1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause) 2 /* QLogic qede NIC Driver 3 * Copyright (c) 2015-2017 QLogic Corporation 4 * Copyright (c) 2019-2020 Marvell International Ltd. 5 */ 6 7 #include <linux/crash_dump.h> 8 #include <linux/module.h> 9 #include <linux/pci.h> 10 #include <linux/device.h> 11 #include <linux/netdevice.h> 12 #include <linux/etherdevice.h> 13 #include <linux/skbuff.h> 14 #include <linux/errno.h> 15 #include <linux/list.h> 16 #include <linux/string.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/interrupt.h> 19 #include <asm/byteorder.h> 20 #include <asm/param.h> 21 #include <linux/io.h> 22 #include <linux/netdev_features.h> 23 #include <linux/udp.h> 24 #include <linux/tcp.h> 25 #include <net/udp_tunnel.h> 26 #include <linux/ip.h> 27 #include <net/ipv6.h> 28 #include <net/tcp.h> 29 #include <linux/if_ether.h> 30 #include <linux/if_vlan.h> 31 #include <linux/pkt_sched.h> 32 #include <linux/ethtool.h> 33 #include <linux/in.h> 34 #include <linux/random.h> 35 #include <net/ip6_checksum.h> 36 #include <linux/bitops.h> 37 #include <linux/vmalloc.h> 38 #include "qede.h" 39 #include "qede_ptp.h" 40 41 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver"); 42 MODULE_LICENSE("GPL"); 43 44 static uint debug; 45 module_param(debug, uint, 0); 46 MODULE_PARM_DESC(debug, " Default debug msglevel"); 47 48 static const struct qed_eth_ops *qed_ops; 49 50 #define CHIP_NUM_57980S_40 0x1634 51 #define CHIP_NUM_57980S_10 0x1666 52 #define CHIP_NUM_57980S_MF 0x1636 53 #define CHIP_NUM_57980S_100 0x1644 54 #define CHIP_NUM_57980S_50 0x1654 55 #define CHIP_NUM_57980S_25 0x1656 56 #define CHIP_NUM_57980S_IOV 0x1664 57 #define CHIP_NUM_AH 0x8070 58 #define CHIP_NUM_AH_IOV 0x8090 59 60 #ifndef PCI_DEVICE_ID_NX2_57980E 61 #define PCI_DEVICE_ID_57980S_40 CHIP_NUM_57980S_40 62 #define PCI_DEVICE_ID_57980S_10 CHIP_NUM_57980S_10 63 #define PCI_DEVICE_ID_57980S_MF CHIP_NUM_57980S_MF 64 #define PCI_DEVICE_ID_57980S_100 CHIP_NUM_57980S_100 65 #define PCI_DEVICE_ID_57980S_50 CHIP_NUM_57980S_50 66 #define PCI_DEVICE_ID_57980S_25 CHIP_NUM_57980S_25 67 #define PCI_DEVICE_ID_57980S_IOV CHIP_NUM_57980S_IOV 68 #define PCI_DEVICE_ID_AH CHIP_NUM_AH 69 #define PCI_DEVICE_ID_AH_IOV CHIP_NUM_AH_IOV 70 71 #endif 72 73 enum qede_pci_private { 74 QEDE_PRIVATE_PF, 75 QEDE_PRIVATE_VF 76 }; 77 78 static const struct pci_device_id qede_pci_tbl[] = { 79 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF}, 80 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF}, 81 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF}, 82 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF}, 83 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF}, 84 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF}, 85 #ifdef CONFIG_QED_SRIOV 86 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF}, 87 #endif 88 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF}, 89 #ifdef CONFIG_QED_SRIOV 90 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF}, 91 #endif 92 { 0 } 93 }; 94 95 MODULE_DEVICE_TABLE(pci, qede_pci_tbl); 96 97 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id); 98 static pci_ers_result_t 99 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state); 100 101 #define TX_TIMEOUT (5 * HZ) 102 103 /* Utilize last protocol index for XDP */ 104 #define XDP_PI 11 105 106 static void qede_remove(struct pci_dev *pdev); 107 static void qede_shutdown(struct pci_dev *pdev); 108 static void qede_link_update(void *dev, struct qed_link_output *link); 109 static void qede_schedule_recovery_handler(void *dev); 110 static void qede_recovery_handler(struct qede_dev *edev); 111 static void qede_schedule_hw_err_handler(void *dev, 112 enum qed_hw_err_type err_type); 113 static void qede_get_eth_tlv_data(void *edev, void *data); 114 static void qede_get_generic_tlv_data(void *edev, 115 struct qed_generic_tlvs *data); 116 static void qede_generic_hw_err_handler(struct qede_dev *edev); 117 #ifdef CONFIG_QED_SRIOV 118 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos, 119 __be16 vlan_proto) 120 { 121 struct qede_dev *edev = netdev_priv(ndev); 122 123 if (vlan > 4095) { 124 DP_NOTICE(edev, "Illegal vlan value %d\n", vlan); 125 return -EINVAL; 126 } 127 128 if (vlan_proto != htons(ETH_P_8021Q)) 129 return -EPROTONOSUPPORT; 130 131 DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n", 132 vlan, vf); 133 134 return edev->ops->iov->set_vlan(edev->cdev, vlan, vf); 135 } 136 137 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac) 138 { 139 struct qede_dev *edev = netdev_priv(ndev); 140 141 DP_VERBOSE(edev, QED_MSG_IOV, "Setting MAC %pM to VF [%d]\n", mac, vfidx); 142 143 if (!is_valid_ether_addr(mac)) { 144 DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n"); 145 return -EINVAL; 146 } 147 148 return edev->ops->iov->set_mac(edev->cdev, mac, vfidx); 149 } 150 151 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param) 152 { 153 struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev)); 154 struct qed_dev_info *qed_info = &edev->dev_info.common; 155 struct qed_update_vport_params *vport_params; 156 int rc; 157 158 vport_params = vzalloc(sizeof(*vport_params)); 159 if (!vport_params) 160 return -ENOMEM; 161 DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param); 162 163 rc = edev->ops->iov->configure(edev->cdev, num_vfs_param); 164 165 /* Enable/Disable Tx switching for PF */ 166 if ((rc == num_vfs_param) && netif_running(edev->ndev) && 167 !qed_info->b_inter_pf_switch && qed_info->tx_switching) { 168 vport_params->vport_id = 0; 169 vport_params->update_tx_switching_flg = 1; 170 vport_params->tx_switching_flg = num_vfs_param ? 1 : 0; 171 edev->ops->vport_update(edev->cdev, vport_params); 172 } 173 174 vfree(vport_params); 175 return rc; 176 } 177 #endif 178 179 static int __maybe_unused qede_suspend(struct device *dev) 180 { 181 dev_info(dev, "Device does not support suspend operation\n"); 182 183 return -EOPNOTSUPP; 184 } 185 186 static DEFINE_SIMPLE_DEV_PM_OPS(qede_pm_ops, qede_suspend, NULL); 187 188 static const struct pci_error_handlers qede_err_handler = { 189 .error_detected = qede_io_error_detected, 190 }; 191 192 static struct pci_driver qede_pci_driver = { 193 .name = "qede", 194 .id_table = qede_pci_tbl, 195 .probe = qede_probe, 196 .remove = qede_remove, 197 .shutdown = qede_shutdown, 198 #ifdef CONFIG_QED_SRIOV 199 .sriov_configure = qede_sriov_configure, 200 #endif 201 .err_handler = &qede_err_handler, 202 .driver.pm = &qede_pm_ops, 203 }; 204 205 static struct qed_eth_cb_ops qede_ll_ops = { 206 .common = { 207 #ifdef CONFIG_RFS_ACCEL 208 .arfs_filter_op = qede_arfs_filter_op, 209 #endif 210 .link_update = qede_link_update, 211 .schedule_recovery_handler = qede_schedule_recovery_handler, 212 .schedule_hw_err_handler = qede_schedule_hw_err_handler, 213 .get_generic_tlv_data = qede_get_generic_tlv_data, 214 .get_protocol_tlv_data = qede_get_eth_tlv_data, 215 }, 216 .force_mac = qede_force_mac, 217 .ports_update = qede_udp_ports_update, 218 }; 219 220 static int qede_netdev_event(struct notifier_block *this, unsigned long event, 221 void *ptr) 222 { 223 struct net_device *ndev = netdev_notifier_info_to_dev(ptr); 224 struct ethtool_drvinfo drvinfo; 225 struct qede_dev *edev; 226 227 if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR) 228 goto done; 229 230 /* Check whether this is a qede device */ 231 if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo) 232 goto done; 233 234 memset(&drvinfo, 0, sizeof(drvinfo)); 235 ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo); 236 if (strcmp(drvinfo.driver, "qede")) 237 goto done; 238 edev = netdev_priv(ndev); 239 240 switch (event) { 241 case NETDEV_CHANGENAME: 242 /* Notify qed of the name change */ 243 if (!edev->ops || !edev->ops->common) 244 goto done; 245 edev->ops->common->set_name(edev->cdev, edev->ndev->name); 246 break; 247 case NETDEV_CHANGEADDR: 248 edev = netdev_priv(ndev); 249 qede_rdma_event_changeaddr(edev); 250 break; 251 } 252 253 done: 254 return NOTIFY_DONE; 255 } 256 257 static struct notifier_block qede_netdev_notifier = { 258 .notifier_call = qede_netdev_event, 259 }; 260 261 static 262 int __init qede_init(void) 263 { 264 int ret; 265 266 pr_info("qede init: QLogic FastLinQ 4xxxx Ethernet Driver qede\n"); 267 268 qede_forced_speed_maps_init(); 269 270 qed_ops = qed_get_eth_ops(); 271 if (!qed_ops) { 272 pr_notice("Failed to get qed ethtool operations\n"); 273 return -EINVAL; 274 } 275 276 /* Must register notifier before pci ops, since we might miss 277 * interface rename after pci probe and netdev registration. 278 */ 279 ret = register_netdevice_notifier(&qede_netdev_notifier); 280 if (ret) { 281 pr_notice("Failed to register netdevice_notifier\n"); 282 qed_put_eth_ops(); 283 return -EINVAL; 284 } 285 286 ret = pci_register_driver(&qede_pci_driver); 287 if (ret) { 288 pr_notice("Failed to register driver\n"); 289 unregister_netdevice_notifier(&qede_netdev_notifier); 290 qed_put_eth_ops(); 291 return -EINVAL; 292 } 293 294 return 0; 295 } 296 297 static void __exit qede_cleanup(void) 298 { 299 if (debug & QED_LOG_INFO_MASK) 300 pr_info("qede_cleanup called\n"); 301 302 unregister_netdevice_notifier(&qede_netdev_notifier); 303 pci_unregister_driver(&qede_pci_driver); 304 qed_put_eth_ops(); 305 } 306 307 module_init(qede_init); 308 module_exit(qede_cleanup); 309 310 static int qede_open(struct net_device *ndev); 311 static int qede_close(struct net_device *ndev); 312 313 void qede_fill_by_demand_stats(struct qede_dev *edev) 314 { 315 struct qede_stats_common *p_common = &edev->stats.common; 316 struct qed_eth_stats stats; 317 318 edev->ops->get_vport_stats(edev->cdev, &stats); 319 320 spin_lock(&edev->stats_lock); 321 322 p_common->no_buff_discards = stats.common.no_buff_discards; 323 p_common->packet_too_big_discard = stats.common.packet_too_big_discard; 324 p_common->ttl0_discard = stats.common.ttl0_discard; 325 p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes; 326 p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes; 327 p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes; 328 p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts; 329 p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts; 330 p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts; 331 p_common->mftag_filter_discards = stats.common.mftag_filter_discards; 332 p_common->mac_filter_discards = stats.common.mac_filter_discards; 333 p_common->gft_filter_drop = stats.common.gft_filter_drop; 334 335 p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes; 336 p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes; 337 p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes; 338 p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts; 339 p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts; 340 p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts; 341 