xref: /linux/drivers/net/ethernet/qlogic/qede/qede_main.c (revision 8f7aa3d3c7323f4ca2768a9e74ebbe359c4f8f88)
1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
2 /* QLogic qede NIC Driver
3  * Copyright (c) 2015-2017  QLogic Corporation
4  * Copyright (c) 2019-2020 Marvell International Ltd.
5  */
6 
7 #include <linux/crash_dump.h>
8 #include <linux/module.h>
9 #include <linux/pci.h>
10 #include <linux/device.h>
11 #include <linux/netdevice.h>
12 #include <linux/etherdevice.h>
13 #include <linux/skbuff.h>
14 #include <linux/errno.h>
15 #include <linux/list.h>
16 #include <linux/string.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/interrupt.h>
19 #include <asm/byteorder.h>
20 #include <asm/param.h>
21 #include <linux/io.h>
22 #include <linux/netdev_features.h>
23 #include <linux/udp.h>
24 #include <linux/tcp.h>
25 #include <net/udp_tunnel.h>
26 #include <linux/ip.h>
27 #include <net/ipv6.h>
28 #include <net/tcp.h>
29 #include <linux/if_ether.h>
30 #include <linux/if_vlan.h>
31 #include <linux/pkt_sched.h>
32 #include <linux/ethtool.h>
33 #include <linux/in.h>
34 #include <linux/random.h>
35 #include <net/ip6_checksum.h>
36 #include <linux/bitops.h>
37 #include <linux/vmalloc.h>
38 #include "qede.h"
39 #include "qede_ptp.h"
40 
41 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
42 MODULE_LICENSE("GPL");
43 
44 static uint debug;
45 module_param(debug, uint, 0);
46 MODULE_PARM_DESC(debug, " Default debug msglevel");
47 
48 static const struct qed_eth_ops *qed_ops;
49 
50 #define CHIP_NUM_57980S_40		0x1634
51 #define CHIP_NUM_57980S_10		0x1666
52 #define CHIP_NUM_57980S_MF		0x1636
53 #define CHIP_NUM_57980S_100		0x1644
54 #define CHIP_NUM_57980S_50		0x1654
55 #define CHIP_NUM_57980S_25		0x1656
56 #define CHIP_NUM_57980S_IOV		0x1664
57 #define CHIP_NUM_AH			0x8070
58 #define CHIP_NUM_AH_IOV			0x8090
59 
60 #ifndef PCI_DEVICE_ID_NX2_57980E
61 #define PCI_DEVICE_ID_57980S_40		CHIP_NUM_57980S_40
62 #define PCI_DEVICE_ID_57980S_10		CHIP_NUM_57980S_10
63 #define PCI_DEVICE_ID_57980S_MF		CHIP_NUM_57980S_MF
64 #define PCI_DEVICE_ID_57980S_100	CHIP_NUM_57980S_100
65 #define PCI_DEVICE_ID_57980S_50		CHIP_NUM_57980S_50
66 #define PCI_DEVICE_ID_57980S_25		CHIP_NUM_57980S_25
67 #define PCI_DEVICE_ID_57980S_IOV	CHIP_NUM_57980S_IOV
68 #define PCI_DEVICE_ID_AH		CHIP_NUM_AH
69 #define PCI_DEVICE_ID_AH_IOV		CHIP_NUM_AH_IOV
70 
71 #endif
72 
73 enum qede_pci_private {
74 	QEDE_PRIVATE_PF,
75 	QEDE_PRIVATE_VF
76 };
77 
78 static const struct pci_device_id qede_pci_tbl[] = {
79 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
80 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
81 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
82 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
83 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
84 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
85 #ifdef CONFIG_QED_SRIOV
86 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
87 #endif
88 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF},
89 #ifdef CONFIG_QED_SRIOV
90 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF},
91 #endif
92 	{ 0 }
93 };
94 
95 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
96 
97 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
98 static pci_ers_result_t
99 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state);
100 
101 #define TX_TIMEOUT		(5 * HZ)
102 
103 /* Utilize last protocol index for XDP */
104 #define XDP_PI	11
105 
106 static void qede_remove(struct pci_dev *pdev);
107 static void qede_shutdown(struct pci_dev *pdev);
108 static void qede_link_update(void *dev, struct qed_link_output *link);
109 static void qede_schedule_recovery_handler(void *dev);
110 static void qede_recovery_handler(struct qede_dev *edev);
111 static void qede_schedule_hw_err_handler(void *dev,
112 					 enum qed_hw_err_type err_type);
113 static void qede_get_eth_tlv_data(void *edev, void *data);
114 static void qede_get_generic_tlv_data(void *edev,
115 				      struct qed_generic_tlvs *data);
116 static void qede_generic_hw_err_handler(struct qede_dev *edev);
117 #ifdef CONFIG_QED_SRIOV
118 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
119 			    __be16 vlan_proto)
120 {
121 	struct qede_dev *edev = netdev_priv(ndev);
122 
123 	if (vlan > 4095) {
124 		DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
125 		return -EINVAL;
126 	}
127 
128 	if (vlan_proto != htons(ETH_P_8021Q))
129 		return -EPROTONOSUPPORT;
130 
131 	DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
132 		   vlan, vf);
133 
134 	return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
135 }
136 
137 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
138 {
139 	struct qede_dev *edev = netdev_priv(ndev);
140 
141 	DP_VERBOSE(edev, QED_MSG_IOV, "Setting MAC %pM to VF [%d]\n", mac, vfidx);
142 
143 	if (!is_valid_ether_addr(mac)) {
144 		DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
145 		return -EINVAL;
146 	}
147 
148 	return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
149 }
150 
151 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
152 {
153 	struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
154 	struct qed_dev_info *qed_info = &edev->dev_info.common;
155 	struct qed_update_vport_params *vport_params;
156 	int rc;
157 
158 	vport_params = vzalloc(sizeof(*vport_params));
159 	if (!vport_params)
160 		return -ENOMEM;
161 	DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
162 
163 	rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
164 
165 	/* Enable/Disable Tx switching for PF */
166 	if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
167 	    !qed_info->b_inter_pf_switch && qed_info->tx_switching) {
168 		vport_params->vport_id = 0;
169 		vport_params->update_tx_switching_flg = 1;
170 		vport_params->tx_switching_flg = num_vfs_param ? 1 : 0;
171 		edev->ops->vport_update(edev->cdev, vport_params);
172 	}
173 
174 	vfree(vport_params);
175 	return rc;
176 }
177 #endif
178 
179 static int __maybe_unused qede_suspend(struct device *dev)
180 {
181 	dev_info(dev, "Device does not support suspend operation\n");
182 
183 	return -EOPNOTSUPP;
184 }
185 
186 static DEFINE_SIMPLE_DEV_PM_OPS(qede_pm_ops, qede_suspend, NULL);
187 
188 static const struct pci_error_handlers qede_err_handler = {
189 	.error_detected = qede_io_error_detected,
190 };
191 
192 static struct pci_driver qede_pci_driver = {
193 	.name = "qede",
194 	.id_table = qede_pci_tbl,
195 	.probe = qede_probe,
196 	.remove = qede_remove,
197 	.shutdown = qede_shutdown,
198 #ifdef CONFIG_QED_SRIOV
199 	.sriov_configure = qede_sriov_configure,
200 #endif
201 	.err_handler = &qede_err_handler,
202 	.driver.pm = &qede_pm_ops,
203 };
204 
205 static struct qed_eth_cb_ops qede_ll_ops = {
206 	.common = {
207 #ifdef CONFIG_RFS_ACCEL
208 		.arfs_filter_op = qede_arfs_filter_op,
209 #endif
210 		.link_update = qede_link_update,
211 		.schedule_recovery_handler = qede_schedule_recovery_handler,
212 		.schedule_hw_err_handler = qede_schedule_hw_err_handler,
213 		.get_generic_tlv_data = qede_get_generic_tlv_data,
214 		.get_protocol_tlv_data = qede_get_eth_tlv_data,
215 	},
216 	.force_mac = qede_force_mac,
217 	.ports_update = qede_udp_ports_update,
218 };
219 
220 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
221 			     void *ptr)
222 {
223 	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
224 	struct ethtool_drvinfo drvinfo;
225 	struct qede_dev *edev;
226 
227 	if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
228 		goto done;
229 
230 	/* Check whether this is a qede device */
231 	if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
232 		goto done;
233 
234 	memset(&drvinfo, 0, sizeof(drvinfo));
235 	ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
236 	if (strcmp(drvinfo.driver, "qede"))
237 		goto done;
238 	edev = netdev_priv(ndev);
239 
240 	switch (event) {
241 	case NETDEV_CHANGENAME:
242 		/* Notify qed of the name change */
243 		if (!edev->ops || !edev->ops->common)
244 			goto done;
245 		edev->ops->common->set_name(edev->cdev, edev->ndev->name);
246 		break;
247 	case NETDEV_CHANGEADDR:
248 		edev = netdev_priv(ndev);
249 		qede_rdma_event_changeaddr(edev);
250 		break;
251 	}
252 
253 done:
254 	return NOTIFY_DONE;
255 }
256 
257 static struct notifier_block qede_netdev_notifier = {
258 	.notifier_call = qede_netdev_event,
259 };
260 
261 static
262 int __init qede_init(void)
263 {
264 	int ret;
265 
266 	pr_info("qede init: QLogic FastLinQ 4xxxx Ethernet Driver qede\n");
267 
268 	qede_forced_speed_maps_init();
269 
270 	qed_ops = qed_get_eth_ops();
271 	if (!qed_ops) {
272 		pr_notice("Failed to get qed ethtool operations\n");
273 		return -EINVAL;
274 	}
275 
276 	/* Must register notifier before pci ops, since we might miss
277 	 * interface rename after pci probe and netdev registration.
