xref: /linux/drivers/ata/libata-core.c (revision 22093997ac9220d3c606313efbf4ce564962d095)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  libata-core.c - helper library for ATA
4  *
5  *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
6  *  Copyright 2003-2004 Jeff Garzik
7  *
8  *  libata documentation is available via 'make {ps|pdf}docs',
9  *  as Documentation/driver-api/libata.rst
10  *
11  *  Hardware documentation available from http://www.t13.org/ and
12  *  http://www.sata-io.org/
13  *
14  *  Standards documents from:
15  *	http://www.t13.org (ATA standards, PCI DMA IDE spec)
16  *	http://www.t10.org (SCSI MMC - for ATAPI MMC)
17  *	http://www.sata-io.org (SATA)
18  *	http://www.compactflash.org (CF)
19  *	http://www.qic.org (QIC157 - Tape and DSC)
20  *	http://www.ce-ata.org (CE-ATA: not supported)
21  *
22  * libata is essentially a library of internal helper functions for
23  * low-level ATA host controller drivers.  As such, the API/ABI is
24  * likely to change as new drivers are added and updated.
25  * Do not depend on ABI/API stability.
26  */
27 
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/pci.h>
31 #include <linux/init.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/spinlock.h>
35 #include <linux/blkdev.h>
36 #include <linux/delay.h>
37 #include <linux/timer.h>
38 #include <linux/time.h>
39 #include <linux/interrupt.h>
40 #include <linux/completion.h>
41 #include <linux/suspend.h>
42 #include <linux/workqueue.h>
43 #include <linux/scatterlist.h>
44 #include <linux/io.h>
45 #include <linux/log2.h>
46 #include <linux/slab.h>
47 #include <linux/glob.h>
48 #include <scsi/scsi.h>
49 #include <scsi/scsi_cmnd.h>
50 #include <scsi/scsi_host.h>
51 #include <linux/libata.h>
52 #include <asm/byteorder.h>
53 #include <linux/unaligned.h>
54 #include <linux/cdrom.h>
55 #include <linux/ratelimit.h>
56 #include <linux/leds.h>
57 #include <linux/pm_runtime.h>
58 #include <linux/platform_device.h>
59 #include <asm/setup.h>
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/libata.h>
63 
64 #include "libata.h"
65 #include "libata-transport.h"
66 
67 const struct ata_port_operations ata_base_port_ops = {
68 	.prereset		= ata_std_prereset,
69 	.postreset		= ata_std_postreset,
70 	.error_handler		= ata_std_error_handler,
71 	.sched_eh		= ata_std_sched_eh,
72 	.end_eh			= ata_std_end_eh,
73 };
74 
75 static unsigned int ata_dev_init_params(struct ata_device *dev,
76 					u16 heads, u16 sectors);
77 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
78 static void ata_dev_xfermask(struct ata_device *dev);
79 static unsigned int ata_dev_quirks(const struct ata_device *dev);
80 
81 static DEFINE_IDA(ata_ida);
82 
83 #ifdef CONFIG_ATA_FORCE
84 struct ata_force_param {
85 	const char	*name;
86 	u8		cbl;
87 	u8		spd_limit;
88 	unsigned int	xfer_mask;
89 	unsigned int	quirk_on;
90 	unsigned int	quirk_off;
91 	unsigned int	pflags_on;
92 	u16		lflags_on;
93 	u16		lflags_off;
94 };
95 
96 struct ata_force_ent {
97 	int			port;
98 	int			device;
99 	struct ata_force_param	param;
100 };
101 
102 static struct ata_force_ent *ata_force_tbl;
103 static int ata_force_tbl_size;
104 
105 static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata;
106 /* param_buf is thrown away after initialization, disallow read */
107 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
108 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
109 #endif
110 
111 static int atapi_enabled = 1;
112 module_param(atapi_enabled, int, 0444);
113 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
114 
115 static int atapi_dmadir = 0;
116 module_param(atapi_dmadir, int, 0444);
117 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
118 
119 int atapi_passthru16 = 1;
120 module_param(atapi_passthru16, int, 0444);
121 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
122 
123 int libata_fua = 0;
124 module_param_named(fua, libata_fua, int, 0444);
125 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
126 
127 static int ata_ignore_hpa;
128 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
129 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
130 
131 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
132 module_param_named(dma, libata_dma_mask, int, 0444);
133 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
134 
135 static int ata_probe_timeout;
136 module_param(ata_probe_timeout, int, 0444);
137 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
138 
139 int libata_noacpi = 0;
140 module_param_named(noacpi, libata_noacpi, int, 0444);
141 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
142 
143 int libata_allow_tpm = 0;
144 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
145 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
146 
147 static int atapi_an;
148 module_param(atapi_an, int, 0444);
149 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
150 
151 MODULE_AUTHOR("Jeff Garzik");
152 MODULE_DESCRIPTION("Library module for ATA devices");
153 MODULE_LICENSE("GPL");
154 MODULE_VERSION(DRV_VERSION);
155 
ata_dev_print_info(const struct ata_device * dev)156 static inline bool ata_dev_print_info(const struct ata_device *dev)
157 {
158 	struct ata_eh_context *ehc = &dev->link->eh_context;
159 
160 	return ehc->i.flags & ATA_EHI_PRINTINFO;
161 }
162 
163 /**
164  *	ata_link_next - link iteration helper
165  *	@link: the previous link, NULL to start
166  *	@ap: ATA port containing links to iterate
167  *	@mode: iteration mode, one of ATA_LITER_*
168  *
169  *	LOCKING:
170  *	Host lock or EH context.
171  *
172  *	RETURNS:
173  *	Pointer to the next link.
174  */
ata_link_next(struct ata_link * link,struct ata_port * ap,enum ata_link_iter_mode mode)175 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
176 			       enum ata_link_iter_mode mode)
177 {
178 	BUG_ON(mode != ATA_LITER_EDGE &&
179 	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
180 
181 	/* NULL link indicates start of iteration */
182 	if (!link)
183 		switch (mode) {
184 		case ATA_LITER_EDGE:
185 		case ATA_LITER_PMP_FIRST:
186 			if (sata_pmp_attached(ap))
187 				return ap->pmp_link;
188 			fallthrough;
189 		case ATA_LITER_HOST_FIRST:
190 			return &ap->link;
191 		}
192 
193 	/* we just iterated over the host link, what's next? */
194 	if (link == &ap->link)
195 		switch (mode) {
196 		case ATA_LITER_HOST_FIRST:
197 			if (sata_pmp_attached(ap))
198 				return ap->pmp_link;
199 			fallthrough;
200 		case ATA_LITER_PMP_FIRST:
201 			if (unlikely(ap->slave_link))
202 				return ap->slave_link;
203 			fallthrough;
204 		case ATA_LITER_EDGE:
205 			return NULL;
206 		}
207 
208 	/* slave_link excludes PMP */
209 	if (unlikely(link == ap->slave_link))
210 		return NULL;
211 
212 	/* we were over a PMP link */
213 	if (++link < ap->pmp_link + ap->nr_pmp_links)
214 		return link;
215 
216 	if (mode == ATA_LITER_PMP_FIRST)
217 		return &ap->link;
218 
219 	return NULL;
220 }
221 EXPORT_SYMBOL_GPL(ata_link_next);
222 
223 /**
224  *	ata_dev_next - device iteration helper
225  *	@dev: the previous device, NULL to start
226  *	@link: ATA link containing devices to iterate
227  *	@mode: iteration mode, one of ATA_DITER_*
228  *
229  *	LOCKING:
230  *	Host lock or EH context.
231  *
232  *	RETURNS:
233  *	Pointer to the next device.
234  */
ata_dev_next(struct ata_device * dev,struct ata_link * link,enum ata_dev_iter_mode mode)235 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
236 				enum ata_dev_iter_mode mode)
237 {
238 	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
239 	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
240 
241 	/* NULL dev indicates start of iteration */
242 	if (!dev)
243 		switch (mode) {
244 		case ATA_DITER_ENABLED:
245 		case ATA_DITER_ALL:
246 			dev = link->device;
247 			goto check;
248 		case ATA_DITER_ENABLED_REVERSE:
249 		case ATA_DITER_ALL_REVERSE:
250 			dev = link->device + ata_link_max_devices(link) - 1;
251 			goto check;
252 		}
253 
254  next:
255 	/* move to the next one */
256 	switch (mode) {
257 	case ATA_DITER_ENABLED:
258 	case ATA_DITER_ALL:
259 		if (++dev < link->device + ata_link_max_devices(link))
260 			goto check;
261 		return NULL;
262 	case ATA_DITER_ENABLED_REVERSE:
263 	case ATA_DITER_ALL_REVERSE:
264 		if (--dev >= link->device)
265 			goto check;
266 		return NULL;
267 	}
268 
269  check:
270 	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
271 	    !ata_dev_enabled(dev))
272 		goto next;
273 	return dev;
274 }
275 EXPORT_SYMBOL_GPL(ata_dev_next);
276 
277 /**
278  *	ata_dev_phys_link - find physical link for a device
279  *	@dev: ATA device to look up physical link for
280  *
281  *	Look up physical link which @dev is attached to.  Note that
282  *	this is different from @dev->link only when @dev is on slave
283  *	link.  For all other cases, it's the same as @dev->link.
284  *
285  *	LOCKING:
286  *	Don't care.
287  *
288  *	RETURNS:
289  *	Pointer to the found physical link.
290  */
ata_dev_phys_link(struct ata_device * dev)291 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
292 {
293 	struct ata_port *ap = dev->link->ap;
294 
295 	if (!ap->slave_link)
296 		return dev->link;
297 	if (!dev->devno)
298 		return &ap->link;
299 	return ap->slave_link;
300 }
301 
302 #ifdef CONFIG_ATA_FORCE
303 /**
304  *	ata_force_cbl - force cable type according to libata.force
305  *	@ap: ATA port of interest
306  *
307  *	Force cable type according to libata.force and whine about it.
308  *	The last entry which has matching port number is used, so it
309  *	can be specified as part of device force parameters.  For
310  *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
311  *	same effect.
312  *
313  *	LOCKING:
314  *	EH context.
315  */
ata_force_cbl(struct ata_port * ap)316 void ata_force_cbl(struct ata_port *ap)
317 {
318 	int i;
319 
320 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
321 		const struct ata_force_ent *fe = &ata_force_tbl[i];
322 
323 		if (fe->port != -1 && fe->port != ap->print_id)
324 			continue;
325 
326 		if (fe->param.cbl == ATA_CBL_NONE)
327 			continue;
328 
329 		ap->cbl = fe->param.cbl;
330 		ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
331 		return;
332 	}
333 }
334 
335 /**
336  *	ata_force_pflags - force port flags according to libata.force
337  *	@ap: ATA port of interest
338  *
339  *	Force port flags according to libata.force and whine about it.
340  *
341  *	LOCKING:
342  *	EH context.
343  */
ata_force_pflags(struct ata_port * ap)344 static void ata_force_pflags(struct ata_port *ap)
345 {
346 	int i;
347 
348 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
349 		const struct ata_force_ent *fe = &ata_force_tbl[i];
350 
351 		if (fe->port != -1 && fe->port != ap->print_id)
352 			continue;
353 
354 		/* let pflags stack */
355 		if (fe->param.pflags_on) {
356 			ap->pflags |= fe->param.pflags_on;
357 			ata_port_notice(ap,
358 					"FORCE: port flag 0x%x forced -> 0x%x\n",
359 					fe->param.pflags_on, ap->pflags);
360 		}
361 	}
362 }
363 
364 /**
365  *	ata_force_link_limits - force link limits according to libata.force
366  *	@link: ATA link of interest
367  *
368  *	Force link flags and SATA spd limit according to libata.force
369  *	and whine about it.  When only the port part is specified
370  *	(e.g. 1:), the limit applies to all links connected to both
371  *	the host link and all fan-out ports connected via PMP.  If the
372  *	device part is specified as 0 (e.g. 1.00:), it specifies the
373  *	first fan-out link not the host link.  Device number 15 always
374  *	points to the host link whether PMP is attached or not.  If the
375  *	controller has slave link, device number 16 points to it.
376  *
377  *	LOCKING:
378  *	EH context.
379  */
ata_force_link_limits(struct ata_link * link)380 static void ata_force_link_limits(struct ata_link *link)
381 {
382 	bool did_spd = false;
383 	int linkno = link->pmp;
384 	int i;
385 
386 	if (ata_is_host_link(link))
387 		linkno += 15;
388 
389 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
390 		const struct ata_force_ent *fe = &ata_force_tbl[i];
391 
392 		if (fe->port != -1 && fe->port != link->ap->print_id)
393 			continue;
394 
395 		if (fe->device != -1 && fe->device != linkno)
396 			continue;
397 
398 		/* only honor the first spd limit */
399 		if (!did_spd && fe->param.spd_limit) {
400 			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
401 			ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
402 					fe->param.name);
403 			did_spd = true;
404 		}
405 
406 		/* let lflags stack */
407 		if (fe->param.lflags_on) {
408 			link->flags |= fe->param.lflags_on;
409 			ata_link_notice(link,
410 					"FORCE: link flag 0x%x forced -> 0x%x\n",
411 					fe->param.lflags_on, link->flags);
412 		}
413 		if (fe->param.lflags_off) {
414 			link->flags &= ~fe->param.lflags_off;
415 			ata_link_notice(link,
416 				"FORCE: link flag 0x%x cleared -> 0x%x\n",
417 				fe->param.lflags_off, link->flags);
418 		}
419 	}
420 }
421 
422 /**
423  *	ata_force_xfermask - force xfermask according to libata.force
424  *	@dev: ATA device of interest
425  *
426  *	Force xfer_mask according to libata.force and whine about it.
427  *	For consistency with link selection, device number 15 selects
428  *	the first device connected to the host link.
429  *
430  *	LOCKING:
431  *	EH context.
432  */
ata_force_xfermask(struct ata_device * dev)433 static void ata_force_xfermask(struct ata_device *dev)
434 {
435 	int devno = dev->link->pmp + dev->devno;
436 	int alt_devno = devno;
437 	int i;
438 
439 	/* allow n.15/16 for devices attached to host port */
440 	if (ata_is_host_link(dev->link))
441 		alt_devno += 15;
442 
443 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
444 		const struct ata_force_ent *fe = &ata_force_tbl[i];
445 		unsigned int pio_mask, mwdma_mask, udma_mask;
446 
447 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
448 			continue;
449 
450 		if (fe->device != -1 && fe->device != devno &&
451 		    fe->device != alt_devno)
452 			continue;
453 
454 		if (!fe->param.xfer_mask)
455 			continue;
456 
457 		ata_unpack_xfermask(fe->param.xfer_mask,
458 				    &pio_mask, &mwdma_mask, &udma_mask);
459 		if (udma_mask)
460 			dev->udma_mask = udma_mask;
461 		else if (mwdma_mask) {
462 			dev->udma_mask = 0;
463 			dev->mwdma_mask = mwdma_mask;
464 		} else {
465 			dev->udma_mask = 0;
466 			dev->mwdma_mask = 0;
467 			dev->pio_mask = pio_mask;
468 		}
469 
470 		ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
471 			       fe->param.name);
472 		return;
473 	}
474 }
475 
476 /**
477  *	ata_force_quirks - force quirks according to libata.force
478  *	@dev: ATA device of interest
479  *
480  *	Force quirks according to libata.force and whine about it.
481  *	For consistency with link selection, device number 15 selects
482  *	the first device connected to the host link.
483  *
484  *	LOCKING:
485  *	EH context.
486  */
ata_force_quirks(struct ata_device * dev)487 static void ata_force_quirks(struct ata_device *dev)
488 {
489 	int devno = dev->link->pmp + dev->devno;
490 	int alt_devno = devno;
491 	int i;
492 
493 	/* allow n.15/16 for devices attached to host port */
494 	if (ata_is_host_link(dev->link))
495 		alt_devno += 15;
496 
497 	for (i = 0; i < ata_force_tbl_size; i++) {
498 		const struct ata_force_ent *fe = &ata_force_tbl[i];
499 
500 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
501 			continue;
502 
503 		if (fe->device != -1 && fe->device != devno &&
504 		    fe->device != alt_devno)
505 			continue;
506 
507 		if (!(~dev->quirks & fe->param.quirk_on) &&
508 		    !(dev->quirks & fe->param.quirk_off))
509 			continue;
510 
511 		dev->quirks |= fe->param.quirk_on;
512 		dev->quirks &= ~fe->param.quirk_off;
513 
514 		ata_dev_notice(dev, "FORCE: modified (%s)\n",
515 			       fe->param.name);
516 	}
517 }
518 #else
ata_force_pflags(struct ata_port * ap)519 static inline void ata_force_pflags(struct ata_port *ap) { }
ata_force_link_limits(struct ata_link * link)520 static inline void ata_force_link_limits(struct ata_link *link) { }
ata_force_xfermask(struct ata_device * dev)521 static inline void ata_force_xfermask(struct ata_device *dev) { }
ata_force_quirks(struct ata_device * dev)522 static inline void ata_force_quirks(struct ata_device *dev) { }
523 #endif
524 
525 /**
526  *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode
527  *	@opcode: SCSI opcode
528  *
529  *	Determine ATAPI command type from @opcode.
530  *
531  *	LOCKING:
532  *	None.
533  *
534  *	RETURNS:
535  *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
536  */
atapi_cmd_type(u8 opcode)537 int atapi_cmd_type(u8 opcode)
538 {
539 	switch (opcode) {
540 	case GPCMD_READ_10:
541 	case GPCMD_READ_12:
542 		return ATAPI_READ;
543 
544 	case GPCMD_WRITE_10:
545 	case GPCMD_WRITE_12:
546 	case GPCMD_WRITE_AND_VERIFY_10:
547 		return ATAPI_WRITE;
548 
549 	case GPCMD_READ_CD:
550 	case GPCMD_READ_CD_MSF:
551 		return ATAPI_READ_CD;
552 
553 	case ATA_16:
554 	case ATA_12:
555 		if (atapi_passthru16)
556 			return ATAPI_PASS_THRU;
557 		fallthrough;
558 	default:
559 		return ATAPI_MISC;
560 	}
561 }
562 EXPORT_SYMBOL_GPL(atapi_cmd_type);
563 
564 static const u8 ata_rw_cmds[] = {
565 	/* pio multi */
566 	ATA_CMD_READ_MULTI,
567 	ATA_CMD_WRITE_MULTI,
568 	ATA_CMD_READ_MULTI_EXT,
569 	ATA_CMD_WRITE_MULTI_EXT,
570 	0,
571 	0,
572 	0,
573 	0,
574 	/* pio */
575 	ATA_CMD_PIO_READ,
576 	ATA_CMD_PIO_WRITE,
577 	ATA_CMD_PIO_READ_EXT,
578 	ATA_CMD_PIO_WRITE_EXT,
579 	0,
580 	0,
581 	0,
582 	0,
583 	/* dma */
584 	ATA_CMD_READ,
585 	ATA_CMD_WRITE,
586 	ATA_CMD_READ_EXT,
587 	ATA_CMD_WRITE_EXT,
588 	0,
589 	0,
590 	0,
591 	ATA_CMD_WRITE_FUA_EXT
592 };
593 
594 /**
595  *	ata_set_rwcmd_protocol - set taskfile r/w command and protocol
596  *	@dev: target device for the taskfile
597  *	@tf: taskfile to examine and configure
598  *
599  *	Examine the device configuration and tf->flags to determine
600  *	the proper read/write command and protocol to use for @tf.
601  *
602  *	LOCKING:
603  *	caller.
604  */
ata_set_rwcmd_protocol(struct ata_device * dev,struct ata_taskfile * tf)605 static bool ata_set_rwcmd_protocol(struct ata_device *dev,
606 				   struct ata_taskfile *tf)
607 {
608 	u8 cmd;
609 
610 	int index, fua, lba48, write;
611 
612 	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
613 	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
614 	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
615 
616 	if (dev->flags & ATA_DFLAG_PIO) {
617 		tf->protocol = ATA_PROT_PIO;
618 		index = dev->multi_count ? 0 : 8;
619 	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
620 		/* Unable to use DMA due to host limitation */
621 		tf->protocol = ATA_PROT_PIO;
622 		index = dev->multi_count ? 0 : 8;
623 	} else {
624 		tf->protocol = ATA_PROT_DMA;
625 		index = 16;
626 	}
627 
628 	cmd = ata_rw_cmds[index + fua + lba48 + write];
629 	if (!cmd)
630 		return false;
631 
632 	tf->command = cmd;
633 
634 	return true;
635 }
636 
637 /**
638  *	ata_tf_read_block - Read block address from ATA taskfile
639  *	@tf: ATA taskfile of interest
640  *	@dev: ATA device @tf belongs to
641  *
642  *	LOCKING:
643  *	None.
644  *
645  *	Read block address from @tf.  This function can handle all
646  *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
647  *	flags select the address format to use.
648  *
649  *	RETURNS:
650  *	Block address read from @tf.
651  */
ata_tf_read_block(const struct ata_taskfile * tf,struct ata_device * dev)652 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
653 {
654 	u64 block = 0;
655 
656 	if (tf->flags & ATA_TFLAG_LBA) {
657 		if (tf->flags & ATA_TFLAG_LBA48) {
658 			block |= (u64)tf->hob_lbah << 40;
659 			block |= (u64)tf->hob_lbam << 32;
660 			block |= (u64)tf->hob_lbal << 24;
661 		} else
662 			block |= (tf->device & 0xf) << 24;
663 
664 		block |= tf->lbah << 16;
665 		block |= tf->lbam << 8;
666 		block |= tf->lbal;
667 	} else {
668 		u32 cyl, head, sect;
669 
670 		cyl = tf->lbam | (tf->lbah << 8);
671 		head = tf->device & 0xf;
672 		sect = tf->lbal;
673 
674 		if (!sect) {
675 			ata_dev_warn(dev,
676 				     "device reported invalid CHS sector 0\n");
677 			return U64_MAX;
678 		}
679 
680 		block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
681 	}
682 
683 	return block;
684 }
685 
686 /*
687  * Set a taskfile command duration limit index.
688  */
ata_set_tf_cdl(struct ata_queued_cmd * qc,int cdl)689 static inline void ata_set_tf_cdl(struct ata_queued_cmd *qc, int cdl)
690 {
691 	struct ata_taskfile *tf = &qc->tf;
692 
693 	if (tf->protocol == ATA_PROT_NCQ)
694 		tf->auxiliary |= cdl;
695 	else
696 		tf->feature |= cdl;
697 
698 	/*
699 	 * Mark this command as having a CDL and request the result
700 	 * task file so that we can inspect the sense data available
701 	 * bit on completion.
702 	 */
703 	qc->flags |= ATA_QCFLAG_HAS_CDL | ATA_QCFLAG_RESULT_TF;
704 }
705 
706 /**
707  *	ata_build_rw_tf - Build ATA taskfile for given read/write request
708  *	@qc: Metadata associated with the taskfile to build
709  *	@block: Block address
710  *	@n_block: Number of blocks
711  *	@tf_flags: RW/FUA etc...
712  *	@cdl: Command duration limit index
713  *	@class: IO priority class
714  *
715  *	LOCKING:
716  *	None.
717  *
718  *	Build ATA taskfile for the command @qc for read/write request described
719  *	by @block, @n_block, @tf_flags and @class.
720  *
721  *	RETURNS:
722  *
723  *	0 on success, -ERANGE if the request is too large for @dev,
724  *	-EINVAL if the request is invalid.
725  */
ata_build_rw_tf(struct ata_queued_cmd * qc,u64 block,u32 n_block,unsigned int tf_flags,int cdl,int class)726 int ata_build_rw_tf(struct ata_queued_cmd *qc, u64 block, u32 n_block,
727 		    unsigned int tf_flags, int cdl, int class)
728 {
729 	struct ata_taskfile *tf = &qc->tf;
730 	struct ata_device *dev = qc->dev;
731 
732 	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
733 	tf->flags |= tf_flags;
734 
735 	if (ata_ncq_enabled(dev)) {
736 		/* yay, NCQ */
737 		if (!lba_48_ok(block, n_block))
738 			return -ERANGE;
739 
740 		tf->protocol = ATA_PROT_NCQ;
741 		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
742 
743 		if (tf->flags & ATA_TFLAG_WRITE)
744 			tf->command = ATA_CMD_FPDMA_WRITE;
745 		else
746 			tf->command = ATA_CMD_FPDMA_READ;
747 
748 		tf->nsect = qc->hw_tag << 3;
749 		tf->hob_feature = (n_block >> 8) & 0xff;
750 		tf->feature = n_block & 0xff;
751 
752 		tf->hob_lbah = (block >> 40) & 0xff;
753 		tf->hob_lbam = (block >> 32) & 0xff;
754 		tf->hob_lbal = (block >> 24) & 0xff;
755 		tf->lbah = (block >> 16) & 0xff;
756 		tf->lbam = (block >> 8) & 0xff;
757 		tf->lbal = block & 0xff;
758 
759 		tf->device = ATA_LBA;
760 		if (tf->flags & ATA_TFLAG_FUA)
761 			tf->device |= 1 << 7;
762 
763 		if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLED &&
764 		    class == IOPRIO_CLASS_RT)
765 			tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO;
766 
767 		if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl)
768 			ata_set_tf_cdl(qc, cdl);
769 
770 	} else if (dev->flags & ATA_DFLAG_LBA) {
771 		tf->flags |= ATA_TFLAG_LBA;
772 
773 		if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl)
774 			ata_set_tf_cdl(qc, cdl);
775 
776 		/* Both FUA writes and a CDL index require 48-bit commands */
777 		if (!(tf->flags & ATA_TFLAG_FUA) &&
778 		    !(qc->flags & ATA_QCFLAG_HAS_CDL) &&
779 		    lba_28_ok(block, n_block)) {
780 			/* use LBA28 */
781 			tf->device |= (block >> 24) & 0xf;
782 		} else if (lba_48_ok(block, n_block)) {
783 			if (!(dev->flags & ATA_DFLAG_LBA48))
784 				return -ERANGE;
785 
786 			/* use LBA48 */
787 			tf->flags |= ATA_TFLAG_LBA48;
788 
789 			tf->hob_nsect = (n_block >> 8) & 0xff;
790 
791 			tf->hob_lbah = (block >> 40) & 0xff;
792 			tf->hob_lbam = (block >> 32) & 0xff;
793 			tf->hob_lbal = (block >> 24) & 0xff;
794 		} else {
795 			/* request too large even for LBA48 */
796 			return -ERANGE;
797 		}
798 
799 		if (unlikely(!ata_set_rwcmd_protocol(dev, tf)))
800 			return -EINVAL;
801 
802 		tf->nsect = n_block & 0xff;
803 
804 		tf->lbah = (block >> 16) & 0xff;
805 		tf->lbam = (block >> 8) & 0xff;
806 		tf->lbal = block & 0xff;
807 
808 		tf->device |= ATA_LBA;
809 	} else {
810 		/* CHS */
811 		u32 sect, head, cyl, track;
812 
813 		/* The request -may- be too large for CHS addressing. */
814 		if (!lba_28_ok(block, n_block))
815 			return -ERANGE;
816 
817 		if (unlikely(!ata_set_rwcmd_protocol(dev, tf)))
818 			return -EINVAL;
819 
820 		/* Convert LBA to CHS */
821 		track = (u32)block / dev->sectors;
822 		cyl   = track / dev->heads;
823 		head  = track % dev->heads;
824 		sect  = (u32)block % dev->sectors + 1;
825 
826 		/* Check whether the converted CHS can fit.
827 		   Cylinder: 0-65535
828 		   Head: 0-15
829 		   Sector: 1-255*/
830 		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
831 			return -ERANGE;
832 
833 		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
834 		tf->lbal = sect;
835 		tf->lbam = cyl;
836 		tf->lbah = cyl >> 8;
837 		tf->device |= head;
838 	}
839 
840 	return 0;
841 }
842 
843 /**
844  *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
845  *	@pio_mask: pio_mask
846  *	@mwdma_mask: mwdma_mask
847  *	@udma_mask: udma_mask
848  *
849  *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
850  *	unsigned int xfer_mask.
851  *
852  *	LOCKING:
853  *	None.
854  *
855  *	RETURNS:
856  *	Packed xfer_mask.
857  */
ata_pack_xfermask(unsigned int pio_mask,unsigned int mwdma_mask,unsigned int udma_mask)858 unsigned int ata_pack_xfermask(unsigned int pio_mask,
859 			       unsigned int mwdma_mask,
860 			       unsigned int udma_mask)
861 {
862 	return	((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
863 		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
864 		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
865 }
866 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
867 
868 /**
869  *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
870  *	@xfer_mask: xfer_mask to unpack
871  *	@pio_mask: resulting pio_mask
872  *	@mwdma_mask: resulting mwdma_mask
873  *	@udma_mask: resulting udma_mask
874  *
875  *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
876  *	Any NULL destination masks will be ignored.
877  */
ata_unpack_xfermask(unsigned int xfer_mask,unsigned int * pio_mask,unsigned int * mwdma_mask,unsigned int * udma_mask)878 void ata_unpack_xfermask(unsigned int xfer_mask, unsigned int *pio_mask,
879 			 unsigned int *mwdma_mask, unsigned int *udma_mask)
880 {
881 	if (pio_mask)
882 		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
883 	if (mwdma_mask)
884 		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
885 	if (udma_mask)
886 		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
887 }
888 
889 static const struct ata_xfer_ent {
890 	int shift, bits;
891 	u8 base;
892 } ata_xfer_tbl[] = {
893 	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
894 	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
895 	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
896 	{ -1, },
897 };
898 
899 /**
900  *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
901  *	@xfer_mask: xfer_mask of interest
902  *
903  *	Return matching XFER_* value for @xfer_mask.  Only the highest
904  *	bit of @xfer_mask is considered.
905  *
906  *	LOCKING:
907  *	None.
908  *
909  *	RETURNS:
910  *	Matching XFER_* value, 0xff if no match found.
911  */
ata_xfer_mask2mode(unsigned int xfer_mask)912 u8 ata_xfer_mask2mode(unsigned int xfer_mask)
913 {
914 	int highbit = fls(xfer_mask) - 1;
915 	const struct ata_xfer_ent *ent;
916 
917 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
918 		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
919 			return ent->base + highbit - ent->shift;
920 	return 0xff;
921 }
922 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
923 
924 /**
925  *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
926  *	@xfer_mode: XFER_* of interest
927  *
928  *	Return matching xfer_mask for @xfer_mode.
929  *
930  *	LOCKING:
931  *	None.
932  *
933  *	RETURNS:
934  *	Matching xfer_mask, 0 if no match found.
935  */
ata_xfer_mode2mask(u8 xfer_mode)936 unsigned int ata_xfer_mode2mask(u8 xfer_mode)
937 {
938 	const struct ata_xfer_ent *ent;
939 
940 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
941 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
942 			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
943 				& ~((1 << ent->shift) - 1);
944 	return 0;
945 }
946 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
947 
948 /**
949  *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
950  *	@xfer_mode: XFER_* of interest
951  *
952  *	Return matching xfer_shift for @xfer_mode.
953  *
954  *	LOCKING:
955  *	None.
956  *
957  *	RETURNS:
958  *	Matching xfer_shift, -1 if no match found.
959  */
ata_xfer_mode2shift(u8 xfer_mode)960 int ata_xfer_mode2shift(u8 xfer_mode)
961 {
962 	const struct ata_xfer_ent *ent;
963 
964 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
965 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
966 			return ent->shift;
967 	return -1;
968 }
969 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
970 
971 /**
972  *	ata_mode_string - convert xfer_mask to string
973  *	@xfer_mask: mask of bits supported; only highest bit counts.