p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts; 342 p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts; 343 p_common->coalesced_events = stats.common.tpa_coalesced_events; 344 p_common->coalesced_aborts_num = stats.common.tpa_aborts_num; 345 p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts; 346 p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes; 347 348 p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets; 349 p_common->rx_65_to_127_byte_packets = 350 stats.common.rx_65_to_127_byte_packets; 351 p_common->rx_128_to_255_byte_packets = 352 stats.common.rx_128_to_255_byte_packets; 353 p_common->rx_256_to_511_byte_packets = 354 stats.common.rx_256_to_511_byte_packets; 355 p_common->rx_512_to_1023_byte_packets = 356 stats.common.rx_512_to_1023_byte_packets; 357 p_common->rx_1024_to_1518_byte_packets = 358 stats.common.rx_1024_to_1518_byte_packets; 359 p_common->rx_crc_errors = stats.common.rx_crc_errors; 360 p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames; 361 p_common->rx_pause_frames = stats.common.rx_pause_frames; 362 p_common->rx_pfc_frames = stats.common.rx_pfc_frames; 363 p_common->rx_align_errors = stats.common.rx_align_errors; 364 p_common->rx_carrier_errors = stats.common.rx_carrier_errors; 365 p_common->rx_oversize_packets = stats.common.rx_oversize_packets; 366 p_common->rx_jabbers = stats.common.rx_jabbers; 367 p_common->rx_undersize_packets = stats.common.rx_undersize_packets; 368 p_common->rx_fragments = stats.common.rx_fragments; 369 p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets; 370 p_common->tx_65_to_127_byte_packets = 371 stats.common.tx_65_to_127_byte_packets; 372 p_common->tx_128_to_255_byte_packets = 373 stats.common.tx_128_to_255_byte_packets; 374 p_common->tx_256_to_511_byte_packets = 375 stats.common.tx_256_to_511_byte_packets; 376 p_common->tx_512_to_1023_byte_packets = 377 stats.common.tx_512_to_1023_byte_packets; 378 p_common->tx_1024_to_1518_byte_packets = 379 stats.common.tx_1024_to_1518_byte_packets; 380 p_common->tx_pause_frames = stats.common.tx_pause_frames; 381 p_common->tx_pfc_frames = stats.common.tx_pfc_frames; 382 p_common->brb_truncates = stats.common.brb_truncates; 383 p_common->brb_discards = stats.common.brb_discards; 384 p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames; 385 p_common->link_change_count = stats.common.link_change_count; 386 p_common->ptp_skip_txts = edev->ptp_skip_txts; 387 388 if (QEDE_IS_BB(edev)) { 389 struct qede_stats_bb *p_bb = &edev->stats.bb; 390 391 p_bb->rx_1519_to_1522_byte_packets = 392 stats.bb.rx_1519_to_1522_byte_packets; 393 p_bb->rx_1519_to_2047_byte_packets = 394 stats.bb.rx_1519_to_2047_byte_packets; 395 p_bb->rx_2048_to_4095_byte_packets = 396 stats.bb.rx_2048_to_4095_byte_packets; 397 p_bb->rx_4096_to_9216_byte_packets = 398 stats.bb.rx_4096_to_9216_byte_packets; 399 p_bb->rx_9217_to_16383_byte_packets = 400 stats.bb.rx_9217_to_16383_byte_packets; 401 p_bb->tx_1519_to_2047_byte_packets = 402 stats.bb.tx_1519_to_2047_byte_packets; 403 p_bb->tx_2048_to_4095_byte_packets = 404 stats.bb.tx_2048_to_4095_byte_packets; 405 p_bb->tx_4096_to_9216_byte_packets = 406 stats.bb.tx_4096_to_9216_byte_packets; 407 p_bb->tx_9217_to_16383_byte_packets = 408 stats.bb.tx_9217_to_16383_byte_packets; 409 p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count; 410 p_bb->tx_total_collisions = stats.bb.tx_total_collisions; 411 } else { 412 struct qede_stats_ah *p_ah = &edev->stats.ah; 413 414 p_ah->rx_1519_to_max_byte_packets = 415 stats.ah.rx_1519_to_max_byte_packets; 416 p_ah->tx_1519_to_max_byte_packets = 417 stats.ah.tx_1519_to_max_byte_packets; 418 } 419 420 spin_unlock(&edev->stats_lock); 421 } 422 423 static void qede_get_stats64(struct net_device *dev, 424 struct rtnl_link_stats64 *stats) 425 { 426 struct qede_dev *edev = netdev_priv(dev); 427 struct qede_stats_common *p_common; 428 429 p_common = &edev->stats.common; 430 431 spin_lock(&edev->stats_lock); 432 433 stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts + 434 p_common->rx_bcast_pkts; 435 stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts + 436 p_common->tx_bcast_pkts; 437 438 stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes + 439 p_common->rx_bcast_bytes; 440 stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes + 441 p_common->tx_bcast_bytes; 442 443 stats->tx_errors = p_common->tx_err_drop_pkts; 444 stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts; 445 446 stats->rx_fifo_errors = p_common->no_buff_discards; 447 448 if (QEDE_IS_BB(edev)) 449 stats->collisions = edev->stats.bb.tx_total_collisions; 450 stats->rx_crc_errors = p_common->rx_crc_errors; 451 stats->rx_frame_errors = p_common->rx_align_errors; 452 453 spin_unlock(&edev->stats_lock); 454 } 455 456 #ifdef CONFIG_QED_SRIOV 457 static int qede_get_vf_config(struct net_device *dev, int vfidx, 458 struct ifla_vf_info *ivi) 459 { 460 struct qede_dev *edev = netdev_priv(dev); 461 462 if (!edev->ops) 463 return -EINVAL; 464 465 return edev->ops->iov->get_config(edev->cdev, vfidx, ivi); 466 } 467 468 static int qede_set_vf_rate(struct net_device *dev, int vfidx, 469 int min_tx_rate, int max_tx_rate) 470 { 471 struct qede_dev *edev = netdev_priv(dev); 472 473 return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate, 474 max_tx_rate); 475 } 476 477 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val) 478 { 479 struct qede_dev *edev = netdev_priv(dev); 480 481 if (!edev->ops) 482 return -EINVAL; 483 484 return edev->ops->iov->set_spoof(edev->cdev, vfidx, val); 485 } 486 487 static int qede_set_vf_link_state(struct net_device *dev, int vfidx, 488 int link_state) 489 { 490 struct qede_dev *edev = netdev_priv(dev); 491 492 if (!edev->ops) 493 return -EINVAL; 494 495 return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state); 496 } 497 498 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting) 499 { 500 struct qede_dev *edev = netdev_priv(dev); 501 502 if (!edev->ops) 503 return -EINVAL; 504 505 return edev->ops->iov->set_trust(edev->cdev, vfidx, setting); 506 } 507 #endif 508 509 static void qede_fp_sb_dump(struct qede_dev *edev, struct qede_fastpath *fp) 510 { 511 char *p_sb = (char *)fp->sb_info->sb_virt; 512 u32 sb_size, i; 513 514 sb_size = sizeof(struct status_block); 515 516 for (i = 0; i < sb_size; i += 8) 517 DP_NOTICE(edev, 518 "%02hhX %02hhX %02hhX %02hhX %02hhX %02hhX %02hhX %02hhX\n", 519 p_sb[i], p_sb[i + 1], p_sb[i + 2], p_sb[i + 3], 520 p_sb[i + 4], p_sb[i + 5], p_sb[i + 6], p_sb[i + 7]); 521 } 522 523 static void 524 qede_txq_fp_log_metadata(struct qede_dev *edev, 525 struct qede_fastpath *fp, struct qede_tx_queue *txq) 526 { 527 struct qed_chain *p_chain = &txq->tx_pbl; 528 529 /* Dump txq/fp/sb ids etc. other metadata */ 530 DP_NOTICE(edev, 531 "fpid 0x%x sbid 0x%x txqid [0x%x] ndev_qid [0x%x] cos [0x%x] p_chain %p cap %d size %d jiffies %lu HZ 0x%x\n", 532 fp->id, fp->sb_info->igu_sb_id, txq->index, txq->ndev_txq_id, txq->cos, 533 p_chain, p_chain->capacity, p_chain->size, jiffies, HZ); 534 535 /* Dump all the relevant prod/cons indexes */ 536 DP_NOTICE(edev, 537 "hw cons %04x sw_tx_prod=0x%x, sw_tx_cons=0x%x, bd_prod 0x%x bd_cons 0x%x\n", 538 le16_to_cpu(*txq->hw_cons_ptr), txq->sw_tx_prod, txq->sw_tx_cons, 539 qed_chain_get_prod_idx(p_chain), qed_chain_get_cons_idx(p_chain)); 540 } 541 542 static void 543 qede_tx_log_print(struct qede_dev *edev, struct qede_fastpath *fp, struct qede_tx_queue *txq) 544 { 545 struct qed_sb_info_dbg sb_dbg; 546 int rc; 547 548 /* sb info */ 549 qede_fp_sb_dump(edev, fp); 550 551 memset(&sb_dbg, 0, sizeof(sb_dbg)); 552 rc = edev->ops->common->get_sb_info(edev->cdev, fp->sb_info, (u16)fp->id, &sb_dbg); 553 554 DP_NOTICE(edev, "IGU: prod %08x cons %08x CAU Tx %04x\n", 555 sb_dbg.igu_prod, sb_dbg.igu_cons, sb_dbg.pi[TX_PI(txq->cos)]); 556 557 /* report to mfw */ 558 edev->ops->common->mfw_report(edev->cdev, 559 "Txq[%d]: FW cons [host] %04x, SW cons %04x, SW prod %04x [Jiffies %lu]\n", 560 txq->index, le16_to_cpu(*txq->hw_cons_ptr), 561 qed_chain_get_cons_idx(&txq->tx_pbl), 562 qed_chain_get_prod_idx(&txq->tx_pbl), jiffies); 563 if (!rc) 564 edev->ops->common->mfw_report(edev->cdev, 565 "Txq[%d]: SB[0x%04x] - IGU: prod %08x cons %08x CAU Tx %04x\n", 566 txq->index, fp->sb_info->igu_sb_id, 567 sb_dbg.igu_prod, sb_dbg.igu_cons, 568 sb_dbg.pi[TX_PI(txq->cos)]); 569 } 570 571 static void qede_tx_timeout(struct net_device *dev, unsigned int txqueue) 572 { 573 struct qede_dev *edev = netdev_priv(dev); 574 int i; 575 576 netif_carrier_off(dev); 577 DP_NOTICE(edev, "TX timeout on queue %u!\n", txqueue); 578 579 for_each_queue(i) { 580 struct qede_tx_queue *txq; 581 struct qede_fastpath *fp; 582 int cos; 583 584 fp = &edev->fp_array[i]; 585 if (!(fp->type & QEDE_FASTPATH_TX)) 586 continue; 587 588 for_each_cos_in_txq(edev, cos) { 589 txq = &fp->txq[cos]; 590 591 /* Dump basic metadata for all queues */ 592 qede_txq_fp_log_metadata(edev, fp, txq); 593 594 if (qed_chain_get_cons_idx(&txq->tx_pbl) != 595 qed_chain_get_prod_idx(&txq->tx_pbl)) 596 qede_tx_log_print(edev, fp, txq); 597 } 598 } 599 600 if (IS_VF(edev)) 601 return; 602 603 if (test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) || 604 edev->state == QEDE_STATE_RECOVERY) { 605 DP_INFO(edev, 606 "Avoid handling a Tx timeout while another HW error is being handled\n"); 607 return; 608 } 609 610 set_bit(QEDE_ERR_GET_DBG_INFO, &edev->err_flags); 611 set_bit(QEDE_SP_HW_ERR, &edev->sp_flags); 612 schedule_delayed_work(&edev->sp_task, 0); 613 } 614 615 static int qede_setup_tc(struct net_device *ndev, u8 num_tc) 616 { 617 struct qede_dev *edev = netdev_priv(ndev); 618 int cos, count, offset; 619 620 if (num_tc > edev->dev_info.num_tc) 621 return -EINVAL; 622 623 netdev_reset_tc(ndev); 624 netdev_set_num_tc(ndev, num_tc); 625 626 for_each_cos_in_txq(edev, cos) { 627 count = QEDE_TSS_COUNT(edev); 628 offset = cos * QEDE_TSS_COUNT(edev); 629 netdev_set_tc_queue(ndev, cos, count, offset); 630 } 631 632 return 0; 633 } 634 635 static int 636 qede_set_flower(struct qede_dev *edev, struct flow_cls_offload *f, 637 __be16 proto) 638 { 639 switch (f->command) { 640 case FLOW_CLS_REPLACE: 641 return qede_add_tc_flower_fltr(edev, proto, f); 642 case FLOW_CLS_DESTROY: 643 return qede_delete_flow_filter(edev, f->cookie); 644 default: 645 return -EOPNOTSUPP; 646 } 647 } 648 649 static int qede_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 650 void *cb_priv) 651 { 652 struct flow_cls_offload *f; 653 struct qede_dev *edev = cb_priv; 654 655 if (!tc_cls_can_offload_and_chain0(edev->ndev, type_data)) 656 return -EOPNOTSUPP; 657 658 switch (type) { 659 case TC_SETUP_CLSFLOWER: 660 f = type_data; 661 return qede_set_flower(edev, f, f->common.protocol); 662 default: 663 return -EOPNOTSUPP; 664 } 665 } 666 667 static LIST_HEAD(qede_block_cb_list); 668 669 static int 670 