto out;
4425 r = 0;
4426 break;
4427 }
4428 case KVM_SET_SREGS: {
4429 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4430 if (IS_ERR(kvm_sregs)) {
4431 r = PTR_ERR(kvm_sregs);
4432 kvm_sregs = NULL;
4433 goto out;
4434 }
4435 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4436 break;
4437 }
4438 case KVM_GET_MP_STATE: {
4439 struct kvm_mp_state mp_state;
4440
4441 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4442 if (r)
4443 goto out;
4444 r = -EFAULT;
4445 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4446 goto out;
4447 r = 0;
4448 break;
4449 }
4450 case KVM_SET_MP_STATE: {
4451 struct kvm_mp_state mp_state;
4452
4453 r = -EFAULT;
4454 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4455 goto out;
4456 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4457 break;
4458 }
4459 case KVM_TRANSLATE: {
4460 struct kvm_translation tr;
4461
4462 r = -EFAULT;
4463 if (copy_from_user(&tr, argp, sizeof(tr)))
4464 goto out;
4465 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4466 if (r)
4467 goto out;
4468 r = -EFAULT;
4469 if (copy_to_user(argp, &tr, sizeof(tr)))
4470 goto out;
4471 r = 0;
4472 break;
4473 }
4474 case KVM_SET_GUEST_DEBUG: {
4475 struct kvm_guest_debug dbg;
4476
4477 r = -EFAULT;
4478 if (copy_from_user(&dbg, argp, sizeof(dbg)))
4479 goto out;
4480 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4481 break;
4482 }
4483 case KVM_SET_SIGNAL_MASK: {
4484 struct kvm_signal_mask __user *sigmask_arg = argp;
4485 struct kvm_signal_mask kvm_sigmask;
4486 sigset_t sigset, *p;
4487
4488 p = NULL;
4489 if (argp) {
4490 r = -EFAULT;
4491 if (copy_from_user(&kvm_sigmask, argp,
4492 sizeof(kvm_sigmask)))
4493 goto out;
4494 r = -EINVAL;
4495 if (kvm_sigmask.len != sizeof(sigset))
4496 goto out;
4497 r = -EFAULT;
4498 if (copy_from_user(&sigset, sigmask_arg->sigset,
4499 sizeof(sigset)))
4500 goto out;
4501 p = &sigset;
4502 }
4503 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4504 break;
4505 }
4506 case KVM_GET_FPU: {
4507 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
4508 r = -ENOMEM;
4509 if (!fpu)
4510 goto out;
4511 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4512 if (r)
4513 goto out;
4514 r = -EFAULT;
4515 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4516 goto out;
4517 r = 0;
4518 break;
4519 }
4520 case KVM_SET_FPU: {
4521 fpu = memdup_user(argp, sizeof(*fpu));
4522 if (IS_ERR(fpu)) {
4523 r = PTR_ERR(fpu);
4524 fpu = NULL;
4525 goto out;
4526 }
4527 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4528 break;
4529 }
4530 case KVM_GET_STATS_FD: {
4531 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4532 break;
4533 }
4534 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
4535 case KVM_PRE_FAULT_MEMORY: {
4536 struct kvm_pre_fault_memory range;
4537
4538 r = -EFAULT;
4539 if (copy_from_user(&range, argp, sizeof(range)))
4540 break;
4541 r = kvm_vcpu_pre_fault_memory(vcpu, &range);
4542 /* Pass back leftover range. */
4543 if (copy_to_user(argp, &range, sizeof(range)))
4544 r = -EFAULT;
4545 break;
4546 }
4547 #endif
4548 default:
4549 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4550 }
4551 out:
4552 mutex_unlock(&vcpu->mutex);
4553 kfree(fpu);
4554 kfree(kvm_sregs);
4555 return r;
4556 }
4557
4558 #ifdef CONFIG_KVM_COMPAT
kvm_vcpu_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4559 static long kvm_vcpu_compat_ioctl(struct file *filp,
4560 unsigned int ioctl, unsigned long arg)
4561 {
4562 struct kvm_vcpu *vcpu = filp->private_data;
4563 void __user *argp = compat_ptr(arg);
4564 int r;
4565
4566 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4567 return -EIO;
4568
4569 switch (ioctl) {
4570 case KVM_SET_SIGNAL_MASK: {
4571 struct kvm_signal_mask __user *sigmask_arg = argp;
4572 struct kvm_signal_mask kvm_sigmask;
4573 sigset_t sigset;
4574
4575 if (argp) {
4576 r = -EFAULT;
4577 if (copy_from_user(&kvm_sigmask, argp,
4578 sizeof(kvm_sigmask)))
4579 goto out;
4580 r = -EINVAL;
4581 if (kvm_sigmask.len != sizeof(compat_sigset_t))
4582 goto out;
4583 r = -EFAULT;
4584 if (get_compat_sigset(&sigset,
4585 (compat_sigset_t __user *)sigmask_arg->sigset))
4586 goto out;
4587 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4588 } else
4589 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4590 break;
4591 }
4592 default:
4593 r = kvm_vcpu_ioctl(filp, ioctl, arg);
4594 }
4595
4596 out:
4597 return r;
4598 }
4599 #endif
4600
kvm_device_mmap(struct file * filp,struct vm_area_struct * vma)4601 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4602 {
4603 struct kvm_device *dev = filp->private_data;
4604
4605 if (dev->ops->mmap)
4606 return dev->ops->mmap(dev, vma);
4607
4608 return -ENODEV;
4609 }
4610
kvm_device_ioctl_attr(struct kvm_device * dev,int (* accessor)(struct kvm_device * dev,struct kvm_device_attr * attr),unsigned long arg)4611 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4612 int (*accessor)(struct kvm_device *dev,
4613 struct kvm_device_attr *attr),
4614 unsigned long arg)
4615 {
4616 struct kvm_device_attr attr;
4617
4618 if (!accessor)
4619 return -EPERM;
4620
4621 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4622 return -EFAULT;
4623
4624 return accessor(dev, &attr);
4625 }
4626
kvm_device_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4627 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4628 unsigned long arg)
4629 {
4630 struct kvm_device *dev = filp->private_data;
4631
4632 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4633 return -EIO;
4634
4635 switch (ioctl) {
4636 case KVM_SET_DEVICE_ATTR:
4637 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4638 case KVM_GET_DEVICE_ATTR:
4639 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4640 case KVM_HAS_DEVICE_ATTR:
4641 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4642 default:
4643 if (dev->ops->ioctl)
4644 return dev->ops->ioctl(dev, ioctl, arg);
4645
4646 return -ENOTTY;
4647 }
4648 }
4649
kvm_device_release(struct inode * inode,struct file * filp)4650 static int kvm_device_release(struct inode *inode, struct file *filp)
4651 {
4652 struct kvm_device *dev = filp->private_data;
4653 struct kvm *kvm = dev->kvm;
4654
4655 if (dev->ops->release) {
4656 mutex_lock(&kvm->lock);
4657 list_del_rcu(&dev->vm_node);
4658 synchronize_rcu();
4659 dev->ops->release(dev);
4660 mutex_unlock(&kvm->lock);
4661 }
4662
4663 kvm_put_kvm(kvm);
4664 return 0;
4665 }
4666
4667 static struct file_operations kvm_device_fops = {
4668 .unlocked_ioctl = kvm_device_ioctl,
4669 .release = kvm_device_release,
4670 KVM_COMPAT(kvm_device_ioctl),
4671 .mmap = kvm_device_mmap,
4672 };
4673
kvm_device_from_filp(struct file * filp)4674 struct kvm_device *kvm_device_from_filp(struct file *filp)
4675 {
4676 if (filp->f_op != &kvm_device_fops)
4677 return NULL;
4678
4679 return filp->private_data;
4680 }
4681
4682 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4683 #ifdef CONFIG_KVM_MPIC
4684 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
4685 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
4686 #endif
4687 };
4688
kvm_register_device_ops(const struct kvm_device_ops * ops,u32 type)4689 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4690 {
4691 if (type >= ARRAY_SIZE(kvm_device_ops_table))
4692 return -ENOSPC;
4693
4694 if (kvm_device_ops_table[type] != NULL)
4695 return -EEXIST;
4696
4697 kvm_device_ops_table[type] = ops;
4698 return 0;
4699 }
4700
kvm_unregister_device_ops(u32 type)4701 void kvm_unregister_device_ops(u32 type)
4702 {
4703 if (kvm_device_ops_table[type] != NULL)
4704 kvm_device_ops_table[type] = NULL;
4705 }
4706
kvm_ioctl_create_device(struct kvm * kvm,struct kvm_create_device * cd)4707 static int kvm_ioctl_create_device(struct kvm *kvm,