278 	 */
279 	ret = register_netdevice_notifier(&qede_netdev_notifier);
280 	if (ret) {
281 		pr_notice("Failed to register netdevice_notifier\n");
282 		qed_put_eth_ops();
283 		return -EINVAL;
284 	}
285 
286 	ret = pci_register_driver(&qede_pci_driver);
287 	if (ret) {
288 		pr_notice("Failed to register driver\n");
289 		unregister_netdevice_notifier(&qede_netdev_notifier);
290 		qed_put_eth_ops();
291 		return -EINVAL;
292 	}
293 
294 	return 0;
295 }
296 
297 static void __exit qede_cleanup(void)
298 {
299 	if (debug & QED_LOG_INFO_MASK)
300 		pr_info("qede_cleanup called\n");
301 
302 	unregister_netdevice_notifier(&qede_netdev_notifier);
303 	pci_unregister_driver(&qede_pci_driver);
304 	qed_put_eth_ops();
305 }
306 
307 module_init(qede_init);
308 module_exit(qede_cleanup);
309 
310 static int qede_open(struct net_device *ndev);
311 static int qede_close(struct net_device *ndev);
312 
313 void qede_fill_by_demand_stats(struct qede_dev *edev)
314 {
315 	struct qede_stats_common *p_common = &edev->stats.common;
316 	struct qed_eth_stats stats;
317 
318 	edev->ops->get_vport_stats(edev->cdev, &stats);
319 
320 	spin_lock(&edev->stats_lock);
321 
322 	p_common->no_buff_discards = stats.common.no_buff_discards;
323 	p_common->packet_too_big_discard = stats.common.packet_too_big_discard;
324 	p_common->ttl0_discard = stats.common.ttl0_discard;
325 	p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes;
326 	p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes;
327 	p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes;
328 	p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts;
329 	p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts;
330 	p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts;
331 	p_common->mftag_filter_discards = stats.common.mftag_filter_discards;
332 	p_common->mac_filter_discards = stats.common.mac_filter_discards;
333 	p_common->gft_filter_drop = stats.common.gft_filter_drop;
334 
335 	p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes;
336 	p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes;
337 	p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes;
338 	p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts;
339 	p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts;
340 	p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts;
341 	p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts;
342 	p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts;
343 	p_common->coalesced_events = stats.common.tpa_coalesced_events;
344 	p_common->coalesced_aborts_num = stats.common.tpa_aborts_num;
345 	p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts;
346 	p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes;
347 
348 	p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets;
349 	p_common->rx_65_to_127_byte_packets =
350 	    stats.common.rx_65_to_127_byte_packets;
351 	p_common->rx_128_to_255_byte_packets =
352 	    stats.common.rx_128_to_255_byte_packets;
353 	p_common->rx_256_to_511_byte_packets =
354 	    stats.common.rx_256_to_511_byte_packets;
355 	p_common->rx_512_to_1023_byte_packets =
356 	    stats.common.rx_512_to_1023_byte_packets;
357 	p_common->rx_1024_to_1518_byte_packets =
358 	    stats.common.rx_1024_to_1518_byte_packets;
359 	p_common->rx_crc_errors = stats.common.rx_crc_errors;
360 	p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames;
361 	p_common->rx_pause_frames = stats.common.rx_pause_frames;
362 	p_common->rx_pfc_frames = stats.common.rx_pfc_frames;
363 	p_common->rx_align_errors = stats.common.rx_align_errors;
364 	p_common->rx_carrier_errors = stats.common.rx_carrier_errors;
365 	p_common->rx_oversize_packets = stats.common.rx_oversize_packets;
366 	p_common->rx_jabbers = stats.common.rx_jabbers;
367 	p_common->rx_undersize_packets = stats.common.rx_undersize_packets;
368 	p_common->rx_fragments = stats.common.rx_fragments;
369 	p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets;
370 	p_common->tx_65_to_127_byte_packets =
371 	    stats.common.tx_65_to_127_byte_packets;
372 	p_common->tx_128_to_255_byte_packets =
373 	    stats.common.tx_128_to_255_byte_packets;
374 	p_common->tx_256_to_511_byte_packets =
375 	    stats.common.tx_256_to_511_byte_packets;
376 	p_common->tx_512_to_1023_byte_packets =
377 	    stats.common.tx_512_to_1023_byte_packets;
378 	p_common->tx_1024_to_1518_byte_packets =
379 	    stats.common.tx_1024_to_1518_byte_packets;
380 	p_common->tx_pause_frames = stats.common.tx_pause_frames;
381 	p_common->tx_pfc_frames = stats.common.tx_pfc_frames;
382 	p_common->brb_truncates = stats.common.brb_truncates;
383 	p_common->brb_discards = stats.common.brb_discards;
384 	p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames;
385 	p_common->link_change_count = stats.common.link_change_count;
386 	p_common->ptp_skip_txts = edev->ptp_skip_txts;
387 
388 	if (QEDE_IS_BB(edev)) {
389 		struct qede_stats_bb *p_bb = &edev->stats.bb;
390 
391 		p_bb->rx_1519_to_1522_byte_packets =
392 		    stats.bb.rx_1519_to_1522_byte_packets;
393 		p_bb->rx_1519_to_2047_byte_packets =
394 		    stats.bb.rx_1519_to_2047_byte_packets;
395 		p_bb->rx_2048_to_4095_byte_packets =
396 		    stats.bb.rx_2048_to_4095_byte_packets;
397 		p_bb->rx_4096_to_9216_byte_packets =
398 		    stats.bb.rx_4096_to_9216_byte_packets;
399 		p_bb->rx_9217_to_16383_byte_packets =
400 		    stats.bb.rx_9217_to_16383_byte_packets;
401 		p_bb->tx_1519_to_2047_byte_packets =
402 		    stats.bb.tx_1519_to_2047_byte_packets;
403 		p_bb->tx_2048_to_4095_byte_packets =
404 		    stats.bb.tx_2048_to_4095_byte_packets;
405 		p_bb->tx_4096_to_9216_byte_packets =
406 		    stats.bb.tx_4096_to_9216_byte_packets;
407 		p_bb->tx_9217_to_16383_byte_packets =
408 		    stats.bb.tx_9217_to_16383_byte_packets;
409 		p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count;
410 		p_bb->tx_total_collisions = stats.bb.tx_total_collisions;
411 	} else {
412 		struct qede_stats_ah *p_ah = &edev->stats.ah;
413 
414 		p_ah->rx_1519_to_max_byte_packets =
415 		    stats.ah.rx_1519_to_max_byte_packets;
416 		p_ah->tx_1519_to_max_byte_packets =
417 		    stats.ah.tx_1519_to_max_byte_packets;
418 	}
419 
420 	spin_unlock(&edev->stats_lock);
421 }
422 
423 static void qede_get_stats64(struct net_device *dev,
424 			     struct rtnl_link_stats64 *stats)
425 {
426 	struct qede_dev *edev = netdev_priv(dev);
427 	struct qede_stats_common *p_common;
428 
429 	p_common = &edev->stats.common;
430 
431 	spin_lock(&edev->stats_lock);
432 
433 	stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts +
434 			    p_common->rx_bcast_pkts;
435 	stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts +
436 			    p_common->tx_bcast_pkts;
437 
438 	stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes +
439 			  p_common->rx_bcast_bytes;
440 	stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes +
441 			  p_common->tx_bcast_bytes;
442 
443 	stats->tx_errors = p_common->tx_err_drop_pkts;
444 	stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts;
445 
446 	stats->rx_fifo_errors = p_common->no_buff_discards;
447 
448 	if (QEDE_IS_BB(edev))
449 		stats->collisions = edev->stats.bb.tx_total_collisions;
450 	stats->rx_crc_errors = p_common->rx_crc_errors;
451 	stats->rx_frame_errors = p_common->rx_align_errors;
452 
453 	spin_unlock(&edev->stats_lock);
454 }
455 
456 #ifdef CONFIG_QED_SRIOV
457 static int qede_get_vf_config(struct net_device *dev, int vfidx,
458 			      struct ifla_vf_info *ivi)
459 {
460 	struct qede_dev *edev = netdev_priv(dev);
461 
462 	if (!edev->ops)
463 		return -EINVAL;
464 
465 	return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
466 }
467 
468 static int qede_set_vf_rate(struct net_device *dev, int vfidx,
469 			    int min_tx_rate, int max_tx_rate)
470 {
471 	struct qede_dev *edev = netdev_priv(dev);
472 
473 	return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
474 					max_tx_rate);
475 }
476 
477 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
478 {
479 	struct qede_dev *edev = netdev_priv(dev);
480 
481 	if (!edev->ops)
482 		return -EINVAL;
483 
484 	return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
485 }
486 
487 static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
488 				  int link_state)
489 {
490 	struct qede_dev *edev = netdev_priv(dev);
491 
492 	if (!edev->ops)
493 		return -EINVAL;
494 
495 	return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
496 }
497 
498 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting)
499 {
500 	struct qede_dev *edev = netdev_priv(dev);
501 
502 	if (!edev->ops)
503 		return -EINVAL;
504 
505 	return edev->ops->iov->set_trust(edev->cdev, vfidx, setting);
506 }
507 #endif
508 
509 static void qede_fp_sb_dump(struct qede_dev *edev, struct qede_fastpath *fp)
510 {
511 	char *p_sb = (char *)fp->sb_info->sb_virt;
512 	u32 sb_size, i;
513 
514 	sb_size = sizeof(struct status_block);
515 
516 	for (i = 0; i < sb_size; i += 8)
517 		DP_NOTICE(edev,
518 			  "%02hhX %02hhX %02hhX %02hhX  %02hhX %02hhX %02hhX %02hhX\n",
519 			  p_sb[i], p_sb[i + 1], p_sb[i + 2], p_sb[i + 3],
520 			  p_sb[i + 4], p_sb[i + 5], p_sb[i + 6], p_sb[i + 7]);
521 }
522 
523 static void
524 qede_txq_fp_log_metadata(struct qede_dev *edev,
525 			 struct qede_fastpath *fp, struct qede_tx_queue *txq)
526 {
527 	struct qed_chain *p_chain = &txq->tx_pbl;
528 
529 	/* Dump txq/fp/sb ids etc. other metadata */
530 	DP_NOTICE(edev,
531 		  "fpid 0x%x sbid 0x%x txqid [0x%x] ndev_qid [0x%x] cos [0x%x] p_chain %p cap %d size %d jiffies %lu HZ 0x%x\n",
532 		  fp->id, fp->sb_info->igu_sb_id, txq->index, txq->ndev_txq_id, txq->cos,
533 		  p_chain, p_chain->capacity, p_chain->size, jiffies, HZ);
534 
535 	/* Dump all the relevant prod/cons indexes */
536 	DP_NOTICE(edev,
537 		  "hw cons %04x sw_tx_prod=0x%x, sw_tx_cons=0x%x, bd_prod 0x%x bd_cons 0x%x\n",
538 		  le16_to_cpu(*txq->hw_cons_ptr), txq->sw_tx_prod, txq->sw_tx_cons,
539 		  qed_chain_get_prod_idx(p_chain), qed_chain_get_cons_idx(p_chain));
540 }
541 
542 static void
543 qede_tx_log_print(struct qede_dev *edev, struct qede_fastpath *fp, struct qede_tx_queue *txq)
544 {
545 	struct qed_sb_info_dbg sb_dbg;
546 	int rc;
547 
548 	/* sb info */
549 	qede_fp_sb_dump(edev, fp);
550 
551 	memset(&sb_dbg, 0, sizeof(sb_dbg));
552 	rc = edev->ops->common->get_sb_info(edev->cdev, fp->sb_info, (u16)fp->id, &sb_dbg);
553 
554 	DP_NOTICE(edev, "IGU: prod %08x cons %08x CAU Tx %04x\n",
555 		  sb_dbg.igu_prod, sb_dbg.igu_cons, sb_dbg.pi[TX_PI(txq->cos)]);
556 
557 	/* report to mfw */
558 	edev->ops->common->mfw_report(edev->cdev,
559 				      "Txq[%d]: FW cons [host] %04x, SW cons %04x, SW prod %04x [Jiffies %lu]\n",
560 				      txq->index, le16_to_cpu(*txq->hw_cons_ptr),
561 				      qed_chain_get_cons_idx(&txq->tx_pbl),
562 				      qed_chain_get_prod_idx(&txq->tx_pbl), jiffies);
563 	if (!rc)
564 		edev->ops->common->mfw_report(edev->cdev,
565 					      "Txq[%d]: SB[0x%04x] - IGU: prod %08x cons %08x CAU Tx %04x\n",
566 					      txq->index, fp->sb_info->igu_sb_id,
567 					      sb_dbg.igu_prod, sb_dbg.igu_cons,
568 					      sb_dbg.pi[TX_PI(txq->cos)]);
569 }
570 
571 static void qede_tx_timeout(struct net_device *dev, unsigned int txqueue)
572 {
573 	struct qede_dev *edev = netdev_priv(dev);
574 	int i;
575 
576 	netif_carrier_off(dev);
577 	DP_NOTICE(edev, "TX timeout on queue %u!\n", txqueue);
578 
579 	for_each_queue(i) {
580 		struct qede_tx_queue *txq;
581 		struct qede_fastpath *fp;
582 		int cos;
583 
584 		fp = &edev->fp_array[i];
585 		if (!(fp->type & QEDE_FASTPATH_TX))
586 			continue;
587 
588 		for_each_cos_in_txq(edev, cos) {
589 			txq = &fp->txq[cos];
590 
591 			/* Dump basic metadata for all queues */
592 			qede_txq_fp_log_metadata(edev, fp, txq);
593 
594 			if (qed_chain_get_cons_idx(&txq->tx_pbl) !=
595 			    qed_chain_get_prod_idx(&txq->tx_pbl))
596 				qede_tx_log_print(edev, fp, txq);
597 		}
598 	}
599 
600 	if (IS_VF(edev))
601 		return;
602 
603 	if (test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) ||
604 	    edev->state == QEDE_STATE_RECOVERY) {
605 		DP_INFO(edev,
606 			"Avoid handling a Tx timeout while another HW error is being handled\n");
607 		return;
608 	}
609 
610 	set_bit(QEDE_ERR_GET_DBG_INFO, &edev->err_flags);
611 	set_bit(QEDE_SP_HW_ERR, &edev->sp_flags);
612 	schedule_delayed_work(&edev->sp_task, 0);
613 }
614 
615 static int qede_setup_tc(struct net_device *ndev, u8 num_tc)
616 {
617 	struct qede_dev *edev = netdev_priv(ndev);
618 	int cos, count, offset;
619 
620 	if (num_tc > edev->dev_info.num_tc)
621 		return -EINVAL;
622 
623 	netdev_reset_tc(ndev);
624 	netdev_set_num_tc(ndev, num_tc);
625 
626 	for_each_cos_in_txq(edev, cos) {
627 		count = QEDE_TSS_COUNT(edev);
628 		offset = cos * QEDE_TSS_COUNT(edev);
629 		netdev_set_tc_queue(ndev, cos, count, offset);
630 	}
631 
632 	return 0;
633 }
634 
635 static int
636 qede_set_flower(struct qede_dev *edev, struct flow_cls_offload *f,
637 		__be16 proto)
638 {
639 	switch (f->command) {