qede_setup_tc_offload(struct net_device *dev, enum tc_setup_type type, 671 void *type_data) 672 { 673 struct qede_dev *edev = netdev_priv(dev); 674 struct tc_mqprio_qopt *mqprio; 675 676 switch (type) { 677 case TC_SETUP_BLOCK: 678 return flow_block_cb_setup_simple(type_data, 679 &qede_block_cb_list, 680 qede_setup_tc_block_cb, 681 edev, edev, true); 682 case TC_SETUP_QDISC_MQPRIO: 683 mqprio = type_data; 684 685 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 686 return qede_setup_tc(dev, mqprio->num_tc); 687 default: 688 return -EOPNOTSUPP; 689 } 690 } 691 692 static const struct net_device_ops qede_netdev_ops = { 693 .ndo_open = qede_open, 694 .ndo_stop = qede_close, 695 .ndo_start_xmit = qede_start_xmit, 696 .ndo_select_queue = qede_select_queue, 697 .ndo_set_rx_mode = qede_set_rx_mode, 698 .ndo_set_mac_address = qede_set_mac_addr, 699 .ndo_validate_addr = eth_validate_addr, 700 .ndo_change_mtu = qede_change_mtu, 701 .ndo_tx_timeout = qede_tx_timeout, 702 #ifdef CONFIG_QED_SRIOV 703 .ndo_set_vf_mac = qede_set_vf_mac, 704 .ndo_set_vf_vlan = qede_set_vf_vlan, 705 .ndo_set_vf_trust = qede_set_vf_trust, 706 #endif 707 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid, 708 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid, 709 .ndo_fix_features = qede_fix_features, 710 .ndo_set_features = qede_set_features, 711 .ndo_get_stats64 = qede_get_stats64, 712 #ifdef CONFIG_QED_SRIOV 713 .ndo_set_vf_link_state = qede_set_vf_link_state, 714 .ndo_set_vf_spoofchk = qede_set_vf_spoofchk, 715 .ndo_get_vf_config = qede_get_vf_config, 716 .ndo_set_vf_rate = qede_set_vf_rate, 717 #endif 718 .ndo_features_check = qede_features_check, 719 .ndo_bpf = qede_xdp, 720 #ifdef CONFIG_RFS_ACCEL 721 .ndo_rx_flow_steer = qede_rx_flow_steer, 722 #endif 723 .ndo_xdp_xmit = qede_xdp_transmit, 724 .ndo_setup_tc = qede_setup_tc_offload, 725 .ndo_hwtstamp_get = qede_hwtstamp_get, 726 .ndo_hwtstamp_set = qede_hwtstamp_set, 727 }; 728 729 static const struct net_device_ops qede_netdev_vf_ops = { 730 .ndo_open = qede_open, 731 .ndo_stop = qede_close, 732 .ndo_start_xmit = qede_start_xmit, 733 .ndo_select_queue = qede_select_queue, 734 .ndo_set_rx_mode = qede_set_rx_mode, 735 .ndo_set_mac_address = qede_set_mac_addr, 736 .ndo_validate_addr = eth_validate_addr, 737 .ndo_change_mtu = qede_change_mtu, 738 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid, 739 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid, 740 .ndo_fix_features = qede_fix_features, 741 .ndo_set_features = qede_set_features, 742 .ndo_get_stats64 = qede_get_stats64, 743 .ndo_features_check = qede_features_check, 744 }; 745 746 static const struct net_device_ops qede_netdev_vf_xdp_ops = { 747 .ndo_open = qede_open, 748 .ndo_stop = qede_close, 749 .ndo_start_xmit = qede_start_xmit, 750 .ndo_select_queue = qede_select_queue, 751 .ndo_set_rx_mode = qede_set_rx_mode, 752 .ndo_set_mac_address = qede_set_mac_addr, 753 .ndo_validate_addr = eth_validate_addr, 754 .ndo_change_mtu = qede_change_mtu, 755 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid, 756 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid, 757 .ndo_fix_features = qede_fix_features, 758 .ndo_set_features = qede_set_features, 759 .ndo_get_stats64 = qede_get_stats64, 760 .ndo_features_check = qede_features_check, 761 .ndo_bpf = qede_xdp, 762 .ndo_xdp_xmit = qede_xdp_transmit, 763 }; 764 765 /* ------------------------------------------------------------------------- 766 * START OF PROBE / REMOVE 767 * ------------------------------------------------------------------------- 768 */ 769 770 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev, 771 struct pci_dev *pdev, 772 struct qed_dev_eth_info *info, 773 u32 dp_module, u8 dp_level) 774 { 775 struct net_device *ndev; 776 struct qede_dev *edev; 777 778 ndev = alloc_etherdev_mqs(sizeof(*edev), 779 info->num_queues * info->num_tc, 780 info->num_queues); 781 if (!ndev) { 782 pr_err("etherdev allocation failed\n"); 783 return NULL; 784 } 785 786 edev = netdev_priv(ndev); 787 edev->ndev = ndev; 788 edev->cdev = cdev; 789 edev->pdev = pdev; 790 edev->dp_module = dp_module; 791 edev->dp_level = dp_level; 792 edev->ops = qed_ops; 793 794 if (is_kdump_kernel()) { 795 edev->q_num_rx_buffers = NUM_RX_BDS_KDUMP_MIN; 796 edev->q_num_tx_buffers = NUM_TX_BDS_KDUMP_MIN; 797 } else { 798 edev->q_num_rx_buffers = NUM_RX_BDS_DEF; 799 edev->q_num_tx_buffers = NUM_TX_BDS_DEF; 800 } 801 802 DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n", 803 info->num_queues, info->num_queues); 804 805 SET_NETDEV_DEV(ndev, &pdev->dev); 806 807 memset(&edev->stats, 0, sizeof(edev->stats)); 808 memcpy(&edev->dev_info, info, sizeof(*info)); 809 810 /* As ethtool doesn't have the ability to show WoL behavior as 811 * 'default', if device supports it declare it's enabled. 812 */ 813 if (edev->dev_info.common.wol_support) 814 edev->wol_enabled = true; 815 816 INIT_LIST_HEAD(&edev->vlan_list); 817 818 return edev; 819 } 820 821 static void qede_init_ndev(struct qede_dev *edev) 822 { 823 struct net_device *ndev = edev->ndev; 824 struct pci_dev *pdev = edev->pdev; 825 bool udp_tunnel_enable = false; 826 netdev_features_t hw_features; 827 828 pci_set_drvdata(pdev, ndev); 829 830 ndev->mem_start = edev->dev_info.common.pci_mem_start; 831 ndev->base_addr = ndev->mem_start; 832 ndev->mem_end = edev->dev_info.common.pci_mem_end; 833 ndev->irq = edev->dev_info.common.pci_irq; 834 835 ndev->watchdog_timeo = TX_TIMEOUT; 836 837 if (IS_VF(edev)) { 838 if (edev->dev_info.xdp_supported) 839 ndev->netdev_ops = &qede_netdev_vf_xdp_ops; 840 else 841 ndev->netdev_ops = &qede_netdev_vf_ops; 842 } else { 843 ndev->netdev_ops = &qede_netdev_ops; 844 } 845 846 qede_set_ethtool_ops(ndev); 847 848 ndev->priv_flags |= IFF_UNICAST_FLT; 849 850 /* user-changeble features */ 851 hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG | 852 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 853 NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_TC; 854 855 if (edev->dev_info.common.b_arfs_capable) 856 hw_features |= NETIF_F_NTUPLE; 857 858 if (edev->dev_info.common.vxlan_enable || 859 edev->dev_info.common.geneve_enable) 860 udp_tunnel_enable = true; 861 862 if (udp_tunnel_enable || edev->dev_info.common.gre_enable) { 863 hw_features |= NETIF_F_TSO_ECN; 864 ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 865 NETIF_F_SG | NETIF_F_TSO | 866 NETIF_F_TSO_ECN | NETIF_F_TSO6 | 867 NETIF_F_RXCSUM; 868 } 869 870 if (udp_tunnel_enable) { 871 hw_features |= (NETIF_F_GSO_UDP_TUNNEL | 872 NETIF_F_GSO_UDP_TUNNEL_CSUM); 873 ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL | 874 NETIF_F_GSO_UDP_TUNNEL_CSUM); 875 876 qede_set_udp_tunnels(edev); 877 } 878 879 if (edev->dev_info.common.gre_enable) { 880 hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM); 881 ndev->hw_enc_features |= (NETIF_F_GSO_GRE | 882 NETIF_F_GSO_GRE_CSUM); 883 } 884 885 ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM | 886 NETIF_F_HIGHDMA; 887 ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM | 888 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA | 889 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX; 890 891 ndev->hw_features = hw_features; 892 893 ndev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 894 NETDEV_XDP_ACT_NDO_XMIT; 895 896 /* MTU range: 46 - 9600 */ 897 ndev->min_mtu = ETH_ZLEN - ETH_HLEN; 898 ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE; 899 900 /* Set network device HW mac */ 901 eth_hw_addr_set(edev->ndev, edev->dev_info.common.hw_mac); 902 903 ndev->mtu = edev->dev_info.common.mtu; 904 } 905 906 /* This function converts from 32b param to two params of level and module 907 * Input 32b decoding: 908 * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the 909 * 'happy' flow, e.g. memory allocation failed. 910 * b30 - enable all INFO prints. INFO prints are for major steps in the flow 911 * and provide important parameters. 912 * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that 913 * module. VERBOSE prints are for tracking the specific flow in low level. 914 * 915 * Notice that the level should be that of the lowest required logs. 916 */ 917 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level) 918 { 919 *p_dp_level = QED_LEVEL_NOTICE; 920 *p_dp_module = 0; 921 922 if (debug & QED_LOG_VERBOSE_MASK) { 923 *p_dp_level = QED_LEVEL_VERBOSE; 924 *p_dp_module = (debug & 0x3FFFFFFF); 925 } else if (debug & QED_LOG_INFO_MASK) { 926 *p_dp_level = QED_LEVEL_INFO; 927 } else if (debug & QED_LOG_NOTICE_MASK) { 928 *p_dp_level = QED_LEVEL_NOTICE; 929 } 930 } 931 932 static void qede_free_fp_array(struct qede_dev *edev) 933 { 934 if (edev->fp_array) { 935 struct qede_fastpath *fp; 936 int i; 937 938 for_each_queue(i) { 939 fp = &edev->fp_array[i]; 940 941 kfree(fp->sb_info); 942 /* Handle mem alloc failure case where qede_init_fp 943 * didn't register xdp_rxq_info yet. 944 * Implicit only (fp->type & QEDE_FASTPATH_RX) 945 */ 946 if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq)) 947 xdp_rxq_info_unreg(&fp->rxq->xdp_rxq); 948 kfree(fp->rxq); 949 kfree(fp->xdp_tx); 950 kfree(fp->txq); 951 } 952 kfree(edev->fp_array); 953 } 954 955 edev->num_queues = 0; 956 edev->fp_num_tx = 0; 957 edev->fp_num_rx = 0; 958 } 959 960 static int qede_alloc_fp_array(struct qede_dev *edev) 961 { 962 u8 fp_combined, fp_rx = edev->fp_num_rx; 963 struct qede_fastpath *fp; 964 int i; 965 966 edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev), 967 sizeof(*edev->fp_array), GFP_KERNEL); 968 if (!edev->fp_array) { 969 DP_NOTICE(edev, "fp array allocation failed\n"); 970 goto err; 971 } 972 973 if (!edev->coal_entry) { 974 edev->coal_entry = kcalloc(QEDE_MAX_RSS_CNT(edev), 975 sizeof(*edev->coal_entry), 976 GFP_KERNEL); 977 if (!edev->coal_entry) { 978 DP_ERR(edev, "coalesce entry allocation failed\n"); 979 goto err; 980 } 981 } 982 983 fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx; 984 985 /* Allocate the FP elements for Rx queues followed by combined and then 986 * the Tx. This ordering should be maintained so that the respective 987 * queues (Rx or Tx) will be together in the fastpath array and the 988 * associated ids will be sequential. 989 */ 990 for_each_queue(i) { 991 fp = &edev->fp_array[i]; 992 993 fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL); 994 if (!fp->sb_info) { 995 DP_NOTICE(edev, "sb info struct allocation failed\n"); 996 goto err; 997 } 998 999 if (fp_rx) { 1000 fp->type = QEDE_FASTPATH_RX; 1001 fp_rx--; 1002 } else if (fp_combined) { 1003 fp->type = QEDE_FASTPATH_COMBINED; 1004 fp_combined--; 1005 } else { 1006 fp->type = QEDE_FASTPATH_TX; 1007 } 1008 1009 if (fp->type & QEDE_FASTPATH_TX) { 1010 fp->txq = kcalloc(edev->dev_info.num_tc, 1011 sizeof(*fp->txq), GFP_KERNEL); 1012 if (!fp->txq) 1013 goto err; 1014 } 1015 1016 if (fp->type & QEDE_FASTPATH_RX) { 1017 fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL); 1018 if (!fp->rxq) 1019 goto err; 1020 1021 if (edev->xdp_prog) { 1022 fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx), 1023 GFP_KERNEL); 1024 if (!fp->xdp_tx) 1025 goto err; 1026 fp->type |= QEDE_FASTPATH_XDP; 1027 } 1028 } 1029 } 1030 1031 return 0; 1032 err: 1033 qede_free_fp_array(edev); 1034 return -ENOMEM; 1035 } 1036 1037 /* The qede lock is used to protect driver state change and driver flows that 1038 * are not reentrant. 