1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * libata-core.c - helper library for ATA
4 *
5 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
6 * Copyright 2003-2004 Jeff Garzik
7 *
8 * libata documentation is available via 'make {ps|pdf}docs',
9 * as Documentation/driver-api/libata.rst
10 *
11 * Hardware documentation available from http://www.t13.org/ and
12 * http://www.sata-io.org/
13 *
14 * Standards documents from:
15 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
16 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
17 * http://www.sata-io.org (SATA)
18 * http://www.compactflash.org (CF)
19 * http://www.qic.org (QIC157 - Tape and DSC)
20 * http://www.ce-ata.org (CE-ATA: not supported)
21 *
22 * libata is essentially a library of internal helper functions for
23 * low-level ATA host controller drivers. As such, the API/ABI is
24 * likely to change as new drivers are added and updated.
25 * Do not depend on ABI/API stability.
26 */
27
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/pci.h>
31 #include <linux/init.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/spinlock.h>
35 #include <linux/blkdev.h>
36 #include <linux/delay.h>
37 #include <linux/timer.h>
38 #include <linux/time.h>
39 #include <linux/interrupt.h>
40 #include <linux/completion.h>
41 #include <linux/suspend.h>
42 #include <linux/workqueue.h>
43 #include <linux/scatterlist.h>
44 #include <linux/io.h>
45 #include <linux/log2.h>
46 #include <linux/slab.h>
47 #include <linux/glob.h>
48 #include <scsi/scsi.h>
49 #include <scsi/scsi_cmnd.h>
50 #include <scsi/scsi_host.h>
51 #include <linux/libata.h>
52 #include <asm/byteorder.h>
53 #include <linux/unaligned.h>
54 #include <linux/cdrom.h>
55 #include <linux/ratelimit.h>
56 #include <linux/leds.h>
57 #include <linux/pm_runtime.h>
58 #include <linux/platform_device.h>
59 #include <asm/setup.h>
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/libata.h>
63
64 #include "libata.h"
65 #include "libata-transport.h"
66
67 const struct ata_port_operations ata_base_port_ops = {
68 .prereset = ata_std_prereset,
69 .postreset = ata_std_postreset,
70 .error_handler = ata_std_error_handler,
71 .sched_eh = ata_std_sched_eh,
72 .end_eh = ata_std_end_eh,
73 };
74
75 static unsigned int ata_dev_init_params(struct ata_device *dev,
76 u16 heads, u16 sectors);
77 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
78 static void ata_dev_xfermask(struct ata_device *dev);
79 static unsigned int ata_dev_quirks(const struct ata_device *dev);
80
81 static DEFINE_IDA(ata_ida);
82
83 #ifdef CONFIG_ATA_FORCE
84 struct ata_force_param {
85 const char *name;
86 u8 cbl;
87 u8 spd_limit;
88 unsigned int xfer_mask;
89 unsigned int quirk_on;
90 unsigned int quirk_off;
91 unsigned int pflags_on;
92 u16 lflags_on;
93 u16 lflags_off;
94 };
95
96 struct ata_force_ent {
97 int port;
98 int device;
99 struct ata_force_param param;
100 };
101
102 static struct ata_force_ent *ata_force_tbl;
103 static int ata_force_tbl_size;
104
105 static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata;
106 /* param_buf is thrown away after initialization, disallow read */
107 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
108 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
109 #endif
110
111 static int atapi_enabled = 1;
112 module_param(atapi_enabled, int, 0444);
113 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
114
115 static int atapi_dmadir = 0;
116 module_param(atapi_dmadir, int, 0444);
117 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
118
119 int atapi_passthru16 = 1;
120 module_param(atapi_passthru16, int, 0444);
121 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
122
123 int libata_fua = 0;
124 module_param_named(fua, libata_fua, int, 0444);
125 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
126
127 static int ata_ignore_hpa;
128 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
129 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
130
131 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
132 module_param_named(dma, libata_dma_mask, int, 0444);
133 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
134
135 static int ata_probe_timeout;
136 module_param(ata_probe_timeout, int, 0444);
137 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
138
139 int libata_noacpi = 0;
140 module_param_named(noacpi, libata_noacpi, int, 0444);
141 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
142
143 int libata_allow_tpm = 0;
144 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
145 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
146
147 static int atapi_an;
148 module_param(atapi_an, int, 0444);
149 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
150
151 MODULE_AUTHOR("Jeff Garzik");
152 MODULE_DESCRIPTION("Library module for ATA devices");
153 MODULE_LICENSE("GPL");
154 MODULE_VERSION(DRV_VERSION);
155
ata_dev_print_info(const struct ata_device * dev)156 static inline bool ata_dev_print_info(const struct ata_device *dev)
157 {
158 struct ata_eh_context *ehc = &dev->link->eh_context;
159
160 return ehc->i.flags & ATA_EHI_PRINTINFO;
161 }
162
163 /**
164 * ata_link_next - link iteration helper
165 * @link: the previous link, NULL to start
166 * @ap: ATA port containing links to iterate
167 * @mode: iteration mode, one of ATA_LITER_*
168 *
169 * LOCKING:
170 * Host lock or EH context.
171 *
172 * RETURNS:
173 * Pointer to the next link.
174 */
ata_link_next(struct ata_link * link,struct ata_port * ap,enum ata_link_iter_mode mode)175 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
176 enum ata_link_iter_mode mode)
177 {
178 BUG_ON(mode != ATA_LITER_EDGE &&
179 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
180
181 /* NULL link indicates start of iteration */
182 if (!link)
183 switch (mode) {
184 case ATA_LITER_EDGE:
185 case ATA_LITER_PMP_FIRST:
186 if (sata_pmp_attached(ap))
187 return ap->pmp_link;
188 fallthrough;
189 case ATA_LITER_HOST_FIRST:
190 return &ap->link;
191 }
192
193 /* we just iterated over the host link, what's next? */
194 if (link == &ap->link)
195 switch (mode) {
196 case ATA_LITER_HOST_FIRST:
197 if (sata_pmp_attached(ap))
198 return ap->pmp_link;
199 fallthrough;
200 case ATA_LITER_PMP_FIRST:
201 if (unlikely(ap->slave_link))
202 return ap->slave_link;
203 fallthrough;
204 case ATA_LITER_EDGE:
205 return NULL;
206 }
207
208 /* slave_link excludes PMP */
209 if (unlikely(link == ap->slave_link))
210 return NULL;
211
212 /* we were over a PMP link */
213 if (++link < ap->pmp_link + ap->nr_pmp_links)
214 return link;
215
216 if (mode == ATA_LITER_PMP_FIRST)
217 return &ap->link;
218
219 return NULL;
220 }
221 EXPORT_SYMBOL_GPL(ata_link_next);
222
223 /**
224 * ata_dev_next - device iteration helper
225 * @dev: the previous device, NULL to start
226 * @link: ATA link containing devices to iterate
227 * @mode: iteration mode, one of ATA_DITER_*
228 *
229 * LOCKING:
230 * Host lock or EH context.
231 *
232 * RETURNS:
233 * Pointer to the next device.
234 */
ata_dev_next(struct ata_device * dev,struct ata_link * link,enum ata_dev_iter_mode mode)235 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
236 enum ata_dev_iter_mode mode)
237 {
238 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
239 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
240
241 /* NULL dev indicates start of iteration */
242 if (!dev)
243 switch (mode) {
244 case ATA_DITER_ENABLED:
245 case ATA_DITER_ALL:
246 dev = link->device;
247 goto check;
248 case ATA_DITER_ENABLED_REVERSE:
249 case ATA_DITER_ALL_REVERSE:
250 dev = link->device + ata_link_max_devices(link) - 1;
251 goto check;
252 }
253
254 next:
255 /* move to the next one */
256 switch (mode) {
257 case ATA_DITER_ENABLED:
258 case ATA_DITER_ALL:
259 if (++dev < link->device + ata_link_max_devices(link))
260 goto check;
261 return NULL;
262 case ATA_DITER_ENABLED_REVERSE:
263 case ATA_DITER_ALL_REVERSE:
264 if (--dev >= link->device)
265 goto check;
266 return NULL;
267 }
268
269 check:
270 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
271 !ata_dev_enabled(dev))
272 goto next;
273 return dev;
274 }
275 EXPORT_SYMBOL_GPL(ata_dev_next);
276
277 /**
278 * ata_dev_phys_link - find physical link for a device
279 * @dev: ATA device to look up physical link for
280 *
281 * Look up physical link which @dev is attached to. Note that
282 * this is different from @dev->link only when @dev is on slave
283 * link. For all other cases, it's the same as @dev->link.
284 *
285 * LOCKING:
286 * Don't care.
287 *
288 * RETURNS:
289 * Pointer to the found physical link.
290 */
ata_dev_phys_link(struct ata_device * dev)291 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
292 {
293 struct ata_port *ap = dev->link->ap;
294
295 if (!ap->slave_link)
296 return dev->link;
297 if (!dev->devno)
298 return &ap->link;
299 return ap->slave_link;
300 }
301
302 #ifdef CONFIG_ATA_FORCE
303 /**
304 * ata_force_cbl - force cable type according to libata.force
305 * @ap: ATA port of interest
306 *
307 * Force cable type according to libata.force and whine about it.
308 * The last entry which has matching port number is used, so it
309 * can be specified as part of device force parameters. For
310 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
311 * same effect.
312 *
313 * LOCKING:
314 * EH context.
315 */
ata_force_cbl(struct ata_port * ap)316 void ata_force_cbl(struct ata_port *ap)
317 {
318 int i;
319
320 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
321 const struct ata_force_ent *fe = &ata_force_tbl[i];
322
323 if (fe->port != -1 && fe->port != ap->print_id)
324 continue;
325
326 if (fe->param.cbl == ATA_CBL_NONE)
327 continue;
328
329 ap->cbl = fe->param.cbl;
330 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
331 return;
332 }
333 }
334
335 /**
336 * ata_force_pflags - force port flags according to libata.force
337 * @ap: ATA port of interest
338 *
339 * Force port flags according to libata.force and whine about it.
340 *
341 * LOCKING:
342 * EH context.
343 */
ata_force_pflags(struct ata_port * ap)344 static void ata_force_pflags(struct ata_port *ap)
345 {
346 int i;
347
348 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
349 const struct ata_force_ent *fe = &ata_force_tbl[i];
350
351 if (fe->port != -1 && fe->port != ap->print_id)
352 continue;
353
354 /* let pflags stack */
355 if (fe->param.pflags_on) {
356 ap->pflags |= fe->param.pflags_on;
357 ata_port_notice(ap,
358 "FORCE: port flag 0x%x forced -> 0x%x\n",
359 fe->param.pflags_on, ap->pflags);
360 }
361 }
362 }
363
364 /**
365 * ata_force_link_limits - force link limits according to libata.force
366 * @link: ATA link of interest
367 *
368 * Force link flags and SATA spd limit according to libata.force
369 * and whine about it. When only the port part is specified
370 * (e.g. 1:), the limit applies to all links connected to both
371 * the host link and all fan-out ports connected via PMP. If the
372 * device part is specified as 0 (e.g. 1.00:), it specifies the
373 * first fan-out link not the host link. Device number 15 always
374 * points to the host link whether PMP is attached or not. If the
375 * controller has slave link, device number 16 points to it.
376 *
377 * LOCKING:
378 * EH context.
379 */
ata_force_link_limits(struct ata_link * link)380 static void ata_force_link_limits(struct ata_link *link)
381 {
382 bool did_spd = false;
383 int linkno = link->pmp;
384 int i;
385
386 if (ata_is_host_link(link))
387 linkno += 15;
388
389 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
390 const struct ata_force_ent *fe = &ata_force_tbl[i];
391
392 if (fe->port != -1 && fe->port != link->ap->print_id)
393 continue;
394
395 if (fe->device != -1 && fe->device != linkno)
396 continue;
397
398 /* only honor the first spd limit */
399 if (!did_spd && fe->param.spd_limit) {
400 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
401 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
402 fe->param.name);
403 did_spd = true;
404 }
405
406 /* let lflags stack */
407 if (fe->param.lflags_on) {
408 link->flags |= fe->param.lflags_on;
409 ata_link_notice(link,
410 "FORCE: link flag 0x%x forced -> 0x%x\n",
411 fe->param.lflags_on, link->flags);
412 }
413 if (fe->param.lflags_off) {
414 link->flags &= ~fe->param.lflags_off;
415 ata_link_notice(link,
416 "FORCE: link flag 0x%x cleared -> 0x%x\n",
417 fe->param.lflags_off, link->flags);
418 }
419 }
420 }
421
422 /**
423 * ata_force_xfermask - force xfermask according to libata.force
424 * @dev: ATA device of interest
425 *
426 * Force xfer_mask according to libata.force and whine about it.
427 * For consistency with link selection, device number 15 selects
428 * the first device connected to the host link.
429 *
430 * LOCKING:
431 * EH context.
432 */
ata_force_xfermask(struct ata_device * dev)433 static void ata_force_xfermask(struct ata_device *dev)
434 {
435 int devno = dev->link->pmp + dev->devno;
436 int alt_devno = devno;
437 int i;
438
439 /* allow n.15/16 for devices attached to host port */
440 if (ata_is_host_link(dev->link))
441 alt_devno += 15;
442
443 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
444 const struct ata_force_ent *fe = &ata_force_tbl[i];
445 unsigned int pio_mask, mwdma_mask, udma_mask;
446
447 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
448 continue;
449
450 if (fe->device != -1 && fe->device != devno &&
451 fe->device != alt_devno)
452 continue;
453
454 if (!fe->param.xfer_mask)
455 continue;
456
457 ata_unpack_xfermask(fe->param.xfer_mask,
458 &pio_mask, &mwdma_mask, &udma_mask);
459 if (udma_mask)
460 dev->udma_mask = udma_mask;
461 else if (mwdma_mask) {
462 dev->udma_mask = 0;
463 dev->mwdma_mask = mwdma_mask;
464 } else {
465 dev->udma_mask = 0;
466 dev->mwdma_mask = 0;
467 dev->pio_mask = pio_mask;
468 }
469
470 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
471 fe->param.name);
472 return;
473 }
474 }
475
476 /**
477 * ata_force_quirks - force quirks according to libata.force
478 * @dev: ATA device of interest
479 *
480 * Force quirks according to libata.force and whine about it.
481 * For consistency with link selection, device number 15 selects
482 * the first device connected to the host link.
483 *
484 * LOCKING:
485 * EH context.
486 */
ata_force_quirks(struct ata_device * dev)487 static void ata_force_quirks(struct ata_device *dev)
488 {
489 int devno = dev->link->pmp + dev->devno;
490 int alt_devno = devno;
491 int i;
492
493 /* allow n.15/16 for devices attached to host port */
494 if (ata_is_host_link(dev->link))
495 alt_devno += 15;
496
497 for (i = 0; i < ata_force_tbl_size; i++) {
498 const struct ata_force_ent *fe = &ata_force_tbl[i];
499
500 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
501 continue;
502
503 if (fe->device != -1 && fe->device != devno &&
504 fe->device != alt_devno)
505 continue;
506
507 if (!(~dev->quirks & fe->param.quirk_on) &&
508 !(dev->quirks & fe->param.quirk_off))
509 continue;
510
511 dev->quirks |= fe->param.quirk_on;
512 dev->quirks &= ~fe->param.quirk_off;
513
514 ata_dev_notice(dev, "FORCE: modified (%s)\n",
515 fe->param.name);
516 }
517 }
518 #else
ata_force_pflags(struct ata_port * ap)519 static inline void ata_force_pflags(struct ata_port *ap) { }
ata_force_link_limits(struct ata_link * link)520 static inline void ata_force_link_limits(struct ata_link *link) { }
ata_force_xfermask(struct ata_device * dev)521 static inline void ata_force_xfermask(struct ata_device *dev) { }
ata_force_quirks(struct ata_device * dev)522 static inline void ata_force_quirks(struct ata_device *dev) { }
523 #endif
524
525 /**
526 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
527 * @opcode: SCSI opcode
528 *
529 * Determine ATAPI command type from @opcode.
530 *
531 * LOCKING:
532 * None.
533 *
534 * RETURNS:
535 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
536 */
atapi_cmd_type(u8 opcode)537 int atapi_cmd_type(u8 opcode)
538 {
539 switch (opcode) {
540 case GPCMD_READ_10:
541 case GPCMD_READ_12:
542 return ATAPI_READ;
543
544 case GPCMD_WRITE_10:
545 case GPCMD_WRITE_12:
546 case GPCMD_WRITE_AND_VERIFY_10:
547 return ATAPI_WRITE;
548
549 case GPCMD_READ_CD:
550 case GPCMD_READ_CD_MSF:
551 return ATAPI_READ_CD;
552
553 case ATA_16:
554 case ATA_12:
555 if (atapi_passthru16)
556 return ATAPI_PASS_THRU;
557 fallthrough;
558 default:
559 return ATAPI_MISC;
560 }
561 }
562 EXPORT_SYMBOL_GPL(atapi_cmd_type);
563
564 static const u8 ata_rw_cmds[] = {
565 /* pio multi */
566 ATA_CMD_READ_MULTI,
567 ATA_CMD_WRITE_MULTI,
568 ATA_CMD_READ_MULTI_EXT,
569 ATA_CMD_WRITE_MULTI_EXT,
570 0,
571 0,
572 0,
573 0,
574 /* pio */
575 ATA_CMD_PIO_READ,
576 ATA_CMD_PIO_WRITE,
577 ATA_CMD_PIO_READ_EXT,
578 ATA_CMD_PIO_WRITE_EXT,
579 0,
580 0,
581 0,
582 0,
583 /* dma */
584 ATA_CMD_READ,
585 ATA_CMD_WRITE,
586 ATA_CMD_READ_EXT,
587 ATA_CMD_WRITE_EXT,
588 0,
589 0,
590 0,
591 ATA_CMD_WRITE_FUA_EXT
592 };
593
594 /**
595 * ata_set_rwcmd_protocol - set taskfile r/w command and protocol
596 * @dev: target device for the taskfile
597 * @tf: taskfile to examine and configure
598 *
599 * Examine the device configuration and tf->flags to determine
600 * the proper read/write command and protocol to use for @tf.
601 *
602 * LOCKING:
603 * caller.
604 */
ata_set_rwcmd_protocol(struct ata_device * dev,struct ata_taskfile * tf)605 static bool ata_set_rwcmd_protocol(struct ata_device *dev,
606 struct ata_taskfile *tf)
607 {
608 u8 cmd;
609
610 int index, fua, lba48, write;
611
612 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
613 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
614 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
615
616 if (dev->flags & ATA_DFLAG_PIO) {
617 tf->protocol = ATA_PROT_PIO;
618 index = dev->multi_count ? 0 : 8;
619 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
620 /* Unable to use DMA due to host limitation */
621 tf->protocol = ATA_PROT_PIO;
622 index = dev->multi_count ? 0 : 8;
623 } else {
624 tf->protocol = ATA_PROT_DMA;
625 index = 16;
626 }
627
628 cmd = ata_rw_cmds[index + fua + lba48 + write];
629 if (!cmd)
630 return false;
631
632 tf->command = cmd;
633
634 return true;
635 }
636
637 /**
638 * ata_tf_read_block - Read block address from ATA taskfile
639 * @tf: ATA taskfile of interest
640 * @dev: ATA device @tf belongs to
641 *
642 * LOCKING:
643 * None.
644 *
645 * Read block address from @tf. This function can handle all
646 * three address formats - LBA, LBA48 and CHS. tf->protocol and
647 * flags select the address format to use.
648 *
649 * RETURNS:
650 * Block address read from @tf.
651 */
ata_tf_read_block(const struct ata_taskfile * tf,struct ata_device * dev)652 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
653 {
654 u64 block = 0;
655
656 if (tf->flags & ATA_TFLAG_LBA) {
657 if (tf->flags & ATA_TFLAG_LBA48) {
658 block |= (u64)tf->hob_lbah << 40;
659 block |= (u64)tf->hob_lbam << 32;
660 block |= (u64)tf->hob_lbal << 24;
661 } else
662 block |= (tf->device & 0xf) << 24;
663
664 block |= tf->lbah << 16;
665 block |= tf->lbam << 8;
666 block |= tf->lbal;
667 } else {
668 u32 cyl, head, sect;
669
670 cyl = tf->lbam | (tf->lbah << 8);
671 head = tf->device & 0xf;
672 sect = tf->lbal;
673
674 if (!sect) {
675 ata_dev_warn(dev,
676 "device reported invalid CHS sector 0\n");
677 return U64_MAX;
678 }
679
680 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
681 }
682
683 return block;
684 }
685
686 /*
687 * Set a taskfile command duration limit index.
688 */
ata_set_tf_cdl(struct ata_queued_cmd * qc,int cdl)689 static inline void ata_set_tf_cdl(struct ata_queued_cmd *qc, int cdl)
690 {
691 struct ata_taskfile *tf = &qc->tf;
692
693 if (tf->protocol == ATA_PROT_NCQ)
694 tf->auxiliary |= cdl;
695 else
696 tf->feature |= cdl;
697
698 /*
699 * Mark this command as having a CDL and request the result
700 * task file so that we can inspect the sense data available
701 * bit on completion.
702 */
703 qc->flags |= ATA_QCFLAG_HAS_CDL | ATA_QCFLAG_RESULT_TF;
704 }
705
706 /**
707 * ata_build_rw_tf - Build ATA taskfile for given read/write request
708 * @qc: Metadata associated with the taskfile to build
709 * @block: Block address
710 * @n_block: Number of blocks
711 * @tf_flags: RW/FUA etc...
712 * @cdl: Command duration limit index
713 * @class: IO priority class
714 *
715 * LOCKING:
716 * None.
717 *
718 * Build ATA taskfile for the command @qc for read/write request described
719 * by @block, @n_block, @tf_flags and @class.
720 *
721 * RETURNS:
722 *
723 * 0 on success, -ERANGE if the request is too large for @dev,
724 * -EINVAL if the request is invalid.
725 */
ata_build_rw_tf(struct ata_queued_cmd * qc,u64 block,u32 n_block,unsigned int tf_flags,int cdl,int class)726 int ata_build_rw_tf(struct ata_queued_cmd *qc, u64 block, u32 n_block,
727 unsigned int tf_flags, int cdl, int class)
728 {
729 struct ata_taskfile *tf = &qc->tf;
730 struct ata_device *dev = qc->dev;
731
732 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
733 tf->flags |= tf_flags;
734
735 if (ata_ncq_enabled(dev)) {
736 /* yay, NCQ */
737 if (!lba_48_ok(block, n_block))
738 return -ERANGE;
739
740 tf->protocol = ATA_PROT_NCQ;
741 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
742
743 if (tf->flags & ATA_TFLAG_WRITE)
744 tf->command = ATA_CMD_FPDMA_WRITE;
745 else
746 tf->command = ATA_CMD_FPDMA_READ;
747
748 tf->nsect = qc->hw_tag << 3;
749 tf->hob_feature = (n_block >> 8) & 0xff;
750 tf->feature = n_block & 0xff;
751
752 tf->hob_lbah = (block >> 40) & 0xff;
753 tf->hob_lbam = (block >> 32) & 0xff;
754 tf->hob_lbal = (block >> 24) & 0xff;
755 tf->lbah = (block >> 16) & 0xff;
756 tf->lbam = (block >> 8) & 0xff;
757 tf->lbal = block & 0xff;
758
759 tf->device = ATA_LBA;
760 if (tf->flags & ATA_TFLAG_FUA)
761 tf->device |= 1 << 7;
762
763 if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLED &&
764 class == IOPRIO_CLASS_RT)
765 tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO;
766
767 if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl)
768 ata_set_tf_cdl(qc, cdl);
769
770 } else if (dev->flags & ATA_DFLAG_LBA) {
771 tf->flags |= ATA_TFLAG_LBA;
772
773 if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl)
774 ata_set_tf_cdl(qc, cdl);
775
776 /* Both FUA writes and a CDL index require 48-bit commands */
777 if (!(tf->flags & ATA_TFLAG_FUA) &&
778 !(qc->flags & ATA_QCFLAG_HAS_CDL) &&
779 lba_28_ok(block, n_block)) {
780 /* use LBA28 */
781 tf->device |= (block >> 24) & 0xf;
782 } else if (lba_48_ok(block, n_block)) {
783 if (!(dev->flags & ATA_DFLAG_LBA48))
784 return -ERANGE;
785
786 /* use LBA48 */
787 tf->flags |= ATA_TFLAG_LBA48;
788
789 tf->hob_nsect = (n_block >> 8) & 0xff;
790
791 tf->hob_lbah = (block >> 40) & 0xff;
792 tf->hob_lbam = (block >> 32) & 0xff;
793 tf->hob_lbal = (block >> 24) & 0xff;
794 } else {
795 /* request too large even for LBA48 */
796 return -ERANGE;
797 }
798
799 if (unlikely(!ata_set_rwcmd_protocol(dev, tf)))
800 return -EINVAL;
801
802 tf->nsect = n_block & 0xff;
803
804 tf->lbah = (block >> 16) & 0xff;
805 tf->lbam = (block >> 8) & 0xff;
806 tf->lbal = block & 0xff;
807
808 tf->device |= ATA_LBA;
809 } else {
810 /* CHS */
811 u32 sect, head, cyl, track;
812
813 /* The request -may- be too large for CHS addressing. */
814 if (!lba_28_ok(block, n_block))
815 return -ERANGE;
816
817 if (unlikely(!ata_set_rwcmd_protocol(dev, tf)))
818 return -EINVAL;
819
820 /* Convert LBA to CHS */
821 track = (u32)block / dev->sectors;
822 cyl = track / dev->heads;
823 head = track % dev->heads;
824 sect = (u32)block % dev->sectors + 1;
825
826 /* Check whether the converted CHS can fit.
827 Cylinder: 0-65535
828 Head: 0-15
829 Sector: 1-255*/
830 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
831 return -ERANGE;
832
833 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
834 tf->lbal = sect;
835 tf->lbam = cyl;
836 tf->lbah = cyl >> 8;
837 tf->device |= head;
838 }
839
840 return 0;
841 }
842
843 /**
844 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
845 * @pio_mask: pio_mask
846 * @mwdma_mask: mwdma_mask
847 * @udma_mask: udma_mask
848 *
849 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
850 * unsigned int xfer_mask.
851 *
852 * LOCKING:
853 * None.
854 *
855 * RETURNS:
856 * Packed xfer_mask.
857 */
ata_pack_xfermask(unsigned int pio_mask,unsigned int mwdma_mask,unsigned int udma_mask)858 unsigned int ata_pack_xfermask(unsigned int pio_mask,
859 unsigned int mwdma_mask,
860 unsigned int udma_mask)
861 {
862 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
863 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
864 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
865 }
866 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
867
868 /**
869 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
870 * @xfer_mask: xfer_mask to unpack
871 * @pio_mask: resulting pio_mask
872 * @mwdma_mask: resulting mwdma_mask
873 * @udma_mask: resulting udma_mask
874 *
875 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
876 * Any NULL destination masks will be ignored.
877 */
ata_unpack_xfermask(unsigned int xfer_mask,unsigned int * pio_mask,unsigned int * mwdma_mask,unsigned int * udma_mask)878 void ata_unpack_xfermask(unsigned int xfer_mask, unsigned int *pio_mask,
879 unsigned int *mwdma_mask, unsigned int *udma_mask)
880 {
881 if (pio_mask)
882 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
883 if (mwdma_mask)
884 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
885 if (udma_mask)
886 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
887 }
888
889 static const struct ata_xfer_ent {
890 int shift, bits;
891 u8 base;
892 } ata_xfer_tbl[] = {
893 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
894 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
895 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
896 { -1, },
897 };
898
899 /**
900 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
901 * @xfer_mask: xfer_mask of interest
902 *
903 * Return matching XFER_* value for @xfer_mask. Only the highest
904 * bit of @xfer_mask is considered.
905 *
906 * LOCKING:
907 * None.
908 *
909 * RETURNS:
910 * Matching XFER_* value, 0xff if no match found.
911 */
ata_xfer_mask2mode(unsigned int xfer_mask)912 u8 ata_xfer_mask2mode(unsigned int xfer_mask)
913 {
914 int highbit = fls(xfer_mask) - 1;
915 const struct ata_xfer_ent *ent;
916
917 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
918 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
919 return ent->base + highbit - ent->shift;
920 return 0xff;
921 }
922 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
923
924 /**
925 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
926 * @xfer_mode: XFER_* of interest
927 *
928 * Return matching xfer_mask for @xfer_mode.
929 *
930 * LOCKING:
931 * None.
932 *
933 * RETURNS:
934 * Matching xfer_mask, 0 if no match found.
935 */
ata_xfer_mode2mask(u8 xfer_mode)936 unsigned int ata_xfer_mode2mask(u8 xfer_mode)
937 {
938 const struct ata_xfer_ent *ent;
939
940 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
941 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
942 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
943 & ~((1 << ent->shift) - 1);
944 return 0;
945 }
946 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
947
948 /**
949 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
950 * @xfer_mode: XFER_* of interest
951 *
952 * Return matching xfer_shift for @xfer_mode.