4708 struct kvm_create_device *cd)
4709 {
4710 const struct kvm_device_ops *ops;
4711 struct kvm_device *dev;
4712 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4713 int type;
4714 int ret;
4715
4716 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4717 return -ENODEV;
4718
4719 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4720 ops = kvm_device_ops_table[type];
4721 if (ops == NULL)
4722 return -ENODEV;
4723
4724 if (test)
4725 return 0;
4726
4727 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4728 if (!dev)
4729 return -ENOMEM;
4730
4731 dev->ops = ops;
4732 dev->kvm = kvm;
4733
4734 mutex_lock(&kvm->lock);
4735 ret = ops->create(dev, type);
4736 if (ret < 0) {
4737 mutex_unlock(&kvm->lock);
4738 kfree(dev);
4739 return ret;
4740 }
4741 list_add_rcu(&dev->vm_node, &kvm->devices);
4742 mutex_unlock(&kvm->lock);
4743
4744 if (ops->init)
4745 ops->init(dev);
4746
4747 kvm_get_kvm(kvm);
4748 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4749 if (ret < 0) {
4750 kvm_put_kvm_no_destroy(kvm);
4751 mutex_lock(&kvm->lock);
4752 list_del_rcu(&dev->vm_node);
4753 synchronize_rcu();
4754 if (ops->release)
4755 ops->release(dev);
4756 mutex_unlock(&kvm->lock);
4757 if (ops->destroy)
4758 ops->destroy(dev);
4759 return ret;
4760 }
4761
4762 cd->fd = ret;
4763 return 0;
4764 }
4765
kvm_vm_ioctl_check_extension_generic(struct kvm * kvm,long arg)4766 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4767 {
4768 switch (arg) {
4769 case KVM_CAP_USER_MEMORY:
4770 case KVM_CAP_USER_MEMORY2:
4771 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4772 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4773 case KVM_CAP_INTERNAL_ERROR_DATA:
4774 #ifdef CONFIG_HAVE_KVM_MSI
4775 case KVM_CAP_SIGNAL_MSI:
4776 #endif
4777 #ifdef CONFIG_HAVE_KVM_IRQCHIP
4778 case KVM_CAP_IRQFD:
4779 #endif
4780 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4781 case KVM_CAP_CHECK_EXTENSION_VM:
4782 case KVM_CAP_ENABLE_CAP_VM:
4783 case KVM_CAP_HALT_POLL:
4784 return 1;
4785 #ifdef CONFIG_KVM_MMIO
4786 case KVM_CAP_COALESCED_MMIO:
4787 return KVM_COALESCED_MMIO_PAGE_OFFSET;
4788 case KVM_CAP_COALESCED_PIO:
4789 return 1;
4790 #endif
4791 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4792 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4793 return KVM_DIRTY_LOG_MANUAL_CAPS;
4794 #endif
4795 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4796 case KVM_CAP_IRQ_ROUTING:
4797 return KVM_MAX_IRQ_ROUTES;
4798 #endif
4799 #if KVM_MAX_NR_ADDRESS_SPACES > 1
4800 case KVM_CAP_MULTI_ADDRESS_SPACE:
4801 if (kvm)
4802 return kvm_arch_nr_memslot_as_ids(kvm);
4803 return KVM_MAX_NR_ADDRESS_SPACES;
4804 #endif
4805 case KVM_CAP_NR_MEMSLOTS:
4806 return KVM_USER_MEM_SLOTS;
4807 case KVM_CAP_DIRTY_LOG_RING:
4808 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4809 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4810 #else
4811 return 0;
4812 #endif
4813 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4814 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4815 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4816 #else
4817 return 0;
4818 #endif
4819 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4820 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4821 #endif
4822 case KVM_CAP_BINARY_STATS_FD:
4823 case KVM_CAP_SYSTEM_EVENT_DATA:
4824 case KVM_CAP_DEVICE_CTRL:
4825 return 1;
4826 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
4827 case KVM_CAP_MEMORY_ATTRIBUTES:
4828 return kvm_supported_mem_attributes(kvm);
4829 #endif
4830 #ifdef CONFIG_KVM_PRIVATE_MEM
4831 case KVM_CAP_GUEST_MEMFD:
4832 return !kvm || kvm_arch_has_private_mem(kvm);
4833 #endif
4834 default:
4835 break;
4836 }
4837 return kvm_vm_ioctl_check_extension(kvm, arg);
4838 }
4839
kvm_vm_ioctl_enable_dirty_log_ring(struct kvm * kvm,u32 size)4840 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4841 {
4842 int r;
4843
4844 if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4845 return -EINVAL;
4846
4847 /* the size should be power of 2 */
4848 if (!size || (size & (size - 1)))
4849 return -EINVAL;
4850
4851 /* Should be bigger to keep the reserved entries, or a page */
4852 if (size < kvm_dirty_ring_get_rsvd_entries() *
4853 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4854 return -EINVAL;
4855
4856 if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4857 sizeof(struct kvm_dirty_gfn))
4858 return -E2BIG;
4859
4860 /* We only allow it to set once */
4861 if (kvm->dirty_ring_size)
4862 return -EINVAL;
4863
4864 mutex_lock(&kvm->lock);
4865
4866 if (kvm->created_vcpus) {
4867 /* We don't allow to change this value after vcpu created */
4868 r = -EINVAL;
4869 } else {
4870 kvm->dirty_ring_size = size;
4871 r = 0;
4872 }
4873
4874 mutex_unlock(&kvm->lock);
4875 return r;
4876 }
4877
kvm_vm_ioctl_reset_dirty_pages(struct kvm * kvm)4878 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4879 {
4880 unsigned long i;
4881 struct kvm_vcpu *vcpu;
4882 int cleared = 0;
4883
4884 if (!kvm->dirty_ring_size)
4885 return -EINVAL;
4886
4887 mutex_lock(&kvm->slots_lock);
4888
4889 kvm_for_each_vcpu(i, vcpu, kvm)
4890 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4891
4892 mutex_unlock(&kvm->slots_lock);
4893
4894 if (cleared)
4895 kvm_flush_remote_tlbs(kvm);
4896
4897 return cleared;
4898 }
4899
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)4900 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4901 struct kvm_enable_cap *cap)
4902 {
4903 return -EINVAL;
4904 }
4905
kvm_are_all_memslots_empty(struct kvm * kvm)4906 bool kvm_are_all_memslots_empty(struct kvm *kvm)
4907 {
4908 int i;
4909
4910 lockdep_assert_held(&kvm->slots_lock);
4911
4912 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
4913 if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
4914 return false;
4915 }
4916
4917 return true;
4918 }
4919 EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty);
4920
kvm_vm_ioctl_enable_cap_generic(struct kvm * kvm,struct kvm_enable_cap * cap)4921 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4922 struct kvm_enable_cap *cap)
4923 {
4924 switch (cap->cap) {
4925 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4926 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4927 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4928
4929 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4930 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4931
4932 if (cap->flags || (cap->args[0] & ~allowed_options))
4933 return -EINVAL;
4934 kvm->manual_dirty_log_protect = cap->args[0];
4935 return 0;
4936 }
4937 #endif
4938 case KVM_CAP_HALT_POLL: {
4939 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4940 return -EINVAL;
4941
4942 kvm->max_halt_poll_ns = cap->args[0];
4943
4944 /*
4945 * Ensure kvm->override_halt_poll_ns does not become visible
4946 * before kvm->max_halt_poll_ns.
4947 *
4948 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
4949 */
4950 smp_wmb();
4951 kvm->override_halt_poll_ns = true;
4952
4953 return 0;
4954 }
4955 case KVM_CAP_DIRTY_LOG_RING:
4956 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4957 if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
4958 return -EINVAL;
4959
4960 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4961 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
4962 int r = -EINVAL;
4963
4964 if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
4965 !kvm->dirty_ring_size || cap->flags)
4966 return r;
4967
4968 mutex_lock(&kvm->slots_lock);
4969
4970 /*
4971 * For simplicity, allow enabling ring+bitmap if and only if
4972 * there are no memslots, e.g. to ensure all memslots allocate
4973 * a bitmap after the capability is enabled.