1039 */ 1040 void __qede_lock(struct qede_dev *edev) 1041 { 1042 mutex_lock(&edev->qede_lock); 1043 } 1044 1045 void __qede_unlock(struct qede_dev *edev) 1046 { 1047 mutex_unlock(&edev->qede_lock); 1048 } 1049 1050 /* This version of the lock should be used when acquiring the RTNL lock is also 1051 * needed in addition to the internal qede lock. 1052 */ 1053 static void qede_lock(struct qede_dev *edev) 1054 { 1055 rtnl_lock(); 1056 __qede_lock(edev); 1057 } 1058 1059 static void qede_unlock(struct qede_dev *edev) 1060 { 1061 __qede_unlock(edev); 1062 rtnl_unlock(); 1063 } 1064 1065 static void qede_periodic_task(struct work_struct *work) 1066 { 1067 struct qede_dev *edev = container_of(work, struct qede_dev, 1068 periodic_task.work); 1069 1070 qede_fill_by_demand_stats(edev); 1071 schedule_delayed_work(&edev->periodic_task, edev->stats_coal_ticks); 1072 } 1073 1074 static void qede_init_periodic_task(struct qede_dev *edev) 1075 { 1076 INIT_DELAYED_WORK(&edev->periodic_task, qede_periodic_task); 1077 spin_lock_init(&edev->stats_lock); 1078 edev->stats_coal_usecs = USEC_PER_SEC; 1079 edev->stats_coal_ticks = usecs_to_jiffies(USEC_PER_SEC); 1080 } 1081 1082 static void qede_sp_task(struct work_struct *work) 1083 { 1084 struct qede_dev *edev = container_of(work, struct qede_dev, 1085 sp_task.work); 1086 1087 /* Disable execution of this deferred work once 1088 * qede removal is in progress, this stop any future 1089 * scheduling of sp_task. 1090 */ 1091 if (test_bit(QEDE_SP_DISABLE, &edev->sp_flags)) 1092 return; 1093 1094 /* The locking scheme depends on the specific flag: 1095 * In case of QEDE_SP_RECOVERY, acquiring the RTNL lock is required to 1096 * ensure that ongoing flows are ended and new ones are not started. 1097 * In other cases - only the internal qede lock should be acquired. 1098 */ 1099 1100 if (test_and_clear_bit(QEDE_SP_RECOVERY, &edev->sp_flags)) { 1101 cancel_delayed_work_sync(&edev->periodic_task); 1102 #ifdef CONFIG_QED_SRIOV 1103 /* SRIOV must be disabled outside the lock to avoid a deadlock. 1104 * The recovery of the active VFs is currently not supported. 1105 */ 1106 if (pci_num_vf(edev->pdev)) 1107 qede_sriov_configure(edev->pdev, 0); 1108 #endif 1109 qede_lock(edev); 1110 qede_recovery_handler(edev); 1111 qede_unlock(edev); 1112 } 1113 1114 __qede_lock(edev); 1115 1116 if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags)) 1117 if (edev->state == QEDE_STATE_OPEN) 1118 qede_config_rx_mode(edev->ndev); 1119 1120 #ifdef CONFIG_RFS_ACCEL 1121 if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) { 1122 if (edev->state == QEDE_STATE_OPEN) 1123 qede_process_arfs_filters(edev, false); 1124 } 1125 #endif 1126 if (test_and_clear_bit(QEDE_SP_HW_ERR, &edev->sp_flags)) 1127 qede_generic_hw_err_handler(edev); 1128 __qede_unlock(edev); 1129 1130 if (test_and_clear_bit(QEDE_SP_AER, &edev->sp_flags)) { 1131 #ifdef CONFIG_QED_SRIOV 1132 /* SRIOV must be disabled outside the lock to avoid a deadlock. 1133 * The recovery of the active VFs is currently not supported. 1134 */ 1135 if (pci_num_vf(edev->pdev)) 1136 qede_sriov_configure(edev->pdev, 0); 1137 #endif 1138 edev->ops->common->recovery_process(edev->cdev); 1139 } 1140 } 1141 1142 static void qede_update_pf_params(struct qed_dev *cdev) 1143 { 1144 struct qed_pf_params pf_params; 1145 u16 num_cons; 1146 1147 /* 64 rx + 64 tx + 64 XDP */ 1148 memset(&pf_params, 0, sizeof(struct qed_pf_params)); 1149 1150 /* 1 rx + 1 xdp + max tx cos */ 1151 num_cons = QED_MIN_L2_CONS; 1152 1153 pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * num_cons; 1154 1155 /* Same for VFs - make sure they'll have sufficient connections 1156 * to support XDP Tx queues. 1157 */ 1158 pf_params.eth_pf_params.num_vf_cons = 48; 1159 1160 pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR; 1161 qed_ops->common->update_pf_params(cdev, &pf_params); 1162 } 1163 1164 #define QEDE_FW_VER_STR_SIZE 80 1165 1166 static void qede_log_probe(struct qede_dev *edev) 1167 { 1168 struct qed_dev_info *p_dev_info = &edev->dev_info.common; 1169 u8 buf[QEDE_FW_VER_STR_SIZE]; 1170 size_t left_size; 1171 1172 snprintf(buf, QEDE_FW_VER_STR_SIZE, 1173 "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d", 1174 p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev, 1175 p_dev_info->fw_eng, 1176 (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >> 1177 QED_MFW_VERSION_3_OFFSET, 1178 (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >> 1179 QED_MFW_VERSION_2_OFFSET, 1180 (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >> 1181 QED_MFW_VERSION_1_OFFSET, 1182 (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >> 1183 QED_MFW_VERSION_0_OFFSET); 1184 1185 left_size = QEDE_FW_VER_STR_SIZE - strlen(buf); 1186 if (p_dev_info->mbi_version && left_size) 1187 snprintf(buf + strlen(buf), left_size, 1188 " [MBI %d.%d.%d]", 1189 (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >> 1190 QED_MBI_VERSION_2_OFFSET, 1191 (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >> 1192 QED_MBI_VERSION_1_OFFSET, 1193 (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >> 1194 QED_MBI_VERSION_0_OFFSET); 1195 1196 pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number, 1197 PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn), 1198 buf, edev->ndev->name); 1199 } 1200 1201 enum qede_probe_mode { 1202 QEDE_PROBE_NORMAL, 1203 QEDE_PROBE_RECOVERY, 1204 }; 1205 1206 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level, 1207 bool is_vf, enum qede_probe_mode mode) 1208 { 1209 struct qed_probe_params probe_params; 1210 struct qed_slowpath_params sp_params; 1211 struct qed_dev_eth_info dev_info; 1212 struct qede_dev *edev; 1213 struct qed_dev *cdev; 1214 int rc; 1215 1216 if (unlikely(dp_level & QED_LEVEL_INFO)) 1217 pr_notice("Starting qede probe\n"); 1218 1219 memset(&probe_params, 0, sizeof(probe_params)); 1220 probe_params.protocol = QED_PROTOCOL_ETH; 1221 probe_params.dp_module = dp_module; 1222 probe_params.dp_level = dp_level; 1223 probe_params.is_vf = is_vf; 1224 probe_params.recov_in_prog = (mode == QEDE_PROBE_RECOVERY); 1225 cdev = qed_ops->common->probe(pdev, &probe_params); 1226 if (!cdev) { 1227 rc = -ENODEV; 1228 goto err0; 1229 } 1230 1231 qede_update_pf_params(cdev); 1232 1233 /* Start the Slowpath-process */ 1234 memset(&sp_params, 0, sizeof(sp_params)); 1235 sp_params.int_mode = QED_INT_MODE_MSIX; 1236 strscpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE); 1237 rc = qed_ops->common->slowpath_start(cdev, &sp_params); 1238 if (rc) { 1239 pr_notice("Cannot start slowpath\n"); 1240 goto err1; 1241 } 1242 1243 /* Learn information crucial for qede to progress */ 1244 rc = qed_ops->fill_dev_info(cdev, &dev_info); 1245 if (rc) 1246 goto err2; 1247 1248 if (mode != QEDE_PROBE_RECOVERY) { 1249 edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module, 1250 dp_level); 1251 if (!edev) { 1252 rc = -ENOMEM; 1253 goto err2; 1254 } 1255 1256 edev->devlink = qed_ops->common->devlink_register(cdev); 1257 if (IS_ERR(edev->devlink)) { 1258 DP_NOTICE(edev, "Cannot register devlink\n"); 1259 rc = PTR_ERR(edev->devlink); 1260 edev->devlink = NULL; 1261 goto err3; 1262 } 1263 } else { 1264 struct net_device *ndev = pci_get_drvdata(pdev); 1265 struct qed_devlink *qdl; 1266 1267 edev = netdev_priv(ndev); 1268 qdl = devlink_priv(edev->devlink); 1269 qdl->cdev = cdev; 1270 edev->cdev = cdev; 1271 memset(&edev->stats, 0, sizeof(edev->stats)); 1272 memcpy(&edev->dev_info, &dev_info, sizeof(dev_info)); 1273 } 1274 1275 if (is_vf) 1276 set_bit(QEDE_FLAGS_IS_VF, &edev->flags); 1277 1278 qede_init_ndev(edev); 1279 1280 rc = qede_rdma_dev_add(edev, (mode == QEDE_PROBE_RECOVERY)); 1281 if (rc) 1282 goto err3; 1283 1284 if (mode != QEDE_PROBE_RECOVERY) { 1285 /* Prepare the lock prior to the registration of the netdev, 1286 * as once it's registered we might reach flows requiring it 1287 * [it's even possible to reach a flow needing it directly 1288 * from there, although it's unlikely]. 1289 */ 1290 INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task); 1291 mutex_init(&edev->qede_lock); 1292 qede_init_periodic_task(edev); 1293 1294 rc = register_netdev(edev->ndev); 1295 if (rc) { 1296 DP_NOTICE(edev, "Cannot register net-device\n"); 1297 goto err4; 1298 } 1299 } 1300 1301 edev->ops->common->set_name(cdev, edev->ndev->name); 1302 1303 /* PTP not supported on VFs */ 1304 if (!is_vf) 1305 qede_ptp_enable(edev); 1306 1307 edev->ops->register_ops(cdev, &qede_ll_ops, edev); 1308 1309 #ifdef CONFIG_DCB 1310 if (!IS_VF(edev)) 1311 qede_set_dcbnl_ops(edev->ndev); 1312 #endif 1313 1314 edev->rx_copybreak = QEDE_RX_HDR_SIZE; 1315 1316 qede_log_probe(edev); 1317 1318 /* retain user config (for example - after recovery) */ 1319 if (edev->stats_coal_usecs) 1320 schedule_delayed_work(&edev->periodic_task, 0); 1321 1322 return 0; 1323 1324 err4: 1325 qede_rdma_dev_remove(edev, (mode == QEDE_PROBE_RECOVERY)); 1326 err3: 1327 if (mode != QEDE_PROBE_RECOVERY) 1328 free_netdev(edev->ndev); 1329 else 1330 edev->cdev = NULL; 1331 err2: 1332 qed_ops->common->slowpath_stop(cdev); 1333 err1: 1334 qed_ops->common->remove(cdev); 1335 err0: 1336 return rc; 1337 } 1338 1339 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id) 1340 { 1341 bool is_vf = false; 1342 u32 dp_module = 0; 1343 u8 dp_level = 0; 1344 1345 switch ((enum qede_pci_private)id->driver_data) { 1346 case QEDE_PRIVATE_VF: 1347 if (debug & QED_LOG_VERBOSE_MASK) 1348 dev_err(&pdev->dev, "Probing a VF\n"); 1349 is_vf = true; 1350 break; 1351 default: 1352 if (debug & QED_LOG_VERBOSE_MASK) 1353 dev_err(&pdev->dev, "Probing a PF\n"); 1354 } 1355 1356 qede_config_debug(debug, &dp_module, &dp_level); 1357 1358 return __qede_probe(pdev, dp_module, dp_level, is_vf, 1359 QEDE_PROBE_NORMAL); 1360 } 1361 1362 enum qede_remove_mode { 1363 QEDE_REMOVE_NORMAL, 1364 QEDE_REMOVE_RECOVERY, 1365 }; 1366 1367 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode) 1368 { 1369 struct net_device *ndev = pci_get_drvdata(pdev); 1370 struct qede_dev *edev; 1371 struct qed_dev *cdev; 1372 1373 if (!ndev) { 1374 dev_info(&pdev->dev, "Device has already been removed\n"); 1375 return; 1376 } 1377 1378 edev = netdev_priv(ndev); 1379 cdev = edev->cdev; 1380 1381 DP_INFO(edev, "Starting qede_remove\n"); 1382 1383 qede_rdma_dev_remove(edev, (mode == QEDE_REMOVE_RECOVERY)); 1384 1385 if (mode != QEDE_REMOVE_RECOVERY) { 1386 set_bit(QEDE_SP_DISABLE, &edev->sp_flags); 1387 unregister_netdev(ndev); 1388 1389 cancel_delayed_work_sync(&edev->sp_task); 1390 cancel_delayed_work_sync(&edev->periodic_task); 1391 1392 edev->ops->common->set_power_state(cdev, PCI_D0); 1393 1394 pci_set_drvdata(pdev, NULL); 1395 } 1396 1397 qede_ptp_disable(edev); 1398 1399 /* Use global ops since we've freed edev */ 1400 qed_ops->common->slowpath_stop(cdev); 1401 if (system_state == SYSTEM_POWER_OFF) 1402 return; 1403 1404 if (mode != QEDE_REMOVE_RECOVERY && edev->devlink) { 1405 qed_ops->common->devlink_unregister(edev->devlink); 1406 edev->devlink = NULL; 1407 } 1408 qed_ops->common->remove(cdev); 1409 edev->cdev = NULL; 1410 1411 /* Since this can happen out-of-sync with other flows, 1412 * don't release the netdevice until after slowpath stop 1413 * has been called to guarantee various other contexts 1414 * [e.g., QED register callbacks] won't break anything when 1415 * accessing the netdevice. 