953 *
954 * LOCKING:
955 * None.
956 *
957 * RETURNS:
958 * Matching xfer_shift, -1 if no match found.
959 */
ata_xfer_mode2shift(u8 xfer_mode)960 int ata_xfer_mode2shift(u8 xfer_mode)
961 {
962 const struct ata_xfer_ent *ent;
963
964 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
965 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
966 return ent->shift;
967 return -1;
968 }
969 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
970
971 /**
972 * ata_mode_string - convert xfer_mask to string
973 * @xfer_mask: mask of bits supported; only highest bit counts.
974 *
975 * Determine string which represents the highest speed
976 * (highest bit in @modemask).
977 *
978 * LOCKING:
979 * None.
980 *
981 * RETURNS:
982 * Constant C string representing highest speed listed in
983 * @mode_mask, or the constant C string "<n/a>".
984 */
ata_mode_string(unsigned int xfer_mask)985 const char *ata_mode_string(unsigned int xfer_mask)
986 {
987 static const char * const xfer_mode_str[] = {
988 "PIO0",
989 "PIO1",
990 "PIO2",
991 "PIO3",
992 "PIO4",
993 "PIO5",
994 "PIO6",
995 "MWDMA0",
996 "MWDMA1",
997 "MWDMA2",
998 "MWDMA3",
999 "MWDMA4",
1000 "UDMA/16",
1001 "UDMA/25",
1002 "UDMA/33",
1003 "UDMA/44",
1004 "UDMA/66",
1005 "UDMA/100",
1006 "UDMA/133",
1007 "UDMA7",
1008 };
1009 int highbit;
1010
1011 highbit = fls(xfer_mask) - 1;
1012 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1013 return xfer_mode_str[highbit];
1014 return "<n/a>";
1015 }
1016 EXPORT_SYMBOL_GPL(ata_mode_string);
1017
sata_spd_string(unsigned int spd)1018 const char *sata_spd_string(unsigned int spd)
1019 {
1020 static const char * const spd_str[] = {
1021 "1.5 Gbps",
1022 "3.0 Gbps",
1023 "6.0 Gbps",
1024 };
1025
1026 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1027 return "<unknown>";
1028 return spd_str[spd - 1];
1029 }
1030
1031 /**
1032 * ata_dev_classify - determine device type based on ATA-spec signature
1033 * @tf: ATA taskfile register set for device to be identified
1034 *
1035 * Determine from taskfile register contents whether a device is
1036 * ATA or ATAPI, as per "Signature and persistence" section
1037 * of ATA/PI spec (volume 1, sect 5.14).
1038 *
1039 * LOCKING:
1040 * None.
1041 *
1042 * RETURNS:
1043 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1044 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1045 */
ata_dev_classify(const struct ata_taskfile * tf)1046 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1047 {
1048 /* Apple's open source Darwin code hints that some devices only
1049 * put a proper signature into the LBA mid/high registers,
1050 * So, we only check those. It's sufficient for uniqueness.
1051 *
1052 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1053 * signatures for ATA and ATAPI devices attached on SerialATA,
1054 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1055 * spec has never mentioned about using different signatures
1056 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1057 * Multiplier specification began to use 0x69/0x96 to identify
1058 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1059 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1060 * 0x69/0x96 shortly and described them as reserved for
1061 * SerialATA.
1062 *
1063 * We follow the current spec and consider that 0x69/0x96
1064 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1065 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1066 * SEMB signature. This is worked around in
1067 * ata_dev_read_id().
1068 */
1069 if (tf->lbam == 0 && tf->lbah == 0)
1070 return ATA_DEV_ATA;
1071
1072 if (tf->lbam == 0x14 && tf->lbah == 0xeb)
1073 return ATA_DEV_ATAPI;
1074
1075 if (tf->lbam == 0x69 && tf->lbah == 0x96)
1076 return ATA_DEV_PMP;
1077
1078 if (tf->lbam == 0x3c && tf->lbah == 0xc3)
1079 return ATA_DEV_SEMB;
1080
1081 if (tf->lbam == 0xcd && tf->lbah == 0xab)
1082 return ATA_DEV_ZAC;
1083
1084 return ATA_DEV_UNKNOWN;
1085 }
1086 EXPORT_SYMBOL_GPL(ata_dev_classify);
1087
1088 /**
1089 * ata_id_string - Convert IDENTIFY DEVICE page into string
1090 * @id: IDENTIFY DEVICE results we will examine
1091 * @s: string into which data is output
1092 * @ofs: offset into identify device page
1093 * @len: length of string to return. must be an even number.
1094 *
1095 * The strings in the IDENTIFY DEVICE page are broken up into
1096 * 16-bit chunks. Run through the string, and output each
1097 * 8-bit chunk linearly, regardless of platform.
1098 *
1099 * LOCKING:
1100 * caller.
1101 */
1102
ata_id_string(const u16 * id,unsigned char * s,unsigned int ofs,unsigned int len)1103 void ata_id_string(const u16 *id, unsigned char *s,
1104 unsigned int ofs, unsigned int len)
1105 {
1106 unsigned int c;
1107
1108 BUG_ON(len & 1);
1109
1110 while (len > 0) {
1111 c = id[ofs] >> 8;
1112 *s = c;
1113 s++;
1114
1115 c = id[ofs] & 0xff;
1116 *s = c;
1117 s++;
1118
1119 ofs++;
1120 len -= 2;
1121 }
1122 }
1123 EXPORT_SYMBOL_GPL(ata_id_string);
1124
1125 /**
1126 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1127 * @id: IDENTIFY DEVICE results we will examine
1128 * @s: string into which data is output
1129 * @ofs: offset into identify device page
1130 * @len: length of string to return. must be an odd number.
1131 *
1132 * This function is identical to ata_id_string except that it
1133 * trims trailing spaces and terminates the resulting string with
1134 * null. @len must be actual maximum length (even number) + 1.
1135 *
1136 * LOCKING:
1137 * caller.
1138 */
ata_id_c_string(const u16 * id,unsigned char * s,unsigned int ofs,unsigned int len)1139 void ata_id_c_string(const u16 *id, unsigned char *s,
1140 unsigned int ofs, unsigned int len)
1141 {
1142 unsigned char *p;
1143
1144 ata_id_string(id, s, ofs, len - 1);
1145
1146 p = s + strnlen(s, len - 1);
1147 while (p > s && p[-1] == ' ')
1148 p--;
1149 *p = '\0';
1150 }
1151 EXPORT_SYMBOL_GPL(ata_id_c_string);
1152
ata_id_n_sectors(const u16 * id)1153 static u64 ata_id_n_sectors(const u16 *id)
1154 {
1155 if (ata_id_has_lba(id)) {
1156 if (ata_id_has_lba48(id))
1157 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1158
1159 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1160 }
1161
1162 if (ata_id_current_chs_valid(id))
1163 return (u32)id[ATA_ID_CUR_CYLS] * (u32)id[ATA_ID_CUR_HEADS] *
1164 (u32)id[ATA_ID_CUR_SECTORS];
1165
1166 return (u32)id[ATA_ID_CYLS] * (u32)id[ATA_ID_HEADS] *
1167 (u32)id[ATA_ID_SECTORS];
1168 }
1169
ata_tf_to_lba48(const struct ata_taskfile * tf)1170 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1171 {
1172 u64 sectors = 0;
1173
1174 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1175 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1176 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1177 sectors |= (tf->lbah & 0xff) << 16;
1178 sectors |= (tf->lbam & 0xff) << 8;
1179 sectors |= (tf->lbal & 0xff);
1180
1181 return sectors;
1182 }
1183
ata_tf_to_lba(const struct ata_taskfile * tf)1184 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1185 {
1186 u64 sectors = 0;
1187
1188 sectors |= (tf->device & 0x0f) << 24;
1189 sectors |= (tf->lbah & 0xff) << 16;
1190 sectors |= (tf->lbam & 0xff) << 8;
1191 sectors |= (tf->lbal & 0xff);
1192
1193 return sectors;
1194 }
1195
1196 /**
1197 * ata_read_native_max_address - Read native max address
1198 * @dev: target device
1199 * @max_sectors: out parameter for the result native max address
1200 *
1201 * Perform an LBA48 or LBA28 native size query upon the device in
1202 * question.
1203 *
1204 * RETURNS:
1205 * 0 on success, -EACCES if command is aborted by the drive.
1206 * -EIO on other errors.
1207 */
ata_read_native_max_address(struct ata_device * dev,u64 * max_sectors)1208 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1209 {
1210 unsigned int err_mask;
1211 struct ata_taskfile tf;
1212 int lba48 = ata_id_has_lba48(dev->id);
1213
1214 ata_tf_init(dev, &tf);
1215
1216 /* always clear all address registers */
1217 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1218
1219 if (lba48) {
1220 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1221 tf.flags |= ATA_TFLAG_LBA48;
1222 } else
1223 tf.command = ATA_CMD_READ_NATIVE_MAX;
1224
1225 tf.protocol = ATA_PROT_NODATA;
1226 tf.device |= ATA_LBA;
1227
1228 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1229 if (err_mask) {
1230 ata_dev_warn(dev,
1231 "failed to read native max address (err_mask=0x%x)\n",
1232 err_mask);
1233 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
1234 return -EACCES;
1235 return -EIO;
1236 }
1237
1238 if (lba48)
1239 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1240 else
1241 *max_sectors = ata_tf_to_lba(&tf) + 1;
1242 if (dev->quirks & ATA_QUIRK_HPA_SIZE)
1243 (*max_sectors)--;
1244 return 0;
1245 }
1246
1247 /**
1248 * ata_set_max_sectors - Set max sectors
1249 * @dev: target device
1250 * @new_sectors: new max sectors value to set for the device
1251 *
1252 * Set max sectors of @dev to @new_sectors.
1253 *
1254 * RETURNS:
1255 * 0 on success, -EACCES if command is aborted or denied (due to
1256 * previous non-volatile SET_MAX) by the drive. -EIO on other
1257 * errors.
1258 */
ata_set_max_sectors(struct ata_device * dev,u64 new_sectors)1259 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1260 {
1261 unsigned int err_mask;
1262 struct ata_taskfile tf;
1263 int lba48 = ata_id_has_lba48(dev->id);
1264
1265 new_sectors--;
1266
1267 ata_tf_init(dev, &tf);
1268
1269 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1270
1271 if (lba48) {
1272 tf.command = ATA_CMD_SET_MAX_EXT;
1273 tf.flags |= ATA_TFLAG_LBA48;
1274
1275 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1276 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1277 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1278 } else {
1279 tf.command = ATA_CMD_SET_MAX;
1280
1281 tf.device |= (new_sectors >> 24) & 0xf;
1282 }
1283
1284 tf.protocol = ATA_PROT_NODATA;
1285 tf.device |= ATA_LBA;
1286
1287 tf.lbal = (new_sectors >> 0) & 0xff;
1288 tf.lbam = (new_sectors >> 8) & 0xff;
1289 tf.lbah = (new_sectors >> 16) & 0xff;
1290
1291 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1292 if (err_mask) {
1293 ata_dev_warn(dev,
1294 "failed to set max address (err_mask=0x%x)\n",
1295 err_mask);
1296 if (err_mask == AC_ERR_DEV &&
1297 (tf.error & (ATA_ABORTED | ATA_IDNF)))
1298 return -EACCES;
1299 return -EIO;
1300 }
1301
1302 return 0;
1303 }
1304
1305 /**
1306 * ata_hpa_resize - Resize a device with an HPA set
1307 * @dev: Device to resize
1308 *
1309 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1310 * it if required to the full size of the media. The caller must check
1311 * the drive has the HPA feature set enabled.
1312 *
1313 * RETURNS:
1314 * 0 on success, -errno on failure.
1315 */
ata_hpa_resize(struct ata_device * dev)1316 static int ata_hpa_resize(struct ata_device *dev)
1317 {
1318 bool print_info = ata_dev_print_info(dev);
1319 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1320 u64 sectors = ata_id_n_sectors(dev->id);
1321 u64 native_sectors;
1322 int rc;
1323
1324 /* do we need to do it? */
1325 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1326 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1327 (dev->quirks & ATA_QUIRK_BROKEN_HPA))
1328 return 0;
1329
1330 /* read native max address */
1331 rc = ata_read_native_max_address(dev, &native_sectors);
1332 if (rc) {
1333 /* If device aborted the command or HPA isn't going to
1334 * be unlocked, skip HPA resizing.
1335 */
1336 if (rc == -EACCES || !unlock_hpa) {
1337 ata_dev_warn(dev,
1338 "HPA support seems broken, skipping HPA handling\n");
1339 dev->quirks |= ATA_QUIRK_BROKEN_HPA;
1340
1341 /* we can continue if device aborted the command */
1342 if (rc == -EACCES)
1343 rc = 0;
1344 }
1345
1346 return rc;
1347 }
1348 dev->n_native_sectors = native_sectors;
1349
1350 /* nothing to do? */
1351 if (native_sectors <= sectors || !unlock_hpa) {
1352 if (!print_info || native_sectors == sectors)
1353 return 0;
1354
1355 if (native_sectors > sectors)
1356 ata_dev_info(dev,
1357 "HPA detected: current %llu, native %llu\n",
1358 (unsigned long long)sectors,
1359 (unsigned long long)native_sectors);
1360 else if (native_sectors < sectors)
1361 ata_dev_warn(dev,
1362 "native sectors (%llu) is smaller than sectors (%llu)\n",
1363 (unsigned long long)native_sectors,
1364 (unsigned long long)sectors);
1365 return 0;
1366 }
1367
1368 /* let's unlock HPA */
1369 rc = ata_set_max_sectors(dev, native_sectors);
1370 if (rc == -EACCES) {
1371 /* if device aborted the command, skip HPA resizing */
1372 ata_dev_warn(dev,
1373 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1374 (unsigned long long)sectors,
1375 (unsigned long long)native_sectors);
1376 dev->quirks |= ATA_QUIRK_BROKEN_HPA;
1377 return 0;
1378 } else if (rc)
1379 return rc;
1380
1381 /* re-read IDENTIFY data */
1382 rc = ata_dev_reread_id(dev, 0);
1383 if (rc) {
1384 ata_dev_err(dev,
1385 "failed to re-read IDENTIFY data after HPA resizing\n");
1386 return rc;
1387 }
1388
1389 if (print_info) {
1390 u64 new_sectors = ata_id_n_sectors(dev->id);
1391 ata_dev_info(dev,
1392 "HPA unlocked: %llu -> %llu, native %llu\n",
1393 (unsigned long long)sectors,
1394 (unsigned long long)new_sectors,
1395 (unsigned long long)native_sectors);
1396 }
1397
1398 return 0;
1399 }
1400
1401 /**
1402 * ata_dump_id - IDENTIFY DEVICE info debugging output
1403 * @dev: device from which the information is fetched
1404 * @id: IDENTIFY DEVICE page to dump
1405 *
1406 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1407 * page.
1408 *
1409 * LOCKING:
1410 * caller.
1411 */
1412
ata_dump_id(struct ata_device * dev,const u16 * id)1413 static inline void ata_dump_id(struct ata_device *dev, const u16 *id)
1414 {
1415 ata_dev_dbg(dev,
1416 "49==0x%04x 53==0x%04x 63==0x%04x 64==0x%04x 75==0x%04x\n"
1417 "80==0x%04x 81==0x%04x 82==0x%04x 83==0x%04x 84==0x%04x\n"
1418 "88==0x%04x 93==0x%04x\n",
1419 id[49], id[53], id[63], id[64], id[75], id[80],
1420 id[81], id[82], id[83], id[84], id[88], id[93]);
1421 }
1422
1423 /**
1424 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1425 * @id: IDENTIFY data to compute xfer mask from
1426 *
1427 * Compute the xfermask for this device. This is not as trivial
1428 * as it seems if we must consider early devices correctly.
1429 *
1430 * FIXME: pre IDE drive timing (do we care ?).
1431 *
1432 * LOCKING:
1433 * None.
1434 *
1435 * RETURNS:
1436 * Computed xfermask
1437 */
ata_id_xfermask(const u16 * id)1438 unsigned int ata_id_xfermask(const u16 *id)
1439 {
1440 unsigned int pio_mask, mwdma_mask, udma_mask;
1441
1442 /* Usual case. Word 53 indicates word 64 is valid */
1443 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1444 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1445 pio_mask <<= 3;
1446 pio_mask |= 0x7;
1447 } else {
1448 /* If word 64 isn't valid then Word 51 high byte holds
1449 * the PIO timing number for the maximum. Turn it into
1450 * a mask.
1451 */
1452 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1453 if (mode < 5) /* Valid PIO range */
1454 pio_mask = (2 << mode) - 1;
1455 else
1456 pio_mask = 1;
1457
1458 /* But wait.. there's more. Design your standards by
1459 * committee and you too can get a free iordy field to
1460 * process. However it is the speeds not the modes that
1461 * are supported... Note drivers using the timing API
1462 * will get this right anyway
1463 */
1464 }
1465
1466 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1467
1468 if (ata_id_is_cfa(id)) {
1469 /*
1470 * Process compact flash extended modes
1471 */
1472 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1473 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1474
1475 if (pio)
1476 pio_mask |= (1 << 5);
1477 if (pio > 1)
1478 pio_mask |= (1 << 6);
1479 if (dma)
1480 mwdma_mask |= (1 << 3);
1481 if (dma > 1)
1482 mwdma_mask |= (1 << 4);
1483 }
1484
1485 udma_mask = 0;
1486 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1487 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1488
1489 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1490 }
1491 EXPORT_SYMBOL_GPL(ata_id_xfermask);
1492
ata_qc_complete_internal(struct ata_queued_cmd * qc)1493 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1494 {
1495 struct completion *waiting = qc->private_data;
1496
1497 complete(waiting);
1498 }
1499
1500 /**
1501 * ata_exec_internal - execute libata internal command
1502 * @dev: Device to which the command is sent
1503 * @tf: Taskfile registers for the command and the result
1504 * @cdb: CDB for packet command
1505 * @dma_dir: Data transfer direction of the command
1506 * @buf: Data buffer of the command
1507 * @buflen: Length of data buffer
1508 * @timeout: Timeout in msecs (0 for default)
1509 *
1510 * Executes libata internal command with timeout. @tf contains
1511 * the command on entry and the result on return. Timeout and error
1512 * conditions are reported via the return value. No recovery action
1513 * is taken after a command times out. It is the caller's duty to
1514 * clean up after timeout.
1515 *
1516 * LOCKING:
1517 * None. Should be called with kernel context, might sleep.
1518 *
1519 * RETURNS:
1520 * Zero on success, AC_ERR_* mask on failure
1521 */
ata_exec_internal(struct ata_device * dev,struct ata_taskfile * tf,const u8 * cdb,enum dma_data_direction dma_dir,void * buf,unsigned int buflen,unsigned int timeout)1522 unsigned int ata_exec_internal(struct ata_device *dev, struct ata_taskfile *tf,
1523 const u8 *cdb, enum dma_data_direction dma_dir,
1524 void *buf, unsigned int buflen,
1525 unsigned int timeout)
1526 {
1527 struct ata_link *link = dev->link;
1528 struct ata_port *ap = link->ap;
1529 u8 command = tf->command;
1530 struct ata_queued_cmd *qc;
1531 struct scatterlist sgl;
1532 unsigned int preempted_tag;
1533 u32 preempted_sactive;
1534 u64 preempted_qc_active;
1535 int preempted_nr_active_links;
1536 bool auto_timeout = false;
1537 DECLARE_COMPLETION_ONSTACK(wait);
1538 unsigned long flags;
1539 unsigned int err_mask;
1540 int rc;
1541
1542 if (WARN_ON(dma_dir != DMA_NONE && !buf))
1543 return AC_ERR_INVALID;
1544
1545 spin_lock_irqsave(ap->lock, flags);
1546
1547 /* No internal command while frozen */
1548 if (ata_port_is_frozen(ap)) {
1549 spin_unlock_irqrestore(ap->lock, flags);
1550 return AC_ERR_SYSTEM;
1551 }
1552
1553 /* Initialize internal qc */
1554 qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL);
1555
1556 qc->tag = ATA_TAG_INTERNAL;
1557 qc->hw_tag = 0;
1558 qc->scsicmd = NULL;
1559 qc->ap = ap;
1560 qc->dev = dev;
1561 ata_qc_reinit(qc);
1562
1563 preempted_tag = link->active_tag;
1564 preempted_sactive = link->sactive;
1565 preempted_qc_active = ap->qc_active;
1566 preempted_nr_active_links = ap->nr_active_links;
1567 link->active_tag = ATA_TAG_POISON;
1568 link->sactive = 0;
1569 ap->qc_active = 0;
1570 ap->nr_active_links = 0;
1571
1572 /* Prepare and issue qc */
1573 qc->tf = *tf;
1574 if (cdb)
1575 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1576
1577 /* Some SATA bridges need us to indicate data xfer direction */
1578 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1579 dma_dir == DMA_FROM_DEVICE)
1580 qc->tf.feature |= ATAPI_DMADIR;
1581
1582 qc->flags |= ATA_QCFLAG_RESULT_TF;
1583 qc->dma_dir = dma_dir;
1584 if (dma_dir != DMA_NONE) {
1585 sg_init_one(&sgl, buf, buflen);
1586 ata_sg_init(qc, &sgl, 1);
1587 qc->nbytes = buflen;
1588 }
1589
1590 qc->private_data = &wait;
1591 qc->complete_fn = ata_qc_complete_internal;
1592
1593 ata_qc_issue(qc);
1594
1595 spin_unlock_irqrestore(ap->lock, flags);
1596
1597 if (!timeout) {
1598 if (ata_probe_timeout) {
1599 timeout = ata_probe_timeout * 1000;
1600 } else {
1601 timeout = ata_internal_cmd_timeout(dev, command);
1602 auto_timeout = true;
1603 }
1604 }
1605
1606 ata_eh_release(ap);
1607
1608 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1609
1610 ata_eh_acquire(ap);
1611
1612 ata_sff_flush_pio_task(ap);
1613
1614 if (!rc) {
1615 /*
1616 * We are racing with irq here. If we lose, the following test
1617 * prevents us from completing the qc twice. If we win, the port
1618 * is frozen and will be cleaned up by ->post_internal_cmd().
1619 */
1620 spin_lock_irqsave(ap->lock, flags);
1621 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1622 qc->err_mask |= AC_ERR_TIMEOUT;
1623 ata_port_freeze(ap);
1624 ata_dev_warn(dev, "qc timeout after %u msecs (cmd 0x%x)\n",
1625 timeout, command);
1626 }
1627 spin_unlock_irqrestore(ap->lock, flags);
1628 }
1629
1630 if (ap->ops->post_internal_cmd)
1631 ap->ops->post_internal_cmd(qc);
1632
1633 /* Perform minimal error analysis */
1634 if (qc->flags & ATA_QCFLAG_EH) {
1635 if (qc->result_tf.status & (ATA_ERR | ATA_DF))
1636 qc->err_mask |= AC_ERR_DEV;
1637
1638 if (!qc->err_mask)
1639 qc->err_mask |= AC_ERR_OTHER;
1640
1641 if (qc->err_mask & ~AC_ERR_OTHER)
1642 qc->err_mask &= ~AC_ERR_OTHER;
1643 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1644 qc->result_tf.status |= ATA_SENSE;
1645 }
1646
1647 /* Finish up */
1648 spin_lock_irqsave(ap->lock, flags);
1649
1650 *tf = qc->result_tf;
1651 err_mask = qc->err_mask;
1652
1653 ata_qc_free(qc);
1654 link->active_tag = preempted_tag;
1655 link->sactive = preempted_sactive;
1656 ap->qc_active = preempted_qc_active;
1657 ap->nr_active_links = preempted_nr_active_links;
1658
1659 spin_unlock_irqrestore(ap->lock, flags);
1660
1661 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1662 ata_internal_cmd_timed_out(dev, command);
1663
1664 return err_mask;
1665 }
1666
1667 /**
1668 * ata_pio_need_iordy - check if iordy needed
1669 * @adev: ATA device
1670 *
1671 * Check if the current speed of the device requires IORDY. Used
1672 * by various controllers for chip configuration.
1673 */
ata_pio_need_iordy(const struct ata_device * adev)1674 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1675 {
1676 /* Don't set IORDY if we're preparing for reset. IORDY may
1677 * lead to controller lock up on certain controllers if the
1678 * port is not occupied. See bko#11703 for details.
1679 */
1680 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1681 return 0;
1682 /* Controller doesn't support IORDY. Probably a pointless
1683 * check as the caller should know this.
1684 */
1685 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1686 return 0;
1687 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1688 if (ata_id_is_cfa(adev->id)
1689 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1690 return 0;
1691 /* PIO3 and higher it is mandatory */
1692 if (adev->pio_mode > XFER_PIO_2)
1693 return 1;
1694 /* We turn it on when possible */
1695 if (ata_id_has_iordy(adev->id))
1696 return 1;
1697 return 0;
1698 }
1699 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
1700
1701 /**
1702 * ata_pio_mask_no_iordy - Return the non IORDY mask
1703 * @adev: ATA device
1704 *
1705 * Compute the highest mode possible if we are not using iordy. Return
1706 * -1 if no iordy mode is available.
1707 */
ata_pio_mask_no_iordy(const struct ata_device * adev)1708 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1709 {
1710 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1711 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1712 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1713 /* Is the speed faster than the drive allows non IORDY ? */
1714 if (pio) {
1715 /* This is cycle times not frequency - watch the logic! */
1716 if (pio > 240) /* PIO2 is 240nS per cycle */
1717 return 3 << ATA_SHIFT_PIO;
1718 return 7 << ATA_SHIFT_PIO;
1719 }
1720 }
1721 return 3 << ATA_SHIFT_PIO;
1722 }
1723
1724 /**
1725 * ata_do_dev_read_id - default ID read method
1726 * @dev: device
1727 * @tf: proposed taskfile
1728 * @id: data buffer
1729 *
1730 * Issue the identify taskfile and hand back the buffer containing
1731 * identify data. For some RAID controllers and for pre ATA devices
1732 * this function is wrapped or replaced by the driver
1733 */
ata_do_dev_read_id(struct ata_device * dev,struct ata_taskfile * tf,__le16 * id)1734 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1735 struct ata_taskfile *tf, __le16 *id)
1736 {
1737 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1738 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1739 }
1740 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1741
1742 /**
1743 * ata_dev_read_id - Read ID data from the specified device
1744 * @dev: target device
1745 * @p_class: pointer to class of the target device (may be changed)
1746 * @flags: ATA_READID_* flags
1747 * @id: buffer to read IDENTIFY data into
1748 *
1749 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1750 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1751 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1752 * for pre-ATA4 drives.
1753 *
1754 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1755 * now we abort if we hit that case.
1756 *
1757 * LOCKING:
1758 * Kernel thread context (may sleep)
1759 *
1760 * RETURNS:
1761 * 0 on success, -errno otherwise.
1762 */
ata_dev_read_id(struct ata_device * dev,unsigned int * p_class,unsigned int flags,u16 * id)1763 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1764 unsigned int flags, u16 *id)
1765 {
1766 struct ata_port *ap = dev->link->ap;
1767 unsigned int class = *p_class;
1768 struct ata_taskfile tf;
1769 unsigned int err_mask = 0;
1770 const char *reason;
1771 bool is_semb = class == ATA_DEV_SEMB;
1772 int may_fallback = 1, tried_spinup = 0;
1773 int rc;
1774
1775 retry:
1776 ata_tf_init(dev, &tf);
1777
1778 switch (class) {
1779 case ATA_DEV_SEMB:
1780 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1781 fallthrough;
1782 case ATA_DEV_ATA:
1783 case ATA_DEV_ZAC:
1784 tf.command = ATA_CMD_ID_ATA;
1785 break;
1786 case ATA_DEV_ATAPI:
1787 tf.command = ATA_CMD_ID_ATAPI;
1788 break;
1789 default:
1790 rc = -ENODEV;
1791 reason = "unsupported class";
1792 goto err_out;
1793 }
1794
1795 tf.protocol = ATA_PROT_PIO;
1796
1797 /* Some devices choke if TF registers contain garbage. Make
1798 * sure those are properly initialized.
1799 */
1800 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1801
1802 /* Device presence detection is unreliable on some
1803 * controllers. Always poll IDENTIFY if available.
1804 */
1805 tf.flags |= ATA_TFLAG_POLLING;
1806
1807 if (ap->ops->read_id)
1808 err_mask = ap->ops->read_id(dev, &tf, (__le16 *)id);
1809 else
1810 err_mask = ata_do_dev_read_id(dev, &tf, (__le16 *)id);
1811
1812 if (err_mask) {
1813 if (err_mask & AC_ERR_NODEV_HINT) {
1814 ata_dev_dbg(dev, "NODEV after polling detection\n");
1815 return -ENOENT;
1816 }
1817
1818 if (is_semb) {
1819 ata_dev_info(dev,
1820 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1821 /* SEMB is not supported yet */
1822 *p_class = ATA_DEV_SEMB_UNSUP;
1823 return 0;
1824 }
1825
1826 if ((err_mask == AC_ERR_DEV) && (tf.error & ATA_ABORTED)) {
1827 /* Device or controller might have reported
1828 * the wrong device class. Give a shot at the
1829 * other IDENTIFY if the current one is
1830 * aborted by the device.