4974 */
4975 if (kvm_are_all_memslots_empty(kvm)) {
4976 kvm->dirty_ring_with_bitmap = true;
4977 r = 0;
4978 }
4979
4980 mutex_unlock(&kvm->slots_lock);
4981
4982 return r;
4983 }
4984 default:
4985 return kvm_vm_ioctl_enable_cap(kvm, cap);
4986 }
4987 }
4988
kvm_vm_stats_read(struct file * file,char __user * user_buffer,size_t size,loff_t * offset)4989 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4990 size_t size, loff_t *offset)
4991 {
4992 struct kvm *kvm = file->private_data;
4993
4994 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4995 &kvm_vm_stats_desc[0], &kvm->stat,
4996 sizeof(kvm->stat), user_buffer, size, offset);
4997 }
4998
kvm_vm_stats_release(struct inode * inode,struct file * file)4999 static int kvm_vm_stats_release(struct inode *inode, struct file *file)
5000 {
5001 struct kvm *kvm = file->private_data;
5002
5003 kvm_put_kvm(kvm);
5004 return 0;
5005 }
5006
5007 static const struct file_operations kvm_vm_stats_fops = {
5008 .owner = THIS_MODULE,
5009 .read = kvm_vm_stats_read,
5010 .release = kvm_vm_stats_release,
5011 .llseek = noop_llseek,
5012 };
5013
kvm_vm_ioctl_get_stats_fd(struct kvm * kvm)5014 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
5015 {
5016 int fd;
5017 struct file *file;
5018
5019 fd = get_unused_fd_flags(O_CLOEXEC);
5020 if (fd < 0)
5021 return fd;
5022
5023 file = anon_inode_getfile("kvm-vm-stats",
5024 &kvm_vm_stats_fops, kvm, O_RDONLY);
5025 if (IS_ERR(file)) {
5026 put_unused_fd(fd);
5027 return PTR_ERR(file);
5028 }
5029
5030 kvm_get_kvm(kvm);
5031
5032 file->f_mode |= FMODE_PREAD;
5033 fd_install(fd, file);
5034
5035 return fd;
5036 }
5037
5038 #define SANITY_CHECK_MEM_REGION_FIELD(field) \
5039 do { \
5040 BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) != \
5041 offsetof(struct kvm_userspace_memory_region2, field)); \
5042 BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) != \
5043 sizeof_field(struct kvm_userspace_memory_region2, field)); \
5044 } while (0)
5045
kvm_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5046 static long kvm_vm_ioctl(struct file *filp,
5047 unsigned int ioctl, unsigned long arg)
5048 {
5049 struct kvm *kvm = filp->private_data;
5050 void __user *argp = (void __user *)arg;
5051 int r;
5052
5053 if (kvm->mm != current->mm || kvm->vm_dead)
5054 return -EIO;
5055 switch (ioctl) {
5056 case KVM_CREATE_VCPU:
5057 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
5058 break;
5059 case KVM_ENABLE_CAP: {
5060 struct kvm_enable_cap cap;
5061
5062 r = -EFAULT;
5063 if (copy_from_user(&cap, argp, sizeof(cap)))
5064 goto out;
5065 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
5066 break;
5067 }
5068 case KVM_SET_USER_MEMORY_REGION2:
5069 case KVM_SET_USER_MEMORY_REGION: {
5070 struct kvm_userspace_memory_region2 mem;
5071 unsigned long size;
5072
5073 if (ioctl == KVM_SET_USER_MEMORY_REGION) {
5074 /*
5075 * Fields beyond struct kvm_userspace_memory_region shouldn't be
5076 * accessed, but avoid leaking kernel memory in case of a bug.
5077 */
5078 memset(&mem, 0, sizeof(mem));
5079 size = sizeof(struct kvm_userspace_memory_region);
5080 } else {
5081 size = sizeof(struct kvm_userspace_memory_region2);
5082 }
5083
5084 /* Ensure the common parts of the two structs are identical. */
5085 SANITY_CHECK_MEM_REGION_FIELD(slot);
5086 SANITY_CHECK_MEM_REGION_FIELD(flags);
5087 SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr);
5088 SANITY_CHECK_MEM_REGION_FIELD(memory_size);
5089 SANITY_CHECK_MEM_REGION_FIELD(userspace_addr);
5090
5091 r = -EFAULT;
5092 if (copy_from_user(&mem, argp, size))
5093 goto out;
5094
5095 r = -EINVAL;
5096 if (ioctl == KVM_SET_USER_MEMORY_REGION &&
5097 (mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS))
5098 goto out;
5099
5100 r = kvm_vm_ioctl_set_memory_region(kvm, &mem);
5101 break;
5102 }
5103 case KVM_GET_DIRTY_LOG: {
5104 struct kvm_dirty_log log;
5105
5106 r = -EFAULT;
5107 if (copy_from_user(&log, argp, sizeof(log)))
5108 goto out;
5109 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5110 break;
5111 }
5112 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5113 case KVM_CLEAR_DIRTY_LOG: {
5114 struct kvm_clear_dirty_log log;
5115
5116 r = -EFAULT;
5117 if (copy_from_user(&log, argp, sizeof(log)))
5118 goto out;
5119 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5120 break;
5121 }
5122 #endif
5123 #ifdef CONFIG_KVM_MMIO
5124 case KVM_REGISTER_COALESCED_MMIO: {
5125 struct kvm_coalesced_mmio_zone zone;
5126
5127 r = -EFAULT;
5128 if (copy_from_user(&zone, argp, sizeof(zone)))
5129 goto out;
5130 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
5131 break;
5132 }
5133 case KVM_UNREGISTER_COALESCED_MMIO: {
5134 struct kvm_coalesced_mmio_zone zone;
5135
5136 r = -EFAULT;
5137 if (copy_from_user(&zone, argp, sizeof(zone)))
5138 goto out;
5139 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
5140 break;
5141 }
5142 #endif
5143 case KVM_IRQFD: {
5144 struct kvm_irqfd data;
5145
5146 r = -EFAULT;
5147 if (copy_from_user(&data, argp, sizeof(data)))
5148 goto out;
5149 r = kvm_irqfd(kvm, &data);
5150 break;
5151 }
5152 case KVM_IOEVENTFD: {
5153 struct kvm_ioeventfd data;
5154
5155 r = -EFAULT;
5156 if (copy_from_user(&data, argp, sizeof(data)))
5157 goto out;
5158 r = kvm_ioeventfd(kvm, &data);
5159 break;
5160 }
5161 #ifdef CONFIG_HAVE_KVM_MSI
5162 case KVM_SIGNAL_MSI: {
5163 struct kvm_msi msi;
5164
5165 r = -EFAULT;
5166 if (copy_from_user(&msi, argp, sizeof(msi)))
5167 goto out;
5168 r = kvm_send_userspace_msi(kvm, &msi);
5169 break;
5170 }
5171 #endif
5172 #ifdef __KVM_HAVE_IRQ_LINE
5173 case KVM_IRQ_LINE_STATUS:
5174 case KVM_IRQ_LINE: {
5175 struct kvm_irq_level irq_event;
5176
5177 r = -EFAULT;
5178 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
5179 goto out;
5180
5181 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
5182 ioctl == KVM_IRQ_LINE_STATUS);
5183 if (r)
5184 goto out;
5185
5186 r = -EFAULT;
5187 if (ioctl == KVM_IRQ_LINE_STATUS) {
5188 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
5189 goto out;
5190 }
5191
5192 r = 0;
5193 break;
5194 }
5195 #endif
5196 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
5197 case KVM_SET_GSI_ROUTING: {
5198 struct kvm_irq_routing routing;
5199 struct kvm_irq_routing __user *urouting;
5200 struct kvm_irq_routing_entry *entries = NULL;
5201
5202 r = -EFAULT;
5203 if (copy_from_user(&routing, argp, sizeof(routing)))
5204 goto out;
5205 r = -EINVAL;
5206 if (!kvm_arch_can_set_irq_routing(kvm))
5207 goto out;
5208 if (routing.nr > KVM_MAX_IRQ_ROUTES)
5209 goto out;
5210 if (routing.flags)
5211 goto out;
5212 if (routing.nr) {
5213 urouting = argp;
5214 entries = vmemdup_array_user(urouting->entries,
5215 routing.nr, sizeof(*entries));
5216 if (IS_ERR(entries)) {
5217 r = PTR_ERR(entries);
5218 goto out;
5219 }
5220 }
5221 r = kvm_set_irq_routing(kvm, entries, routing.nr,
5222 routing.flags);
5223 kvfree(entries);
5224 break;
5225 }
5226 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
5227 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
5228 case KVM_SET_MEMORY_ATTRIBUTES: {
5229 struct kvm_memory_attributes attrs;
5230
5231 r = -EFAULT;
5232 if (copy_from_user(&attrs, argp, sizeof(attrs)))
5233 goto out;
5234
5235 r = kvm_vm_ioctl_set_mem_attributes(kvm, &attrs);