640 	case FLOW_CLS_REPLACE:
641 		return qede_add_tc_flower_fltr(edev, proto, f);
642 	case FLOW_CLS_DESTROY:
643 		return qede_delete_flow_filter(edev, f->cookie);
644 	default:
645 		return -EOPNOTSUPP;
646 	}
647 }
648 
649 static int qede_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
650 				  void *cb_priv)
651 {
652 	struct flow_cls_offload *f;
653 	struct qede_dev *edev = cb_priv;
654 
655 	if (!tc_cls_can_offload_and_chain0(edev->ndev, type_data))
656 		return -EOPNOTSUPP;
657 
658 	switch (type) {
659 	case TC_SETUP_CLSFLOWER:
660 		f = type_data;
661 		return qede_set_flower(edev, f, f->common.protocol);
662 	default:
663 		return -EOPNOTSUPP;
664 	}
665 }
666 
667 static LIST_HEAD(qede_block_cb_list);
668 
669 static int
670 qede_setup_tc_offload(struct net_device *dev, enum tc_setup_type type,
671 		      void *type_data)
672 {
673 	struct qede_dev *edev = netdev_priv(dev);
674 	struct tc_mqprio_qopt *mqprio;
675 
676 	switch (type) {
677 	case TC_SETUP_BLOCK:
678 		return flow_block_cb_setup_simple(type_data,
679 						  &qede_block_cb_list,
680 						  qede_setup_tc_block_cb,
681 						  edev, edev, true);
682 	case TC_SETUP_QDISC_MQPRIO:
683 		mqprio = type_data;
684 
685 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
686 		return qede_setup_tc(dev, mqprio->num_tc);
687 	default:
688 		return -EOPNOTSUPP;
689 	}
690 }
691 
692 static const struct net_device_ops qede_netdev_ops = {
693 	.ndo_open		= qede_open,
694 	.ndo_stop		= qede_close,
695 	.ndo_start_xmit		= qede_start_xmit,
696 	.ndo_select_queue	= qede_select_queue,
697 	.ndo_set_rx_mode	= qede_set_rx_mode,
698 	.ndo_set_mac_address	= qede_set_mac_addr,
699 	.ndo_validate_addr	= eth_validate_addr,
700 	.ndo_change_mtu		= qede_change_mtu,
701 	.ndo_tx_timeout		= qede_tx_timeout,
702 #ifdef CONFIG_QED_SRIOV
703 	.ndo_set_vf_mac		= qede_set_vf_mac,
704 	.ndo_set_vf_vlan	= qede_set_vf_vlan,
705 	.ndo_set_vf_trust	= qede_set_vf_trust,
706 #endif
707 	.ndo_vlan_rx_add_vid	= qede_vlan_rx_add_vid,
708 	.ndo_vlan_rx_kill_vid	= qede_vlan_rx_kill_vid,
709 	.ndo_fix_features	= qede_fix_features,
710 	.ndo_set_features	= qede_set_features,
711 	.ndo_get_stats64	= qede_get_stats64,
712 #ifdef CONFIG_QED_SRIOV
713 	.ndo_set_vf_link_state	= qede_set_vf_link_state,
714 	.ndo_set_vf_spoofchk	= qede_set_vf_spoofchk,
715 	.ndo_get_vf_config	= qede_get_vf_config,
716 	.ndo_set_vf_rate	= qede_set_vf_rate,
717 #endif
718 	.ndo_features_check	= qede_features_check,
719 	.ndo_bpf		= qede_xdp,
720 #ifdef CONFIG_RFS_ACCEL
721 	.ndo_rx_flow_steer	= qede_rx_flow_steer,
722 #endif
723 	.ndo_xdp_xmit		= qede_xdp_transmit,
724 	.ndo_setup_tc		= qede_setup_tc_offload,
725 	.ndo_hwtstamp_get	= qede_hwtstamp_get,
726 	.ndo_hwtstamp_set	= qede_hwtstamp_set,
727 };
728 
729 static const struct net_device_ops qede_netdev_vf_ops = {
730 	.ndo_open		= qede_open,
731 	.ndo_stop		= qede_close,
732 	.ndo_start_xmit		= qede_start_xmit,
733 	.ndo_select_queue	= qede_select_queue,
734 	.ndo_set_rx_mode	= qede_set_rx_mode,
735 	.ndo_set_mac_address	= qede_set_mac_addr,
736 	.ndo_validate_addr	= eth_validate_addr,
737 	.ndo_change_mtu		= qede_change_mtu,
738 	.ndo_vlan_rx_add_vid	= qede_vlan_rx_add_vid,
739 	.ndo_vlan_rx_kill_vid	= qede_vlan_rx_kill_vid,
740 	.ndo_fix_features	= qede_fix_features,
741 	.ndo_set_features	= qede_set_features,
742 	.ndo_get_stats64	= qede_get_stats64,
743 	.ndo_features_check	= qede_features_check,
744 };
745 
746 static const struct net_device_ops qede_netdev_vf_xdp_ops = {
747 	.ndo_open		= qede_open,
748 	.ndo_stop		= qede_close,
749 	.ndo_start_xmit		= qede_start_xmit,
750 	.ndo_select_queue	= qede_select_queue,
751 	.ndo_set_rx_mode	= qede_set_rx_mode,
752 	.ndo_set_mac_address	= qede_set_mac_addr,
753 	.ndo_validate_addr	= eth_validate_addr,
754 	.ndo_change_mtu		= qede_change_mtu,
755 	.ndo_vlan_rx_add_vid	= qede_vlan_rx_add_vid,
756 	.ndo_vlan_rx_kill_vid	= qede_vlan_rx_kill_vid,
757 	.ndo_fix_features	= qede_fix_features,
758 	.ndo_set_features	= qede_set_features,
759 	.ndo_get_stats64	= qede_get_stats64,
760 	.ndo_features_check	= qede_features_check,
761 	.ndo_bpf		= qede_xdp,
762 	.ndo_xdp_xmit		= qede_xdp_transmit,
763 };
764 
765 /* -------------------------------------------------------------------------
766  * START OF PROBE / REMOVE
767  * -------------------------------------------------------------------------
768  */
769 
770 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
771 					    struct pci_dev *pdev,
772 					    struct qed_dev_eth_info *info,
773 					    u32 dp_module, u8 dp_level)
774 {
775 	struct net_device *ndev;
776 	struct qede_dev *edev;
777 
778 	ndev = alloc_etherdev_mqs(sizeof(*edev),
779 				  info->num_queues * info->num_tc,
780 				  info->num_queues);
781 	if (!ndev) {
782 		pr_err("etherdev allocation failed\n");
783 		return NULL;
784 	}
785 
786 	edev = netdev_priv(ndev);
787 	edev->ndev = ndev;
788 	edev->cdev = cdev;
789 	edev->pdev = pdev;
790 	edev->dp_module = dp_module;
791 	edev->dp_level = dp_level;
792 	edev->ops = qed_ops;
793 
794 	if (is_kdump_kernel()) {
795 		edev->q_num_rx_buffers = NUM_RX_BDS_KDUMP_MIN;
796 		edev->q_num_tx_buffers = NUM_TX_BDS_KDUMP_MIN;
797 	} else {
798 		edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
799 		edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
800 	}
801 
802 	DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
803 		info->num_queues, info->num_queues);
804 
805 	SET_NETDEV_DEV(ndev, &pdev->dev);
806 
807 	memset(&edev->stats, 0, sizeof(edev->stats));
808 	memcpy(&edev->dev_info, info, sizeof(*info));
809 
810 	/* As ethtool doesn't have the ability to show WoL behavior as
811 	 * 'default', if device supports it declare it's enabled.
812 	 */
813 	if (edev->dev_info.common.wol_support)
814 		edev->wol_enabled = true;
815 
816 	INIT_LIST_HEAD(&edev->vlan_list);
817 
818 	return edev;
819 }
820 
821 static void qede_init_ndev(struct qede_dev *edev)
822 {
823 	struct net_device *ndev = edev->ndev;
824 	struct pci_dev *pdev = edev->pdev;
825 	bool udp_tunnel_enable = false;
826 	netdev_features_t hw_features;
827 
828 	pci_set_drvdata(pdev, ndev);
829 
830 	ndev->mem_start = edev->dev_info.common.pci_mem_start;
831 	ndev->base_addr = ndev->mem_start;
832 	ndev->mem_end = edev->dev_info.common.pci_mem_end;
833 	ndev->irq = edev->dev_info.common.pci_irq;
834 
835 	ndev->watchdog_timeo = TX_TIMEOUT;
836 
837 	if (IS_VF(edev)) {
838 		if (edev->dev_info.xdp_supported)
839 			ndev->netdev_ops = &qede_netdev_vf_xdp_ops;
840 		else
841 			ndev->netdev_ops = &qede_netdev_vf_ops;
842 	} else {
843 		ndev->netdev_ops = &qede_netdev_ops;
844 	}
845 
846 	qede_set_ethtool_ops(ndev);
847 
848 	ndev->priv_flags |= IFF_UNICAST_FLT;
849 
850 	/* user-changeble features */
851 	hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG |
852 		      NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
853 		      NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_TC;
854 
855 	if (edev->dev_info.common.b_arfs_capable)
856 		hw_features |= NETIF_F_NTUPLE;
857 
858 	if (edev->dev_info.common.vxlan_enable ||
859 	    edev->dev_info.common.geneve_enable)
860 		udp_tunnel_enable = true;
861 
862 	if (udp_tunnel_enable || edev->dev_info.common.gre_enable) {
863 		hw_features |= NETIF_F_TSO_ECN;
864 		ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
865 					NETIF_F_SG | NETIF_F_TSO |
866 					NETIF_F_TSO_ECN | NETIF_F_TSO6 |
867 					NETIF_F_RXCSUM;
868 	}
869 
870 	if (udp_tunnel_enable) {
871 		hw_features |= (NETIF_F_GSO_UDP_TUNNEL |
872 				NETIF_F_GSO_UDP_TUNNEL_CSUM);
873 		ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL |
874 					  NETIF_F_GSO_UDP_TUNNEL_CSUM);
875 
876 		qede_set_udp_tunnels(edev);
877 	}
878 
879 	if (edev->dev_info.common.gre_enable) {
880 		hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM);
881 		ndev->hw_enc_features |= (NETIF_F_GSO_GRE |
882 					  NETIF_F_GSO_GRE_CSUM);
883 	}
884 
885 	ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
886 			      NETIF_F_HIGHDMA;
887 	ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
888 			 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
889 			 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
890 
891 	ndev->hw_features = hw_features;
892 
893 	ndev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
894 			     NETDEV_XDP_ACT_NDO_XMIT;
895 
896 	/* MTU range: 46 - 9600 */
897 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
898 	ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE;
899 
900 	/* Set network device HW mac */
901 	eth_hw_addr_set(edev->ndev, edev->dev_info.common.hw_mac);
902 
903 	ndev->mtu = edev->dev_info.common.mtu;
904 }
905 
906 /* This function converts from 32b param to two params of level and module
907  * Input 32b decoding:
908  * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
909  * 'happy' flow, e.g. memory allocation failed.
910  * b30 - enable all INFO prints. INFO prints are for major steps in the flow
911  * and provide important parameters.
912  * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
913  * module. VERBOSE prints are for tracking the specific flow in low level.
914  *
915  * Notice that the level should be that of the lowest required logs.
916  */
917 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
918 {
919 	*p_dp_level = QED_LEVEL_NOTICE;
920 	*p_dp_module = 0;
921 
922 	if (debug & QED_LOG_VERBOSE_MASK) {
923 		*p_dp_level = QED_LEVEL_VERBOSE;
924 		*p_dp_module = (debug & 0x3FFFFFFF);
925 	} else if (debug & QED_LOG_INFO_MASK) {
926 		*p_dp_level = QED_LEVEL_INFO;
927 	} else if (debug & QED_LOG_NOTICE_MASK) {
928 		*p_dp_level = QED_LEVEL_NOTICE;
929 	}
930 }
931 
932 static void qede_free_fp_array(struct qede_dev *edev)
933 {
934 	if (edev->fp_array) {
935 		struct qede_fastpath *fp;
936 		int i;
937 
938 		for_each_queue(i) {
939 			fp = &edev->fp_array[i];
940 
941 			kfree(fp->sb_info);
942 			/* Handle mem alloc failure case where qede_init_fp
943 			 * didn't register xdp_rxq_info yet.
944 			 * Implicit only (fp->type & QEDE_FASTPATH_RX)
945 			 */
946 			if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq))
947 				xdp_rxq_info_unreg(&fp->rxq->xdp_rxq);
948 			kfree(fp->rxq);
949 			kfree(fp->xdp_tx);
950 			kfree(fp->txq);
951 		}
952 		kfree(edev->fp_array);
953 	}
954 
955 	edev->num_queues = 0;
956 	edev->fp_num_tx = 0;
957 	edev->fp_num_rx = 0;
958 }
959 
960 static int qede_alloc_fp_array(struct qede_dev *edev)
961 {
962 	u8 fp_combined, fp_rx = edev->fp_num_rx;
963 	struct qede_fastpath *fp;
964 	int i;
965 
966 	edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
967 				 sizeof(*edev->fp_array), GFP_KERNEL);
968 	if (!edev->fp_array) {
969 		DP_NOTICE(edev, "fp array allocation failed\n");
970 		goto err;
971 	}
972 
973 	if (!edev->coal_entry) {
974 		edev->coal_entry = kcalloc(QEDE_MAX_RSS_CNT(edev),
975 					   sizeof(*edev->coal_entry),
976 					   GFP_KERNEL);
977 		if (!edev->coal_entry) {
978 			DP_ERR(edev, "coalesce entry allocation failed\n");
979 			goto err;
980 		}
981 	}
982 
983 	fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
984 
985 	/* Allocate the FP elements for Rx queues followed by combined and then
986 	 * the Tx. This ordering should be maintained so that the respective
987 	 * queues (Rx or Tx) will be together in the fastpath array and the
988 	 * associated ids will be sequential.
989 	 */
990 	for_each_queue(i) {
991 		fp = &edev->fp_array[i];
992 
993 		fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL);
994 		if (!fp->sb_info) {
995 			DP_NOTICE(edev, "sb info struct allocation failed\n");
996 			goto err;
997 		}
998 
999 		if (fp_rx) {
1000 			fp->type = QEDE_FASTPATH_RX;
1001 			fp_rx--;
1002 		} else if (fp_combined) {
1003 			fp->type = QEDE_FASTPATH_COMBINED;
1004 			fp_combined--;
1005 		} else {
1006 			fp->type = QEDE_FASTPATH_TX;
1007 		}
1008 
1009 		if (fp->type & QEDE_FASTPATH_TX) {
1010 			fp->txq = kcalloc(edev->dev_info.num_tc,
1011 					  sizeof(*fp->txq), GFP_KERNEL);
1012 			if (!fp->txq)
1013 				goto err;
1014 		}
1015 
1016 		if (fp->type & QEDE_FASTPATH_RX) {
1017 			fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL);
1018 			if (!fp->rxq)
1019 				goto err;
1020 
1021 			if (edev->xdp_prog) {
1022 				fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx),
1023 						     GFP_KERNEL);
1024 				if (!fp->xdp_tx)
1025 					goto err;
1026 				fp->type |= QEDE_FASTPATH_XDP;
1027 			}
1028 		}
1029 	}
1030 
1031 	return 0;
1032 err:
1033 	qede_free_fp_array(edev);
1034 	return -ENOMEM;
1035 }
1036 
1037 /* The qede lock is used to protect driver state change and driver flows that
1038  * are not reentrant.
1039  */
1040 void __qede_lock(struct qede_dev *edev)
1041 {
1042 	mutex_lock(&edev->qede_lock);
1043 }
1044 
1045 void __qede_unlock(struct qede_dev *edev)
1046 {
1047 	mutex_unlock(&edev->qede_lock);
1048 }
1049 
1050 /* This version of the lock should be used when acquiring the RTNL lock is also
1051  * needed in addition to the internal qede lock.