974  *
975  *	Determine string which represents the highest speed
976  *	(highest bit in @modemask).
977  *
978  *	LOCKING:
979  *	None.
980  *
981  *	RETURNS:
982  *	Constant C string representing highest speed listed in
983  *	@mode_mask, or the constant C string "<n/a>".
984  */
ata_mode_string(unsigned int xfer_mask)985 const char *ata_mode_string(unsigned int xfer_mask)
986 {
987 	static const char * const xfer_mode_str[] = {
988 		"PIO0",
989 		"PIO1",
990 		"PIO2",
991 		"PIO3",
992 		"PIO4",
993 		"PIO5",
994 		"PIO6",
995 		"MWDMA0",
996 		"MWDMA1",
997 		"MWDMA2",
998 		"MWDMA3",
999 		"MWDMA4",
1000 		"UDMA/16",
1001 		"UDMA/25",
1002 		"UDMA/33",
1003 		"UDMA/44",
1004 		"UDMA/66",
1005 		"UDMA/100",
1006 		"UDMA/133",
1007 		"UDMA7",
1008 	};
1009 	int highbit;
1010 
1011 	highbit = fls(xfer_mask) - 1;
1012 	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1013 		return xfer_mode_str[highbit];
1014 	return "<n/a>";
1015 }
1016 EXPORT_SYMBOL_GPL(ata_mode_string);
1017 
sata_spd_string(unsigned int spd)1018 const char *sata_spd_string(unsigned int spd)
1019 {
1020 	static const char * const spd_str[] = {
1021 		"1.5 Gbps",
1022 		"3.0 Gbps",
1023 		"6.0 Gbps",
1024 	};
1025 
1026 	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1027 		return "<unknown>";
1028 	return spd_str[spd - 1];
1029 }
1030 
1031 /**
1032  *	ata_dev_classify - determine device type based on ATA-spec signature
1033  *	@tf: ATA taskfile register set for device to be identified
1034  *
1035  *	Determine from taskfile register contents whether a device is
1036  *	ATA or ATAPI, as per "Signature and persistence" section
1037  *	of ATA/PI spec (volume 1, sect 5.14).
1038  *
1039  *	LOCKING:
1040  *	None.
1041  *
1042  *	RETURNS:
1043  *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1044  *	%ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1045  */
ata_dev_classify(const struct ata_taskfile * tf)1046 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1047 {
1048 	/* Apple's open source Darwin code hints that some devices only
1049 	 * put a proper signature into the LBA mid/high registers,
1050 	 * So, we only check those.  It's sufficient for uniqueness.
1051 	 *
1052 	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1053 	 * signatures for ATA and ATAPI devices attached on SerialATA,
1054 	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1055 	 * spec has never mentioned about using different signatures
1056 	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1057 	 * Multiplier specification began to use 0x69/0x96 to identify
1058 	 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1059 	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1060 	 * 0x69/0x96 shortly and described them as reserved for
1061 	 * SerialATA.
1062 	 *
1063 	 * We follow the current spec and consider that 0x69/0x96
1064 	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1065 	 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1066 	 * SEMB signature.  This is worked around in
1067 	 * ata_dev_read_id().
1068 	 */
1069 	if (tf->lbam == 0 && tf->lbah == 0)
1070 		return ATA_DEV_ATA;
1071 
1072 	if (tf->lbam == 0x14 && tf->lbah == 0xeb)
1073 		return ATA_DEV_ATAPI;
1074 
1075 	if (tf->lbam == 0x69 && tf->lbah == 0x96)
1076 		return ATA_DEV_PMP;
1077 
1078 	if (tf->lbam == 0x3c && tf->lbah == 0xc3)
1079 		return ATA_DEV_SEMB;
1080 
1081 	if (tf->lbam == 0xcd && tf->lbah == 0xab)
1082 		return ATA_DEV_ZAC;
1083 
1084 	return ATA_DEV_UNKNOWN;
1085 }
1086 EXPORT_SYMBOL_GPL(ata_dev_classify);
1087 
1088 /**
1089  *	ata_id_string - Convert IDENTIFY DEVICE page into string
1090  *	@id: IDENTIFY DEVICE results we will examine
1091  *	@s: string into which data is output
1092  *	@ofs: offset into identify device page
1093  *	@len: length of string to return. must be an even number.
1094  *
1095  *	The strings in the IDENTIFY DEVICE page are broken up into
1096  *	16-bit chunks.  Run through the string, and output each
1097  *	8-bit chunk linearly, regardless of platform.
1098  *
1099  *	LOCKING:
1100  *	caller.
1101  */
1102 
ata_id_string(const u16 * id,unsigned char * s,unsigned int ofs,unsigned int len)1103 void ata_id_string(const u16 *id, unsigned char *s,
1104 		   unsigned int ofs, unsigned int len)
1105 {
1106 	unsigned int c;
1107 
1108 	BUG_ON(len & 1);
1109 
1110 	while (len > 0) {
1111 		c = id[ofs] >> 8;
1112 		*s = c;
1113 		s++;
1114 
1115 		c = id[ofs] & 0xff;
1116 		*s = c;
1117 		s++;
1118 
1119 		ofs++;
1120 		len -= 2;
1121 	}
1122 }
1123 EXPORT_SYMBOL_GPL(ata_id_string);
1124 
1125 /**
1126  *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1127  *	@id: IDENTIFY DEVICE results we will examine
1128  *	@s: string into which data is output
1129  *	@ofs: offset into identify device page
1130  *	@len: length of string to return. must be an odd number.
1131  *
1132  *	This function is identical to ata_id_string except that it
1133  *	trims trailing spaces and terminates the resulting string with
1134  *	null.  @len must be actual maximum length (even number) + 1.
1135  *
1136  *	LOCKING:
1137  *	caller.
1138  */
ata_id_c_string(const u16 * id,unsigned char * s,unsigned int ofs,unsigned int len)1139 void ata_id_c_string(const u16 *id, unsigned char *s,
1140 		     unsigned int ofs, unsigned int len)
1141 {
1142 	unsigned char *p;
1143 
1144 	ata_id_string(id, s, ofs, len - 1);
1145 
1146 	p = s + strnlen(s, len - 1);
1147 	while (p > s && p[-1] == ' ')
1148 		p--;
1149 	*p = '\0';
1150 }
1151 EXPORT_SYMBOL_GPL(ata_id_c_string);
1152 
ata_id_n_sectors(const u16 * id)1153 static u64 ata_id_n_sectors(const u16 *id)
1154 {
1155 	if (ata_id_has_lba(id)) {
1156 		if (ata_id_has_lba48(id))
1157 			return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1158 
1159 		return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1160 	}
1161 
1162 	if (ata_id_current_chs_valid(id))
1163 		return (u32)id[ATA_ID_CUR_CYLS] * (u32)id[ATA_ID_CUR_HEADS] *
1164 		       (u32)id[ATA_ID_CUR_SECTORS];
1165 
1166 	return (u32)id[ATA_ID_CYLS] * (u32)id[ATA_ID_HEADS] *
1167 	       (u32)id[ATA_ID_SECTORS];
1168 }
1169 
ata_tf_to_lba48(const struct ata_taskfile * tf)1170 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1171 {
1172 	u64 sectors = 0;
1173 
1174 	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1175 	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1176 	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1177 	sectors |= (tf->lbah & 0xff) << 16;
1178 	sectors |= (tf->lbam & 0xff) << 8;
1179 	sectors |= (tf->lbal & 0xff);
1180 
1181 	return sectors;
1182 }
1183 
ata_tf_to_lba(const struct ata_taskfile * tf)1184 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1185 {
1186 	u64 sectors = 0;
1187 
1188 	sectors |= (tf->device & 0x0f) << 24;
1189 	sectors |= (tf->lbah & 0xff) << 16;
1190 	sectors |= (tf->lbam & 0xff) << 8;
1191 	sectors |= (tf->lbal & 0xff);
1192 
1193 	return sectors;
1194 }
1195 
1196 /**
1197  *	ata_read_native_max_address - Read native max address
1198  *	@dev: target device
1199  *	@max_sectors: out parameter for the result native max address
1200  *
1201  *	Perform an LBA48 or LBA28 native size query upon the device in
1202  *	question.
1203  *
1204  *	RETURNS:
1205  *	0 on success, -EACCES if command is aborted by the drive.
1206  *	-EIO on other errors.
1207  */
ata_read_native_max_address(struct ata_device * dev,u64 * max_sectors)1208 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1209 {
1210 	unsigned int err_mask;
1211 	struct ata_taskfile tf;
1212 	int lba48 = ata_id_has_lba48(dev->id);
1213 
1214 	ata_tf_init(dev, &tf);
1215 
1216 	/* always clear all address registers */
1217 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1218 
1219 	if (lba48) {
1220 		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1221 		tf.flags |= ATA_TFLAG_LBA48;
1222 	} else
1223 		tf.command = ATA_CMD_READ_NATIVE_MAX;
1224 
1225 	tf.protocol = ATA_PROT_NODATA;
1226 	tf.device |= ATA_LBA;
1227 
1228 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1229 	if (err_mask) {
1230 		ata_dev_warn(dev,
1231 			     "failed to read native max address (err_mask=0x%x)\n",
1232 			     err_mask);
1233 		if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
1234 			return -EACCES;
1235 		return -EIO;
1236 	}
1237 
1238 	if (lba48)
1239 		*max_sectors = ata_tf_to_lba48(&tf) + 1;
1240 	else
1241 		*max_sectors = ata_tf_to_lba(&tf) + 1;
1242 	if (dev->quirks & ATA_QUIRK_HPA_SIZE)
1243 		(*max_sectors)--;
1244 	return 0;
1245 }
1246 
1247 /**
1248  *	ata_set_max_sectors - Set max sectors
1249  *	@dev: target device
1250  *	@new_sectors: new max sectors value to set for the device
1251  *
1252  *	Set max sectors of @dev to @new_sectors.
1253  *
1254  *	RETURNS:
1255  *	0 on success, -EACCES if command is aborted or denied (due to
1256  *	previous non-volatile SET_MAX) by the drive.  -EIO on other
1257  *	errors.
1258  */
ata_set_max_sectors(struct ata_device * dev,u64 new_sectors)1259 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1260 {
1261 	unsigned int err_mask;
1262 	struct ata_taskfile tf;
1263 	int lba48 = ata_id_has_lba48(dev->id);
1264 
1265 	new_sectors--;
1266 
1267 	ata_tf_init(dev, &tf);
1268 
1269 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1270 
1271 	if (lba48) {
1272 		tf.command = ATA_CMD_SET_MAX_EXT;
1273 		tf.flags |= ATA_TFLAG_LBA48;
1274 
1275 		tf.hob_lbal = (new_sectors >> 24) & 0xff;
1276 		tf.hob_lbam = (new_sectors >> 32) & 0xff;
1277 		tf.hob_lbah = (new_sectors >> 40) & 0xff;
1278 	} else {
1279 		tf.command = ATA_CMD_SET_MAX;
1280 
1281 		tf.device |= (new_sectors >> 24) & 0xf;
1282 	}
1283 
1284 	tf.protocol = ATA_PROT_NODATA;
1285 	tf.device |= ATA_LBA;
1286 
1287 	tf.lbal = (new_sectors >> 0) & 0xff;
1288 	tf.lbam = (new_sectors >> 8) & 0xff;
1289 	tf.lbah = (new_sectors >> 16) & 0xff;
1290 
1291 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1292 	if (err_mask) {
1293 		ata_dev_warn(dev,
1294 			     "failed to set max address (err_mask=0x%x)\n",
1295 			     err_mask);
1296 		if (err_mask == AC_ERR_DEV &&
1297 		    (tf.error & (ATA_ABORTED | ATA_IDNF)))
1298 			return -EACCES;
1299 		return -EIO;
1300 	}
1301 
1302 	return 0;
1303 }
1304 
1305 /**
1306  *	ata_hpa_resize		-	Resize a device with an HPA set
1307  *	@dev: Device to resize
1308  *
1309  *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
1310  *	it if required to the full size of the media. The caller must check
1311  *	the drive has the HPA feature set enabled.
1312  *
1313  *	RETURNS:
1314  *	0 on success, -errno on failure.
1315  */
ata_hpa_resize(struct ata_device * dev)1316 static int ata_hpa_resize(struct ata_device *dev)
1317 {
1318 	bool print_info = ata_dev_print_info(dev);
1319 	bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1320 	u64 sectors = ata_id_n_sectors(dev->id);
1321 	u64 native_sectors;
1322 	int rc;
1323 
1324 	/* do we need to do it? */
1325 	if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1326 	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1327 	    (dev->quirks & ATA_QUIRK_BROKEN_HPA))
1328 		return 0;
1329 
1330 	/* read native max address */
1331 	rc = ata_read_native_max_address(dev, &native_sectors);
1332 	if (rc) {
1333 		/* If device aborted the command or HPA isn't going to
1334 		 * be unlocked, skip HPA resizing.
1335 		 */
1336 		if (rc == -EACCES || !unlock_hpa) {
1337 			ata_dev_warn(dev,
1338 				     "HPA support seems broken, skipping HPA handling\n");
1339 			dev->quirks |= ATA_QUIRK_BROKEN_HPA;
1340 
1341 			/* we can continue if device aborted the command */
1342 			if (rc == -EACCES)
1343 				rc = 0;
1344 		}
1345 
1346 		return rc;
1347 	}
1348 	dev->n_native_sectors = native_sectors;
1349 
1350 	/* nothing to do? */
1351 	if (native_sectors <= sectors || !unlock_hpa) {
1352 		if (!print_info || native_sectors == sectors)
1353 			return 0;
1354 
1355 		if (native_sectors > sectors)
1356 			ata_dev_info(dev,
1357 				"HPA detected: current %llu, native %llu\n",
1358 				(unsigned long long)sectors,
1359 				(unsigned long long)native_sectors);
1360 		else if (native_sectors < sectors)
1361 			ata_dev_warn(dev,
1362 				"native sectors (%llu) is smaller than sectors (%llu)\n",
1363 				(unsigned long long)native_sectors,
1364 				(unsigned long long)sectors);
1365 		return 0;
1366 	}
1367 
1368 	/* let's unlock HPA */
1369 	rc = ata_set_max_sectors(dev, native_sectors);
1370 	if (rc == -EACCES) {
1371 		/* if device aborted the command, skip HPA resizing */
1372 		ata_dev_warn(dev,
1373 			     "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1374 			     (unsigned long long)sectors,
1375 			     (unsigned long long)native_sectors);
1376 		dev->quirks |= ATA_QUIRK_BROKEN_HPA;
1377 		return 0;
1378 	} else if (rc)
1379 		return rc;
1380 
1381 	/* re-read IDENTIFY data */
1382 	rc = ata_dev_reread_id(dev, 0);
1383 	if (rc) {
1384 		ata_dev_err(dev,
1385 			    "failed to re-read IDENTIFY data after HPA resizing\n");
1386 		return rc;
1387 	}
1388 
1389 	if (print_info) {
1390 		u64 new_sectors = ata_id_n_sectors(dev->id);
1391 		ata_dev_info(dev,
1392 			"HPA unlocked: %llu -> %llu, native %llu\n",
1393 			(unsigned long long)sectors,
1394 			(unsigned long long)new_sectors,
1395 			(unsigned long long)native_sectors);
1396 	}
1397 
1398 	return 0;
1399 }
1400 
1401 /**
1402  *	ata_dump_id - IDENTIFY DEVICE info debugging output
1403  *	@dev: device from which the information is fetched
1404  *	@id: IDENTIFY DEVICE page to dump
1405  *
1406  *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1407  *	page.
1408  *
1409  *	LOCKING:
1410  *	caller.
1411  */
1412 
ata_dump_id(struct ata_device * dev,const u16 * id)1413 static inline void ata_dump_id(struct ata_device *dev, const u16 *id)
1414 {
1415 	ata_dev_dbg(dev,
1416 		"49==0x%04x  53==0x%04x  63==0x%04x  64==0x%04x  75==0x%04x\n"
1417 		"80==0x%04x  81==0x%04x  82==0x%04x  83==0x%04x  84==0x%04x\n"
1418 		"88==0x%04x  93==0x%04x\n",
1419 		id[49], id[53], id[63], id[64], id[75], id[80],
1420 		id[81], id[82], id[83], id[84], id[88], id[93]);
1421 }
1422 
1423 /**
1424  *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1425  *	@id: IDENTIFY data to compute xfer mask from
1426  *
1427  *	Compute the xfermask for this device. This is not as trivial
1428  *	as it seems if we must consider early devices correctly.
1429  *
1430  *	FIXME: pre IDE drive timing (do we care ?).
1431  *
1432  *	LOCKING:
1433  *	None.
1434  *
1435  *	RETURNS:
1436  *	Computed xfermask
1437  */
ata_id_xfermask(const u16 * id)1438 unsigned int ata_id_xfermask(const u16 *id)
1439 {
1440 	unsigned int pio_mask, mwdma_mask, udma_mask;
1441 
1442 	/* Usual case. Word 53 indicates word 64 is valid */
1443 	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1444 		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1445 		pio_mask <<= 3;
1446 		pio_mask |= 0x7;
1447 	} else {
1448 		/* If word 64 isn't valid then Word 51 high byte holds
1449 		 * the PIO timing number for the maximum. Turn it into
1450 		 * a mask.
1451 		 */
1452 		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1453 		if (mode < 5)	/* Valid PIO range */
1454 			pio_mask = (2 << mode) - 1;
1455 		else
1456 			pio_mask = 1;
1457 
1458 		/* But wait.. there's more. Design your standards by
1459 		 * committee and you too can get a free iordy field to
1460 		 * process. However it is the speeds not the modes that
1461 		 * are supported... Note drivers using the timing API
1462 		 * will get this right anyway
1463 		 */
1464 	}
1465 
1466 	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1467 
1468 	if (ata_id_is_cfa(id)) {
1469 		/*
1470 		 *	Process compact flash extended modes
1471 		 */
1472 		int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1473 		int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1474 
1475 		if (pio)
1476 			pio_mask |= (1 << 5);
1477 		if (pio > 1)
1478 			pio_mask |= (1 << 6);
1479 		if (dma)
1480 			mwdma_mask |= (1 << 3);
1481 		if (dma > 1)
1482 			mwdma_mask |= (1 << 4);
1483 	}
1484 
1485 	udma_mask = 0;
1486 	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1487 		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1488 
1489 	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1490 }
1491 EXPORT_SYMBOL_GPL(ata_id_xfermask);
1492 
ata_qc_complete_internal(struct ata_queued_cmd * qc)1493 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1494 {
1495 	struct completion *waiting = qc->private_data;
1496 
1497 	complete(waiting);
1498 }
1499 
1500 /**
1501  *	ata_exec_internal - execute libata internal command
1502  *	@dev: Device to which the command is sent
1503  *	@tf: Taskfile registers for the command and the result
1504  *	@cdb: CDB for packet command
1505  *	@dma_dir: Data transfer direction of the command
1506  *	@buf: Data buffer of the command
1507  *	@buflen: Length of data buffer
1508  *	@timeout: Timeout in msecs (0 for default)
1509  *
1510  *	Executes libata internal command with timeout. @tf contains
1511  *	the command on entry and the result on return. Timeout and error
1512  *	conditions are reported via the return value. No recovery action
1513  *	is taken after a command times out. It is the caller's duty to
1514  *	clean up after timeout.
1515  *
1516  *	LOCKING:
1517  *	None.  Should be called with kernel context, might sleep.
1518  *
1519  *	RETURNS:
1520  *	Zero on success, AC_ERR_* mask on failure
1521  */
ata_exec_internal(struct ata_device * dev,struct ata_taskfile * tf,const u8 * cdb,enum dma_data_direction dma_dir,void * buf,unsigned int buflen,unsigned int timeout)1522 unsigned int ata_exec_internal(struct ata_device *dev, struct ata_taskfile *tf,
1523 			       const u8 *cdb, enum dma_data_direction dma_dir,
1524 			       void *buf, unsigned int buflen,
1525 			       unsigned int timeout)
1526 {
1527 	struct ata_link *link = dev->link;
1528 	struct ata_port *ap = link->ap;
1529 	u8 command = tf->command;
1530 	struct ata_queued_cmd *qc;
1531 	struct scatterlist sgl;
1532 	unsigned int preempted_tag;
1533 	u32 preempted_sactive;
1534 	u64 preempted_qc_active;
1535 	int preempted_nr_active_links;
1536 	bool auto_timeout = false;
1537 	DECLARE_COMPLETION_ONSTACK(wait);
1538 	unsigned long flags;
1539 	unsigned int err_mask;
1540 	int rc;
1541 
1542 	if (WARN_ON(dma_dir != DMA_NONE && !buf))
1543 		return AC_ERR_INVALID;
1544 
1545 	spin_lock_irqsave(ap->lock, flags);
1546 
1547 	/* No internal command while frozen */
1548 	if (ata_port_is_frozen(ap)) {
1549 		spin_unlock_irqrestore(ap->lock, flags);
1550 		return AC_ERR_SYSTEM;
1551 	}
1552 
1553 	/* Initialize internal qc */
1554 	qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL);
1555 
1556 	qc->tag = ATA_TAG_INTERNAL;
1557 	qc->hw_tag = 0;
1558 	qc->scsicmd = NULL;
1559 	qc->ap = ap;
1560 	qc->dev = dev;
1561 	ata_qc_reinit(qc);
1562 
1563 	preempted_tag = link->active_tag;
1564 	preempted_sactive = link->sactive;
1565 	preempted_qc_active = ap->qc_active;
1566 	preempted_nr_active_links = ap->nr_active_links;
1567 	link->active_tag = ATA_TAG_POISON;
1568 	link->sactive = 0;
1569 	ap->qc_active = 0;
1570 	ap->nr_active_links = 0;
1571 
1572 	/* Prepare and issue qc */
1573 	qc->tf = *tf;
1574 	if (cdb)
1575 		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1576 
1577 	/* Some SATA bridges need us to indicate data xfer direction */
1578 	if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1579 	    dma_dir == DMA_FROM_DEVICE)
1580 		qc->tf.feature |= ATAPI_DMADIR;
1581 
1582 	qc->flags |= ATA_QCFLAG_RESULT_TF;
1583 	qc->dma_dir = dma_dir;
1584 	if (dma_dir != DMA_NONE) {
1585 		sg_init_one(&sgl, buf, buflen);
1586 		ata_sg_init(qc, &sgl, 1);
1587 		qc->nbytes = buflen;
1588 	}
1589 
1590 	qc->private_data = &wait;
1591 	qc->complete_fn = ata_qc_complete_internal;
1592 
1593 	ata_qc_issue(qc);
1594 
1595 	spin_unlock_irqrestore(ap->lock, flags);
1596 
1597 	if (!timeout) {
1598 		if (ata_probe_timeout) {
1599 			timeout = ata_probe_timeout * 1000;
1600 		} else {
1601 			timeout = ata_internal_cmd_timeout(dev, command);
1602 			auto_timeout = true;
1603 		}
1604 	}
1605 
1606 	ata_eh_release(ap);
1607 
1608 	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1609 
1610 	ata_eh_acquire(ap);
1611 
1612 	ata_sff_flush_pio_task(ap);
1613 
1614 	if (!rc) {
1615 		/*
1616 		 * We are racing with irq here. If we lose, the following test
1617 		 * prevents us from completing the qc twice. If we win, the port
1618 		 * is frozen and will be cleaned up by ->post_internal_cmd().
1619 		 */
1620 		spin_lock_irqsave(ap->lock, flags);
1621 		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1622 			qc->err_mask |= AC_ERR_TIMEOUT;
1623 			ata_port_freeze(ap);
1624 			ata_dev_warn(dev, "qc timeout after %u msecs (cmd 0x%x)\n",
1625 				     timeout, command);
1626 		}
1627 		spin_unlock_irqrestore(ap->lock, flags);
1628 	}
1629 
1630 	if (ap->ops->post_internal_cmd)
1631 		ap->ops->post_internal_cmd(qc);
1632 
1633 	/* Perform minimal error analysis */
1634 	if (qc->flags & ATA_QCFLAG_EH) {
1635 		if (qc->result_tf.status & (ATA_ERR | ATA_DF))
1636 			qc->err_mask |= AC_ERR_DEV;
1637 
1638 		if (!qc->err_mask)
1639 			qc->err_mask |= AC_ERR_OTHER;
1640 
1641 		if (qc->err_mask & ~AC_ERR_OTHER)
1642 			qc->err_mask &= ~AC_ERR_OTHER;
1643 	} else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1644 		qc->result_tf.status |= ATA_SENSE;
1645 	}
1646 
1647 	/* Finish up */
1648 	spin_lock_irqsave(ap->lock, flags);
1649 
1650 	*tf = qc->result_tf;
1651 	err_mask = qc->err_mask;
1652 
1653 	ata_qc_free(qc);
1654 	link->active_tag = preempted_tag;
1655 	link->sactive = preempted_sactive;
1656 	ap->qc_active = preempted_qc_active;
1657 	ap->nr_active_links = preempted_nr_active_links;
1658 
1659 	spin_unlock_irqrestore(ap->lock, flags);
1660 
1661 	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1662 		ata_internal_cmd_timed_out(dev, command);
1663 
1664 	return err_mask;
1665 }
1666 
1667 /**
1668  *	ata_pio_need_iordy	-	check if iordy needed
1669  *	@adev: ATA device
1670  *
1671  *	Check if the current speed of the device requires IORDY. Used
1672  *	by various controllers for chip configuration.
1673  */
ata_pio_need_iordy(const struct ata_device * adev)1674 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1675 {
1676 	/* Don't set IORDY if we're preparing for reset.  IORDY may
1677 	 * lead to controller lock up on certain controllers if the
1678 	 * port is not occupied.  See bko#11703 for details.
1679 	 */
1680 	if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1681 		return 0;
1682 	/* Controller doesn't support IORDY.  Probably a pointless
1683 	 * check as the caller should know this.
1684 	 */
1685 	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1686 		return 0;
1687 	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1688 	if (ata_id_is_cfa(adev->id)
1689 	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1690 		return 0;
1691 	/* PIO3 and higher it is mandatory */
1692 	if (adev->pio_mode > XFER_PIO_2)
1693 		return 1;
1694 	/* We turn it on when possible */
1695 	if (ata_id_has_iordy(adev->id))
1696 		return 1;
1697 	return 0;
1698 }
1699 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
1700 
1701 /**
1702  *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
1703  *	@adev: ATA device
1704  *
1705  *	Compute the highest mode possible if we are not using iordy. Return
1706  *	-1 if no iordy mode is available.
1707  */
ata_pio_mask_no_iordy(const struct ata_device * adev)1708 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1709 {
1710 	/* If we have no drive specific rule, then PIO 2 is non IORDY */
1711 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
1712 		u16 pio = adev->id[ATA_ID_EIDE_PIO];
1713 		/* Is the speed faster than the drive allows non IORDY ? */
1714 		if (pio) {
1715 			/* This is cycle times not frequency - watch the logic! */
1716 			if (pio > 240)	/* PIO2 is 240nS per cycle */
1717 				return 3 << ATA_SHIFT_PIO;
1718 			return 7 << ATA_SHIFT_PIO;
1719 		}
1720 	}
1721 	return 3 << ATA_SHIFT_PIO;
1722 }
1723 
1724 /**
1725  *	ata_do_dev_read_id		-	default ID read method
1726  *	@dev: device
1727  *	@tf: proposed taskfile
1728  *	@id: data buffer
1729  *
1730  *	Issue the identify taskfile and hand back the buffer containing
1731  *	identify data. For some RAID controllers and for pre ATA devices
1732  *	this function is wrapped or replaced by the driver
1733  */
ata_do_dev_read_id(struct ata_device * dev,struct ata_taskfile * tf,__le16 * id)1734 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1735 				struct ata_taskfile *tf, __le16 *id)
1736 {
1737 	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1738 				     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1739 }
1740 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1741 
1742 /**
1743  *	ata_dev_read_id - Read ID data from the specified device
1744  *	@dev: target device
1745  *	@p_class: pointer to class of the target device (may be changed)
1746  *	@flags: ATA_READID_* flags
1747  *	@id: buffer to read IDENTIFY data into
1748  *
1749  *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
1750  *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1751  *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1752  *	for pre-ATA4 drives.
1753  *
1754  *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1755  *	now we abort if we hit that case.
1756  *
1757  *	LOCKING:
1758  *	Kernel thread context (may sleep)
1759  *
1760  *	RETURNS:
1761  *	0 on success, -errno otherwise.
1762  */
ata_dev_read_id(struct ata_device * dev,unsigned int * p_class,unsigned int flags,u16 * id)1763 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1764 		    unsigned int flags, u16 *id)
1765 {
1766 	struct ata_port *ap = dev->link->ap;
1767 	unsigned int class = *p_class;
1768 	struct ata_taskfile tf;
1769 	unsigned int err_mask = 0;
1770 	const char *reason;
1771 	bool is_semb = class == ATA_DEV_SEMB;
1772 	int may_fallback = 1, tried_spinup = 0;
1773 	int rc;
1774 
1775 retry:
1776 	ata_tf_init(dev, &tf);
1777 
1778 	switch (class) {
1779 	case ATA_DEV_SEMB:
1780 		class = ATA_DEV_ATA;	/* some hard drives report SEMB sig */
1781 		fallthrough;
1782 	case ATA_DEV_ATA:
1783 	case ATA_DEV_ZAC:
1784 		tf.command = ATA_CMD_ID_ATA;
1785 		break;
1786 	case ATA_DEV_ATAPI:
1787 		tf.command = ATA_CMD_ID_ATAPI;
1788 		break;
1789 	default:
1790 		rc = -ENODEV;
1791 		reason = "unsupported class";
1792 		goto err_out;
1793 	}
1794 
1795 	tf.protocol = ATA_PROT_PIO;
1796 
1797 	/* Some devices choke if TF registers contain garbage.  Make
1798 	 * sure those are properly initialized.
1799 	 */
1800 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1801 
1802 	/* Device presence detection is unreliable on some
1803 	 * controllers.  Always poll IDENTIFY if available.
1804 	 */
1805 	tf.flags |= ATA_TFLAG_POLLING;
1806 
1807 	if (ap->ops->read_id)
1808 		err_mask = ap->ops->read_id(dev, &tf, (__le16 *)id);
1809 	else
1810 		err_mask = ata_do_dev_read_id(dev, &tf, (__le16 *)id);
1811 
1812 	if (err_mask) {
1813 		if (err_mask & AC_ERR_NODEV_HINT) {
1814 			ata_dev_dbg(dev, "NODEV after polling detection\n");
1815 			return -ENOENT;
1816 		}
1817 
1818 		if (is_semb) {
1819 			ata_dev_info(dev,
1820 		     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1821 			/* SEMB is not supported yet */
1822 			*p_class = ATA_DEV_SEMB_UNSUP;
1823 			return 0;
1824 		}
1825 
1826 		if ((err_mask == AC_ERR_DEV) && (tf.error & ATA_ABORTED)) {
1827 			/* Device or controller might have reported
1828 			 * the wrong device class.  Give a shot at the
1829 			 * other IDENTIFY if the current one is
1830 			 * aborted by the device.