5236 break;
5237 }
5238 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
5239 case KVM_CREATE_DEVICE: {
5240 struct kvm_create_device cd;
5241
5242 r = -EFAULT;
5243 if (copy_from_user(&cd, argp, sizeof(cd)))
5244 goto out;
5245
5246 r = kvm_ioctl_create_device(kvm, &cd);
5247 if (r)
5248 goto out;
5249
5250 r = -EFAULT;
5251 if (copy_to_user(argp, &cd, sizeof(cd)))
5252 goto out;
5253
5254 r = 0;
5255 break;
5256 }
5257 case KVM_CHECK_EXTENSION:
5258 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
5259 break;
5260 case KVM_RESET_DIRTY_RINGS:
5261 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
5262 break;
5263 case KVM_GET_STATS_FD:
5264 r = kvm_vm_ioctl_get_stats_fd(kvm);
5265 break;
5266 #ifdef CONFIG_KVM_PRIVATE_MEM
5267 case KVM_CREATE_GUEST_MEMFD: {
5268 struct kvm_create_guest_memfd guest_memfd;
5269
5270 r = -EFAULT;
5271 if (copy_from_user(&guest_memfd, argp, sizeof(guest_memfd)))
5272 goto out;
5273
5274 r = kvm_gmem_create(kvm, &guest_memfd);
5275 break;
5276 }
5277 #endif
5278 default:
5279 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
5280 }
5281 out:
5282 return r;
5283 }
5284
5285 #ifdef CONFIG_KVM_COMPAT
5286 struct compat_kvm_dirty_log {
5287 __u32 slot;
5288 __u32 padding1;
5289 union {
5290 compat_uptr_t dirty_bitmap; /* one bit per page */
5291 __u64 padding2;
5292 };
5293 };
5294
5295 struct compat_kvm_clear_dirty_log {
5296 __u32 slot;
5297 __u32 num_pages;
5298 __u64 first_page;
5299 union {
5300 compat_uptr_t dirty_bitmap; /* one bit per page */
5301 __u64 padding2;
5302 };
5303 };
5304
kvm_arch_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5305 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
5306 unsigned long arg)
5307 {
5308 return -ENOTTY;
5309 }
5310
kvm_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5311 static long kvm_vm_compat_ioctl(struct file *filp,
5312 unsigned int ioctl, unsigned long arg)
5313 {
5314 struct kvm *kvm = filp->private_data;
5315 int r;
5316
5317 if (kvm->mm != current->mm || kvm->vm_dead)
5318 return -EIO;
5319
5320 r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
5321 if (r != -ENOTTY)
5322 return r;
5323
5324 switch (ioctl) {
5325 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5326 case KVM_CLEAR_DIRTY_LOG: {
5327 struct compat_kvm_clear_dirty_log compat_log;
5328 struct kvm_clear_dirty_log log;
5329
5330 if (copy_from_user(&compat_log, (void __user *)arg,
5331 sizeof(compat_log)))
5332 return -EFAULT;
5333 log.slot = compat_log.slot;
5334 log.num_pages = compat_log.num_pages;
5335 log.first_page = compat_log.first_page;
5336 log.padding2 = compat_log.padding2;
5337 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5338
5339 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5340 break;
5341 }
5342 #endif
5343 case KVM_GET_DIRTY_LOG: {
5344 struct compat_kvm_dirty_log compat_log;
5345 struct kvm_dirty_log log;
5346
5347 if (copy_from_user(&compat_log, (void __user *)arg,
5348 sizeof(compat_log)))
5349 return -EFAULT;
5350 log.slot = compat_log.slot;
5351 log.padding1 = compat_log.padding1;
5352 log.padding2 = compat_log.padding2;
5353 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5354
5355 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5356 break;
5357 }
5358 default:
5359 r = kvm_vm_ioctl(filp, ioctl, arg);
5360 }
5361 return r;
5362 }
5363 #endif
5364
5365 static struct file_operations kvm_vm_fops = {
5366 .release = kvm_vm_release,
5367 .unlocked_ioctl = kvm_vm_ioctl,
5368 .llseek = noop_llseek,
5369 KVM_COMPAT(kvm_vm_compat_ioctl),
5370 };
5371
file_is_kvm(struct file * file)5372 bool file_is_kvm(struct file *file)
5373 {
5374 return file && file->f_op == &kvm_vm_fops;
5375 }
5376 EXPORT_SYMBOL_GPL(file_is_kvm);
5377
kvm_dev_ioctl_create_vm(unsigned long type)5378 static int kvm_dev_ioctl_create_vm(unsigned long type)
5379 {
5380 char fdname[ITOA_MAX_LEN + 1];
5381 int r, fd;
5382 struct kvm *kvm;
5383 struct file *file;
5384
5385 fd = get_unused_fd_flags(O_CLOEXEC);
5386 if (fd < 0)
5387 return fd;
5388
5389 snprintf(fdname, sizeof(fdname), "%d", fd);
5390
5391 kvm = kvm_create_vm(type, fdname);
5392 if (IS_ERR(kvm)) {
5393 r = PTR_ERR(kvm);
5394 goto put_fd;
5395 }
5396
5397 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5398 if (IS_ERR(file)) {
5399 r = PTR_ERR(file);
5400 goto put_kvm;
5401 }
5402
5403 /*
5404 * Don't call kvm_put_kvm anymore at this point; file->f_op is
5405 * already set, with ->release() being kvm_vm_release(). In error
5406 * cases it will be called by the final fput(file) and will take
5407 * care of doing kvm_put_kvm(kvm).
5408 */
5409 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
5410
5411 fd_install(fd, file);
5412 return fd;
5413
5414 put_kvm:
5415 kvm_put_kvm(kvm);
5416 put_fd:
5417 put_unused_fd(fd);
5418 return r;
5419 }
5420
kvm_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5421 static long kvm_dev_ioctl(struct file *filp,
5422 unsigned int ioctl, unsigned long arg)
5423 {
5424 int r = -EINVAL;
5425
5426 switch (ioctl) {
5427 case KVM_GET_API_VERSION:
5428 if (arg)
5429 goto out;
5430 r = KVM_API_VERSION;
5431 break;
5432 case KVM_CREATE_VM:
5433 r = kvm_dev_ioctl_create_vm(arg);
5434 break;
5435 case KVM_CHECK_EXTENSION:
5436 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5437 break;
5438 case KVM_GET_VCPU_MMAP_SIZE:
5439 if (arg)
5440 goto out;
5441 r = PAGE_SIZE; /* struct kvm_run */
5442 #ifdef CONFIG_X86
5443 r += PAGE_SIZE; /* pio data page */
5444 #endif
5445 #ifdef CONFIG_KVM_MMIO
5446 r += PAGE_SIZE; /* coalesced mmio ring page */
5447 #endif
5448 break;
5449 default:
5450 return kvm_arch_dev_ioctl(filp, ioctl, arg);
5451 }
5452 out:
5453 return r;
5454 }
5455
5456 static struct file_operations kvm_chardev_ops = {
5457 .unlocked_ioctl = kvm_dev_ioctl,
5458 .llseek = noop_llseek,
5459 KVM_COMPAT(kvm_dev_ioctl),
5460 };
5461
5462 static struct miscdevice kvm_dev = {
5463 KVM_MINOR,
5464 "kvm",
5465 &kvm_chardev_ops,
5466 };
5467
5468 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5469 static bool enable_virt_at_load = true;
5470 module_param(enable_virt_at_load, bool, 0444);
5471
5472 __visible bool kvm_rebooting;
5473 EXPORT_SYMBOL_GPL(kvm_rebooting);
5474
5475 static DEFINE_PER_CPU(bool, virtualization_enabled);
5476 static DEFINE_MUTEX(kvm_usage_lock);
5477 static int kvm_usage_count;
5478
kvm_arch_enable_virtualization(void)5479 __weak void kvm_arch_enable_virtualization(void)
5480 {
5481
5482 }
5483
kvm_arch_disable_virtualization(void)5484 __weak void kvm_arch_disable_virtualization(void)
5485 {
5486
5487 }
5488
kvm_enable_virtualization_cpu(void)5489 static int kvm_enable_virtualization_cpu(void)
5490 {
5491 if (__this_cpu_read(virtualization_enabled))
5492 return 0;
5493
5494 if (kvm_arch_enable_virtualization_cpu()) {
5495 pr_info("kvm: enabling virtualization on CPU%d failed\n",
5496 raw_smp_processor_id());
5497 return -EIO;
5498 }
5499
5500 __this_cpu_write(virtualization_enabled, true);
5501 return 0;
5502 }
5503
kvm_online_cpu(unsigned int cpu)5504 static int kvm_online_cpu(unsigned int cpu)
5505 {
5506 /*
5507 * Abort the CPU online process if hardware virtualization cannot
5508 * be enabled. Otherwise running VMs would encounter unrecoverable
5509 * errors when scheduled to this CPU.