1052  */
1053 static void qede_lock(struct qede_dev *edev)
1054 {
1055 	rtnl_lock();
1056 	__qede_lock(edev);
1057 }
1058 
1059 static void qede_unlock(struct qede_dev *edev)
1060 {
1061 	__qede_unlock(edev);
1062 	rtnl_unlock();
1063 }
1064 
1065 static void qede_periodic_task(struct work_struct *work)
1066 {
1067 	struct qede_dev *edev = container_of(work, struct qede_dev,
1068 					     periodic_task.work);
1069 
1070 	qede_fill_by_demand_stats(edev);
1071 	schedule_delayed_work(&edev->periodic_task, edev->stats_coal_ticks);
1072 }
1073 
1074 static void qede_init_periodic_task(struct qede_dev *edev)
1075 {
1076 	INIT_DELAYED_WORK(&edev->periodic_task, qede_periodic_task);
1077 	spin_lock_init(&edev->stats_lock);
1078 	edev->stats_coal_usecs = USEC_PER_SEC;
1079 	edev->stats_coal_ticks = usecs_to_jiffies(USEC_PER_SEC);
1080 }
1081 
1082 static void qede_sp_task(struct work_struct *work)
1083 {
1084 	struct qede_dev *edev = container_of(work, struct qede_dev,
1085 					     sp_task.work);
1086 
1087 	/* Disable execution of this deferred work once
1088 	 * qede removal is in progress, this stop any future
1089 	 * scheduling of sp_task.
1090 	 */
1091 	if (test_bit(QEDE_SP_DISABLE, &edev->sp_flags))
1092 		return;
1093 
1094 	/* The locking scheme depends on the specific flag:
1095 	 * In case of QEDE_SP_RECOVERY, acquiring the RTNL lock is required to
1096 	 * ensure that ongoing flows are ended and new ones are not started.
1097 	 * In other cases - only the internal qede lock should be acquired.
1098 	 */
1099 
1100 	if (test_and_clear_bit(QEDE_SP_RECOVERY, &edev->sp_flags)) {
1101 		cancel_delayed_work_sync(&edev->periodic_task);
1102 #ifdef CONFIG_QED_SRIOV
1103 		/* SRIOV must be disabled outside the lock to avoid a deadlock.
1104 		 * The recovery of the active VFs is currently not supported.
1105 		 */
1106 		if (pci_num_vf(edev->pdev))
1107 			qede_sriov_configure(edev->pdev, 0);
1108 #endif
1109 		qede_lock(edev);
1110 		qede_recovery_handler(edev);
1111 		qede_unlock(edev);
1112 	}
1113 
1114 	__qede_lock(edev);
1115 
1116 	if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
1117 		if (edev->state == QEDE_STATE_OPEN)
1118 			qede_config_rx_mode(edev->ndev);
1119 
1120 #ifdef CONFIG_RFS_ACCEL
1121 	if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) {
1122 		if (edev->state == QEDE_STATE_OPEN)
1123 			qede_process_arfs_filters(edev, false);
1124 	}
1125 #endif
1126 	if (test_and_clear_bit(QEDE_SP_HW_ERR, &edev->sp_flags))
1127 		qede_generic_hw_err_handler(edev);
1128 	__qede_unlock(edev);
1129 
1130 	if (test_and_clear_bit(QEDE_SP_AER, &edev->sp_flags)) {
1131 #ifdef CONFIG_QED_SRIOV
1132 		/* SRIOV must be disabled outside the lock to avoid a deadlock.
1133 		 * The recovery of the active VFs is currently not supported.
1134 		 */
1135 		if (pci_num_vf(edev->pdev))
1136 			qede_sriov_configure(edev->pdev, 0);
1137 #endif
1138 		edev->ops->common->recovery_process(edev->cdev);
1139 	}
1140 }
1141 
1142 static void qede_update_pf_params(struct qed_dev *cdev)
1143 {
1144 	struct qed_pf_params pf_params;
1145 	u16 num_cons;
1146 
1147 	/* 64 rx + 64 tx + 64 XDP */
1148 	memset(&pf_params, 0, sizeof(struct qed_pf_params));
1149 
1150 	/* 1 rx + 1 xdp + max tx cos */
1151 	num_cons = QED_MIN_L2_CONS;
1152 
1153 	pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * num_cons;
1154 
1155 	/* Same for VFs - make sure they'll have sufficient connections
1156 	 * to support XDP Tx queues.
1157 	 */
1158 	pf_params.eth_pf_params.num_vf_cons = 48;
1159 
1160 	pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR;
1161 	qed_ops->common->update_pf_params(cdev, &pf_params);
1162 }
1163 
1164 #define QEDE_FW_VER_STR_SIZE	80
1165 
1166 static void qede_log_probe(struct qede_dev *edev)
1167 {
1168 	struct qed_dev_info *p_dev_info = &edev->dev_info.common;
1169 	u8 buf[QEDE_FW_VER_STR_SIZE];
1170 	size_t left_size;
1171 
1172 	snprintf(buf, QEDE_FW_VER_STR_SIZE,
1173 		 "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d",
1174 		 p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev,
1175 		 p_dev_info->fw_eng,
1176 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >>
1177 		 QED_MFW_VERSION_3_OFFSET,
1178 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >>
1179 		 QED_MFW_VERSION_2_OFFSET,
1180 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >>
1181 		 QED_MFW_VERSION_1_OFFSET,
1182 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >>
1183 		 QED_MFW_VERSION_0_OFFSET);
1184 
1185 	left_size = QEDE_FW_VER_STR_SIZE - strlen(buf);
1186 	if (p_dev_info->mbi_version && left_size)
1187 		snprintf(buf + strlen(buf), left_size,
1188 			 " [MBI %d.%d.%d]",
1189 			 (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >>
1190 			 QED_MBI_VERSION_2_OFFSET,
1191 			 (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >>
1192 			 QED_MBI_VERSION_1_OFFSET,
1193 			 (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >>
1194 			 QED_MBI_VERSION_0_OFFSET);
1195 
1196 	pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number,
1197 		PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn),
1198 		buf, edev->ndev->name);
1199 }
1200 
1201 enum qede_probe_mode {
1202 	QEDE_PROBE_NORMAL,
1203 	QEDE_PROBE_RECOVERY,
1204 };
1205 
1206 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
1207 			bool is_vf, enum qede_probe_mode mode)
1208 {
1209 	struct qed_probe_params probe_params;
1210 	struct qed_slowpath_params sp_params;
1211 	struct qed_dev_eth_info dev_info;
1212 	struct qede_dev *edev;
1213 	struct qed_dev *cdev;
1214 	int rc;
1215 
1216 	if (unlikely(dp_level & QED_LEVEL_INFO))
1217 		pr_notice("Starting qede probe\n");
1218 
1219 	memset(&probe_params, 0, sizeof(probe_params));
1220 	probe_params.protocol = QED_PROTOCOL_ETH;
1221 	probe_params.dp_module = dp_module;
1222 	probe_params.dp_level = dp_level;
1223 	probe_params.is_vf = is_vf;
1224 	probe_params.recov_in_prog = (mode == QEDE_PROBE_RECOVERY);
1225 	cdev = qed_ops->common->probe(pdev, &probe_params);
1226 	if (!cdev) {
1227 		rc = -ENODEV;
1228 		goto err0;
1229 	}
1230 
1231 	qede_update_pf_params(cdev);
1232 
1233 	/* Start the Slowpath-process */
1234 	memset(&sp_params, 0, sizeof(sp_params));
1235 	sp_params.int_mode = QED_INT_MODE_MSIX;
1236 	strscpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
1237 	rc = qed_ops->common->slowpath_start(cdev, &sp_params);
1238 	if (rc) {
1239 		pr_notice("Cannot start slowpath\n");
1240 		goto err1;
1241 	}
1242 
1243 	/* Learn information crucial for qede to progress */
1244 	rc = qed_ops->fill_dev_info(cdev, &dev_info);
1245 	if (rc)
1246 		goto err2;
1247 
1248 	if (mode != QEDE_PROBE_RECOVERY) {
1249 		edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
1250 					   dp_level);
1251 		if (!edev) {
1252 			rc = -ENOMEM;
1253 			goto err2;
1254 		}
1255 
1256 		edev->devlink = qed_ops->common->devlink_register(cdev);
1257 		if (IS_ERR(edev->devlink)) {
1258 			DP_NOTICE(edev, "Cannot register devlink\n");
1259 			rc = PTR_ERR(edev->devlink);
1260 			edev->devlink = NULL;
1261 			goto err3;
1262 		}
1263 	} else {
1264 		struct net_device *ndev = pci_get_drvdata(pdev);
1265 		struct qed_devlink *qdl;
1266 
1267 		edev = netdev_priv(ndev);
1268 		qdl = devlink_priv(edev->devlink);
1269 		qdl->cdev = cdev;
1270 		edev->cdev = cdev;
1271 		memset(&edev->stats, 0, sizeof(edev->stats));
1272 		memcpy(&edev->dev_info, &dev_info, sizeof(dev_info));
1273 	}
1274 
1275 	if (is_vf)
1276 		set_bit(QEDE_FLAGS_IS_VF, &edev->flags);
1277 
1278 	qede_init_ndev(edev);
1279 
1280 	rc = qede_rdma_dev_add(edev, (mode == QEDE_PROBE_RECOVERY));
1281 	if (rc)
1282 		goto err3;
1283 
1284 	if (mode != QEDE_PROBE_RECOVERY) {
1285 		/* Prepare the lock prior to the registration of the netdev,
1286 		 * as once it's registered we might reach flows requiring it
1287 		 * [it's even possible to reach a flow needing it directly
1288 		 * from there, although it's unlikely].
1289 		 */
1290 		INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
1291 		mutex_init(&edev->qede_lock);
1292 		qede_init_periodic_task(edev);
1293 
1294 		rc = register_netdev(edev->ndev);
1295 		if (rc) {
1296 			DP_NOTICE(edev, "Cannot register net-device\n");
1297 			goto err4;
1298 		}
1299 	}
1300 
1301 	edev->ops->common->set_name(cdev, edev->ndev->name);
1302 
1303 	/* PTP not supported on VFs */
1304 	if (!is_vf)
1305 		qede_ptp_enable(edev);
1306 
1307 	edev->ops->register_ops(cdev, &qede_ll_ops, edev);
1308 
1309 #ifdef CONFIG_DCB
1310 	if (!IS_VF(edev))
1311 		qede_set_dcbnl_ops(edev->ndev);
1312 #endif
1313 
1314 	edev->rx_copybreak = QEDE_RX_HDR_SIZE;
1315 
1316 	qede_log_probe(edev);
1317 
1318 	/* retain user config (for example - after recovery) */
1319 	if (edev->stats_coal_usecs)
1320 		schedule_delayed_work(&edev->periodic_task, 0);
1321 
1322 	return 0;
1323 
1324 err4:
1325 	qede_rdma_dev_remove(edev, (mode == QEDE_PROBE_RECOVERY));
1326 err3:
1327 	if (mode != QEDE_PROBE_RECOVERY)
1328 		free_netdev(edev->ndev);
1329 	else
1330 		edev->cdev = NULL;
1331 err2:
1332 	qed_ops->common->slowpath_stop(cdev);
1333 err1:
1334 	qed_ops->common->remove(cdev);
1335 err0:
1336 	return rc;
1337 }
1338 
1339 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1340 {
1341 	bool is_vf = false;
1342 	u32 dp_module = 0;
1343 	u8 dp_level = 0;
1344 
1345 	switch ((enum qede_pci_private)id->driver_data) {
1346 	case QEDE_PRIVATE_VF:
1347 		if (debug & QED_LOG_VERBOSE_MASK)
1348 			dev_err(&pdev->dev, "Probing a VF\n");
1349 		is_vf = true;
1350 		break;
1351 	default:
1352 		if (debug & QED_LOG_VERBOSE_MASK)
1353 			dev_err(&pdev->dev, "Probing a PF\n");
1354 	}
1355 
1356 	qede_config_debug(debug, &dp_module, &dp_level);
1357 
1358 	return __qede_probe(pdev, dp_module, dp_level, is_vf,
1359 			    QEDE_PROBE_NORMAL);
1360 }
1361 
1362 enum qede_remove_mode {
1363 	QEDE_REMOVE_NORMAL,
1364 	QEDE_REMOVE_RECOVERY,
1365 };
1366 
1367 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
1368 {
1369 	struct net_device *ndev = pci_get_drvdata(pdev);
1370 	struct qede_dev *edev;
1371 	struct qed_dev *cdev;
1372 
1373 	if (!ndev) {
1374 		dev_info(&pdev->dev, "Device has already been removed\n");
1375 		return;
1376 	}
1377 
1378 	edev = netdev_priv(ndev);
1379 	cdev = edev->cdev;
1380 
1381 	DP_INFO(edev, "Starting qede_remove\n");
1382 
1383 	qede_rdma_dev_remove(edev, (mode == QEDE_REMOVE_RECOVERY));
1384 
1385 	if (mode != QEDE_REMOVE_RECOVERY) {
1386 		set_bit(QEDE_SP_DISABLE, &edev->sp_flags);
1387 		unregister_netdev(ndev);
1388 
1389 		cancel_delayed_work_sync(&edev->sp_task);
1390 		cancel_delayed_work_sync(&edev->periodic_task);
1391 
1392 		edev->ops->common->set_power_state(cdev, PCI_D0);
1393 
1394 		pci_set_drvdata(pdev, NULL);
1395 	}
1396 
1397 	qede_ptp_disable(edev);
1398 
1399 	/* Use global ops since we've freed edev */
1400 	qed_ops->common->slowpath_stop(cdev);
1401 	if (system_state == SYSTEM_POWER_OFF)
1402 		return;
1403 
1404 	if (mode != QEDE_REMOVE_RECOVERY && edev->devlink) {
1405 		qed_ops->common->devlink_unregister(edev->devlink);
1406 		edev->devlink = NULL;
1407 	}
1408 	qed_ops->common->remove(cdev);
1409 	edev->cdev = NULL;
1410 
1411 	/* Since this can happen out-of-sync with other flows,
1412 	 * don't release the netdevice until after slowpath stop
1413 	 * has been called to guarantee various other contexts
1414 	 * [e.g., QED register callbacks] won't break anything when
1415 	 * accessing the netdevice.