1831 			 */
1832 			if (may_fallback) {
1833 				may_fallback = 0;
1834 
1835 				if (class == ATA_DEV_ATA)
1836 					class = ATA_DEV_ATAPI;
1837 				else
1838 					class = ATA_DEV_ATA;
1839 				goto retry;
1840 			}
1841 
1842 			/* Control reaches here iff the device aborted
1843 			 * both flavors of IDENTIFYs which happens
1844 			 * sometimes with phantom devices.
1845 			 */
1846 			ata_dev_dbg(dev,
1847 				    "both IDENTIFYs aborted, assuming NODEV\n");
1848 			return -ENOENT;
1849 		}
1850 
1851 		rc = -EIO;
1852 		reason = "I/O error";
1853 		goto err_out;
1854 	}
1855 
1856 	if (dev->quirks & ATA_QUIRK_DUMP_ID) {
1857 		ata_dev_info(dev, "dumping IDENTIFY data, "
1858 			    "class=%d may_fallback=%d tried_spinup=%d\n",
1859 			    class, may_fallback, tried_spinup);
1860 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET,
1861 			       16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1862 	}
1863 
1864 	/* Falling back doesn't make sense if ID data was read
1865 	 * successfully at least once.
1866 	 */
1867 	may_fallback = 0;
1868 
1869 	swap_buf_le16(id, ATA_ID_WORDS);
1870 
1871 	/* sanity check */
1872 	rc = -EINVAL;
1873 	reason = "device reports invalid type";
1874 
1875 	if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1876 		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1877 			goto err_out;
1878 		if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1879 							ata_id_is_ata(id)) {
1880 			ata_dev_dbg(dev,
1881 				"host indicates ignore ATA devices, ignored\n");
1882 			return -ENOENT;
1883 		}
1884 	} else {
1885 		if (ata_id_is_ata(id))
1886 			goto err_out;
1887 	}
1888 
1889 	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1890 		tried_spinup = 1;
1891 		/*
1892 		 * Drive powered-up in standby mode, and requires a specific
1893 		 * SET_FEATURES spin-up subcommand before it will accept
1894 		 * anything other than the original IDENTIFY command.
1895 		 */
1896 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1897 		if (err_mask && id[2] != 0x738c) {
1898 			rc = -EIO;
1899 			reason = "SPINUP failed";
1900 			goto err_out;
1901 		}
1902 		/*
1903 		 * If the drive initially returned incomplete IDENTIFY info,
1904 		 * we now must reissue the IDENTIFY command.
1905 		 */
1906 		if (id[2] == 0x37c8)
1907 			goto retry;
1908 	}
1909 
1910 	if ((flags & ATA_READID_POSTRESET) &&
1911 	    (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
1912 		/*
1913 		 * The exact sequence expected by certain pre-ATA4 drives is:
1914 		 * SRST RESET
1915 		 * IDENTIFY (optional in early ATA)
1916 		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1917 		 * anything else..
1918 		 * Some drives were very specific about that exact sequence.
1919 		 *
1920 		 * Note that ATA4 says lba is mandatory so the second check
1921 		 * should never trigger.
1922 		 */
1923 		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1924 			err_mask = ata_dev_init_params(dev, id[3], id[6]);
1925 			if (err_mask) {
1926 				rc = -EIO;
1927 				reason = "INIT_DEV_PARAMS failed";
1928 				goto err_out;
1929 			}
1930 
1931 			/* current CHS translation info (id[53-58]) might be
1932 			 * changed. reread the identify device info.
1933 			 */
1934 			flags &= ~ATA_READID_POSTRESET;
1935 			goto retry;
1936 		}
1937 	}
1938 
1939 	*p_class = class;
1940 
1941 	return 0;
1942 
1943  err_out:
1944 	ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
1945 		     reason, err_mask);
1946 	return rc;
1947 }
1948 
ata_dev_power_init_tf(struct ata_device * dev,struct ata_taskfile * tf,bool set_active)1949 bool ata_dev_power_init_tf(struct ata_device *dev, struct ata_taskfile *tf,
1950 			   bool set_active)
1951 {
1952 	/* Only applies to ATA and ZAC devices */
1953 	if (dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC)
1954 		return false;
1955 
1956 	ata_tf_init(dev, tf);
1957 	tf->flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1958 	tf->protocol = ATA_PROT_NODATA;
1959 
1960 	if (set_active) {
1961 		/* VERIFY for 1 sector at lba=0 */
1962 		tf->command = ATA_CMD_VERIFY;
1963 		tf->nsect = 1;
1964 		if (dev->flags & ATA_DFLAG_LBA) {
1965 			tf->flags |= ATA_TFLAG_LBA;
1966 			tf->device |= ATA_LBA;
1967 		} else {
1968 			/* CHS */
1969 			tf->lbal = 0x1; /* sect */
1970 		}
1971 	} else {
1972 		tf->command = ATA_CMD_STANDBYNOW1;
1973 	}
1974 
1975 	return true;
1976 }
1977 
ata_dev_power_is_active(struct ata_device * dev)1978 static bool ata_dev_power_is_active(struct ata_device *dev)
1979 {
1980 	struct ata_taskfile tf;
1981 	unsigned int err_mask;
1982 
1983 	ata_tf_init(dev, &tf);
1984 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1985 	tf.protocol = ATA_PROT_NODATA;
1986 	tf.command = ATA_CMD_CHK_POWER;
1987 
1988 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1989 	if (err_mask) {
1990 		ata_dev_err(dev, "Check power mode failed (err_mask=0x%x)\n",
1991 			    err_mask);
1992 		/*
1993 		 * Assume we are in standby mode so that we always force a
1994 		 * spinup in ata_dev_power_set_active().
1995 		 */
1996 		return false;
1997 	}
1998 
1999 	ata_dev_dbg(dev, "Power mode: 0x%02x\n", tf.nsect);
2000 
2001 	/* Active or idle */
2002 	return tf.nsect == 0xff;
2003 }
2004 
2005 /**
2006  *	ata_dev_power_set_standby - Set a device power mode to standby
2007  *	@dev: target device
2008  *
2009  *	Issue a STANDBY IMMEDIATE command to set a device power mode to standby.
2010  *	For an HDD device, this spins down the disks.
2011  *
2012  *	LOCKING:
2013  *	Kernel thread context (may sleep).
2014  */
ata_dev_power_set_standby(struct ata_device * dev)2015 void ata_dev_power_set_standby(struct ata_device *dev)
2016 {
2017 	unsigned long ap_flags = dev->link->ap->flags;
2018 	struct ata_taskfile tf;
2019 	unsigned int err_mask;
2020 
2021 	/* If the device is already sleeping or in standby, do nothing. */
2022 	if ((dev->flags & ATA_DFLAG_SLEEPING) ||
2023 	    !ata_dev_power_is_active(dev))
2024 		return;
2025 
2026 	/*
2027 	 * Some odd clown BIOSes issue spindown on power off (ACPI S4 or S5)
2028 	 * causing some drives to spin up and down again. For these, do nothing
2029 	 * if we are being called on shutdown.
2030 	 */
2031 	if ((ap_flags & ATA_FLAG_NO_POWEROFF_SPINDOWN) &&
2032 	    system_state == SYSTEM_POWER_OFF)
2033 		return;
2034 
2035 	if ((ap_flags & ATA_FLAG_NO_HIBERNATE_SPINDOWN) &&
2036 	    system_entering_hibernation())
2037 		return;
2038 
2039 	/* Issue STANDBY IMMEDIATE command only if supported by the device */
2040 	if (!ata_dev_power_init_tf(dev, &tf, false))
2041 		return;
2042 
2043 	ata_dev_notice(dev, "Entering standby power mode\n");
2044 
2045 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
2046 	if (err_mask)
2047 		ata_dev_err(dev, "STANDBY IMMEDIATE failed (err_mask=0x%x)\n",
2048 			    err_mask);
2049 }
2050 
2051 /**
2052  *	ata_dev_power_set_active -  Set a device power mode to active
2053  *	@dev: target device
2054  *
2055  *	Issue a VERIFY command to enter to ensure that the device is in the
2056  *	active power mode. For a spun-down HDD (standby or idle power mode),
2057  *	the VERIFY command will complete after the disk spins up.
2058  *
2059  *	LOCKING:
2060  *	Kernel thread context (may sleep).
2061  */
ata_dev_power_set_active(struct ata_device * dev)2062 void ata_dev_power_set_active(struct ata_device *dev)
2063 {
2064 	struct ata_taskfile tf;
2065 	unsigned int err_mask;
2066 
2067 	/*
2068 	 * Issue READ VERIFY SECTORS command for 1 sector at lba=0 only
2069 	 * if supported by the device.
2070 	 */
2071 	if (!ata_dev_power_init_tf(dev, &tf, true))
2072 		return;
2073 
2074 	/*
2075 	 * Check the device power state & condition and force a spinup with
2076 	 * VERIFY command only if the drive is not already ACTIVE or IDLE.
2077 	 */
2078 	if (ata_dev_power_is_active(dev))
2079 		return;
2080 
2081 	ata_dev_notice(dev, "Entering active power mode\n");
2082 
2083 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
2084 	if (err_mask)
2085 		ata_dev_err(dev, "VERIFY failed (err_mask=0x%x)\n",
2086 			    err_mask);
2087 }
2088 
2089 /**
2090  *	ata_read_log_page - read a specific log page
2091  *	@dev: target device
2092  *	@log: log to read
2093  *	@page: page to read
2094  *	@buf: buffer to store read page
2095  *	@sectors: number of sectors to read
2096  *
2097  *	Read log page using READ_LOG_EXT command.
2098  *
2099  *	LOCKING:
2100  *	Kernel thread context (may sleep).
2101  *
2102  *	RETURNS:
2103  *	0 on success, AC_ERR_* mask otherwise.
2104  */
ata_read_log_page(struct ata_device * dev,u8 log,u8 page,void * buf,unsigned int sectors)2105 unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
2106 			       u8 page, void *buf, unsigned int sectors)
2107 {
2108 	unsigned long ap_flags = dev->link->ap->flags;
2109 	struct ata_taskfile tf;
2110 	unsigned int err_mask;
2111 	bool dma = false;
2112 
2113 	ata_dev_dbg(dev, "read log page - log 0x%x, page 0x%x\n", log, page);
2114 
2115 	/*
2116 	 * Return error without actually issuing the command on controllers
2117 	 * which e.g. lockup on a read log page.
2118 	 */
2119 	if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2120 		return AC_ERR_DEV;
2121 
2122 retry:
2123 	ata_tf_init(dev, &tf);
2124 	if (ata_dma_enabled(dev) && ata_id_has_read_log_dma_ext(dev->id) &&
2125 	    !(dev->quirks & ATA_QUIRK_NO_DMA_LOG)) {
2126 		tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2127 		tf.protocol = ATA_PROT_DMA;
2128 		dma = true;
2129 	} else {
2130 		tf.command = ATA_CMD_READ_LOG_EXT;
2131 		tf.protocol = ATA_PROT_PIO;
2132 		dma = false;
2133 	}
2134 	tf.lbal = log;
2135 	tf.lbam = page;
2136 	tf.nsect = sectors;
2137 	tf.hob_nsect = sectors >> 8;
2138 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2139 
2140 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2141 				     buf, sectors * ATA_SECT_SIZE, 0);
2142 
2143 	if (err_mask) {
2144 		if (dma) {
2145 			dev->quirks |= ATA_QUIRK_NO_DMA_LOG;
2146 			if (!ata_port_is_frozen(dev->link->ap))
2147 				goto retry;
2148 		}
2149 		ata_dev_err(dev,
2150 			    "Read log 0x%02x page 0x%02x failed, Emask 0x%x\n",
2151 			    (unsigned int)log, (unsigned int)page, err_mask);
2152 	}
2153 
2154 	return err_mask;
2155 }
2156 
ata_log_supported(struct ata_device * dev,u8 log)2157 static int ata_log_supported(struct ata_device *dev, u8 log)
2158 {
2159 	if (dev->quirks & ATA_QUIRK_NO_LOG_DIR)
2160 		return 0;
2161 
2162 	if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, dev->sector_buf, 1))
2163 		return 0;
2164 	return get_unaligned_le16(&dev->sector_buf[log * 2]);
2165 }
2166 
ata_identify_page_supported(struct ata_device * dev,u8 page)2167 static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2168 {
2169 	unsigned int err, i;
2170 
2171 	if (dev->quirks & ATA_QUIRK_NO_ID_DEV_LOG)
2172 		return false;
2173 
2174 	if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2175 		/*
2176 		 * IDENTIFY DEVICE data log is defined as mandatory starting
2177 		 * with ACS-3 (ATA version 10). Warn about the missing log
2178 		 * for drives which implement this ATA level or above.
2179 		 */
2180 		if (ata_id_major_version(dev->id) >= 10)
2181 			ata_dev_warn(dev,
2182 				"ATA Identify Device Log not supported\n");
2183 		dev->quirks |= ATA_QUIRK_NO_ID_DEV_LOG;
2184 		return false;
2185 	}
2186 
2187 	/*
2188 	 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2189 	 * supported.
2190 	 */
2191 	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0,
2192 				dev->sector_buf, 1);
2193 	if (err)
2194 		return false;
2195 
2196 	for (i = 0; i < dev->sector_buf[8]; i++) {
2197 		if (dev->sector_buf[9 + i] == page)
2198 			return true;
2199 	}
2200 
2201 	return false;
2202 }
2203 
ata_do_link_spd_quirk(struct ata_device * dev)2204 static int ata_do_link_spd_quirk(struct ata_device *dev)
2205 {
2206 	struct ata_link *plink = ata_dev_phys_link(dev);
2207 	u32 target, target_limit;
2208 
2209 	if (!sata_scr_valid(plink))
2210 		return 0;
2211 
2212 	if (dev->quirks & ATA_QUIRK_1_5_GBPS)
2213 		target = 1;
2214 	else
2215 		return 0;
2216 
2217 	target_limit = (1 << target) - 1;
2218 
2219 	/* if already on stricter limit, no need to push further */
2220 	if (plink->sata_spd_limit <= target_limit)
2221 		return 0;
2222 
2223 	plink->sata_spd_limit = target_limit;
2224 
2225 	/* Request another EH round by returning -EAGAIN if link is
2226 	 * going faster than the target speed.  Forward progress is
2227 	 * guaranteed by setting sata_spd_limit to target_limit above.
2228 	 */
2229 	if (plink->sata_spd > target) {
2230 		ata_dev_info(dev, "applying link speed limit quirk to %s\n",
2231 			     sata_spd_string(target));
2232 		return -EAGAIN;
2233 	}
2234 	return 0;
2235 }
2236 
ata_dev_knobble(struct ata_device * dev)2237 static inline bool ata_dev_knobble(struct ata_device *dev)
2238 {
2239 	struct ata_port *ap = dev->link->ap;
2240 
2241 	if (ata_dev_quirks(dev) & ATA_QUIRK_BRIDGE_OK)
2242 		return false;
2243 
2244 	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2245 }
2246 
ata_dev_config_ncq_send_recv(struct ata_device * dev)2247 static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2248 {
2249 	unsigned int err_mask;
2250 
2251 	if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2252 		ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2253 		return;
2254 	}
2255 	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2256 				     0, dev->sector_buf, 1);
2257 	if (!err_mask) {
2258 		u8 *cmds = dev->ncq_send_recv_cmds;
2259 
2260 		dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2261 		memcpy(cmds, dev->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2262 
2263 		if (dev->quirks & ATA_QUIRK_NO_NCQ_TRIM) {
2264 			ata_dev_dbg(dev, "disabling queued TRIM support\n");
2265 			cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2266 				~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2267 		}
2268 	}
2269 }
2270 
ata_dev_config_ncq_non_data(struct ata_device * dev)2271 static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2272 {
2273 	unsigned int err_mask;
2274 
2275 	if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2276 		ata_dev_warn(dev,
2277 			     "NCQ Non-Data Log not supported\n");
2278 		return;
2279 	}
2280 	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2281 				     0, dev->sector_buf, 1);
2282 	if (!err_mask)
2283 		memcpy(dev->ncq_non_data_cmds, dev->sector_buf,
2284 		       ATA_LOG_NCQ_NON_DATA_SIZE);
2285 }
2286 
ata_dev_config_ncq_prio(struct ata_device * dev)2287 static void ata_dev_config_ncq_prio(struct ata_device *dev)
2288 {
2289 	unsigned int err_mask;
2290 
2291 	if (!ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2292 		return;
2293 
2294 	err_mask = ata_read_log_page(dev,
2295 				     ATA_LOG_IDENTIFY_DEVICE,
2296 				     ATA_LOG_SATA_SETTINGS,
2297 				     dev->sector_buf, 1);
2298 	if (err_mask)
2299 		goto not_supported;
2300 
2301 	if (!(dev->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)))
2302 		goto not_supported;
2303 
2304 	dev->flags |= ATA_DFLAG_NCQ_PRIO;
2305 
2306 	return;
2307 
2308 not_supported:
2309 	dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLED;
2310 	dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2311 }
2312 
ata_dev_check_adapter(struct ata_device * dev,unsigned short vendor_id)2313 static bool ata_dev_check_adapter(struct ata_device *dev,
2314 				  unsigned short vendor_id)
2315 {
2316 	struct pci_dev *pcidev = NULL;
2317 	struct device *parent_dev = NULL;
2318 
2319 	for (parent_dev = dev->tdev.parent; parent_dev != NULL;
2320 	     parent_dev = parent_dev->parent) {
2321 		if (dev_is_pci(parent_dev)) {
2322 			pcidev = to_pci_dev(parent_dev);
2323 			if (pcidev->vendor == vendor_id)
2324 				return true;
2325 			break;
2326 		}
2327 	}
2328 
2329 	return false;
2330 }
2331 
ata_dev_config_ncq(struct ata_device * dev,char * desc,size_t desc_sz)2332 static int ata_dev_config_ncq(struct ata_device *dev,
2333 			       char *desc, size_t desc_sz)
2334 {
2335 	struct ata_port *ap = dev->link->ap;
2336 	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2337 	unsigned int err_mask;
2338 	char *aa_desc = "";
2339 
2340 	if (!ata_id_has_ncq(dev->id)) {
2341 		desc[0] = '\0';
2342 		return 0;
2343 	}
2344 	if (!IS_ENABLED(CONFIG_SATA_HOST))
2345 		return 0;
2346 	if (dev->quirks & ATA_QUIRK_NONCQ) {
2347 		snprintf(desc, desc_sz, "NCQ (not used)");
2348 		return 0;
2349 	}
2350 
2351 	if (dev->quirks & ATA_QUIRK_NO_NCQ_ON_ATI &&
2352 	    ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) {
2353 		snprintf(desc, desc_sz, "NCQ (not used)");
2354 		return 0;
2355 	}
2356 
2357 	if (ap->flags & ATA_FLAG_NCQ) {
2358 		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE);
2359 		dev->flags |= ATA_DFLAG_NCQ;
2360 	}
2361 
2362 	if (!(dev->quirks & ATA_QUIRK_BROKEN_FPDMA_AA) &&
2363 		(ap->flags & ATA_FLAG_FPDMA_AA) &&
2364 		ata_id_has_fpdma_aa(dev->id)) {
2365 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2366 			SATA_FPDMA_AA);
2367 		if (err_mask) {
2368 			ata_dev_err(dev,
2369 				    "failed to enable AA (error_mask=0x%x)\n",
2370 				    err_mask);
2371 			if (err_mask != AC_ERR_DEV) {
2372 				dev->quirks |= ATA_QUIRK_BROKEN_FPDMA_AA;
2373 				return -EIO;
2374 			}
2375 		} else
2376 			aa_desc = ", AA";
2377 	}
2378 
2379 	if (hdepth >= ddepth)
2380 		snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2381 	else
2382 		snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2383 			ddepth, aa_desc);
2384 
2385 	if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2386 		if (ata_id_has_ncq_send_and_recv(dev->id))
2387 			ata_dev_config_ncq_send_recv(dev);
2388 		if (ata_id_has_ncq_non_data(dev->id))
2389 			ata_dev_config_ncq_non_data(dev);
2390 		if (ata_id_has_ncq_prio(dev->id))
2391 			ata_dev_config_ncq_prio(dev);
2392 	}
2393 
2394 	return 0;
2395 }
2396 
ata_dev_config_sense_reporting(struct ata_device * dev)2397 static void ata_dev_config_sense_reporting(struct ata_device *dev)
2398 {
2399 	unsigned int err_mask;
2400 
2401 	if (!ata_id_has_sense_reporting(dev->id))
2402 		return;
2403 
2404 	if (ata_id_sense_reporting_enabled(dev->id))
2405 		return;
2406 
2407 	err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2408 	if (err_mask) {
2409 		ata_dev_dbg(dev,
2410 			    "failed to enable Sense Data Reporting, Emask 0x%x\n",
2411 			    err_mask);
2412 	}
2413 }
2414 
ata_dev_config_zac(struct ata_device * dev)2415 static void ata_dev_config_zac(struct ata_device *dev)
2416 {
2417 	unsigned int err_mask;
2418 	u8 *identify_buf = dev->sector_buf;
2419 
2420 	dev->zac_zones_optimal_open = U32_MAX;
2421 	dev->zac_zones_optimal_nonseq = U32_MAX;
2422 	dev->zac_zones_max_open = U32_MAX;
2423 
2424 	/*
2425 	 * Always set the 'ZAC' flag for Host-managed devices.
2426 	 */
2427 	if (dev->class == ATA_DEV_ZAC)
2428 		dev->flags |= ATA_DFLAG_ZAC;
2429 	else if (ata_id_zoned_cap(dev->id) == 0x01)
2430 		/*
2431 		 * Check for host-aware devices.
2432 		 */
2433 		dev->flags |= ATA_DFLAG_ZAC;
2434 
2435 	if (!(dev->flags & ATA_DFLAG_ZAC))
2436 		return;
2437 
2438 	if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2439 		ata_dev_warn(dev,
2440 			     "ATA Zoned Information Log not supported\n");
2441 		return;
2442 	}
2443 
2444 	/*
2445 	 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2446 	 */
2447 	err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2448 				     ATA_LOG_ZONED_INFORMATION,
2449 				     identify_buf, 1);
2450 	if (!err_mask) {
2451 		u64 zoned_cap, opt_open, opt_nonseq, max_open;
2452 
2453 		zoned_cap = get_unaligned_le64(&identify_buf[8]);
2454 		if ((zoned_cap >> 63))
2455 			dev->zac_zoned_cap = (zoned_cap & 1);
2456 		opt_open = get_unaligned_le64(&identify_buf[24]);
2457 		if ((opt_open >> 63))
2458 			dev->zac_zones_optimal_open = (u32)opt_open;
2459 		opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2460 		if ((opt_nonseq >> 63))
2461 			dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2462 		max_open = get_unaligned_le64(&identify_buf[40]);
2463 		if ((max_open >> 63))
2464 			dev->zac_zones_max_open = (u32)max_open;
2465 	}
2466 }
2467 
ata_dev_config_trusted(struct ata_device * dev)2468 static void ata_dev_config_trusted(struct ata_device *dev)
2469 {
2470 	u64 trusted_cap;
2471 	unsigned int err;
2472 
2473 	if (!ata_id_has_trusted(dev->id))
2474 		return;
2475 
2476 	if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2477 		ata_dev_warn(dev,
2478 			     "Security Log not supported\n");
2479 		return;
2480 	}
2481 
2482 	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2483 				dev->sector_buf, 1);
2484 	if (err)
2485 		return;
2486 
2487 	trusted_cap = get_unaligned_le64(&dev->sector_buf[40]);
2488 	if (!(trusted_cap & (1ULL << 63))) {
2489 		ata_dev_dbg(dev,
2490 			    "Trusted Computing capability qword not valid!\n");
2491 		return;
2492 	}
2493 
2494 	if (trusted_cap & (1 << 0))
2495 		dev->flags |= ATA_DFLAG_TRUSTED;
2496 }
2497 
ata_dev_cleanup_cdl_resources(struct ata_device * dev)2498 void ata_dev_cleanup_cdl_resources(struct ata_device *dev)
2499 {
2500 	kfree(dev->cdl);
2501 	dev->cdl = NULL;
2502 }
2503 
ata_dev_init_cdl_resources(struct ata_device * dev)2504 static int ata_dev_init_cdl_resources(struct ata_device *dev)
2505 {
2506 	struct ata_cdl *cdl = dev->cdl;
2507 	unsigned int err_mask;
2508 
2509 	if (!cdl) {
2510 		cdl = kzalloc(sizeof(*cdl), GFP_KERNEL);
2511 		if (!cdl)
2512 			return -ENOMEM;
2513 		dev->cdl = cdl;
2514 	}
2515 
2516 	err_mask = ata_read_log_page(dev, ATA_LOG_CDL, 0, cdl->desc_log_buf,
2517 				     ATA_LOG_CDL_SIZE / ATA_SECT_SIZE);
2518 	if (err_mask) {
2519 		ata_dev_warn(dev, "Read Command Duration Limits log failed\n");
2520 		ata_dev_cleanup_cdl_resources(dev);
2521 		return -EIO;
2522 	}
2523 
2524 	return 0;
2525 }
2526 
ata_dev_config_cdl(struct ata_device * dev)2527 static void ata_dev_config_cdl(struct ata_device *dev)
2528 {
2529 	unsigned int err_mask;
2530 	bool cdl_enabled;
2531 	u64 val;
2532 	int ret;
2533 
2534 	if (ata_id_major_version(dev->id) < 11)
2535 		goto not_supported;
2536 
2537 	if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE) ||
2538 	    !ata_identify_page_supported(dev, ATA_LOG_SUPPORTED_CAPABILITIES) ||
2539 	    !ata_identify_page_supported(dev, ATA_LOG_CURRENT_SETTINGS))
2540 		goto not_supported;
2541 
2542 	err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2543 				     ATA_LOG_SUPPORTED_CAPABILITIES,
2544 				     dev->sector_buf, 1);
2545 	if (err_mask)
2546 		goto not_supported;
2547 
2548 	/* Check Command Duration Limit Supported bits */
2549 	val = get_unaligned_le64(&dev->sector_buf[168]);
2550 	if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(0)))
2551 		goto not_supported;
2552 
2553 	/* Warn the user if command duration guideline is not supported */
2554 	if (!(val & BIT_ULL(1)))
2555 		ata_dev_warn(dev,
2556 			"Command duration guideline is not supported\n");
2557 
2558 	/*
2559 	 * We must have support for the sense data for successful NCQ commands
2560 	 * log indicated by the successful NCQ command sense data supported bit.
2561 	 */
2562 	val = get_unaligned_le64(&dev->sector_buf[8]);
2563 	if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(47))) {
2564 		ata_dev_warn(dev,
2565 			"CDL supported but Successful NCQ Command Sense Data is not supported\n");
2566 		goto not_supported;
2567 	}
2568 
2569 	/* Without NCQ autosense, the successful NCQ commands log is useless. */
2570 	if (!ata_id_has_ncq_autosense(dev->id)) {
2571 		ata_dev_warn(dev,
2572 			"CDL supported but NCQ autosense is not supported\n");
2573 		goto not_supported;
2574 	}
2575 
2576 	/*
2577 	 * If CDL is marked as enabled, make sure the feature is enabled too.
2578 	 * Conversely, if CDL is disabled, make sure the feature is turned off.
2579 	 */
2580 	err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2581 				     ATA_LOG_CURRENT_SETTINGS,
2582 				     dev->sector_buf, 1);
2583 	if (err_mask)
2584 		goto not_supported;
2585 
2586 	val = get_unaligned_le64(&dev->sector_buf[8]);
2587 	cdl_enabled = val & BIT_ULL(63) && val & BIT_ULL(21);
2588 	if (dev->flags & ATA_DFLAG_CDL_ENABLED) {
2589 		if (!cdl_enabled) {
2590 			/* Enable CDL on the device */
2591 			err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 1);
2592 			if (err_mask) {
2593 				ata_dev_err(dev,
2594 					    "Enable CDL feature failed\n");
2595 				goto not_supported;
2596 			}
2597 		}
2598 	} else {
2599 		if (cdl_enabled) {
2600 			/* Disable CDL on the device */
2601 			err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 0);
2602 			if (err_mask) {
2603 				ata_dev_err(dev,
2604 					    "Disable CDL feature failed\n");
2605 				goto not_supported;
2606 			}
2607 		}
2608 	}
2609 
2610 	/*
2611 	 * While CDL itself has to be enabled using sysfs, CDL requires that
2612 	 * sense data for successful NCQ commands is enabled to work properly.
2613 	 * Just like ata_dev_config_sense_reporting(), enable it unconditionally
2614 	 * if supported.
2615 	 */
2616 	if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(18))) {
2617 		err_mask = ata_dev_set_feature(dev,
2618 					SETFEATURE_SENSE_DATA_SUCC_NCQ, 0x1);
2619 		if (err_mask) {
2620 			ata_dev_warn(dev,
2621 				     "failed to enable Sense Data for successful NCQ commands, Emask 0x%x\n",
2622 				     err_mask);
2623 			goto not_supported;
2624 		}
2625 	}
2626 
2627 	/* CDL is supported: allocate and initialize needed resources. */
2628 	ret = ata_dev_init_cdl_resources(dev);
2629 	if (ret) {
2630 		ata_dev_warn(dev, "Initialize CDL resources failed\n");
2631 		goto not_supported;
2632 	}
2633 
2634 	dev->flags |= ATA_DFLAG_CDL;
2635 
2636 	return;
2637 
2638 not_supported:
2639 	dev->flags &= ~(ATA_DFLAG_CDL | ATA_DFLAG_CDL_ENABLED);
2640 	ata_dev_cleanup_cdl_resources(dev);
2641 }
2642 
ata_dev_config_lba(struct ata_device * dev)2643 static int ata_dev_config_lba(struct ata_device *dev)
2644 {
2645 	const u16 *id = dev->id;
2646 	const char *lba_desc;
2647 	char ncq_desc[32];
2648 	int ret;
2649 
2650 	dev->flags |= ATA_DFLAG_LBA;
2651 
2652 	if (ata_id_has_lba48(id)) {
2653 		lba_desc = "LBA48";
2654 		dev->flags |= ATA_DFLAG_LBA48;
2655 		if (dev->n_sectors >= (1UL << 28) &&
2656 		    ata_id_has_flush_ext(id))
2657 			dev->flags |= ATA_DFLAG_FLUSH_EXT;
2658 	} else {
2659 		lba_desc = "LBA";
2660 	}
2661 
2662 	/* config NCQ */
2663 	ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2664 
2665 	/* print device info to dmesg */
2666 	if (ata_dev_print_info(dev))
2667 		ata_dev_info(dev,
2668 			     "%llu sectors, multi %u: %s %s\n",
2669 			     (unsigned long long)dev->n_sectors,
2670 			     dev->multi_count, lba_desc, ncq_desc);
2671 
2672 	return ret;
2673 }
2674 
ata_dev_config_chs(struct ata_device * dev)2675 static void ata_dev_config_chs(struct ata_device *dev)
2676 {
2677 	const u16 *id = dev->id;
2678 
2679 	if (ata_id_current_chs_valid(id)) {
2680 		/* Current CHS translation is valid. */
2681 		dev->cylinders = id[54];
2682 		dev->heads     = id[55];
2683 		dev->sectors   = id[56];
2684 	} else {
2685 		/* Default translation */
2686 		dev->cylinders	= id[1];
2687 		dev->heads	= id[3];
2688 		dev->sectors	= id[6];
2689 	}
2690 
2691 	/* print device info to dmesg */
2692 	if (ata_dev_print_info(dev))
2693 		ata_dev_info(dev,
2694 			     "%llu sectors, multi %u, CHS %u/%u/%u\n",
2695 			     (unsigned long long)dev->n_sectors,
2696 			     dev->multi_count, dev->cylinders,
2697 			     dev->heads, dev->sectors);
2698 }
2699 
ata_dev_config_fua(struct ata_device * dev)2700 static void ata_dev_config_fua(struct ata_device *dev)
2701 {
2702 	/* Ignore FUA support if its use is disabled globally */
2703 	if (!libata_fua)
2704 		goto nofua;
2705 
2706 	/* Ignore devices without support for WRITE DMA FUA EXT */
2707 	if (!(dev->flags & ATA_DFLAG_LBA48) || !ata_id_has_fua(dev->id))
2708 		goto nofua;
2709 
2710 	/* Ignore known bad devices and devices that lack NCQ support */
2711 	if (!ata_ncq_supported(dev) || (dev->quirks & ATA_QUIRK_NO_FUA))
2712 		goto nofua;
2713 
2714 	dev->flags |= ATA_DFLAG_FUA;
2715 
2716 	return;
2717 
2718 nofua:
2719 	dev->flags &= ~ATA_DFLAG_FUA;
2720 }
2721 
ata_dev_config_devslp(struct ata_device * dev)2722 static void ata_dev_config_devslp(struct ata_device *dev)
2723 {
2724 	u8 *sata_setting = dev->sector_buf;
2725 	unsigned int err_mask;
2726 	int i, j;
2727 
2728 	/*
2729 	 * Check device sleep capability. Get DevSlp timing variables
2730 	 * from SATA Settings page of Identify Device Data Log.