5510 */
5511 return kvm_enable_virtualization_cpu();
5512 }
5513
kvm_disable_virtualization_cpu(void * ign)5514 static void kvm_disable_virtualization_cpu(void *ign)
5515 {
5516 if (!__this_cpu_read(virtualization_enabled))
5517 return;
5518
5519 kvm_arch_disable_virtualization_cpu();
5520
5521 __this_cpu_write(virtualization_enabled, false);
5522 }
5523
kvm_offline_cpu(unsigned int cpu)5524 static int kvm_offline_cpu(unsigned int cpu)
5525 {
5526 kvm_disable_virtualization_cpu(NULL);
5527 return 0;
5528 }
5529
kvm_shutdown(void)5530 static void kvm_shutdown(void)
5531 {
5532 /*
5533 * Disable hardware virtualization and set kvm_rebooting to indicate
5534 * that KVM has asynchronously disabled hardware virtualization, i.e.
5535 * that relevant errors and exceptions aren't entirely unexpected.
5536 * Some flavors of hardware virtualization need to be disabled before
5537 * transferring control to firmware (to perform shutdown/reboot), e.g.
5538 * on x86, virtualization can block INIT interrupts, which are used by
5539 * firmware to pull APs back under firmware control. Note, this path
5540 * is used for both shutdown and reboot scenarios, i.e. neither name is
5541 * 100% comprehensive.
5542 */
5543 pr_info("kvm: exiting hardware virtualization\n");
5544 kvm_rebooting = true;
5545 on_each_cpu(kvm_disable_virtualization_cpu, NULL, 1);
5546 }
5547
kvm_suspend(void)5548 static int kvm_suspend(void)
5549 {
5550 /*
5551 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume
5552 * callbacks, i.e. no need to acquire kvm_usage_lock to ensure the usage
5553 * count is stable. Assert that kvm_usage_lock is not held to ensure
5554 * the system isn't suspended while KVM is enabling hardware. Hardware
5555 * enabling can be preempted, but the task cannot be frozen until it has
5556 * dropped all locks (userspace tasks are frozen via a fake signal).
5557 */
5558 lockdep_assert_not_held(&kvm_usage_lock);
5559 lockdep_assert_irqs_disabled();
5560
5561 kvm_disable_virtualization_cpu(NULL);
5562 return 0;
5563 }
5564
kvm_resume(void)5565 static void kvm_resume(void)
5566 {
5567 lockdep_assert_not_held(&kvm_usage_lock);
5568 lockdep_assert_irqs_disabled();
5569
5570 WARN_ON_ONCE(kvm_enable_virtualization_cpu());
5571 }
5572
5573 static struct syscore_ops kvm_syscore_ops = {
5574 .suspend = kvm_suspend,
5575 .resume = kvm_resume,
5576 .shutdown = kvm_shutdown,
5577 };
5578
kvm_enable_virtualization(void)5579 static int kvm_enable_virtualization(void)
5580 {
5581 int r;
5582
5583 guard(mutex)(&kvm_usage_lock);
5584
5585 if (kvm_usage_count++)
5586 return 0;
5587
5588 kvm_arch_enable_virtualization();
5589
5590 r = cpuhp_setup_state(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online",
5591 kvm_online_cpu, kvm_offline_cpu);
5592 if (r)
5593 goto err_cpuhp;
5594
5595 register_syscore_ops(&kvm_syscore_ops);
5596
5597 /*
5598 * Undo virtualization enabling and bail if the system is going down.
5599 * If userspace initiated a forced reboot, e.g. reboot -f, then it's
5600 * possible for an in-flight operation to enable virtualization after
5601 * syscore_shutdown() is called, i.e. without kvm_shutdown() being
5602 * invoked. Note, this relies on system_state being set _before_
5603 * kvm_shutdown(), e.g. to ensure either kvm_shutdown() is invoked
5604 * or this CPU observes the impending shutdown. Which is why KVM uses
5605 * a syscore ops hook instead of registering a dedicated reboot
5606 * notifier (the latter runs before system_state is updated).
5607 */
5608 if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF ||
5609 system_state == SYSTEM_RESTART) {
5610 r = -EBUSY;
5611 goto err_rebooting;
5612 }
5613
5614 return 0;
5615
5616 err_rebooting:
5617 unregister_syscore_ops(&kvm_syscore_ops);
5618 cpuhp_remove_state(CPUHP_AP_KVM_ONLINE);
5619 err_cpuhp:
5620 kvm_arch_disable_virtualization();
5621 --kvm_usage_count;
5622 return r;
5623 }
5624
kvm_disable_virtualization(void)5625 static void kvm_disable_virtualization(void)
5626 {
5627 guard(mutex)(&kvm_usage_lock);
5628
5629 if (--kvm_usage_count)
5630 return;
5631
5632 unregister_syscore_ops(&kvm_syscore_ops);
5633 cpuhp_remove_state(CPUHP_AP_KVM_ONLINE);
5634 kvm_arch_disable_virtualization();
5635 }
5636
kvm_init_virtualization(void)5637 static int kvm_init_virtualization(void)
5638 {
5639 if (enable_virt_at_load)
5640 return kvm_enable_virtualization();
5641
5642 return 0;
5643 }
5644
kvm_uninit_virtualization(void)5645 static void kvm_uninit_virtualization(void)
5646 {
5647 if (enable_virt_at_load)
5648 kvm_disable_virtualization();
5649 }
5650 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
kvm_enable_virtualization(void)5651 static int kvm_enable_virtualization(void)
5652 {
5653 return 0;
5654 }
5655
kvm_init_virtualization(void)5656 static int kvm_init_virtualization(void)
5657 {
5658 return 0;
5659 }
5660
kvm_disable_virtualization(void)5661 static void kvm_disable_virtualization(void)
5662 {
5663
5664 }
5665
kvm_uninit_virtualization(void)5666 static void kvm_uninit_virtualization(void)
5667 {
5668
5669 }
5670 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5671
kvm_iodevice_destructor(struct kvm_io_device * dev)5672 static void kvm_iodevice_destructor(struct kvm_io_device *dev)
5673 {
5674 if (dev->ops->destructor)
5675 dev->ops->destructor(dev);
5676 }
5677
kvm_io_bus_destroy(struct kvm_io_bus * bus)5678 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5679 {
5680 int i;
5681
5682 for (i = 0; i < bus->dev_count; i++) {
5683 struct kvm_io_device *pos = bus->range[i].dev;
5684
5685 kvm_iodevice_destructor(pos);
5686 }
5687 kfree(bus);
5688 }
5689
kvm_io_bus_cmp(const struct kvm_io_range * r1,const struct kvm_io_range * r2)5690 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5691 const struct kvm_io_range *r2)
5692 {
5693 gpa_t addr1 = r1->addr;
5694 gpa_t addr2 = r2->addr;
5695
5696 if (addr1 < addr2)
5697 return -1;
5698
5699 /* If r2->len == 0, match the exact address. If r2->len != 0,
5700 * accept any overlapping write. Any order is acceptable for
5701 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5702 * we process all of them.