1416 	 */
1417 	if (mode != QEDE_REMOVE_RECOVERY) {
1418 		kfree(edev->coal_entry);
1419 		free_netdev(ndev);
1420 	}
1421 
1422 	dev_info(&pdev->dev, "Ending qede_remove successfully\n");
1423 }
1424 
1425 static void qede_remove(struct pci_dev *pdev)
1426 {
1427 	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1428 }
1429 
1430 static void qede_shutdown(struct pci_dev *pdev)
1431 {
1432 	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1433 }
1434 
1435 /* -------------------------------------------------------------------------
1436  * START OF LOAD / UNLOAD
1437  * -------------------------------------------------------------------------
1438  */
1439 
1440 static int qede_set_num_queues(struct qede_dev *edev)
1441 {
1442 	int rc;
1443 	u16 rss_num;
1444 
1445 	/* Setup queues according to possible resources*/
1446 	if (edev->req_queues)
1447 		rss_num = edev->req_queues;
1448 	else
1449 		rss_num = netif_get_num_default_rss_queues() *
1450 			  edev->dev_info.common.num_hwfns;
1451 
1452 	rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
1453 
1454 	rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
1455 	if (rc > 0) {
1456 		/* Managed to request interrupts for our queues */
1457 		edev->num_queues = rc;
1458 		DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
1459 			QEDE_QUEUE_CNT(edev), rss_num);
1460 		rc = 0;
1461 	}
1462 
1463 	edev->fp_num_tx = edev->req_num_tx;
1464 	edev->fp_num_rx = edev->req_num_rx;
1465 
1466 	return rc;
1467 }
1468 
1469 static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info,
1470 			     u16 sb_id)
1471 {
1472 	if (sb_info->sb_virt) {
1473 		edev->ops->common->sb_release(edev->cdev, sb_info, sb_id,
1474 					      QED_SB_TYPE_L2_QUEUE);
1475 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
1476 				  (void *)sb_info->sb_virt, sb_info->sb_phys);
1477 		memset(sb_info, 0, sizeof(*sb_info));
1478 	}
1479 }
1480 
1481 /* This function allocates fast-path status block memory */
1482 static int qede_alloc_mem_sb(struct qede_dev *edev,
1483 			     struct qed_sb_info *sb_info, u16 sb_id)
1484 {
1485 	struct status_block *sb_virt;
1486 	dma_addr_t sb_phys;
1487 	int rc;
1488 
1489 	sb_virt = dma_alloc_coherent(&edev->pdev->dev,
1490 				     sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
1491 	if (!sb_virt) {
1492 		DP_ERR(edev, "Status block allocation failed\n");
1493 		return -ENOMEM;
1494 	}
1495 
1496 	rc = edev->ops->common->sb_init(edev->cdev, sb_info,
1497 					sb_virt, sb_phys, sb_id,
1498 					QED_SB_TYPE_L2_QUEUE);
1499 	if (rc) {
1500 		DP_ERR(edev, "Status block initialization failed\n");
1501 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
1502 				  sb_virt, sb_phys);
1503 		return rc;
1504 	}
1505 
1506 	return 0;
1507 }
1508 
1509 static void qede_free_rx_buffers(struct qede_dev *edev,
1510 				 struct qede_rx_queue *rxq)
1511 {
1512 	u16 i;
1513 
1514 	for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
1515 		struct sw_rx_data *rx_buf;
1516 		struct page *data;
1517 
1518 		rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
1519 		data = rx_buf->data;
1520 
1521 		dma_unmap_page(&edev->pdev->dev,
1522 			       rx_buf->mapping, PAGE_SIZE, rxq->data_direction);
1523 
1524 		rx_buf->data = NULL;
1525 		__free_page(data);
1526 	}
1527 }
1528 
1529 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1530 {
1531 	/* Free rx buffers */
1532 	qede_free_rx_buffers(edev, rxq);
1533 
1534 	/* Free the parallel SW ring */
1535 	kfree(rxq->sw_rx_ring);
1536 
1537 	/* Free the real RQ ring used by FW */
1538 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
1539 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
1540 }
1541 
1542 static void qede_set_tpa_param(struct qede_rx_queue *rxq)
1543 {
1544 	int i;
1545 
1546 	for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1547 		struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1548 
1549 		tpa_info->state = QEDE_AGG_STATE_NONE;
1550 	}
1551 }
1552 
1553 /* This function allocates all memory needed per Rx queue */
1554 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1555 {
1556 	struct qed_chain_init_params params = {
1557 		.cnt_type	= QED_CHAIN_CNT_TYPE_U16,
1558 		.num_elems	= RX_RING_SIZE,
1559 	};
1560 	struct qed_dev *cdev = edev->cdev;
1561 	int i, rc, size;
1562 
1563 	rxq->num_rx_buffers = edev->q_num_rx_buffers;
1564 
1565 	rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
1566 
1567 	rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD;
1568 	size = rxq->rx_headroom +
1569 	       SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1570 
1571 	/* Make sure that the headroom and  payload fit in a single page */
1572 	if (rxq->rx_buf_size + size > PAGE_SIZE)
1573 		rxq->rx_buf_size = PAGE_SIZE - size;
1574 
1575 	/* Segment size to split a page in multiple equal parts,
1576 	 * unless XDP is used in which case we'd use the entire page.
1577 	 */
1578 	if (!edev->xdp_prog) {
1579 		size = size + rxq->rx_buf_size;
1580 		rxq->rx_buf_seg_size = roundup_pow_of_two(size);
1581 	} else {
1582 		rxq->rx_buf_seg_size = PAGE_SIZE;
1583 		edev->ndev->features &= ~NETIF_F_GRO_HW;
1584 	}
1585 
1586 	/* Allocate the parallel driver ring for Rx buffers */
1587 	size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
1588 	rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
1589 	if (!rxq->sw_rx_ring) {
1590 		DP_ERR(edev, "Rx buffers ring allocation failed\n");
1591 		rc = -ENOMEM;
1592 		goto err;
1593 	}
1594 
1595 	/* Allocate FW Rx ring  */
1596 	params.mode = QED_CHAIN_MODE_NEXT_PTR;
1597 	params.intended_use = QED_CHAIN_USE_TO_CONSUME_PRODUCE;
1598 	params.elem_size = sizeof(struct eth_rx_bd);
1599 
1600 	rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_bd_ring, &params);
1601 	if (rc)
1602 		goto err;
1603 
1604 	/* Allocate FW completion ring */
1605 	params.mode = QED_CHAIN_MODE_PBL;
1606 	params.intended_use = QED_CHAIN_USE_TO_CONSUME;
1607 	params.elem_size = sizeof(union eth_rx_cqe);
1608 
1609 	rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_comp_ring, &params);
1610 	if (rc)
1611 		goto err;
1612 
1613 	/* Allocate buffers for the Rx ring */
1614 	rxq->filled_buffers = 0;
1615 	for (i = 0; i < rxq->num_rx_buffers; i++) {
1616 		rc = qede_alloc_rx_buffer(rxq, false);
1617 		if (rc) {
1618 			DP_ERR(edev,
1619 			       "Rx buffers allocation failed at index %d\n", i);
1620 			goto err;
1621 		}
1622 	}
1623 
1624 	edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW);
1625 	if (!edev->gro_disable)
1626 		qede_set_tpa_param(rxq);
1627 err:
1628 	return rc;
1629 }
1630 
1631 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1632 {
1633 	/* Free the parallel SW ring */
1634 	if (txq->is_xdp)
1635 		kfree(txq->sw_tx_ring.xdp);
1636 	else
1637 		kfree(txq->sw_tx_ring.skbs);
1638 
1639 	/* Free the real RQ ring used by FW */
1640 	edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
1641 }
1642 
1643 /* This function allocates all memory needed per Tx queue */
1644 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1645 {
1646 	struct qed_chain_init_params params = {
1647 		.mode		= QED_CHAIN_MODE_PBL,
1648 		.intended_use	= QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1649 		.cnt_type	= QED_CHAIN_CNT_TYPE_U16,
1650 		.num_elems	= edev->q_num_tx_buffers,
1651 		.elem_size	= sizeof(union eth_tx_bd_types),
1652 	};
1653 	int size, rc;
1654 
1655 	txq->num_tx_buffers = edev->q_num_tx_buffers;
1656 
1657 	/* Allocate the parallel driver ring for Tx buffers */
1658 	if (txq->is_xdp) {
1659 		size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers;
1660 		txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL);
1661 		if (!txq->sw_tx_ring.xdp)
1662 			goto err;
1663 	} else {
1664 		size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers;
1665 		txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL);
1666 		if (!txq->sw_tx_ring.skbs)
1667 			goto err;
1668 	}
1669 
1670 	rc = edev->ops->common->chain_alloc(edev->cdev, &txq->tx_pbl, &params);
1671 	if (rc)
1672 		goto err;
1673 
1674 	return 0;
1675 
1676 err:
1677 	qede_free_mem_txq(edev, txq);
1678 	return -ENOMEM;
1679 }
1680 
1681 /* This function frees all memory of a single fp */
1682 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1683 {
1684 	qede_free_mem_sb(edev, fp->sb_info, fp->id);
1685 
1686 	if (fp->type & QEDE_FASTPATH_RX)
1687 		qede_free_mem_rxq(edev, fp->rxq);
1688 
1689 	if (fp->type & QEDE_FASTPATH_XDP)
1690 		qede_free_mem_txq(edev, fp->xdp_tx);
1691 
1692 	if (fp->type & QEDE_FASTPATH_TX) {
1693 		int cos;
1694 
1695 		for_each_cos_in_txq(edev, cos)
1696 			qede_free_mem_txq(edev, &fp->txq[cos]);
1697 	}
1698 }
1699 
1700 /* This function allocates all memory needed for a single fp (i.e. an entity
1701  * which contains status block, one rx queue and/or multiple per-TC tx queues.