1416 */ 1417 if (mode != QEDE_REMOVE_RECOVERY) { 1418 kfree(edev->coal_entry); 1419 free_netdev(ndev); 1420 } 1421 1422 dev_info(&pdev->dev, "Ending qede_remove successfully\n"); 1423 } 1424 1425 static void qede_remove(struct pci_dev *pdev) 1426 { 1427 __qede_remove(pdev, QEDE_REMOVE_NORMAL); 1428 } 1429 1430 static void qede_shutdown(struct pci_dev *pdev) 1431 { 1432 __qede_remove(pdev, QEDE_REMOVE_NORMAL); 1433 } 1434 1435 /* ------------------------------------------------------------------------- 1436 * START OF LOAD / UNLOAD 1437 * ------------------------------------------------------------------------- 1438 */ 1439 1440 static int qede_set_num_queues(struct qede_dev *edev) 1441 { 1442 int rc; 1443 u16 rss_num; 1444 1445 /* Setup queues according to possible resources*/ 1446 if (edev->req_queues) 1447 rss_num = edev->req_queues; 1448 else 1449 rss_num = netif_get_num_default_rss_queues() * 1450 edev->dev_info.common.num_hwfns; 1451 1452 rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num); 1453 1454 rc = edev->ops->common->set_fp_int(edev->cdev, rss_num); 1455 if (rc > 0) { 1456 /* Managed to request interrupts for our queues */ 1457 edev->num_queues = rc; 1458 DP_INFO(edev, "Managed %d [of %d] RSS queues\n", 1459 QEDE_QUEUE_CNT(edev), rss_num); 1460 rc = 0; 1461 } 1462 1463 edev->fp_num_tx = edev->req_num_tx; 1464 edev->fp_num_rx = edev->req_num_rx; 1465 1466 return rc; 1467 } 1468 1469 static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info, 1470 u16 sb_id) 1471 { 1472 if (sb_info->sb_virt) { 1473 edev->ops->common->sb_release(edev->cdev, sb_info, sb_id, 1474 QED_SB_TYPE_L2_QUEUE); 1475 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt), 1476 (void *)sb_info->sb_virt, sb_info->sb_phys); 1477 memset(sb_info, 0, sizeof(*sb_info)); 1478 } 1479 } 1480 1481 /* This function allocates fast-path status block memory */ 1482 static int qede_alloc_mem_sb(struct qede_dev *edev, 1483 struct qed_sb_info *sb_info, u16 sb_id) 1484 { 1485 struct status_block *sb_virt; 1486 dma_addr_t sb_phys; 1487 int rc; 1488 1489 sb_virt = dma_alloc_coherent(&edev->pdev->dev, 1490 sizeof(*sb_virt), &sb_phys, GFP_KERNEL); 1491 if (!sb_virt) { 1492 DP_ERR(edev, "Status block allocation failed\n"); 1493 return -ENOMEM; 1494 } 1495 1496 rc = edev->ops->common->sb_init(edev->cdev, sb_info, 1497 sb_virt, sb_phys, sb_id, 1498 QED_SB_TYPE_L2_QUEUE); 1499 if (rc) { 1500 DP_ERR(edev, "Status block initialization failed\n"); 1501 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt), 1502 sb_virt, sb_phys); 1503 return rc; 1504 } 1505 1506 return 0; 1507 } 1508 1509 static void qede_free_rx_buffers(struct qede_dev *edev, 1510 struct qede_rx_queue *rxq) 1511 { 1512 u16 i; 1513 1514 for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) { 1515 struct sw_rx_data *rx_buf; 1516 struct page *data; 1517 1518 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX]; 1519 data = rx_buf->data; 1520 1521 dma_unmap_page(&edev->pdev->dev, 1522 rx_buf->mapping, PAGE_SIZE, rxq->data_direction); 1523 1524 rx_buf->data = NULL; 1525 __free_page(data); 1526 } 1527 } 1528 1529 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq) 1530 { 1531 /* Free rx buffers */ 1532 qede_free_rx_buffers(edev, rxq); 1533 1534 /* Free the parallel SW ring */ 1535 kfree(rxq->sw_rx_ring); 1536 1537 /* Free the real RQ ring used by FW */ 1538 edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring); 1539 edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring); 1540 } 1541 1542 static void qede_set_tpa_param(struct qede_rx_queue *rxq) 1543 { 1544 int i; 1545 1546 for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) { 1547 struct qede_agg_info *tpa_info = &rxq->tpa_info[i]; 1548 1549 tpa_info->state = QEDE_AGG_STATE_NONE; 1550 } 1551 } 1552 1553 /* This function allocates all memory needed per Rx queue */ 1554 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq) 1555 { 1556 struct qed_chain_init_params params = { 1557 .cnt_type = QED_CHAIN_CNT_TYPE_U16, 1558 .num_elems = RX_RING_SIZE, 1559 }; 1560 struct qed_dev *cdev = edev->cdev; 1561 int i, rc, size; 1562 1563 rxq->num_rx_buffers = edev->q_num_rx_buffers; 1564 1565 rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu; 1566 1567 rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD; 1568 size = rxq->rx_headroom + 1569 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1570 1571 /* Make sure that the headroom and payload fit in a single page */ 1572 if (rxq->rx_buf_size + size > PAGE_SIZE) 1573 rxq->rx_buf_size = PAGE_SIZE - size; 1574 1575 /* Segment size to split a page in multiple equal parts, 1576 * unless XDP is used in which case we'd use the entire page. 1577 */ 1578 if (!edev->xdp_prog) { 1579 size = size + rxq->rx_buf_size; 1580 rxq->rx_buf_seg_size = roundup_pow_of_two(size); 1581 } else { 1582 rxq->rx_buf_seg_size = PAGE_SIZE; 1583 edev->ndev->features &= ~NETIF_F_GRO_HW; 1584 } 1585 1586 /* Allocate the parallel driver ring for Rx buffers */ 1587 size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE; 1588 rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL); 1589 if (!rxq->sw_rx_ring) { 1590 DP_ERR(edev, "Rx buffers ring allocation failed\n"); 1591 rc = -ENOMEM; 1592 goto err; 1593 } 1594 1595 /* Allocate FW Rx ring */ 1596 params.mode = QED_CHAIN_MODE_NEXT_PTR; 1597 params.intended_use = QED_CHAIN_USE_TO_CONSUME_PRODUCE; 1598 params.elem_size = sizeof(struct eth_rx_bd); 1599 1600 rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_bd_ring, ¶ms); 1601 if (rc) 1602 goto err; 1603 1604 /* Allocate FW completion ring */ 1605 params.mode = QED_CHAIN_MODE_PBL; 1606 params.intended_use = QED_CHAIN_USE_TO_CONSUME; 1607 params.elem_size = sizeof(union eth_rx_cqe); 1608 1609 rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_comp_ring, ¶ms); 1610 if (rc) 1611 goto err; 1612 1613 /* Allocate buffers for the Rx ring */ 1614 rxq->filled_buffers = 0; 1615 for (i = 0; i < rxq->num_rx_buffers; i++) { 1616 rc = qede_alloc_rx_buffer(rxq, false); 1617 if (rc) { 1618 DP_ERR(edev, 1619 "Rx buffers allocation failed at index %d\n", i); 1620 goto err; 1621 } 1622 } 1623 1624 edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW); 1625 if (!edev->gro_disable) 1626 qede_set_tpa_param(rxq); 1627 err: 1628 return rc; 1629 } 1630 1631 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq) 1632 { 1633 /* Free the parallel SW ring */ 1634 if (txq->is_xdp) 1635 kfree(txq->sw_tx_ring.xdp); 1636 else 1637 kfree(txq->sw_tx_ring.skbs); 1638 1639 /* Free the real RQ ring used by FW */ 1640 edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl); 1641 } 1642 1643 /* This function allocates all memory needed per Tx queue */ 1644 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq) 1645 { 1646 struct qed_chain_init_params params = { 1647 .mode = QED_CHAIN_MODE_PBL, 1648 .intended_use = QED_CHAIN_USE_TO_CONSUME_PRODUCE, 1649 .cnt_type = QED_CHAIN_CNT_TYPE_U16, 1650 .num_elems = edev->q_num_tx_buffers, 1651 .elem_size = sizeof(union eth_tx_bd_types), 1652 }; 1653 int size, rc; 1654 1655 txq->num_tx_buffers = edev->q_num_tx_buffers; 1656 1657 /* Allocate the parallel driver ring for Tx buffers */ 1658 if (txq->is_xdp) { 1659 size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers; 1660 txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL); 1661 if (!txq->sw_tx_ring.xdp) 1662 goto err; 1663 } else { 1664 size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers; 1665 txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL); 1666 if (!txq->sw_tx_ring.skbs) 1667 goto err; 1668 } 1669 1670 rc = edev->ops->common->chain_alloc(edev->cdev, &txq->tx_pbl, ¶ms); 1671 if (rc) 1672 goto err; 1673 1674 return 0; 1675 1676 err: 1677 qede_free_mem_txq(edev, txq); 1678 return -ENOMEM; 1679 } 1680 1681 /* This function frees all memory of a single fp */ 1682 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp) 1683 { 1684 qede_free_mem_sb(edev, fp->sb_info, fp->id); 1685 1686 if (fp->type & QEDE_FASTPATH_RX) 1687 qede_free_mem_rxq(edev, fp->rxq); 1688 1689 if (fp->type & QEDE_FASTPATH_XDP) 1690 qede_free_mem_txq(edev, fp->xdp_tx); 1691 1692 if (fp->type & QEDE_FASTPATH_TX) { 1693 int cos; 1694 1695 for_each_cos_in_txq(edev, cos) 1696 qede_free_mem_txq(edev, &fp->txq[cos]); 1697 } 1698 } 1699 1700 /* This function allocates all memory needed for a single fp (i.e. an entity 1701 * which contains status block, one rx queue and/or multiple per-TC tx queues. 