1831 */
1832 if (may_fallback) {
1833 may_fallback = 0;
1834
1835 if (class == ATA_DEV_ATA)
1836 class = ATA_DEV_ATAPI;
1837 else
1838 class = ATA_DEV_ATA;
1839 goto retry;
1840 }
1841
1842 /* Control reaches here iff the device aborted
1843 * both flavors of IDENTIFYs which happens
1844 * sometimes with phantom devices.
1845 */
1846 ata_dev_dbg(dev,
1847 "both IDENTIFYs aborted, assuming NODEV\n");
1848 return -ENOENT;
1849 }
1850
1851 rc = -EIO;
1852 reason = "I/O error";
1853 goto err_out;
1854 }
1855
1856 if (dev->quirks & ATA_QUIRK_DUMP_ID) {
1857 ata_dev_info(dev, "dumping IDENTIFY data, "
1858 "class=%d may_fallback=%d tried_spinup=%d\n",
1859 class, may_fallback, tried_spinup);
1860 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET,
1861 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1862 }
1863
1864 /* Falling back doesn't make sense if ID data was read
1865 * successfully at least once.
1866 */
1867 may_fallback = 0;
1868
1869 swap_buf_le16(id, ATA_ID_WORDS);
1870
1871 /* sanity check */
1872 rc = -EINVAL;
1873 reason = "device reports invalid type";
1874
1875 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1876 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1877 goto err_out;
1878 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1879 ata_id_is_ata(id)) {
1880 ata_dev_dbg(dev,
1881 "host indicates ignore ATA devices, ignored\n");
1882 return -ENOENT;
1883 }
1884 } else {
1885 if (ata_id_is_ata(id))
1886 goto err_out;
1887 }
1888
1889 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1890 tried_spinup = 1;
1891 /*
1892 * Drive powered-up in standby mode, and requires a specific
1893 * SET_FEATURES spin-up subcommand before it will accept
1894 * anything other than the original IDENTIFY command.
1895 */
1896 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1897 if (err_mask && id[2] != 0x738c) {
1898 rc = -EIO;
1899 reason = "SPINUP failed";
1900 goto err_out;
1901 }
1902 /*
1903 * If the drive initially returned incomplete IDENTIFY info,
1904 * we now must reissue the IDENTIFY command.
1905 */
1906 if (id[2] == 0x37c8)
1907 goto retry;
1908 }
1909
1910 if ((flags & ATA_READID_POSTRESET) &&
1911 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
1912 /*
1913 * The exact sequence expected by certain pre-ATA4 drives is:
1914 * SRST RESET
1915 * IDENTIFY (optional in early ATA)
1916 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1917 * anything else..
1918 * Some drives were very specific about that exact sequence.
1919 *
1920 * Note that ATA4 says lba is mandatory so the second check
1921 * should never trigger.
1922 */
1923 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1924 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1925 if (err_mask) {
1926 rc = -EIO;
1927 reason = "INIT_DEV_PARAMS failed";
1928 goto err_out;
1929 }
1930
1931 /* current CHS translation info (id[53-58]) might be
1932 * changed. reread the identify device info.
1933 */
1934 flags &= ~ATA_READID_POSTRESET;
1935 goto retry;
1936 }
1937 }
1938
1939 *p_class = class;
1940
1941 return 0;
1942
1943 err_out:
1944 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
1945 reason, err_mask);
1946 return rc;
1947 }
1948
ata_dev_power_init_tf(struct ata_device * dev,struct ata_taskfile * tf,bool set_active)1949 bool ata_dev_power_init_tf(struct ata_device *dev, struct ata_taskfile *tf,
1950 bool set_active)
1951 {
1952 /* Only applies to ATA and ZAC devices */
1953 if (dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC)
1954 return false;
1955
1956 ata_tf_init(dev, tf);
1957 tf->flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1958 tf->protocol = ATA_PROT_NODATA;
1959
1960 if (set_active) {
1961 /* VERIFY for 1 sector at lba=0 */
1962 tf->command = ATA_CMD_VERIFY;
1963 tf->nsect = 1;
1964 if (dev->flags & ATA_DFLAG_LBA) {
1965 tf->flags |= ATA_TFLAG_LBA;
1966 tf->device |= ATA_LBA;
1967 } else {
1968 /* CHS */
1969 tf->lbal = 0x1; /* sect */
1970 }
1971 } else {
1972 tf->command = ATA_CMD_STANDBYNOW1;
1973 }
1974
1975 return true;
1976 }
1977
ata_dev_power_is_active(struct ata_device * dev)1978 static bool ata_dev_power_is_active(struct ata_device *dev)
1979 {
1980 struct ata_taskfile tf;
1981 unsigned int err_mask;
1982
1983 ata_tf_init(dev, &tf);
1984 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1985 tf.protocol = ATA_PROT_NODATA;
1986 tf.command = ATA_CMD_CHK_POWER;
1987
1988 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1989 if (err_mask) {
1990 ata_dev_err(dev, "Check power mode failed (err_mask=0x%x)\n",
1991 err_mask);
1992 /*
1993 * Assume we are in standby mode so that we always force a
1994 * spinup in ata_dev_power_set_active().
1995 */
1996 return false;
1997 }
1998
1999 ata_dev_dbg(dev, "Power mode: 0x%02x\n", tf.nsect);
2000
2001 /* Active or idle */
2002 return tf.nsect == 0xff;
2003 }
2004
2005 /**
2006 * ata_dev_power_set_standby - Set a device power mode to standby
2007 * @dev: target device
2008 *
2009 * Issue a STANDBY IMMEDIATE command to set a device power mode to standby.
2010 * For an HDD device, this spins down the disks.
2011 *
2012 * LOCKING:
2013 * Kernel thread context (may sleep).
2014 */
ata_dev_power_set_standby(struct ata_device * dev)2015 void ata_dev_power_set_standby(struct ata_device *dev)
2016 {
2017 unsigned long ap_flags = dev->link->ap->flags;
2018 struct ata_taskfile tf;
2019 unsigned int err_mask;
2020
2021 /* If the device is already sleeping or in standby, do nothing. */
2022 if ((dev->flags & ATA_DFLAG_SLEEPING) ||
2023 !ata_dev_power_is_active(dev))
2024 return;
2025
2026 /*
2027 * Some odd clown BIOSes issue spindown on power off (ACPI S4 or S5)
2028 * causing some drives to spin up and down again. For these, do nothing
2029 * if we are being called on shutdown.
2030 */
2031 if ((ap_flags & ATA_FLAG_NO_POWEROFF_SPINDOWN) &&
2032 system_state == SYSTEM_POWER_OFF)
2033 return;
2034
2035 if ((ap_flags & ATA_FLAG_NO_HIBERNATE_SPINDOWN) &&
2036 system_entering_hibernation())
2037 return;
2038
2039 /* Issue STANDBY IMMEDIATE command only if supported by the device */
2040 if (!ata_dev_power_init_tf(dev, &tf, false))
2041 return;
2042
2043 ata_dev_notice(dev, "Entering standby power mode\n");
2044
2045 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
2046 if (err_mask)
2047 ata_dev_err(dev, "STANDBY IMMEDIATE failed (err_mask=0x%x)\n",
2048 err_mask);
2049 }
2050
2051 /**
2052 * ata_dev_power_set_active - Set a device power mode to active
2053 * @dev: target device
2054 *
2055 * Issue a VERIFY command to enter to ensure that the device is in the
2056 * active power mode. For a spun-down HDD (standby or idle power mode),
2057 * the VERIFY command will complete after the disk spins up.
2058 *
2059 * LOCKING:
2060 * Kernel thread context (may sleep).
2061 */
ata_dev_power_set_active(struct ata_device * dev)2062 void ata_dev_power_set_active(struct ata_device *dev)
2063 {
2064 struct ata_taskfile tf;
2065 unsigned int err_mask;
2066
2067 /*
2068 * Issue READ VERIFY SECTORS command for 1 sector at lba=0 only
2069 * if supported by the device.
2070 */
2071 if (!ata_dev_power_init_tf(dev, &tf, true))
2072 return;
2073
2074 /*
2075 * Check the device power state & condition and force a spinup with
2076 * VERIFY command only if the drive is not already ACTIVE or IDLE.
2077 */
2078 if (ata_dev_power_is_active(dev))
2079 return;
2080
2081 ata_dev_notice(dev, "Entering active power mode\n");
2082
2083 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
2084 if (err_mask)
2085 ata_dev_err(dev, "VERIFY failed (err_mask=0x%x)\n",
2086 err_mask);
2087 }
2088
2089 /**
2090 * ata_read_log_page - read a specific log page
2091 * @dev: target device
2092 * @log: log to read
2093 * @page: page to read
2094 * @buf: buffer to store read page
2095 * @sectors: number of sectors to read
2096 *
2097 * Read log page using READ_LOG_EXT command.
2098 *
2099 * LOCKING:
2100 * Kernel thread context (may sleep).
2101 *
2102 * RETURNS:
2103 * 0 on success, AC_ERR_* mask otherwise.
2104 */
ata_read_log_page(struct ata_device * dev,u8 log,u8 page,void * buf,unsigned int sectors)2105 unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
2106 u8 page, void *buf, unsigned int sectors)
2107 {
2108 unsigned long ap_flags = dev->link->ap->flags;
2109 struct ata_taskfile tf;
2110 unsigned int err_mask;
2111 bool dma = false;
2112
2113 ata_dev_dbg(dev, "read log page - log 0x%x, page 0x%x\n", log, page);
2114
2115 /*
2116 * Return error without actually issuing the command on controllers
2117 * which e.g. lockup on a read log page.
2118 */
2119 if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2120 return AC_ERR_DEV;
2121
2122 retry:
2123 ata_tf_init(dev, &tf);
2124 if (ata_dma_enabled(dev) && ata_id_has_read_log_dma_ext(dev->id) &&
2125 !(dev->quirks & ATA_QUIRK_NO_DMA_LOG)) {
2126 tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2127 tf.protocol = ATA_PROT_DMA;
2128 dma = true;
2129 } else {
2130 tf.command = ATA_CMD_READ_LOG_EXT;
2131 tf.protocol = ATA_PROT_PIO;
2132 dma = false;
2133 }
2134 tf.lbal = log;
2135 tf.lbam = page;
2136 tf.nsect = sectors;
2137 tf.hob_nsect = sectors >> 8;
2138 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2139
2140 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2141 buf, sectors * ATA_SECT_SIZE, 0);
2142
2143 if (err_mask) {
2144 if (dma) {
2145 dev->quirks |= ATA_QUIRK_NO_DMA_LOG;
2146 if (!ata_port_is_frozen(dev->link->ap))
2147 goto retry;
2148 }
2149 ata_dev_err(dev,
2150 "Read log 0x%02x page 0x%02x failed, Emask 0x%x\n",
2151 (unsigned int)log, (unsigned int)page, err_mask);
2152 }
2153
2154 return err_mask;
2155 }
2156
ata_log_supported(struct ata_device * dev,u8 log)2157 static int ata_log_supported(struct ata_device *dev, u8 log)
2158 {
2159 if (dev->quirks & ATA_QUIRK_NO_LOG_DIR)
2160 return 0;
2161
2162 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, dev->sector_buf, 1))
2163 return 0;
2164 return get_unaligned_le16(&dev->sector_buf[log * 2]);
2165 }
2166
ata_identify_page_supported(struct ata_device * dev,u8 page)2167 static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2168 {
2169 unsigned int err, i;
2170
2171 if (dev->quirks & ATA_QUIRK_NO_ID_DEV_LOG)
2172 return false;
2173
2174 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2175 /*
2176 * IDENTIFY DEVICE data log is defined as mandatory starting
2177 * with ACS-3 (ATA version 10). Warn about the missing log
2178 * for drives which implement this ATA level or above.
2179 */
2180 if (ata_id_major_version(dev->id) >= 10)
2181 ata_dev_warn(dev,
2182 "ATA Identify Device Log not supported\n");
2183 dev->quirks |= ATA_QUIRK_NO_ID_DEV_LOG;
2184 return false;
2185 }
2186
2187 /*
2188 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2189 * supported.
2190 */
2191 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0,
2192 dev->sector_buf, 1);
2193 if (err)
2194 return false;
2195
2196 for (i = 0; i < dev->sector_buf[8]; i++) {
2197 if (dev->sector_buf[9 + i] == page)
2198 return true;
2199 }
2200
2201 return false;
2202 }
2203
ata_do_link_spd_quirk(struct ata_device * dev)2204 static int ata_do_link_spd_quirk(struct ata_device *dev)
2205 {
2206 struct ata_link *plink = ata_dev_phys_link(dev);
2207 u32 target, target_limit;
2208
2209 if (!sata_scr_valid(plink))
2210 return 0;
2211
2212 if (dev->quirks & ATA_QUIRK_1_5_GBPS)
2213 target = 1;
2214 else
2215 return 0;
2216
2217 target_limit = (1 << target) - 1;
2218
2219 /* if already on stricter limit, no need to push further */
2220 if (plink->sata_spd_limit <= target_limit)
2221 return 0;
2222
2223 plink->sata_spd_limit = target_limit;
2224
2225 /* Request another EH round by returning -EAGAIN if link is
2226 * going faster than the target speed. Forward progress is
2227 * guaranteed by setting sata_spd_limit to target_limit above.
2228 */
2229 if (plink->sata_spd > target) {
2230 ata_dev_info(dev, "applying link speed limit quirk to %s\n",
2231 sata_spd_string(target));
2232 return -EAGAIN;
2233 }
2234 return 0;
2235 }
2236
ata_dev_knobble(struct ata_device * dev)2237 static inline bool ata_dev_knobble(struct ata_device *dev)
2238 {
2239 struct ata_port *ap = dev->link->ap;
2240
2241 if (ata_dev_quirks(dev) & ATA_QUIRK_BRIDGE_OK)
2242 return false;
2243
2244 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2245 }
2246
ata_dev_config_ncq_send_recv(struct ata_device * dev)2247 static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2248 {
2249 unsigned int err_mask;
2250
2251 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2252 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2253 return;
2254 }
2255 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2256 0, dev->sector_buf, 1);
2257 if (!err_mask) {
2258 u8 *cmds = dev->ncq_send_recv_cmds;
2259
2260 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2261 memcpy(cmds, dev->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2262
2263 if (dev->quirks & ATA_QUIRK_NO_NCQ_TRIM) {
2264 ata_dev_dbg(dev, "disabling queued TRIM support\n");
2265 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2266 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2267 }
2268 }
2269 }
2270
ata_dev_config_ncq_non_data(struct ata_device * dev)2271 static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2272 {
2273 unsigned int err_mask;
2274
2275 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2276 ata_dev_warn(dev,
2277 "NCQ Non-Data Log not supported\n");
2278 return;
2279 }
2280 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2281 0, dev->sector_buf, 1);
2282 if (!err_mask)
2283 memcpy(dev->ncq_non_data_cmds, dev->sector_buf,
2284 ATA_LOG_NCQ_NON_DATA_SIZE);
2285 }
2286
ata_dev_config_ncq_prio(struct ata_device * dev)2287 static void ata_dev_config_ncq_prio(struct ata_device *dev)
2288 {
2289 unsigned int err_mask;
2290
2291 if (!ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2292 return;
2293
2294 err_mask = ata_read_log_page(dev,
2295 ATA_LOG_IDENTIFY_DEVICE,
2296 ATA_LOG_SATA_SETTINGS,
2297 dev->sector_buf, 1);
2298 if (err_mask)
2299 goto not_supported;
2300
2301 if (!(dev->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)))
2302 goto not_supported;
2303
2304 dev->flags |= ATA_DFLAG_NCQ_PRIO;
2305
2306 return;
2307
2308 not_supported:
2309 dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLED;
2310 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2311 }
2312
ata_dev_check_adapter(struct ata_device * dev,unsigned short vendor_id)2313 static bool ata_dev_check_adapter(struct ata_device *dev,
2314 unsigned short vendor_id)
2315 {
2316 struct pci_dev *pcidev = NULL;
2317 struct device *parent_dev = NULL;
2318
2319 for (parent_dev = dev->tdev.parent; parent_dev != NULL;
2320 parent_dev = parent_dev->parent) {
2321 if (dev_is_pci(parent_dev)) {
2322 pcidev = to_pci_dev(parent_dev);
2323 if (pcidev->vendor == vendor_id)
2324 return true;
2325 break;
2326 }
2327 }
2328
2329 return false;
2330 }
2331
ata_dev_config_ncq(struct ata_device * dev,char * desc,size_t desc_sz)2332 static int ata_dev_config_ncq(struct ata_device *dev,
2333 char *desc, size_t desc_sz)
2334 {
2335 struct ata_port *ap = dev->link->ap;
2336 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2337 unsigned int err_mask;
2338 char *aa_desc = "";
2339
2340 if (!ata_id_has_ncq(dev->id)) {
2341 desc[0] = '\0';
2342 return 0;
2343 }
2344 if (!IS_ENABLED(CONFIG_SATA_HOST))
2345 return 0;
2346 if (dev->quirks & ATA_QUIRK_NONCQ) {
2347 snprintf(desc, desc_sz, "NCQ (not used)");
2348 return 0;
2349 }
2350
2351 if (dev->quirks & ATA_QUIRK_NO_NCQ_ON_ATI &&
2352 ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) {
2353 snprintf(desc, desc_sz, "NCQ (not used)");
2354 return 0;
2355 }
2356
2357 if (ap->flags & ATA_FLAG_NCQ) {
2358 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE);
2359 dev->flags |= ATA_DFLAG_NCQ;
2360 }
2361
2362 if (!(dev->quirks & ATA_QUIRK_BROKEN_FPDMA_AA) &&
2363 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2364 ata_id_has_fpdma_aa(dev->id)) {
2365 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2366 SATA_FPDMA_AA);
2367 if (err_mask) {
2368 ata_dev_err(dev,
2369 "failed to enable AA (error_mask=0x%x)\n",
2370 err_mask);
2371 if (err_mask != AC_ERR_DEV) {
2372 dev->quirks |= ATA_QUIRK_BROKEN_FPDMA_AA;
2373 return -EIO;
2374 }
2375 } else
2376 aa_desc = ", AA";
2377 }
2378
2379 if (hdepth >= ddepth)
2380 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2381 else
2382 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2383 ddepth, aa_desc);
2384
2385 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2386 if (ata_id_has_ncq_send_and_recv(dev->id))
2387 ata_dev_config_ncq_send_recv(dev);
2388 if (ata_id_has_ncq_non_data(dev->id))
2389 ata_dev_config_ncq_non_data(dev);
2390 if (ata_id_has_ncq_prio(dev->id))
2391 ata_dev_config_ncq_prio(dev);
2392 }
2393
2394 return 0;
2395 }
2396
ata_dev_config_sense_reporting(struct ata_device * dev)2397 static void ata_dev_config_sense_reporting(struct ata_device *dev)
2398 {
2399 unsigned int err_mask;
2400
2401 if (!ata_id_has_sense_reporting(dev->id))
2402 return;
2403
2404 if (ata_id_sense_reporting_enabled(dev->id))
2405 return;
2406
2407 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2408 if (err_mask) {
2409 ata_dev_dbg(dev,
2410 "failed to enable Sense Data Reporting, Emask 0x%x\n",
2411 err_mask);
2412 }
2413 }
2414
ata_dev_config_zac(struct ata_device * dev)2415 static void ata_dev_config_zac(struct ata_device *dev)
2416 {
2417 unsigned int err_mask;
2418 u8 *identify_buf = dev->sector_buf;
2419
2420 dev->zac_zones_optimal_open = U32_MAX;
2421 dev->zac_zones_optimal_nonseq = U32_MAX;
2422 dev->zac_zones_max_open = U32_MAX;
2423
2424 /*
2425 * Always set the 'ZAC' flag for Host-managed devices.
2426 */
2427 if (dev->class == ATA_DEV_ZAC)
2428 dev->flags |= ATA_DFLAG_ZAC;
2429 else if (ata_id_zoned_cap(dev->id) == 0x01)
2430 /*
2431 * Check for host-aware devices.
2432 */
2433 dev->flags |= ATA_DFLAG_ZAC;
2434
2435 if (!(dev->flags & ATA_DFLAG_ZAC))
2436 return;
2437
2438 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2439 ata_dev_warn(dev,
2440 "ATA Zoned Information Log not supported\n");
2441 return;
2442 }
2443
2444 /*
2445 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2446 */
2447 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2448 ATA_LOG_ZONED_INFORMATION,
2449 identify_buf, 1);
2450 if (!err_mask) {
2451 u64 zoned_cap, opt_open, opt_nonseq, max_open;
2452
2453 zoned_cap = get_unaligned_le64(&identify_buf[8]);
2454 if ((zoned_cap >> 63))
2455 dev->zac_zoned_cap = (zoned_cap & 1);
2456 opt_open = get_unaligned_le64(&identify_buf[24]);
2457 if ((opt_open >> 63))
2458 dev->zac_zones_optimal_open = (u32)opt_open;
2459 opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2460 if ((opt_nonseq >> 63))
2461 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2462 max_open = get_unaligned_le64(&identify_buf[40]);
2463 if ((max_open >> 63))
2464 dev->zac_zones_max_open = (u32)max_open;
2465 }
2466 }
2467
ata_dev_config_trusted(struct ata_device * dev)2468 static void ata_dev_config_trusted(struct ata_device *dev)
2469 {
2470 u64 trusted_cap;
2471 unsigned int err;
2472
2473 if (!ata_id_has_trusted(dev->id))
2474 return;
2475
2476 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2477 ata_dev_warn(dev,
2478 "Security Log not supported\n");
2479 return;
2480 }
2481
2482 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2483 dev->sector_buf, 1);
2484 if (err)
2485 return;
2486
2487 trusted_cap = get_unaligned_le64(&dev->sector_buf[40]);
2488 if (!(trusted_cap & (1ULL << 63))) {
2489 ata_dev_dbg(dev,
2490 "Trusted Computing capability qword not valid!\n");
2491 return;
2492 }
2493
2494 if (trusted_cap & (1 << 0))
2495 dev->flags |= ATA_DFLAG_TRUSTED;
2496 }
2497
ata_dev_cleanup_cdl_resources(struct ata_device * dev)2498 void ata_dev_cleanup_cdl_resources(struct ata_device *dev)
2499 {
2500 kfree(dev->cdl);
2501 dev->cdl = NULL;
2502 }
2503
ata_dev_init_cdl_resources(struct ata_device * dev)2504 static int ata_dev_init_cdl_resources(struct ata_device *dev)
2505 {
2506 struct ata_cdl *cdl = dev->cdl;
2507 unsigned int err_mask;
2508
2509 if (!cdl) {
2510 cdl = kzalloc(sizeof(*cdl), GFP_KERNEL);
2511 if (!cdl)
2512 return -ENOMEM;
2513 dev->cdl = cdl;
2514 }
2515
2516 err_mask = ata_read_log_page(dev, ATA_LOG_CDL, 0, cdl->desc_log_buf,
2517 ATA_LOG_CDL_SIZE / ATA_SECT_SIZE);
2518 if (err_mask) {
2519 ata_dev_warn(dev, "Read Command Duration Limits log failed\n");
2520 ata_dev_cleanup_cdl_resources(dev);
2521 return -EIO;
2522 }
2523
2524 return 0;
2525 }
2526
ata_dev_config_cdl(struct ata_device * dev)2527 static void ata_dev_config_cdl(struct ata_device *dev)
2528 {
2529 unsigned int err_mask;
2530 bool cdl_enabled;
2531 u64 val;
2532 int ret;
2533
2534 if (ata_id_major_version(dev->id) < 11)
2535 goto not_supported;
2536
2537 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE) ||
2538 !ata_identify_page_supported(dev, ATA_LOG_SUPPORTED_CAPABILITIES) ||
2539 !ata_identify_page_supported(dev, ATA_LOG_CURRENT_SETTINGS))
2540 goto not_supported;
2541
2542 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2543 ATA_LOG_SUPPORTED_CAPABILITIES,
2544 dev->sector_buf, 1);
2545 if (err_mask)
2546 goto not_supported;
2547
2548 /* Check Command Duration Limit Supported bits */
2549 val = get_unaligned_le64(&dev->sector_buf[168]);
2550 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(0)))
2551 goto not_supported;
2552
2553 /* Warn the user if command duration guideline is not supported */
2554 if (!(val & BIT_ULL(1)))
2555 ata_dev_warn(dev,
2556 "Command duration guideline is not supported\n");
2557
2558 /*
2559 * We must have support for the sense data for successful NCQ commands
2560 * log indicated by the successful NCQ command sense data supported bit.
2561 */
2562 val = get_unaligned_le64(&dev->sector_buf[8]);
2563 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(47))) {
2564 ata_dev_warn(dev,
2565 "CDL supported but Successful NCQ Command Sense Data is not supported\n");
2566 goto not_supported;
2567 }
2568
2569 /* Without NCQ autosense, the successful NCQ commands log is useless. */
2570 if (!ata_id_has_ncq_autosense(dev->id)) {
2571 ata_dev_warn(dev,
2572 "CDL supported but NCQ autosense is not supported\n");
2573 goto not_supported;
2574 }
2575
2576 /*
2577 * If CDL is marked as enabled, make sure the feature is enabled too.
2578 * Conversely, if CDL is disabled, make sure the feature is turned off.
2579 */
2580 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2581 ATA_LOG_CURRENT_SETTINGS,
2582 dev->sector_buf, 1);
2583 if (err_mask)
2584 goto not_supported;
2585
2586 val = get_unaligned_le64(&dev->sector_buf[8]);
2587 cdl_enabled = val & BIT_ULL(63) && val & BIT_ULL(21);
2588 if (dev->flags & ATA_DFLAG_CDL_ENABLED) {
2589 if (!cdl_enabled) {
2590 /* Enable CDL on the device */
2591 err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 1);
2592 if (err_mask) {
2593 ata_dev_err(dev,
2594 "Enable CDL feature failed\n");
2595 goto not_supported;
2596 }
2597 }
2598 } else {
2599 if (cdl_enabled) {
2600 /* Disable CDL on the device */
2601 err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 0);
2602 if (err_mask) {
2603 ata_dev_err(dev,
2604 "Disable CDL feature failed\n");
2605 goto not_supported;
2606 }
2607 }
2608 }
2609
2610 /*
2611 * While CDL itself has to be enabled using sysfs, CDL requires that
2612 * sense data for successful NCQ commands is enabled to work properly.
2613 * Just like ata_dev_config_sense_reporting(), enable it unconditionally
2614 * if supported.