5703 */
5704 if (r2->len) {
5705 addr1 += r1->len;
5706 addr2 += r2->len;
5707 }
5708
5709 if (addr1 > addr2)
5710 return 1;
5711
5712 return 0;
5713 }
5714
kvm_io_bus_sort_cmp(const void * p1,const void * p2)5715 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5716 {
5717 return kvm_io_bus_cmp(p1, p2);
5718 }
5719
kvm_io_bus_get_first_dev(struct kvm_io_bus * bus,gpa_t addr,int len)5720 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5721 gpa_t addr, int len)
5722 {
5723 struct kvm_io_range *range, key;
5724 int off;
5725
5726 key = (struct kvm_io_range) {
5727 .addr = addr,
5728 .len = len,
5729 };
5730
5731 range = bsearch(&key, bus->range, bus->dev_count,
5732 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5733 if (range == NULL)
5734 return -ENOENT;
5735
5736 off = range - bus->range;
5737
5738 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5739 off--;
5740
5741 return off;
5742 }
5743
__kvm_io_bus_write(struct kvm_vcpu * vcpu,struct kvm_io_bus * bus,struct kvm_io_range * range,const void * val)5744 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5745 struct kvm_io_range *range, const void *val)
5746 {
5747 int idx;
5748
5749 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5750 if (idx < 0)
5751 return -EOPNOTSUPP;
5752
5753 while (idx < bus->dev_count &&
5754 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5755 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5756 range->len, val))
5757 return idx;
5758 idx++;
5759 }
5760
5761 return -EOPNOTSUPP;
5762 }
5763
5764 /* kvm_io_bus_write - called under kvm->slots_lock */
kvm_io_bus_write(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,const void * val)5765 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5766 int len, const void *val)
5767 {
5768 struct kvm_io_bus *bus;
5769 struct kvm_io_range range;
5770 int r;
5771
5772 range = (struct kvm_io_range) {
5773 .addr = addr,
5774 .len = len,
5775 };
5776
5777 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5778 if (!bus)
5779 return -ENOMEM;
5780 r = __kvm_io_bus_write(vcpu, bus, &range, val);
5781 return r < 0 ? r : 0;
5782 }
5783 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5784
5785 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
kvm_io_bus_write_cookie(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,const void * val,long cookie)5786 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5787 gpa_t addr, int len, const void *val, long cookie)
5788 {
5789 struct kvm_io_bus *bus;
5790 struct kvm_io_range range;
5791
5792 range = (struct kvm_io_range) {
5793 .addr = addr,
5794 .len = len,
5795 };
5796
5797 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5798 if (!bus)
5799 return -ENOMEM;
5800
5801 /* First try the device referenced by cookie. */
5802 if ((cookie >= 0) && (cookie < bus->dev_count) &&
5803 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5804 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5805 val))
5806 return cookie;
5807
5808 /*
5809 * cookie contained garbage; fall back to search and return the
5810 * correct cookie value.
5811 */
5812 return __kvm_io_bus_write(vcpu, bus, &range, val);
5813 }
5814
__kvm_io_bus_read(struct kvm_vcpu * vcpu,struct kvm_io_bus * bus,struct kvm_io_range * range,void * val)5815 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5816 struct kvm_io_range *range, void *val)
5817 {
5818 int idx;
5819
5820 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5821 if (idx < 0)
5822 return -EOPNOTSUPP;
5823
5824 while (idx < bus->dev_count &&
5825 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5826 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5827 range->len, val))
5828 return idx;
5829 idx++;
5830 }
5831
5832 return -EOPNOTSUPP;
5833 }
5834
5835 /* kvm_io_bus_read - called under kvm->slots_lock */
kvm_io_bus_read(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,void * val)5836 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5837 int len, void *val)
5838 {
5839 struct kvm_io_bus *bus;
5840 struct kvm_io_range range;
5841 int r;
5842
5843 range = (struct kvm_io_range) {
5844 .addr = addr,
5845 .len = len,
5846 };
5847
5848 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5849 if (!bus)
5850 return -ENOMEM;
5851 r = __kvm_io_bus_read(vcpu, bus, &range, val);
5852 return r < 0 ? r : 0;
5853 }
5854
kvm_io_bus_register_dev(struct kvm * kvm,enum kvm_bus bus_idx,gpa_t addr,int len,struct kvm_io_device * dev)5855 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5856 int len, struct kvm_io_device *dev)
5857 {
5858 int i;
5859 struct kvm_io_bus *new_bus, *bus;
5860 struct kvm_io_range range;
5861
5862 lockdep_assert_held(&kvm->slots_lock);
5863
5864 bus = kvm_get_bus(kvm, bus_idx);
5865 if (!bus)
5866 return -ENOMEM;
5867
5868 /* exclude ioeventfd which is limited by maximum fd */
5869 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5870 return -ENOSPC;
5871
5872 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5873 GFP_KERNEL_ACCOUNT);
5874 if (!new_bus)
5875 return -ENOMEM;
5876
5877 range = (struct kvm_io_range) {
5878 .addr = addr,
5879 .len = len,
5880 .dev = dev,
5881 };
5882
5883 for (i = 0; i < bus->dev_count; i++)
5884 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5885 break;
5886
5887 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5888 new_bus->dev_count++;
5889 new_bus->range[i] = range;
5890 memcpy(new_bus->range + i + 1, bus->range + i,
5891 (bus->dev_count - i) * sizeof(struct kvm_io_range));
5892 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5893 synchronize_srcu_expedited(&kvm->srcu);
5894 kfree(bus);
5895
5896 return 0;
5897 }
5898
kvm_io_bus_unregister_dev(struct kvm * kvm,enum kvm_bus bus_idx,struct kvm_io_device * dev)5899 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5900 struct kvm_io_device *dev)
5901 {
5902 int i;
5903 struct kvm_io_bus *new_bus, *bus;
5904
5905 lockdep_assert_held(&kvm->slots_lock);
5906
5907 bus = kvm_get_bus(kvm, bus_idx);
5908 if (!bus)
5909 return 0;
5910
5911 for (i = 0; i < bus->dev_count; i++) {
5912 if (bus->range[i].dev == dev) {
5913 break;
5914 }
5915 }
5916
5917 if (i == bus->dev_count)
5918 return 0;
5919
5920 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5921 GFP_KERNEL_ACCOUNT);
5922 if (new_bus) {
5923 memcpy(new_bus, bus, struct_size(bus, range, i));
5924 new_bus->dev_count--;
5925 memcpy(new_bus->range + i, bus->range + i + 1,
5926 flex_array_size(new_bus, range, new_bus->dev_count - i));
5927 }
5928
5929 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5930 synchronize_srcu_expedited(&kvm->srcu);
5931
5932 /*
5933 * If NULL bus is installed, destroy the old bus, including all the
5934 * attached devices. Otherwise, destroy the caller's device only.
5935 */
5936 if (!new_bus) {
5937 pr_err("kvm: failed to shrink bus, removing it completely\n");
5938 kvm_io_bus_destroy(bus);
5939 return -ENOMEM;
5940 }
5941
5942 kvm_iodevice_destructor(dev);
5943 kfree(bus);
5944 return 0;
5945 }
5946
kvm_io_bus_get_dev(struct kvm * kvm,enum kvm_bus bus_idx,gpa_t addr)5947 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5948 gpa_t addr)
5949 {
5950 struct kvm_io_bus *bus;
5951 int dev_idx, srcu_idx;
5952 struct kvm_io_device *iodev = NULL;
5953
5954 srcu_idx = srcu_read_lock(&kvm->srcu);
5955
5956 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5957 if (!bus)
5958 goto out_unlock;
5959
5960 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5961 if (dev_idx < 0)
5962 goto out_unlock;
5963
5964 iodev = bus->range[dev_idx].dev;
5965
5966 out_unlock:
5967 srcu_read_unlock(&kvm->srcu, srcu_idx);
5968
5969 return iodev;
5970 }
5971 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5972
kvm_debugfs_open(struct inode * inode,struct file * file,int (* get)(void *,u64 *),int (* set)(void *,u64),const char * fmt)5973 static int kvm_debugfs_open(struct inode *inode, struct file *file,
5974 int (*get)(void *, u64 *), int (*set)(void *, u64),
5975 const char *fmt)
5976 {
5977 int ret;
5978 struct kvm_stat_data *stat_data = inode->i_private;
5979
5980 /*
5981 * The debugfs files are a reference to the kvm struct which
5982 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe
5983 * avoids the race between open and the removal of the debugfs directory.