2731 	 */
2732 	if (!ata_id_has_devslp(dev->id) ||
2733 	    !ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2734 		return;
2735 
2736 	err_mask = ata_read_log_page(dev,
2737 				     ATA_LOG_IDENTIFY_DEVICE,
2738 				     ATA_LOG_SATA_SETTINGS,
2739 				     sata_setting, 1);
2740 	if (err_mask)
2741 		return;
2742 
2743 	dev->flags |= ATA_DFLAG_DEVSLP;
2744 	for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2745 		j = ATA_LOG_DEVSLP_OFFSET + i;
2746 		dev->devslp_timing[i] = sata_setting[j];
2747 	}
2748 }
2749 
ata_dev_config_cpr(struct ata_device * dev)2750 static void ata_dev_config_cpr(struct ata_device *dev)
2751 {
2752 	unsigned int err_mask;
2753 	size_t buf_len;
2754 	int i, nr_cpr = 0;
2755 	struct ata_cpr_log *cpr_log = NULL;
2756 	u8 *desc, *buf = NULL;
2757 
2758 	if (ata_id_major_version(dev->id) < 11)
2759 		goto out;
2760 
2761 	buf_len = ata_log_supported(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES);
2762 	if (buf_len == 0)
2763 		goto out;
2764 
2765 	/*
2766 	 * Read the concurrent positioning ranges log (0x47). We can have at
2767 	 * most 255 32B range descriptors plus a 64B header. This log varies in
2768 	 * size, so use the size reported in the GPL directory. Reading beyond
2769 	 * the supported length will result in an error.
2770 	 */
2771 	buf_len <<= 9;
2772 	buf = kzalloc(buf_len, GFP_KERNEL);
2773 	if (!buf)
2774 		goto out;
2775 
2776 	err_mask = ata_read_log_page(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES,
2777 				     0, buf, buf_len >> 9);
2778 	if (err_mask)
2779 		goto out;
2780 
2781 	nr_cpr = buf[0];
2782 	if (!nr_cpr)
2783 		goto out;
2784 
2785 	cpr_log = kzalloc(struct_size(cpr_log, cpr, nr_cpr), GFP_KERNEL);
2786 	if (!cpr_log)
2787 		goto out;
2788 
2789 	cpr_log->nr_cpr = nr_cpr;
2790 	desc = &buf[64];
2791 	for (i = 0; i < nr_cpr; i++, desc += 32) {
2792 		cpr_log->cpr[i].num = desc[0];
2793 		cpr_log->cpr[i].num_storage_elements = desc[1];
2794 		cpr_log->cpr[i].start_lba = get_unaligned_le64(&desc[8]);
2795 		cpr_log->cpr[i].num_lbas = get_unaligned_le64(&desc[16]);
2796 	}
2797 
2798 out:
2799 	swap(dev->cpr_log, cpr_log);
2800 	kfree(cpr_log);
2801 	kfree(buf);
2802 }
2803 
ata_dev_print_features(struct ata_device * dev)2804 static void ata_dev_print_features(struct ata_device *dev)
2805 {
2806 	if (!(dev->flags & ATA_DFLAG_FEATURES_MASK))
2807 		return;
2808 
2809 	ata_dev_info(dev,
2810 		     "Features:%s%s%s%s%s%s%s%s\n",
2811 		     dev->flags & ATA_DFLAG_FUA ? " FUA" : "",
2812 		     dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "",
2813 		     dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "",
2814 		     dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "",
2815 		     dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "",
2816 		     dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "",
2817 		     dev->flags & ATA_DFLAG_CDL ? " CDL" : "",
2818 		     dev->cpr_log ? " CPR" : "");
2819 }
2820 
2821 /**
2822  *	ata_dev_configure - Configure the specified ATA/ATAPI device
2823  *	@dev: Target device to configure
2824  *
2825  *	Configure @dev according to @dev->id.  Generic and low-level
2826  *	driver specific fixups are also applied.
2827  *
2828  *	LOCKING:
2829  *	Kernel thread context (may sleep)
2830  *
2831  *	RETURNS:
2832  *	0 on success, -errno otherwise
2833  */
ata_dev_configure(struct ata_device * dev)2834 int ata_dev_configure(struct ata_device *dev)
2835 {
2836 	struct ata_port *ap = dev->link->ap;
2837 	bool print_info = ata_dev_print_info(dev);
2838 	const u16 *id = dev->id;
2839 	unsigned int xfer_mask;
2840 	unsigned int err_mask;
2841 	char revbuf[7];		/* XYZ-99\0 */
2842 	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2843 	char modelbuf[ATA_ID_PROD_LEN+1];
2844 	int rc;
2845 
2846 	if (!ata_dev_enabled(dev)) {
2847 		ata_dev_dbg(dev, "no device\n");
2848 		return 0;
2849 	}
2850 
2851 	/* Set quirks */
2852 	dev->quirks |= ata_dev_quirks(dev);
2853 	ata_force_quirks(dev);
2854 
2855 	if (dev->quirks & ATA_QUIRK_DISABLE) {
2856 		ata_dev_info(dev, "unsupported device, disabling\n");
2857 		ata_dev_disable(dev);
2858 		return 0;
2859 	}
2860 
2861 	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2862 	    dev->class == ATA_DEV_ATAPI) {
2863 		ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2864 			     atapi_enabled ? "not supported with this driver"
2865 			     : "disabled");
2866 		ata_dev_disable(dev);
2867 		return 0;
2868 	}
2869 
2870 	rc = ata_do_link_spd_quirk(dev);
2871 	if (rc)
2872 		return rc;
2873 
2874 	/* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2875 	if ((dev->quirks & ATA_QUIRK_WD_BROKEN_LPM) &&
2876 	    (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2877 		dev->quirks |= ATA_QUIRK_NOLPM;
2878 
2879 	if (dev->quirks & ATA_QUIRK_NO_LPM_ON_ATI &&
2880 	    ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI))
2881 		dev->quirks |= ATA_QUIRK_NOLPM;
2882 
2883 	if (ap->flags & ATA_FLAG_NO_LPM)
2884 		dev->quirks |= ATA_QUIRK_NOLPM;
2885 
2886 	if (dev->quirks & ATA_QUIRK_NOLPM) {
2887 		ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2888 		dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2889 	}
2890 
2891 	/* let ACPI work its magic */
2892 	rc = ata_acpi_on_devcfg(dev);
2893 	if (rc)
2894 		return rc;
2895 
2896 	/* massage HPA, do it early as it might change IDENTIFY data */
2897 	rc = ata_hpa_resize(dev);
2898 	if (rc)
2899 		return rc;
2900 
2901 	/* print device capabilities */
2902 	ata_dev_dbg(dev,
2903 		    "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2904 		    "85:%04x 86:%04x 87:%04x 88:%04x\n",
2905 		    __func__,
2906 		    id[49], id[82], id[83], id[84],
2907 		    id[85], id[86], id[87], id[88]);
2908 
2909 	/* initialize to-be-configured parameters */
2910 	dev->flags &= ~ATA_DFLAG_CFG_MASK;
2911 	dev->max_sectors = 0;
2912 	dev->cdb_len = 0;
2913 	dev->n_sectors = 0;
2914 	dev->cylinders = 0;
2915 	dev->heads = 0;
2916 	dev->sectors = 0;
2917 	dev->multi_count = 0;
2918 
2919 	/*
2920 	 * common ATA, ATAPI feature tests
2921 	 */
2922 
2923 	/* find max transfer mode; for printk only */
2924 	xfer_mask = ata_id_xfermask(id);
2925 
2926 	ata_dump_id(dev, id);
2927 
2928 	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2929 	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2930 			sizeof(fwrevbuf));
2931 
2932 	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2933 			sizeof(modelbuf));
2934 
2935 	/* ATA-specific feature tests */
2936 	if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2937 		if (ata_id_is_cfa(id)) {
2938 			/* CPRM may make this media unusable */
2939 			if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2940 				ata_dev_warn(dev,
2941 	"supports DRM functions and may not be fully accessible\n");
2942 			snprintf(revbuf, 7, "CFA");
2943 		} else {
2944 			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2945 			/* Warn the user if the device has TPM extensions */
2946 			if (ata_id_has_tpm(id))
2947 				ata_dev_warn(dev,
2948 	"supports DRM functions and may not be fully accessible\n");
2949 		}
2950 
2951 		dev->n_sectors = ata_id_n_sectors(id);
2952 
2953 		/* get current R/W Multiple count setting */
2954 		if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2955 			unsigned int max = dev->id[47] & 0xff;
2956 			unsigned int cnt = dev->id[59] & 0xff;
2957 			/* only recognize/allow powers of two here */
2958 			if (is_power_of_2(max) && is_power_of_2(cnt))
2959 				if (cnt <= max)
2960 					dev->multi_count = cnt;
2961 		}
2962 
2963 		/* print device info to dmesg */
2964 		if (print_info)
2965 			ata_dev_info(dev, "%s: %s, %s, max %s\n",
2966 				     revbuf, modelbuf, fwrevbuf,
2967 				     ata_mode_string(xfer_mask));
2968 
2969 		if (ata_id_has_lba(id)) {
2970 			rc = ata_dev_config_lba(dev);
2971 			if (rc)
2972 				return rc;
2973 		} else {
2974 			ata_dev_config_chs(dev);
2975 		}
2976 
2977 		ata_dev_config_fua(dev);
2978 		ata_dev_config_devslp(dev);
2979 		ata_dev_config_sense_reporting(dev);
2980 		ata_dev_config_zac(dev);
2981 		ata_dev_config_trusted(dev);
2982 		ata_dev_config_cpr(dev);
2983 		ata_dev_config_cdl(dev);
2984 		dev->cdb_len = 32;
2985 
2986 		if (print_info)
2987 			ata_dev_print_features(dev);
2988 	}
2989 
2990 	/* ATAPI-specific feature tests */
2991 	else if (dev->class == ATA_DEV_ATAPI) {
2992 		const char *cdb_intr_string = "";
2993 		const char *atapi_an_string = "";
2994 		const char *dma_dir_string = "";
2995 		u32 sntf;
2996 
2997 		rc = atapi_cdb_len(id);
2998 		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2999 			ata_dev_warn(dev, "unsupported CDB len %d\n", rc);
3000 			rc = -EINVAL;
3001 			goto err_out_nosup;
3002 		}
3003 		dev->cdb_len = (unsigned int) rc;
3004 
3005 		/* Enable ATAPI AN if both the host and device have
3006 		 * the support.  If PMP is attached, SNTF is required
3007 		 * to enable ATAPI AN to discern between PHY status
3008 		 * changed notifications and ATAPI ANs.
3009 		 */
3010 		if (atapi_an &&
3011 		    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
3012 		    (!sata_pmp_attached(ap) ||
3013 		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
3014 			/* issue SET feature command to turn this on */
3015 			err_mask = ata_dev_set_feature(dev,
3016 					SETFEATURES_SATA_ENABLE, SATA_AN);
3017 			if (err_mask)
3018 				ata_dev_err(dev,
3019 					    "failed to enable ATAPI AN (err_mask=0x%x)\n",
3020 					    err_mask);
3021 			else {
3022 				dev->flags |= ATA_DFLAG_AN;
3023 				atapi_an_string = ", ATAPI AN";
3024 			}
3025 		}
3026 
3027 		if (ata_id_cdb_intr(dev->id)) {
3028 			dev->flags |= ATA_DFLAG_CDB_INTR;
3029 			cdb_intr_string = ", CDB intr";
3030 		}
3031 
3032 		if (atapi_dmadir || (dev->quirks & ATA_QUIRK_ATAPI_DMADIR) ||
3033 		    atapi_id_dmadir(dev->id)) {
3034 			dev->flags |= ATA_DFLAG_DMADIR;
3035 			dma_dir_string = ", DMADIR";
3036 		}
3037 
3038 		if (ata_id_has_da(dev->id)) {
3039 			dev->flags |= ATA_DFLAG_DA;
3040 			zpodd_init(dev);
3041 		}
3042 
3043 		/* print device info to dmesg */
3044 		if (print_info)
3045 			ata_dev_info(dev,
3046 				     "ATAPI: %s, %s, max %s%s%s%s\n",
3047 				     modelbuf, fwrevbuf,
3048 				     ata_mode_string(xfer_mask),
3049 				     cdb_intr_string, atapi_an_string,
3050 				     dma_dir_string);
3051 	}
3052 
3053 	/* determine max_sectors */
3054 	dev->max_sectors = ATA_MAX_SECTORS;
3055 	if (dev->flags & ATA_DFLAG_LBA48)
3056 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
3057 
3058 	/* Limit PATA drive on SATA cable bridge transfers to udma5,
3059 	   200 sectors */
3060 	if (ata_dev_knobble(dev)) {
3061 		if (print_info)
3062 			ata_dev_info(dev, "applying bridge limits\n");
3063 		dev->udma_mask &= ATA_UDMA5;
3064 		dev->max_sectors = ATA_MAX_SECTORS;
3065 	}
3066 
3067 	if ((dev->class == ATA_DEV_ATAPI) &&
3068 	    (atapi_command_packet_set(id) == TYPE_TAPE)) {
3069 		dev->max_sectors = ATA_MAX_SECTORS_TAPE;
3070 		dev->quirks |= ATA_QUIRK_STUCK_ERR;
3071 	}
3072 
3073 	if (dev->quirks & ATA_QUIRK_MAX_SEC_128)
3074 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
3075 					 dev->max_sectors);
3076 
3077 	if (dev->quirks & ATA_QUIRK_MAX_SEC_1024)
3078 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
3079 					 dev->max_sectors);
3080 
3081 	if (dev->quirks & ATA_QUIRK_MAX_SEC_LBA48)
3082 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
3083 
3084 	if (ap->ops->dev_config)
3085 		ap->ops->dev_config(dev);
3086 
3087 	if (dev->quirks & ATA_QUIRK_DIAGNOSTIC) {
3088 		/* Let the user know. We don't want to disallow opens for
3089 		   rescue purposes, or in case the vendor is just a blithering
3090 		   idiot. Do this after the dev_config call as some controllers
3091 		   with buggy firmware may want to avoid reporting false device
3092 		   bugs */
3093 
3094 		if (print_info) {
3095 			ata_dev_warn(dev,
3096 "Drive reports diagnostics failure. This may indicate a drive\n");
3097 			ata_dev_warn(dev,
3098 "fault or invalid emulation. Contact drive vendor for information.\n");
3099 		}
3100 	}
3101 
3102 	if ((dev->quirks & ATA_QUIRK_FIRMWARE_WARN) && print_info) {
3103 		ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
3104 		ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
3105 	}
3106 
3107 	return 0;
3108 
3109 err_out_nosup:
3110 	return rc;
3111 }
3112 
3113 /**
3114  *	ata_cable_40wire	-	return 40 wire cable type
3115  *	@ap: port
3116  *
3117  *	Helper method for drivers which want to hardwire 40 wire cable
3118  *	detection.
3119  */
3120 
ata_cable_40wire(struct ata_port * ap)3121 int ata_cable_40wire(struct ata_port *ap)
3122 {
3123 	return ATA_CBL_PATA40;
3124 }
3125 EXPORT_SYMBOL_GPL(ata_cable_40wire);
3126 
3127 /**
3128  *	ata_cable_80wire	-	return 80 wire cable type
3129  *	@ap: port
3130  *
3131  *	Helper method for drivers which want to hardwire 80 wire cable
3132  *	detection.
3133  */
3134 
ata_cable_80wire(struct ata_port * ap)3135 int ata_cable_80wire(struct ata_port *ap)
3136 {
3137 	return ATA_CBL_PATA80;
3138 }
3139 EXPORT_SYMBOL_GPL(ata_cable_80wire);
3140 
3141 /**
3142  *	ata_cable_unknown	-	return unknown PATA cable.
3143  *	@ap: port
3144  *
3145  *	Helper method for drivers which have no PATA cable detection.
3146  */
3147 
ata_cable_unknown(struct ata_port * ap)3148 int ata_cable_unknown(struct ata_port *ap)
3149 {
3150 	return ATA_CBL_PATA_UNK;
3151 }
3152 EXPORT_SYMBOL_GPL(ata_cable_unknown);
3153 
3154 /**
3155  *	ata_cable_ignore	-	return ignored PATA cable.
3156  *	@ap: port
3157  *
3158  *	Helper method for drivers which don't use cable type to limit
3159  *	transfer mode.
3160  */
ata_cable_ignore(struct ata_port * ap)3161 int ata_cable_ignore(struct ata_port *ap)
3162 {
3163 	return ATA_CBL_PATA_IGN;
3164 }
3165 EXPORT_SYMBOL_GPL(ata_cable_ignore);
3166 
3167 /**
3168  *	ata_cable_sata	-	return SATA cable type
3169  *	@ap: port
3170  *
3171  *	Helper method for drivers which have SATA cables
3172  */
3173 
ata_cable_sata(struct ata_port * ap)3174 int ata_cable_sata(struct ata_port *ap)
3175 {
3176 	return ATA_CBL_SATA;
3177 }
3178 EXPORT_SYMBOL_GPL(ata_cable_sata);
3179 
3180 /**
3181  *	sata_print_link_status - Print SATA link status
3182  *	@link: SATA link to printk link status about
3183  *
3184  *	This function prints link speed and status of a SATA link.
3185  *
3186  *	LOCKING:
3187  *	None.
3188  */
sata_print_link_status(struct ata_link * link)3189 static void sata_print_link_status(struct ata_link *link)
3190 {
3191 	u32 sstatus, scontrol, tmp;
3192 
3193 	if (sata_scr_read(link, SCR_STATUS, &sstatus))
3194 		return;
3195 	if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3196 		return;
3197 
3198 	if (ata_phys_link_online(link)) {
3199 		tmp = (sstatus >> 4) & 0xf;
3200 		ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
3201 			      sata_spd_string(tmp), sstatus, scontrol);
3202 	} else {
3203 		ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
3204 			      sstatus, scontrol);
3205 	}
3206 }
3207 
3208 /**
3209  *	ata_dev_pair		-	return other device on cable
3210  *	@adev: device
3211  *
3212  *	Obtain the other device on the same cable, or if none is
3213  *	present NULL is returned
3214  */
3215 
ata_dev_pair(struct ata_device * adev)3216 struct ata_device *ata_dev_pair(struct ata_device *adev)
3217 {
3218 	struct ata_link *link = adev->link;
3219 	struct ata_device *pair = &link->device[1 - adev->devno];
3220 	if (!ata_dev_enabled(pair))
3221 		return NULL;
3222 	return pair;
3223 }
3224 EXPORT_SYMBOL_GPL(ata_dev_pair);
3225 
3226 #ifdef CONFIG_ATA_ACPI
3227 /**
3228  *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3229  *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3230  *	@cycle: cycle duration in ns
3231  *
3232  *	Return matching xfer mode for @cycle.  The returned mode is of
3233  *	the transfer type specified by @xfer_shift.  If @cycle is too
3234  *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3235  *	than the fastest known mode, the fasted mode is returned.
3236  *
3237  *	LOCKING:
3238  *	None.
3239  *
3240  *	RETURNS:
3241  *	Matching xfer_mode, 0xff if no match found.
3242  */
ata_timing_cycle2mode(unsigned int xfer_shift,int cycle)3243 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3244 {
3245 	u8 base_mode = 0xff, last_mode = 0xff;
3246 	const struct ata_xfer_ent *ent;
3247 	const struct ata_timing *t;
3248 
3249 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3250 		if (ent->shift == xfer_shift)
3251 			base_mode = ent->base;
3252 
3253 	for (t = ata_timing_find_mode(base_mode);
3254 	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3255 		unsigned short this_cycle;
3256 
3257 		switch (xfer_shift) {
3258 		case ATA_SHIFT_PIO:
3259 		case ATA_SHIFT_MWDMA:
3260 			this_cycle = t->cycle;
3261 			break;
3262 		case ATA_SHIFT_UDMA:
3263 			this_cycle = t->udma;
3264 			break;
3265 		default:
3266 			return 0xff;
3267 		}
3268 
3269 		if (cycle > this_cycle)
3270 			break;
3271 
3272 		last_mode = t->mode;
3273 	}
3274 
3275 	return last_mode;
3276 }
3277 #endif
3278 
3279 /**
3280  *	ata_down_xfermask_limit - adjust dev xfer masks downward
3281  *	@dev: Device to adjust xfer masks
3282  *	@sel: ATA_DNXFER_* selector
3283  *
3284  *	Adjust xfer masks of @dev downward.  Note that this function
3285  *	does not apply the change.  Invoking ata_set_mode() afterwards
3286  *	will apply the limit.
3287  *
3288  *	LOCKING:
3289  *	Inherited from caller.
3290  *
3291  *	RETURNS:
3292  *	0 on success, negative errno on failure
3293  */
ata_down_xfermask_limit(struct ata_device * dev,unsigned int sel)3294 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3295 {
3296 	char buf[32];
3297 	unsigned int orig_mask, xfer_mask;
3298 	unsigned int pio_mask, mwdma_mask, udma_mask;
3299 	int quiet, highbit;
3300 
3301 	quiet = !!(sel & ATA_DNXFER_QUIET);
3302 	sel &= ~ATA_DNXFER_QUIET;
3303 
3304 	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3305 						  dev->mwdma_mask,
3306 						  dev->udma_mask);
3307 	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3308 
3309 	switch (sel) {
3310 	case ATA_DNXFER_PIO:
3311 		highbit = fls(pio_mask) - 1;
3312 		pio_mask &= ~(1 << highbit);
3313 		break;
3314 
3315 	case ATA_DNXFER_DMA:
3316 		if (udma_mask) {
3317 			highbit = fls(udma_mask) - 1;
3318 			udma_mask &= ~(1 << highbit);
3319 			if (!udma_mask)
3320 				return -ENOENT;
3321 		} else if (mwdma_mask) {
3322 			highbit = fls(mwdma_mask) - 1;
3323 			mwdma_mask &= ~(1 << highbit);
3324 			if (!mwdma_mask)
3325 				return -ENOENT;
3326 		}
3327 		break;
3328 
3329 	case ATA_DNXFER_40C:
3330 		udma_mask &= ATA_UDMA_MASK_40C;
3331 		break;
3332 
3333 	case ATA_DNXFER_FORCE_PIO0:
3334 		pio_mask &= 1;
3335 		fallthrough;
3336 	case ATA_DNXFER_FORCE_PIO:
3337 		mwdma_mask = 0;
3338 		udma_mask = 0;
3339 		break;
3340 
3341 	default:
3342 		BUG();
3343 	}
3344 
3345 	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3346 
3347 	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3348 		return -ENOENT;
3349 
3350 	if (!quiet) {
3351 		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3352 			snprintf(buf, sizeof(buf), "%s:%s",
3353 				 ata_mode_string(xfer_mask),
3354 				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3355 		else
3356 			snprintf(buf, sizeof(buf), "%s",
3357 				 ata_mode_string(xfer_mask));
3358 
3359 		ata_dev_warn(dev, "limiting speed to %s\n", buf);
3360 	}
3361 
3362 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3363 			    &dev->udma_mask);
3364 
3365 	return 0;
3366 }
3367 
ata_dev_set_mode(struct ata_device * dev)3368 static int ata_dev_set_mode(struct ata_device *dev)
3369 {
3370 	struct ata_port *ap = dev->link->ap;
3371 	struct ata_eh_context *ehc = &dev->link->eh_context;
3372 	const bool nosetxfer = dev->quirks & ATA_QUIRK_NOSETXFER;
3373 	const char *dev_err_whine = "";
3374 	int ign_dev_err = 0;
3375 	unsigned int err_mask = 0;
3376 	int rc;
3377 
3378 	dev->flags &= ~ATA_DFLAG_PIO;
3379 	if (dev->xfer_shift == ATA_SHIFT_PIO)
3380 		dev->flags |= ATA_DFLAG_PIO;
3381 
3382 	if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3383 		dev_err_whine = " (SET_XFERMODE skipped)";
3384 	else {
3385 		if (nosetxfer)
3386 			ata_dev_warn(dev,
3387 				     "NOSETXFER but PATA detected - can't "
3388 				     "skip SETXFER, might malfunction\n");
3389 		err_mask = ata_dev_set_xfermode(dev);
3390 	}
3391 
3392 	if (err_mask & ~AC_ERR_DEV)
3393 		goto fail;
3394 
3395 	/* revalidate */
3396 	ehc->i.flags |= ATA_EHI_POST_SETMODE;
3397 	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3398 	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3399 	if (rc)
3400 		return rc;
3401 
3402 	if (dev->xfer_shift == ATA_SHIFT_PIO) {
3403 		/* Old CFA may refuse this command, which is just fine */
3404 		if (ata_id_is_cfa(dev->id))
3405 			ign_dev_err = 1;
3406 		/* Catch several broken garbage emulations plus some pre
3407 		   ATA devices */
3408 		if (ata_id_major_version(dev->id) == 0 &&
3409 					dev->pio_mode <= XFER_PIO_2)
3410 			ign_dev_err = 1;
3411 		/* Some very old devices and some bad newer ones fail
3412 		   any kind of SET_XFERMODE request but support PIO0-2
3413 		   timings and no IORDY */
3414 		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3415 			ign_dev_err = 1;
3416 	}
3417 	/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3418 	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3419 	if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3420 	    dev->dma_mode == XFER_MW_DMA_0 &&
3421 	    (dev->id[63] >> 8) & 1)
3422 		ign_dev_err = 1;
3423 
3424 	/* if the device is actually configured correctly, ignore dev err */
3425 	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3426 		ign_dev_err = 1;
3427 
3428 	if (err_mask & AC_ERR_DEV) {
3429 		if (!ign_dev_err)
3430 			goto fail;
3431 		else
3432 			dev_err_whine = " (device error ignored)";
3433 	}
3434 
3435 	ata_dev_dbg(dev, "xfer_shift=%u, xfer_mode=0x%x\n",
3436 		    dev->xfer_shift, (int)dev->xfer_mode);
3437 
3438 	if (!(ehc->i.flags & ATA_EHI_QUIET) ||
3439 	    ehc->i.flags & ATA_EHI_DID_HARDRESET)
3440 		ata_dev_info(dev, "configured for %s%s\n",
3441 			     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3442 			     dev_err_whine);
3443 
3444 	return 0;
3445 
3446  fail:
3447 	ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3448 	return -EIO;
3449 }
3450 
3451 /**
3452  *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3453  *	@link: link on which timings will be programmed
3454  *	@r_failed_dev: out parameter for failed device
3455  *
3456  *	Standard implementation of the function used to tune and set
3457  *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3458  *	ata_dev_set_mode() fails, pointer to the failing device is
3459  *	returned in @r_failed_dev.
3460  *
3461  *	LOCKING:
3462  *	PCI/etc. bus probe sem.
3463  *
3464  *	RETURNS:
3465  *	0 on success, negative errno otherwise
3466  */
3467 
ata_do_set_mode(struct ata_link * link,struct ata_device ** r_failed_dev)3468 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3469 {
3470 	struct ata_port *ap = link->ap;
3471 	struct ata_device *dev;
3472 	int rc = 0, used_dma = 0, found = 0;
3473 
3474 	/* step 1: calculate xfer_mask */
3475 	ata_for_each_dev(dev, link, ENABLED) {
3476 		unsigned int pio_mask, dma_mask;
3477 		unsigned int mode_mask;
3478 
3479 		mode_mask = ATA_DMA_MASK_ATA;
3480 		if (dev->class == ATA_DEV_ATAPI)
3481 			mode_mask = ATA_DMA_MASK_ATAPI;
3482 		else if (ata_id_is_cfa(dev->id))
3483 			mode_mask = ATA_DMA_MASK_CFA;
3484 
3485 		ata_dev_xfermask(dev);
3486 		ata_force_xfermask(dev);
3487 
3488 		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3489 
3490 		if (libata_dma_mask & mode_mask)
3491 			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3492 						     dev->udma_mask);
3493 		else
3494 			dma_mask = 0;
3495 
3496 		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3497 		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3498 
3499 		found = 1;
3500 		if (ata_dma_enabled(dev))
3501 			used_dma = 1;
3502 	}
3503 	if (!found)
3504 		goto out;
3505 
3506 	/* step 2: always set host PIO timings */
3507 	ata_for_each_dev(dev, link, ENABLED) {
3508 		if (dev->pio_mode == 0xff) {
3509 			ata_dev_warn(dev, "no PIO support\n");
3510 			rc = -EINVAL;
3511 			goto out;
3512 		}
3513 
3514 		dev->xfer_mode = dev->pio_mode;
3515 		dev->xfer_shift = ATA_SHIFT_PIO;
3516 		if (ap->ops->set_piomode)
3517 			ap->ops->set_piomode(ap, dev);
3518 	}
3519 
3520 	/* step 3: set host DMA timings */
3521 	ata_for_each_dev(dev, link, ENABLED) {
3522 		if (!ata_dma_enabled(dev))
3523 			continue;
3524 
3525 		dev->xfer_mode = dev->dma_mode;
3526 		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3527 		if (ap->ops->set_dmamode)
3528 			ap->ops->set_dmamode(ap, dev);
3529 	}
3530 
3531 	/* step 4: update devices' xfer mode */
3532 	ata_for_each_dev(dev, link, ENABLED) {
3533 		rc = ata_dev_set_mode(dev);
3534 		if (rc)
3535 			goto out;
3536 	}
3537 
3538 	/* Record simplex status. If we selected DMA then the other
3539 	 * host channels are not permitted to do so.
3540 	 */
3541 	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3542 		ap->host->simplex_claimed = ap;
3543 
3544  out:
3545 	if (rc)
3546 		*r_failed_dev = dev;
3547 	return rc;
3548 }
3549 EXPORT_SYMBOL_GPL(ata_do_set_mode);
3550 
3551 /**
3552  *	ata_wait_ready - wait for link to become ready
3553  *	@link: link to be waited on
3554  *	@deadline: deadline jiffies for the operation
3555  *	@check_ready: callback to check link readiness
3556  *
3557  *	Wait for @link to become ready.  @check_ready should return
3558  *	positive number if @link is ready, 0 if it isn't, -ENODEV if
3559  *	link doesn't seem to be occupied, other errno for other error
3560  *	conditions.