2615 */
2616 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(18))) {
2617 err_mask = ata_dev_set_feature(dev,
2618 SETFEATURE_SENSE_DATA_SUCC_NCQ, 0x1);
2619 if (err_mask) {
2620 ata_dev_warn(dev,
2621 "failed to enable Sense Data for successful NCQ commands, Emask 0x%x\n",
2622 err_mask);
2623 goto not_supported;
2624 }
2625 }
2626
2627 /* CDL is supported: allocate and initialize needed resources. */
2628 ret = ata_dev_init_cdl_resources(dev);
2629 if (ret) {
2630 ata_dev_warn(dev, "Initialize CDL resources failed\n");
2631 goto not_supported;
2632 }
2633
2634 dev->flags |= ATA_DFLAG_CDL;
2635
2636 return;
2637
2638 not_supported:
2639 dev->flags &= ~(ATA_DFLAG_CDL | ATA_DFLAG_CDL_ENABLED);
2640 ata_dev_cleanup_cdl_resources(dev);
2641 }
2642
ata_dev_config_lba(struct ata_device * dev)2643 static int ata_dev_config_lba(struct ata_device *dev)
2644 {
2645 const u16 *id = dev->id;
2646 const char *lba_desc;
2647 char ncq_desc[32];
2648 int ret;
2649
2650 dev->flags |= ATA_DFLAG_LBA;
2651
2652 if (ata_id_has_lba48(id)) {
2653 lba_desc = "LBA48";
2654 dev->flags |= ATA_DFLAG_LBA48;
2655 if (dev->n_sectors >= (1UL << 28) &&
2656 ata_id_has_flush_ext(id))
2657 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2658 } else {
2659 lba_desc = "LBA";
2660 }
2661
2662 /* config NCQ */
2663 ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2664
2665 /* print device info to dmesg */
2666 if (ata_dev_print_info(dev))
2667 ata_dev_info(dev,
2668 "%llu sectors, multi %u: %s %s\n",
2669 (unsigned long long)dev->n_sectors,
2670 dev->multi_count, lba_desc, ncq_desc);
2671
2672 return ret;
2673 }
2674
ata_dev_config_chs(struct ata_device * dev)2675 static void ata_dev_config_chs(struct ata_device *dev)
2676 {
2677 const u16 *id = dev->id;
2678
2679 if (ata_id_current_chs_valid(id)) {
2680 /* Current CHS translation is valid. */
2681 dev->cylinders = id[54];
2682 dev->heads = id[55];
2683 dev->sectors = id[56];
2684 } else {
2685 /* Default translation */
2686 dev->cylinders = id[1];
2687 dev->heads = id[3];
2688 dev->sectors = id[6];
2689 }
2690
2691 /* print device info to dmesg */
2692 if (ata_dev_print_info(dev))
2693 ata_dev_info(dev,
2694 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2695 (unsigned long long)dev->n_sectors,
2696 dev->multi_count, dev->cylinders,
2697 dev->heads, dev->sectors);
2698 }
2699
ata_dev_config_fua(struct ata_device * dev)2700 static void ata_dev_config_fua(struct ata_device *dev)
2701 {
2702 /* Ignore FUA support if its use is disabled globally */
2703 if (!libata_fua)
2704 goto nofua;
2705
2706 /* Ignore devices without support for WRITE DMA FUA EXT */
2707 if (!(dev->flags & ATA_DFLAG_LBA48) || !ata_id_has_fua(dev->id))
2708 goto nofua;
2709
2710 /* Ignore known bad devices and devices that lack NCQ support */
2711 if (!ata_ncq_supported(dev) || (dev->quirks & ATA_QUIRK_NO_FUA))
2712 goto nofua;
2713
2714 dev->flags |= ATA_DFLAG_FUA;
2715
2716 return;
2717
2718 nofua:
2719 dev->flags &= ~ATA_DFLAG_FUA;
2720 }
2721
ata_dev_config_devslp(struct ata_device * dev)2722 static void ata_dev_config_devslp(struct ata_device *dev)
2723 {
2724 u8 *sata_setting = dev->sector_buf;
2725 unsigned int err_mask;
2726 int i, j;
2727
2728 /*
2729 * Check device sleep capability. Get DevSlp timing variables
2730 * from SATA Settings page of Identify Device Data Log.
2731 */
2732 if (!ata_id_has_devslp(dev->id) ||
2733 !ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2734 return;
2735
2736 err_mask = ata_read_log_page(dev,
2737 ATA_LOG_IDENTIFY_DEVICE,
2738 ATA_LOG_SATA_SETTINGS,
2739 sata_setting, 1);
2740 if (err_mask)
2741 return;
2742
2743 dev->flags |= ATA_DFLAG_DEVSLP;
2744 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2745 j = ATA_LOG_DEVSLP_OFFSET + i;
2746 dev->devslp_timing[i] = sata_setting[j];
2747 }
2748 }
2749
ata_dev_config_cpr(struct ata_device * dev)2750 static void ata_dev_config_cpr(struct ata_device *dev)
2751 {
2752 unsigned int err_mask;
2753 size_t buf_len;
2754 int i, nr_cpr = 0;
2755 struct ata_cpr_log *cpr_log = NULL;
2756 u8 *desc, *buf = NULL;
2757
2758 if (ata_id_major_version(dev->id) < 11)
2759 goto out;
2760
2761 buf_len = ata_log_supported(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES);
2762 if (buf_len == 0)
2763 goto out;
2764
2765 /*
2766 * Read the concurrent positioning ranges log (0x47). We can have at
2767 * most 255 32B range descriptors plus a 64B header. This log varies in
2768 * size, so use the size reported in the GPL directory. Reading beyond
2769 * the supported length will result in an error.
2770 */
2771 buf_len <<= 9;
2772 buf = kzalloc(buf_len, GFP_KERNEL);
2773 if (!buf)
2774 goto out;
2775
2776 err_mask = ata_read_log_page(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES,
2777 0, buf, buf_len >> 9);
2778 if (err_mask)
2779 goto out;
2780
2781 nr_cpr = buf[0];
2782 if (!nr_cpr)
2783 goto out;
2784
2785 cpr_log = kzalloc(struct_size(cpr_log, cpr, nr_cpr), GFP_KERNEL);
2786 if (!cpr_log)
2787 goto out;
2788
2789 cpr_log->nr_cpr = nr_cpr;
2790 desc = &buf[64];
2791 for (i = 0; i < nr_cpr; i++, desc += 32) {
2792 cpr_log->cpr[i].num = desc[0];
2793 cpr_log->cpr[i].num_storage_elements = desc[1];
2794 cpr_log->cpr[i].start_lba = get_unaligned_le64(&desc[8]);
2795 cpr_log->cpr[i].num_lbas = get_unaligned_le64(&desc[16]);
2796 }
2797
2798 out:
2799 swap(dev->cpr_log, cpr_log);
2800 kfree(cpr_log);
2801 kfree(buf);
2802 }
2803
ata_dev_print_features(struct ata_device * dev)2804 static void ata_dev_print_features(struct ata_device *dev)
2805 {
2806 if (!(dev->flags & ATA_DFLAG_FEATURES_MASK))
2807 return;
2808
2809 ata_dev_info(dev,
2810 "Features:%s%s%s%s%s%s%s%s\n",
2811 dev->flags & ATA_DFLAG_FUA ? " FUA" : "",
2812 dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "",
2813 dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "",
2814 dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "",
2815 dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "",
2816 dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "",
2817 dev->flags & ATA_DFLAG_CDL ? " CDL" : "",
2818 dev->cpr_log ? " CPR" : "");
2819 }
2820
2821 /**
2822 * ata_dev_configure - Configure the specified ATA/ATAPI device
2823 * @dev: Target device to configure
2824 *
2825 * Configure @dev according to @dev->id. Generic and low-level
2826 * driver specific fixups are also applied.
2827 *
2828 * LOCKING:
2829 * Kernel thread context (may sleep)
2830 *
2831 * RETURNS:
2832 * 0 on success, -errno otherwise
2833 */
ata_dev_configure(struct ata_device * dev)2834 int ata_dev_configure(struct ata_device *dev)
2835 {
2836 struct ata_port *ap = dev->link->ap;
2837 bool print_info = ata_dev_print_info(dev);
2838 const u16 *id = dev->id;
2839 unsigned int xfer_mask;
2840 unsigned int err_mask;
2841 char revbuf[7]; /* XYZ-99\0 */
2842 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2843 char modelbuf[ATA_ID_PROD_LEN+1];
2844 int rc;
2845
2846 if (!ata_dev_enabled(dev)) {
2847 ata_dev_dbg(dev, "no device\n");
2848 return 0;
2849 }
2850
2851 /* Set quirks */
2852 dev->quirks |= ata_dev_quirks(dev);
2853 ata_force_quirks(dev);
2854
2855 if (dev->quirks & ATA_QUIRK_DISABLE) {
2856 ata_dev_info(dev, "unsupported device, disabling\n");
2857 ata_dev_disable(dev);
2858 return 0;
2859 }
2860
2861 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2862 dev->class == ATA_DEV_ATAPI) {
2863 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2864 atapi_enabled ? "not supported with this driver"
2865 : "disabled");
2866 ata_dev_disable(dev);
2867 return 0;
2868 }
2869
2870 rc = ata_do_link_spd_quirk(dev);
2871 if (rc)
2872 return rc;
2873
2874 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2875 if ((dev->quirks & ATA_QUIRK_WD_BROKEN_LPM) &&
2876 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2877 dev->quirks |= ATA_QUIRK_NOLPM;
2878
2879 if (dev->quirks & ATA_QUIRK_NO_LPM_ON_ATI &&
2880 ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI))
2881 dev->quirks |= ATA_QUIRK_NOLPM;
2882
2883 if (ap->flags & ATA_FLAG_NO_LPM)
2884 dev->quirks |= ATA_QUIRK_NOLPM;
2885
2886 if (dev->quirks & ATA_QUIRK_NOLPM) {
2887 ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2888 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2889 }
2890
2891 /* let ACPI work its magic */
2892 rc = ata_acpi_on_devcfg(dev);
2893 if (rc)
2894 return rc;
2895
2896 /* massage HPA, do it early as it might change IDENTIFY data */
2897 rc = ata_hpa_resize(dev);
2898 if (rc)
2899 return rc;
2900
2901 /* print device capabilities */
2902 ata_dev_dbg(dev,
2903 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2904 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2905 __func__,
2906 id[49], id[82], id[83], id[84],
2907 id[85], id[86], id[87], id[88]);
2908
2909 /* initialize to-be-configured parameters */
2910 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2911 dev->max_sectors = 0;
2912 dev->cdb_len = 0;
2913 dev->n_sectors = 0;
2914 dev->cylinders = 0;
2915 dev->heads = 0;
2916 dev->sectors = 0;
2917 dev->multi_count = 0;
2918
2919 /*
2920 * common ATA, ATAPI feature tests
2921 */
2922
2923 /* find max transfer mode; for printk only */
2924 xfer_mask = ata_id_xfermask(id);
2925
2926 ata_dump_id(dev, id);
2927
2928 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2929 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2930 sizeof(fwrevbuf));
2931
2932 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2933 sizeof(modelbuf));
2934
2935 /* ATA-specific feature tests */
2936 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2937 if (ata_id_is_cfa(id)) {
2938 /* CPRM may make this media unusable */
2939 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2940 ata_dev_warn(dev,
2941 "supports DRM functions and may not be fully accessible\n");
2942 snprintf(revbuf, 7, "CFA");
2943 } else {
2944 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2945 /* Warn the user if the device has TPM extensions */
2946 if (ata_id_has_tpm(id))
2947 ata_dev_warn(dev,
2948 "supports DRM functions and may not be fully accessible\n");
2949 }
2950
2951 dev->n_sectors = ata_id_n_sectors(id);
2952
2953 /* get current R/W Multiple count setting */
2954 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2955 unsigned int max = dev->id[47] & 0xff;
2956 unsigned int cnt = dev->id[59] & 0xff;
2957 /* only recognize/allow powers of two here */
2958 if (is_power_of_2(max) && is_power_of_2(cnt))
2959 if (cnt <= max)
2960 dev->multi_count = cnt;
2961 }
2962
2963 /* print device info to dmesg */
2964 if (print_info)
2965 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2966 revbuf, modelbuf, fwrevbuf,
2967 ata_mode_string(xfer_mask));
2968
2969 if (ata_id_has_lba(id)) {
2970 rc = ata_dev_config_lba(dev);
2971 if (rc)
2972 return rc;
2973 } else {
2974 ata_dev_config_chs(dev);
2975 }
2976
2977 ata_dev_config_fua(dev);
2978 ata_dev_config_devslp(dev);
2979 ata_dev_config_sense_reporting(dev);
2980 ata_dev_config_zac(dev);
2981 ata_dev_config_trusted(dev);
2982 ata_dev_config_cpr(dev);
2983 ata_dev_config_cdl(dev);
2984 dev->cdb_len = 32;
2985
2986 if (print_info)
2987 ata_dev_print_features(dev);
2988 }
2989
2990 /* ATAPI-specific feature tests */
2991 else if (dev->class == ATA_DEV_ATAPI) {
2992 const char *cdb_intr_string = "";
2993 const char *atapi_an_string = "";
2994 const char *dma_dir_string = "";
2995 u32 sntf;
2996
2997 rc = atapi_cdb_len(id);
2998 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2999 ata_dev_warn(dev, "unsupported CDB len %d\n", rc);
3000 rc = -EINVAL;
3001 goto err_out_nosup;
3002 }
3003 dev->cdb_len = (unsigned int) rc;
3004
3005 /* Enable ATAPI AN if both the host and device have
3006 * the support. If PMP is attached, SNTF is required
3007 * to enable ATAPI AN to discern between PHY status
3008 * changed notifications and ATAPI ANs.
3009 */
3010 if (atapi_an &&
3011 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
3012 (!sata_pmp_attached(ap) ||
3013 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
3014 /* issue SET feature command to turn this on */
3015 err_mask = ata_dev_set_feature(dev,
3016 SETFEATURES_SATA_ENABLE, SATA_AN);
3017 if (err_mask)
3018 ata_dev_err(dev,
3019 "failed to enable ATAPI AN (err_mask=0x%x)\n",
3020 err_mask);
3021 else {
3022 dev->flags |= ATA_DFLAG_AN;
3023 atapi_an_string = ", ATAPI AN";
3024 }
3025 }
3026
3027 if (ata_id_cdb_intr(dev->id)) {
3028 dev->flags |= ATA_DFLAG_CDB_INTR;
3029 cdb_intr_string = ", CDB intr";
3030 }
3031
3032 if (atapi_dmadir || (dev->quirks & ATA_QUIRK_ATAPI_DMADIR) ||
3033 atapi_id_dmadir(dev->id)) {
3034 dev->flags |= ATA_DFLAG_DMADIR;
3035 dma_dir_string = ", DMADIR";
3036 }
3037
3038 if (ata_id_has_da(dev->id)) {
3039 dev->flags |= ATA_DFLAG_DA;
3040 zpodd_init(dev);
3041 }
3042
3043 /* print device info to dmesg */
3044 if (print_info)
3045 ata_dev_info(dev,
3046 "ATAPI: %s, %s, max %s%s%s%s\n",
3047 modelbuf, fwrevbuf,
3048 ata_mode_string(xfer_mask),
3049 cdb_intr_string, atapi_an_string,
3050 dma_dir_string);
3051 }
3052
3053 /* determine max_sectors */
3054 dev->max_sectors = ATA_MAX_SECTORS;
3055 if (dev->flags & ATA_DFLAG_LBA48)
3056 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
3057
3058 /* Limit PATA drive on SATA cable bridge transfers to udma5,
3059 200 sectors */
3060 if (ata_dev_knobble(dev)) {
3061 if (print_info)
3062 ata_dev_info(dev, "applying bridge limits\n");
3063 dev->udma_mask &= ATA_UDMA5;
3064 dev->max_sectors = ATA_MAX_SECTORS;
3065 }
3066
3067 if ((dev->class == ATA_DEV_ATAPI) &&
3068 (atapi_command_packet_set(id) == TYPE_TAPE)) {
3069 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
3070 dev->quirks |= ATA_QUIRK_STUCK_ERR;
3071 }
3072
3073 if (dev->quirks & ATA_QUIRK_MAX_SEC_128)
3074 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
3075 dev->max_sectors);
3076
3077 if (dev->quirks & ATA_QUIRK_MAX_SEC_1024)
3078 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
3079 dev->max_sectors);
3080
3081 if (dev->quirks & ATA_QUIRK_MAX_SEC_LBA48)
3082 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
3083
3084 if (ap->ops->dev_config)
3085 ap->ops->dev_config(dev);
3086
3087 if (dev->quirks & ATA_QUIRK_DIAGNOSTIC) {
3088 /* Let the user know. We don't want to disallow opens for
3089 rescue purposes, or in case the vendor is just a blithering
3090 idiot. Do this after the dev_config call as some controllers
3091 with buggy firmware may want to avoid reporting false device
3092 bugs */
3093
3094 if (print_info) {
3095 ata_dev_warn(dev,
3096 "Drive reports diagnostics failure. This may indicate a drive\n");
3097 ata_dev_warn(dev,
3098 "fault or invalid emulation. Contact drive vendor for information.\n");
3099 }
3100 }
3101
3102 if ((dev->quirks & ATA_QUIRK_FIRMWARE_WARN) && print_info) {
3103 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
3104 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
3105 }
3106
3107 return 0;
3108
3109 err_out_nosup:
3110 return rc;
3111 }
3112
3113 /**
3114 * ata_cable_40wire - return 40 wire cable type
3115 * @ap: port
3116 *
3117 * Helper method for drivers which want to hardwire 40 wire cable
3118 * detection.
3119 */
3120
ata_cable_40wire(struct ata_port * ap)3121 int ata_cable_40wire(struct ata_port *ap)
3122 {
3123 return ATA_CBL_PATA40;
3124 }
3125 EXPORT_SYMBOL_GPL(ata_cable_40wire);
3126
3127 /**
3128 * ata_cable_80wire - return 80 wire cable type
3129 * @ap: port
3130 *
3131 * Helper method for drivers which want to hardwire 80 wire cable
3132 * detection.
3133 */
3134
ata_cable_80wire(struct ata_port * ap)3135 int ata_cable_80wire(struct ata_port *ap)
3136 {
3137 return ATA_CBL_PATA80;
3138 }
3139 EXPORT_SYMBOL_GPL(ata_cable_80wire);
3140
3141 /**
3142 * ata_cable_unknown - return unknown PATA cable.
3143 * @ap: port
3144 *
3145 * Helper method for drivers which have no PATA cable detection.
3146 */
3147
ata_cable_unknown(struct ata_port * ap)3148 int ata_cable_unknown(struct ata_port *ap)
3149 {
3150 return ATA_CBL_PATA_UNK;
3151 }
3152 EXPORT_SYMBOL_GPL(ata_cable_unknown);
3153
3154 /**
3155 * ata_cable_ignore - return ignored PATA cable.
3156 * @ap: port
3157 *
3158 * Helper method for drivers which don't use cable type to limit
3159 * transfer mode.
3160 */
ata_cable_ignore(struct ata_port * ap)3161 int ata_cable_ignore(struct ata_port *ap)
3162 {
3163 return ATA_CBL_PATA_IGN;
3164 }
3165 EXPORT_SYMBOL_GPL(ata_cable_ignore);
3166
3167 /**
3168 * ata_cable_sata - return SATA cable type
3169 * @ap: port
3170 *
3171 * Helper method for drivers which have SATA cables
3172 */
3173
ata_cable_sata(struct ata_port * ap)3174 int ata_cable_sata(struct ata_port *ap)
3175 {
3176 return ATA_CBL_SATA;
3177 }
3178 EXPORT_SYMBOL_GPL(ata_cable_sata);
3179
3180 /**
3181 * sata_print_link_status - Print SATA link status
3182 * @link: SATA link to printk link status about
3183 *
3184 * This function prints link speed and status of a SATA link.
3185 *
3186 * LOCKING:
3187 * None.
3188 */
sata_print_link_status(struct ata_link * link)3189 static void sata_print_link_status(struct ata_link *link)
3190 {
3191 u32 sstatus, scontrol, tmp;
3192
3193 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3194 return;
3195 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3196 return;
3197
3198 if (ata_phys_link_online(link)) {
3199 tmp = (sstatus >> 4) & 0xf;
3200 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
3201 sata_spd_string(tmp), sstatus, scontrol);
3202 } else {
3203 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
3204 sstatus, scontrol);
3205 }
3206 }
3207
3208 /**
3209 * ata_dev_pair - return other device on cable
3210 * @adev: device
3211 *
3212 * Obtain the other device on the same cable, or if none is
3213 * present NULL is returned
3214 */
3215
ata_dev_pair(struct ata_device * adev)3216 struct ata_device *ata_dev_pair(struct ata_device *adev)
3217 {
3218 struct ata_link *link = adev->link;
3219 struct ata_device *pair = &link->device[1 - adev->devno];
3220 if (!ata_dev_enabled(pair))
3221 return NULL;
3222 return pair;
3223 }
3224 EXPORT_SYMBOL_GPL(ata_dev_pair);
3225
3226 #ifdef CONFIG_ATA_ACPI
3227 /**
3228 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3229 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3230 * @cycle: cycle duration in ns
3231 *
3232 * Return matching xfer mode for @cycle. The returned mode is of
3233 * the transfer type specified by @xfer_shift. If @cycle is too
3234 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3235 * than the fastest known mode, the fasted mode is returned.
3236 *
3237 * LOCKING:
3238 * None.
3239 *
3240 * RETURNS:
3241 * Matching xfer_mode, 0xff if no match found.
3242 */
ata_timing_cycle2mode(unsigned int xfer_shift,int cycle)3243 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3244 {
3245 u8 base_mode = 0xff, last_mode = 0xff;
3246 const struct ata_xfer_ent *ent;
3247 const struct ata_timing *t;
3248
3249 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3250 if (ent->shift == xfer_shift)
3251 base_mode = ent->base;
3252
3253 for (t = ata_timing_find_mode(base_mode);
3254 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3255 unsigned short this_cycle;
3256
3257 switch (xfer_shift) {
3258 case ATA_SHIFT_PIO:
3259 case ATA_SHIFT_MWDMA:
3260 this_cycle = t->cycle;
3261 break;
3262 case ATA_SHIFT_UDMA:
3263 this_cycle = t->udma;
3264 break;
3265 default:
3266 return 0xff;
3267 }
3268
3269 if (cycle > this_cycle)
3270 break;
3271
3272 last_mode = t->mode;
3273 }
3274
3275 return last_mode;
3276 }
3277 #endif
3278
3279 /**
3280 * ata_down_xfermask_limit - adjust dev xfer masks downward
3281 * @dev: Device to adjust xfer masks
3282 * @sel: ATA_DNXFER_* selector
3283 *
3284 * Adjust xfer masks of @dev downward. Note that this function
3285 * does not apply the change. Invoking ata_set_mode() afterwards
3286 * will apply the limit.
3287 *
3288 * LOCKING:
3289 * Inherited from caller.
3290 *
3291 * RETURNS:
3292 * 0 on success, negative errno on failure
3293 */
ata_down_xfermask_limit(struct ata_device * dev,unsigned int sel)3294 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3295 {
3296 char buf[32];
3297 unsigned int orig_mask, xfer_mask;
3298 unsigned int pio_mask, mwdma_mask, udma_mask;
3299 int quiet, highbit;
3300
3301 quiet = !!(sel & ATA_DNXFER_QUIET);
3302 sel &= ~ATA_DNXFER_QUIET;
3303
3304 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3305 dev->mwdma_mask,
3306 dev->udma_mask);
3307 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3308
3309 switch (sel) {
3310 case ATA_DNXFER_PIO:
3311 highbit = fls(pio_mask) - 1;
3312 pio_mask &= ~(1 << highbit);
3313 break;
3314
3315 case ATA_DNXFER_DMA:
3316 if (udma_mask) {
3317 highbit = fls(udma_mask) - 1;
3318 udma_mask &= ~(1 << highbit);
3319 if (!udma_mask)
3320 return -ENOENT;
3321 } else if (mwdma_mask) {
3322 highbit = fls(mwdma_mask) - 1;
3323 mwdma_mask &= ~(1 << highbit);
3324 if (!mwdma_mask)
3325 return -ENOENT;
3326 }
3327 break;
3328
3329 case ATA_DNXFER_40C:
3330 udma_mask &= ATA_UDMA_MASK_40C;
3331 break;
3332
3333 case ATA_DNXFER_FORCE_PIO0:
3334 pio_mask &= 1;
3335 fallthrough;
3336 case ATA_DNXFER_FORCE_PIO:
3337 mwdma_mask = 0;
3338 udma_mask = 0;
3339 break;
3340
3341 default:
3342 BUG();
3343 }
3344
3345 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3346
3347 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3348 return -ENOENT;
3349
3350 if (!quiet) {
3351 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3352 snprintf(buf, sizeof(buf), "%s:%s",
3353 ata_mode_string(xfer_mask),
3354 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3355 else
3356 snprintf(buf, sizeof(buf), "%s",
3357 ata_mode_string(xfer_mask));
3358
3359 ata_dev_warn(dev, "limiting speed to %s\n", buf);
3360 }
3361
3362 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3363 &dev->udma_mask);
3364
3365 return 0;
3366 }
3367
ata_dev_set_mode(struct ata_device * dev)3368 static int ata_dev_set_mode(struct ata_device *dev)
3369 {
3370 struct ata_port *ap = dev->link->ap;
3371 struct ata_eh_context *ehc = &dev->link->eh_context;
3372 const bool nosetxfer = dev->quirks & ATA_QUIRK_NOSETXFER;
3373 const char *dev_err_whine = "";
3374 int ign_dev_err = 0;
3375 unsigned int err_mask = 0;
3376 int rc;
3377
3378 dev->flags &= ~ATA_DFLAG_PIO;
3379 if (dev->xfer_shift == ATA_SHIFT_PIO)
3380 dev->flags |= ATA_DFLAG_PIO;
3381
3382 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3383 dev_err_whine = " (SET_XFERMODE skipped)";
3384 else {
3385 if (nosetxfer)
3386 ata_dev_warn(dev,
3387 "NOSETXFER but PATA detected - can't "
3388 "skip SETXFER, might malfunction\n");
3389 err_mask = ata_dev_set_xfermode(dev);
3390 }
3391
3392 if (err_mask & ~AC_ERR_DEV)
3393 goto fail;
3394
3395 /* revalidate */
3396 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3397 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3398 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3399 if (rc)
3400 return rc;
3401
3402 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3403 /* Old CFA may refuse this command, which is just fine */
3404 if (ata_id_is_cfa(dev->id))
3405 ign_dev_err = 1;
3406 /* Catch several broken garbage emulations plus some pre
3407 ATA devices */
3408 if (ata_id_major_version(dev->id) == 0 &&
3409 dev->pio_mode <= XFER_PIO_2)
3410 ign_dev_err = 1;
3411 /* Some very old devices and some bad newer ones fail
3412 any kind of SET_XFERMODE request but support PIO0-2
3413 timings and no IORDY */
3414 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3415 ign_dev_err = 1;
3416 }
3417 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3418 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3419 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3420 dev->dma_mode == XFER_MW_DMA_0 &&
3421 (dev->id[63] >> 8) & 1)
3422 ign_dev_err = 1;
3423
3424 /* if the device is actually configured correctly, ignore dev err */
3425 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3426 ign_dev_err = 1;
3427
3428 if (err_mask & AC_ERR_DEV) {
3429 if (!ign_dev_err)
3430 goto fail;
3431 else
3432 dev_err_whine = " (device error ignored)";
3433 }
3434
3435 ata_dev_dbg(dev, "xfer_shift=%u, xfer_mode=0x%x\n",
3436 dev->xfer_shift, (int)dev->xfer_mode);
3437
3438 if (!(ehc->i.flags & ATA_EHI_QUIET) ||
3439 ehc->i.flags & ATA_EHI_DID_HARDRESET)
3440 ata_dev_info(dev, "configured for %s%s\n",
3441 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3442 dev_err_whine);
3443
3444 return 0;
3445
3446 fail:
3447 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3448 return -EIO;
3449 }
3450
3451 /**
3452 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3453 * @link: link on which timings will be programmed
3454 * @r_failed_dev: out parameter for failed device
3455 *
3456 * Standard implementation of the function used to tune and set
3457 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3458 * ata_dev_set_mode() fails, pointer to the failing device is
3459 * returned in @r_failed_dev.
3460 *
3461 * LOCKING:
3462 * PCI/etc. bus probe sem.
3463 *
3464 * RETURNS:
3465 * 0 on success, negative errno otherwise
3466 */
3467
ata_do_set_mode(struct ata_link * link,struct ata_device ** r_failed_dev)3468 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3469 {
3470 struct ata_port *ap = link->ap;
3471 struct ata_device *dev;
3472 int rc = 0, used_dma = 0, found = 0;
3473
3474 /* step 1: calculate xfer_mask */
3475 ata_for_each_dev(dev, link, ENABLED) {
3476 unsigned int pio_mask, dma_mask;
3477 unsigned int mode_mask;
3478
3479 mode_mask = ATA_DMA_MASK_ATA;
3480 if (dev->class == ATA_DEV_ATAPI)
3481 mode_mask = ATA_DMA_MASK_ATAPI;
3482 else if (ata_id_is_cfa(dev->id))
3483 mode_mask = ATA_DMA_MASK_CFA;
3484
3485 ata_dev_xfermask(dev);
3486 ata_force_xfermask(dev);
3487
3488 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3489
3490 if (libata_dma_mask & mode_mask)
3491 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3492 dev->udma_mask);
3493 else
3494 dma_mask = 0;
3495
3496 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3497 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3498
3499 found = 1;
3500 if (ata_dma_enabled(dev))
3501 used_dma = 1;
3502 }
3503 if (!found)
3504 goto out;
3505
3506 /* step 2: always set host PIO timings */
3507 ata_for_each_dev(dev, link, ENABLED) {
3508 if (dev->pio_mode == 0xff) {
3509 ata_dev_warn(dev, "no PIO support\n");
3510 rc = -EINVAL;
3511 goto out;
3512 }
3513
3514 dev->xfer_mode = dev->pio_mode;
3515 dev->xfer_shift = ATA_SHIFT_PIO;
3516 if (ap->ops->set_piomode)
3517 ap->ops->set_piomode(ap, dev);
3518 }
3519
3520 /* step 3: set host DMA timings */
3521 ata_for_each_dev(dev, link, ENABLED) {
3522 if (!ata_dma_enabled(dev))
3523 continue;
3524
3525 dev->xfer_mode = dev->dma_mode;
3526 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3527 if (ap->ops->set_dmamode)
3528 ap->ops->set_dmamode(ap, dev);
3529 }
3530
3531 /* step 4: update devices' xfer mode */
3532 ata_for_each_dev(dev, link, ENABLED) {
3533 rc = ata_dev_set_mode(dev);
3534 if (rc)
3535 goto out;
3536 }
3537
3538 /* Record simplex status. If we selected DMA then the other
3539 * host channels are not permitted to do so.