1702  */
1703 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1704 {
1705 	int rc = 0;
1706 
1707 	rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
1708 	if (rc)
1709 		goto out;
1710 
1711 	if (fp->type & QEDE_FASTPATH_RX) {
1712 		rc = qede_alloc_mem_rxq(edev, fp->rxq);
1713 		if (rc)
1714 			goto out;
1715 	}
1716 
1717 	if (fp->type & QEDE_FASTPATH_XDP) {
1718 		rc = qede_alloc_mem_txq(edev, fp->xdp_tx);
1719 		if (rc)
1720 			goto out;
1721 	}
1722 
1723 	if (fp->type & QEDE_FASTPATH_TX) {
1724 		int cos;
1725 
1726 		for_each_cos_in_txq(edev, cos) {
1727 			rc = qede_alloc_mem_txq(edev, &fp->txq[cos]);
1728 			if (rc)
1729 				goto out;
1730 		}
1731 	}
1732 
1733 out:
1734 	return rc;
1735 }
1736 
1737 static void qede_free_mem_load(struct qede_dev *edev)
1738 {
1739 	int i;
1740 
1741 	for_each_queue(i) {
1742 		struct qede_fastpath *fp = &edev->fp_array[i];
1743 
1744 		qede_free_mem_fp(edev, fp);
1745 	}
1746 }
1747 
1748 /* This function allocates all qede memory at NIC load. */
1749 static int qede_alloc_mem_load(struct qede_dev *edev)
1750 {
1751 	int rc = 0, queue_id;
1752 
1753 	for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
1754 		struct qede_fastpath *fp = &edev->fp_array[queue_id];
1755 
1756 		rc = qede_alloc_mem_fp(edev, fp);
1757 		if (rc) {
1758 			DP_ERR(edev,
1759 			       "Failed to allocate memory for fastpath - rss id = %d\n",
1760 			       queue_id);
1761 			qede_free_mem_load(edev);
1762 			return rc;
1763 		}
1764 	}
1765 
1766 	return 0;
1767 }
1768 
1769 static void qede_empty_tx_queue(struct qede_dev *edev,
1770 				struct qede_tx_queue *txq)
1771 {
1772 	unsigned int pkts_compl = 0, bytes_compl = 0;
1773 	struct netdev_queue *netdev_txq;
1774 	int rc, len = 0;
1775 
1776 	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
1777 
1778 	while (qed_chain_get_cons_idx(&txq->tx_pbl) !=
1779 	       qed_chain_get_prod_idx(&txq->tx_pbl)) {
1780 		DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1781 			   "Freeing a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1782 			   txq->index, qed_chain_get_cons_idx(&txq->tx_pbl),
1783 			   qed_chain_get_prod_idx(&txq->tx_pbl));
1784 
1785 		rc = qede_free_tx_pkt(edev, txq, &len);
1786 		if (rc) {
1787 			DP_NOTICE(edev,
1788 				  "Failed to free a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1789 				  txq->index,
1790 				  qed_chain_get_cons_idx(&txq->tx_pbl),
1791 				  qed_chain_get_prod_idx(&txq->tx_pbl));
1792 			break;
1793 		}
1794 
1795 		bytes_compl += len;
1796 		pkts_compl++;
1797 		txq->sw_tx_cons++;
1798 	}
1799 
1800 	netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
1801 }
1802 
1803 static void qede_empty_tx_queues(struct qede_dev *edev)
1804 {
1805 	int i;
1806 
1807 	for_each_queue(i)
1808 		if (edev->fp_array[i].type & QEDE_FASTPATH_TX) {
1809 			int cos;
1810 
1811 			for_each_cos_in_txq(edev, cos) {
1812 				struct qede_fastpath *fp;
1813 
1814 				fp = &edev->fp_array[i];
1815 				qede_empty_tx_queue(edev,
1816 						    &fp->txq[cos]);
1817 			}
1818 		}
1819 }
1820 
1821 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
1822 static void qede_init_fp(struct qede_dev *edev)
1823 {
1824 	int queue_id, rxq_index = 0, txq_index = 0;
1825 	struct qede_fastpath *fp;
1826 	bool init_xdp = false;
1827 
1828 	for_each_queue(queue_id) {
1829 		fp = &edev->fp_array[queue_id];
1830 
1831 		fp->edev = edev;
1832 		fp->id = queue_id;
1833 
1834 		if (fp->type & QEDE_FASTPATH_XDP) {
1835 			fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev,
1836 								rxq_index);
1837 			fp->xdp_tx->is_xdp = 1;
1838 
1839 			spin_lock_init(&fp->xdp_tx->xdp_tx_lock);
1840 			init_xdp = true;
1841 		}
1842 
1843 		if (fp->type & QEDE_FASTPATH_RX) {
1844 			fp->rxq->rxq_id = rxq_index++;
1845 
1846 			/* Determine how to map buffers for this queue */
1847 			if (fp->type & QEDE_FASTPATH_XDP)
1848 				fp->rxq->data_direction = DMA_BIDIRECTIONAL;
1849 			else
1850 				fp->rxq->data_direction = DMA_FROM_DEVICE;
1851 			fp->rxq->dev = &edev->pdev->dev;
1852 
1853 			/* Driver have no error path from here */
1854 			WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev,
1855 						 fp->rxq->rxq_id, 0) < 0);
1856 
1857 			if (xdp_rxq_info_reg_mem_model(&fp->rxq->xdp_rxq,
1858 						       MEM_TYPE_PAGE_ORDER0,
1859 						       NULL)) {
1860 				DP_NOTICE(edev,
1861 					  "Failed to register XDP memory model\n");
1862 			}
1863 		}
1864 
1865 		if (fp->type & QEDE_FASTPATH_TX) {
1866 			int cos;
1867 
1868 			for_each_cos_in_txq(edev, cos) {
1869 				struct qede_tx_queue *txq = &fp->txq[cos];
1870 				u16 ndev_tx_id;
1871 
1872 				txq->cos = cos;
1873 				txq->index = txq_index;
1874 				ndev_tx_id = QEDE_TXQ_TO_NDEV_TXQ_ID(edev, txq);
1875 				txq->ndev_txq_id = ndev_tx_id;
1876 
1877 				if (edev->dev_info.is_legacy)
1878 					txq->is_legacy = true;
1879 				txq->dev = &edev->pdev->dev;
1880 			}
1881 
1882 			txq_index++;
1883 		}
1884 
1885 		snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1886 			 edev->ndev->name, queue_id);
1887 	}
1888 
1889 	if (init_xdp) {
1890 		edev->total_xdp_queues = QEDE_RSS_COUNT(edev);
1891 		DP_INFO(edev, "Total XDP queues: %u\n", edev->total_xdp_queues);
1892 	}
1893 }
1894 
1895 static int qede_set_real_num_queues(struct qede_dev *edev)
1896 {
1897 	int rc = 0;
1898 
1899 	rc = netif_set_real_num_tx_queues(edev->ndev,
1900 					  QEDE_TSS_COUNT(edev) *
1901 					  edev->dev_info.num_tc);
1902 	if (rc) {
1903 		DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
1904 		return rc;
1905 	}
1906 
1907 	rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
1908 	if (rc) {
1909 		DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
1910 		return rc;
1911 	}
1912 
1913 	return 0;
1914 }
1915 
1916 static void qede_napi_disable_remove(struct qede_dev *edev)
1917 {
1918 	int i;
1919 
1920 	for_each_queue(i) {
1921 		napi_disable(&edev->fp_array[i].napi);
1922 
1923 		netif_napi_del(&edev->fp_array[i].napi);
1924 	}
1925 }
1926 
1927 static void qede_napi_add_enable(struct qede_dev *edev)
1928 {
1929 	int i;
1930 
1931 	/* Add NAPI objects */
1932 	for_each_queue(i) {
1933 		netif_napi_add(edev->ndev, &edev->fp_array[i].napi, qede_poll);
1934 		napi_enable(&edev->fp_array[i].napi);
1935 	}
1936 }
1937 
1938 static void qede_sync_free_irqs(struct qede_dev *edev)
1939 {
1940 	int i;
1941 
1942 	for (i = 0; i < edev->int_info.used_cnt; i++) {
1943 		if (edev->int_info.msix_cnt) {
1944 			free_irq(edev->int_info.msix[i].vector,
1945 				 &edev->fp_array[i]);
1946 		} else {
1947 			edev->ops->common->simd_handler_clean(edev->cdev, i);
1948 		}
1949 	}
1950 
1951 	edev->int_info.used_cnt = 0;
1952 	edev->int_info.msix_cnt = 0;
1953 }
1954 
1955 static int qede_req_msix_irqs(struct qede_dev *edev)
1956 {
1957 	int i, rc;
1958 
1959 	/* Sanitize number of interrupts == number of prepared RSS queues */
1960 	if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
1961 		DP_ERR(edev,
1962 		       "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
1963 		       QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
1964 		return -EINVAL;
1965 	}
1966 
1967 	for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
1968 #ifdef CONFIG_RFS_ACCEL
1969 		struct qede_fastpath *fp = &edev->fp_array[i];
1970 
1971 		if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) {
1972 			rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap,
1973 					      edev->int_info.msix[i].vector);
1974 			if (rc) {
1975 				DP_ERR(edev, "Failed to add CPU rmap\n");
1976 				qede_free_arfs(edev);
1977 			}
1978 		}
1979 #endif
1980 		rc = request_irq(edev->int_info.msix[i].vector,
1981 				 qede_msix_fp_int, 0, edev->fp_array[i].name,
1982 				 &edev->fp_array[i]);
1983 		if (rc) {
1984 			DP_ERR(edev, "Request fp %d irq failed\n", i);
1985 #ifdef CONFIG_RFS_ACCEL
1986 			if (edev->ndev->rx_cpu_rmap)
1987 				free_irq_cpu_rmap(edev->ndev->rx_cpu_rmap);
1988 
1989 			edev->ndev->rx_cpu_rmap = NULL;
1990 #endif
1991 			qede_sync_free_irqs(edev);
1992 			return rc;
1993 		}
1994 		DP_VERBOSE(edev, NETIF_MSG_INTR,
1995 			   "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
1996 			   edev->fp_array[i].name, i,
1997 			   &edev->fp_array[i]);
1998 		edev->int_info.used_cnt++;
1999 	}
2000 
2001 	return 0;
2002 }
2003 
2004 static void qede_simd_fp_handler(void *cookie)
2005 {
2006 	struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
2007 
2008 	napi_schedule_irqoff(&fp->napi);
2009 }
2010 
2011 static int qede_setup_irqs(struct qede_dev *edev)
2012 {
2013 	int i, rc = 0;
2014 
2015 	/* Learn Interrupt configuration */
2016 	rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
2017 	if (rc)
2018 		return rc;
2019 
2020 	if (edev->int_info.msix_cnt) {
2021 		rc = qede_req_msix_irqs(edev);
2022 		if (rc)
2023 			return rc;
2024 		edev->ndev->irq = edev->int_info.msix[0].vector;
2025 	} else {
2026 		const struct qed_common_ops *ops;
2027 
2028 		/* qed should learn receive the RSS ids and callbacks */
2029 		ops = edev->ops->common;
2030 		for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
2031 			ops->simd_handler_config(edev->cdev,
2032 						 &edev->fp_array[i], i,
2033 						 qede_simd_fp_handler);
2034 		edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
2035 	}
2036 	return 0;
2037 }
2038 
2039 static int qede_drain_txq(struct qede_dev *edev,
2040 			  struct qede_tx_queue *txq, bool allow_drain)
2041 {
2042 	int rc, cnt = 1000;
2043 
2044 	while (txq->sw_tx_cons != txq->sw_tx_prod) {
2045 		if (!cnt) {
2046 			if (allow_drain) {
2047 				DP_NOTICE(edev,
2048 					  "Tx queue[%d] is stuck, requesting MCP to drain\n",
2049 					  txq->index);
2050 				rc = edev->ops->common->drain(edev->cdev);
2051 				if (rc)
2052 					return rc;
2053 				return qede_drain_txq(edev, txq, false);
2054 			}
2055 			DP_NOTICE(edev,
2056 				  "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
2057 				  txq->index, txq->sw_tx_prod,
2058 				  txq->sw_tx_cons);
2059 			return -ENODEV;
2060 		}
2061 		cnt--;
2062 		usleep_range(1000, 2000);
2063 		barrier();
2064 	}
2065 
2066 	/* FW finished processing, wait for HW to transmit all tx packets */
2067 	usleep_range(1000, 2000);
2068 
2069 	return 0;
2070 }
2071 
2072 static int qede_stop_txq(struct qede_dev *edev,
2073 			 struct qede_tx_queue *txq, int rss_id)
2074 {
2075 	/* delete doorbell from doorbell recovery mechanism */
2076 	edev->ops->common->db_recovery_del(edev->cdev, txq->doorbell_addr,
2077 					   &txq->tx_db);
2078 
2079 	return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle);
2080 }
2081 
2082 static int qede_stop_queues(struct qede_dev *edev)
2083 {
2084 	struct qed_update_vport_params *vport_update_params;
2085 	struct qed_dev *cdev = edev->cdev;
2086 	struct qede_fastpath *fp;
2087 	int rc, i;
2088 
2089 	/* Disable the vport */
2090 	vport_update_params = vzalloc(sizeof(*vport_update_params));
2091 	if (!vport_update_params)
2092 		return -ENOMEM;
2093 
2094 	vport_update_params->vport_id = 0;
2095 	vport_update_params->update_vport_active_flg = 1;
2096 	vport_update_params->vport_active_flg = 0;
2097 	vport_update_params->update_rss_flg = 0;
2098 
2099 	rc = edev->ops->vport_update(cdev, vport_update_params);
2100 	vfree(vport_update_params);
2101 
2102 	if (rc) {
2103 		DP_ERR(edev, "Failed to update vport\n");
2104 		return rc;
2105 	}
2106 
2107 	/* Flush Tx queues. If needed, request drain from MCP */
2108 	for_each_queue(i) {
2109 		fp = &edev->fp_array[i];
2110 
2111 		if (fp->type & QEDE_FASTPATH_TX) {
2112 			int cos;
2113 
2114 			for_each_cos_in_txq(edev, cos) {
2115 				rc = qede_drain_txq(edev, &fp->txq[cos], true);
2116 				if (rc)
2117 					return rc;
2118 			}
2119 		}
2120 
2121 		if (fp->type & QEDE_FASTPATH_XDP) {
2122 			rc = qede_drain_txq(edev, fp->xdp_tx, true);
2123 			if (rc)
2124 				return rc;
2125 		}
2126 	}
2127 
2128 	/* Stop all Queues in reverse order */
2129 	for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
2130 		fp = &edev->fp_array[i];
2131 
2132 		/* Stop the Tx Queue(s) */
2133 		if (fp->type & QEDE_FASTPATH_TX) {
2134 			int cos;
2135 
2136 			for_each_cos_in_txq(edev, cos) {
2137 				rc = qede_stop_txq(edev, &fp->txq[cos], i);
2138 				if (rc)
2139 					return rc;
2140 			}
2141 		}
2142 
2143 		/* Stop the Rx Queue */
2144 		if (fp->type & QEDE_FASTPATH_RX) {
2145 			rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle);
2146 			if (rc) {
2147 				DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
2148 				return rc;
2149 			}
2150 		}
2151 
2152 		/* Stop the XDP forwarding queue */
2153 		if (fp->type & QEDE_FASTPATH_XDP) {
2154 			rc = qede_stop_txq(edev, fp->xdp_tx, i);
2155 			if (rc)
2156 				return rc;
2157 
2158 			bpf_prog_put(fp->rxq->xdp_prog);
2159 		}
2160 	}
2161 
2162 	/* Stop the vport */
2163 	rc = edev->ops->vport_stop(cdev, 0);
2164 	if (rc)
2165 		DP_ERR(edev, "Failed to stop VPORT\n");
2166 
2167 	return rc;
2168 }
2169 
2170 static int qede_start_txq(struct qede_dev *edev,
2171 			  struct qede_fastpath *fp,
2172 			  struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx)
2173 {
2174 	dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
2175 	u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
2176 	struct qed_queue_start_common_params params;
2177 	struct qed_txq_start_ret_params ret_params;
2178 	int rc;
2179 
2180 	memset(&params, 0, sizeof(params));
2181 	memset(&ret_params, 0, sizeof(ret_params));
2182 
2183 	/* Let the XDP queue share the queue-zone with one of the regular txq.
2184 	 * We don't really care about its coalescing.