3561  *
3562  *	Transient -ENODEV conditions are allowed for
3563  *	ATA_TMOUT_FF_WAIT.
3564  *
3565  *	LOCKING:
3566  *	EH context.
3567  *
3568  *	RETURNS:
3569  *	0 if @link is ready before @deadline; otherwise, -errno.
3570  */
ata_wait_ready(struct ata_link * link,unsigned long deadline,int (* check_ready)(struct ata_link * link))3571 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3572 		   int (*check_ready)(struct ata_link *link))
3573 {
3574 	unsigned long start = jiffies;
3575 	unsigned long nodev_deadline;
3576 	int warned = 0;
3577 
3578 	/* choose which 0xff timeout to use, read comment in libata.h */
3579 	if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3580 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3581 	else
3582 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3583 
3584 	/* Slave readiness can't be tested separately from master.  On
3585 	 * M/S emulation configuration, this function should be called
3586 	 * only on the master and it will handle both master and slave.
3587 	 */
3588 	WARN_ON(link == link->ap->slave_link);
3589 
3590 	if (time_after(nodev_deadline, deadline))
3591 		nodev_deadline = deadline;
3592 
3593 	while (1) {
3594 		unsigned long now = jiffies;
3595 		int ready, tmp;
3596 
3597 		ready = tmp = check_ready(link);
3598 		if (ready > 0)
3599 			return 0;
3600 
3601 		/*
3602 		 * -ENODEV could be transient.  Ignore -ENODEV if link
3603 		 * is online.  Also, some SATA devices take a long
3604 		 * time to clear 0xff after reset.  Wait for
3605 		 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3606 		 * offline.
3607 		 *
3608 		 * Note that some PATA controllers (pata_ali) explode
3609 		 * if status register is read more than once when
3610 		 * there's no device attached.
3611 		 */
3612 		if (ready == -ENODEV) {
3613 			if (ata_link_online(link))
3614 				ready = 0;
3615 			else if ((link->ap->flags & ATA_FLAG_SATA) &&
3616 				 !ata_link_offline(link) &&
3617 				 time_before(now, nodev_deadline))
3618 				ready = 0;
3619 		}
3620 
3621 		if (ready)
3622 			return ready;
3623 		if (time_after(now, deadline))
3624 			return -EBUSY;
3625 
3626 		if (!warned && time_after(now, start + 5 * HZ) &&
3627 		    (deadline - now > 3 * HZ)) {
3628 			ata_link_warn(link,
3629 				"link is slow to respond, please be patient "
3630 				"(ready=%d)\n", tmp);
3631 			warned = 1;
3632 		}
3633 
3634 		ata_msleep(link->ap, 50);
3635 	}
3636 }
3637 
3638 /**
3639  *	ata_wait_after_reset - wait for link to become ready after reset
3640  *	@link: link to be waited on
3641  *	@deadline: deadline jiffies for the operation
3642  *	@check_ready: callback to check link readiness
3643  *
3644  *	Wait for @link to become ready after reset.
3645  *
3646  *	LOCKING:
3647  *	EH context.
3648  *
3649  *	RETURNS:
3650  *	0 if @link is ready before @deadline; otherwise, -errno.
3651  */
ata_wait_after_reset(struct ata_link * link,unsigned long deadline,int (* check_ready)(struct ata_link * link))3652 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3653 				int (*check_ready)(struct ata_link *link))
3654 {
3655 	ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3656 
3657 	return ata_wait_ready(link, deadline, check_ready);
3658 }
3659 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
3660 
3661 /**
3662  *	ata_std_prereset - prepare for reset
3663  *	@link: ATA link to be reset
3664  *	@deadline: deadline jiffies for the operation
3665  *
3666  *	@link is about to be reset.  Initialize it.  Failure from
3667  *	prereset makes libata abort whole reset sequence and give up
3668  *	that port, so prereset should be best-effort.  It does its
3669  *	best to prepare for reset sequence but if things go wrong, it
3670  *	should just whine, not fail.
3671  *
3672  *	LOCKING:
3673  *	Kernel thread context (may sleep)
3674  *
3675  *	RETURNS:
3676  *	Always 0.
3677  */
ata_std_prereset(struct ata_link * link,unsigned long deadline)3678 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3679 {
3680 	struct ata_port *ap = link->ap;
3681 	struct ata_eh_context *ehc = &link->eh_context;
3682 	const unsigned int *timing = sata_ehc_deb_timing(ehc);
3683 	int rc;
3684 
3685 	/* if we're about to do hardreset, nothing more to do */
3686 	if (ehc->i.action & ATA_EH_HARDRESET)
3687 		return 0;
3688 
3689 	/* if SATA, resume link */
3690 	if (ap->flags & ATA_FLAG_SATA) {
3691 		rc = sata_link_resume(link, timing, deadline);
3692 		/* whine about phy resume failure but proceed */
3693 		if (rc && rc != -EOPNOTSUPP)
3694 			ata_link_warn(link,
3695 				      "failed to resume link for reset (errno=%d)\n",
3696 				      rc);
3697 	}
3698 
3699 	/* no point in trying softreset on offline link */
3700 	if (ata_phys_link_offline(link))
3701 		ehc->i.action &= ~ATA_EH_SOFTRESET;
3702 
3703 	return 0;
3704 }
3705 EXPORT_SYMBOL_GPL(ata_std_prereset);
3706 
3707 /**
3708  *	ata_std_postreset - standard postreset callback
3709  *	@link: the target ata_link
3710  *	@classes: classes of attached devices
3711  *
3712  *	This function is invoked after a successful reset.  Note that
3713  *	the device might have been reset more than once using
3714  *	different reset methods before postreset is invoked.
3715  *
3716  *	LOCKING:
3717  *	Kernel thread context (may sleep)
3718  */
ata_std_postreset(struct ata_link * link,unsigned int * classes)3719 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3720 {
3721 	u32 serror;
3722 
3723 	/* reset complete, clear SError */
3724 	if (!sata_scr_read(link, SCR_ERROR, &serror))
3725 		sata_scr_write(link, SCR_ERROR, serror);
3726 
3727 	/* print link status */
3728 	sata_print_link_status(link);
3729 }
3730 EXPORT_SYMBOL_GPL(ata_std_postreset);
3731 
3732 /**
3733  *	ata_dev_same_device - Determine whether new ID matches configured device
3734  *	@dev: device to compare against
3735  *	@new_class: class of the new device
3736  *	@new_id: IDENTIFY page of the new device
3737  *
3738  *	Compare @new_class and @new_id against @dev and determine
3739  *	whether @dev is the device indicated by @new_class and
3740  *	@new_id.
3741  *
3742  *	LOCKING:
3743  *	None.
3744  *
3745  *	RETURNS:
3746  *	1 if @dev matches @new_class and @new_id, 0 otherwise.
3747  */
ata_dev_same_device(struct ata_device * dev,unsigned int new_class,const u16 * new_id)3748 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3749 			       const u16 *new_id)
3750 {
3751 	const u16 *old_id = dev->id;
3752 	unsigned char model[2][ATA_ID_PROD_LEN + 1];
3753 	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3754 
3755 	if (dev->class != new_class) {
3756 		ata_dev_info(dev, "class mismatch %d != %d\n",
3757 			     dev->class, new_class);
3758 		return 0;
3759 	}
3760 
3761 	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3762 	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3763 	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3764 	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3765 
3766 	if (strcmp(model[0], model[1])) {
3767 		ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3768 			     model[0], model[1]);
3769 		return 0;
3770 	}
3771 
3772 	if (strcmp(serial[0], serial[1])) {
3773 		ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3774 			     serial[0], serial[1]);
3775 		return 0;
3776 	}
3777 
3778 	return 1;
3779 }
3780 
3781 /**
3782  *	ata_dev_reread_id - Re-read IDENTIFY data
3783  *	@dev: target ATA device
3784  *	@readid_flags: read ID flags
3785  *
3786  *	Re-read IDENTIFY page and make sure @dev is still attached to
3787  *	the port.
3788  *
3789  *	LOCKING:
3790  *	Kernel thread context (may sleep)
3791  *
3792  *	RETURNS:
3793  *	0 on success, negative errno otherwise
3794  */
ata_dev_reread_id(struct ata_device * dev,unsigned int readid_flags)3795 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3796 {
3797 	unsigned int class = dev->class;
3798 	u16 *id = (void *)dev->sector_buf;
3799 	int rc;
3800 
3801 	/* read ID data */
3802 	rc = ata_dev_read_id(dev, &class, readid_flags, id);
3803 	if (rc)
3804 		return rc;
3805 
3806 	/* is the device still there? */
3807 	if (!ata_dev_same_device(dev, class, id))
3808 		return -ENODEV;
3809 
3810 	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3811 	return 0;
3812 }
3813 
3814 /**
3815  *	ata_dev_revalidate - Revalidate ATA device
3816  *	@dev: device to revalidate
3817  *	@new_class: new class code
3818  *	@readid_flags: read ID flags
3819  *
3820  *	Re-read IDENTIFY page, make sure @dev is still attached to the
3821  *	port and reconfigure it according to the new IDENTIFY page.
3822  *
3823  *	LOCKING:
3824  *	Kernel thread context (may sleep)
3825  *
3826  *	RETURNS:
3827  *	0 on success, negative errno otherwise
3828  */
ata_dev_revalidate(struct ata_device * dev,unsigned int new_class,unsigned int readid_flags)3829 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3830 		       unsigned int readid_flags)
3831 {
3832 	u64 n_sectors = dev->n_sectors;
3833 	u64 n_native_sectors = dev->n_native_sectors;
3834 	int rc;
3835 
3836 	if (!ata_dev_enabled(dev))
3837 		return -ENODEV;
3838 
3839 	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3840 	if (ata_class_enabled(new_class) && new_class == ATA_DEV_PMP) {
3841 		ata_dev_info(dev, "class mismatch %u != %u\n",
3842 			     dev->class, new_class);
3843 		rc = -ENODEV;
3844 		goto fail;
3845 	}
3846 
3847 	/* re-read ID */
3848 	rc = ata_dev_reread_id(dev, readid_flags);
3849 	if (rc)
3850 		goto fail;
3851 
3852 	/* configure device according to the new ID */
3853 	rc = ata_dev_configure(dev);
3854 	if (rc)
3855 		goto fail;
3856 
3857 	/* verify n_sectors hasn't changed */
3858 	if (dev->class != ATA_DEV_ATA || !n_sectors ||
3859 	    dev->n_sectors == n_sectors)
3860 		return 0;
3861 
3862 	/* n_sectors has changed */
3863 	ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3864 		     (unsigned long long)n_sectors,
3865 		     (unsigned long long)dev->n_sectors);
3866 
3867 	/*
3868 	 * Something could have caused HPA to be unlocked
3869 	 * involuntarily.  If n_native_sectors hasn't changed and the
3870 	 * new size matches it, keep the device.
3871 	 */
3872 	if (dev->n_native_sectors == n_native_sectors &&
3873 	    dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3874 		ata_dev_warn(dev,
3875 			     "new n_sectors matches native, probably "
3876 			     "late HPA unlock, n_sectors updated\n");
3877 		/* use the larger n_sectors */
3878 		return 0;
3879 	}
3880 
3881 	/*
3882 	 * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
3883 	 * unlocking HPA in those cases.
3884 	 *
3885 	 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
3886 	 */
3887 	if (dev->n_native_sectors == n_native_sectors &&
3888 	    dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
3889 	    !(dev->quirks & ATA_QUIRK_BROKEN_HPA)) {
3890 		ata_dev_warn(dev,
3891 			     "old n_sectors matches native, probably "
3892 			     "late HPA lock, will try to unlock HPA\n");
3893 		/* try unlocking HPA */
3894 		dev->flags |= ATA_DFLAG_UNLOCK_HPA;
3895 		rc = -EIO;
3896 	} else
3897 		rc = -ENODEV;
3898 
3899 	/* restore original n_[native_]sectors and fail */
3900 	dev->n_native_sectors = n_native_sectors;
3901 	dev->n_sectors = n_sectors;
3902  fail:
3903 	ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
3904 	return rc;
3905 }
3906 
3907 static const char * const ata_quirk_names[] = {
3908 	[__ATA_QUIRK_DIAGNOSTIC]	= "diagnostic",
3909 	[__ATA_QUIRK_NODMA]		= "nodma",
3910 	[__ATA_QUIRK_NONCQ]		= "noncq",
3911 	[__ATA_QUIRK_MAX_SEC_128]	= "maxsec128",
3912 	[__ATA_QUIRK_BROKEN_HPA]	= "brokenhpa",
3913 	[__ATA_QUIRK_DISABLE]		= "disable",
3914 	[__ATA_QUIRK_HPA_SIZE]		= "hpasize",
3915 	[__ATA_QUIRK_IVB]		= "ivb",
3916 	[__ATA_QUIRK_STUCK_ERR]		= "stuckerr",
3917 	[__ATA_QUIRK_BRIDGE_OK]		= "bridgeok",
3918 	[__ATA_QUIRK_ATAPI_MOD16_DMA]	= "atapimod16dma",
3919 	[__ATA_QUIRK_FIRMWARE_WARN]	= "firmwarewarn",
3920 	[__ATA_QUIRK_1_5_GBPS]		= "1.5gbps",
3921 	[__ATA_QUIRK_NOSETXFER]		= "nosetxfer",
3922 	[__ATA_QUIRK_BROKEN_FPDMA_AA]	= "brokenfpdmaaa",
3923 	[__ATA_QUIRK_DUMP_ID]		= "dumpid",
3924 	[__ATA_QUIRK_MAX_SEC_LBA48]	= "maxseclba48",
3925 	[__ATA_QUIRK_ATAPI_DMADIR]	= "atapidmadir",
3926 	[__ATA_QUIRK_NO_NCQ_TRIM]	= "noncqtrim",
3927 	[__ATA_QUIRK_NOLPM]		= "nolpm",
3928 	[__ATA_QUIRK_WD_BROKEN_LPM]	= "wdbrokenlpm",
3929 	[__ATA_QUIRK_ZERO_AFTER_TRIM]	= "zeroaftertrim",
3930 	[__ATA_QUIRK_NO_DMA_LOG]	= "nodmalog",
3931 	[__ATA_QUIRK_NOTRIM]		= "notrim",
3932 	[__ATA_QUIRK_MAX_SEC_1024]	= "maxsec1024",
3933 	[__ATA_QUIRK_MAX_TRIM_128M]	= "maxtrim128m",
3934 	[__ATA_QUIRK_NO_NCQ_ON_ATI]	= "noncqonati",
3935 	[__ATA_QUIRK_NO_LPM_ON_ATI]	= "nolpmonati",
3936 	[__ATA_QUIRK_NO_ID_DEV_LOG]	= "noiddevlog",
3937 	[__ATA_QUIRK_NO_LOG_DIR]	= "nologdir",
3938 	[__ATA_QUIRK_NO_FUA]		= "nofua",
3939 };
3940 
ata_dev_print_quirks(const struct ata_device * dev,const char * model,const char * rev,unsigned int quirks)3941 static void ata_dev_print_quirks(const struct ata_device *dev,
3942 				 const char *model, const char *rev,
3943 				 unsigned int quirks)
3944 {
3945 	struct ata_eh_context *ehc = &dev->link->eh_context;
3946 	int n = 0, i;
3947 	size_t sz;
3948 	char *str;
3949 
3950 	if (!ata_dev_print_info(dev) || ehc->i.flags & ATA_EHI_DID_PRINT_QUIRKS)
3951 		return;
3952 
3953 	ehc->i.flags |= ATA_EHI_DID_PRINT_QUIRKS;
3954 
3955 	if (!quirks)
3956 		return;
3957 
3958 	sz = 64 + ARRAY_SIZE(ata_quirk_names) * 16;
3959 	str = kmalloc(sz, GFP_KERNEL);
3960 	if (!str)
3961 		return;
3962 
3963 	n = snprintf(str, sz, "Model '%s', rev '%s', applying quirks:",
3964 		     model, rev);
3965 
3966 	for (i = 0; i < ARRAY_SIZE(ata_quirk_names); i++) {
3967 		if (quirks & (1U << i))
3968 			n += snprintf(str + n, sz - n,
3969 				      " %s", ata_quirk_names[i]);
3970 	}
3971 
3972 	ata_dev_warn(dev, "%s\n", str);
3973 
3974 	kfree(str);
3975 }
3976 
3977 struct ata_dev_quirks_entry {
3978 	const char *model_num;
3979 	const char *model_rev;
3980 	unsigned int quirks;
3981 };
3982 
3983 static const struct ata_dev_quirks_entry __ata_dev_quirks[] = {
3984 	/* Devices with DMA related problems under Linux */
3985 	{ "WDC AC11000H",	NULL,		ATA_QUIRK_NODMA },
3986 	{ "WDC AC22100H",	NULL,		ATA_QUIRK_NODMA },
3987 	{ "WDC AC32500H",	NULL,		ATA_QUIRK_NODMA },
3988 	{ "WDC AC33100H",	NULL,		ATA_QUIRK_NODMA },
3989 	{ "WDC AC31600H",	NULL,		ATA_QUIRK_NODMA },
3990 	{ "WDC AC32100H",	"24.09P07",	ATA_QUIRK_NODMA },
3991 	{ "WDC AC23200L",	"21.10N21",	ATA_QUIRK_NODMA },
3992 	{ "Compaq CRD-8241B",	NULL,		ATA_QUIRK_NODMA },
3993 	{ "CRD-8400B",		NULL,		ATA_QUIRK_NODMA },
3994 	{ "CRD-848[02]B",	NULL,		ATA_QUIRK_NODMA },
3995 	{ "CRD-84",		NULL,		ATA_QUIRK_NODMA },
3996 	{ "SanDisk SDP3B",	NULL,		ATA_QUIRK_NODMA },
3997 	{ "SanDisk SDP3B-64",	NULL,		ATA_QUIRK_NODMA },
3998 	{ "SANYO CD-ROM CRD",	NULL,		ATA_QUIRK_NODMA },
3999 	{ "HITACHI CDR-8",	NULL,		ATA_QUIRK_NODMA },
4000 	{ "HITACHI CDR-8[34]35", NULL,		ATA_QUIRK_NODMA },
4001 	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_QUIRK_NODMA },
4002 	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_QUIRK_NODMA },
4003 	{ "CD-532E-A",		NULL,		ATA_QUIRK_NODMA },
4004 	{ "E-IDE CD-ROM CR-840", NULL,		ATA_QUIRK_NODMA },
4005 	{ "CD-ROM Drive/F5A",	NULL,		ATA_QUIRK_NODMA },
4006 	{ "WPI CDD-820",	NULL,		ATA_QUIRK_NODMA },
4007 	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_QUIRK_NODMA },
4008 	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_QUIRK_NODMA },
4009 	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM", NULL, ATA_QUIRK_NODMA },
4010 	{ "_NEC DV5800A",	NULL,		ATA_QUIRK_NODMA },
4011 	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_QUIRK_NODMA },
4012 	{ "Seagate STT20000A", NULL,		ATA_QUIRK_NODMA },
4013 	{ " 2GB ATA Flash Disk", "ADMA428M",	ATA_QUIRK_NODMA },
4014 	{ "VRFDFC22048UCHC-TE*", NULL,		ATA_QUIRK_NODMA },
4015 	/* Odd clown on sil3726/4726 PMPs */
4016 	{ "Config  Disk",	NULL,		ATA_QUIRK_DISABLE },
4017 	/* Similar story with ASMedia 1092 */
4018 	{ "ASMT109x- Config",	NULL,		ATA_QUIRK_DISABLE },
4019 
4020 	/* Weird ATAPI devices */
4021 	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_QUIRK_MAX_SEC_128 },
4022 	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_QUIRK_ATAPI_MOD16_DMA },
4023 	{ "Slimtype DVD A  DS8A8SH", NULL,	ATA_QUIRK_MAX_SEC_LBA48 },
4024 	{ "Slimtype DVD A  DS8A9SH", NULL,	ATA_QUIRK_MAX_SEC_LBA48 },
4025 
4026 	/*
4027 	 * Causes silent data corruption with higher max sects.
4028 	 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4029 	 */
4030 	{ "ST380013AS",		"3.20",		ATA_QUIRK_MAX_SEC_1024 },
4031 
4032 	/*
4033 	 * These devices time out with higher max sects.
4034 	 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
4035 	 */
4036 	{ "LITEON CX1-JB*-HP",	NULL,		ATA_QUIRK_MAX_SEC_1024 },
4037 	{ "LITEON EP1-*",	NULL,		ATA_QUIRK_MAX_SEC_1024 },
4038 
4039 	/* Devices we expect to fail diagnostics */
4040 
4041 	/* Devices where NCQ should be avoided */
4042 	/* NCQ is slow */
4043 	{ "WDC WD740ADFD-00",	NULL,		ATA_QUIRK_NONCQ },
4044 	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_QUIRK_NONCQ },
4045 	/* http://thread.gmane.org/gmane.linux.ide/14907 */
4046 	{ "FUJITSU MHT2060BH",	NULL,		ATA_QUIRK_NONCQ },
4047 	/* NCQ is broken */
4048 	{ "Maxtor *",		"BANC*",	ATA_QUIRK_NONCQ },
4049 	{ "Maxtor 7V300F0",	"VA111630",	ATA_QUIRK_NONCQ },
4050 	{ "ST380817AS",		"3.42",		ATA_QUIRK_NONCQ },
4051 	{ "ST3160023AS",	"3.42",		ATA_QUIRK_NONCQ },
4052 	{ "OCZ CORE_SSD",	"02.10104",	ATA_QUIRK_NONCQ },
4053 
4054 	/* Seagate NCQ + FLUSH CACHE firmware bug */
4055 	{ "ST31500341AS",	"SD1[5-9]",	ATA_QUIRK_NONCQ |
4056 						ATA_QUIRK_FIRMWARE_WARN },
4057 
4058 	{ "ST31000333AS",	"SD1[5-9]",	ATA_QUIRK_NONCQ |
4059 						ATA_QUIRK_FIRMWARE_WARN },
4060 
4061 	{ "ST3640[36]23AS",	"SD1[5-9]",	ATA_QUIRK_NONCQ |
4062 						ATA_QUIRK_FIRMWARE_WARN },
4063 
4064 	{ "ST3320[68]13AS",	"SD1[5-9]",	ATA_QUIRK_NONCQ |
4065 						ATA_QUIRK_FIRMWARE_WARN },
4066 
4067 	/* drives which fail FPDMA_AA activation (some may freeze afterwards)
4068 	   the ST disks also have LPM issues */
4069 	{ "ST1000LM024 HN-M101MBB", NULL,	ATA_QUIRK_BROKEN_FPDMA_AA |
4070 						ATA_QUIRK_NOLPM },
4071 	{ "VB0250EAVER",	"HPG7",		ATA_QUIRK_BROKEN_FPDMA_AA },
4072 
4073 	/* Blacklist entries taken from Silicon Image 3124/3132
4074 	   Windows driver .inf file - also several Linux problem reports */
4075 	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_QUIRK_NONCQ },
4076 	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_QUIRK_NONCQ },
4077 	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_QUIRK_NONCQ },
4078 
4079 	/* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4080 	{ "C300-CTFDDAC128MAG",	"0001",		ATA_QUIRK_NONCQ },
4081 
4082 	/* Sandisk SD7/8/9s lock up hard on large trims */
4083 	{ "SanDisk SD[789]*",	NULL,		ATA_QUIRK_MAX_TRIM_128M },
4084 
4085 	/* devices which puke on READ_NATIVE_MAX */
4086 	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_QUIRK_BROKEN_HPA },
4087 	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_QUIRK_BROKEN_HPA },
4088 	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_QUIRK_BROKEN_HPA },
4089 	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_QUIRK_BROKEN_HPA },
4090 
4091 	/* this one allows HPA unlocking but fails IOs on the area */
4092 	{ "OCZ-VERTEX",		    "1.30",	ATA_QUIRK_BROKEN_HPA },
4093 
4094 	/* Devices which report 1 sector over size HPA */
4095 	{ "ST340823A",		NULL,		ATA_QUIRK_HPA_SIZE },
4096 	{ "ST320413A",		NULL,		ATA_QUIRK_HPA_SIZE },
4097 	{ "ST310211A",		NULL,		ATA_QUIRK_HPA_SIZE },
4098 
4099 	/* Devices which get the IVB wrong */
4100 	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_QUIRK_IVB },
4101 	/* Maybe we should just add all TSSTcorp devices... */
4102 	{ "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_QUIRK_IVB },
4103 
4104 	/* Devices that do not need bridging limits applied */
4105 	{ "MTRON MSP-SATA*",		NULL,	ATA_QUIRK_BRIDGE_OK },
4106 	{ "BUFFALO HD-QSU2/R5",		NULL,	ATA_QUIRK_BRIDGE_OK },
4107 
4108 	/* Devices which aren't very happy with higher link speeds */
4109 	{ "WD My Book",			NULL,	ATA_QUIRK_1_5_GBPS },
4110 	{ "Seagate FreeAgent GoFlex",	NULL,	ATA_QUIRK_1_5_GBPS },
4111 
4112 	/*
4113 	 * Devices which choke on SETXFER.  Applies only if both the
4114 	 * device and controller are SATA.
4115 	 */
4116 	{ "PIONEER DVD-RW  DVRTD08",	NULL,	ATA_QUIRK_NOSETXFER },
4117 	{ "PIONEER DVD-RW  DVRTD08A",	NULL,	ATA_QUIRK_NOSETXFER },
4118 	{ "PIONEER DVD-RW  DVR-215",	NULL,	ATA_QUIRK_NOSETXFER },
4119 	{ "PIONEER DVD-RW  DVR-212D",	NULL,	ATA_QUIRK_NOSETXFER },
4120 	{ "PIONEER DVD-RW  DVR-216D",	NULL,	ATA_QUIRK_NOSETXFER },
4121 
4122 	/* These specific Pioneer models have LPM issues */
4123 	{ "PIONEER BD-RW   BDR-207M",	NULL,	ATA_QUIRK_NOLPM },
4124 	{ "PIONEER BD-RW   BDR-205",	NULL,	ATA_QUIRK_NOLPM },
4125 
4126 	/* Crucial devices with broken LPM support */
4127 	{ "CT*0BX*00SSD1",		NULL,	ATA_QUIRK_NOLPM },
4128 
4129 	/* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
4130 	{ "Crucial_CT512MX100*",	"MU01",	ATA_QUIRK_NO_NCQ_TRIM |
4131 						ATA_QUIRK_ZERO_AFTER_TRIM |
4132 						ATA_QUIRK_NOLPM },
4133 	/* 512GB MX100 with newer firmware has only LPM issues */
4134 	{ "Crucial_CT512MX100*",	NULL,	ATA_QUIRK_ZERO_AFTER_TRIM |
4135 						ATA_QUIRK_NOLPM },
4136 
4137 	/* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
4138 	{ "Crucial_CT480M500*",		NULL,	ATA_QUIRK_NO_NCQ_TRIM |
4139 						ATA_QUIRK_ZERO_AFTER_TRIM |
4140 						ATA_QUIRK_NOLPM },
4141 	{ "Crucial_CT960M500*",		NULL,	ATA_QUIRK_NO_NCQ_TRIM |
4142 						ATA_QUIRK_ZERO_AFTER_TRIM |
4143 						ATA_QUIRK_NOLPM },
4144 
4145 	/* AMD Radeon devices with broken LPM support */
4146 	{ "R3SL240G",			NULL,	ATA_QUIRK_NOLPM },
4147 
4148 	/* Apacer models with LPM issues */
4149 	{ "Apacer AS340*",		NULL,	ATA_QUIRK_NOLPM },
4150 
4151 	/* These specific Samsung models/firmware-revs do not handle LPM well */
4152 	{ "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_QUIRK_NOLPM },
4153 	{ "SAMSUNG SSD PM830 mSATA *",  "CXM13D1Q", ATA_QUIRK_NOLPM },
4154 	{ "SAMSUNG MZ7TD256HAFV-000L9", NULL,       ATA_QUIRK_NOLPM },
4155 	{ "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_QUIRK_NOLPM },
4156 
4157 	/* devices that don't properly handle queued TRIM commands */
4158 	{ "Micron_M500IT_*",		"MU01",	ATA_QUIRK_NO_NCQ_TRIM |
4159 						ATA_QUIRK_ZERO_AFTER_TRIM },
4160 	{ "Micron_M500_*",		NULL,	ATA_QUIRK_NO_NCQ_TRIM |
4161 						ATA_QUIRK_ZERO_AFTER_TRIM },
4162 	{ "Micron_M5[15]0_*",		"MU01",	ATA_QUIRK_NO_NCQ_TRIM |
4163 						ATA_QUIRK_ZERO_AFTER_TRIM },
4164 	{ "Micron_1100_*",		NULL,	ATA_QUIRK_NO_NCQ_TRIM |
4165 						ATA_QUIRK_ZERO_AFTER_TRIM, },
4166 	{ "Crucial_CT*M500*",		NULL,	ATA_QUIRK_NO_NCQ_TRIM |
4167 						ATA_QUIRK_ZERO_AFTER_TRIM },
4168 	{ "Crucial_CT*M550*",		"MU01",	ATA_QUIRK_NO_NCQ_TRIM |
4169 						ATA_QUIRK_ZERO_AFTER_TRIM },
4170 	{ "Crucial_CT*MX100*",		"MU01",	ATA_QUIRK_NO_NCQ_TRIM |
4171 						ATA_QUIRK_ZERO_AFTER_TRIM },
4172 	{ "Samsung SSD 840 EVO*",	NULL,	ATA_QUIRK_NO_NCQ_TRIM |
4173 						ATA_QUIRK_NO_DMA_LOG |
4174 						ATA_QUIRK_ZERO_AFTER_TRIM },
4175 	{ "Samsung SSD 840*",		NULL,	ATA_QUIRK_NO_NCQ_TRIM |
4176 						ATA_QUIRK_ZERO_AFTER_TRIM },
4177 	{ "Samsung SSD 850*",		NULL,	ATA_QUIRK_NO_NCQ_TRIM |
4178 						ATA_QUIRK_ZERO_AFTER_TRIM },
4179 	{ "Samsung SSD 860*",		NULL,	ATA_QUIRK_NO_NCQ_TRIM |
4180 						ATA_QUIRK_ZERO_AFTER_TRIM |
4181 						ATA_QUIRK_NO_NCQ_ON_ATI |
4182 						ATA_QUIRK_NO_LPM_ON_ATI },
4183 	{ "Samsung SSD 870*",		NULL,	ATA_QUIRK_NO_NCQ_TRIM |
4184 						ATA_QUIRK_ZERO_AFTER_TRIM |
4185 						ATA_QUIRK_NO_NCQ_ON_ATI |
4186 						ATA_QUIRK_NO_LPM_ON_ATI },
4187 	{ "SAMSUNG*MZ7LH*",		NULL,	ATA_QUIRK_NO_NCQ_TRIM |
4188 						ATA_QUIRK_ZERO_AFTER_TRIM |
4189 						ATA_QUIRK_NO_NCQ_ON_ATI |
4190 						ATA_QUIRK_NO_LPM_ON_ATI },
4191 	{ "FCCT*M500*",			NULL,	ATA_QUIRK_NO_NCQ_TRIM |
4192 						ATA_QUIRK_ZERO_AFTER_TRIM },
4193 
4194 	/* devices that don't properly handle TRIM commands */
4195 	{ "SuperSSpeed S238*",		NULL,	ATA_QUIRK_NOTRIM },
4196 	{ "M88V29*",			NULL,	ATA_QUIRK_NOTRIM },
4197 
4198 	/*
4199 	 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4200 	 * (Return Zero After Trim) flags in the ATA Command Set are
4201 	 * unreliable in the sense that they only define what happens if
4202 	 * the device successfully executed the DSM TRIM command. TRIM
4203 	 * is only advisory, however, and the device is free to silently
4204 	 * ignore all or parts of the request.