3540 */
3541 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3542 ap->host->simplex_claimed = ap;
3543
3544 out:
3545 if (rc)
3546 *r_failed_dev = dev;
3547 return rc;
3548 }
3549 EXPORT_SYMBOL_GPL(ata_do_set_mode);
3550
3551 /**
3552 * ata_wait_ready - wait for link to become ready
3553 * @link: link to be waited on
3554 * @deadline: deadline jiffies for the operation
3555 * @check_ready: callback to check link readiness
3556 *
3557 * Wait for @link to become ready. @check_ready should return
3558 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3559 * link doesn't seem to be occupied, other errno for other error
3560 * conditions.
3561 *
3562 * Transient -ENODEV conditions are allowed for
3563 * ATA_TMOUT_FF_WAIT.
3564 *
3565 * LOCKING:
3566 * EH context.
3567 *
3568 * RETURNS:
3569 * 0 if @link is ready before @deadline; otherwise, -errno.
3570 */
ata_wait_ready(struct ata_link * link,unsigned long deadline,int (* check_ready)(struct ata_link * link))3571 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3572 int (*check_ready)(struct ata_link *link))
3573 {
3574 unsigned long start = jiffies;
3575 unsigned long nodev_deadline;
3576 int warned = 0;
3577
3578 /* choose which 0xff timeout to use, read comment in libata.h */
3579 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3580 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3581 else
3582 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3583
3584 /* Slave readiness can't be tested separately from master. On
3585 * M/S emulation configuration, this function should be called
3586 * only on the master and it will handle both master and slave.
3587 */
3588 WARN_ON(link == link->ap->slave_link);
3589
3590 if (time_after(nodev_deadline, deadline))
3591 nodev_deadline = deadline;
3592
3593 while (1) {
3594 unsigned long now = jiffies;
3595 int ready, tmp;
3596
3597 ready = tmp = check_ready(link);
3598 if (ready > 0)
3599 return 0;
3600
3601 /*
3602 * -ENODEV could be transient. Ignore -ENODEV if link
3603 * is online. Also, some SATA devices take a long
3604 * time to clear 0xff after reset. Wait for
3605 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3606 * offline.
3607 *
3608 * Note that some PATA controllers (pata_ali) explode
3609 * if status register is read more than once when
3610 * there's no device attached.
3611 */
3612 if (ready == -ENODEV) {
3613 if (ata_link_online(link))
3614 ready = 0;
3615 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3616 !ata_link_offline(link) &&
3617 time_before(now, nodev_deadline))
3618 ready = 0;
3619 }
3620
3621 if (ready)
3622 return ready;
3623 if (time_after(now, deadline))
3624 return -EBUSY;
3625
3626 if (!warned && time_after(now, start + 5 * HZ) &&
3627 (deadline - now > 3 * HZ)) {
3628 ata_link_warn(link,
3629 "link is slow to respond, please be patient "
3630 "(ready=%d)\n", tmp);
3631 warned = 1;
3632 }
3633
3634 ata_msleep(link->ap, 50);
3635 }
3636 }
3637
3638 /**
3639 * ata_wait_after_reset - wait for link to become ready after reset
3640 * @link: link to be waited on
3641 * @deadline: deadline jiffies for the operation
3642 * @check_ready: callback to check link readiness
3643 *
3644 * Wait for @link to become ready after reset.
3645 *
3646 * LOCKING:
3647 * EH context.
3648 *
3649 * RETURNS:
3650 * 0 if @link is ready before @deadline; otherwise, -errno.
3651 */
ata_wait_after_reset(struct ata_link * link,unsigned long deadline,int (* check_ready)(struct ata_link * link))3652 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3653 int (*check_ready)(struct ata_link *link))
3654 {
3655 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3656
3657 return ata_wait_ready(link, deadline, check_ready);
3658 }
3659 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
3660
3661 /**
3662 * ata_std_prereset - prepare for reset
3663 * @link: ATA link to be reset
3664 * @deadline: deadline jiffies for the operation
3665 *
3666 * @link is about to be reset. Initialize it. Failure from
3667 * prereset makes libata abort whole reset sequence and give up
3668 * that port, so prereset should be best-effort. It does its
3669 * best to prepare for reset sequence but if things go wrong, it
3670 * should just whine, not fail.
3671 *
3672 * LOCKING:
3673 * Kernel thread context (may sleep)
3674 *
3675 * RETURNS:
3676 * Always 0.
3677 */
ata_std_prereset(struct ata_link * link,unsigned long deadline)3678 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3679 {
3680 struct ata_port *ap = link->ap;
3681 struct ata_eh_context *ehc = &link->eh_context;
3682 const unsigned int *timing = sata_ehc_deb_timing(ehc);
3683 int rc;
3684
3685 /* if we're about to do hardreset, nothing more to do */
3686 if (ehc->i.action & ATA_EH_HARDRESET)
3687 return 0;
3688
3689 /* if SATA, resume link */
3690 if (ap->flags & ATA_FLAG_SATA) {
3691 rc = sata_link_resume(link, timing, deadline);
3692 /* whine about phy resume failure but proceed */
3693 if (rc && rc != -EOPNOTSUPP)
3694 ata_link_warn(link,
3695 "failed to resume link for reset (errno=%d)\n",
3696 rc);
3697 }
3698
3699 /* no point in trying softreset on offline link */
3700 if (ata_phys_link_offline(link))
3701 ehc->i.action &= ~ATA_EH_SOFTRESET;
3702
3703 return 0;
3704 }
3705 EXPORT_SYMBOL_GPL(ata_std_prereset);
3706
3707 /**
3708 * ata_std_postreset - standard postreset callback
3709 * @link: the target ata_link
3710 * @classes: classes of attached devices
3711 *
3712 * This function is invoked after a successful reset. Note that
3713 * the device might have been reset more than once using
3714 * different reset methods before postreset is invoked.
3715 *
3716 * LOCKING:
3717 * Kernel thread context (may sleep)
3718 */
ata_std_postreset(struct ata_link * link,unsigned int * classes)3719 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3720 {
3721 u32 serror;
3722
3723 /* reset complete, clear SError */
3724 if (!sata_scr_read(link, SCR_ERROR, &serror))
3725 sata_scr_write(link, SCR_ERROR, serror);
3726
3727 /* print link status */
3728 sata_print_link_status(link);
3729 }
3730 EXPORT_SYMBOL_GPL(ata_std_postreset);
3731
3732 /**
3733 * ata_dev_same_device - Determine whether new ID matches configured device
3734 * @dev: device to compare against
3735 * @new_class: class of the new device
3736 * @new_id: IDENTIFY page of the new device
3737 *
3738 * Compare @new_class and @new_id against @dev and determine
3739 * whether @dev is the device indicated by @new_class and
3740 * @new_id.
3741 *
3742 * LOCKING:
3743 * None.
3744 *
3745 * RETURNS:
3746 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3747 */
ata_dev_same_device(struct ata_device * dev,unsigned int new_class,const u16 * new_id)3748 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3749 const u16 *new_id)
3750 {
3751 const u16 *old_id = dev->id;
3752 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3753 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3754
3755 if (dev->class != new_class) {
3756 ata_dev_info(dev, "class mismatch %d != %d\n",
3757 dev->class, new_class);
3758 return 0;
3759 }
3760
3761 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3762 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3763 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3764 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3765
3766 if (strcmp(model[0], model[1])) {
3767 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3768 model[0], model[1]);
3769 return 0;
3770 }
3771
3772 if (strcmp(serial[0], serial[1])) {
3773 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3774 serial[0], serial[1]);
3775 return 0;
3776 }
3777
3778 return 1;
3779 }
3780
3781 /**
3782 * ata_dev_reread_id - Re-read IDENTIFY data
3783 * @dev: target ATA device
3784 * @readid_flags: read ID flags
3785 *
3786 * Re-read IDENTIFY page and make sure @dev is still attached to
3787 * the port.
3788 *
3789 * LOCKING:
3790 * Kernel thread context (may sleep)
3791 *
3792 * RETURNS:
3793 * 0 on success, negative errno otherwise
3794 */
ata_dev_reread_id(struct ata_device * dev,unsigned int readid_flags)3795 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3796 {
3797 unsigned int class = dev->class;
3798 u16 *id = (void *)dev->sector_buf;
3799 int rc;
3800
3801 /* read ID data */
3802 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3803 if (rc)
3804 return rc;
3805
3806 /* is the device still there? */
3807 if (!ata_dev_same_device(dev, class, id))
3808 return -ENODEV;
3809
3810 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3811 return 0;
3812 }
3813
3814 /**
3815 * ata_dev_revalidate - Revalidate ATA device
3816 * @dev: device to revalidate
3817 * @new_class: new class code
3818 * @readid_flags: read ID flags
3819 *
3820 * Re-read IDENTIFY page, make sure @dev is still attached to the
3821 * port and reconfigure it according to the new IDENTIFY page.
3822 *
3823 * LOCKING:
3824 * Kernel thread context (may sleep)
3825 *
3826 * RETURNS:
3827 * 0 on success, negative errno otherwise
3828 */
ata_dev_revalidate(struct ata_device * dev,unsigned int new_class,unsigned int readid_flags)3829 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3830 unsigned int readid_flags)
3831 {
3832 u64 n_sectors = dev->n_sectors;
3833 u64 n_native_sectors = dev->n_native_sectors;
3834 int rc;
3835
3836 if (!ata_dev_enabled(dev))
3837 return -ENODEV;
3838
3839 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3840 if (ata_class_enabled(new_class) && new_class == ATA_DEV_PMP) {
3841 ata_dev_info(dev, "class mismatch %u != %u\n",
3842 dev->class, new_class);
3843 rc = -ENODEV;
3844 goto fail;
3845 }
3846
3847 /* re-read ID */
3848 rc = ata_dev_reread_id(dev, readid_flags);
3849 if (rc)
3850 goto fail;
3851
3852 /* configure device according to the new ID */
3853 rc = ata_dev_configure(dev);
3854 if (rc)
3855 goto fail;
3856
3857 /* verify n_sectors hasn't changed */
3858 if (dev->class != ATA_DEV_ATA || !n_sectors ||
3859 dev->n_sectors == n_sectors)
3860 return 0;
3861
3862 /* n_sectors has changed */
3863 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3864 (unsigned long long)n_sectors,
3865 (unsigned long long)dev->n_sectors);
3866
3867 /*
3868 * Something could have caused HPA to be unlocked
3869 * involuntarily. If n_native_sectors hasn't changed and the
3870 * new size matches it, keep the device.
3871 */
3872 if (dev->n_native_sectors == n_native_sectors &&
3873 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3874 ata_dev_warn(dev,
3875 "new n_sectors matches native, probably "
3876 "late HPA unlock, n_sectors updated\n");
3877 /* use the larger n_sectors */
3878 return 0;
3879 }
3880
3881 /*
3882 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
3883 * unlocking HPA in those cases.
3884 *
3885 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
3886 */
3887 if (dev->n_native_sectors == n_native_sectors &&
3888 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
3889 !(dev->quirks & ATA_QUIRK_BROKEN_HPA)) {
3890 ata_dev_warn(dev,
3891 "old n_sectors matches native, probably "
3892 "late HPA lock, will try to unlock HPA\n");
3893 /* try unlocking HPA */
3894 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
3895 rc = -EIO;
3896 } else
3897 rc = -ENODEV;
3898
3899 /* restore original n_[native_]sectors and fail */
3900 dev->n_native_sectors = n_native_sectors;
3901 dev->n_sectors = n_sectors;
3902 fail:
3903 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
3904 return rc;
3905 }
3906
3907 static const char * const ata_quirk_names[] = {
3908 [__ATA_QUIRK_DIAGNOSTIC] = "diagnostic",
3909 [__ATA_QUIRK_NODMA] = "nodma",
3910 [__ATA_QUIRK_NONCQ] = "noncq",
3911 [__ATA_QUIRK_MAX_SEC_128] = "maxsec128",
3912 [__ATA_QUIRK_BROKEN_HPA] = "brokenhpa",
3913 [__ATA_QUIRK_DISABLE] = "disable",
3914 [__ATA_QUIRK_HPA_SIZE] = "hpasize",
3915 [__ATA_QUIRK_IVB] = "ivb",
3916 [__ATA_QUIRK_STUCK_ERR] = "stuckerr",
3917 [__ATA_QUIRK_BRIDGE_OK] = "bridgeok",
3918 [__ATA_QUIRK_ATAPI_MOD16_DMA] = "atapimod16dma",
3919 [__ATA_QUIRK_FIRMWARE_WARN] = "firmwarewarn",
3920 [__ATA_QUIRK_1_5_GBPS] = "1.5gbps",
3921 [__ATA_QUIRK_NOSETXFER] = "nosetxfer",
3922 [__ATA_QUIRK_BROKEN_FPDMA_AA] = "brokenfpdmaaa",
3923 [__ATA_QUIRK_DUMP_ID] = "dumpid",
3924 [__ATA_QUIRK_MAX_SEC_LBA48] = "maxseclba48",
3925 [__ATA_QUIRK_ATAPI_DMADIR] = "atapidmadir",
3926 [__ATA_QUIRK_NO_NCQ_TRIM] = "noncqtrim",
3927 [__ATA_QUIRK_NOLPM] = "nolpm",
3928 [__ATA_QUIRK_WD_BROKEN_LPM] = "wdbrokenlpm",
3929 [__ATA_QUIRK_ZERO_AFTER_TRIM] = "zeroaftertrim",
3930 [__ATA_QUIRK_NO_DMA_LOG] = "nodmalog",
3931 [__ATA_QUIRK_NOTRIM] = "notrim",
3932 [__ATA_QUIRK_MAX_SEC_1024] = "maxsec1024",
3933 [__ATA_QUIRK_MAX_TRIM_128M] = "maxtrim128m",
3934 [__ATA_QUIRK_NO_NCQ_ON_ATI] = "noncqonati",
3935 [__ATA_QUIRK_NO_LPM_ON_ATI] = "nolpmonati",
3936 [__ATA_QUIRK_NO_ID_DEV_LOG] = "noiddevlog",
3937 [__ATA_QUIRK_NO_LOG_DIR] = "nologdir",
3938 [__ATA_QUIRK_NO_FUA] = "nofua",
3939 };
3940
ata_dev_print_quirks(const struct ata_device * dev,const char * model,const char * rev,unsigned int quirks)3941 static void ata_dev_print_quirks(const struct ata_device *dev,
3942 const char *model, const char *rev,
3943 unsigned int quirks)
3944 {
3945 struct ata_eh_context *ehc = &dev->link->eh_context;
3946 int n = 0, i;
3947 size_t sz;
3948 char *str;
3949
3950 if (!ata_dev_print_info(dev) || ehc->i.flags & ATA_EHI_DID_PRINT_QUIRKS)
3951 return;
3952
3953 ehc->i.flags |= ATA_EHI_DID_PRINT_QUIRKS;
3954
3955 if (!quirks)
3956 return;
3957
3958 sz = 64 + ARRAY_SIZE(ata_quirk_names) * 16;
3959 str = kmalloc(sz, GFP_KERNEL);
3960 if (!str)
3961 return;
3962
3963 n = snprintf(str, sz, "Model '%s', rev '%s', applying quirks:",
3964 model, rev);
3965
3966 for (i = 0; i < ARRAY_SIZE(ata_quirk_names); i++) {
3967 if (quirks & (1U << i))
3968 n += snprintf(str + n, sz - n,
3969 " %s", ata_quirk_names[i]);
3970 }
3971
3972 ata_dev_warn(dev, "%s\n", str);
3973
3974 kfree(str);
3975 }
3976
3977 struct ata_dev_quirks_entry {
3978 const char *model_num;
3979 const char *model_rev;
3980 unsigned int quirks;
3981 };
3982
3983 static const struct ata_dev_quirks_entry __ata_dev_quirks[] = {
3984 /* Devices with DMA related problems under Linux */
3985 { "WDC AC11000H", NULL, ATA_QUIRK_NODMA },
3986 { "WDC AC22100H", NULL, ATA_QUIRK_NODMA },
3987 { "WDC AC32500H", NULL, ATA_QUIRK_NODMA },
3988 { "WDC AC33100H", NULL, ATA_QUIRK_NODMA },
3989 { "WDC AC31600H", NULL, ATA_QUIRK_NODMA },
3990 { "WDC AC32100H", "24.09P07", ATA_QUIRK_NODMA },
3991 { "WDC AC23200L", "21.10N21", ATA_QUIRK_NODMA },
3992 { "Compaq CRD-8241B", NULL, ATA_QUIRK_NODMA },
3993 { "CRD-8400B", NULL, ATA_QUIRK_NODMA },
3994 { "CRD-848[02]B", NULL, ATA_QUIRK_NODMA },
3995 { "CRD-84", NULL, ATA_QUIRK_NODMA },
3996 { "SanDisk SDP3B", NULL, ATA_QUIRK_NODMA },
3997 { "SanDisk SDP3B-64", NULL, ATA_QUIRK_NODMA },
3998 { "SANYO CD-ROM CRD", NULL, ATA_QUIRK_NODMA },
3999 { "HITACHI CDR-8", NULL, ATA_QUIRK_NODMA },
4000 { "HITACHI CDR-8[34]35", NULL, ATA_QUIRK_NODMA },
4001 { "Toshiba CD-ROM XM-6202B", NULL, ATA_QUIRK_NODMA },
4002 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_QUIRK_NODMA },
4003 { "CD-532E-A", NULL, ATA_QUIRK_NODMA },
4004 { "E-IDE CD-ROM CR-840", NULL, ATA_QUIRK_NODMA },
4005 { "CD-ROM Drive/F5A", NULL, ATA_QUIRK_NODMA },
4006 { "WPI CDD-820", NULL, ATA_QUIRK_NODMA },
4007 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_QUIRK_NODMA },
4008 { "SAMSUNG CD-ROM SC", NULL, ATA_QUIRK_NODMA },
4009 { "ATAPI CD-ROM DRIVE 40X MAXIMUM", NULL, ATA_QUIRK_NODMA },
4010 { "_NEC DV5800A", NULL, ATA_QUIRK_NODMA },
4011 { "SAMSUNG CD-ROM SN-124", "N001", ATA_QUIRK_NODMA },
4012 { "Seagate STT20000A", NULL, ATA_QUIRK_NODMA },
4013 { " 2GB ATA Flash Disk", "ADMA428M", ATA_QUIRK_NODMA },
4014 { "VRFDFC22048UCHC-TE*", NULL, ATA_QUIRK_NODMA },
4015 /* Odd clown on sil3726/4726 PMPs */
4016 { "Config Disk", NULL, ATA_QUIRK_DISABLE },
4017 /* Similar story with ASMedia 1092 */
4018 { "ASMT109x- Config", NULL, ATA_QUIRK_DISABLE },
4019
4020 /* Weird ATAPI devices */
4021 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_QUIRK_MAX_SEC_128 },
4022 { "QUANTUM DAT DAT72-000", NULL, ATA_QUIRK_ATAPI_MOD16_DMA },
4023 { "Slimtype DVD A DS8A8SH", NULL, ATA_QUIRK_MAX_SEC_LBA48 },
4024 { "Slimtype DVD A DS8A9SH", NULL, ATA_QUIRK_MAX_SEC_LBA48 },
4025
4026 /*
4027 * Causes silent data corruption with higher max sects.
4028 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4029 */
4030 { "ST380013AS", "3.20", ATA_QUIRK_MAX_SEC_1024 },
4031
4032 /*
4033 * These devices time out with higher max sects.
4034 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
4035 */
4036 { "LITEON CX1-JB*-HP", NULL, ATA_QUIRK_MAX_SEC_1024 },
4037 { "LITEON EP1-*", NULL, ATA_QUIRK_MAX_SEC_1024 },
4038
4039 /* Devices we expect to fail diagnostics */
4040
4041 /* Devices where NCQ should be avoided */
4042 /* NCQ is slow */
4043 { "WDC WD740ADFD-00", NULL, ATA_QUIRK_NONCQ },
4044 { "WDC WD740ADFD-00NLR1", NULL, ATA_QUIRK_NONCQ },
4045 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4046 { "FUJITSU MHT2060BH", NULL, ATA_QUIRK_NONCQ },
4047 /* NCQ is broken */
4048 { "Maxtor *", "BANC*", ATA_QUIRK_NONCQ },
4049 { "Maxtor 7V300F0", "VA111630", ATA_QUIRK_NONCQ },
4050 { "ST380817AS", "3.42", ATA_QUIRK_NONCQ },
4051 { "ST3160023AS", "3.42", ATA_QUIRK_NONCQ },
4052 { "OCZ CORE_SSD", "02.10104", ATA_QUIRK_NONCQ },
4053
4054 /* Seagate NCQ + FLUSH CACHE firmware bug */
4055 { "ST31500341AS", "SD1[5-9]", ATA_QUIRK_NONCQ |
4056 ATA_QUIRK_FIRMWARE_WARN },
4057
4058 { "ST31000333AS", "SD1[5-9]", ATA_QUIRK_NONCQ |
4059 ATA_QUIRK_FIRMWARE_WARN },
4060
4061 { "ST3640[36]23AS", "SD1[5-9]", ATA_QUIRK_NONCQ |
4062 ATA_QUIRK_FIRMWARE_WARN },
4063
4064 { "ST3320[68]13AS", "SD1[5-9]", ATA_QUIRK_NONCQ |
4065 ATA_QUIRK_FIRMWARE_WARN },
4066
4067 /* drives which fail FPDMA_AA activation (some may freeze afterwards)
4068 the ST disks also have LPM issues */
4069 { "ST1000LM024 HN-M101MBB", NULL, ATA_QUIRK_BROKEN_FPDMA_AA |
4070 ATA_QUIRK_NOLPM },
4071 { "VB0250EAVER", "HPG7", ATA_QUIRK_BROKEN_FPDMA_AA },
4072
4073 /* Blacklist entries taken from Silicon Image 3124/3132
4074 Windows driver .inf file - also several Linux problem reports */
4075 { "HTS541060G9SA00", "MB3OC60D", ATA_QUIRK_NONCQ },
4076 { "HTS541080G9SA00", "MB4OC60D", ATA_QUIRK_NONCQ },
4077 { "HTS541010G9SA00", "MBZOC60D", ATA_QUIRK_NONCQ },
4078
4079 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4080 { "C300-CTFDDAC128MAG", "0001", ATA_QUIRK_NONCQ },
4081
4082 /* Sandisk SD7/8/9s lock up hard on large trims */
4083 { "SanDisk SD[789]*", NULL, ATA_QUIRK_MAX_TRIM_128M },
4084
4085 /* devices which puke on READ_NATIVE_MAX */
4086 { "HDS724040KLSA80", "KFAOA20N", ATA_QUIRK_BROKEN_HPA },
4087 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_QUIRK_BROKEN_HPA },
4088 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_QUIRK_BROKEN_HPA },
4089 { "MAXTOR 6L080L4", "A93.0500", ATA_QUIRK_BROKEN_HPA },
4090
4091 /* this one allows HPA unlocking but fails IOs on the area */
4092 { "OCZ-VERTEX", "1.30", ATA_QUIRK_BROKEN_HPA },
4093
4094 /* Devices which report 1 sector over size HPA */
4095 { "ST340823A", NULL, ATA_QUIRK_HPA_SIZE },
4096 { "ST320413A", NULL, ATA_QUIRK_HPA_SIZE },
4097 { "ST310211A", NULL, ATA_QUIRK_HPA_SIZE },
4098
4099 /* Devices which get the IVB wrong */
4100 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_QUIRK_IVB },
4101 /* Maybe we should just add all TSSTcorp devices... */
4102 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_QUIRK_IVB },
4103
4104 /* Devices that do not need bridging limits applied */
4105 { "MTRON MSP-SATA*", NULL, ATA_QUIRK_BRIDGE_OK },
4106 { "BUFFALO HD-QSU2/R5", NULL, ATA_QUIRK_BRIDGE_OK },
4107
4108 /* Devices which aren't very happy with higher link speeds */
4109 { "WD My Book", NULL, ATA_QUIRK_1_5_GBPS },
4110 { "Seagate FreeAgent GoFlex", NULL, ATA_QUIRK_1_5_GBPS },
4111
4112 /*
4113 * Devices which choke on SETXFER. Applies only if both the
4114 * device and controller are SATA.
4115 */
4116 { "PIONEER DVD-RW DVRTD08", NULL, ATA_QUIRK_NOSETXFER },
4117 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_QUIRK_NOSETXFER },
4118 { "PIONEER DVD-RW DVR-215", NULL, ATA_QUIRK_NOSETXFER },
4119 { "PIONEER DVD-RW DVR-212D", NULL, ATA_QUIRK_NOSETXFER },
4120 { "PIONEER DVD-RW DVR-216D", NULL, ATA_QUIRK_NOSETXFER },
4121
4122 /* These specific Pioneer models have LPM issues */
4123 { "PIONEER BD-RW BDR-207M", NULL, ATA_QUIRK_NOLPM },
4124 { "PIONEER BD-RW BDR-205", NULL, ATA_QUIRK_NOLPM },
4125
4126 /* Crucial devices with broken LPM support */
4127 { "CT*0BX*00SSD1", NULL, ATA_QUIRK_NOLPM },
4128
4129 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
4130 { "Crucial_CT512MX100*", "MU01", ATA_QUIRK_NO_NCQ_TRIM |
4131 ATA_QUIRK_ZERO_AFTER_TRIM |
4132 ATA_QUIRK_NOLPM },
4133 /* 512GB MX100 with newer firmware has only LPM issues */
4134 { "Crucial_CT512MX100*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM |
4135 ATA_QUIRK_NOLPM },
4136
4137 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
4138 { "Crucial_CT480M500*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4139 ATA_QUIRK_ZERO_AFTER_TRIM |
4140 ATA_QUIRK_NOLPM },
4141 { "Crucial_CT960M500*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4142 ATA_QUIRK_ZERO_AFTER_TRIM |
4143 ATA_QUIRK_NOLPM },
4144
4145 /* AMD Radeon devices with broken LPM support */
4146 { "R3SL240G", NULL, ATA_QUIRK_NOLPM },
4147
4148 /* Apacer models with LPM issues */
4149 { "Apacer AS340*", NULL, ATA_QUIRK_NOLPM },
4150
4151 /* These specific Samsung models/firmware-revs do not handle LPM well */
4152 { "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_QUIRK_NOLPM },
4153 { "SAMSUNG SSD PM830 mSATA *", "CXM13D1Q", ATA_QUIRK_NOLPM },
4154 { "SAMSUNG MZ7TD256HAFV-000L9", NULL, ATA_QUIRK_NOLPM },
4155 { "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_QUIRK_NOLPM },
4156
4157 /* devices that don't properly handle queued TRIM commands */
4158 { "Micron_M500IT_*", "MU01", ATA_QUIRK_NO_NCQ_TRIM |
4159 ATA_QUIRK_ZERO_AFTER_TRIM },
4160 { "Micron_M500_*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4161 ATA_QUIRK_ZERO_AFTER_TRIM },
4162 { "Micron_M5[15]0_*", "MU01", ATA_QUIRK_NO_NCQ_TRIM |
4163 ATA_QUIRK_ZERO_AFTER_TRIM },
4164 { "Micron_1100_*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4165 ATA_QUIRK_ZERO_AFTER_TRIM, },
4166 { "Crucial_CT*M500*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4167 ATA_QUIRK_ZERO_AFTER_TRIM },
4168 { "Crucial_CT*M550*", "MU01", ATA_QUIRK_NO_NCQ_TRIM |
4169 ATA_QUIRK_ZERO_AFTER_TRIM },
4170 { "Crucial_CT*MX100*", "MU01", ATA_QUIRK_NO_NCQ_TRIM |
4171 ATA_QUIRK_ZERO_AFTER_TRIM },
4172 { "Samsung SSD 840 EVO*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4173 ATA_QUIRK_NO_DMA_LOG |
4174 ATA_QUIRK_ZERO_AFTER_TRIM },
4175 { "Samsung SSD 840*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4176 ATA_QUIRK_ZERO_AFTER_TRIM },
4177 { "Samsung SSD 850*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4178 ATA_QUIRK_ZERO_AFTER_TRIM },
4179 { "Samsung SSD 860*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4180 ATA_QUIRK_ZERO_AFTER_TRIM |
4181 ATA_QUIRK_NO_NCQ_ON_ATI |
4182 ATA_QUIRK_NO_LPM_ON_ATI },
4183 { "Samsung SSD 870*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4184 ATA_QUIRK_ZERO_AFTER_TRIM |
4185 ATA_QUIRK_NO_NCQ_ON_ATI |
4186 ATA_QUIRK_NO_LPM_ON_ATI },
4187 { "SAMSUNG*MZ7LH*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4188 ATA_QUIRK_ZERO_AFTER_TRIM |
4189 ATA_QUIRK_NO_NCQ_ON_ATI |
4190 ATA_QUIRK_NO_LPM_ON_ATI },
4191 { "FCCT*M500*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4192 ATA_QUIRK_ZERO_AFTER_TRIM },
4193
4194 /* devices that don't properly handle TRIM commands */
4195 { "SuperSSpeed S238*", NULL, ATA_QUIRK_NOTRIM },
4196 { "M88V29*", NULL, ATA_QUIRK_NOTRIM },
4197
4198 /*
4199 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4200 * (Return Zero After Trim) flags in the ATA Command Set are
4201 * unreliable in the sense that they only define what happens if
4202 * the device successfully executed the DSM TRIM command. TRIM
4203 * is only advisory, however, and the device is free to silently
4204 * ignore all or parts of the request.