5984 */
5985 if (!kvm_get_kvm_safe(stat_data->kvm))
5986 return -ENOENT;
5987
5988 ret = simple_attr_open(inode, file, get,
5989 kvm_stats_debugfs_mode(stat_data->desc) & 0222
5990 ? set : NULL, fmt);
5991 if (ret)
5992 kvm_put_kvm(stat_data->kvm);
5993
5994 return ret;
5995 }
5996
kvm_debugfs_release(struct inode * inode,struct file * file)5997 static int kvm_debugfs_release(struct inode *inode, struct file *file)
5998 {
5999 struct kvm_stat_data *stat_data = inode->i_private;
6000
6001 simple_attr_release(inode, file);
6002 kvm_put_kvm(stat_data->kvm);
6003
6004 return 0;
6005 }
6006
kvm_get_stat_per_vm(struct kvm * kvm,size_t offset,u64 * val)6007 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
6008 {
6009 *val = *(u64 *)((void *)(&kvm->stat) + offset);
6010
6011 return 0;
6012 }
6013
kvm_clear_stat_per_vm(struct kvm * kvm,size_t offset)6014 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
6015 {
6016 *(u64 *)((void *)(&kvm->stat) + offset) = 0;
6017
6018 return 0;
6019 }
6020
kvm_get_stat_per_vcpu(struct kvm * kvm,size_t offset,u64 * val)6021 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
6022 {
6023 unsigned long i;
6024 struct kvm_vcpu *vcpu;
6025
6026 *val = 0;
6027
6028 kvm_for_each_vcpu(i, vcpu, kvm)
6029 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
6030
6031 return 0;
6032 }
6033
kvm_clear_stat_per_vcpu(struct kvm * kvm,size_t offset)6034 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
6035 {
6036 unsigned long i;
6037 struct kvm_vcpu *vcpu;
6038
6039 kvm_for_each_vcpu(i, vcpu, kvm)
6040 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
6041
6042 return 0;
6043 }
6044
kvm_stat_data_get(void * data,u64 * val)6045 static int kvm_stat_data_get(void *data, u64 *val)
6046 {
6047 int r = -EFAULT;
6048 struct kvm_stat_data *stat_data = data;
6049
6050 switch (stat_data->kind) {
6051 case KVM_STAT_VM:
6052 r = kvm_get_stat_per_vm(stat_data->kvm,
6053 stat_data->desc->desc.offset, val);
6054 break;
6055 case KVM_STAT_VCPU:
6056 r = kvm_get_stat_per_vcpu(stat_data->kvm,
6057 stat_data->desc->desc.offset, val);
6058 break;
6059 }
6060
6061 return r;
6062 }
6063
kvm_stat_data_clear(void * data,u64 val)6064 static int kvm_stat_data_clear(void *data, u64 val)
6065 {
6066 int r = -EFAULT;
6067 struct kvm_stat_data *stat_data = data;
6068
6069 if (val)
6070 return -EINVAL;
6071
6072 switch (stat_data->kind) {
6073 case KVM_STAT_VM:
6074 r = kvm_clear_stat_per_vm(stat_data->kvm,
6075 stat_data->desc->desc.offset);
6076 break;
6077 case KVM_STAT_VCPU:
6078 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
6079 stat_data->desc->desc.offset);
6080 break;
6081 }
6082
6083 return r;
6084 }
6085
kvm_stat_data_open(struct inode * inode,struct file * file)6086 static int kvm_stat_data_open(struct inode *inode, struct file *file)
6087 {
6088 __simple_attr_check_format("%llu\n", 0ull);
6089 return kvm_debugfs_open(inode, file, kvm_stat_data_get,
6090 kvm_stat_data_clear, "%llu\n");
6091 }
6092
6093 static const struct file_operations stat_fops_per_vm = {
6094 .owner = THIS_MODULE,
6095 .open = kvm_stat_data_open,
6096 .release = kvm_debugfs_release,
6097 .read = simple_attr_read,
6098 .write = simple_attr_write,
6099 };
6100
vm_stat_get(void * _offset,u64 * val)6101 static int vm_stat_get(void *_offset, u64 *val)
6102 {
6103 unsigned offset = (long)_offset;
6104 struct kvm *kvm;
6105 u64 tmp_val;
6106
6107 *val = 0;
6108 mutex_lock(&kvm_lock);
6109 list_for_each_entry(kvm, &vm_list, vm_list) {
6110 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
6111 *val += tmp_val;
6112 }
6113 mutex_unlock(&kvm_lock);
6114 return 0;
6115 }
6116
vm_stat_clear(void * _offset,u64 val)6117 static int vm_stat_clear(void *_offset, u64 val)
6118 {
6119 unsigned offset = (long)_offset;
6120 struct kvm *kvm;
6121
6122 if (val)
6123 return -EINVAL;
6124
6125 mutex_lock(&kvm_lock);
6126 list_for_each_entry(kvm, &vm_list, vm_list) {
6127 kvm_clear_stat_per_vm(kvm, offset);
6128 }
6129 mutex_unlock(&kvm_lock);
6130
6131 return 0;
6132 }
6133
6134 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
6135 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
6136
vcpu_stat_get(void * _offset,u64 * val)6137 static int vcpu_stat_get(void *_offset, u64 *val)
6138 {
6139 unsigned offset = (long)_offset;
6140 struct kvm *kvm;
6141 u64 tmp_val;
6142
6143 *val = 0;
6144 mutex_lock(&kvm_lock);
6145 list_for_each_entry(kvm, &vm_list, vm_list) {
6146 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
6147 *val += tmp_val;
6148 }
6149 mutex_unlock(&kvm_lock);
6150 return 0;
6151 }
6152
vcpu_stat_clear(void * _offset,u64 val)6153 static int vcpu_stat_clear(void *_offset, u64 val)
6154 {
6155 unsigned offset = (long)_offset;
6156 struct kvm *kvm;
6157
6158 if (val)
6159 return -EINVAL;
6160
6161 mutex_lock(&kvm_lock);
6162 list_for_each_entry(kvm, &vm_list, vm_list) {
6163 kvm_clear_stat_per_vcpu(kvm, offset);
6164 }
6165 mutex_unlock(&kvm_lock);
6166
6167 return 0;
6168 }
6169
6170 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
6171 "%llu\n");
6172 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
6173
kvm_uevent_notify_change(unsigned int type,struct kvm * kvm)6174 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
6175 {
6176 struct kobj_uevent_env *env;
6177 unsigned long long created, active;
6178
6179 if (!kvm_dev.this_device || !kvm)
6180 return;
6181
6182 mutex_lock(&kvm_lock);
6183 if (type == KVM_EVENT_CREATE_VM) {
6184 kvm_createvm_count++;
6185 kvm_active_vms++;
6186 } else if (type == KVM_EVENT_DESTROY_VM) {
6187 kvm_active_vms--;
6188 }
6189 created = kvm_createvm_count;
6190 active = kvm_active_vms;
6191 mutex_unlock(&kvm_lock);
6192
6193 env = kzalloc(sizeof(*env), GFP_KERNEL);
6194 if (!env)
6195 return;
6196
6197 add_uevent_var(env, "CREATED=%llu", created);
6198 add_uevent_var(env, "COUNT=%llu", active);
6199
6200 if (type == KVM_EVENT_CREATE_VM) {
6201 add_uevent_var(env, "EVENT=create");
6202 kvm->userspace_pid = task_pid_nr(current);
6203 } else if (type == KVM_EVENT_DESTROY_VM) {
6204 add_uevent_var(env, "EVENT=destroy");
6205 }
6206 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
6207
6208 if (!IS_ERR(kvm->debugfs_dentry)) {
6209 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
6210
6211 if (p) {
6212 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
6213 if (!IS_ERR(tmp))
6214 add_uevent_var(env, "STATS_PATH=%s", tmp);
6215 kfree(p);
6216 }
6217 }
6218 /* no need for checks, since we are adding at most only 5 keys */
6219 env->envp[env->envp_idx++] = NULL;
6220 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
6221 kfree(env);
6222 }
6223
kvm_init_debug(void)6224 static void kvm_init_debug(void)
6225 {
6226 const struct file_operations *fops;
6227 const struct _kvm_stats_desc *pdesc;
6228 int i;
6229
6230 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
6231
6232 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