4205 	 *
4206 	 * Whitelist drives that are known to reliably return zeroes
4207 	 * after TRIM.
4208 	 */
4209 
4210 	/*
4211 	 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4212 	 * that model before whitelisting all other intel SSDs.
4213 	 */
4214 	{ "INTEL*SSDSC2MH*",		NULL,	0 },
4215 
4216 	{ "Micron*",			NULL,	ATA_QUIRK_ZERO_AFTER_TRIM },
4217 	{ "Crucial*",			NULL,	ATA_QUIRK_ZERO_AFTER_TRIM },
4218 	{ "INTEL*SSD*",			NULL,	ATA_QUIRK_ZERO_AFTER_TRIM },
4219 	{ "SSD*INTEL*",			NULL,	ATA_QUIRK_ZERO_AFTER_TRIM },
4220 	{ "Samsung*SSD*",		NULL,	ATA_QUIRK_ZERO_AFTER_TRIM },
4221 	{ "SAMSUNG*SSD*",		NULL,	ATA_QUIRK_ZERO_AFTER_TRIM },
4222 	{ "SAMSUNG*MZ7KM*",		NULL,	ATA_QUIRK_ZERO_AFTER_TRIM },
4223 	{ "ST[1248][0248]0[FH]*",	NULL,	ATA_QUIRK_ZERO_AFTER_TRIM },
4224 
4225 	/*
4226 	 * Some WD SATA-I drives spin up and down erratically when the link
4227 	 * is put into the slumber mode.  We don't have full list of the
4228 	 * affected devices.  Disable LPM if the device matches one of the
4229 	 * known prefixes and is SATA-1.  As a side effect LPM partial is
4230 	 * lost too.
4231 	 *
4232 	 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4233 	 */
4234 	{ "WDC WD800JD-*",		NULL,	ATA_QUIRK_WD_BROKEN_LPM },
4235 	{ "WDC WD1200JD-*",		NULL,	ATA_QUIRK_WD_BROKEN_LPM },
4236 	{ "WDC WD1600JD-*",		NULL,	ATA_QUIRK_WD_BROKEN_LPM },
4237 	{ "WDC WD2000JD-*",		NULL,	ATA_QUIRK_WD_BROKEN_LPM },
4238 	{ "WDC WD2500JD-*",		NULL,	ATA_QUIRK_WD_BROKEN_LPM },
4239 	{ "WDC WD3000JD-*",		NULL,	ATA_QUIRK_WD_BROKEN_LPM },
4240 	{ "WDC WD3200JD-*",		NULL,	ATA_QUIRK_WD_BROKEN_LPM },
4241 
4242 	/*
4243 	 * This sata dom device goes on a walkabout when the ATA_LOG_DIRECTORY
4244 	 * log page is accessed. Ensure we never ask for this log page with
4245 	 * these devices.
4246 	 */
4247 	{ "SATADOM-ML 3ME",		NULL,	ATA_QUIRK_NO_LOG_DIR },
4248 
4249 	/* Buggy FUA */
4250 	{ "Maxtor",		"BANC1G10",	ATA_QUIRK_NO_FUA },
4251 	{ "WDC*WD2500J*",	NULL,		ATA_QUIRK_NO_FUA },
4252 	{ "OCZ-VERTEX*",	NULL,		ATA_QUIRK_NO_FUA },
4253 	{ "INTEL*SSDSC2CT*",	NULL,		ATA_QUIRK_NO_FUA },
4254 
4255 	/* End Marker */
4256 	{ }
4257 };
4258 
ata_dev_quirks(const struct ata_device * dev)4259 static unsigned int ata_dev_quirks(const struct ata_device *dev)
4260 {
4261 	unsigned char model_num[ATA_ID_PROD_LEN + 1];
4262 	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4263 	const struct ata_dev_quirks_entry *ad = __ata_dev_quirks;
4264 
4265 	/* dev->quirks is an unsigned int. */
4266 	BUILD_BUG_ON(__ATA_QUIRK_MAX > 32);
4267 
4268 	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4269 	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4270 
4271 	while (ad->model_num) {
4272 		if (glob_match(ad->model_num, model_num) &&
4273 		    (!ad->model_rev || glob_match(ad->model_rev, model_rev))) {
4274 			ata_dev_print_quirks(dev, model_num, model_rev,
4275 					     ad->quirks);
4276 			return ad->quirks;
4277 		}
4278 		ad++;
4279 	}
4280 	return 0;
4281 }
4282 
ata_dev_nodma(const struct ata_device * dev)4283 static bool ata_dev_nodma(const struct ata_device *dev)
4284 {
4285 	/*
4286 	 * We do not support polling DMA. Deny DMA for those ATAPI devices
4287 	 * with CDB-intr (and use PIO) if the LLDD handles only interrupts in
4288 	 * the HSM_ST_LAST state.
4289 	 */
4290 	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4291 	    (dev->flags & ATA_DFLAG_CDB_INTR))
4292 		return true;
4293 	return dev->quirks & ATA_QUIRK_NODMA;
4294 }
4295 
4296 /**
4297  *	ata_is_40wire		-	check drive side detection
4298  *	@dev: device
4299  *
4300  *	Perform drive side detection decoding, allowing for device vendors
4301  *	who can't follow the documentation.
4302  */
4303 
ata_is_40wire(struct ata_device * dev)4304 static int ata_is_40wire(struct ata_device *dev)
4305 {
4306 	if (dev->quirks & ATA_QUIRK_IVB)
4307 		return ata_drive_40wire_relaxed(dev->id);
4308 	return ata_drive_40wire(dev->id);
4309 }
4310 
4311 /**
4312  *	cable_is_40wire		-	40/80/SATA decider
4313  *	@ap: port to consider
4314  *
4315  *	This function encapsulates the policy for speed management
4316  *	in one place. At the moment we don't cache the result but
4317  *	there is a good case for setting ap->cbl to the result when
4318  *	we are called with unknown cables (and figuring out if it
4319  *	impacts hotplug at all).
4320  *
4321  *	Return 1 if the cable appears to be 40 wire.
4322  */
4323 
cable_is_40wire(struct ata_port * ap)4324 static int cable_is_40wire(struct ata_port *ap)
4325 {
4326 	struct ata_link *link;
4327 	struct ata_device *dev;
4328 
4329 	/* If the controller thinks we are 40 wire, we are. */
4330 	if (ap->cbl == ATA_CBL_PATA40)
4331 		return 1;
4332 
4333 	/* If the controller thinks we are 80 wire, we are. */
4334 	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4335 		return 0;
4336 
4337 	/* If the system is known to be 40 wire short cable (eg
4338 	 * laptop), then we allow 80 wire modes even if the drive
4339 	 * isn't sure.
4340 	 */
4341 	if (ap->cbl == ATA_CBL_PATA40_SHORT)
4342 		return 0;
4343 
4344 	/* If the controller doesn't know, we scan.
4345 	 *
4346 	 * Note: We look for all 40 wire detects at this point.  Any
4347 	 *       80 wire detect is taken to be 80 wire cable because
4348 	 * - in many setups only the one drive (slave if present) will
4349 	 *   give a valid detect
4350 	 * - if you have a non detect capable drive you don't want it
4351 	 *   to colour the choice
4352 	 */
4353 	ata_for_each_link(link, ap, EDGE) {
4354 		ata_for_each_dev(dev, link, ENABLED) {
4355 			if (!ata_is_40wire(dev))
4356 				return 0;
4357 		}
4358 	}
4359 	return 1;
4360 }
4361 
4362 /**
4363  *	ata_dev_xfermask - Compute supported xfermask of the given device
4364  *	@dev: Device to compute xfermask for
4365  *
4366  *	Compute supported xfermask of @dev and store it in
4367  *	dev->*_mask.  This function is responsible for applying all
4368  *	known limits including host controller limits, device quirks, etc...
4369  *
4370  *	LOCKING:
4371  *	None.
4372  */
ata_dev_xfermask(struct ata_device * dev)4373 static void ata_dev_xfermask(struct ata_device *dev)
4374 {
4375 	struct ata_link *link = dev->link;
4376 	struct ata_port *ap = link->ap;
4377 	struct ata_host *host = ap->host;
4378 	unsigned int xfer_mask;
4379 
4380 	/* controller modes available */
4381 	xfer_mask = ata_pack_xfermask(ap->pio_mask,
4382 				      ap->mwdma_mask, ap->udma_mask);
4383 
4384 	/* drive modes available */
4385 	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4386 				       dev->mwdma_mask, dev->udma_mask);
4387 	xfer_mask &= ata_id_xfermask(dev->id);
4388 
4389 	/*
4390 	 *	CFA Advanced TrueIDE timings are not allowed on a shared
4391 	 *	cable
4392 	 */
4393 	if (ata_dev_pair(dev)) {
4394 		/* No PIO5 or PIO6 */
4395 		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4396 		/* No MWDMA3 or MWDMA 4 */
4397 		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4398 	}
4399 
4400 	if (ata_dev_nodma(dev)) {
4401 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4402 		ata_dev_warn(dev,
4403 			     "device does not support DMA, disabling DMA\n");
4404 	}
4405 
4406 	if ((host->flags & ATA_HOST_SIMPLEX) &&
4407 	    host->simplex_claimed && host->simplex_claimed != ap) {
4408 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4409 		ata_dev_warn(dev,
4410 			     "simplex DMA is claimed by other device, disabling DMA\n");
4411 	}
4412 
4413 	if (ap->flags & ATA_FLAG_NO_IORDY)
4414 		xfer_mask &= ata_pio_mask_no_iordy(dev);
4415 
4416 	if (ap->ops->mode_filter)
4417 		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4418 
4419 	/* Apply cable rule here.  Don't apply it early because when
4420 	 * we handle hot plug the cable type can itself change.
4421 	 * Check this last so that we know if the transfer rate was
4422 	 * solely limited by the cable.
4423 	 * Unknown or 80 wire cables reported host side are checked
4424 	 * drive side as well. Cases where we know a 40wire cable
4425 	 * is used safely for 80 are not checked here.
4426 	 */
4427 	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4428 		/* UDMA/44 or higher would be available */
4429 		if (cable_is_40wire(ap)) {
4430 			ata_dev_warn(dev,
4431 				     "limited to UDMA/33 due to 40-wire cable\n");
4432 			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4433 		}
4434 
4435 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4436 			    &dev->mwdma_mask, &dev->udma_mask);
4437 }
4438 
4439 /**
4440  *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4441  *	@dev: Device to which command will be sent
4442  *
4443  *	Issue SET FEATURES - XFER MODE command to device @dev
4444  *	on port @ap.
4445  *
4446  *	LOCKING:
4447  *	PCI/etc. bus probe sem.
4448  *
4449  *	RETURNS:
4450  *	0 on success, AC_ERR_* mask otherwise.
4451  */
4452 
ata_dev_set_xfermode(struct ata_device * dev)4453 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4454 {
4455 	struct ata_taskfile tf;
4456 
4457 	/* set up set-features taskfile */
4458 	ata_dev_dbg(dev, "set features - xfer mode\n");
4459 
4460 	/* Some controllers and ATAPI devices show flaky interrupt
4461 	 * behavior after setting xfer mode.  Use polling instead.
4462 	 */
4463 	ata_tf_init(dev, &tf);
4464 	tf.command = ATA_CMD_SET_FEATURES;
4465 	tf.feature = SETFEATURES_XFER;
4466 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4467 	tf.protocol = ATA_PROT_NODATA;
4468 	/* If we are using IORDY we must send the mode setting command */
4469 	if (ata_pio_need_iordy(dev))
4470 		tf.nsect = dev->xfer_mode;
4471 	/* If the device has IORDY and the controller does not - turn it off */
4472  	else if (ata_id_has_iordy(dev->id))
4473 		tf.nsect = 0x01;
4474 	else /* In the ancient relic department - skip all of this */
4475 		return 0;
4476 
4477 	/*
4478 	 * On some disks, this command causes spin-up, so we need longer
4479 	 * timeout.
4480 	 */
4481 	return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4482 }
4483 
4484 /**
4485  *	ata_dev_set_feature - Issue SET FEATURES
4486  *	@dev: Device to which command will be sent
4487  *	@subcmd: The SET FEATURES subcommand to be sent
4488  *	@action: The sector count represents a subcommand specific action
4489  *
4490  *	Issue SET FEATURES command to device @dev on port @ap with sector count
4491  *
4492  *	LOCKING:
4493  *	PCI/etc. bus probe sem.
4494  *
4495  *	RETURNS:
4496  *	0 on success, AC_ERR_* mask otherwise.
4497  */
ata_dev_set_feature(struct ata_device * dev,u8 subcmd,u8 action)4498 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 subcmd, u8 action)
4499 {
4500 	struct ata_taskfile tf;
4501 	unsigned int timeout = 0;
4502 
4503 	/* set up set-features taskfile */
4504 	ata_dev_dbg(dev, "set features\n");
4505 
4506 	ata_tf_init(dev, &tf);
4507 	tf.command = ATA_CMD_SET_FEATURES;
4508 	tf.feature = subcmd;
4509 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4510 	tf.protocol = ATA_PROT_NODATA;
4511 	tf.nsect = action;
4512 
4513 	if (subcmd == SETFEATURES_SPINUP)
4514 		timeout = ata_probe_timeout ?
4515 			  ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4516 
4517 	return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4518 }
4519 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4520 
4521 /**
4522  *	ata_dev_init_params - Issue INIT DEV PARAMS command
4523  *	@dev: Device to which command will be sent
4524  *	@heads: Number of heads (taskfile parameter)
4525  *	@sectors: Number of sectors (taskfile parameter)
4526  *
4527  *	LOCKING:
4528  *	Kernel thread context (may sleep)
4529  *
4530  *	RETURNS:
4531  *	0 on success, AC_ERR_* mask otherwise.
4532  */
ata_dev_init_params(struct ata_device * dev,u16 heads,u16 sectors)4533 static unsigned int ata_dev_init_params(struct ata_device *dev,
4534 					u16 heads, u16 sectors)
4535 {
4536 	struct ata_taskfile tf;
4537 	unsigned int err_mask;
4538 
4539 	/* Number of sectors per track 1-255. Number of heads 1-16 */
4540 	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4541 		return AC_ERR_INVALID;
4542 
4543 	/* set up init dev params taskfile */
4544 	ata_dev_dbg(dev, "init dev params \n");
4545 
4546 	ata_tf_init(dev, &tf);
4547 	tf.command = ATA_CMD_INIT_DEV_PARAMS;
4548 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4549 	tf.protocol = ATA_PROT_NODATA;
4550 	tf.nsect = sectors;
4551 	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4552 
4553 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4554 	/* A clean abort indicates an original or just out of spec drive
4555 	   and we should continue as we issue the setup based on the
4556 	   drive reported working geometry */
4557 	if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
4558 		err_mask = 0;
4559 
4560 	return err_mask;
4561 }
4562 
4563 /**
4564  *	atapi_check_dma - Check whether ATAPI DMA can be supported
4565  *	@qc: Metadata associated with taskfile to check
4566  *
4567  *	Allow low-level driver to filter ATA PACKET commands, returning
4568  *	a status indicating whether or not it is OK to use DMA for the
4569  *	supplied PACKET command.
4570  *
4571  *	LOCKING:
4572  *	spin_lock_irqsave(host lock)
4573  *
4574  *	RETURNS: 0 when ATAPI DMA can be used
4575  *               nonzero otherwise
4576  */
atapi_check_dma(struct ata_queued_cmd * qc)4577 int atapi_check_dma(struct ata_queued_cmd *qc)
4578 {
4579 	struct ata_port *ap = qc->ap;
4580 
4581 	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4582 	 * few ATAPI devices choke on such DMA requests.
4583 	 */
4584 	if (!(qc->dev->quirks & ATA_QUIRK_ATAPI_MOD16_DMA) &&
4585 	    unlikely(qc->nbytes & 15))
4586 		return -EOPNOTSUPP;
4587 
4588 	if (ap->ops->check_atapi_dma)
4589 		return ap->ops->check_atapi_dma(qc);
4590 
4591 	return 0;
4592 }
4593 
4594 /**
4595  *	ata_std_qc_defer - Check whether a qc needs to be deferred
4596  *	@qc: ATA command in question
4597  *
4598  *	Non-NCQ commands cannot run with any other command, NCQ or
4599  *	not.  As upper layer only knows the queue depth, we are
4600  *	responsible for maintaining exclusion.  This function checks
4601  *	whether a new command @qc can be issued.
4602  *
4603  *	LOCKING:
4604  *	spin_lock_irqsave(host lock)
4605  *
4606  *	RETURNS:
4607  *	ATA_DEFER_* if deferring is needed, 0 otherwise.
4608  */
ata_std_qc_defer(struct ata_queued_cmd * qc)4609 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4610 {
4611 	struct ata_link *link = qc->dev->link;
4612 
4613 	if (ata_is_ncq(qc->tf.protocol)) {
4614 		if (!ata_tag_valid(link->active_tag))
4615 			return 0;
4616 	} else {
4617 		if (!ata_tag_valid(link->active_tag) && !link->sactive)
4618 			return 0;
4619 	}
4620 
4621 	return ATA_DEFER_LINK;
4622 }
4623 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
4624 
4625 /**
4626  *	ata_sg_init - Associate command with scatter-gather table.
4627  *	@qc: Command to be associated
4628  *	@sg: Scatter-gather table.
4629  *	@n_elem: Number of elements in s/g table.
4630  *
4631  *	Initialize the data-related elements of queued_cmd @qc
4632  *	to point to a scatter-gather table @sg, containing @n_elem
4633  *	elements.
4634  *
4635  *	LOCKING:
4636  *	spin_lock_irqsave(host lock)
4637  */
ata_sg_init(struct ata_queued_cmd * qc,struct scatterlist * sg,unsigned int n_elem)4638 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4639 		 unsigned int n_elem)
4640 {
4641 	qc->sg = sg;
4642 	qc->n_elem = n_elem;
4643 	qc->cursg = qc->sg;
4644 }
4645 
4646 #ifdef CONFIG_HAS_DMA
4647 
4648 /**
4649  *	ata_sg_clean - Unmap DMA memory associated with command
4650  *	@qc: Command containing DMA memory to be released
4651  *
4652  *	Unmap all mapped DMA memory associated with this command.
4653  *
4654  *	LOCKING:
4655  *	spin_lock_irqsave(host lock)
4656  */
ata_sg_clean(struct ata_queued_cmd * qc)4657 static void ata_sg_clean(struct ata_queued_cmd *qc)
4658 {
4659 	struct ata_port *ap = qc->ap;
4660 	struct scatterlist *sg = qc->sg;
4661 	int dir = qc->dma_dir;
4662 
4663 	WARN_ON_ONCE(sg == NULL);
4664 
4665 	if (qc->n_elem)
4666 		dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4667 
4668 	qc->flags &= ~ATA_QCFLAG_DMAMAP;
4669 	qc->sg = NULL;
4670 }
4671 
4672 /**
4673  *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4674  *	@qc: Command with scatter-gather table to be mapped.
4675  *
4676  *	DMA-map the scatter-gather table associated with queued_cmd @qc.
4677  *
4678  *	LOCKING:
4679  *	spin_lock_irqsave(host lock)
4680  *
4681  *	RETURNS:
4682  *	Zero on success, negative on error.
4683  *
4684  */
ata_sg_setup(struct ata_queued_cmd * qc)4685 static int ata_sg_setup(struct ata_queued_cmd *qc)
4686 {
4687 	struct ata_port *ap = qc->ap;
4688 	unsigned int n_elem;
4689 
4690 	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4691 	if (n_elem < 1)
4692 		return -1;
4693 
4694 	qc->orig_n_elem = qc->n_elem;
4695 	qc->n_elem = n_elem;
4696 	qc->flags |= ATA_QCFLAG_DMAMAP;
4697 
4698 	return 0;
4699 }
4700 
4701 #else /* !CONFIG_HAS_DMA */
4702 
ata_sg_clean(struct ata_queued_cmd * qc)4703 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
ata_sg_setup(struct ata_queued_cmd * qc)4704 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
4705 
4706 #endif /* !CONFIG_HAS_DMA */
4707 
4708 /**
4709  *	swap_buf_le16 - swap halves of 16-bit words in place
4710  *	@buf:  Buffer to swap
4711  *	@buf_words:  Number of 16-bit words in buffer.
4712  *
4713  *	Swap halves of 16-bit words if needed to convert from
4714  *	little-endian byte order to native cpu byte order, or
4715  *	vice-versa.
4716  *
4717  *	LOCKING:
4718  *	Inherited from caller.
4719  */
swap_buf_le16(u16 * buf,unsigned int buf_words)4720 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4721 {
4722 #ifdef __BIG_ENDIAN
4723 	unsigned int i;
4724 
4725 	for (i = 0; i < buf_words; i++)
4726 		buf[i] = le16_to_cpu(buf[i]);
4727 #endif /* __BIG_ENDIAN */
4728 }
4729 
4730 /**
4731  *	ata_qc_free - free unused ata_queued_cmd
4732  *	@qc: Command to complete
4733  *
4734  *	Designed to free unused ata_queued_cmd object
4735  *	in case something prevents using it.
4736  *
4737  *	LOCKING:
4738  *	spin_lock_irqsave(host lock)
4739  */
ata_qc_free(struct ata_queued_cmd * qc)4740 void ata_qc_free(struct ata_queued_cmd *qc)
4741 {
4742 	qc->flags = 0;
4743 	if (ata_tag_valid(qc->tag))
4744 		qc->tag = ATA_TAG_POISON;
4745 }
4746 
__ata_qc_complete(struct ata_queued_cmd * qc)4747 void __ata_qc_complete(struct ata_queued_cmd *qc)
4748 {
4749 	struct ata_port *ap;
4750 	struct ata_link *link;
4751 
4752 	if (WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)))
4753 		return;
4754 
4755 	ap = qc->ap;
4756 	link = qc->dev->link;
4757 
4758 	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4759 		ata_sg_clean(qc);
4760 
4761 	/* command should be marked inactive atomically with qc completion */
4762 	if (ata_is_ncq(qc->tf.protocol)) {
4763 		link->sactive &= ~(1 << qc->hw_tag);
4764 		if (!link->sactive)
4765 			ap->nr_active_links--;
4766 	} else {
4767 		link->active_tag = ATA_TAG_POISON;
4768 		ap->nr_active_links--;
4769 	}
4770 
4771 	/* clear exclusive status */
4772 	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4773 		     ap->excl_link == link))
4774 		ap->excl_link = NULL;
4775 
4776 	/*
4777 	 * Mark qc as inactive to prevent the port interrupt handler from
4778 	 * completing the command twice later, before the error handler is
4779 	 * called.
4780 	 */
4781 	qc->flags &= ~ATA_QCFLAG_ACTIVE;
4782 	ap->qc_active &= ~(1ULL << qc->tag);
4783 
4784 	/* call completion callback */
4785 	qc->complete_fn(qc);
4786 }
4787 
fill_result_tf(struct ata_queued_cmd * qc)4788 static void fill_result_tf(struct ata_queued_cmd *qc)
4789 {
4790 	struct ata_port *ap = qc->ap;
4791 
4792 	/*
4793 	 * rtf may already be filled (e.g. for successful NCQ commands).
4794 	 * If that is the case, we have nothing to do.
4795 	 */
4796 	if (qc->flags & ATA_QCFLAG_RTF_FILLED)
4797 		return;
4798 
4799 	qc->result_tf.flags = qc->tf.flags;
4800 	ap->ops->qc_fill_rtf(qc);
4801 	qc->flags |= ATA_QCFLAG_RTF_FILLED;
4802 }
4803 
ata_verify_xfer(struct ata_queued_cmd * qc)4804 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4805 {
4806 	struct ata_device *dev = qc->dev;
4807 
4808 	if (!ata_is_data(qc->tf.protocol))
4809 		return;
4810 
4811 	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4812 		return;
4813 
4814 	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4815 }
4816 
4817 /**
4818  *	ata_qc_complete - Complete an active ATA command
4819  *	@qc: Command to complete
4820  *
4821  *	Indicate to the mid and upper layers that an ATA command has
4822  *	completed, with either an ok or not-ok status.
4823  *
4824  *	Refrain from calling this function multiple times when
4825  *	successfully completing multiple NCQ commands.
4826  *	ata_qc_complete_multiple() should be used instead, which will
4827  *	properly update IRQ expect state.
4828  *
4829  *	LOCKING:
4830  *	spin_lock_irqsave(host lock)
4831  */
ata_qc_complete(struct ata_queued_cmd * qc)4832 void ata_qc_complete(struct ata_queued_cmd *qc)
4833 {
4834 	struct ata_port *ap = qc->ap;
4835 	struct ata_device *dev = qc->dev;
4836 	struct ata_eh_info *ehi = &dev->link->eh_info;
4837 
4838 	/* Trigger the LED (if available) */
4839 	ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
4840 
4841 	/*
4842 	 * In order to synchronize EH with the regular execution path, a qc that
4843 	 * is owned by EH is marked with ATA_QCFLAG_EH.
4844 	 *
4845 	 * The normal execution path is responsible for not accessing a qc owned
4846 	 * by EH.  libata core enforces the rule by returning NULL from
4847 	 * ata_qc_from_tag() for qcs owned by EH.
4848 	 */
4849 	if (unlikely(qc->err_mask))
4850 		qc->flags |= ATA_QCFLAG_EH;
4851 
4852 	/*
4853 	 * Finish internal commands without any further processing and always
4854 	 * with the result TF filled.
4855 	 */
4856 	if (unlikely(ata_tag_internal(qc->tag))) {
4857 		fill_result_tf(qc);
4858 		trace_ata_qc_complete_internal(qc);
4859 		__ata_qc_complete(qc);
4860 		return;
4861 	}
4862 
4863 	/* Non-internal qc has failed.  Fill the result TF and summon EH. */
4864 	if (unlikely(qc->flags & ATA_QCFLAG_EH)) {
4865 		fill_result_tf(qc);
4866 		trace_ata_qc_complete_failed(qc);
4867 		ata_qc_schedule_eh(qc);
4868 		return;
4869 	}
4870 
4871 	WARN_ON_ONCE(ata_port_is_frozen(ap));
4872 
4873 	/* read result TF if requested */
4874 	if (qc->flags & ATA_QCFLAG_RESULT_TF)
4875 		fill_result_tf(qc);
4876 
4877 	trace_ata_qc_complete_done(qc);
4878 
4879 	/*
4880 	 * For CDL commands that completed without an error, check if we have
4881 	 * sense data (ATA_SENSE is set). If we do, then the command may have
4882 	 * been aborted by the device due to a limit timeout using the policy
4883 	 * 0xD. For these commands, invoke EH to get the command sense data.
4884 	 */
4885 	if (qc->flags & ATA_QCFLAG_HAS_CDL &&
4886 	    qc->result_tf.status & ATA_SENSE) {
4887 		/*
4888 		 * Tell SCSI EH to not overwrite scmd->result even if this
4889 		 * command is finished with result SAM_STAT_GOOD.
4890 		 */
4891 		qc->scsicmd->flags |= SCMD_FORCE_EH_SUCCESS;
4892 		qc->flags |= ATA_QCFLAG_EH_SUCCESS_CMD;
4893 		ehi->dev_action[dev->devno] |= ATA_EH_GET_SUCCESS_SENSE;
4894 
4895 		/*
4896 		 * set pending so that ata_qc_schedule_eh() does not trigger
4897 		 * fast drain, and freeze the port.
4898 		 */
4899 		ap->pflags |= ATA_PFLAG_EH_PENDING;
4900 		ata_qc_schedule_eh(qc);
4901 		return;
4902 	}
4903 
4904 	/* Some commands need post-processing after successful completion. */
4905 	switch (qc->tf.command) {
4906 	case ATA_CMD_SET_FEATURES:
4907 		if (qc->tf.feature != SETFEATURES_WC_ON &&
4908 		    qc->tf.feature != SETFEATURES_WC_OFF &&
4909 		    qc->tf.feature != SETFEATURES_RA_ON &&
4910 		    qc->tf.feature != SETFEATURES_RA_OFF)
4911 			break;
4912 		fallthrough;
4913 	case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4914 	case ATA_CMD_SET_MULTI: /* multi_count changed */
4915 		/* revalidate device */
4916 		ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4917 		ata_port_schedule_eh(ap);
4918 		break;
4919 
4920 	case ATA_CMD_SLEEP:
4921 		dev->flags |= ATA_DFLAG_SLEEPING;
4922 		break;
4923 	}
4924 
4925 	if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4926 		ata_verify_xfer(qc);
4927 
4928 	__ata_qc_complete(qc);
4929 }
4930 EXPORT_SYMBOL_GPL(ata_qc_complete);
4931 
4932 /**
4933  *	ata_qc_get_active - get bitmask of active qcs
4934  *	@ap: port in question
4935  *
4936  *	LOCKING:
4937  *	spin_lock_irqsave(host lock)
4938  *
4939  *	RETURNS:
4940  *	Bitmask of active qcs
4941  */
ata_qc_get_active(struct ata_port * ap)4942 u64 ata_qc_get_active(struct ata_port *ap)
4943 {
4944 	u64 qc_active = ap->qc_active;
4945 
4946 	/* ATA_TAG_INTERNAL is sent to hw as tag 0 */
4947 	if (qc_active & (1ULL << ATA_TAG_INTERNAL)) {
4948 		qc_active |= (1 << 0);
4949 		qc_active &= ~(1ULL << ATA_TAG_INTERNAL);
4950 	}
4951 
4952 	return qc_active;
4953 }
4954 EXPORT_SYMBOL_GPL(ata_qc_get_active);
4955 
4956 /**
4957  *	ata_qc_issue - issue taskfile to device
4958  *	@qc: command to issue to device
4959  *
4960  *	Prepare an ATA command to submission to device.
4961  *	This includes mapping the data into a DMA-able
4962  *	area, filling in the S/G table, and finally
4963  *	writing the taskfile to hardware, starting the command.
4964  *
4965  *	LOCKING:
4966  *	spin_lock_irqsave(host lock)
4967  */
ata_qc_issue(struct ata_queued_cmd * qc)4968 void ata_qc_issue(struct ata_queued_cmd *qc)
4969 {
4970 	struct ata_port *ap = qc->ap;
4971 	struct ata_link *link = qc->dev->link;
4972 	u8 prot = qc->tf.protocol;
4973 
4974 	/* Make sure only one non-NCQ command is outstanding. */
4975 	WARN_ON_ONCE(ata_tag_valid(link->active_tag));
4976 
4977 	if (ata_is_ncq(prot)) {
4978 		WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag));
4979 
4980 		if (!link->sactive)
4981 			ap->nr_active_links++;
4982 		link->sactive |= 1 << qc->hw_tag;
4983 	} else {
4984 		WARN_ON_ONCE(link->sactive);
4985 
4986 		ap->nr_active_links++;
4987 		link->active_tag = qc->tag;
4988 	}
4989 
4990 	qc->flags |= ATA_QCFLAG_ACTIVE;
4991 	ap->qc_active |= 1ULL << qc->tag;
4992 
4993 	/*
4994 	 * We guarantee to LLDs that they will have at least one
4995 	 * non-zero sg if the command is a data command.