4205 *
4206 * Whitelist drives that are known to reliably return zeroes
4207 * after TRIM.
4208 */
4209
4210 /*
4211 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4212 * that model before whitelisting all other intel SSDs.
4213 */
4214 { "INTEL*SSDSC2MH*", NULL, 0 },
4215
4216 { "Micron*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4217 { "Crucial*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4218 { "INTEL*SSD*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4219 { "SSD*INTEL*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4220 { "Samsung*SSD*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4221 { "SAMSUNG*SSD*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4222 { "SAMSUNG*MZ7KM*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4223 { "ST[1248][0248]0[FH]*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4224
4225 /*
4226 * Some WD SATA-I drives spin up and down erratically when the link
4227 * is put into the slumber mode. We don't have full list of the
4228 * affected devices. Disable LPM if the device matches one of the
4229 * known prefixes and is SATA-1. As a side effect LPM partial is
4230 * lost too.
4231 *
4232 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4233 */
4234 { "WDC WD800JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4235 { "WDC WD1200JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4236 { "WDC WD1600JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4237 { "WDC WD2000JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4238 { "WDC WD2500JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4239 { "WDC WD3000JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4240 { "WDC WD3200JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4241
4242 /*
4243 * This sata dom device goes on a walkabout when the ATA_LOG_DIRECTORY
4244 * log page is accessed. Ensure we never ask for this log page with
4245 * these devices.
4246 */
4247 { "SATADOM-ML 3ME", NULL, ATA_QUIRK_NO_LOG_DIR },
4248
4249 /* Buggy FUA */
4250 { "Maxtor", "BANC1G10", ATA_QUIRK_NO_FUA },
4251 { "WDC*WD2500J*", NULL, ATA_QUIRK_NO_FUA },
4252 { "OCZ-VERTEX*", NULL, ATA_QUIRK_NO_FUA },
4253 { "INTEL*SSDSC2CT*", NULL, ATA_QUIRK_NO_FUA },
4254
4255 /* End Marker */
4256 { }
4257 };
4258
ata_dev_quirks(const struct ata_device * dev)4259 static unsigned int ata_dev_quirks(const struct ata_device *dev)
4260 {
4261 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4262 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4263 const struct ata_dev_quirks_entry *ad = __ata_dev_quirks;
4264
4265 /* dev->quirks is an unsigned int. */
4266 BUILD_BUG_ON(__ATA_QUIRK_MAX > 32);
4267
4268 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4269 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4270
4271 while (ad->model_num) {
4272 if (glob_match(ad->model_num, model_num) &&
4273 (!ad->model_rev || glob_match(ad->model_rev, model_rev))) {
4274 ata_dev_print_quirks(dev, model_num, model_rev,
4275 ad->quirks);
4276 return ad->quirks;
4277 }
4278 ad++;
4279 }
4280 return 0;
4281 }
4282
ata_dev_nodma(const struct ata_device * dev)4283 static bool ata_dev_nodma(const struct ata_device *dev)
4284 {
4285 /*
4286 * We do not support polling DMA. Deny DMA for those ATAPI devices
4287 * with CDB-intr (and use PIO) if the LLDD handles only interrupts in
4288 * the HSM_ST_LAST state.
4289 */
4290 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4291 (dev->flags & ATA_DFLAG_CDB_INTR))
4292 return true;
4293 return dev->quirks & ATA_QUIRK_NODMA;
4294 }
4295
4296 /**
4297 * ata_is_40wire - check drive side detection
4298 * @dev: device
4299 *
4300 * Perform drive side detection decoding, allowing for device vendors
4301 * who can't follow the documentation.
4302 */
4303
ata_is_40wire(struct ata_device * dev)4304 static int ata_is_40wire(struct ata_device *dev)
4305 {
4306 if (dev->quirks & ATA_QUIRK_IVB)
4307 return ata_drive_40wire_relaxed(dev->id);
4308 return ata_drive_40wire(dev->id);
4309 }
4310
4311 /**
4312 * cable_is_40wire - 40/80/SATA decider
4313 * @ap: port to consider
4314 *
4315 * This function encapsulates the policy for speed management
4316 * in one place. At the moment we don't cache the result but
4317 * there is a good case for setting ap->cbl to the result when
4318 * we are called with unknown cables (and figuring out if it
4319 * impacts hotplug at all).
4320 *
4321 * Return 1 if the cable appears to be 40 wire.
4322 */
4323
cable_is_40wire(struct ata_port * ap)4324 static int cable_is_40wire(struct ata_port *ap)
4325 {
4326 struct ata_link *link;
4327 struct ata_device *dev;
4328
4329 /* If the controller thinks we are 40 wire, we are. */
4330 if (ap->cbl == ATA_CBL_PATA40)
4331 return 1;
4332
4333 /* If the controller thinks we are 80 wire, we are. */
4334 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4335 return 0;
4336
4337 /* If the system is known to be 40 wire short cable (eg
4338 * laptop), then we allow 80 wire modes even if the drive
4339 * isn't sure.
4340 */
4341 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4342 return 0;
4343
4344 /* If the controller doesn't know, we scan.
4345 *
4346 * Note: We look for all 40 wire detects at this point. Any
4347 * 80 wire detect is taken to be 80 wire cable because
4348 * - in many setups only the one drive (slave if present) will
4349 * give a valid detect
4350 * - if you have a non detect capable drive you don't want it
4351 * to colour the choice
4352 */
4353 ata_for_each_link(link, ap, EDGE) {
4354 ata_for_each_dev(dev, link, ENABLED) {
4355 if (!ata_is_40wire(dev))
4356 return 0;
4357 }
4358 }
4359 return 1;
4360 }
4361
4362 /**
4363 * ata_dev_xfermask - Compute supported xfermask of the given device
4364 * @dev: Device to compute xfermask for
4365 *
4366 * Compute supported xfermask of @dev and store it in
4367 * dev->*_mask. This function is responsible for applying all
4368 * known limits including host controller limits, device quirks, etc...
4369 *
4370 * LOCKING:
4371 * None.
4372 */
ata_dev_xfermask(struct ata_device * dev)4373 static void ata_dev_xfermask(struct ata_device *dev)
4374 {
4375 struct ata_link *link = dev->link;
4376 struct ata_port *ap = link->ap;
4377 struct ata_host *host = ap->host;
4378 unsigned int xfer_mask;
4379
4380 /* controller modes available */
4381 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4382 ap->mwdma_mask, ap->udma_mask);
4383
4384 /* drive modes available */
4385 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4386 dev->mwdma_mask, dev->udma_mask);
4387 xfer_mask &= ata_id_xfermask(dev->id);
4388
4389 /*
4390 * CFA Advanced TrueIDE timings are not allowed on a shared
4391 * cable
4392 */
4393 if (ata_dev_pair(dev)) {
4394 /* No PIO5 or PIO6 */
4395 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4396 /* No MWDMA3 or MWDMA 4 */
4397 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4398 }
4399
4400 if (ata_dev_nodma(dev)) {
4401 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4402 ata_dev_warn(dev,
4403 "device does not support DMA, disabling DMA\n");
4404 }
4405
4406 if ((host->flags & ATA_HOST_SIMPLEX) &&
4407 host->simplex_claimed && host->simplex_claimed != ap) {
4408 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4409 ata_dev_warn(dev,
4410 "simplex DMA is claimed by other device, disabling DMA\n");
4411 }
4412
4413 if (ap->flags & ATA_FLAG_NO_IORDY)
4414 xfer_mask &= ata_pio_mask_no_iordy(dev);
4415
4416 if (ap->ops->mode_filter)
4417 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4418
4419 /* Apply cable rule here. Don't apply it early because when
4420 * we handle hot plug the cable type can itself change.
4421 * Check this last so that we know if the transfer rate was
4422 * solely limited by the cable.
4423 * Unknown or 80 wire cables reported host side are checked
4424 * drive side as well. Cases where we know a 40wire cable
4425 * is used safely for 80 are not checked here.
4426 */
4427 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4428 /* UDMA/44 or higher would be available */
4429 if (cable_is_40wire(ap)) {
4430 ata_dev_warn(dev,
4431 "limited to UDMA/33 due to 40-wire cable\n");
4432 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4433 }
4434
4435 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4436 &dev->mwdma_mask, &dev->udma_mask);
4437 }
4438
4439 /**
4440 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4441 * @dev: Device to which command will be sent
4442 *
4443 * Issue SET FEATURES - XFER MODE command to device @dev
4444 * on port @ap.
4445 *
4446 * LOCKING:
4447 * PCI/etc. bus probe sem.
4448 *
4449 * RETURNS:
4450 * 0 on success, AC_ERR_* mask otherwise.
4451 */
4452
ata_dev_set_xfermode(struct ata_device * dev)4453 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4454 {
4455 struct ata_taskfile tf;
4456
4457 /* set up set-features taskfile */
4458 ata_dev_dbg(dev, "set features - xfer mode\n");
4459
4460 /* Some controllers and ATAPI devices show flaky interrupt
4461 * behavior after setting xfer mode. Use polling instead.
4462 */
4463 ata_tf_init(dev, &tf);
4464 tf.command = ATA_CMD_SET_FEATURES;
4465 tf.feature = SETFEATURES_XFER;
4466 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4467 tf.protocol = ATA_PROT_NODATA;
4468 /* If we are using IORDY we must send the mode setting command */
4469 if (ata_pio_need_iordy(dev))
4470 tf.nsect = dev->xfer_mode;
4471 /* If the device has IORDY and the controller does not - turn it off */
4472 else if (ata_id_has_iordy(dev->id))
4473 tf.nsect = 0x01;
4474 else /* In the ancient relic department - skip all of this */
4475 return 0;
4476
4477 /*
4478 * On some disks, this command causes spin-up, so we need longer
4479 * timeout.
4480 */
4481 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4482 }
4483
4484 /**
4485 * ata_dev_set_feature - Issue SET FEATURES
4486 * @dev: Device to which command will be sent
4487 * @subcmd: The SET FEATURES subcommand to be sent
4488 * @action: The sector count represents a subcommand specific action
4489 *
4490 * Issue SET FEATURES command to device @dev on port @ap with sector count
4491 *
4492 * LOCKING:
4493 * PCI/etc. bus probe sem.
4494 *
4495 * RETURNS:
4496 * 0 on success, AC_ERR_* mask otherwise.
4497 */
ata_dev_set_feature(struct ata_device * dev,u8 subcmd,u8 action)4498 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 subcmd, u8 action)
4499 {
4500 struct ata_taskfile tf;
4501 unsigned int timeout = 0;
4502
4503 /* set up set-features taskfile */
4504 ata_dev_dbg(dev, "set features\n");
4505
4506 ata_tf_init(dev, &tf);
4507 tf.command = ATA_CMD_SET_FEATURES;
4508 tf.feature = subcmd;
4509 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4510 tf.protocol = ATA_PROT_NODATA;
4511 tf.nsect = action;
4512
4513 if (subcmd == SETFEATURES_SPINUP)
4514 timeout = ata_probe_timeout ?
4515 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4516
4517 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4518 }
4519 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4520
4521 /**
4522 * ata_dev_init_params - Issue INIT DEV PARAMS command
4523 * @dev: Device to which command will be sent
4524 * @heads: Number of heads (taskfile parameter)
4525 * @sectors: Number of sectors (taskfile parameter)
4526 *
4527 * LOCKING:
4528 * Kernel thread context (may sleep)
4529 *
4530 * RETURNS:
4531 * 0 on success, AC_ERR_* mask otherwise.
4532 */
ata_dev_init_params(struct ata_device * dev,u16 heads,u16 sectors)4533 static unsigned int ata_dev_init_params(struct ata_device *dev,
4534 u16 heads, u16 sectors)
4535 {
4536 struct ata_taskfile tf;
4537 unsigned int err_mask;
4538
4539 /* Number of sectors per track 1-255. Number of heads 1-16 */
4540 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4541 return AC_ERR_INVALID;
4542
4543 /* set up init dev params taskfile */
4544 ata_dev_dbg(dev, "init dev params \n");
4545
4546 ata_tf_init(dev, &tf);
4547 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4548 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4549 tf.protocol = ATA_PROT_NODATA;
4550 tf.nsect = sectors;
4551 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4552
4553 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4554 /* A clean abort indicates an original or just out of spec drive
4555 and we should continue as we issue the setup based on the
4556 drive reported working geometry */
4557 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
4558 err_mask = 0;
4559
4560 return err_mask;
4561 }
4562
4563 /**
4564 * atapi_check_dma - Check whether ATAPI DMA can be supported
4565 * @qc: Metadata associated with taskfile to check
4566 *
4567 * Allow low-level driver to filter ATA PACKET commands, returning
4568 * a status indicating whether or not it is OK to use DMA for the
4569 * supplied PACKET command.
4570 *
4571 * LOCKING:
4572 * spin_lock_irqsave(host lock)
4573 *
4574 * RETURNS: 0 when ATAPI DMA can be used
4575 * nonzero otherwise
4576 */
atapi_check_dma(struct ata_queued_cmd * qc)4577 int atapi_check_dma(struct ata_queued_cmd *qc)
4578 {
4579 struct ata_port *ap = qc->ap;
4580
4581 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4582 * few ATAPI devices choke on such DMA requests.
4583 */
4584 if (!(qc->dev->quirks & ATA_QUIRK_ATAPI_MOD16_DMA) &&
4585 unlikely(qc->nbytes & 15))
4586 return -EOPNOTSUPP;
4587
4588 if (ap->ops->check_atapi_dma)
4589 return ap->ops->check_atapi_dma(qc);
4590
4591 return 0;
4592 }
4593
4594 /**
4595 * ata_std_qc_defer - Check whether a qc needs to be deferred
4596 * @qc: ATA command in question
4597 *
4598 * Non-NCQ commands cannot run with any other command, NCQ or
4599 * not. As upper layer only knows the queue depth, we are
4600 * responsible for maintaining exclusion. This function checks
4601 * whether a new command @qc can be issued.
4602 *
4603 * LOCKING:
4604 * spin_lock_irqsave(host lock)
4605 *
4606 * RETURNS:
4607 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4608 */
ata_std_qc_defer(struct ata_queued_cmd * qc)4609 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4610 {
4611 struct ata_link *link = qc->dev->link;
4612
4613 if (ata_is_ncq(qc->tf.protocol)) {
4614 if (!ata_tag_valid(link->active_tag))
4615 return 0;
4616 } else {
4617 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4618 return 0;
4619 }
4620
4621 return ATA_DEFER_LINK;
4622 }
4623 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
4624
4625 /**
4626 * ata_sg_init - Associate command with scatter-gather table.
4627 * @qc: Command to be associated
4628 * @sg: Scatter-gather table.
4629 * @n_elem: Number of elements in s/g table.
4630 *
4631 * Initialize the data-related elements of queued_cmd @qc
4632 * to point to a scatter-gather table @sg, containing @n_elem
4633 * elements.
4634 *
4635 * LOCKING:
4636 * spin_lock_irqsave(host lock)
4637 */
ata_sg_init(struct ata_queued_cmd * qc,struct scatterlist * sg,unsigned int n_elem)4638 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4639 unsigned int n_elem)
4640 {
4641 qc->sg = sg;
4642 qc->n_elem = n_elem;
4643 qc->cursg = qc->sg;
4644 }
4645
4646 #ifdef CONFIG_HAS_DMA
4647
4648 /**
4649 * ata_sg_clean - Unmap DMA memory associated with command
4650 * @qc: Command containing DMA memory to be released
4651 *
4652 * Unmap all mapped DMA memory associated with this command.
4653 *
4654 * LOCKING:
4655 * spin_lock_irqsave(host lock)
4656 */
ata_sg_clean(struct ata_queued_cmd * qc)4657 static void ata_sg_clean(struct ata_queued_cmd *qc)
4658 {
4659 struct ata_port *ap = qc->ap;
4660 struct scatterlist *sg = qc->sg;
4661 int dir = qc->dma_dir;
4662
4663 WARN_ON_ONCE(sg == NULL);
4664
4665 if (qc->n_elem)
4666 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4667
4668 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4669 qc->sg = NULL;
4670 }
4671
4672 /**
4673 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4674 * @qc: Command with scatter-gather table to be mapped.
4675 *
4676 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4677 *
4678 * LOCKING:
4679 * spin_lock_irqsave(host lock)
4680 *
4681 * RETURNS:
4682 * Zero on success, negative on error.
4683 *
4684 */
ata_sg_setup(struct ata_queued_cmd * qc)4685 static int ata_sg_setup(struct ata_queued_cmd *qc)
4686 {
4687 struct ata_port *ap = qc->ap;
4688 unsigned int n_elem;
4689
4690 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4691 if (n_elem < 1)
4692 return -1;
4693
4694 qc->orig_n_elem = qc->n_elem;
4695 qc->n_elem = n_elem;
4696 qc->flags |= ATA_QCFLAG_DMAMAP;
4697
4698 return 0;
4699 }
4700
4701 #else /* !CONFIG_HAS_DMA */
4702
ata_sg_clean(struct ata_queued_cmd * qc)4703 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
ata_sg_setup(struct ata_queued_cmd * qc)4704 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
4705
4706 #endif /* !CONFIG_HAS_DMA */
4707
4708 /**
4709 * swap_buf_le16 - swap halves of 16-bit words in place
4710 * @buf: Buffer to swap
4711 * @buf_words: Number of 16-bit words in buffer.
4712 *
4713 * Swap halves of 16-bit words if needed to convert from
4714 * little-endian byte order to native cpu byte order, or
4715 * vice-versa.
4716 *
4717 * LOCKING:
4718 * Inherited from caller.
4719 */
swap_buf_le16(u16 * buf,unsigned int buf_words)4720 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4721 {
4722 #ifdef __BIG_ENDIAN
4723 unsigned int i;
4724
4725 for (i = 0; i < buf_words; i++)
4726 buf[i] = le16_to_cpu(buf[i]);
4727 #endif /* __BIG_ENDIAN */
4728 }
4729
4730 /**
4731 * ata_qc_free - free unused ata_queued_cmd
4732 * @qc: Command to complete
4733 *
4734 * Designed to free unused ata_queued_cmd object
4735 * in case something prevents using it.
4736 *
4737 * LOCKING:
4738 * spin_lock_irqsave(host lock)
4739 */
ata_qc_free(struct ata_queued_cmd * qc)4740 void ata_qc_free(struct ata_queued_cmd *qc)
4741 {
4742 qc->flags = 0;
4743 if (ata_tag_valid(qc->tag))
4744 qc->tag = ATA_TAG_POISON;
4745 }
4746
__ata_qc_complete(struct ata_queued_cmd * qc)4747 void __ata_qc_complete(struct ata_queued_cmd *qc)
4748 {
4749 struct ata_port *ap;
4750 struct ata_link *link;
4751
4752 if (WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)))
4753 return;
4754
4755 ap = qc->ap;
4756 link = qc->dev->link;
4757
4758 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4759 ata_sg_clean(qc);
4760
4761 /* command should be marked inactive atomically with qc completion */
4762 if (ata_is_ncq(qc->tf.protocol)) {
4763 link->sactive &= ~(1 << qc->hw_tag);
4764 if (!link->sactive)
4765 ap->nr_active_links--;
4766 } else {
4767 link->active_tag = ATA_TAG_POISON;
4768 ap->nr_active_links--;
4769 }
4770
4771 /* clear exclusive status */
4772 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4773 ap->excl_link == link))
4774 ap->excl_link = NULL;
4775
4776 /*
4777 * Mark qc as inactive to prevent the port interrupt handler from
4778 * completing the command twice later, before the error handler is
4779 * called.
4780 */
4781 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4782 ap->qc_active &= ~(1ULL << qc->tag);
4783
4784 /* call completion callback */
4785 qc->complete_fn(qc);
4786 }
4787
fill_result_tf(struct ata_queued_cmd * qc)4788 static void fill_result_tf(struct ata_queued_cmd *qc)
4789 {
4790 struct ata_port *ap = qc->ap;
4791
4792 /*
4793 * rtf may already be filled (e.g. for successful NCQ commands).
4794 * If that is the case, we have nothing to do.
4795 */
4796 if (qc->flags & ATA_QCFLAG_RTF_FILLED)
4797 return;
4798
4799 qc->result_tf.flags = qc->tf.flags;
4800 ap->ops->qc_fill_rtf(qc);
4801 qc->flags |= ATA_QCFLAG_RTF_FILLED;
4802 }
4803
ata_verify_xfer(struct ata_queued_cmd * qc)4804 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4805 {
4806 struct ata_device *dev = qc->dev;
4807
4808 if (!ata_is_data(qc->tf.protocol))
4809 return;
4810
4811 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4812 return;
4813
4814 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4815 }
4816
4817 /**
4818 * ata_qc_complete - Complete an active ATA command
4819 * @qc: Command to complete
4820 *
4821 * Indicate to the mid and upper layers that an ATA command has
4822 * completed, with either an ok or not-ok status.
4823 *
4824 * Refrain from calling this function multiple times when
4825 * successfully completing multiple NCQ commands.
4826 * ata_qc_complete_multiple() should be used instead, which will
4827 * properly update IRQ expect state.
4828 *
4829 * LOCKING:
4830 * spin_lock_irqsave(host lock)
4831 */
ata_qc_complete(struct ata_queued_cmd * qc)4832 void ata_qc_complete(struct ata_queued_cmd *qc)
4833 {
4834 struct ata_port *ap = qc->ap;
4835 struct ata_device *dev = qc->dev;
4836 struct ata_eh_info *ehi = &dev->link->eh_info;
4837
4838 /* Trigger the LED (if available) */
4839 ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
4840
4841 /*
4842 * In order to synchronize EH with the regular execution path, a qc that
4843 * is owned by EH is marked with ATA_QCFLAG_EH.
4844 *
4845 * The normal execution path is responsible for not accessing a qc owned
4846 * by EH. libata core enforces the rule by returning NULL from
4847 * ata_qc_from_tag() for qcs owned by EH.
4848 */
4849 if (unlikely(qc->err_mask))
4850 qc->flags |= ATA_QCFLAG_EH;
4851
4852 /*
4853 * Finish internal commands without any further processing and always
4854 * with the result TF filled.
4855 */
4856 if (unlikely(ata_tag_internal(qc->tag))) {
4857 fill_result_tf(qc);
4858 trace_ata_qc_complete_internal(qc);
4859 __ata_qc_complete(qc);
4860 return;
4861 }
4862
4863 /* Non-internal qc has failed. Fill the result TF and summon EH. */
4864 if (unlikely(qc->flags & ATA_QCFLAG_EH)) {
4865 fill_result_tf(qc);
4866 trace_ata_qc_complete_failed(qc);
4867 ata_qc_schedule_eh(qc);
4868 return;
4869 }
4870
4871 WARN_ON_ONCE(ata_port_is_frozen(ap));
4872
4873 /* read result TF if requested */
4874 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4875 fill_result_tf(qc);
4876
4877 trace_ata_qc_complete_done(qc);
4878
4879 /*
4880 * For CDL commands that completed without an error, check if we have
4881 * sense data (ATA_SENSE is set). If we do, then the command may have
4882 * been aborted by the device due to a limit timeout using the policy
4883 * 0xD. For these commands, invoke EH to get the command sense data.
4884 */
4885 if (qc->flags & ATA_QCFLAG_HAS_CDL &&
4886 qc->result_tf.status & ATA_SENSE) {
4887 /*
4888 * Tell SCSI EH to not overwrite scmd->result even if this
4889 * command is finished with result SAM_STAT_GOOD.
4890 */
4891 qc->scsicmd->flags |= SCMD_FORCE_EH_SUCCESS;
4892 qc->flags |= ATA_QCFLAG_EH_SUCCESS_CMD;
4893 ehi->dev_action[dev->devno] |= ATA_EH_GET_SUCCESS_SENSE;
4894
4895 /*
4896 * set pending so that ata_qc_schedule_eh() does not trigger
4897 * fast drain, and freeze the port.
4898 */
4899 ap->pflags |= ATA_PFLAG_EH_PENDING;
4900 ata_qc_schedule_eh(qc);
4901 return;
4902 }
4903
4904 /* Some commands need post-processing after successful completion. */
4905 switch (qc->tf.command) {
4906 case ATA_CMD_SET_FEATURES:
4907 if (qc->tf.feature != SETFEATURES_WC_ON &&
4908 qc->tf.feature != SETFEATURES_WC_OFF &&
4909 qc->tf.feature != SETFEATURES_RA_ON &&
4910 qc->tf.feature != SETFEATURES_RA_OFF)
4911 break;
4912 fallthrough;
4913 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4914 case ATA_CMD_SET_MULTI: /* multi_count changed */
4915 /* revalidate device */
4916 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4917 ata_port_schedule_eh(ap);
4918 break;
4919
4920 case ATA_CMD_SLEEP:
4921 dev->flags |= ATA_DFLAG_SLEEPING;
4922 break;
4923 }
4924
4925 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4926 ata_verify_xfer(qc);
4927
4928 __ata_qc_complete(qc);
4929 }
4930 EXPORT_SYMBOL_GPL(ata_qc_complete);
4931
4932 /**
4933 * ata_qc_get_active - get bitmask of active qcs
4934 * @ap: port in question
4935 *
4936 * LOCKING:
4937 * spin_lock_irqsave(host lock)
4938 *
4939 * RETURNS:
4940 * Bitmask of active qcs
4941 */
ata_qc_get_active(struct ata_port * ap)4942 u64 ata_qc_get_active(struct ata_port *ap)
4943 {
4944 u64 qc_active = ap->qc_active;
4945
4946 /* ATA_TAG_INTERNAL is sent to hw as tag 0 */
4947 if (qc_active & (1ULL << ATA_TAG_INTERNAL)) {
4948 qc_active |= (1 << 0);
4949 qc_active &= ~(1ULL << ATA_TAG_INTERNAL);
4950 }
4951
4952 return qc_active;
4953 }
4954 EXPORT_SYMBOL_GPL(ata_qc_get_active);
4955
4956 /**
4957 * ata_qc_issue - issue taskfile to device
4958 * @qc: command to issue to device
4959 *
4960 * Prepare an ATA command to submission to device.
4961 * This includes mapping the data into a DMA-able
4962 * area, filling in the S/G table, and finally
4963 * writing the taskfile to hardware, starting the command.
4964 *
4965 * LOCKING:
4966 * spin_lock_irqsave(host lock)
4967 */
ata_qc_issue(struct ata_queued_cmd * qc)4968 void ata_qc_issue(struct ata_queued_cmd *qc)
4969 {
4970 struct ata_port *ap = qc->ap;
4971 struct ata_link *link = qc->dev->link;
4972 u8 prot = qc->tf.protocol;
4973
4974 /* Make sure only one non-NCQ command is outstanding. */
4975 WARN_ON_ONCE(ata_tag_valid(link->active_tag));
4976
4977 if (ata_is_ncq(prot)) {
4978 WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag));
4979
4980 if (!link->sactive)
4981 ap->nr_active_links++;
4982 link->sactive |= 1 << qc->hw_tag;
4983 } else {
4984 WARN_ON_ONCE(link->sactive);
4985
4986 ap->nr_active_links++;
4987 link->active_tag = qc->tag;
4988 }
4989
4990 qc->flags |= ATA_QCFLAG_ACTIVE;
4991 ap->qc_active |= 1ULL << qc->tag;
4992
4993 /*
4994 * We guarantee to LLDs that they will have at least one
4995 * non-zero sg if the command is a data command.
4996 */
4997 if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
4998 goto sys_err;
4999
5000 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5001 (ap->flags & ATA_FLAG_PIO_DMA)))
5002 if (ata_sg_setup(qc))
5003 goto sys_err;
5004
5005 /* if device is sleeping, schedule reset and abort the link */
5006 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5007 link->eh_info.action |= ATA_EH_RESET;
5008 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5009 ata_link_abort(link);
5010 return;
5011 }
5012
5013 if (ap->ops->qc_prep) {
5014 trace_ata_qc_prep(qc);
5015 qc->err_mask |= ap->ops->qc_prep(qc);
5016 if (unlikely(qc->err_mask))
5017 goto err;
5018 }
5019
5020 trace_ata_qc_issue(qc);
5021 qc->err_mask |= ap->ops->qc_issue(qc);
5022 if (unlikely(qc->err_mask))
5023 goto err;
5024 return;
5025
5026 sys_err:
5027 qc->err_mask |= AC_ERR_SYSTEM;
5028 err:
5029 ata_qc_complete(qc);
5030 }
5031
5032 /**
5033 * ata_phys_link_online - test whether the given link is online
5034 * @link: ATA link to test
5035 *
5036 * Test whether @link is online. Note that this function returns
5037 * 0 if online status of @link cannot be obtained, so
5038 * ata_link_online(link) != !ata_link_offline(link).