6233 pdesc = &kvm_vm_stats_desc[i];
6234 if (kvm_stats_debugfs_mode(pdesc) & 0222)
6235 fops = &vm_stat_fops;
6236 else
6237 fops = &vm_stat_readonly_fops;
6238 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6239 kvm_debugfs_dir,
6240 (void *)(long)pdesc->desc.offset, fops);
6241 }
6242
6243 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
6244 pdesc = &kvm_vcpu_stats_desc[i];
6245 if (kvm_stats_debugfs_mode(pdesc) & 0222)
6246 fops = &vcpu_stat_fops;
6247 else
6248 fops = &vcpu_stat_readonly_fops;
6249 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6250 kvm_debugfs_dir,
6251 (void *)(long)pdesc->desc.offset, fops);
6252 }
6253 }
6254
6255 static inline
preempt_notifier_to_vcpu(struct preempt_notifier * pn)6256 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
6257 {
6258 return container_of(pn, struct kvm_vcpu, preempt_notifier);
6259 }
6260
kvm_sched_in(struct preempt_notifier * pn,int cpu)6261 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
6262 {
6263 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6264
6265 WRITE_ONCE(vcpu->preempted, false);
6266 WRITE_ONCE(vcpu->ready, false);
6267
6268 __this_cpu_write(kvm_running_vcpu, vcpu);
6269 kvm_arch_vcpu_load(vcpu, cpu);
6270
6271 WRITE_ONCE(vcpu->scheduled_out, false);
6272 }
6273
kvm_sched_out(struct preempt_notifier * pn,struct task_struct * next)6274 static void kvm_sched_out(struct preempt_notifier *pn,
6275 struct task_struct *next)
6276 {
6277 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6278
6279 WRITE_ONCE(vcpu->scheduled_out, true);
6280
6281 if (task_is_runnable(current) && vcpu->wants_to_run) {
6282 WRITE_ONCE(vcpu->preempted, true);
6283 WRITE_ONCE(vcpu->ready, true);
6284 }
6285 kvm_arch_vcpu_put(vcpu);
6286 __this_cpu_write(kvm_running_vcpu, NULL);
6287 }
6288
6289 /**
6290 * kvm_get_running_vcpu - get the vcpu running on the current CPU.
6291 *
6292 * We can disable preemption locally around accessing the per-CPU variable,
6293 * and use the resolved vcpu pointer after enabling preemption again,
6294 * because even if the current thread is migrated to another CPU, reading
6295 * the per-CPU value later will give us the same value as we update the
6296 * per-CPU variable in the preempt notifier handlers.
6297 */
kvm_get_running_vcpu(void)6298 struct kvm_vcpu *kvm_get_running_vcpu(void)
6299 {
6300 struct kvm_vcpu *vcpu;
6301
6302 preempt_disable();
6303 vcpu = __this_cpu_read(kvm_running_vcpu);
6304 preempt_enable();
6305
6306 return vcpu;
6307 }
6308 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
6309
6310 /**
6311 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
6312 */
kvm_get_running_vcpus(void)6313 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
6314 {
6315 return &kvm_running_vcpu;
6316 }
6317
6318 #ifdef CONFIG_GUEST_PERF_EVENTS
kvm_guest_state(void)6319 static unsigned int kvm_guest_state(void)
6320 {
6321 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6322 unsigned int state;
6323
6324 if (!kvm_arch_pmi_in_guest(vcpu))
6325 return 0;
6326
6327 state = PERF_GUEST_ACTIVE;
6328 if (!kvm_arch_vcpu_in_kernel(vcpu))
6329 state |= PERF_GUEST_USER;
6330
6331 return state;
6332 }
6333
kvm_guest_get_ip(void)6334 static unsigned long kvm_guest_get_ip(void)
6335 {
6336 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6337
6338 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
6339 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
6340 return 0;
6341
6342 return kvm_arch_vcpu_get_ip(vcpu);
6343 }
6344
6345 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6346 .state = kvm_guest_state,
6347 .get_ip = kvm_guest_get_ip,
6348 .handle_intel_pt_intr = NULL,
6349 };
6350
kvm_register_perf_callbacks(unsigned int (* pt_intr_handler)(void))6351 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
6352 {
6353 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
6354 perf_register_guest_info_callbacks(&kvm_guest_cbs);
6355 }
kvm_unregister_perf_callbacks(void)6356 void kvm_unregister_perf_callbacks(void)
6357 {
6358 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6359 }
6360 #endif
6361
kvm_init(unsigned vcpu_size,unsigned vcpu_align,struct module * module)6362 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
6363 {
6364 int r;
6365 int cpu;
6366
6367 /* A kmem cache lets us meet the alignment requirements of fx_save. */
6368 if (!vcpu_align)
6369 vcpu_align = __alignof__(struct kvm_vcpu);
6370 kvm_vcpu_cache =
6371 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
6372 SLAB_ACCOUNT,
6373 offsetof(struct kvm_vcpu, arch),
6374 offsetofend(struct kvm_vcpu, stats_id)
6375 - offsetof(struct kvm_vcpu, arch),
6376 NULL);
6377 if (!kvm_vcpu_cache)
6378 return -ENOMEM;
6379
6380 for_each_possible_cpu(cpu) {
6381 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
6382 GFP_KERNEL, cpu_to_node(cpu))) {
6383 r = -ENOMEM;
6384 goto err_cpu_kick_mask;
6385 }
6386 }
6387
6388 r = kvm_irqfd_init();
6389 if (r)
6390 goto err_irqfd;
6391
6392 r = kvm_async_pf_init();
6393 if (r)
6394 goto err_async_pf;
6395
6396 kvm_chardev_ops.owner = module;
6397 kvm_vm_fops.owner = module;
6398 kvm_vcpu_fops.owner = module;
6399 kvm_device_fops.owner = module;
6400
6401 kvm_preempt_ops.sched_in = kvm_sched_in;
6402 kvm_preempt_ops.sched_out = kvm_sched_out;
6403
6404 kvm_init_debug();
6405
6406 r = kvm_vfio_ops_init();
6407 if (WARN_ON_ONCE(r))
6408 goto err_vfio;
6409
6410 kvm_gmem_init(module);
6411
6412 r = kvm_init_virtualization();
6413 if (r)
6414 goto err_virt;
6415
6416 /*
6417 * Registration _must_ be the very last thing done, as this exposes
6418 * /dev/kvm to userspace, i.e. all infrastructure must be setup!
6419 */
6420 r = misc_register(&kvm_dev);
6421 if (r) {
6422 pr_err("kvm: misc device register failed\n");
6423 goto err_register;
6424 }
6425
6426 return 0;
6427
6428 err_register:
6429 kvm_uninit_virtualization();
6430 err_virt:
6431 kvm_vfio_ops_exit();
6432 err_vfio:
6433 kvm_async_pf_deinit();
6434 err_async_pf:
6435 kvm_irqfd_exit();
6436 err_irqfd:
6437 err_cpu_kick_mask:
6438 for_each_possible_cpu(cpu)
6439 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6440 kmem_cache_destroy(kvm_vcpu_cache);
6441 return r;
6442 }
6443 EXPORT_SYMBOL_GPL(kvm_init);
6444
kvm_exit(void)6445 void kvm_exit(void)
6446 {
6447 int cpu;
6448
6449 /*
6450 * Note, unregistering /dev/kvm doesn't strictly need to come first,
6451 * fops_get(), a.k.a. try_module_get(), prevents acquiring references
6452 * to KVM while the module is being stopped.
6453 */
6454 misc_deregister(&kvm_dev);
6455
6456 kvm_uninit_virtualization();
6457
6458 debugfs_remove_recursive(kvm_debugfs_dir);
6459 for_each_possible_cpu(cpu)
6460 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6461 kmem_cache_destroy(kvm_vcpu_cache);
6462 kvm_vfio_ops_exit();
6463 kvm_async_pf_deinit();
6464 kvm_irqfd_exit();
6465 }
6466 EXPORT_SYMBOL_GPL(kvm_exit);
6467