4996 	 */
4997 	if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
4998 		goto sys_err;
4999 
5000 	if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5001 				 (ap->flags & ATA_FLAG_PIO_DMA)))
5002 		if (ata_sg_setup(qc))
5003 			goto sys_err;
5004 
5005 	/* if device is sleeping, schedule reset and abort the link */
5006 	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5007 		link->eh_info.action |= ATA_EH_RESET;
5008 		ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5009 		ata_link_abort(link);
5010 		return;
5011 	}
5012 
5013 	if (ap->ops->qc_prep) {
5014 		trace_ata_qc_prep(qc);
5015 		qc->err_mask |= ap->ops->qc_prep(qc);
5016 		if (unlikely(qc->err_mask))
5017 			goto err;
5018 	}
5019 
5020 	trace_ata_qc_issue(qc);
5021 	qc->err_mask |= ap->ops->qc_issue(qc);
5022 	if (unlikely(qc->err_mask))
5023 		goto err;
5024 	return;
5025 
5026 sys_err:
5027 	qc->err_mask |= AC_ERR_SYSTEM;
5028 err:
5029 	ata_qc_complete(qc);
5030 }
5031 
5032 /**
5033  *	ata_phys_link_online - test whether the given link is online
5034  *	@link: ATA link to test
5035  *
5036  *	Test whether @link is online.  Note that this function returns
5037  *	0 if online status of @link cannot be obtained, so
5038  *	ata_link_online(link) != !ata_link_offline(link).
5039  *
5040  *	LOCKING:
5041  *	None.
5042  *
5043  *	RETURNS:
5044  *	True if the port online status is available and online.
5045  */
ata_phys_link_online(struct ata_link * link)5046 bool ata_phys_link_online(struct ata_link *link)
5047 {
5048 	u32 sstatus;
5049 
5050 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5051 	    ata_sstatus_online(sstatus))
5052 		return true;
5053 	return false;
5054 }
5055 
5056 /**
5057  *	ata_phys_link_offline - test whether the given link is offline
5058  *	@link: ATA link to test
5059  *
5060  *	Test whether @link is offline.  Note that this function
5061  *	returns 0 if offline status of @link cannot be obtained, so
5062  *	ata_link_online(link) != !ata_link_offline(link).
5063  *
5064  *	LOCKING:
5065  *	None.
5066  *
5067  *	RETURNS:
5068  *	True if the port offline status is available and offline.
5069  */
ata_phys_link_offline(struct ata_link * link)5070 bool ata_phys_link_offline(struct ata_link *link)
5071 {
5072 	u32 sstatus;
5073 
5074 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5075 	    !ata_sstatus_online(sstatus))
5076 		return true;
5077 	return false;
5078 }
5079 
5080 /**
5081  *	ata_link_online - test whether the given link is online
5082  *	@link: ATA link to test
5083  *
5084  *	Test whether @link is online.  This is identical to
5085  *	ata_phys_link_online() when there's no slave link.  When
5086  *	there's a slave link, this function should only be called on
5087  *	the master link and will return true if any of M/S links is
5088  *	online.
5089  *
5090  *	LOCKING:
5091  *	None.
5092  *
5093  *	RETURNS:
5094  *	True if the port online status is available and online.
5095  */
ata_link_online(struct ata_link * link)5096 bool ata_link_online(struct ata_link *link)
5097 {
5098 	struct ata_link *slave = link->ap->slave_link;
5099 
5100 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5101 
5102 	return ata_phys_link_online(link) ||
5103 		(slave && ata_phys_link_online(slave));
5104 }
5105 EXPORT_SYMBOL_GPL(ata_link_online);
5106 
5107 /**
5108  *	ata_link_offline - test whether the given link is offline
5109  *	@link: ATA link to test
5110  *
5111  *	Test whether @link is offline.  This is identical to
5112  *	ata_phys_link_offline() when there's no slave link.  When
5113  *	there's a slave link, this function should only be called on
5114  *	the master link and will return true if both M/S links are
5115  *	offline.
5116  *
5117  *	LOCKING:
5118  *	None.
5119  *
5120  *	RETURNS:
5121  *	True if the port offline status is available and offline.
5122  */
ata_link_offline(struct ata_link * link)5123 bool ata_link_offline(struct ata_link *link)
5124 {
5125 	struct ata_link *slave = link->ap->slave_link;
5126 
5127 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5128 
5129 	return ata_phys_link_offline(link) &&
5130 		(!slave || ata_phys_link_offline(slave));
5131 }
5132 EXPORT_SYMBOL_GPL(ata_link_offline);
5133 
5134 #ifdef CONFIG_PM
ata_port_request_pm(struct ata_port * ap,pm_message_t mesg,unsigned int action,unsigned int ehi_flags,bool async)5135 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5136 				unsigned int action, unsigned int ehi_flags,
5137 				bool async)
5138 {
5139 	struct ata_link *link;
5140 	unsigned long flags;
5141 
5142 	spin_lock_irqsave(ap->lock, flags);
5143 
5144 	/*
5145 	 * A previous PM operation might still be in progress. Wait for
5146 	 * ATA_PFLAG_PM_PENDING to clear.
5147 	 */
5148 	if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5149 		spin_unlock_irqrestore(ap->lock, flags);
5150 		ata_port_wait_eh(ap);
5151 		spin_lock_irqsave(ap->lock, flags);
5152 	}
5153 
5154 	/* Request PM operation to EH */
5155 	ap->pm_mesg = mesg;
5156 	ap->pflags |= ATA_PFLAG_PM_PENDING;
5157 	ata_for_each_link(link, ap, HOST_FIRST) {
5158 		link->eh_info.action |= action;
5159 		link->eh_info.flags |= ehi_flags;
5160 	}
5161 
5162 	ata_port_schedule_eh(ap);
5163 
5164 	spin_unlock_irqrestore(ap->lock, flags);
5165 
5166 	if (!async)
5167 		ata_port_wait_eh(ap);
5168 }
5169 
ata_port_suspend(struct ata_port * ap,pm_message_t mesg,bool async)5170 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg,
5171 			     bool async)
5172 {
5173 	/*
5174 	 * We are about to suspend the port, so we do not care about
5175 	 * scsi_rescan_device() calls scheduled by previous resume operations.
5176 	 * The next resume will schedule the rescan again. So cancel any rescan
5177 	 * that is not done yet.
5178 	 */
5179 	cancel_delayed_work_sync(&ap->scsi_rescan_task);
5180 
5181 	/*
5182 	 * On some hardware, device fails to respond after spun down for
5183 	 * suspend. As the device will not be used until being resumed, we
5184 	 * do not need to touch the device. Ask EH to skip the usual stuff
5185 	 * and proceed directly to suspend.
5186 	 *
5187 	 * http://thread.gmane.org/gmane.linux.ide/46764
5188 	 */
5189 	ata_port_request_pm(ap, mesg, 0,
5190 			    ATA_EHI_QUIET | ATA_EHI_NO_AUTOPSY |
5191 			    ATA_EHI_NO_RECOVERY,
5192 			    async);
5193 }
5194 
ata_port_pm_suspend(struct device * dev)5195 static int ata_port_pm_suspend(struct device *dev)
5196 {
5197 	struct ata_port *ap = to_ata_port(dev);
5198 
5199 	if (pm_runtime_suspended(dev))
5200 		return 0;
5201 
5202 	ata_port_suspend(ap, PMSG_SUSPEND, false);
5203 	return 0;
5204 }
5205 
ata_port_pm_freeze(struct device * dev)5206 static int ata_port_pm_freeze(struct device *dev)
5207 {
5208 	struct ata_port *ap = to_ata_port(dev);
5209 
5210 	if (pm_runtime_suspended(dev))
5211 		return 0;
5212 
5213 	ata_port_suspend(ap, PMSG_FREEZE, false);
5214 	return 0;
5215 }
5216 
ata_port_pm_poweroff(struct device * dev)5217 static int ata_port_pm_poweroff(struct device *dev)
5218 {
5219 	if (!pm_runtime_suspended(dev))
5220 		ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE, false);
5221 	return 0;
5222 }
5223 
ata_port_resume(struct ata_port * ap,pm_message_t mesg,bool async)5224 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg,
5225 			    bool async)
5226 {
5227 	ata_port_request_pm(ap, mesg, ATA_EH_RESET,
5228 			    ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET,
5229 			    async);
5230 }
5231 
ata_port_pm_resume(struct device * dev)5232 static int ata_port_pm_resume(struct device *dev)
5233 {
5234 	if (!pm_runtime_suspended(dev))
5235 		ata_port_resume(to_ata_port(dev), PMSG_RESUME, true);
5236 	return 0;
5237 }
5238 
5239 /*
5240  * For ODDs, the upper layer will poll for media change every few seconds,
5241  * which will make it enter and leave suspend state every few seconds. And
5242  * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5243  * is very little and the ODD may malfunction after constantly being reset.
5244  * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5245  * ODD is attached to the port.
5246  */
ata_port_runtime_idle(struct device * dev)5247 static int ata_port_runtime_idle(struct device *dev)
5248 {
5249 	struct ata_port *ap = to_ata_port(dev);
5250 	struct ata_link *link;
5251 	struct ata_device *adev;
5252 
5253 	ata_for_each_link(link, ap, HOST_FIRST) {
5254 		ata_for_each_dev(adev, link, ENABLED)
5255 			if (adev->class == ATA_DEV_ATAPI &&
5256 			    !zpodd_dev_enabled(adev))
5257 				return -EBUSY;
5258 	}
5259 
5260 	return 0;
5261 }
5262 
ata_port_runtime_suspend(struct device * dev)5263 static int ata_port_runtime_suspend(struct device *dev)
5264 {
5265 	ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND, false);
5266 	return 0;
5267 }
5268 
ata_port_runtime_resume(struct device * dev)5269 static int ata_port_runtime_resume(struct device *dev)
5270 {
5271 	ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME, false);
5272 	return 0;
5273 }
5274 
5275 static const struct dev_pm_ops ata_port_pm_ops = {
5276 	.suspend = ata_port_pm_suspend,
5277 	.resume = ata_port_pm_resume,
5278 	.freeze = ata_port_pm_freeze,
5279 	.thaw = ata_port_pm_resume,
5280 	.poweroff = ata_port_pm_poweroff,
5281 	.restore = ata_port_pm_resume,
5282 
5283 	.runtime_suspend = ata_port_runtime_suspend,
5284 	.runtime_resume = ata_port_runtime_resume,
5285 	.runtime_idle = ata_port_runtime_idle,
5286 };
5287 
5288 /* sas ports don't participate in pm runtime management of ata_ports,
5289  * and need to resume ata devices at the domain level, not the per-port
5290  * level. sas suspend/resume is async to allow parallel port recovery
5291  * since sas has multiple ata_port instances per Scsi_Host.
5292  */
ata_sas_port_suspend(struct ata_port * ap)5293 void ata_sas_port_suspend(struct ata_port *ap)
5294 {
5295 	ata_port_suspend(ap, PMSG_SUSPEND, true);
5296 }
5297 EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5298 
ata_sas_port_resume(struct ata_port * ap)5299 void ata_sas_port_resume(struct ata_port *ap)
5300 {
5301 	ata_port_resume(ap, PMSG_RESUME, true);
5302 }
5303 EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5304 
5305 /**
5306  *	ata_host_suspend - suspend host
5307  *	@host: host to suspend
5308  *	@mesg: PM message
5309  *
5310  *	Suspend @host.  Actual operation is performed by port suspend.
5311  */
ata_host_suspend(struct ata_host * host,pm_message_t mesg)5312 void ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5313 {
5314 	host->dev->power.power_state = mesg;
5315 }
5316 EXPORT_SYMBOL_GPL(ata_host_suspend);
5317 
5318 /**
5319  *	ata_host_resume - resume host
5320  *	@host: host to resume
5321  *
5322  *	Resume @host.  Actual operation is performed by port resume.
5323  */
ata_host_resume(struct ata_host * host)5324 void ata_host_resume(struct ata_host *host)
5325 {
5326 	host->dev->power.power_state = PMSG_ON;
5327 }
5328 EXPORT_SYMBOL_GPL(ata_host_resume);
5329 #endif
5330 
5331 const struct device_type ata_port_type = {
5332 	.name = ATA_PORT_TYPE_NAME,
5333 #ifdef CONFIG_PM
5334 	.pm = &ata_port_pm_ops,
5335 #endif
5336 };
5337 
5338 /**
5339  *	ata_dev_init - Initialize an ata_device structure
5340  *	@dev: Device structure to initialize
5341  *
5342  *	Initialize @dev in preparation for probing.
5343  *
5344  *	LOCKING:
5345  *	Inherited from caller.
5346  */
ata_dev_init(struct ata_device * dev)5347 void ata_dev_init(struct ata_device *dev)
5348 {
5349 	struct ata_link *link = ata_dev_phys_link(dev);
5350 	struct ata_port *ap = link->ap;
5351 	unsigned long flags;
5352 
5353 	/* SATA spd limit is bound to the attached device, reset together */
5354 	link->sata_spd_limit = link->hw_sata_spd_limit;
5355 	link->sata_spd = 0;
5356 
5357 	/* High bits of dev->flags are used to record warm plug
5358 	 * requests which occur asynchronously.  Synchronize using
5359 	 * host lock.
5360 	 */
5361 	spin_lock_irqsave(ap->lock, flags);
5362 	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5363 	dev->quirks = 0;
5364 	spin_unlock_irqrestore(ap->lock, flags);
5365 
5366 	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5367 	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5368 	dev->pio_mask = UINT_MAX;
5369 	dev->mwdma_mask = UINT_MAX;
5370 	dev->udma_mask = UINT_MAX;
5371 }
5372 
5373 /**
5374  *	ata_link_init - Initialize an ata_link structure
5375  *	@ap: ATA port link is attached to
5376  *	@link: Link structure to initialize
5377  *	@pmp: Port multiplier port number
5378  *
5379  *	Initialize @link.
5380  *
5381  *	LOCKING:
5382  *	Kernel thread context (may sleep)
5383  */
ata_link_init(struct ata_port * ap,struct ata_link * link,int pmp)5384 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5385 {
5386 	int i;
5387 
5388 	/* clear everything except for devices */
5389 	memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5390 	       ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5391 
5392 	link->ap = ap;
5393 	link->pmp = pmp;
5394 	link->active_tag = ATA_TAG_POISON;
5395 	link->hw_sata_spd_limit = UINT_MAX;
5396 
5397 	/* can't use iterator, ap isn't initialized yet */
5398 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5399 		struct ata_device *dev = &link->device[i];
5400 
5401 		dev->link = link;
5402 		dev->devno = dev - link->device;
5403 #ifdef CONFIG_ATA_ACPI
5404 		dev->gtf_filter = ata_acpi_gtf_filter;
5405 #endif
5406 		ata_dev_init(dev);
5407 	}
5408 }
5409 
5410 /**
5411  *	sata_link_init_spd - Initialize link->sata_spd_limit
5412  *	@link: Link to configure sata_spd_limit for
5413  *
5414  *	Initialize ``link->[hw_]sata_spd_limit`` to the currently
5415  *	configured value.
5416  *
5417  *	LOCKING:
5418  *	Kernel thread context (may sleep).
5419  *
5420  *	RETURNS:
5421  *	0 on success, -errno on failure.
5422  */
sata_link_init_spd(struct ata_link * link)5423 int sata_link_init_spd(struct ata_link *link)
5424 {
5425 	u8 spd;
5426 	int rc;
5427 
5428 	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5429 	if (rc)
5430 		return rc;
5431 
5432 	spd = (link->saved_scontrol >> 4) & 0xf;
5433 	if (spd)
5434 		link->hw_sata_spd_limit &= (1 << spd) - 1;
5435 
5436 	ata_force_link_limits(link);
5437 
5438 	link->sata_spd_limit = link->hw_sata_spd_limit;
5439 
5440 	return 0;
5441 }
5442 
5443 /**
5444  *	ata_port_alloc - allocate and initialize basic ATA port resources
5445  *	@host: ATA host this allocated port belongs to
5446  *
5447  *	Allocate and initialize basic ATA port resources.
5448  *
5449  *	RETURNS:
5450  *	Allocate ATA port on success, NULL on failure.
5451  *
5452  *	LOCKING:
5453  *	Inherited from calling layer (may sleep).
5454  */
ata_port_alloc(struct ata_host * host)5455 struct ata_port *ata_port_alloc(struct ata_host *host)
5456 {
5457 	struct ata_port *ap;
5458 	int id;
5459 
5460 	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5461 	if (!ap)
5462 		return NULL;
5463 
5464 	ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5465 	ap->lock = &host->lock;
5466 	id = ida_alloc_min(&ata_ida, 1, GFP_KERNEL);
5467 	if (id < 0) {
5468 		kfree(ap);
5469 		return NULL;
5470 	}
5471 	ap->print_id = id;
5472 	ap->host = host;
5473 	ap->dev = host->dev;
5474 
5475 	mutex_init(&ap->scsi_scan_mutex);
5476 	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5477 	INIT_DELAYED_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5478 	INIT_LIST_HEAD(&ap->eh_done_q);
5479 	init_waitqueue_head(&ap->eh_wait_q);
5480 	init_completion(&ap->park_req_pending);
5481 	timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
5482 		    TIMER_DEFERRABLE);
5483 
5484 	ap->cbl = ATA_CBL_NONE;
5485 
5486 	ata_link_init(ap, &ap->link, 0);
5487 
5488 #ifdef ATA_IRQ_TRAP
5489 	ap->stats.unhandled_irq = 1;
5490 	ap->stats.idle_irq = 1;
5491 #endif
5492 	ata_sff_port_init(ap);
5493 
5494 	ata_force_pflags(ap);
5495 
5496 	return ap;
5497 }
5498 EXPORT_SYMBOL_GPL(ata_port_alloc);
5499 
ata_port_free(struct ata_port * ap)5500 void ata_port_free(struct ata_port *ap)
5501 {
5502 	if (!ap)
5503 		return;
5504 
5505 	kfree(ap->pmp_link);
5506 	kfree(ap->slave_link);
5507 	ida_free(&ata_ida, ap->print_id);
5508 	kfree(ap);
5509 }
5510 EXPORT_SYMBOL_GPL(ata_port_free);
5511 
ata_devres_release(struct device * gendev,void * res)5512 static void ata_devres_release(struct device *gendev, void *res)
5513 {
5514 	struct ata_host *host = dev_get_drvdata(gendev);
5515 	int i;
5516 
5517 	for (i = 0; i < host->n_ports; i++) {
5518 		struct ata_port *ap = host->ports[i];
5519 
5520 		if (!ap)
5521 			continue;
5522 
5523 		if (ap->scsi_host)
5524 			scsi_host_put(ap->scsi_host);
5525 
5526 	}
5527 
5528 	dev_set_drvdata(gendev, NULL);
5529 	ata_host_put(host);
5530 }
5531 
ata_host_release(struct kref * kref)5532 static void ata_host_release(struct kref *kref)
5533 {
5534 	struct ata_host *host = container_of(kref, struct ata_host, kref);
5535 	int i;
5536 
5537 	for (i = 0; i < host->n_ports; i++) {
5538 		ata_port_free(host->ports[i]);
5539 		host->ports[i] = NULL;
5540 	}
5541 	kfree(host);
5542 }
5543 
ata_host_get(struct ata_host * host)5544 void ata_host_get(struct ata_host *host)
5545 {
5546 	kref_get(&host->kref);
5547 }
5548 
ata_host_put(struct ata_host * host)5549 void ata_host_put(struct ata_host *host)
5550 {
5551 	kref_put(&host->kref, ata_host_release);
5552 }
5553 EXPORT_SYMBOL_GPL(ata_host_put);
5554 
5555 /**
5556  *	ata_host_alloc - allocate and init basic ATA host resources
5557  *	@dev: generic device this host is associated with
5558  *	@n_ports: the number of ATA ports associated with this host
5559  *
5560  *	Allocate and initialize basic ATA host resources.  LLD calls
5561  *	this function to allocate a host, initializes it fully and
5562  *	attaches it using ata_host_register().
5563  *
5564  *	RETURNS:
5565  *	Allocate ATA host on success, NULL on failure.
5566  *
5567  *	LOCKING:
5568  *	Inherited from calling layer (may sleep).
5569  */
ata_host_alloc(struct device * dev,int n_ports)5570 struct ata_host *ata_host_alloc(struct device *dev, int n_ports)
5571 {
5572 	struct ata_host *host;
5573 	size_t sz;
5574 	int i;
5575 	void *dr;
5576 
5577 	/* alloc a container for our list of ATA ports (buses) */
5578 	sz = sizeof(struct ata_host) + n_ports * sizeof(void *);
5579 	host = kzalloc(sz, GFP_KERNEL);
5580 	if (!host)
5581 		return NULL;
5582 
5583 	if (!devres_open_group(dev, NULL, GFP_KERNEL)) {
5584 		kfree(host);
5585 		return NULL;
5586 	}
5587 
5588 	dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
5589 	if (!dr) {
5590 		kfree(host);
5591 		goto err_out;
5592 	}
5593 
5594 	devres_add(dev, dr);
5595 	dev_set_drvdata(dev, host);
5596 
5597 	spin_lock_init(&host->lock);
5598 	mutex_init(&host->eh_mutex);
5599 	host->dev = dev;
5600 	host->n_ports = n_ports;
5601 	kref_init(&host->kref);
5602 
5603 	/* allocate ports bound to this host */
5604 	for (i = 0; i < n_ports; i++) {
5605 		struct ata_port *ap;
5606 
5607 		ap = ata_port_alloc(host);
5608 		if (!ap)
5609 			goto err_out;
5610 
5611 		ap->port_no = i;
5612 		host->ports[i] = ap;
5613 	}
5614 
5615 	devres_remove_group(dev, NULL);
5616 	return host;
5617 
5618  err_out:
5619 	devres_release_group(dev, NULL);
5620 	return NULL;
5621 }
5622 EXPORT_SYMBOL_GPL(ata_host_alloc);
5623 
5624 /**
5625  *	ata_host_alloc_pinfo - alloc host and init with port_info array
5626  *	@dev: generic device this host is associated with
5627  *	@ppi: array of ATA port_info to initialize host with
5628  *	@n_ports: number of ATA ports attached to this host
5629  *
5630  *	Allocate ATA host and initialize with info from @ppi.  If NULL
5631  *	terminated, @ppi may contain fewer entries than @n_ports.  The
5632  *	last entry will be used for the remaining ports.
5633  *
5634  *	RETURNS:
5635  *	Allocate ATA host on success, NULL on failure.
5636  *
5637  *	LOCKING:
5638  *	Inherited from calling layer (may sleep).
5639  */
ata_host_alloc_pinfo(struct device * dev,const struct ata_port_info * const * ppi,int n_ports)5640 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5641 				      const struct ata_port_info * const * ppi,
5642 				      int n_ports)
5643 {
5644 	const struct ata_port_info *pi = &ata_dummy_port_info;
5645 	struct ata_host *host;
5646 	int i, j;
5647 
5648 	host = ata_host_alloc(dev, n_ports);
5649 	if (!host)
5650 		return NULL;
5651 
5652 	for (i = 0, j = 0; i < host->n_ports; i++) {
5653 		struct ata_port *ap = host->ports[i];
5654 
5655 		if (ppi[j])
5656 			pi = ppi[j++];
5657 
5658 		ap->pio_mask = pi->pio_mask;
5659 		ap->mwdma_mask = pi->mwdma_mask;
5660 		ap->udma_mask = pi->udma_mask;
5661 		ap->flags |= pi->flags;
5662 		ap->link.flags |= pi->link_flags;
5663 		ap->ops = pi->port_ops;
5664 
5665 		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5666 			host->ops = pi->port_ops;
5667 	}
5668 
5669 	return host;
5670 }
5671 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
5672 
ata_host_stop(struct device * gendev,void * res)5673 static void ata_host_stop(struct device *gendev, void *res)
5674 {
5675 	struct ata_host *host = dev_get_drvdata(gendev);
5676 	int i;
5677 
5678 	WARN_ON(!(host->flags & ATA_HOST_STARTED));
5679 
5680 	for (i = 0; i < host->n_ports; i++) {
5681 		struct ata_port *ap = host->ports[i];
5682 
5683 		if (ap->ops->port_stop)
5684 			ap->ops->port_stop(ap);
5685 	}
5686 
5687 	if (host->ops->host_stop)
5688 		host->ops->host_stop(host);
5689 }
5690 
5691 /**
5692  *	ata_finalize_port_ops - finalize ata_port_operations
5693  *	@ops: ata_port_operations to finalize
5694  *
5695  *	An ata_port_operations can inherit from another ops and that
5696  *	ops can again inherit from another.  This can go on as many
5697  *	times as necessary as long as there is no loop in the
5698  *	inheritance chain.
5699  *
5700  *	Ops tables are finalized when the host is started.  NULL or
5701  *	unspecified entries are inherited from the closet ancestor
5702  *	which has the method and the entry is populated with it.
5703  *	After finalization, the ops table directly points to all the
5704  *	methods and ->inherits is no longer necessary and cleared.
5705  *
5706  *	Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5707  *
5708  *	LOCKING:
5709  *	None.
5710  */
ata_finalize_port_ops(struct ata_port_operations * ops)5711 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5712 {
5713 	static DEFINE_SPINLOCK(lock);
5714 	const struct ata_port_operations *cur;
5715 	void **begin = (void **)ops;
5716 	void **end = (void **)&ops->inherits;
5717 	void **pp;
5718 
5719 	if (!ops || !ops->inherits)
5720 		return;
5721 
5722 	spin_lock(&lock);
5723 
5724 	for (cur = ops->inherits; cur; cur = cur->inherits) {
5725 		void **inherit = (void **)cur;
5726 
5727 		for (pp = begin; pp < end; pp++, inherit++)
5728 			if (!*pp)
5729 				*pp = *inherit;
5730 	}
5731 
5732 	for (pp = begin; pp < end; pp++)
5733 		if (IS_ERR(*pp))
5734 			*pp = NULL;
5735 
5736 	ops->inherits = NULL;
5737 
5738 	spin_unlock(&lock);
5739 }
5740 
5741 /**
5742  *	ata_host_start - start and freeze ports of an ATA host
5743  *	@host: ATA host to start ports for
5744  *
5745  *	Start and then freeze ports of @host.  Started status is
5746  *	recorded in host->flags, so this function can be called
5747  *	multiple times.  Ports are guaranteed to get started only
5748  *	once.  If host->ops is not initialized yet, it is set to the
5749  *	first non-dummy port ops.
5750  *
5751  *	LOCKING:
5752  *	Inherited from calling layer (may sleep).
5753  *
5754  *	RETURNS:
5755  *	0 if all ports are started successfully, -errno otherwise.
5756  */
ata_host_start(struct ata_host * host)5757 int ata_host_start(struct ata_host *host)
5758 {
5759 	int have_stop = 0;
5760 	void *start_dr = NULL;
5761 	int i, rc;
5762 
5763 	if (host->flags & ATA_HOST_STARTED)
5764 		return 0;
5765 
5766 	ata_finalize_port_ops(host->ops);
5767 
5768 	for (i = 0; i < host->n_ports; i++) {
5769 		struct ata_port *ap = host->ports[i];
5770 
5771 		ata_finalize_port_ops(ap->ops);
5772 
5773 		if (!host->ops && !ata_port_is_dummy(ap))
5774 			host->ops = ap->ops;
5775 
5776 		if (ap->ops->port_stop)
5777 			have_stop = 1;
5778 	}
5779 
5780 	if (host->ops && host->ops->host_stop)
5781 		have_stop = 1;
5782 
5783 	if (have_stop) {
5784 		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5785 		if (!start_dr)
5786 			return -ENOMEM;
5787 	}
5788 
5789 	for (i = 0; i < host->n_ports; i++) {
5790 		struct ata_port *ap = host->ports[i];
5791 
5792 		if (ap->ops->port_start) {
5793 			rc = ap->ops->port_start(ap);
5794 			if (rc) {
5795 				if (rc != -ENODEV)
5796 					dev_err(host->dev,
5797 						"failed to start port %d (errno=%d)\n",
5798 						i, rc);
5799 				goto err_out;
5800 			}
5801 		}
5802 		ata_eh_freeze_port(ap);
5803 	}
5804 
5805 	if (start_dr)
5806 		devres_add(host->dev, start_dr);
5807 	host->flags |= ATA_HOST_STARTED;
5808 	return 0;
5809 
5810  err_out:
5811 	while (--i >= 0) {
5812 		struct ata_port *ap = host->ports[i];
5813 
5814 		if (ap->ops->port_stop)
5815 			ap->ops->port_stop(ap);
5816 	}
5817 	devres_free(start_dr);
5818 	return rc;
5819 }
5820 EXPORT_SYMBOL_GPL(ata_host_start);
5821 
5822 /**
5823  *	ata_host_init - Initialize a host struct for sas (ipr, libsas)
5824  *	@host:	host to initialize
5825  *	@dev:	device host is attached to
5826  *	@ops:	port_ops
5827  *
5828  */
ata_host_init(struct ata_host * host,struct device * dev,struct ata_port_operations * ops)5829 void ata_host_init(struct ata_host *host, struct device *dev,
5830 		   struct ata_port_operations *ops)
5831 {
5832 	spin_lock_init(&host->lock);
5833 	mutex_init(&host->eh_mutex);
5834 	host->n_tags = ATA_MAX_QUEUE;
5835 	host->dev = dev;
5836 	host->ops = ops;
5837 	kref_init(&host->kref);
5838 }
5839 EXPORT_SYMBOL_GPL(ata_host_init);
5840 
ata_port_probe(struct ata_port * ap)5841 void ata_port_probe(struct ata_port *ap)
5842 {
5843 	struct ata_eh_info *ehi = &ap->link.eh_info;
5844 	unsigned long flags;
5845 
5846 	/* kick EH for boot probing */
5847 	spin_lock_irqsave(ap->lock, flags);
5848 
5849 	ehi->probe_mask |= ATA_ALL_DEVICES;
5850 	ehi->action |= ATA_EH_RESET;
5851 	ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5852 
5853 	ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5854 	ap->pflags |= ATA_PFLAG_LOADING;
5855 	ata_port_schedule_eh(ap);
5856 
5857 	spin_unlock_irqrestore(ap->lock, flags);
5858 }
5859 EXPORT_SYMBOL_GPL(ata_port_probe);
5860 
async_port_probe(void * data,async_cookie_t cookie)5861 static void async_port_probe(void *data, async_cookie_t cookie)
5862 {
5863 	struct ata_port *ap = data;
5864 
5865 	/*
5866 	 * If we're not allowed to scan this host in parallel,
5867 	 * we need to wait until all previous scans have completed
5868 	 * before going further.
5869 	 * Jeff Garzik says this is only within a controller, so we
5870 	 * don't need to wait for port 0, only for later ports.