5039 *
5040 * LOCKING:
5041 * None.
5042 *
5043 * RETURNS:
5044 * True if the port online status is available and online.
5045 */
ata_phys_link_online(struct ata_link * link)5046 bool ata_phys_link_online(struct ata_link *link)
5047 {
5048 u32 sstatus;
5049
5050 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5051 ata_sstatus_online(sstatus))
5052 return true;
5053 return false;
5054 }
5055
5056 /**
5057 * ata_phys_link_offline - test whether the given link is offline
5058 * @link: ATA link to test
5059 *
5060 * Test whether @link is offline. Note that this function
5061 * returns 0 if offline status of @link cannot be obtained, so
5062 * ata_link_online(link) != !ata_link_offline(link).
5063 *
5064 * LOCKING:
5065 * None.
5066 *
5067 * RETURNS:
5068 * True if the port offline status is available and offline.
5069 */
ata_phys_link_offline(struct ata_link * link)5070 bool ata_phys_link_offline(struct ata_link *link)
5071 {
5072 u32 sstatus;
5073
5074 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5075 !ata_sstatus_online(sstatus))
5076 return true;
5077 return false;
5078 }
5079
5080 /**
5081 * ata_link_online - test whether the given link is online
5082 * @link: ATA link to test
5083 *
5084 * Test whether @link is online. This is identical to
5085 * ata_phys_link_online() when there's no slave link. When
5086 * there's a slave link, this function should only be called on
5087 * the master link and will return true if any of M/S links is
5088 * online.
5089 *
5090 * LOCKING:
5091 * None.
5092 *
5093 * RETURNS:
5094 * True if the port online status is available and online.
5095 */
ata_link_online(struct ata_link * link)5096 bool ata_link_online(struct ata_link *link)
5097 {
5098 struct ata_link *slave = link->ap->slave_link;
5099
5100 WARN_ON(link == slave); /* shouldn't be called on slave link */
5101
5102 return ata_phys_link_online(link) ||
5103 (slave && ata_phys_link_online(slave));
5104 }
5105 EXPORT_SYMBOL_GPL(ata_link_online);
5106
5107 /**
5108 * ata_link_offline - test whether the given link is offline
5109 * @link: ATA link to test
5110 *
5111 * Test whether @link is offline. This is identical to
5112 * ata_phys_link_offline() when there's no slave link. When
5113 * there's a slave link, this function should only be called on
5114 * the master link and will return true if both M/S links are
5115 * offline.
5116 *
5117 * LOCKING:
5118 * None.
5119 *
5120 * RETURNS:
5121 * True if the port offline status is available and offline.
5122 */
ata_link_offline(struct ata_link * link)5123 bool ata_link_offline(struct ata_link *link)
5124 {
5125 struct ata_link *slave = link->ap->slave_link;
5126
5127 WARN_ON(link == slave); /* shouldn't be called on slave link */
5128
5129 return ata_phys_link_offline(link) &&
5130 (!slave || ata_phys_link_offline(slave));
5131 }
5132 EXPORT_SYMBOL_GPL(ata_link_offline);
5133
5134 #ifdef CONFIG_PM
ata_port_request_pm(struct ata_port * ap,pm_message_t mesg,unsigned int action,unsigned int ehi_flags,bool async)5135 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5136 unsigned int action, unsigned int ehi_flags,
5137 bool async)
5138 {
5139 struct ata_link *link;
5140 unsigned long flags;
5141
5142 spin_lock_irqsave(ap->lock, flags);
5143
5144 /*
5145 * A previous PM operation might still be in progress. Wait for
5146 * ATA_PFLAG_PM_PENDING to clear.
5147 */
5148 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5149 spin_unlock_irqrestore(ap->lock, flags);
5150 ata_port_wait_eh(ap);
5151 spin_lock_irqsave(ap->lock, flags);
5152 }
5153
5154 /* Request PM operation to EH */
5155 ap->pm_mesg = mesg;
5156 ap->pflags |= ATA_PFLAG_PM_PENDING;
5157 ata_for_each_link(link, ap, HOST_FIRST) {
5158 link->eh_info.action |= action;
5159 link->eh_info.flags |= ehi_flags;
5160 }
5161
5162 ata_port_schedule_eh(ap);
5163
5164 spin_unlock_irqrestore(ap->lock, flags);
5165
5166 if (!async)
5167 ata_port_wait_eh(ap);
5168 }
5169
ata_port_suspend(struct ata_port * ap,pm_message_t mesg,bool async)5170 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg,
5171 bool async)
5172 {
5173 /*
5174 * We are about to suspend the port, so we do not care about
5175 * scsi_rescan_device() calls scheduled by previous resume operations.
5176 * The next resume will schedule the rescan again. So cancel any rescan
5177 * that is not done yet.
5178 */
5179 cancel_delayed_work_sync(&ap->scsi_rescan_task);
5180
5181 /*
5182 * On some hardware, device fails to respond after spun down for
5183 * suspend. As the device will not be used until being resumed, we
5184 * do not need to touch the device. Ask EH to skip the usual stuff
5185 * and proceed directly to suspend.
5186 *
5187 * http://thread.gmane.org/gmane.linux.ide/46764
5188 */
5189 ata_port_request_pm(ap, mesg, 0,
5190 ATA_EHI_QUIET | ATA_EHI_NO_AUTOPSY |
5191 ATA_EHI_NO_RECOVERY,
5192 async);
5193 }
5194
ata_port_pm_suspend(struct device * dev)5195 static int ata_port_pm_suspend(struct device *dev)
5196 {
5197 struct ata_port *ap = to_ata_port(dev);
5198
5199 if (pm_runtime_suspended(dev))
5200 return 0;
5201
5202 ata_port_suspend(ap, PMSG_SUSPEND, false);
5203 return 0;
5204 }
5205
ata_port_pm_freeze(struct device * dev)5206 static int ata_port_pm_freeze(struct device *dev)
5207 {
5208 struct ata_port *ap = to_ata_port(dev);
5209
5210 if (pm_runtime_suspended(dev))
5211 return 0;
5212
5213 ata_port_suspend(ap, PMSG_FREEZE, false);
5214 return 0;
5215 }
5216
ata_port_pm_poweroff(struct device * dev)5217 static int ata_port_pm_poweroff(struct device *dev)
5218 {
5219 if (!pm_runtime_suspended(dev))
5220 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE, false);
5221 return 0;
5222 }
5223
ata_port_resume(struct ata_port * ap,pm_message_t mesg,bool async)5224 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg,
5225 bool async)
5226 {
5227 ata_port_request_pm(ap, mesg, ATA_EH_RESET,
5228 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET,
5229 async);
5230 }
5231
ata_port_pm_resume(struct device * dev)5232 static int ata_port_pm_resume(struct device *dev)
5233 {
5234 if (!pm_runtime_suspended(dev))
5235 ata_port_resume(to_ata_port(dev), PMSG_RESUME, true);
5236 return 0;
5237 }
5238
5239 /*
5240 * For ODDs, the upper layer will poll for media change every few seconds,
5241 * which will make it enter and leave suspend state every few seconds. And
5242 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5243 * is very little and the ODD may malfunction after constantly being reset.
5244 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5245 * ODD is attached to the port.
5246 */
ata_port_runtime_idle(struct device * dev)5247 static int ata_port_runtime_idle(struct device *dev)
5248 {
5249 struct ata_port *ap = to_ata_port(dev);
5250 struct ata_link *link;
5251 struct ata_device *adev;
5252
5253 ata_for_each_link(link, ap, HOST_FIRST) {
5254 ata_for_each_dev(adev, link, ENABLED)
5255 if (adev->class == ATA_DEV_ATAPI &&
5256 !zpodd_dev_enabled(adev))
5257 return -EBUSY;
5258 }
5259
5260 return 0;
5261 }
5262
ata_port_runtime_suspend(struct device * dev)5263 static int ata_port_runtime_suspend(struct device *dev)
5264 {
5265 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND, false);
5266 return 0;
5267 }
5268
ata_port_runtime_resume(struct device * dev)5269 static int ata_port_runtime_resume(struct device *dev)
5270 {
5271 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME, false);
5272 return 0;
5273 }
5274
5275 static const struct dev_pm_ops ata_port_pm_ops = {
5276 .suspend = ata_port_pm_suspend,
5277 .resume = ata_port_pm_resume,
5278 .freeze = ata_port_pm_freeze,
5279 .thaw = ata_port_pm_resume,
5280 .poweroff = ata_port_pm_poweroff,
5281 .restore = ata_port_pm_resume,
5282
5283 .runtime_suspend = ata_port_runtime_suspend,
5284 .runtime_resume = ata_port_runtime_resume,
5285 .runtime_idle = ata_port_runtime_idle,
5286 };
5287
5288 /* sas ports don't participate in pm runtime management of ata_ports,
5289 * and need to resume ata devices at the domain level, not the per-port
5290 * level. sas suspend/resume is async to allow parallel port recovery
5291 * since sas has multiple ata_port instances per Scsi_Host.
5292 */
ata_sas_port_suspend(struct ata_port * ap)5293 void ata_sas_port_suspend(struct ata_port *ap)
5294 {
5295 ata_port_suspend(ap, PMSG_SUSPEND, true);
5296 }
5297 EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5298
ata_sas_port_resume(struct ata_port * ap)5299 void ata_sas_port_resume(struct ata_port *ap)
5300 {
5301 ata_port_resume(ap, PMSG_RESUME, true);
5302 }
5303 EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5304
5305 /**
5306 * ata_host_suspend - suspend host
5307 * @host: host to suspend
5308 * @mesg: PM message
5309 *
5310 * Suspend @host. Actual operation is performed by port suspend.
5311 */
ata_host_suspend(struct ata_host * host,pm_message_t mesg)5312 void ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5313 {
5314 host->dev->power.power_state = mesg;
5315 }
5316 EXPORT_SYMBOL_GPL(ata_host_suspend);
5317
5318 /**
5319 * ata_host_resume - resume host
5320 * @host: host to resume
5321 *
5322 * Resume @host. Actual operation is performed by port resume.
5323 */
ata_host_resume(struct ata_host * host)5324 void ata_host_resume(struct ata_host *host)
5325 {
5326 host->dev->power.power_state = PMSG_ON;
5327 }
5328 EXPORT_SYMBOL_GPL(ata_host_resume);
5329 #endif
5330
5331 const struct device_type ata_port_type = {
5332 .name = ATA_PORT_TYPE_NAME,
5333 #ifdef CONFIG_PM
5334 .pm = &ata_port_pm_ops,
5335 #endif
5336 };
5337
5338 /**
5339 * ata_dev_init - Initialize an ata_device structure
5340 * @dev: Device structure to initialize
5341 *
5342 * Initialize @dev in preparation for probing.
5343 *
5344 * LOCKING:
5345 * Inherited from caller.
5346 */
ata_dev_init(struct ata_device * dev)5347 void ata_dev_init(struct ata_device *dev)
5348 {
5349 struct ata_link *link = ata_dev_phys_link(dev);
5350 struct ata_port *ap = link->ap;
5351 unsigned long flags;
5352
5353 /* SATA spd limit is bound to the attached device, reset together */
5354 link->sata_spd_limit = link->hw_sata_spd_limit;
5355 link->sata_spd = 0;
5356
5357 /* High bits of dev->flags are used to record warm plug
5358 * requests which occur asynchronously. Synchronize using
5359 * host lock.
5360 */
5361 spin_lock_irqsave(ap->lock, flags);
5362 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5363 dev->quirks = 0;
5364 spin_unlock_irqrestore(ap->lock, flags);
5365
5366 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5367 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5368 dev->pio_mask = UINT_MAX;
5369 dev->mwdma_mask = UINT_MAX;
5370 dev->udma_mask = UINT_MAX;
5371 }
5372
5373 /**
5374 * ata_link_init - Initialize an ata_link structure
5375 * @ap: ATA port link is attached to
5376 * @link: Link structure to initialize
5377 * @pmp: Port multiplier port number
5378 *
5379 * Initialize @link.
5380 *
5381 * LOCKING:
5382 * Kernel thread context (may sleep)
5383 */
ata_link_init(struct ata_port * ap,struct ata_link * link,int pmp)5384 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5385 {
5386 int i;
5387
5388 /* clear everything except for devices */
5389 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5390 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5391
5392 link->ap = ap;
5393 link->pmp = pmp;
5394 link->active_tag = ATA_TAG_POISON;
5395 link->hw_sata_spd_limit = UINT_MAX;
5396
5397 /* can't use iterator, ap isn't initialized yet */
5398 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5399 struct ata_device *dev = &link->device[i];
5400
5401 dev->link = link;
5402 dev->devno = dev - link->device;
5403 #ifdef CONFIG_ATA_ACPI
5404 dev->gtf_filter = ata_acpi_gtf_filter;
5405 #endif
5406 ata_dev_init(dev);
5407 }
5408 }
5409
5410 /**
5411 * sata_link_init_spd - Initialize link->sata_spd_limit
5412 * @link: Link to configure sata_spd_limit for
5413 *
5414 * Initialize ``link->[hw_]sata_spd_limit`` to the currently
5415 * configured value.
5416 *
5417 * LOCKING:
5418 * Kernel thread context (may sleep).
5419 *
5420 * RETURNS:
5421 * 0 on success, -errno on failure.
5422 */
sata_link_init_spd(struct ata_link * link)5423 int sata_link_init_spd(struct ata_link *link)
5424 {
5425 u8 spd;
5426 int rc;
5427
5428 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5429 if (rc)
5430 return rc;
5431
5432 spd = (link->saved_scontrol >> 4) & 0xf;
5433 if (spd)
5434 link->hw_sata_spd_limit &= (1 << spd) - 1;
5435
5436 ata_force_link_limits(link);
5437
5438 link->sata_spd_limit = link->hw_sata_spd_limit;
5439
5440 return 0;
5441 }
5442
5443 /**
5444 * ata_port_alloc - allocate and initialize basic ATA port resources
5445 * @host: ATA host this allocated port belongs to
5446 *
5447 * Allocate and initialize basic ATA port resources.
5448 *
5449 * RETURNS:
5450 * Allocate ATA port on success, NULL on failure.
5451 *
5452 * LOCKING:
5453 * Inherited from calling layer (may sleep).
5454 */
ata_port_alloc(struct ata_host * host)5455 struct ata_port *ata_port_alloc(struct ata_host *host)
5456 {
5457 struct ata_port *ap;
5458 int id;
5459
5460 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5461 if (!ap)
5462 return NULL;
5463
5464 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5465 ap->lock = &host->lock;
5466 id = ida_alloc_min(&ata_ida, 1, GFP_KERNEL);
5467 if (id < 0) {
5468 kfree(ap);
5469 return NULL;
5470 }
5471 ap->print_id = id;
5472 ap->host = host;
5473 ap->dev = host->dev;
5474
5475 mutex_init(&ap->scsi_scan_mutex);
5476 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5477 INIT_DELAYED_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5478 INIT_LIST_HEAD(&ap->eh_done_q);
5479 init_waitqueue_head(&ap->eh_wait_q);
5480 init_completion(&ap->park_req_pending);
5481 timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
5482 TIMER_DEFERRABLE);
5483
5484 ap->cbl = ATA_CBL_NONE;
5485
5486 ata_link_init(ap, &ap->link, 0);
5487
5488 #ifdef ATA_IRQ_TRAP
5489 ap->stats.unhandled_irq = 1;
5490 ap->stats.idle_irq = 1;
5491 #endif
5492 ata_sff_port_init(ap);
5493
5494 ata_force_pflags(ap);
5495
5496 return ap;
5497 }
5498 EXPORT_SYMBOL_GPL(ata_port_alloc);
5499
ata_port_free(struct ata_port * ap)5500 void ata_port_free(struct ata_port *ap)
5501 {
5502 if (!ap)
5503 return;
5504
5505 kfree(ap->pmp_link);
5506 kfree(ap->slave_link);
5507 ida_free(&ata_ida, ap->print_id);
5508 kfree(ap);
5509 }
5510 EXPORT_SYMBOL_GPL(ata_port_free);
5511
ata_devres_release(struct device * gendev,void * res)5512 static void ata_devres_release(struct device *gendev, void *res)
5513 {
5514 struct ata_host *host = dev_get_drvdata(gendev);
5515 int i;
5516
5517 for (i = 0; i < host->n_ports; i++) {
5518 struct ata_port *ap = host->ports[i];
5519
5520 if (!ap)
5521 continue;
5522
5523 if (ap->scsi_host)
5524 scsi_host_put(ap->scsi_host);
5525
5526 }
5527
5528 dev_set_drvdata(gendev, NULL);
5529 ata_host_put(host);
5530 }
5531
ata_host_release(struct kref * kref)5532 static void ata_host_release(struct kref *kref)
5533 {
5534 struct ata_host *host = container_of(kref, struct ata_host, kref);
5535 int i;
5536
5537 for (i = 0; i < host->n_ports; i++) {
5538 ata_port_free(host->ports[i]);
5539 host->ports[i] = NULL;
5540 }
5541 kfree(host);
5542 }
5543
ata_host_get(struct ata_host * host)5544 void ata_host_get(struct ata_host *host)
5545 {
5546 kref_get(&host->kref);
5547 }
5548
ata_host_put(struct ata_host * host)5549 void ata_host_put(struct ata_host *host)
5550 {
5551 kref_put(&host->kref, ata_host_release);
5552 }
5553 EXPORT_SYMBOL_GPL(ata_host_put);
5554
5555 /**
5556 * ata_host_alloc - allocate and init basic ATA host resources
5557 * @dev: generic device this host is associated with
5558 * @n_ports: the number of ATA ports associated with this host
5559 *
5560 * Allocate and initialize basic ATA host resources. LLD calls
5561 * this function to allocate a host, initializes it fully and
5562 * attaches it using ata_host_register().
5563 *
5564 * RETURNS:
5565 * Allocate ATA host on success, NULL on failure.
5566 *
5567 * LOCKING:
5568 * Inherited from calling layer (may sleep).
5569 */
ata_host_alloc(struct device * dev,int n_ports)5570 struct ata_host *ata_host_alloc(struct device *dev, int n_ports)
5571 {
5572 struct ata_host *host;
5573 size_t sz;
5574 int i;
5575 void *dr;
5576
5577 /* alloc a container for our list of ATA ports (buses) */
5578 sz = sizeof(struct ata_host) + n_ports * sizeof(void *);
5579 host = kzalloc(sz, GFP_KERNEL);
5580 if (!host)
5581 return NULL;
5582
5583 if (!devres_open_group(dev, NULL, GFP_KERNEL)) {
5584 kfree(host);
5585 return NULL;
5586 }
5587
5588 dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
5589 if (!dr) {
5590 kfree(host);
5591 goto err_out;
5592 }
5593
5594 devres_add(dev, dr);
5595 dev_set_drvdata(dev, host);
5596
5597 spin_lock_init(&host->lock);
5598 mutex_init(&host->eh_mutex);
5599 host->dev = dev;
5600 host->n_ports = n_ports;
5601 kref_init(&host->kref);
5602
5603 /* allocate ports bound to this host */
5604 for (i = 0; i < n_ports; i++) {
5605 struct ata_port *ap;
5606
5607 ap = ata_port_alloc(host);
5608 if (!ap)
5609 goto err_out;
5610
5611 ap->port_no = i;
5612 host->ports[i] = ap;
5613 }
5614
5615 devres_remove_group(dev, NULL);
5616 return host;
5617
5618 err_out:
5619 devres_release_group(dev, NULL);
5620 return NULL;
5621 }
5622 EXPORT_SYMBOL_GPL(ata_host_alloc);
5623
5624 /**
5625 * ata_host_alloc_pinfo - alloc host and init with port_info array
5626 * @dev: generic device this host is associated with
5627 * @ppi: array of ATA port_info to initialize host with
5628 * @n_ports: number of ATA ports attached to this host
5629 *
5630 * Allocate ATA host and initialize with info from @ppi. If NULL
5631 * terminated, @ppi may contain fewer entries than @n_ports. The
5632 * last entry will be used for the remaining ports.
5633 *
5634 * RETURNS:
5635 * Allocate ATA host on success, NULL on failure.
5636 *
5637 * LOCKING:
5638 * Inherited from calling layer (may sleep).
5639 */
ata_host_alloc_pinfo(struct device * dev,const struct ata_port_info * const * ppi,int n_ports)5640 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5641 const struct ata_port_info * const * ppi,
5642 int n_ports)
5643 {
5644 const struct ata_port_info *pi = &ata_dummy_port_info;
5645 struct ata_host *host;
5646 int i, j;
5647
5648 host = ata_host_alloc(dev, n_ports);
5649 if (!host)
5650 return NULL;
5651
5652 for (i = 0, j = 0; i < host->n_ports; i++) {
5653 struct ata_port *ap = host->ports[i];
5654
5655 if (ppi[j])
5656 pi = ppi[j++];
5657
5658 ap->pio_mask = pi->pio_mask;
5659 ap->mwdma_mask = pi->mwdma_mask;
5660 ap->udma_mask = pi->udma_mask;
5661 ap->flags |= pi->flags;
5662 ap->link.flags |= pi->link_flags;
5663 ap->ops = pi->port_ops;
5664
5665 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5666 host->ops = pi->port_ops;
5667 }
5668
5669 return host;
5670 }
5671 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
5672
ata_host_stop(struct device * gendev,void * res)5673 static void ata_host_stop(struct device *gendev, void *res)
5674 {
5675 struct ata_host *host = dev_get_drvdata(gendev);
5676 int i;
5677
5678 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5679
5680 for (i = 0; i < host->n_ports; i++) {
5681 struct ata_port *ap = host->ports[i];
5682
5683 if (ap->ops->port_stop)
5684 ap->ops->port_stop(ap);
5685 }
5686
5687 if (host->ops->host_stop)
5688 host->ops->host_stop(host);
5689 }
5690
5691 /**
5692 * ata_finalize_port_ops - finalize ata_port_operations
5693 * @ops: ata_port_operations to finalize
5694 *
5695 * An ata_port_operations can inherit from another ops and that
5696 * ops can again inherit from another. This can go on as many
5697 * times as necessary as long as there is no loop in the
5698 * inheritance chain.
5699 *
5700 * Ops tables are finalized when the host is started. NULL or
5701 * unspecified entries are inherited from the closet ancestor
5702 * which has the method and the entry is populated with it.
5703 * After finalization, the ops table directly points to all the
5704 * methods and ->inherits is no longer necessary and cleared.
5705 *
5706 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5707 *
5708 * LOCKING:
5709 * None.
5710 */
ata_finalize_port_ops(struct ata_port_operations * ops)5711 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5712 {
5713 static DEFINE_SPINLOCK(lock);
5714 const struct ata_port_operations *cur;
5715 void **begin = (void **)ops;
5716 void **end = (void **)&ops->inherits;
5717 void **pp;
5718
5719 if (!ops || !ops->inherits)
5720 return;
5721
5722 spin_lock(&lock);
5723
5724 for (cur = ops->inherits; cur; cur = cur->inherits) {
5725 void **inherit = (void **)cur;
5726
5727 for (pp = begin; pp < end; pp++, inherit++)
5728 if (!*pp)
5729 *pp = *inherit;
5730 }
5731
5732 for (pp = begin; pp < end; pp++)
5733 if (IS_ERR(*pp))
5734 *pp = NULL;
5735
5736 ops->inherits = NULL;
5737
5738 spin_unlock(&lock);
5739 }
5740
5741 /**
5742 * ata_host_start - start and freeze ports of an ATA host
5743 * @host: ATA host to start ports for
5744 *
5745 * Start and then freeze ports of @host. Started status is
5746 * recorded in host->flags, so this function can be called
5747 * multiple times. Ports are guaranteed to get started only
5748 * once. If host->ops is not initialized yet, it is set to the
5749 * first non-dummy port ops.
5750 *
5751 * LOCKING:
5752 * Inherited from calling layer (may sleep).
5753 *
5754 * RETURNS:
5755 * 0 if all ports are started successfully, -errno otherwise.
5756 */
ata_host_start(struct ata_host * host)5757 int ata_host_start(struct ata_host *host)
5758 {
5759 int have_stop = 0;
5760 void *start_dr = NULL;
5761 int i, rc;
5762
5763 if (host->flags & ATA_HOST_STARTED)
5764 return 0;
5765
5766 ata_finalize_port_ops(host->ops);
5767
5768 for (i = 0; i < host->n_ports; i++) {
5769 struct ata_port *ap = host->ports[i];
5770
5771 ata_finalize_port_ops(ap->ops);
5772
5773 if (!host->ops && !ata_port_is_dummy(ap))
5774 host->ops = ap->ops;
5775
5776 if (ap->ops->port_stop)
5777 have_stop = 1;
5778 }
5779
5780 if (host->ops && host->ops->host_stop)
5781 have_stop = 1;
5782
5783 if (have_stop) {
5784 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5785 if (!start_dr)
5786 return -ENOMEM;
5787 }
5788
5789 for (i = 0; i < host->n_ports; i++) {
5790 struct ata_port *ap = host->ports[i];
5791
5792 if (ap->ops->port_start) {
5793 rc = ap->ops->port_start(ap);
5794 if (rc) {
5795 if (rc != -ENODEV)
5796 dev_err(host->dev,
5797 "failed to start port %d (errno=%d)\n",
5798 i, rc);
5799 goto err_out;
5800 }
5801 }
5802 ata_eh_freeze_port(ap);
5803 }
5804
5805 if (start_dr)
5806 devres_add(host->dev, start_dr);
5807 host->flags |= ATA_HOST_STARTED;
5808 return 0;
5809
5810 err_out:
5811 while (--i >= 0) {
5812 struct ata_port *ap = host->ports[i];
5813
5814 if (ap->ops->port_stop)
5815 ap->ops->port_stop(ap);
5816 }
5817 devres_free(start_dr);
5818 return rc;
5819 }
5820 EXPORT_SYMBOL_GPL(ata_host_start);
5821
5822 /**
5823 * ata_host_init - Initialize a host struct for sas (ipr, libsas)
5824 * @host: host to initialize
5825 * @dev: device host is attached to
5826 * @ops: port_ops
5827 *
5828 */
ata_host_init(struct ata_host * host,struct device * dev,struct ata_port_operations * ops)5829 void ata_host_init(struct ata_host *host, struct device *dev,
5830 struct ata_port_operations *ops)
5831 {
5832 spin_lock_init(&host->lock);
5833 mutex_init(&host->eh_mutex);
5834 host->n_tags = ATA_MAX_QUEUE;
5835 host->dev = dev;
5836 host->ops = ops;
5837 kref_init(&host->kref);
5838 }
5839 EXPORT_SYMBOL_GPL(ata_host_init);
5840
ata_port_probe(struct ata_port * ap)5841 void ata_port_probe(struct ata_port *ap)
5842 {
5843 struct ata_eh_info *ehi = &ap->link.eh_info;
5844 unsigned long flags;
5845
5846 /* kick EH for boot probing */
5847 spin_lock_irqsave(ap->lock, flags);
5848
5849 ehi->probe_mask |= ATA_ALL_DEVICES;
5850 ehi->action |= ATA_EH_RESET;
5851 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5852
5853 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5854 ap->pflags |= ATA_PFLAG_LOADING;
5855 ata_port_schedule_eh(ap);
5856
5857 spin_unlock_irqrestore(ap->lock, flags);
5858 }
5859 EXPORT_SYMBOL_GPL(ata_port_probe);
5860
async_port_probe(void * data,async_cookie_t cookie)5861 static void async_port_probe(void *data, async_cookie_t cookie)
5862 {
5863 struct ata_port *ap = data;
5864
5865 /*
5866 * If we're not allowed to scan this host in parallel,
5867 * we need to wait until all previous scans have completed
5868 * before going further.
5869 * Jeff Garzik says this is only within a controller, so we
5870 * don't need to wait for port 0, only for later ports.
5871 */
5872 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5873 async_synchronize_cookie(cookie);
5874
5875 ata_port_probe(ap);
5876 ata_port_wait_eh(ap);
5877
5878 /* in order to keep device order, we need to synchronize at this point */
5879 async_synchronize_cookie(cookie);
5880
5881 ata_scsi_scan_host(ap, 1);
5882 }
5883
5884 /**
5885 * ata_host_register - register initialized ATA host
5886 * @host: ATA host to register
5887 * @sht: template for SCSI host
5888 *
5889 * Register initialized ATA host. @host is allocated using
5890 * ata_host_alloc() and fully initialized by LLD. This function
5891 * starts ports, registers @host with ATA and SCSI layers and
5892 * probe registered devices.
5893 *
5894 * LOCKING:
5895 * Inherited from calling layer (may sleep).