1702 */ 1703 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp) 1704 { 1705 int rc = 0; 1706 1707 rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id); 1708 if (rc) 1709 goto out; 1710 1711 if (fp->type & QEDE_FASTPATH_RX) { 1712 rc = qede_alloc_mem_rxq(edev, fp->rxq); 1713 if (rc) 1714 goto out; 1715 } 1716 1717 if (fp->type & QEDE_FASTPATH_XDP) { 1718 rc = qede_alloc_mem_txq(edev, fp->xdp_tx); 1719 if (rc) 1720 goto out; 1721 } 1722 1723 if (fp->type & QEDE_FASTPATH_TX) { 1724 int cos; 1725 1726 for_each_cos_in_txq(edev, cos) { 1727 rc = qede_alloc_mem_txq(edev, &fp->txq[cos]); 1728 if (rc) 1729 goto out; 1730 } 1731 } 1732 1733 out: 1734 return rc; 1735 } 1736 1737 static void qede_free_mem_load(struct qede_dev *edev) 1738 { 1739 int i; 1740 1741 for_each_queue(i) { 1742 struct qede_fastpath *fp = &edev->fp_array[i]; 1743 1744 qede_free_mem_fp(edev, fp); 1745 } 1746 } 1747 1748 /* This function allocates all qede memory at NIC load. */ 1749 static int qede_alloc_mem_load(struct qede_dev *edev) 1750 { 1751 int rc = 0, queue_id; 1752 1753 for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) { 1754 struct qede_fastpath *fp = &edev->fp_array[queue_id]; 1755 1756 rc = qede_alloc_mem_fp(edev, fp); 1757 if (rc) { 1758 DP_ERR(edev, 1759 "Failed to allocate memory for fastpath - rss id = %d\n", 1760 queue_id); 1761 qede_free_mem_load(edev); 1762 return rc; 1763 } 1764 } 1765 1766 return 0; 1767 } 1768 1769 static void qede_empty_tx_queue(struct qede_dev *edev, 1770 struct qede_tx_queue *txq) 1771 { 1772 unsigned int pkts_compl = 0, bytes_compl = 0; 1773 struct netdev_queue *netdev_txq; 1774 int rc, len = 0; 1775 1776 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id); 1777 1778 while (qed_chain_get_cons_idx(&txq->tx_pbl) != 1779 qed_chain_get_prod_idx(&txq->tx_pbl)) { 1780 DP_VERBOSE(edev, NETIF_MSG_IFDOWN, 1781 "Freeing a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n", 1782 txq->index, qed_chain_get_cons_idx(&txq->tx_pbl), 1783 qed_chain_get_prod_idx(&txq->tx_pbl)); 1784 1785 rc = qede_free_tx_pkt(edev, txq, &len); 1786 if (rc) { 1787 DP_NOTICE(edev, 1788 "Failed to free a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n", 1789 txq->index, 1790 qed_chain_get_cons_idx(&txq->tx_pbl), 1791 qed_chain_get_prod_idx(&txq->tx_pbl)); 1792 break; 1793 } 1794 1795 bytes_compl += len; 1796 pkts_compl++; 1797 txq->sw_tx_cons++; 1798 } 1799 1800 netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl); 1801 } 1802 1803 static void qede_empty_tx_queues(struct qede_dev *edev) 1804 { 1805 int i; 1806 1807 for_each_queue(i) 1808 if (edev->fp_array[i].type & QEDE_FASTPATH_TX) { 1809 int cos; 1810 1811 for_each_cos_in_txq(edev, cos) { 1812 struct qede_fastpath *fp; 1813 1814 fp = &edev->fp_array[i]; 1815 qede_empty_tx_queue(edev, 1816 &fp->txq[cos]); 1817 } 1818 } 1819 } 1820 1821 /* This function inits fp content and resets the SB, RXQ and TXQ structures */ 1822 static void qede_init_fp(struct qede_dev *edev) 1823 { 1824 int queue_id, rxq_index = 0, txq_index = 0; 1825 struct qede_fastpath *fp; 1826 bool init_xdp = false; 1827 1828 for_each_queue(queue_id) { 1829 fp = &edev->fp_array[queue_id]; 1830 1831 fp->edev = edev; 1832 fp->id = queue_id; 1833 1834 if (fp->type & QEDE_FASTPATH_XDP) { 1835 fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev, 1836 rxq_index); 1837 fp->xdp_tx->is_xdp = 1; 1838 1839 spin_lock_init(&fp->xdp_tx->xdp_tx_lock); 1840 init_xdp = true; 1841 } 1842 1843 if (fp->type & QEDE_FASTPATH_RX) { 1844 fp->rxq->rxq_id = rxq_index++; 1845 1846 /* Determine how to map buffers for this queue */ 1847 if (fp->type & QEDE_FASTPATH_XDP) 1848 fp->rxq->data_direction = DMA_BIDIRECTIONAL; 1849 else 1850 fp->rxq->data_direction = DMA_FROM_DEVICE; 1851 fp->rxq->dev = &edev->pdev->dev; 1852 1853 /* Driver have no error path from here */ 1854 WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev, 1855 fp->rxq->rxq_id, 0) < 0); 1856 1857 if (xdp_rxq_info_reg_mem_model(&fp->rxq->xdp_rxq, 1858 MEM_TYPE_PAGE_ORDER0, 1859 NULL)) { 1860 DP_NOTICE(edev, 1861 "Failed to register XDP memory model\n"); 1862 } 1863 } 1864 1865 if (fp->type & QEDE_FASTPATH_TX) { 1866 int cos; 1867 1868 for_each_cos_in_txq(edev, cos) { 1869 struct qede_tx_queue *txq = &fp->txq[cos]; 1870 u16 ndev_tx_id; 1871 1872 txq->cos = cos; 1873 txq->index = txq_index; 1874 ndev_tx_id = QEDE_TXQ_TO_NDEV_TXQ_ID(edev, txq); 1875 txq->ndev_txq_id = ndev_tx_id; 1876 1877 if (edev->dev_info.is_legacy) 1878 txq->is_legacy = true; 1879 txq->dev = &edev->pdev->dev; 1880 } 1881 1882 txq_index++; 1883 } 1884 1885 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d", 1886 edev->ndev->name, queue_id); 1887 } 1888 1889 if (init_xdp) { 1890 edev->total_xdp_queues = QEDE_RSS_COUNT(edev); 1891 DP_INFO(edev, "Total XDP queues: %u\n", edev->total_xdp_queues); 1892 } 1893 } 1894 1895 static int qede_set_real_num_queues(struct qede_dev *edev) 1896 { 1897 int rc = 0; 1898 1899 rc = netif_set_real_num_tx_queues(edev->ndev, 1900 QEDE_TSS_COUNT(edev) * 1901 edev->dev_info.num_tc); 1902 if (rc) { 1903 DP_NOTICE(edev, "Failed to set real number of Tx queues\n"); 1904 return rc; 1905 } 1906 1907 rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev)); 1908 if (rc) { 1909 DP_NOTICE(edev, "Failed to set real number of Rx queues\n"); 1910 return rc; 1911 } 1912 1913 return 0; 1914 } 1915 1916 static void qede_napi_disable_remove(struct qede_dev *edev) 1917 { 1918 int i; 1919 1920 for_each_queue(i) { 1921 napi_disable(&edev->fp_array[i].napi); 1922 1923 netif_napi_del(&edev->fp_array[i].napi); 1924 } 1925 } 1926 1927 static void qede_napi_add_enable(struct qede_dev *edev) 1928 { 1929 int i; 1930 1931 /* Add NAPI objects */ 1932 for_each_queue(i) { 1933 netif_napi_add(edev->ndev, &edev->fp_array[i].napi, qede_poll); 1934 napi_enable(&edev->fp_array[i].napi); 1935 } 1936 } 1937 1938 static void qede_sync_free_irqs(struct qede_dev *edev) 1939 { 1940 int i; 1941 1942 for (i = 0; i < edev->int_info.used_cnt; i++) { 1943 if (edev->int_info.msix_cnt) { 1944 free_irq(edev->int_info.msix[i].vector, 1945 &edev->fp_array[i]); 1946 } else { 1947 edev->ops->common->simd_handler_clean(edev->cdev, i); 1948 } 1949 } 1950 1951 edev->int_info.used_cnt = 0; 1952 edev->int_info.msix_cnt = 0; 1953 } 1954 1955 static int qede_req_msix_irqs(struct qede_dev *edev) 1956 { 1957 int i, rc; 1958 1959 /* Sanitize number of interrupts == number of prepared RSS queues */ 1960 if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) { 1961 DP_ERR(edev, 1962 "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n", 1963 QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt); 1964 return -EINVAL; 1965 } 1966 1967 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) { 1968 #ifdef CONFIG_RFS_ACCEL 1969 struct qede_fastpath *fp = &edev->fp_array[i]; 1970 1971 if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) { 1972 rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap, 1973 edev->int_info.msix[i].vector); 1974 if (rc) { 1975 DP_ERR(edev, "Failed to add CPU rmap\n"); 1976 qede_free_arfs(edev); 1977 } 1978 } 1979 #endif 1980 rc = request_irq(edev->int_info.msix[i].vector, 1981 qede_msix_fp_int, 0, edev->fp_array[i].name, 1982 &edev->fp_array[i]); 1983 if (rc) { 1984 DP_ERR(edev, "Request fp %d irq failed\n", i); 1985 #ifdef CONFIG_RFS_ACCEL 1986 if (edev->ndev->rx_cpu_rmap) 1987 free_irq_cpu_rmap(edev->ndev->rx_cpu_rmap); 1988 1989 edev->ndev->rx_cpu_rmap = NULL; 1990 #endif 1991 qede_sync_free_irqs(edev); 1992 return rc; 1993 } 1994 DP_VERBOSE(edev, NETIF_MSG_INTR, 1995 "Requested fp irq for %s [entry %d]. Cookie is at %p\n", 1996 edev->fp_array[i].name, i, 1997 &edev->fp_array[i]); 1998 edev->int_info.used_cnt++; 1999 } 2000 2001 return 0; 2002 } 2003 2004 static void qede_simd_fp_handler(void *cookie) 2005 { 2006 struct qede_fastpath *fp = (struct qede_fastpath *)cookie; 2007 2008 napi_schedule_irqoff(&fp->napi); 2009 } 2010 2011 static int qede_setup_irqs(struct qede_dev *edev) 2012 { 2013 int i, rc = 0; 2014 2015 /* Learn Interrupt configuration */ 2016 rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info); 2017 if (rc) 2018 return rc; 2019 2020 if (edev->int_info.msix_cnt) { 2021 rc = qede_req_msix_irqs(edev); 2022 if (rc) 2023 return rc; 2024 edev->ndev->irq = edev->int_info.msix[0].vector; 2025 } else { 2026 const struct qed_common_ops *ops; 2027 2028 /* qed should learn receive the RSS ids and callbacks */ 2029 ops = edev->ops->common; 2030 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) 2031 ops->simd_handler_config(edev->cdev, 2032 &edev->fp_array[i], i, 2033 qede_simd_fp_handler); 2034 edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev); 2035 } 2036 return 0; 2037 } 2038 2039 static int qede_drain_txq(struct qede_dev *edev, 2040 struct qede_tx_queue *txq, bool allow_drain) 2041 { 2042 int rc, cnt = 1000; 2043 2044 while (txq->sw_tx_cons != txq->sw_tx_prod) { 2045 if (!cnt) { 2046 if (allow_drain) { 2047 DP_NOTICE(edev, 2048 "Tx queue[%d] is stuck, requesting MCP to drain\n", 2049 txq->index); 2050 rc = edev->ops->common->drain(edev->cdev); 2051 if (rc) 2052 return rc; 2053 return qede_drain_txq(edev, txq, false); 2054 } 2055 DP_NOTICE(edev, 2056 "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n", 2057 txq->index, txq->sw_tx_prod, 2058 txq->sw_tx_cons); 2059 return -ENODEV; 2060 } 2061 cnt--; 2062 usleep_range(1000, 2000); 2063 barrier(); 2064 } 2065 2066 /* FW finished processing, wait for HW to transmit all tx packets */ 2067 usleep_range(1000, 2000); 2068 2069 return 0; 2070 } 2071 2072 static int qede_stop_txq(struct qede_dev *edev, 2073 struct qede_tx_queue *txq, int rss_id) 2074 { 2075 /* delete doorbell from doorbell recovery mechanism */ 2076 edev->ops->common->db_recovery_del(edev->cdev, txq->doorbell_addr, 2077 &txq->tx_db); 2078 2079 return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle); 2080 } 2081 2082 static int qede_stop_queues(struct qede_dev *edev) 2083 { 2084 struct qed_update_vport_params *vport_update_params; 2085 struct qed_dev *cdev = edev->cdev; 2086 struct qede_fastpath *fp; 2087 int rc, i; 2088 2089 /* Disable the vport */ 2090 vport_update_params = vzalloc(sizeof(*vport_update_params)); 2091 if (!vport_update_params) 2092 return -ENOMEM; 2093 2094 vport_update_params->vport_id = 0; 2095 vport_update_params->update_vport_active_flg = 1; 2096 vport_update_params->vport_active_flg = 0; 2097 vport_update_params->update_rss_flg = 0; 2098 2099 rc = edev->ops->vport_update(cdev, vport_update_params); 2100 vfree(vport_update_params); 2101 2102 if (rc) { 2103 DP_ERR(edev, "Failed to update vport\n"); 2104 return rc; 2105 } 2106 2107 /* Flush Tx queues. If needed, request drain from MCP */ 2108 for_each_queue(i) { 2109 fp = &edev->fp_array[i]; 2110 2111 if (fp->type & QEDE_FASTPATH_TX) { 2112 int cos; 2113 2114 for_each_cos_in_txq(edev, cos) { 2115 rc = qede_drain_txq(edev, &fp->txq[cos], true); 2116 if (rc) 2117 return rc; 2118 } 2119 } 2120 2121 if (fp->type & QEDE_FASTPATH_XDP) { 2122 rc = qede_drain_txq(edev, fp->xdp_tx, true); 2123 if (rc) 2124 return rc; 2125 } 2126 } 2127 2128 /* Stop all Queues in reverse order */ 2129 for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) { 2130 fp = &edev->fp_array[i]; 2131 2132 /* Stop the Tx Queue(s) */ 2133 if (fp->type & QEDE_FASTPATH_TX) { 2134 int cos; 2135 2136 for_each_cos_in_txq(edev, cos) { 2137 rc = qede_stop_txq(edev, &fp->txq[cos], i); 2138 if (rc) 2139 return rc; 2140 } 2141 } 2142 2143 /* Stop the Rx Queue */ 2144 if (fp->type & QEDE_FASTPATH_RX) { 2145 rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle); 2146 if (rc) { 2147 DP_ERR(edev, "Failed to stop RXQ #%d\n", i); 2148 return rc; 2149 } 2150 } 2151 2152 /* Stop the XDP forwarding queue */ 2153 if (fp->type & QEDE_FASTPATH_XDP) { 2154 rc = qede_stop_txq(edev, fp->xdp_tx, i); 2155 if (rc) 2156 return rc; 2157 2158 bpf_prog_put(fp->rxq->xdp_prog); 2159 } 2160 } 2161 2162 /* Stop the vport */ 2163 rc = edev->ops->vport_stop(cdev, 0); 2164 if (rc) 2165 DP_ERR(edev, "Failed to stop VPORT\n"); 2166 2167 return rc; 2168 } 2169 2170 static int qede_start_txq(struct qede_dev *edev, 2171 struct qede_fastpath *fp, 2172 struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx) 2173 { 2174 dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl); 2175 u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl); 2176 struct qed_queue_start_common_params params; 2177 struct qed_txq_start_ret_params ret_params; 2178 int rc; 2179 2180 memset(¶ms, 0, sizeof(params)); 2181 memset(&ret_params, 0, sizeof(ret_params)); 2182 2183 /* Let the XDP queue share the queue-zone with one of the regular txq. 2184 * We don't really care about its coalescing. 