5871 	 */
5872 	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5873 		async_synchronize_cookie(cookie);
5874 
5875 	ata_port_probe(ap);
5876 	ata_port_wait_eh(ap);
5877 
5878 	/* in order to keep device order, we need to synchronize at this point */
5879 	async_synchronize_cookie(cookie);
5880 
5881 	ata_scsi_scan_host(ap, 1);
5882 }
5883 
5884 /**
5885  *	ata_host_register - register initialized ATA host
5886  *	@host: ATA host to register
5887  *	@sht: template for SCSI host
5888  *
5889  *	Register initialized ATA host.  @host is allocated using
5890  *	ata_host_alloc() and fully initialized by LLD.  This function
5891  *	starts ports, registers @host with ATA and SCSI layers and
5892  *	probe registered devices.
5893  *
5894  *	LOCKING:
5895  *	Inherited from calling layer (may sleep).
5896  *
5897  *	RETURNS:
5898  *	0 on success, -errno otherwise.
5899  */
ata_host_register(struct ata_host * host,const struct scsi_host_template * sht)5900 int ata_host_register(struct ata_host *host, const struct scsi_host_template *sht)
5901 {
5902 	int i, rc;
5903 
5904 	host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE);
5905 
5906 	/* host must have been started */
5907 	if (!(host->flags & ATA_HOST_STARTED)) {
5908 		dev_err(host->dev, "BUG: trying to register unstarted host\n");
5909 		WARN_ON(1);
5910 		return -EINVAL;
5911 	}
5912 
5913 	/* Create associated sysfs transport objects  */
5914 	for (i = 0; i < host->n_ports; i++) {
5915 		rc = ata_tport_add(host->dev,host->ports[i]);
5916 		if (rc) {
5917 			goto err_tadd;
5918 		}
5919 	}
5920 
5921 	rc = ata_scsi_add_hosts(host, sht);
5922 	if (rc)
5923 		goto err_tadd;
5924 
5925 	/* set cable, sata_spd_limit and report */
5926 	for (i = 0; i < host->n_ports; i++) {
5927 		struct ata_port *ap = host->ports[i];
5928 		unsigned int xfer_mask;
5929 
5930 		/* set SATA cable type if still unset */
5931 		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5932 			ap->cbl = ATA_CBL_SATA;
5933 
5934 		/* init sata_spd_limit to the current value */
5935 		sata_link_init_spd(&ap->link);
5936 		if (ap->slave_link)
5937 			sata_link_init_spd(ap->slave_link);
5938 
5939 		/* print per-port info to dmesg */
5940 		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
5941 					      ap->udma_mask);
5942 
5943 		if (!ata_port_is_dummy(ap)) {
5944 			ata_port_info(ap, "%cATA max %s %s\n",
5945 				      (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
5946 				      ata_mode_string(xfer_mask),
5947 				      ap->link.eh_info.desc);
5948 			ata_ehi_clear_desc(&ap->link.eh_info);
5949 		} else
5950 			ata_port_info(ap, "DUMMY\n");
5951 	}
5952 
5953 	/* perform each probe asynchronously */
5954 	for (i = 0; i < host->n_ports; i++) {
5955 		struct ata_port *ap = host->ports[i];
5956 		ap->cookie = async_schedule(async_port_probe, ap);
5957 	}
5958 
5959 	return 0;
5960 
5961  err_tadd:
5962 	while (--i >= 0) {
5963 		ata_tport_delete(host->ports[i]);
5964 	}
5965 	return rc;
5966 
5967 }
5968 EXPORT_SYMBOL_GPL(ata_host_register);
5969 
5970 /**
5971  *	ata_host_activate - start host, request IRQ and register it
5972  *	@host: target ATA host
5973  *	@irq: IRQ to request
5974  *	@irq_handler: irq_handler used when requesting IRQ
5975  *	@irq_flags: irq_flags used when requesting IRQ
5976  *	@sht: scsi_host_template to use when registering the host
5977  *
5978  *	After allocating an ATA host and initializing it, most libata
5979  *	LLDs perform three steps to activate the host - start host,
5980  *	request IRQ and register it.  This helper takes necessary
5981  *	arguments and performs the three steps in one go.
5982  *
5983  *	An invalid IRQ skips the IRQ registration and expects the host to
5984  *	have set polling mode on the port. In this case, @irq_handler
5985  *	should be NULL.
5986  *
5987  *	LOCKING:
5988  *	Inherited from calling layer (may sleep).
5989  *
5990  *	RETURNS:
5991  *	0 on success, -errno otherwise.
5992  */
ata_host_activate(struct ata_host * host,int irq,irq_handler_t irq_handler,unsigned long irq_flags,const struct scsi_host_template * sht)5993 int ata_host_activate(struct ata_host *host, int irq,
5994 		      irq_handler_t irq_handler, unsigned long irq_flags,
5995 		      const struct scsi_host_template *sht)
5996 {
5997 	int i, rc;
5998 	char *irq_desc;
5999 
6000 	rc = ata_host_start(host);
6001 	if (rc)
6002 		return rc;
6003 
6004 	/* Special case for polling mode */
6005 	if (!irq) {
6006 		WARN_ON(irq_handler);
6007 		return ata_host_register(host, sht);
6008 	}
6009 
6010 	irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
6011 				  dev_driver_string(host->dev),
6012 				  dev_name(host->dev));
6013 	if (!irq_desc)
6014 		return -ENOMEM;
6015 
6016 	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6017 			      irq_desc, host);
6018 	if (rc)
6019 		return rc;
6020 
6021 	for (i = 0; i < host->n_ports; i++)
6022 		ata_port_desc_misc(host->ports[i], irq);
6023 
6024 	rc = ata_host_register(host, sht);
6025 	/* if failed, just free the IRQ and leave ports alone */
6026 	if (rc)
6027 		devm_free_irq(host->dev, irq, host);
6028 
6029 	return rc;
6030 }
6031 EXPORT_SYMBOL_GPL(ata_host_activate);
6032 
6033 /**
6034  *	ata_dev_free_resources - Free a device resources
6035  *	@dev: Target ATA device
6036  *
6037  *	Free resources allocated to support a device features.
6038  *
6039  *	LOCKING:
6040  *	Kernel thread context (may sleep).
6041  */
ata_dev_free_resources(struct ata_device * dev)6042 void ata_dev_free_resources(struct ata_device *dev)
6043 {
6044 	if (zpodd_dev_enabled(dev))
6045 		zpodd_exit(dev);
6046 
6047 	ata_dev_cleanup_cdl_resources(dev);
6048 }
6049 
6050 /**
6051  *	ata_port_detach - Detach ATA port in preparation of device removal
6052  *	@ap: ATA port to be detached
6053  *
6054  *	Detach all ATA devices and the associated SCSI devices of @ap;
6055  *	then, remove the associated SCSI host.  @ap is guaranteed to
6056  *	be quiescent on return from this function.
6057  *
6058  *	LOCKING:
6059  *	Kernel thread context (may sleep).
6060  */
ata_port_detach(struct ata_port * ap)6061 static void ata_port_detach(struct ata_port *ap)
6062 {
6063 	unsigned long flags;
6064 	struct ata_link *link;
6065 	struct ata_device *dev;
6066 
6067 	/* Ensure ata_port probe has completed */
6068 	async_synchronize_cookie(ap->cookie + 1);
6069 
6070 	/* Wait for any ongoing EH */
6071 	ata_port_wait_eh(ap);
6072 
6073 	mutex_lock(&ap->scsi_scan_mutex);
6074 	spin_lock_irqsave(ap->lock, flags);
6075 
6076 	/* Remove scsi devices */
6077 	ata_for_each_link(link, ap, HOST_FIRST) {
6078 		ata_for_each_dev(dev, link, ALL) {
6079 			if (dev->sdev) {
6080 				spin_unlock_irqrestore(ap->lock, flags);
6081 				scsi_remove_device(dev->sdev);
6082 				spin_lock_irqsave(ap->lock, flags);
6083 				dev->sdev = NULL;
6084 			}
6085 		}
6086 	}
6087 
6088 	/* Tell EH to disable all devices */
6089 	ap->pflags |= ATA_PFLAG_UNLOADING;
6090 	ata_port_schedule_eh(ap);
6091 
6092 	spin_unlock_irqrestore(ap->lock, flags);
6093 	mutex_unlock(&ap->scsi_scan_mutex);
6094 
6095 	/* wait till EH commits suicide */
6096 	ata_port_wait_eh(ap);
6097 
6098 	/* it better be dead now */
6099 	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6100 
6101 	cancel_delayed_work_sync(&ap->hotplug_task);
6102 	cancel_delayed_work_sync(&ap->scsi_rescan_task);
6103 
6104 	/* Delete port multiplier link transport devices */
6105 	if (ap->pmp_link) {
6106 		int i;
6107 
6108 		for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6109 			ata_tlink_delete(&ap->pmp_link[i]);
6110 	}
6111 
6112 	/* Remove the associated SCSI host */
6113 	scsi_remove_host(ap->scsi_host);
6114 	ata_tport_delete(ap);
6115 }
6116 
6117 /**
6118  *	ata_host_detach - Detach all ports of an ATA host
6119  *	@host: Host to detach
6120  *
6121  *	Detach all ports of @host.
6122  *
6123  *	LOCKING:
6124  *	Kernel thread context (may sleep).
6125  */
ata_host_detach(struct ata_host * host)6126 void ata_host_detach(struct ata_host *host)
6127 {
6128 	int i;
6129 
6130 	for (i = 0; i < host->n_ports; i++)
6131 		ata_port_detach(host->ports[i]);
6132 
6133 	/* the host is dead now, dissociate ACPI */
6134 	ata_acpi_dissociate(host);
6135 }
6136 EXPORT_SYMBOL_GPL(ata_host_detach);
6137 
6138 #ifdef CONFIG_PCI
6139 
6140 /**
6141  *	ata_pci_remove_one - PCI layer callback for device removal
6142  *	@pdev: PCI device that was removed
6143  *
6144  *	PCI layer indicates to libata via this hook that hot-unplug or
6145  *	module unload event has occurred.  Detach all ports.  Resource
6146  *	release is handled via devres.
6147  *
6148  *	LOCKING:
6149  *	Inherited from PCI layer (may sleep).
6150  */
ata_pci_remove_one(struct pci_dev * pdev)6151 void ata_pci_remove_one(struct pci_dev *pdev)
6152 {
6153 	struct ata_host *host = pci_get_drvdata(pdev);
6154 
6155 	ata_host_detach(host);
6156 }
6157 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6158 
ata_pci_shutdown_one(struct pci_dev * pdev)6159 void ata_pci_shutdown_one(struct pci_dev *pdev)
6160 {
6161 	struct ata_host *host = pci_get_drvdata(pdev);
6162 	int i;
6163 
6164 	for (i = 0; i < host->n_ports; i++) {
6165 		struct ata_port *ap = host->ports[i];
6166 
6167 		ap->pflags |= ATA_PFLAG_FROZEN;
6168 
6169 		/* Disable port interrupts */
6170 		if (ap->ops->freeze)
6171 			ap->ops->freeze(ap);
6172 
6173 		/* Stop the port DMA engines */
6174 		if (ap->ops->port_stop)
6175 			ap->ops->port_stop(ap);
6176 	}
6177 }
6178 EXPORT_SYMBOL_GPL(ata_pci_shutdown_one);
6179 
6180 /* move to PCI subsystem */
pci_test_config_bits(struct pci_dev * pdev,const struct pci_bits * bits)6181 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6182 {
6183 	unsigned long tmp = 0;
6184 
6185 	switch (bits->width) {
6186 	case 1: {
6187 		u8 tmp8 = 0;
6188 		pci_read_config_byte(pdev, bits->reg, &tmp8);
6189 		tmp = tmp8;
6190 		break;
6191 	}
6192 	case 2: {
6193 		u16 tmp16 = 0;
6194 		pci_read_config_word(pdev, bits->reg, &tmp16);
6195 		tmp = tmp16;
6196 		break;
6197 	}
6198 	case 4: {
6199 		u32 tmp32 = 0;
6200 		pci_read_config_dword(pdev, bits->reg, &tmp32);
6201 		tmp = tmp32;
6202 		break;
6203 	}
6204 
6205 	default:
6206 		return -EINVAL;
6207 	}
6208 
6209 	tmp &= bits->mask;
6210 
6211 	return (tmp == bits->val) ? 1 : 0;
6212 }
6213 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6214 
6215 #ifdef CONFIG_PM
ata_pci_device_do_suspend(struct pci_dev * pdev,pm_message_t mesg)6216 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6217 {
6218 	pci_save_state(pdev);
6219 	pci_disable_device(pdev);
6220 
6221 	if (mesg.event & PM_EVENT_SLEEP)
6222 		pci_set_power_state(pdev, PCI_D3hot);
6223 }
6224 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6225 
ata_pci_device_do_resume(struct pci_dev * pdev)6226 int ata_pci_device_do_resume(struct pci_dev *pdev)
6227 {
6228 	int rc;
6229 
6230 	pci_set_power_state(pdev, PCI_D0);
6231 	pci_restore_state(pdev);
6232 
6233 	rc = pcim_enable_device(pdev);
6234 	if (rc) {
6235 		dev_err(&pdev->dev,
6236 			"failed to enable device after resume (%d)\n", rc);
6237 		return rc;
6238 	}
6239 
6240 	pci_set_master(pdev);
6241 	return 0;
6242 }
6243 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6244 
ata_pci_device_suspend(struct pci_dev * pdev,pm_message_t mesg)6245 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6246 {
6247 	struct ata_host *host = pci_get_drvdata(pdev);
6248 
6249 	ata_host_suspend(host, mesg);
6250 
6251 	ata_pci_device_do_suspend(pdev, mesg);
6252 
6253 	return 0;
6254 }
6255 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6256 
ata_pci_device_resume(struct pci_dev * pdev)6257 int ata_pci_device_resume(struct pci_dev *pdev)
6258 {
6259 	struct ata_host *host = pci_get_drvdata(pdev);
6260 	int rc;
6261 
6262 	rc = ata_pci_device_do_resume(pdev);
6263 	if (rc == 0)
6264 		ata_host_resume(host);
6265 	return rc;
6266 }
6267 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6268 #endif /* CONFIG_PM */
6269 #endif /* CONFIG_PCI */
6270 
6271 /**
6272  *	ata_platform_remove_one - Platform layer callback for device removal
6273  *	@pdev: Platform device that was removed
6274  *
6275  *	Platform layer indicates to libata via this hook that hot-unplug or
6276  *	module unload event has occurred.  Detach all ports.  Resource
6277  *	release is handled via devres.
6278  *
6279  *	LOCKING:
6280  *	Inherited from platform layer (may sleep).
6281  */
ata_platform_remove_one(struct platform_device * pdev)6282 void ata_platform_remove_one(struct platform_device *pdev)
6283 {
6284 	struct ata_host *host = platform_get_drvdata(pdev);
6285 
6286 	ata_host_detach(host);
6287 }
6288 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6289 
6290 #ifdef CONFIG_ATA_FORCE
6291 
6292 #define force_cbl(name, flag)				\
6293 	{ #name,	.cbl		= (flag) }
6294 
6295 #define force_spd_limit(spd, val)			\
6296 	{ #spd,	.spd_limit		= (val) }
6297 
6298 #define force_xfer(mode, shift)				\
6299 	{ #mode,	.xfer_mask	= (1UL << (shift)) }
6300 
6301 #define force_lflag_on(name, flags)			\
6302 	{ #name,	.lflags_on	= (flags) }
6303 
6304 #define force_lflag_onoff(name, flags)			\
6305 	{ "no" #name,	.lflags_on	= (flags) },	\
6306 	{ #name,	.lflags_off	= (flags) }
6307 
6308 #define force_pflag_on(name, flags)			\
6309 	{ #name,	.pflags_on	= (flags) }
6310 
6311 #define force_quirk_on(name, flag)			\
6312 	{ #name,	.quirk_on	= (flag) }
6313 
6314 #define force_quirk_onoff(name, flag)			\
6315 	{ "no" #name,	.quirk_on	= (flag) },	\
6316 	{ #name,	.quirk_off	= (flag) }
6317 
6318 static const struct ata_force_param force_tbl[] __initconst = {
6319 	force_cbl(40c,			ATA_CBL_PATA40),
6320 	force_cbl(80c,			ATA_CBL_PATA80),
6321 	force_cbl(short40c,		ATA_CBL_PATA40_SHORT),
6322 	force_cbl(unk,			ATA_CBL_PATA_UNK),
6323 	force_cbl(ign,			ATA_CBL_PATA_IGN),
6324 	force_cbl(sata,			ATA_CBL_SATA),
6325 
6326 	force_spd_limit(1.5Gbps,	1),
6327 	force_spd_limit(3.0Gbps,	2),
6328 
6329 	force_xfer(pio0,		ATA_SHIFT_PIO + 0),
6330 	force_xfer(pio1,		ATA_SHIFT_PIO + 1),
6331 	force_xfer(pio2,		ATA_SHIFT_PIO + 2),
6332 	force_xfer(pio3,		ATA_SHIFT_PIO + 3),
6333 	force_xfer(pio4,		ATA_SHIFT_PIO + 4),
6334 	force_xfer(pio5,		ATA_SHIFT_PIO + 5),
6335 	force_xfer(pio6,		ATA_SHIFT_PIO + 6),
6336 	force_xfer(mwdma0,		ATA_SHIFT_MWDMA + 0),
6337 	force_xfer(mwdma1,		ATA_SHIFT_MWDMA + 1),
6338 	force_xfer(mwdma2,		ATA_SHIFT_MWDMA + 2),
6339 	force_xfer(mwdma3,		ATA_SHIFT_MWDMA + 3),
6340 	force_xfer(mwdma4,		ATA_SHIFT_MWDMA + 4),
6341 	force_xfer(udma0,		ATA_SHIFT_UDMA + 0),
6342 	force_xfer(udma16,		ATA_SHIFT_UDMA + 0),
6343 	force_xfer(udma/16,		ATA_SHIFT_UDMA + 0),
6344 	force_xfer(udma1,		ATA_SHIFT_UDMA + 1),
6345 	force_xfer(udma25,		ATA_SHIFT_UDMA + 1),
6346 	force_xfer(udma/25,		ATA_SHIFT_UDMA + 1),
6347 	force_xfer(udma2,		ATA_SHIFT_UDMA + 2),
6348 	force_xfer(udma33,		ATA_SHIFT_UDMA + 2),
6349 	force_xfer(udma/33,		ATA_SHIFT_UDMA + 2),
6350 	force_xfer(udma3,		ATA_SHIFT_UDMA + 3),
6351 	force_xfer(udma44,		ATA_SHIFT_UDMA + 3),
6352 	force_xfer(udma/44,		ATA_SHIFT_UDMA + 3),
6353 	force_xfer(udma4,		ATA_SHIFT_UDMA + 4),
6354 	force_xfer(udma66,		ATA_SHIFT_UDMA + 4),
6355 	force_xfer(udma/66,		ATA_SHIFT_UDMA + 4),
6356 	force_xfer(udma5,		ATA_SHIFT_UDMA + 5),
6357 	force_xfer(udma100,		ATA_SHIFT_UDMA + 5),
6358 	force_xfer(udma/100,		ATA_SHIFT_UDMA + 5),
6359 	force_xfer(udma6,		ATA_SHIFT_UDMA + 6),
6360 	force_xfer(udma133,		ATA_SHIFT_UDMA + 6),
6361 	force_xfer(udma/133,		ATA_SHIFT_UDMA + 6),
6362 	force_xfer(udma7,		ATA_SHIFT_UDMA + 7),
6363 
6364 	force_lflag_on(nohrst,		ATA_LFLAG_NO_HRST),
6365 	force_lflag_on(nosrst,		ATA_LFLAG_NO_SRST),
6366 	force_lflag_on(norst,		ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST),
6367 	force_lflag_on(rstonce,		ATA_LFLAG_RST_ONCE),
6368 	force_lflag_onoff(dbdelay,	ATA_LFLAG_NO_DEBOUNCE_DELAY),
6369 
6370 	force_pflag_on(external,	ATA_PFLAG_EXTERNAL),
6371 
6372 	force_quirk_onoff(ncq,		ATA_QUIRK_NONCQ),
6373 	force_quirk_onoff(ncqtrim,	ATA_QUIRK_NO_NCQ_TRIM),
6374 	force_quirk_onoff(ncqati,	ATA_QUIRK_NO_NCQ_ON_ATI),
6375 
6376 	force_quirk_onoff(trim,		ATA_QUIRK_NOTRIM),
6377 	force_quirk_on(trim_zero,	ATA_QUIRK_ZERO_AFTER_TRIM),
6378 	force_quirk_on(max_trim_128m,	ATA_QUIRK_MAX_TRIM_128M),
6379 
6380 	force_quirk_onoff(dma,		ATA_QUIRK_NODMA),
6381 	force_quirk_on(atapi_dmadir,	ATA_QUIRK_ATAPI_DMADIR),
6382 	force_quirk_on(atapi_mod16_dma,	ATA_QUIRK_ATAPI_MOD16_DMA),
6383 
6384 	force_quirk_onoff(dmalog,	ATA_QUIRK_NO_DMA_LOG),
6385 	force_quirk_onoff(iddevlog,	ATA_QUIRK_NO_ID_DEV_LOG),
6386 	force_quirk_onoff(logdir,	ATA_QUIRK_NO_LOG_DIR),
6387 
6388 	force_quirk_on(max_sec_128,	ATA_QUIRK_MAX_SEC_128),
6389 	force_quirk_on(max_sec_1024,	ATA_QUIRK_MAX_SEC_1024),
6390 	force_quirk_on(max_sec_lba48,	ATA_QUIRK_MAX_SEC_LBA48),
6391 
6392 	force_quirk_onoff(lpm,		ATA_QUIRK_NOLPM),
6393 	force_quirk_onoff(setxfer,	ATA_QUIRK_NOSETXFER),
6394 	force_quirk_on(dump_id,		ATA_QUIRK_DUMP_ID),
6395 	force_quirk_onoff(fua,		ATA_QUIRK_NO_FUA),
6396 
6397 	force_quirk_on(disable,		ATA_QUIRK_DISABLE),
6398 };
6399 
ata_parse_force_one(char ** cur,struct ata_force_ent * force_ent,const char ** reason)6400 static int __init ata_parse_force_one(char **cur,
6401 				      struct ata_force_ent *force_ent,
6402 				      const char **reason)
6403 {
6404 	char *start = *cur, *p = *cur;
6405 	char *id, *val, *endp;
6406 	const struct ata_force_param *match_fp = NULL;
6407 	int nr_matches = 0, i;
6408 
6409 	/* find where this param ends and update *cur */
6410 	while (*p != '\0' && *p != ',')
6411 		p++;
6412 
6413 	if (*p == '\0')
6414 		*cur = p;
6415 	else
6416 		*cur = p + 1;
6417 
6418 	*p = '\0';
6419 
6420 	/* parse */
6421 	p = strchr(start, ':');
6422 	if (!p) {
6423 		val = strstrip(start);
6424 		goto parse_val;
6425 	}
6426 	*p = '\0';
6427 
6428 	id = strstrip(start);
6429 	val = strstrip(p + 1);
6430 
6431 	/* parse id */
6432 	p = strchr(id, '.');
6433 	if (p) {
6434 		*p++ = '\0';
6435 		force_ent->device = simple_strtoul(p, &endp, 10);
6436 		if (p == endp || *endp != '\0') {
6437 			*reason = "invalid device";
6438 			return -EINVAL;
6439 		}
6440 	}
6441 
6442 	force_ent->port = simple_strtoul(id, &endp, 10);
6443 	if (id == endp || *endp != '\0') {
6444 		*reason = "invalid port/link";
6445 		return -EINVAL;
6446 	}
6447 
6448  parse_val:
6449 	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6450 	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6451 		const struct ata_force_param *fp = &force_tbl[i];
6452 
6453 		if (strncasecmp(val, fp->name, strlen(val)))
6454 			continue;
6455 
6456 		nr_matches++;
6457 		match_fp = fp;
6458 
6459 		if (strcasecmp(val, fp->name) == 0) {
6460 			nr_matches = 1;
6461 			break;
6462 		}
6463 	}
6464 
6465 	if (!nr_matches) {
6466 		*reason = "unknown value";
6467 		return -EINVAL;
6468 	}
6469 	if (nr_matches > 1) {
6470 		*reason = "ambiguous value";
6471 		return -EINVAL;
6472 	}
6473 
6474 	force_ent->param = *match_fp;
6475 
6476 	return 0;
6477 }
6478 
ata_parse_force_param(void)6479 static void __init ata_parse_force_param(void)
6480 {
6481 	int idx = 0, size = 1;
6482 	int last_port = -1, last_device = -1;
6483 	char *p, *cur, *next;
6484 
6485 	/* Calculate maximum number of params and allocate ata_force_tbl */
6486 	for (p = ata_force_param_buf; *p; p++)
6487 		if (*p == ',')
6488 			size++;
6489 
6490 	ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL);
6491 	if (!ata_force_tbl) {
6492 		printk(KERN_WARNING "ata: failed to extend force table, "
6493 		       "libata.force ignored\n");
6494 		return;
6495 	}
6496 
6497 	/* parse and populate the table */
6498 	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6499 		const char *reason = "";
6500 		struct ata_force_ent te = { .port = -1, .device = -1 };
6501 
6502 		next = cur;
6503 		if (ata_parse_force_one(&next, &te, &reason)) {
6504 			printk(KERN_WARNING "ata: failed to parse force "
6505 			       "parameter \"%s\" (%s)\n",
6506 			       cur, reason);
6507 			continue;
6508 		}
6509 
6510 		if (te.port == -1) {
6511 			te.port = last_port;
6512 			te.device = last_device;
6513 		}
6514 
6515 		ata_force_tbl[idx++] = te;
6516 
6517 		last_port = te.port;
6518 		last_device = te.device;
6519 	}
6520 
6521 	ata_force_tbl_size = idx;
6522 }
6523 
ata_free_force_param(void)6524 static void ata_free_force_param(void)
6525 {
6526 	kfree(ata_force_tbl);
6527 }
6528 #else
ata_parse_force_param(void)6529 static inline void ata_parse_force_param(void) { }
ata_free_force_param(void)6530 static inline void ata_free_force_param(void) { }
6531 #endif
6532 
ata_init(void)6533 static int __init ata_init(void)
6534 {
6535 	int rc;
6536 
6537 	ata_parse_force_param();
6538 
6539 	rc = ata_sff_init();
6540 	if (rc) {
6541 		ata_free_force_param();
6542 		return rc;
6543 	}
6544 
6545 	libata_transport_init();
6546 	ata_scsi_transport_template = ata_attach_transport();
6547 	if (!ata_scsi_transport_template) {
6548 		ata_sff_exit();
6549 		rc = -ENOMEM;
6550 		goto err_out;
6551 	}
6552 
6553 	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6554 	return 0;
6555 
6556 err_out:
6557 	return rc;
6558 }
6559 
ata_exit(void)6560 static void __exit ata_exit(void)
6561 {
6562 	ata_release_transport(ata_scsi_transport_template);
6563 	libata_transport_exit();
6564 	ata_sff_exit();
6565 	ata_free_force_param();
6566 }
6567 
6568 subsys_initcall(ata_init);
6569 module_exit(ata_exit);
6570 
6571 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6572 
ata_ratelimit(void)6573 int ata_ratelimit(void)
6574 {
6575 	return __ratelimit(&ratelimit);
6576 }
6577 EXPORT_SYMBOL_GPL(ata_ratelimit);
6578 
6579 /**
6580  *	ata_msleep - ATA EH owner aware msleep
6581  *	@ap: ATA port to attribute the sleep to
6582  *	@msecs: duration to sleep in milliseconds
6583  *
6584  *	Sleeps @msecs.  If the current task is owner of @ap's EH, the
6585  *	ownership is released before going to sleep and reacquired
6586  *	after the sleep is complete.  IOW, other ports sharing the
6587  *	@ap->host will be allowed to own the EH while this task is
6588  *	sleeping.
6589  *
6590  *	LOCKING:
6591  *	Might sleep.
6592  */
ata_msleep(struct ata_port * ap,unsigned int msecs)6593 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6594 {
6595 	bool owns_eh = ap && ap->host->eh_owner == current;
6596 
6597 	if (owns_eh)
6598 		ata_eh_release(ap);
6599 
6600 	if (msecs < 20) {
6601 		unsigned long usecs = msecs * USEC_PER_MSEC;
6602 		usleep_range(usecs, usecs + 50);
6603 	} else {
6604 		msleep(msecs);
6605 	}
6606 
6607 	if (owns_eh)
6608 		ata_eh_acquire(ap);
6609 }
6610 EXPORT_SYMBOL_GPL(ata_msleep);
6611 
6612 /**
6613  *	ata_wait_register - wait until register value changes
6614  *	@ap: ATA port to wait register for, can be NULL
6615  *	@reg: IO-mapped register
6616  *	@mask: Mask to apply to read register value
6617  *	@val: Wait condition
6618  *	@interval: polling interval in milliseconds
6619  *	@timeout: timeout in milliseconds
6620  *
6621  *	Waiting for some bits of register to change is a common
6622  *	operation for ATA controllers.  This function reads 32bit LE
6623  *	IO-mapped register @reg and tests for the following condition.
6624  *
6625  *	(*@reg & mask) != val
6626  *
6627  *	If the condition is met, it returns; otherwise, the process is
6628  *	repeated after @interval_msec until timeout.
6629  *
6630  *	LOCKING:
6631  *	Kernel thread context (may sleep)
6632  *
6633  *	RETURNS:
6634  *	The final register value.
6635  */
ata_wait_register(struct ata_port * ap,void __iomem * reg,u32 mask,u32 val,unsigned int interval,unsigned int timeout)6636 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6637 		      unsigned int interval, unsigned int timeout)
6638 {
6639 	unsigned long deadline;
6640 	u32 tmp;
6641 
6642 	tmp = ioread32(reg);
6643 
6644 	/* Calculate timeout _after_ the first read to make sure
6645 	 * preceding writes reach the controller before starting to
6646 	 * eat away the timeout.
6647 	 */
6648 	deadline = ata_deadline(jiffies, timeout);
6649 
6650 	while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6651 		ata_msleep(ap, interval);
6652 		tmp = ioread32(reg);
6653 	}
6654 
6655 	return tmp;
6656 }
6657 EXPORT_SYMBOL_GPL(ata_wait_register);
6658 
6659 /*
6660  * Dummy port_ops
6661  */
ata_dummy_qc_issue(struct ata_queued_cmd * qc)6662 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6663 {
6664 	return AC_ERR_SYSTEM;
6665 }
6666 
ata_dummy_error_handler(struct ata_port * ap)6667 static void ata_dummy_error_handler(struct ata_port *ap)
6668 {
6669 	/* truly dummy */
6670 }
6671 
6672 struct ata_port_operations ata_dummy_port_ops = {
6673 	.qc_issue		= ata_dummy_qc_issue,
6674 	.error_handler		= ata_dummy_error_handler,
6675 	.sched_eh		= ata_std_sched_eh,
6676 	.end_eh			= ata_std_end_eh,
6677 };
6678 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6679 
6680 const struct ata_port_info ata_dummy_port_info = {
6681 	.port_ops		= &ata_dummy_port_ops,
6682 };
6683 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6684 
ata_print_version(const struct device * dev,const char * version)6685 void ata_print_version(const struct device *dev, const char *version)
6686 {
6687 	dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6688 }
6689 EXPORT_SYMBOL(ata_print_version);
6690 
6691 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_tf_load);
6692 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_exec_command);
6693 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_setup);
6694 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_start);
6695 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_status);
6696