5896 *
5897 * RETURNS:
5898 * 0 on success, -errno otherwise.
5899 */
ata_host_register(struct ata_host * host,const struct scsi_host_template * sht)5900 int ata_host_register(struct ata_host *host, const struct scsi_host_template *sht)
5901 {
5902 int i, rc;
5903
5904 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE);
5905
5906 /* host must have been started */
5907 if (!(host->flags & ATA_HOST_STARTED)) {
5908 dev_err(host->dev, "BUG: trying to register unstarted host\n");
5909 WARN_ON(1);
5910 return -EINVAL;
5911 }
5912
5913 /* Create associated sysfs transport objects */
5914 for (i = 0; i < host->n_ports; i++) {
5915 rc = ata_tport_add(host->dev,host->ports[i]);
5916 if (rc) {
5917 goto err_tadd;
5918 }
5919 }
5920
5921 rc = ata_scsi_add_hosts(host, sht);
5922 if (rc)
5923 goto err_tadd;
5924
5925 /* set cable, sata_spd_limit and report */
5926 for (i = 0; i < host->n_ports; i++) {
5927 struct ata_port *ap = host->ports[i];
5928 unsigned int xfer_mask;
5929
5930 /* set SATA cable type if still unset */
5931 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5932 ap->cbl = ATA_CBL_SATA;
5933
5934 /* init sata_spd_limit to the current value */
5935 sata_link_init_spd(&ap->link);
5936 if (ap->slave_link)
5937 sata_link_init_spd(ap->slave_link);
5938
5939 /* print per-port info to dmesg */
5940 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
5941 ap->udma_mask);
5942
5943 if (!ata_port_is_dummy(ap)) {
5944 ata_port_info(ap, "%cATA max %s %s\n",
5945 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
5946 ata_mode_string(xfer_mask),
5947 ap->link.eh_info.desc);
5948 ata_ehi_clear_desc(&ap->link.eh_info);
5949 } else
5950 ata_port_info(ap, "DUMMY\n");
5951 }
5952
5953 /* perform each probe asynchronously */
5954 for (i = 0; i < host->n_ports; i++) {
5955 struct ata_port *ap = host->ports[i];
5956 ap->cookie = async_schedule(async_port_probe, ap);
5957 }
5958
5959 return 0;
5960
5961 err_tadd:
5962 while (--i >= 0) {
5963 ata_tport_delete(host->ports[i]);
5964 }
5965 return rc;
5966
5967 }
5968 EXPORT_SYMBOL_GPL(ata_host_register);
5969
5970 /**
5971 * ata_host_activate - start host, request IRQ and register it
5972 * @host: target ATA host
5973 * @irq: IRQ to request
5974 * @irq_handler: irq_handler used when requesting IRQ
5975 * @irq_flags: irq_flags used when requesting IRQ
5976 * @sht: scsi_host_template to use when registering the host
5977 *
5978 * After allocating an ATA host and initializing it, most libata
5979 * LLDs perform three steps to activate the host - start host,
5980 * request IRQ and register it. This helper takes necessary
5981 * arguments and performs the three steps in one go.
5982 *
5983 * An invalid IRQ skips the IRQ registration and expects the host to
5984 * have set polling mode on the port. In this case, @irq_handler
5985 * should be NULL.
5986 *
5987 * LOCKING:
5988 * Inherited from calling layer (may sleep).
5989 *
5990 * RETURNS:
5991 * 0 on success, -errno otherwise.
5992 */
ata_host_activate(struct ata_host * host,int irq,irq_handler_t irq_handler,unsigned long irq_flags,const struct scsi_host_template * sht)5993 int ata_host_activate(struct ata_host *host, int irq,
5994 irq_handler_t irq_handler, unsigned long irq_flags,
5995 const struct scsi_host_template *sht)
5996 {
5997 int i, rc;
5998 char *irq_desc;
5999
6000 rc = ata_host_start(host);
6001 if (rc)
6002 return rc;
6003
6004 /* Special case for polling mode */
6005 if (!irq) {
6006 WARN_ON(irq_handler);
6007 return ata_host_register(host, sht);
6008 }
6009
6010 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
6011 dev_driver_string(host->dev),
6012 dev_name(host->dev));
6013 if (!irq_desc)
6014 return -ENOMEM;
6015
6016 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6017 irq_desc, host);
6018 if (rc)
6019 return rc;
6020
6021 for (i = 0; i < host->n_ports; i++)
6022 ata_port_desc_misc(host->ports[i], irq);
6023
6024 rc = ata_host_register(host, sht);
6025 /* if failed, just free the IRQ and leave ports alone */
6026 if (rc)
6027 devm_free_irq(host->dev, irq, host);
6028
6029 return rc;
6030 }
6031 EXPORT_SYMBOL_GPL(ata_host_activate);
6032
6033 /**
6034 * ata_dev_free_resources - Free a device resources
6035 * @dev: Target ATA device
6036 *
6037 * Free resources allocated to support a device features.
6038 *
6039 * LOCKING:
6040 * Kernel thread context (may sleep).
6041 */
ata_dev_free_resources(struct ata_device * dev)6042 void ata_dev_free_resources(struct ata_device *dev)
6043 {
6044 if (zpodd_dev_enabled(dev))
6045 zpodd_exit(dev);
6046
6047 ata_dev_cleanup_cdl_resources(dev);
6048 }
6049
6050 /**
6051 * ata_port_detach - Detach ATA port in preparation of device removal
6052 * @ap: ATA port to be detached
6053 *
6054 * Detach all ATA devices and the associated SCSI devices of @ap;
6055 * then, remove the associated SCSI host. @ap is guaranteed to
6056 * be quiescent on return from this function.
6057 *
6058 * LOCKING:
6059 * Kernel thread context (may sleep).
6060 */
ata_port_detach(struct ata_port * ap)6061 static void ata_port_detach(struct ata_port *ap)
6062 {
6063 unsigned long flags;
6064 struct ata_link *link;
6065 struct ata_device *dev;
6066
6067 /* Ensure ata_port probe has completed */
6068 async_synchronize_cookie(ap->cookie + 1);
6069
6070 /* Wait for any ongoing EH */
6071 ata_port_wait_eh(ap);
6072
6073 mutex_lock(&ap->scsi_scan_mutex);
6074 spin_lock_irqsave(ap->lock, flags);
6075
6076 /* Remove scsi devices */
6077 ata_for_each_link(link, ap, HOST_FIRST) {
6078 ata_for_each_dev(dev, link, ALL) {
6079 if (dev->sdev) {
6080 spin_unlock_irqrestore(ap->lock, flags);
6081 scsi_remove_device(dev->sdev);
6082 spin_lock_irqsave(ap->lock, flags);
6083 dev->sdev = NULL;
6084 }
6085 }
6086 }
6087
6088 /* Tell EH to disable all devices */
6089 ap->pflags |= ATA_PFLAG_UNLOADING;
6090 ata_port_schedule_eh(ap);
6091
6092 spin_unlock_irqrestore(ap->lock, flags);
6093 mutex_unlock(&ap->scsi_scan_mutex);
6094
6095 /* wait till EH commits suicide */
6096 ata_port_wait_eh(ap);
6097
6098 /* it better be dead now */
6099 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6100
6101 cancel_delayed_work_sync(&ap->hotplug_task);
6102 cancel_delayed_work_sync(&ap->scsi_rescan_task);
6103
6104 /* Delete port multiplier link transport devices */
6105 if (ap->pmp_link) {
6106 int i;
6107
6108 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6109 ata_tlink_delete(&ap->pmp_link[i]);
6110 }
6111
6112 /* Remove the associated SCSI host */
6113 scsi_remove_host(ap->scsi_host);
6114 ata_tport_delete(ap);
6115 }
6116
6117 /**
6118 * ata_host_detach - Detach all ports of an ATA host
6119 * @host: Host to detach
6120 *
6121 * Detach all ports of @host.
6122 *
6123 * LOCKING:
6124 * Kernel thread context (may sleep).
6125 */
ata_host_detach(struct ata_host * host)6126 void ata_host_detach(struct ata_host *host)
6127 {
6128 int i;
6129
6130 for (i = 0; i < host->n_ports; i++)
6131 ata_port_detach(host->ports[i]);
6132
6133 /* the host is dead now, dissociate ACPI */
6134 ata_acpi_dissociate(host);
6135 }
6136 EXPORT_SYMBOL_GPL(ata_host_detach);
6137
6138 #ifdef CONFIG_PCI
6139
6140 /**
6141 * ata_pci_remove_one - PCI layer callback for device removal
6142 * @pdev: PCI device that was removed
6143 *
6144 * PCI layer indicates to libata via this hook that hot-unplug or
6145 * module unload event has occurred. Detach all ports. Resource
6146 * release is handled via devres.
6147 *
6148 * LOCKING:
6149 * Inherited from PCI layer (may sleep).
6150 */
ata_pci_remove_one(struct pci_dev * pdev)6151 void ata_pci_remove_one(struct pci_dev *pdev)
6152 {
6153 struct ata_host *host = pci_get_drvdata(pdev);
6154
6155 ata_host_detach(host);
6156 }
6157 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6158
ata_pci_shutdown_one(struct pci_dev * pdev)6159 void ata_pci_shutdown_one(struct pci_dev *pdev)
6160 {
6161 struct ata_host *host = pci_get_drvdata(pdev);
6162 int i;
6163
6164 for (i = 0; i < host->n_ports; i++) {
6165 struct ata_port *ap = host->ports[i];
6166
6167 ap->pflags |= ATA_PFLAG_FROZEN;
6168
6169 /* Disable port interrupts */
6170 if (ap->ops->freeze)
6171 ap->ops->freeze(ap);
6172
6173 /* Stop the port DMA engines */
6174 if (ap->ops->port_stop)
6175 ap->ops->port_stop(ap);
6176 }
6177 }
6178 EXPORT_SYMBOL_GPL(ata_pci_shutdown_one);
6179
6180 /* move to PCI subsystem */
pci_test_config_bits(struct pci_dev * pdev,const struct pci_bits * bits)6181 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6182 {
6183 unsigned long tmp = 0;
6184
6185 switch (bits->width) {
6186 case 1: {
6187 u8 tmp8 = 0;
6188 pci_read_config_byte(pdev, bits->reg, &tmp8);
6189 tmp = tmp8;
6190 break;
6191 }
6192 case 2: {
6193 u16 tmp16 = 0;
6194 pci_read_config_word(pdev, bits->reg, &tmp16);
6195 tmp = tmp16;
6196 break;
6197 }
6198 case 4: {
6199 u32 tmp32 = 0;
6200 pci_read_config_dword(pdev, bits->reg, &tmp32);
6201 tmp = tmp32;
6202 break;
6203 }
6204
6205 default:
6206 return -EINVAL;
6207 }
6208
6209 tmp &= bits->mask;
6210
6211 return (tmp == bits->val) ? 1 : 0;
6212 }
6213 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6214
6215 #ifdef CONFIG_PM
ata_pci_device_do_suspend(struct pci_dev * pdev,pm_message_t mesg)6216 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6217 {
6218 pci_save_state(pdev);
6219 pci_disable_device(pdev);
6220
6221 if (mesg.event & PM_EVENT_SLEEP)
6222 pci_set_power_state(pdev, PCI_D3hot);
6223 }
6224 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6225
ata_pci_device_do_resume(struct pci_dev * pdev)6226 int ata_pci_device_do_resume(struct pci_dev *pdev)
6227 {
6228 int rc;
6229
6230 pci_set_power_state(pdev, PCI_D0);
6231 pci_restore_state(pdev);
6232
6233 rc = pcim_enable_device(pdev);
6234 if (rc) {
6235 dev_err(&pdev->dev,
6236 "failed to enable device after resume (%d)\n", rc);
6237 return rc;
6238 }
6239
6240 pci_set_master(pdev);
6241 return 0;
6242 }
6243 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6244
ata_pci_device_suspend(struct pci_dev * pdev,pm_message_t mesg)6245 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6246 {
6247 struct ata_host *host = pci_get_drvdata(pdev);
6248
6249 ata_host_suspend(host, mesg);
6250
6251 ata_pci_device_do_suspend(pdev, mesg);
6252
6253 return 0;
6254 }
6255 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6256
ata_pci_device_resume(struct pci_dev * pdev)6257 int ata_pci_device_resume(struct pci_dev *pdev)
6258 {
6259 struct ata_host *host = pci_get_drvdata(pdev);
6260 int rc;
6261
6262 rc = ata_pci_device_do_resume(pdev);
6263 if (rc == 0)
6264 ata_host_resume(host);
6265 return rc;
6266 }
6267 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6268 #endif /* CONFIG_PM */
6269 #endif /* CONFIG_PCI */
6270
6271 /**
6272 * ata_platform_remove_one - Platform layer callback for device removal
6273 * @pdev: Platform device that was removed
6274 *
6275 * Platform layer indicates to libata via this hook that hot-unplug or
6276 * module unload event has occurred. Detach all ports. Resource
6277 * release is handled via devres.
6278 *
6279 * LOCKING:
6280 * Inherited from platform layer (may sleep).
6281 */
ata_platform_remove_one(struct platform_device * pdev)6282 void ata_platform_remove_one(struct platform_device *pdev)
6283 {
6284 struct ata_host *host = platform_get_drvdata(pdev);
6285
6286 ata_host_detach(host);
6287 }
6288 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6289
6290 #ifdef CONFIG_ATA_FORCE
6291
6292 #define force_cbl(name, flag) \
6293 { #name, .cbl = (flag) }
6294
6295 #define force_spd_limit(spd, val) \
6296 { #spd, .spd_limit = (val) }
6297
6298 #define force_xfer(mode, shift) \
6299 { #mode, .xfer_mask = (1UL << (shift)) }
6300
6301 #define force_lflag_on(name, flags) \
6302 { #name, .lflags_on = (flags) }
6303
6304 #define force_lflag_onoff(name, flags) \
6305 { "no" #name, .lflags_on = (flags) }, \
6306 { #name, .lflags_off = (flags) }
6307
6308 #define force_pflag_on(name, flags) \
6309 { #name, .pflags_on = (flags) }
6310
6311 #define force_quirk_on(name, flag) \
6312 { #name, .quirk_on = (flag) }
6313
6314 #define force_quirk_onoff(name, flag) \
6315 { "no" #name, .quirk_on = (flag) }, \
6316 { #name, .quirk_off = (flag) }
6317
6318 static const struct ata_force_param force_tbl[] __initconst = {
6319 force_cbl(40c, ATA_CBL_PATA40),
6320 force_cbl(80c, ATA_CBL_PATA80),
6321 force_cbl(short40c, ATA_CBL_PATA40_SHORT),
6322 force_cbl(unk, ATA_CBL_PATA_UNK),
6323 force_cbl(ign, ATA_CBL_PATA_IGN),
6324 force_cbl(sata, ATA_CBL_SATA),
6325
6326 force_spd_limit(1.5Gbps, 1),
6327 force_spd_limit(3.0Gbps, 2),
6328
6329 force_xfer(pio0, ATA_SHIFT_PIO + 0),
6330 force_xfer(pio1, ATA_SHIFT_PIO + 1),
6331 force_xfer(pio2, ATA_SHIFT_PIO + 2),
6332 force_xfer(pio3, ATA_SHIFT_PIO + 3),
6333 force_xfer(pio4, ATA_SHIFT_PIO + 4),
6334 force_xfer(pio5, ATA_SHIFT_PIO + 5),
6335 force_xfer(pio6, ATA_SHIFT_PIO + 6),
6336 force_xfer(mwdma0, ATA_SHIFT_MWDMA + 0),
6337 force_xfer(mwdma1, ATA_SHIFT_MWDMA + 1),
6338 force_xfer(mwdma2, ATA_SHIFT_MWDMA + 2),
6339 force_xfer(mwdma3, ATA_SHIFT_MWDMA + 3),
6340 force_xfer(mwdma4, ATA_SHIFT_MWDMA + 4),
6341 force_xfer(udma0, ATA_SHIFT_UDMA + 0),
6342 force_xfer(udma16, ATA_SHIFT_UDMA + 0),
6343 force_xfer(udma/16, ATA_SHIFT_UDMA + 0),
6344 force_xfer(udma1, ATA_SHIFT_UDMA + 1),
6345 force_xfer(udma25, ATA_SHIFT_UDMA + 1),
6346 force_xfer(udma/25, ATA_SHIFT_UDMA + 1),
6347 force_xfer(udma2, ATA_SHIFT_UDMA + 2),
6348 force_xfer(udma33, ATA_SHIFT_UDMA + 2),
6349 force_xfer(udma/33, ATA_SHIFT_UDMA + 2),
6350 force_xfer(udma3, ATA_SHIFT_UDMA + 3),
6351 force_xfer(udma44, ATA_SHIFT_UDMA + 3),
6352 force_xfer(udma/44, ATA_SHIFT_UDMA + 3),
6353 force_xfer(udma4, ATA_SHIFT_UDMA + 4),
6354 force_xfer(udma66, ATA_SHIFT_UDMA + 4),
6355 force_xfer(udma/66, ATA_SHIFT_UDMA + 4),
6356 force_xfer(udma5, ATA_SHIFT_UDMA + 5),
6357 force_xfer(udma100, ATA_SHIFT_UDMA + 5),
6358 force_xfer(udma/100, ATA_SHIFT_UDMA + 5),
6359 force_xfer(udma6, ATA_SHIFT_UDMA + 6),
6360 force_xfer(udma133, ATA_SHIFT_UDMA + 6),
6361 force_xfer(udma/133, ATA_SHIFT_UDMA + 6),
6362 force_xfer(udma7, ATA_SHIFT_UDMA + 7),
6363
6364 force_lflag_on(nohrst, ATA_LFLAG_NO_HRST),
6365 force_lflag_on(nosrst, ATA_LFLAG_NO_SRST),
6366 force_lflag_on(norst, ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST),
6367 force_lflag_on(rstonce, ATA_LFLAG_RST_ONCE),
6368 force_lflag_onoff(dbdelay, ATA_LFLAG_NO_DEBOUNCE_DELAY),
6369
6370 force_pflag_on(external, ATA_PFLAG_EXTERNAL),
6371
6372 force_quirk_onoff(ncq, ATA_QUIRK_NONCQ),
6373 force_quirk_onoff(ncqtrim, ATA_QUIRK_NO_NCQ_TRIM),
6374 force_quirk_onoff(ncqati, ATA_QUIRK_NO_NCQ_ON_ATI),
6375
6376 force_quirk_onoff(trim, ATA_QUIRK_NOTRIM),
6377 force_quirk_on(trim_zero, ATA_QUIRK_ZERO_AFTER_TRIM),
6378 force_quirk_on(max_trim_128m, ATA_QUIRK_MAX_TRIM_128M),
6379
6380 force_quirk_onoff(dma, ATA_QUIRK_NODMA),
6381 force_quirk_on(atapi_dmadir, ATA_QUIRK_ATAPI_DMADIR),
6382 force_quirk_on(atapi_mod16_dma, ATA_QUIRK_ATAPI_MOD16_DMA),
6383
6384 force_quirk_onoff(dmalog, ATA_QUIRK_NO_DMA_LOG),
6385 force_quirk_onoff(iddevlog, ATA_QUIRK_NO_ID_DEV_LOG),
6386 force_quirk_onoff(logdir, ATA_QUIRK_NO_LOG_DIR),
6387
6388 force_quirk_on(max_sec_128, ATA_QUIRK_MAX_SEC_128),
6389 force_quirk_on(max_sec_1024, ATA_QUIRK_MAX_SEC_1024),
6390 force_quirk_on(max_sec_lba48, ATA_QUIRK_MAX_SEC_LBA48),
6391
6392 force_quirk_onoff(lpm, ATA_QUIRK_NOLPM),
6393 force_quirk_onoff(setxfer, ATA_QUIRK_NOSETXFER),
6394 force_quirk_on(dump_id, ATA_QUIRK_DUMP_ID),
6395 force_quirk_onoff(fua, ATA_QUIRK_NO_FUA),
6396
6397 force_quirk_on(disable, ATA_QUIRK_DISABLE),
6398 };
6399
ata_parse_force_one(char ** cur,struct ata_force_ent * force_ent,const char ** reason)6400 static int __init ata_parse_force_one(char **cur,
6401 struct ata_force_ent *force_ent,
6402 const char **reason)
6403 {
6404 char *start = *cur, *p = *cur;
6405 char *id, *val, *endp;
6406 const struct ata_force_param *match_fp = NULL;
6407 int nr_matches = 0, i;
6408
6409 /* find where this param ends and update *cur */
6410 while (*p != '\0' && *p != ',')
6411 p++;
6412
6413 if (*p == '\0')
6414 *cur = p;
6415 else
6416 *cur = p + 1;
6417
6418 *p = '\0';
6419
6420 /* parse */
6421 p = strchr(start, ':');
6422 if (!p) {
6423 val = strstrip(start);
6424 goto parse_val;
6425 }
6426 *p = '\0';
6427
6428 id = strstrip(start);
6429 val = strstrip(p + 1);
6430
6431 /* parse id */
6432 p = strchr(id, '.');
6433 if (p) {
6434 *p++ = '\0';
6435 force_ent->device = simple_strtoul(p, &endp, 10);
6436 if (p == endp || *endp != '\0') {
6437 *reason = "invalid device";
6438 return -EINVAL;
6439 }
6440 }
6441
6442 force_ent->port = simple_strtoul(id, &endp, 10);
6443 if (id == endp || *endp != '\0') {
6444 *reason = "invalid port/link";
6445 return -EINVAL;
6446 }
6447
6448 parse_val:
6449 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6450 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6451 const struct ata_force_param *fp = &force_tbl[i];
6452
6453 if (strncasecmp(val, fp->name, strlen(val)))
6454 continue;
6455
6456 nr_matches++;
6457 match_fp = fp;
6458
6459 if (strcasecmp(val, fp->name) == 0) {
6460 nr_matches = 1;
6461 break;
6462 }
6463 }
6464
6465 if (!nr_matches) {
6466 *reason = "unknown value";
6467 return -EINVAL;
6468 }
6469 if (nr_matches > 1) {
6470 *reason = "ambiguous value";
6471 return -EINVAL;
6472 }
6473
6474 force_ent->param = *match_fp;
6475
6476 return 0;
6477 }
6478
ata_parse_force_param(void)6479 static void __init ata_parse_force_param(void)
6480 {
6481 int idx = 0, size = 1;
6482 int last_port = -1, last_device = -1;
6483 char *p, *cur, *next;
6484
6485 /* Calculate maximum number of params and allocate ata_force_tbl */
6486 for (p = ata_force_param_buf; *p; p++)
6487 if (*p == ',')
6488 size++;
6489
6490 ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL);
6491 if (!ata_force_tbl) {
6492 printk(KERN_WARNING "ata: failed to extend force table, "
6493 "libata.force ignored\n");
6494 return;
6495 }
6496
6497 /* parse and populate the table */
6498 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6499 const char *reason = "";
6500 struct ata_force_ent te = { .port = -1, .device = -1 };
6501
6502 next = cur;
6503 if (ata_parse_force_one(&next, &te, &reason)) {
6504 printk(KERN_WARNING "ata: failed to parse force "
6505 "parameter \"%s\" (%s)\n",
6506 cur, reason);
6507 continue;
6508 }
6509
6510 if (te.port == -1) {
6511 te.port = last_port;
6512 te.device = last_device;
6513 }
6514
6515 ata_force_tbl[idx++] = te;
6516
6517 last_port = te.port;
6518 last_device = te.device;
6519 }
6520
6521 ata_force_tbl_size = idx;
6522 }
6523
ata_free_force_param(void)6524 static void ata_free_force_param(void)
6525 {
6526 kfree(ata_force_tbl);
6527 }
6528 #else
ata_parse_force_param(void)6529 static inline void ata_parse_force_param(void) { }
ata_free_force_param(void)6530 static inline void ata_free_force_param(void) { }
6531 #endif
6532
ata_init(void)6533 static int __init ata_init(void)
6534 {
6535 int rc;
6536
6537 ata_parse_force_param();
6538
6539 rc = ata_sff_init();
6540 if (rc) {
6541 ata_free_force_param();
6542 return rc;
6543 }
6544
6545 libata_transport_init();
6546 ata_scsi_transport_template = ata_attach_transport();
6547 if (!ata_scsi_transport_template) {
6548 ata_sff_exit();
6549 rc = -ENOMEM;
6550 goto err_out;
6551 }
6552
6553 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6554 return 0;
6555
6556 err_out:
6557 return rc;
6558 }
6559
ata_exit(void)6560 static void __exit ata_exit(void)
6561 {
6562 ata_release_transport(ata_scsi_transport_template);
6563 libata_transport_exit();
6564 ata_sff_exit();
6565 ata_free_force_param();
6566 }
6567
6568 subsys_initcall(ata_init);
6569 module_exit(ata_exit);
6570
6571 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6572
ata_ratelimit(void)6573 int ata_ratelimit(void)
6574 {
6575 return __ratelimit(&ratelimit);
6576 }
6577 EXPORT_SYMBOL_GPL(ata_ratelimit);
6578
6579 /**
6580 * ata_msleep - ATA EH owner aware msleep
6581 * @ap: ATA port to attribute the sleep to
6582 * @msecs: duration to sleep in milliseconds
6583 *
6584 * Sleeps @msecs. If the current task is owner of @ap's EH, the
6585 * ownership is released before going to sleep and reacquired
6586 * after the sleep is complete. IOW, other ports sharing the
6587 * @ap->host will be allowed to own the EH while this task is
6588 * sleeping.
6589 *
6590 * LOCKING:
6591 * Might sleep.
6592 */
ata_msleep(struct ata_port * ap,unsigned int msecs)6593 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6594 {
6595 bool owns_eh = ap && ap->host->eh_owner == current;
6596
6597 if (owns_eh)
6598 ata_eh_release(ap);
6599
6600 if (msecs < 20) {
6601 unsigned long usecs = msecs * USEC_PER_MSEC;
6602 usleep_range(usecs, usecs + 50);
6603 } else {
6604 msleep(msecs);
6605 }
6606
6607 if (owns_eh)
6608 ata_eh_acquire(ap);
6609 }
6610 EXPORT_SYMBOL_GPL(ata_msleep);
6611
6612 /**
6613 * ata_wait_register - wait until register value changes
6614 * @ap: ATA port to wait register for, can be NULL
6615 * @reg: IO-mapped register
6616 * @mask: Mask to apply to read register value
6617 * @val: Wait condition
6618 * @interval: polling interval in milliseconds
6619 * @timeout: timeout in milliseconds
6620 *
6621 * Waiting for some bits of register to change is a common
6622 * operation for ATA controllers. This function reads 32bit LE
6623 * IO-mapped register @reg and tests for the following condition.
6624 *
6625 * (*@reg & mask) != val
6626 *
6627 * If the condition is met, it returns; otherwise, the process is
6628 * repeated after @interval_msec until timeout.
6629 *
6630 * LOCKING:
6631 * Kernel thread context (may sleep)
6632 *
6633 * RETURNS:
6634 * The final register value.
6635 */
ata_wait_register(struct ata_port * ap,void __iomem * reg,u32 mask,u32 val,unsigned int interval,unsigned int timeout)6636 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6637 unsigned int interval, unsigned int timeout)
6638 {
6639 unsigned long deadline;
6640 u32 tmp;
6641
6642 tmp = ioread32(reg);
6643
6644 /* Calculate timeout _after_ the first read to make sure
6645 * preceding writes reach the controller before starting to
6646 * eat away the timeout.
6647 */
6648 deadline = ata_deadline(jiffies, timeout);
6649
6650 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6651 ata_msleep(ap, interval);
6652 tmp = ioread32(reg);
6653 }
6654
6655 return tmp;
6656 }
6657 EXPORT_SYMBOL_GPL(ata_wait_register);
6658
6659 /*
6660 * Dummy port_ops
6661 */
ata_dummy_qc_issue(struct ata_queued_cmd * qc)6662 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6663 {
6664 return AC_ERR_SYSTEM;
6665 }
6666
ata_dummy_error_handler(struct ata_port * ap)6667 static void ata_dummy_error_handler(struct ata_port *ap)
6668 {
6669 /* truly dummy */
6670 }
6671
6672 struct ata_port_operations ata_dummy_port_ops = {
6673 .qc_issue = ata_dummy_qc_issue,
6674 .error_handler = ata_dummy_error_handler,
6675 .sched_eh = ata_std_sched_eh,
6676 .end_eh = ata_std_end_eh,
6677 };
6678 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6679
6680 const struct ata_port_info ata_dummy_port_info = {
6681 .port_ops = &ata_dummy_port_ops,
6682 };
6683 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6684
ata_print_version(const struct device * dev,const char * version)6685 void ata_print_version(const struct device *dev, const char *version)
6686 {
6687 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6688 }
6689 EXPORT_SYMBOL(ata_print_version);
6690
6691 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_tf_load);
6692 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_exec_command);
6693 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_setup);
6694 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_start);
6695 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_status);
6696