2185 */ 2186 if (txq->is_xdp) 2187 params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq); 2188 else 2189 params.queue_id = txq->index; 2190 2191 params.p_sb = fp->sb_info; 2192 params.sb_idx = sb_idx; 2193 params.tc = txq->cos; 2194 2195 rc = edev->ops->q_tx_start(edev->cdev, rss_id, ¶ms, phys_table, 2196 page_cnt, &ret_params); 2197 if (rc) { 2198 DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc); 2199 return rc; 2200 } 2201 2202 txq->doorbell_addr = ret_params.p_doorbell; 2203 txq->handle = ret_params.p_handle; 2204 2205 /* Determine the FW consumer address associated */ 2206 txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx]; 2207 2208 /* Prepare the doorbell parameters */ 2209 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM); 2210 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET); 2211 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL, 2212 DQ_XCM_ETH_TX_BD_PROD_CMD); 2213 txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD; 2214 2215 /* register doorbell with doorbell recovery mechanism */ 2216 rc = edev->ops->common->db_recovery_add(edev->cdev, txq->doorbell_addr, 2217 &txq->tx_db, DB_REC_WIDTH_32B, 2218 DB_REC_KERNEL); 2219 2220 return rc; 2221 } 2222 2223 static int qede_start_queues(struct qede_dev *edev, bool clear_stats) 2224 { 2225 int vlan_removal_en = 1; 2226 struct qed_dev *cdev = edev->cdev; 2227 struct qed_dev_info *qed_info = &edev->dev_info.common; 2228 struct qed_update_vport_params *vport_update_params; 2229 struct qed_queue_start_common_params q_params; 2230 struct qed_start_vport_params start = {0}; 2231 int rc, i; 2232 2233 if (!edev->num_queues) { 2234 DP_ERR(edev, 2235 "Cannot update V-VPORT as active as there are no Rx queues\n"); 2236 return -EINVAL; 2237 } 2238 2239 vport_update_params = vzalloc(sizeof(*vport_update_params)); 2240 if (!vport_update_params) 2241 return -ENOMEM; 2242 2243 start.handle_ptp_pkts = !!(edev->ptp); 2244 start.gro_enable = !edev->gro_disable; 2245 start.mtu = edev->ndev->mtu; 2246 start.vport_id = 0; 2247 start.drop_ttl0 = true; 2248 start.remove_inner_vlan = vlan_removal_en; 2249 start.clear_stats = clear_stats; 2250 2251 rc = edev->ops->vport_start(cdev, &start); 2252 2253 if (rc) { 2254 DP_ERR(edev, "Start V-PORT failed %d\n", rc); 2255 goto out; 2256 } 2257 2258 DP_VERBOSE(edev, NETIF_MSG_IFUP, 2259 "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n", 2260 start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en); 2261 2262 for_each_queue(i) { 2263 struct qede_fastpath *fp = &edev->fp_array[i]; 2264 dma_addr_t p_phys_table; 2265 u32 page_cnt; 2266 2267 if (fp->type & QEDE_FASTPATH_RX) { 2268 struct qed_rxq_start_ret_params ret_params; 2269 struct qede_rx_queue *rxq = fp->rxq; 2270 __le16 *val; 2271 2272 memset(&ret_params, 0, sizeof(ret_params)); 2273 memset(&q_params, 0, sizeof(q_params)); 2274 q_params.queue_id = rxq->rxq_id; 2275 q_params.vport_id = 0; 2276 q_params.p_sb = fp->sb_info; 2277 q_params.sb_idx = RX_PI; 2278 2279 p_phys_table = 2280 qed_chain_get_pbl_phys(&rxq->rx_comp_ring); 2281 page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring); 2282 2283 rc = edev->ops->q_rx_start(cdev, i, &q_params, 2284 rxq->rx_buf_size, 2285 rxq->rx_bd_ring.p_phys_addr, 2286 p_phys_table, 2287 page_cnt, &ret_params); 2288 if (rc) { 2289 DP_ERR(edev, "Start RXQ #%d failed %d\n", i, 2290 rc); 2291 goto out; 2292 } 2293 2294 /* Use the return parameters */ 2295 rxq->hw_rxq_prod_addr = ret_params.p_prod; 2296 rxq->handle = ret_params.p_handle; 2297 2298 val = &fp->sb_info->sb_virt->pi_array[RX_PI]; 2299 rxq->hw_cons_ptr = val; 2300 2301 qede_update_rx_prod(edev, rxq); 2302 } 2303 2304 if (fp->type & QEDE_FASTPATH_XDP) { 2305 rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI); 2306 if (rc) 2307 goto out; 2308 2309 bpf_prog_add(edev->xdp_prog, 1); 2310 fp->rxq->xdp_prog = edev->xdp_prog; 2311 } 2312 2313 if (fp->type & QEDE_FASTPATH_TX) { 2314 int cos; 2315 2316 for_each_cos_in_txq(edev, cos) { 2317 rc = qede_start_txq(edev, fp, &fp->txq[cos], i, 2318 TX_PI(cos)); 2319 if (rc) 2320 goto out; 2321 } 2322 } 2323 } 2324 2325 /* Prepare and send the vport enable */ 2326 vport_update_params->vport_id = start.vport_id; 2327 vport_update_params->update_vport_active_flg = 1; 2328 vport_update_params->vport_active_flg = 1; 2329 2330 if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) && 2331 qed_info->tx_switching) { 2332 vport_update_params->update_tx_switching_flg = 1; 2333 vport_update_params->tx_switching_flg = 1; 2334 } 2335 2336 qede_fill_rss_params(edev, &vport_update_params->rss_params, 2337 &vport_update_params->update_rss_flg); 2338 2339 rc = edev->ops->vport_update(cdev, vport_update_params); 2340 if (rc) 2341 DP_ERR(edev, "Update V-PORT failed %d\n", rc); 2342 2343 out: 2344 vfree(vport_update_params); 2345 return rc; 2346 } 2347 2348 enum qede_unload_mode { 2349 QEDE_UNLOAD_NORMAL, 2350 QEDE_UNLOAD_RECOVERY, 2351 }; 2352 2353 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode, 2354 bool is_locked) 2355 { 2356 struct qed_link_params link_params; 2357 int rc; 2358 2359 DP_INFO(edev, "Starting qede unload\n"); 2360 2361 if (!is_locked) 2362 __qede_lock(edev); 2363 2364 clear_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags); 2365 2366 if (mode != QEDE_UNLOAD_RECOVERY) 2367 edev->state = QEDE_STATE_CLOSED; 2368 2369 qede_rdma_dev_event_close(edev); 2370 2371 /* Close OS Tx */ 2372 netif_tx_disable(edev->ndev); 2373 netif_carrier_off(edev->ndev); 2374 2375 if (mode != QEDE_UNLOAD_RECOVERY) { 2376 /* Reset the link */ 2377 memset(&link_params, 0, sizeof(link_params)); 2378 link_params.link_up = false; 2379 edev->ops->common->set_link(edev->cdev, &link_params); 2380 2381 rc = qede_stop_queues(edev); 2382 if (rc) { 2383 #ifdef CONFIG_RFS_ACCEL 2384 if (edev->dev_info.common.b_arfs_capable) { 2385 qede_poll_for_freeing_arfs_filters(edev); 2386 if (edev->ndev->rx_cpu_rmap) 2387 free_irq_cpu_rmap(edev->ndev->rx_cpu_rmap); 2388 2389 edev->ndev->rx_cpu_rmap = NULL; 2390 } 2391 #endif 2392 qede_sync_free_irqs(edev); 2393 goto out; 2394 } 2395 2396 DP_INFO(edev, "Stopped Queues\n"); 2397 } 2398 2399 qede_vlan_mark_nonconfigured(edev); 2400 edev->ops->fastpath_stop(edev->cdev); 2401 2402 if (edev->dev_info.common.b_arfs_capable) { 2403 qede_poll_for_freeing_arfs_filters(edev); 2404 qede_free_arfs(edev); 2405 } 2406 2407 /* Release the interrupts */ 2408 qede_sync_free_irqs(edev); 2409 edev->ops->common->set_fp_int(edev->cdev, 0); 2410 2411 qede_napi_disable_remove(edev); 2412 2413 if (mode == QEDE_UNLOAD_RECOVERY) 2414 qede_empty_tx_queues(edev); 2415 2416 qede_free_mem_load(edev); 2417 qede_free_fp_array(edev); 2418 2419 out: 2420 if (!is_locked) 2421 __qede_unlock(edev); 2422 2423 if (mode != QEDE_UNLOAD_RECOVERY) 2424 DP_NOTICE(edev, "Link is down\n"); 2425 2426 edev->ptp_skip_txts = 0; 2427 2428 DP_INFO(edev, "Ending qede unload\n"); 2429 } 2430 2431 enum qede_load_mode { 2432 QEDE_LOAD_NORMAL, 2433 QEDE_LOAD_RELOAD, 2434 QEDE_LOAD_RECOVERY, 2435 }; 2436 2437 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode, 2438 bool is_locked) 2439 { 2440 struct qed_link_params link_params; 2441 struct ethtool_coalesce coal = {}; 2442 u8 num_tc; 2443 int rc, i; 2444 2445 DP_INFO(edev, "Starting qede load\n"); 2446 2447 if (!is_locked) 2448 __qede_lock(edev); 2449 2450 rc = qede_set_num_queues(edev); 2451 if (rc) 2452 goto out; 2453 2454 rc = qede_alloc_fp_array(edev); 2455 if (rc) 2456 goto out; 2457 2458 qede_init_fp(edev); 2459 2460 rc = qede_alloc_mem_load(edev); 2461 if (rc) 2462 goto err1; 2463 DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n", 2464 QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev)); 2465 2466 rc = qede_set_real_num_queues(edev); 2467 if (rc) 2468 goto err2; 2469 2470 if (qede_alloc_arfs(edev)) { 2471 edev->ndev->features &= ~NETIF_F_NTUPLE; 2472 edev->dev_info.common.b_arfs_capable = false; 2473 } 2474 2475 qede_napi_add_enable(edev); 2476 DP_INFO(edev, "Napi added and enabled\n"); 2477 2478 rc = qede_setup_irqs(edev); 2479 if (rc) 2480 goto err3; 2481 DP_INFO(edev, "Setup IRQs succeeded\n"); 2482 2483 rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD); 2484 if (rc) 2485 goto err4; 2486 DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n"); 2487 2488 num_tc = netdev_get_num_tc(edev->ndev); 2489 num_tc = num_tc ? num_tc : edev->dev_info.num_tc; 2490 qede_setup_tc(edev->ndev, num_tc); 2491 2492 /* Program un-configured VLANs */ 2493 qede_configure_vlan_filters(edev); 2494 2495 set_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags); 2496 2497 /* Ask for link-up using current configuration */ 2498 memset(&link_params, 0, sizeof(link_params)); 2499 link_params.link_up = true; 2500 edev->ops->common->set_link(edev->cdev, &link_params); 2501 2502 edev->state = QEDE_STATE_OPEN; 2503 2504 coal.rx_coalesce_usecs = QED_DEFAULT_RX_USECS; 2505 coal.tx_coalesce_usecs = QED_DEFAULT_TX_USECS; 2506 2507 for_each_queue(i) { 2508 if (edev->coal_entry[i].isvalid) { 2509 coal.rx_coalesce_usecs = edev->coal_entry[i].rxc; 2510 coal.tx_coalesce_usecs = edev->coal_entry[i].txc; 2511 } 2512 __qede_unlock(edev); 2513 qede_set_per_coalesce(edev->ndev, i, &coal); 2514 __qede_lock(edev); 2515 } 2516 DP_INFO(edev, "Ending successfully qede load\n"); 2517 2518 goto out; 2519 err4: 2520 qede_sync_free_irqs(edev); 2521 err3: 2522 qede_napi_disable_remove(edev); 2523 err2: 2524 qede_free_mem_load(edev); 2525 err1: 2526 edev->ops->common->set_fp_int(edev->cdev, 0); 2527 qede_free_fp_array(edev); 2528 edev->num_queues = 0; 2529 edev->fp_num_tx = 0; 2530 edev->fp_num_rx = 0; 2531 out: 2532 if (!is_locked) 2533 __qede_unlock(edev); 2534 2535 return rc; 2536 } 2537 2538 /* 'func' should be able to run between unload and reload assuming interface 2539 * is actually running, or afterwards in case it's currently DOWN. 2540 */ 2541 void qede_reload(struct qede_dev *edev, 2542 struct qede_reload_args *args, bool is_locked) 2543 { 2544 if (!is_locked) 2545 __qede_lock(edev); 2546 2547 /* Since qede_lock is held, internal state wouldn't change even 2548 * if netdev state would start transitioning. Check whether current 2549 * internal configuration indicates device is up, then reload. 