2185 	 */
2186 	if (txq->is_xdp)
2187 		params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq);
2188 	else
2189 		params.queue_id = txq->index;
2190 
2191 	params.p_sb = fp->sb_info;
2192 	params.sb_idx = sb_idx;
2193 	params.tc = txq->cos;
2194 
2195 	rc = edev->ops->q_tx_start(edev->cdev, rss_id, &params, phys_table,
2196 				   page_cnt, &ret_params);
2197 	if (rc) {
2198 		DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc);
2199 		return rc;
2200 	}
2201 
2202 	txq->doorbell_addr = ret_params.p_doorbell;
2203 	txq->handle = ret_params.p_handle;
2204 
2205 	/* Determine the FW consumer address associated */
2206 	txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx];
2207 
2208 	/* Prepare the doorbell parameters */
2209 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM);
2210 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
2211 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL,
2212 		  DQ_XCM_ETH_TX_BD_PROD_CMD);
2213 	txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
2214 
2215 	/* register doorbell with doorbell recovery mechanism */
2216 	rc = edev->ops->common->db_recovery_add(edev->cdev, txq->doorbell_addr,
2217 						&txq->tx_db, DB_REC_WIDTH_32B,
2218 						DB_REC_KERNEL);
2219 
2220 	return rc;
2221 }
2222 
2223 static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
2224 {
2225 	int vlan_removal_en = 1;
2226 	struct qed_dev *cdev = edev->cdev;
2227 	struct qed_dev_info *qed_info = &edev->dev_info.common;
2228 	struct qed_update_vport_params *vport_update_params;
2229 	struct qed_queue_start_common_params q_params;
2230 	struct qed_start_vport_params start = {0};
2231 	int rc, i;
2232 
2233 	if (!edev->num_queues) {
2234 		DP_ERR(edev,
2235 		       "Cannot update V-VPORT as active as there are no Rx queues\n");
2236 		return -EINVAL;
2237 	}
2238 
2239 	vport_update_params = vzalloc(sizeof(*vport_update_params));
2240 	if (!vport_update_params)
2241 		return -ENOMEM;
2242 
2243 	start.handle_ptp_pkts = !!(edev->ptp);
2244 	start.gro_enable = !edev->gro_disable;
2245 	start.mtu = edev->ndev->mtu;
2246 	start.vport_id = 0;
2247 	start.drop_ttl0 = true;
2248 	start.remove_inner_vlan = vlan_removal_en;
2249 	start.clear_stats = clear_stats;
2250 
2251 	rc = edev->ops->vport_start(cdev, &start);
2252 
2253 	if (rc) {
2254 		DP_ERR(edev, "Start V-PORT failed %d\n", rc);
2255 		goto out;
2256 	}
2257 
2258 	DP_VERBOSE(edev, NETIF_MSG_IFUP,
2259 		   "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
2260 		   start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
2261 
2262 	for_each_queue(i) {
2263 		struct qede_fastpath *fp = &edev->fp_array[i];
2264 		dma_addr_t p_phys_table;
2265 		u32 page_cnt;
2266 
2267 		if (fp->type & QEDE_FASTPATH_RX) {
2268 			struct qed_rxq_start_ret_params ret_params;
2269 			struct qede_rx_queue *rxq = fp->rxq;
2270 			__le16 *val;
2271 
2272 			memset(&ret_params, 0, sizeof(ret_params));
2273 			memset(&q_params, 0, sizeof(q_params));
2274 			q_params.queue_id = rxq->rxq_id;
2275 			q_params.vport_id = 0;
2276 			q_params.p_sb = fp->sb_info;
2277 			q_params.sb_idx = RX_PI;
2278 
2279 			p_phys_table =
2280 			    qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
2281 			page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
2282 
2283 			rc = edev->ops->q_rx_start(cdev, i, &q_params,
2284 						   rxq->rx_buf_size,
2285 						   rxq->rx_bd_ring.p_phys_addr,
2286 						   p_phys_table,
2287 						   page_cnt, &ret_params);
2288 			if (rc) {
2289 				DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
2290 				       rc);
2291 				goto out;
2292 			}
2293 
2294 			/* Use the return parameters */
2295 			rxq->hw_rxq_prod_addr = ret_params.p_prod;
2296 			rxq->handle = ret_params.p_handle;
2297 
2298 			val = &fp->sb_info->sb_virt->pi_array[RX_PI];
2299 			rxq->hw_cons_ptr = val;
2300 
2301 			qede_update_rx_prod(edev, rxq);
2302 		}
2303 
2304 		if (fp->type & QEDE_FASTPATH_XDP) {
2305 			rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI);
2306 			if (rc)
2307 				goto out;
2308 
2309 			bpf_prog_add(edev->xdp_prog, 1);
2310 			fp->rxq->xdp_prog = edev->xdp_prog;
2311 		}
2312 
2313 		if (fp->type & QEDE_FASTPATH_TX) {
2314 			int cos;
2315 
2316 			for_each_cos_in_txq(edev, cos) {
2317 				rc = qede_start_txq(edev, fp, &fp->txq[cos], i,
2318 						    TX_PI(cos));
2319 				if (rc)
2320 					goto out;
2321 			}
2322 		}
2323 	}
2324 
2325 	/* Prepare and send the vport enable */
2326 	vport_update_params->vport_id = start.vport_id;
2327 	vport_update_params->update_vport_active_flg = 1;
2328 	vport_update_params->vport_active_flg = 1;
2329 
2330 	if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) &&
2331 	    qed_info->tx_switching) {
2332 		vport_update_params->update_tx_switching_flg = 1;
2333 		vport_update_params->tx_switching_flg = 1;
2334 	}
2335 
2336 	qede_fill_rss_params(edev, &vport_update_params->rss_params,
2337 			     &vport_update_params->update_rss_flg);
2338 
2339 	rc = edev->ops->vport_update(cdev, vport_update_params);
2340 	if (rc)
2341 		DP_ERR(edev, "Update V-PORT failed %d\n", rc);
2342 
2343 out:
2344 	vfree(vport_update_params);
2345 	return rc;
2346 }
2347 
2348 enum qede_unload_mode {
2349 	QEDE_UNLOAD_NORMAL,
2350 	QEDE_UNLOAD_RECOVERY,
2351 };
2352 
2353 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode,
2354 			bool is_locked)
2355 {
2356 	struct qed_link_params link_params;
2357 	int rc;
2358 
2359 	DP_INFO(edev, "Starting qede unload\n");
2360 
2361 	if (!is_locked)
2362 		__qede_lock(edev);
2363 
2364 	clear_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2365 
2366 	if (mode != QEDE_UNLOAD_RECOVERY)
2367 		edev->state = QEDE_STATE_CLOSED;
2368 
2369 	qede_rdma_dev_event_close(edev);
2370 
2371 	/* Close OS Tx */
2372 	netif_tx_disable(edev->ndev);
2373 	netif_carrier_off(edev->ndev);
2374 
2375 	if (mode != QEDE_UNLOAD_RECOVERY) {
2376 		/* Reset the link */
2377 		memset(&link_params, 0, sizeof(link_params));
2378 		link_params.link_up = false;
2379 		edev->ops->common->set_link(edev->cdev, &link_params);
2380 
2381 		rc = qede_stop_queues(edev);
2382 		if (rc) {
2383 #ifdef CONFIG_RFS_ACCEL
2384 			if (edev->dev_info.common.b_arfs_capable) {
2385 				qede_poll_for_freeing_arfs_filters(edev);
2386 				if (edev->ndev->rx_cpu_rmap)
2387 					free_irq_cpu_rmap(edev->ndev->rx_cpu_rmap);
2388 
2389 				edev->ndev->rx_cpu_rmap = NULL;
2390 			}
2391 #endif
2392 			qede_sync_free_irqs(edev);
2393 			goto out;
2394 		}
2395 
2396 		DP_INFO(edev, "Stopped Queues\n");
2397 	}
2398 
2399 	qede_vlan_mark_nonconfigured(edev);
2400 	edev->ops->fastpath_stop(edev->cdev);
2401 
2402 	if (edev->dev_info.common.b_arfs_capable) {
2403 		qede_poll_for_freeing_arfs_filters(edev);
2404 		qede_free_arfs(edev);
2405 	}
2406 
2407 	/* Release the interrupts */
2408 	qede_sync_free_irqs(edev);
2409 	edev->ops->common->set_fp_int(edev->cdev, 0);
2410 
2411 	qede_napi_disable_remove(edev);
2412 
2413 	if (mode == QEDE_UNLOAD_RECOVERY)
2414 		qede_empty_tx_queues(edev);
2415 
2416 	qede_free_mem_load(edev);
2417 	qede_free_fp_array(edev);
2418 
2419 out:
2420 	if (!is_locked)
2421 		__qede_unlock(edev);
2422 
2423 	if (mode != QEDE_UNLOAD_RECOVERY)
2424 		DP_NOTICE(edev, "Link is down\n");
2425 
2426 	edev->ptp_skip_txts = 0;
2427 
2428 	DP_INFO(edev, "Ending qede unload\n");
2429 }
2430 
2431 enum qede_load_mode {
2432 	QEDE_LOAD_NORMAL,
2433 	QEDE_LOAD_RELOAD,
2434 	QEDE_LOAD_RECOVERY,
2435 };
2436 
2437 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode,
2438 		     bool is_locked)
2439 {
2440 	struct qed_link_params link_params;
2441 	struct ethtool_coalesce coal = {};
2442 	u8 num_tc;
2443 	int rc, i;
2444 
2445 	DP_INFO(edev, "Starting qede load\n");
2446 
2447 	if (!is_locked)
2448 		__qede_lock(edev);
2449 
2450 	rc = qede_set_num_queues(edev);
2451 	if (rc)
2452 		goto out;
2453 
2454 	rc = qede_alloc_fp_array(edev);
2455 	if (rc)
2456 		goto out;
2457 
2458 	qede_init_fp(edev);
2459 
2460 	rc = qede_alloc_mem_load(edev);
2461 	if (rc)
2462 		goto err1;
2463 	DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n",
2464 		QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev));
2465 
2466 	rc = qede_set_real_num_queues(edev);
2467 	if (rc)
2468 		goto err2;
2469 
2470 	if (qede_alloc_arfs(edev)) {
2471 		edev->ndev->features &= ~NETIF_F_NTUPLE;
2472 		edev->dev_info.common.b_arfs_capable = false;
2473 	}
2474 
2475 	qede_napi_add_enable(edev);
2476 	DP_INFO(edev, "Napi added and enabled\n");
2477 
2478 	rc = qede_setup_irqs(edev);
2479 	if (rc)
2480 		goto err3;
2481 	DP_INFO(edev, "Setup IRQs succeeded\n");
2482 
2483 	rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
2484 	if (rc)
2485 		goto err4;
2486 	DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
2487 
2488 	num_tc = netdev_get_num_tc(edev->ndev);
2489 	num_tc = num_tc ? num_tc : edev->dev_info.num_tc;
2490 	qede_setup_tc(edev->ndev, num_tc);
2491 
2492 	/* Program un-configured VLANs */
2493 	qede_configure_vlan_filters(edev);
2494 
2495 	set_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2496 
2497 	/* Ask for link-up using current configuration */
2498 	memset(&link_params, 0, sizeof(link_params));
2499 	link_params.link_up = true;
2500 	edev->ops->common->set_link(edev->cdev, &link_params);
2501 
2502 	edev->state = QEDE_STATE_OPEN;
2503 
2504 	coal.rx_coalesce_usecs = QED_DEFAULT_RX_USECS;
2505 	coal.tx_coalesce_usecs = QED_DEFAULT_TX_USECS;
2506 
2507 	for_each_queue(i) {
2508 		if (edev->coal_entry[i].isvalid) {
2509 			coal.rx_coalesce_usecs = edev->coal_entry[i].rxc;
2510 			coal.tx_coalesce_usecs = edev->coal_entry[i].txc;
2511 		}
2512 		__qede_unlock(edev);
2513 		qede_set_per_coalesce(edev->ndev, i, &coal);
2514 		__qede_lock(edev);
2515 	}
2516 	DP_INFO(edev, "Ending successfully qede load\n");
2517 
2518 	goto out;
2519 err4:
2520 	qede_sync_free_irqs(edev);
2521 err3:
2522 	qede_napi_disable_remove(edev);
2523 err2:
2524 	qede_free_mem_load(edev);
2525 err1:
2526 	edev->ops->common->set_fp_int(edev->cdev, 0);
2527 	qede_free_fp_array(edev);
2528 	edev->num_queues = 0;
2529 	edev->fp_num_tx = 0;
2530 	edev->fp_num_rx = 0;
2531 out:
2532 	if (!is_locked)
2533 		__qede_unlock(edev);
2534 
2535 	return rc;
2536 }
2537 
2538 /* 'func' should be able to run between unload and reload assuming interface
2539  * is actually running, or afterwards in case it's currently DOWN.
2540  */
2541 void qede_reload(struct qede_dev *edev,
2542 		 struct qede_reload_args *args, bool is_locked)
2543 {
2544 	if (!is_locked)
2545 		__qede_lock(edev);
2546 
2547 	/* Since qede_lock is held, internal state wouldn't change even
2548 	 * if netdev state would start transitioning. Check whether current
2549 	 * internal configuration indicates device is up, then reload.
2550 	 */
2551 	if (edev->state == QEDE_STATE_OPEN) {
2552 		qede_unload(edev, QEDE_UNLOAD_NORMAL, true);
2553 		if (args)
2554 			args->func(edev, args);
2555 		qede_load(edev, QEDE_LOAD_RELOAD, true);
2556 
2557 		/* Since no one is going to do it for us, re-configure */
2558 		qede_config_rx_mode(edev->ndev);
2559 	} else if (args) {
2560 		args->func(edev, args);
2561 	}
2562 
2563 	if (!is_locked)
2564 		__qede_unlock(edev);
2565 }
2566 
2567 /* called with rtnl_lock */
2568 static int qede_open(struct net_device *ndev)
2569 {
2570 	struct qede_dev *edev = netdev_priv(ndev);
2571 	int rc;
2572 
2573 	netif_carrier_off(ndev);
2574 
2575 	edev->ops->common->set_power_state(edev->cdev, PCI_D0);
2576 
2577 	rc = qede_load(edev, QEDE_LOAD_NORMAL, false);
2578 	if (rc)
2579 		return rc;
2580 
2581 	udp_tunnel_nic_reset_ntf(ndev);
2582 
2583 	edev->ops->common->update_drv_state(edev->cdev, true);
2584 
2585 	return 0;
2586 }
2587 
2588 static int qede_close(struct net_device *ndev)
2589 {
2590 	struct qede_dev *edev = netdev_priv(ndev);
2591 
2592 	qede_unload(edev, QEDE_UNLOAD_NORMAL, false);
2593 
2594 	if (edev->cdev)
2595 		edev->ops->common->update_drv_state(edev->cdev, false);
2596 
2597 	return 0;
2598 }
2599 
2600 static void qede_link_update(void *dev, struct qed_link_output *link)
2601 {
2602 	struct qede_dev *edev = dev;
2603 
2604 	if (!test_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags)) {
2605 		DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not ready\n");
2606 		return;
2607 	}
2608 
2609 	if (link->link_up) {
2610 		if (!netif_carrier_ok(edev->ndev)) {
2611 			DP_NOTICE(edev, "Link is up\n");
2612 			netif_tx_start_all_queues(edev->ndev);
2613 			netif_carrier_on(edev->ndev);
2614 			qede_rdma_dev_event_open(edev);
2615 		}
2616 	} else {
2617 		if (netif_carrier_ok(edev->ndev)) {
2618 			DP_NOTICE(edev, "Link is down\n");
2619 			netif_tx_disable(edev->ndev);
2620 			netif_carrier_off(edev->ndev);
2621 			qede_rdma_dev_event_close(edev);
2622 		}
2623 	}
2624 }
2625 
2626 static void qede_schedule_recovery_handler(void *dev)
2627 {
2628 	struct qede_dev *edev = dev;
2629 
2630 	if (edev->state == QEDE_STATE_RECOVERY) {
2631 		DP_NOTICE(edev,
2632 			  "Avoid scheduling a recovery handling since already in recovery state\n");
2633 		return;
2634 	}
2635 
2636 	set_bit(QEDE_SP_RECOVERY, &edev->sp_flags);
2637 	schedule_delayed_work(&edev->sp_task, 0);
2638 
2639 	DP_INFO(edev, "Scheduled a recovery handler\n");
2640 }
2641 
2642 static void qede_recovery_failed(struct qede_dev *edev)
2643 {
2644 	netdev_err(edev->ndev, "Recovery handling has failed. Power cycle is needed.\n");
2645 
2646 	netif_device_detach(edev->ndev);
2647 
2648 	if (edev->cdev)
2649 		edev->ops->common->set_power_state(edev->cdev, PCI_D3hot);
2650 }
2651 
2652 static void qede_recovery_handler(struct qede_dev *edev)
2653 {
2654 	u32 curr_state = edev->state;
2655 	int rc;
2656 
2657 	DP_NOTICE(edev, "Starting a recovery process\n");
2658 
2659 	/* No need to acquire first the qede_lock since is done by qede_sp_task
2660 	 * before calling this function.
2661 	 */
2662 	edev->state = QEDE_STATE_RECOVERY;
2663 
2664 	edev->ops->common->recovery_prolog(edev->cdev);
2665 
2666 	if (curr_state == QEDE_STATE_OPEN)
2667 		qede_unload(edev, QEDE_UNLOAD_RECOVERY, true);
2668 
2669 	__qede_remove(edev->pdev, QEDE_REMOVE_RECOVERY);
2670 
2671 	rc = __qede_probe(edev->pdev, edev->dp_module, edev->dp_level,
2672 			  IS_VF(edev), QEDE_PROBE_RECOVERY);
2673 	if (rc) {
2674 		edev->cdev = NULL;
2675 		goto err;
2676 	}
2677 
2678 	if (curr_state == QEDE_STATE_OPEN) {
2679 		rc = qede_load(edev, QEDE_LOAD_RECOVERY, true);
2680 		if (rc)
2681 			goto err;
2682 
2683 		qede_config_rx_mode(edev->ndev);
2684 		udp_tunnel_nic_reset_ntf(edev->ndev);
2685 	}
2686 
2687 	edev->state = curr_state;
2688 
2689 	DP_NOTICE(edev, "Recovery handling is done\n");
2690 
2691 	return;
2692 
2693 err:
2694 	qede_recovery_failed(edev);
2695 }
2696 
2697 static void qede_atomic_hw_err_handler(struct qede_dev *edev)
2698 {
2699 	struct qed_dev *cdev = edev->cdev;
2700 
2701 	DP_NOTICE(edev,
2702 		  "Generic non-sleepable HW error handling started - err_flags 0x%lx\n",
2703 		  edev->err_flags);
2704 
2705 	/* Get a call trace of the flow that led to the error */
2706 	WARN_ON(test_bit(QEDE_ERR_WARN, &edev->err_flags));
2707 
2708 	/* Prevent HW attentions from being reasserted */
2709 	if (test_bit(QEDE_ERR_ATTN_CLR_EN, &edev->err_flags))
2710 		edev->ops->common->attn_clr_enable(cdev, true);
2711 
2712 	DP_NOTICE(edev, "Generic non-sleepable HW error handling is done\n");
2713 }
2714 
2715 static void qede_generic_hw_err_handler(struct qede_dev *edev)
2716 {
2717 	DP_NOTICE(edev,
2718 		  "Generic sleepable HW error handling started - err_flags 0x%lx\n",
2719 		  edev->err_flags);
2720 
2721 	if (edev->devlink) {
2722 		DP_NOTICE(edev, "Reporting fatal error to devlink\n");
2723 		edev->ops->common->report_fatal_error(edev->devlink, edev->last_err_type);
2724 	}
2725 
2726 	clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags);
2727 
2728 	DP_NOTICE(edev, "Generic sleepable HW error handling is done\n");
2729 }
2730 
2731 static void qede_set_hw_err_flags(struct qede_dev *edev,
2732 				  enum qed_hw_err_type err_type)
2733 {
2734 	unsigned long err_flags = 0;
2735 
2736 	switch (err_type) {
2737 	case QED_HW_ERR_DMAE_FAIL:
2738 		set_bit(QEDE_ERR_WARN, &err_flags);
2739 		fallthrough;
2740 	case QED_HW_ERR_MFW_RESP_FAIL:
2741 	case QED_HW_ERR_HW_ATTN:
2742 	case QED_HW_ERR_RAMROD_FAIL:
2743 	case QED_HW_ERR_FW_ASSERT:
2744 		set_bit(QEDE_ERR_ATTN_CLR_EN, &err_flags);
2745 		set_bit(QEDE_ERR_GET_DBG_INFO, &err_flags);
2746 		/* make this error as recoverable and start recovery*/
2747 		set_bit(QEDE_ERR_IS_RECOVERABLE, &err_flags);
2748 		break;
2749 
2750 	default:
2751 		DP_NOTICE(edev, "Unexpected HW error [%d]\n", err_type);
2752 		break;
2753 	}
2754 
2755 	edev->err_flags |= err_flags;
2756 }
2757 
2758 static void qede_schedule_hw_err_handler(void *dev,
2759 					 enum qed_hw_err_type err_type)
2760 {
2761 	struct qede_dev *edev = dev;
2762 
2763 	/* Fan failure cannot be masked by handling of another HW error or by a
2764 	 * concurrent recovery process.
2765 	 */
2766 	if ((test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) ||
2767 	     edev->state == QEDE_STATE_RECOVERY) &&
2768 	     err_type != QED_HW_ERR_FAN_FAIL) {
2769 		DP_INFO(edev,
2770 			"Avoid scheduling an error handling while another HW error is being handled\n");
2771 		return;
2772 	}
2773 
2774 	if (err_type >= QED_HW_ERR_LAST) {
2775 		DP_NOTICE(edev, "Unknown HW error [%d]\n", err_type);
2776 		clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags);
2777 		return;
2778 	}
2779 
2780 	edev->last_err_type = err_type;
2781 	qede_set_hw_err_flags(edev, err_type);
2782 	qede_atomic_hw_err_handler(edev);
2783 	set_bit(QEDE_SP_HW_ERR, &edev->sp_flags);
2784 	schedule_delayed_work(&edev->sp_task, 0);
2785 
2786 	DP_INFO(edev, "Scheduled a error handler [err_type %d]\n", err_type);
2787 }
2788 
2789 static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq)
2790 {
2791 	struct netdev_queue *netdev_txq;
2792 
2793 	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
2794 	if (netif_xmit_stopped(netdev_txq))
2795 		return true;
2796 
2797 	return false;
2798 }
2799 
2800 static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data)
2801 {
2802 	struct qede_dev *edev = dev;
2803 	struct netdev_hw_addr *ha;
2804 	int i;
2805 
2806 	if (edev->ndev->features & NETIF_F_IP_CSUM)
2807 		data->feat_flags |= QED_TLV_IP_CSUM;
2808 	if (edev->ndev->features & NETIF_F_TSO)
2809 		data->feat_flags |= QED_TLV_LSO;
2810 
2811 	ether_addr_copy(data->mac[0], edev->ndev->dev_addr);
2812 	eth_zero_addr(data->mac[1]);
2813 	eth_zero_addr(data->mac[2]);
2814 	/* Copy the first two UC macs */
2815 	netif_addr_lock_bh(edev->ndev);
2816 	i = 1;
2817 	netdev_for_each_uc_addr(ha, edev->ndev) {
2818 		ether_addr_copy(data->mac[i++], ha->addr);
2819 		if (i == QED_TLV_MAC_COUNT)
2820 			break;
2821 	}
2822 
2823 	netif_addr_unlock_bh(edev->ndev);
2824 }
2825 
2826 static void qede_get_eth_tlv_data(void *dev, void *data)
2827 {
2828 	struct qed_mfw_tlv_eth *etlv = data;
2829 	struct qede_dev *edev = dev;
2830 	struct qede_fastpath *fp;
2831 	int i;
2832 
2833 	etlv->lso_maxoff_size = 0XFFFF;
2834 	etlv->lso_maxoff_size_set = true;
2835 	etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN;
2836 	etlv->lso_minseg_size_set = true;
2837 	etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC);
2838 	etlv->prom_mode_set = true;
2839 	etlv->tx_descr_size = QEDE_TSS_COUNT(edev);
2840 	etlv->tx_descr_size_set = true;
2841 	etlv->rx_descr_size = QEDE_RSS_COUNT(edev);
2842 	etlv->rx_descr_size_set = true;
2843 	etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB;
2844 	etlv->iov_offload_set = true;
2845 
2846 	/* Fill information regarding queues; Should be done under the qede
2847 	 * lock to guarantee those don't change beneath our feet.
2848 	 */
2849 	etlv->txqs_empty = true;
2850 	etlv->rxqs_empty = true;
2851 	etlv->num_txqs_full = 0;
2852 	etlv->num_rxqs_full = 0;
2853 
2854 	__qede_lock(edev);
2855 	for_each_queue(i) {
2856 		fp = &edev->fp_array[i];
2857 		if (fp->type & QEDE_FASTPATH_TX) {
2858 			struct qede_tx_queue *txq = QEDE_FP_TC0_TXQ(fp);
2859 
2860 			if (txq->sw_tx_cons != txq->sw_tx_prod)
2861 				etlv->txqs_empty = false;
2862 			if (qede_is_txq_full(edev, txq))
2863 				etlv->num_txqs_full++;
2864 		}
2865 		if (fp->type & QEDE_FASTPATH_RX) {
2866 			if (qede_has_rx_work(fp->rxq))
2867 				etlv->rxqs_empty = false;
2868 
2869 			/* This one is a bit tricky; Firmware might stop
2870 			 * placing packets if ring is not yet full.
2871 			 * Give an approximation.
2872 			 */
2873 			if (le16_to_cpu(*fp->rxq->hw_cons_ptr) -
2874 			    qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) >
2875 			    RX_RING_SIZE - 100)
2876 				etlv->num_rxqs_full++;
2877 		}
2878 	}
2879 	__qede_unlock(edev);
2880 
2881 	etlv->txqs_empty_set = true;
2882 	etlv->rxqs_empty_set = true;
2883 	etlv->num_txqs_full_set = true;
2884 	etlv->num_rxqs_full_set = true;
2885 }
2886 
2887 /**
2888  * qede_io_error_detected(): Called when PCI error is detected
2889  *
2890  * @pdev: Pointer to PCI device
2891  * @state: The current pci connection state
2892  *
2893  *Return: pci_ers_result_t.
2894  *
2895  * This function is called after a PCI bus error affecting
2896  * this device has been detected.
2897  */
2898 static pci_ers_result_t
2899 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
2900 {
2901 	struct net_device *dev = pci_get_drvdata(pdev);
2902 	struct qede_dev *edev = netdev_priv(dev);
2903 
2904 	if (!edev)
2905 		return PCI_ERS_RESULT_NONE;
2906 
2907 	DP_NOTICE(edev, "IO error detected [%d]\n", state);
2908 
2909 	__qede_lock(edev);
2910 	if (edev->state == QEDE_STATE_RECOVERY) {
2911 		DP_NOTICE(edev, "Device already in the recovery state\n");
2912 		__qede_unlock(edev);
2913 		return PCI_ERS_RESULT_NONE;
2914 	}
2915 
2916 	/* PF handles the recovery of its VFs */
2917 	if (IS_VF(edev)) {
2918 		DP_VERBOSE(edev, QED_MSG_IOV,
2919 			   "VF recovery is handled by its PF\n");
2920 		__qede_unlock(edev);
2921 		return PCI_ERS_RESULT_RECOVERED;
2922 	}
2923 
2924 	/* Close OS Tx */
2925 	netif_tx_disable(edev->ndev);
2926 	netif_carrier_off(edev->ndev);
2927 
2928 	set_bit(QEDE_SP_AER, &edev->sp_flags);
2929 	schedule_delayed_work(&edev->sp_task, 0);
2930 
2931 	__qede_unlock(edev);
2932 
2933 	return PCI_ERS_RESULT_CAN_RECOVER;
2934 }
2935