2550 */ 2551 if (edev->state == QEDE_STATE_OPEN) { 2552 qede_unload(edev, QEDE_UNLOAD_NORMAL, true); 2553 if (args) 2554 args->func(edev, args); 2555 qede_load(edev, QEDE_LOAD_RELOAD, true); 2556 2557 /* Since no one is going to do it for us, re-configure */ 2558 qede_config_rx_mode(edev->ndev); 2559 } else if (args) { 2560 args->func(edev, args); 2561 } 2562 2563 if (!is_locked) 2564 __qede_unlock(edev); 2565 } 2566 2567 /* called with rtnl_lock */ 2568 static int qede_open(struct net_device *ndev) 2569 { 2570 struct qede_dev *edev = netdev_priv(ndev); 2571 int rc; 2572 2573 netif_carrier_off(ndev); 2574 2575 edev->ops->common->set_power_state(edev->cdev, PCI_D0); 2576 2577 rc = qede_load(edev, QEDE_LOAD_NORMAL, false); 2578 if (rc) 2579 return rc; 2580 2581 udp_tunnel_nic_reset_ntf(ndev); 2582 2583 edev->ops->common->update_drv_state(edev->cdev, true); 2584 2585 return 0; 2586 } 2587 2588 static int qede_close(struct net_device *ndev) 2589 { 2590 struct qede_dev *edev = netdev_priv(ndev); 2591 2592 qede_unload(edev, QEDE_UNLOAD_NORMAL, false); 2593 2594 if (edev->cdev) 2595 edev->ops->common->update_drv_state(edev->cdev, false); 2596 2597 return 0; 2598 } 2599 2600 static void qede_link_update(void *dev, struct qed_link_output *link) 2601 { 2602 struct qede_dev *edev = dev; 2603 2604 if (!test_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags)) { 2605 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not ready\n"); 2606 return; 2607 } 2608 2609 if (link->link_up) { 2610 if (!netif_carrier_ok(edev->ndev)) { 2611 DP_NOTICE(edev, "Link is up\n"); 2612 netif_tx_start_all_queues(edev->ndev); 2613 netif_carrier_on(edev->ndev); 2614 qede_rdma_dev_event_open(edev); 2615 } 2616 } else { 2617 if (netif_carrier_ok(edev->ndev)) { 2618 DP_NOTICE(edev, "Link is down\n"); 2619 netif_tx_disable(edev->ndev); 2620 netif_carrier_off(edev->ndev); 2621 qede_rdma_dev_event_close(edev); 2622 } 2623 } 2624 } 2625 2626 static void qede_schedule_recovery_handler(void *dev) 2627 { 2628 struct qede_dev *edev = dev; 2629 2630 if (edev->state == QEDE_STATE_RECOVERY) { 2631 DP_NOTICE(edev, 2632 "Avoid scheduling a recovery handling since already in recovery state\n"); 2633 return; 2634 } 2635 2636 set_bit(QEDE_SP_RECOVERY, &edev->sp_flags); 2637 schedule_delayed_work(&edev->sp_task, 0); 2638 2639 DP_INFO(edev, "Scheduled a recovery handler\n"); 2640 } 2641 2642 static void qede_recovery_failed(struct qede_dev *edev) 2643 { 2644 netdev_err(edev->ndev, "Recovery handling has failed. Power cycle is needed.\n"); 2645 2646 netif_device_detach(edev->ndev); 2647 2648 if (edev->cdev) 2649 edev->ops->common->set_power_state(edev->cdev, PCI_D3hot); 2650 } 2651 2652 static void qede_recovery_handler(struct qede_dev *edev) 2653 { 2654 u32 curr_state = edev->state; 2655 int rc; 2656 2657 DP_NOTICE(edev, "Starting a recovery process\n"); 2658 2659 /* No need to acquire first the qede_lock since is done by qede_sp_task 2660 * before calling this function. 2661 */ 2662 edev->state = QEDE_STATE_RECOVERY; 2663 2664 edev->ops->common->recovery_prolog(edev->cdev); 2665 2666 if (curr_state == QEDE_STATE_OPEN) 2667 qede_unload(edev, QEDE_UNLOAD_RECOVERY, true); 2668 2669 __qede_remove(edev->pdev, QEDE_REMOVE_RECOVERY); 2670 2671 rc = __qede_probe(edev->pdev, edev->dp_module, edev->dp_level, 2672 IS_VF(edev), QEDE_PROBE_RECOVERY); 2673 if (rc) { 2674 edev->cdev = NULL; 2675 goto err; 2676 } 2677 2678 if (curr_state == QEDE_STATE_OPEN) { 2679 rc = qede_load(edev, QEDE_LOAD_RECOVERY, true); 2680 if (rc) 2681 goto err; 2682 2683 qede_config_rx_mode(edev->ndev); 2684 udp_tunnel_nic_reset_ntf(edev->ndev); 2685 } 2686 2687 edev->state = curr_state; 2688 2689 DP_NOTICE(edev, "Recovery handling is done\n"); 2690 2691 return; 2692 2693 err: 2694 qede_recovery_failed(edev); 2695 } 2696 2697 static void qede_atomic_hw_err_handler(struct qede_dev *edev) 2698 { 2699 struct qed_dev *cdev = edev->cdev; 2700 2701 DP_NOTICE(edev, 2702 "Generic non-sleepable HW error handling started - err_flags 0x%lx\n", 2703 edev->err_flags); 2704 2705 /* Get a call trace of the flow that led to the error */ 2706 WARN_ON(test_bit(QEDE_ERR_WARN, &edev->err_flags)); 2707 2708 /* Prevent HW attentions from being reasserted */ 2709 if (test_bit(QEDE_ERR_ATTN_CLR_EN, &edev->err_flags)) 2710 edev->ops->common->attn_clr_enable(cdev, true); 2711 2712 DP_NOTICE(edev, "Generic non-sleepable HW error handling is done\n"); 2713 } 2714 2715 static void qede_generic_hw_err_handler(struct qede_dev *edev) 2716 { 2717 DP_NOTICE(edev, 2718 "Generic sleepable HW error handling started - err_flags 0x%lx\n", 2719 edev->err_flags); 2720 2721 if (edev->devlink) { 2722 DP_NOTICE(edev, "Reporting fatal error to devlink\n"); 2723 edev->ops->common->report_fatal_error(edev->devlink, edev->last_err_type); 2724 } 2725 2726 clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags); 2727 2728 DP_NOTICE(edev, "Generic sleepable HW error handling is done\n"); 2729 } 2730 2731 static void qede_set_hw_err_flags(struct qede_dev *edev, 2732 enum qed_hw_err_type err_type) 2733 { 2734 unsigned long err_flags = 0; 2735 2736 switch (err_type) { 2737 case QED_HW_ERR_DMAE_FAIL: 2738 set_bit(QEDE_ERR_WARN, &err_flags); 2739 fallthrough; 2740 case QED_HW_ERR_MFW_RESP_FAIL: 2741 case QED_HW_ERR_HW_ATTN: 2742 case QED_HW_ERR_RAMROD_FAIL: 2743 case QED_HW_ERR_FW_ASSERT: 2744 set_bit(QEDE_ERR_ATTN_CLR_EN, &err_flags); 2745 set_bit(QEDE_ERR_GET_DBG_INFO, &err_flags); 2746 /* make this error as recoverable and start recovery*/ 2747 set_bit(QEDE_ERR_IS_RECOVERABLE, &err_flags); 2748 break; 2749 2750 default: 2751 DP_NOTICE(edev, "Unexpected HW error [%d]\n", err_type); 2752 break; 2753 } 2754 2755 edev->err_flags |= err_flags; 2756 } 2757 2758 static void qede_schedule_hw_err_handler(void *dev, 2759 enum qed_hw_err_type err_type) 2760 { 2761 struct qede_dev *edev = dev; 2762 2763 /* Fan failure cannot be masked by handling of another HW error or by a 2764 * concurrent recovery process. 2765 */ 2766 if ((test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) || 2767 edev->state == QEDE_STATE_RECOVERY) && 2768 err_type != QED_HW_ERR_FAN_FAIL) { 2769 DP_INFO(edev, 2770 "Avoid scheduling an error handling while another HW error is being handled\n"); 2771 return; 2772 } 2773 2774 if (err_type >= QED_HW_ERR_LAST) { 2775 DP_NOTICE(edev, "Unknown HW error [%d]\n", err_type); 2776 clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags); 2777 return; 2778 } 2779 2780 edev->last_err_type = err_type; 2781 qede_set_hw_err_flags(edev, err_type); 2782 qede_atomic_hw_err_handler(edev); 2783 set_bit(QEDE_SP_HW_ERR, &edev->sp_flags); 2784 schedule_delayed_work(&edev->sp_task, 0); 2785 2786 DP_INFO(edev, "Scheduled a error handler [err_type %d]\n", err_type); 2787 } 2788 2789 static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq) 2790 { 2791 struct netdev_queue *netdev_txq; 2792 2793 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id); 2794 if (netif_xmit_stopped(netdev_txq)) 2795 return true; 2796 2797 return false; 2798 } 2799 2800 static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data) 2801 { 2802 struct qede_dev *edev = dev; 2803 struct netdev_hw_addr *ha; 2804 int i; 2805 2806 if (edev->ndev->features & NETIF_F_IP_CSUM) 2807 data->feat_flags |= QED_TLV_IP_CSUM; 2808 if (edev->ndev->features & NETIF_F_TSO) 2809 data->feat_flags |= QED_TLV_LSO; 2810 2811 ether_addr_copy(data->mac[0], edev->ndev->dev_addr); 2812 eth_zero_addr(data->mac[1]); 2813 eth_zero_addr(data->mac[2]); 2814 /* Copy the first two UC macs */ 2815 netif_addr_lock_bh(edev->ndev); 2816 i = 1; 2817 netdev_for_each_uc_addr(ha, edev->ndev) { 2818 ether_addr_copy(data->mac[i++], ha->addr); 2819 if (i == QED_TLV_MAC_COUNT) 2820 break; 2821 } 2822 2823 netif_addr_unlock_bh(edev->ndev); 2824 } 2825 2826 static void qede_get_eth_tlv_data(void *dev, void *data) 2827 { 2828 struct qed_mfw_tlv_eth *etlv = data; 2829 struct qede_dev *edev = dev; 2830 struct qede_fastpath *fp; 2831 int i; 2832 2833 etlv->lso_maxoff_size = 0XFFFF; 2834 etlv->lso_maxoff_size_set = true; 2835 etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN; 2836 etlv->lso_minseg_size_set = true; 2837 etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC); 2838 etlv->prom_mode_set = true; 2839 etlv->tx_descr_size = QEDE_TSS_COUNT(edev); 2840 etlv->tx_descr_size_set = true; 2841 etlv->rx_descr_size = QEDE_RSS_COUNT(edev); 2842 etlv->rx_descr_size_set = true; 2843 etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB; 2844 etlv->iov_offload_set = true; 2845 2846 /* Fill information regarding queues; Should be done under the qede 2847 * lock to guarantee those don't change beneath our feet. 2848 */ 2849 etlv->txqs_empty = true; 2850 etlv->rxqs_empty = true; 2851 etlv->num_txqs_full = 0; 2852 etlv->num_rxqs_full = 0; 2853 2854 __qede_lock(edev); 2855 for_each_queue(i) { 2856 fp = &edev->fp_array[i]; 2857 if (fp->type & QEDE_FASTPATH_TX) { 2858 struct qede_tx_queue *txq = QEDE_FP_TC0_TXQ(fp); 2859 2860 if (txq->sw_tx_cons != txq->sw_tx_prod) 2861 etlv->txqs_empty = false; 2862 if (qede_is_txq_full(edev, txq)) 2863 etlv->num_txqs_full++; 2864 } 2865 if (fp->type & QEDE_FASTPATH_RX) { 2866 if (qede_has_rx_work(fp->rxq)) 2867 etlv->rxqs_empty = false; 2868 2869 /* This one is a bit tricky; Firmware might stop 2870 * placing packets if ring is not yet full. 2871 * Give an approximation. 2872 */ 2873 if (le16_to_cpu(*fp->rxq->hw_cons_ptr) - 2874 qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) > 2875 RX_RING_SIZE - 100) 2876 etlv->num_rxqs_full++; 2877 } 2878 } 2879 __qede_unlock(edev); 2880 2881 etlv->txqs_empty_set = true; 2882 etlv->rxqs_empty_set = true; 2883 etlv->num_txqs_full_set = true; 2884 etlv->num_rxqs_full_set = true; 2885 } 2886 2887 /** 2888 * qede_io_error_detected(): Called when PCI error is detected 2889 * 2890 * @pdev: Pointer to PCI device 2891 * @state: The current pci connection state 2892 * 2893 *Return: pci_ers_result_t. 2894 * 2895 * This function is called after a PCI bus error affecting 2896 * this device has been detected. 2897 */ 2898 static pci_ers_result_t 2899 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) 2900 { 2901 struct net_device *dev = pci_get_drvdata(pdev); 2902 struct qede_dev *edev = netdev_priv(dev); 2903 2904 if (!edev) 2905 return PCI_ERS_RESULT_NONE; 2906 2907 DP_NOTICE(edev, "IO error detected [%d]\n", state); 2908 2909 __qede_lock(edev); 2910 if (edev->state == QEDE_STATE_RECOVERY) { 2911 DP_NOTICE(edev, "Device already in the recovery state\n"); 2912 __qede_unlock(edev); 2913 return PCI_ERS_RESULT_NONE; 2914 } 2915 2916 /* PF handles the recovery of its VFs */ 2917 if (IS_VF(edev)) { 2918 DP_VERBOSE(edev, QED_MSG_IOV, 2919 "VF recovery is handled by its PF\n"); 2920 __qede_unlock(edev); 2921 return PCI_ERS_RESULT_RECOVERED; 2922 } 2923 2924 /* Close OS Tx */ 2925 netif_tx_disable(edev->ndev); 2926 netif_carrier_off(edev->ndev); 2927 2928 set_bit(QEDE_SP_AER, &edev->sp_flags); 2929 schedule_delayed_work(&edev->sp_task, 0); 2930 2931 __qede_unlock(edev); 2932 2933 return PCI_ERS_RESULT_CAN_RECOVER; 2934 } 2935