1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * PCI Peer 2 Peer DMA support.
4 *
5 * Copyright (c) 2016-2018, Logan Gunthorpe
6 * Copyright (c) 2016-2017, Microsemi Corporation
7 * Copyright (c) 2017, Christoph Hellwig
8 * Copyright (c) 2018, Eideticom Inc.
9 */
10
11 #define pr_fmt(fmt) "pci-p2pdma: " fmt
12 #include <linux/ctype.h>
13 #include <linux/dma-map-ops.h>
14 #include <linux/pci-p2pdma.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/genalloc.h>
18 #include <linux/memremap.h>
19 #include <linux/percpu-refcount.h>
20 #include <linux/random.h>
21 #include <linux/seq_buf.h>
22 #include <linux/xarray.h>
23
24 struct pci_p2pdma {
25 struct gen_pool *pool;
26 bool p2pmem_published;
27 struct xarray map_types;
28 };
29
30 struct pci_p2pdma_pagemap {
31 struct pci_dev *provider;
32 u64 bus_offset;
33 struct dev_pagemap pgmap;
34 };
35
to_p2p_pgmap(struct dev_pagemap * pgmap)36 static struct pci_p2pdma_pagemap *to_p2p_pgmap(struct dev_pagemap *pgmap)
37 {
38 return container_of(pgmap, struct pci_p2pdma_pagemap, pgmap);
39 }
40
size_show(struct device * dev,struct device_attribute * attr,char * buf)41 static ssize_t size_show(struct device *dev, struct device_attribute *attr,
42 char *buf)
43 {
44 struct pci_dev *pdev = to_pci_dev(dev);
45 struct pci_p2pdma *p2pdma;
46 size_t size = 0;
47
48 rcu_read_lock();
49 p2pdma = rcu_dereference(pdev->p2pdma);
50 if (p2pdma && p2pdma->pool)
51 size = gen_pool_size(p2pdma->pool);
52 rcu_read_unlock();
53
54 return sysfs_emit(buf, "%zd\n", size);
55 }
56 static DEVICE_ATTR_RO(size);
57
available_show(struct device * dev,struct device_attribute * attr,char * buf)58 static ssize_t available_show(struct device *dev, struct device_attribute *attr,
59 char *buf)
60 {
61 struct pci_dev *pdev = to_pci_dev(dev);
62 struct pci_p2pdma *p2pdma;
63 size_t avail = 0;
64
65 rcu_read_lock();
66 p2pdma = rcu_dereference(pdev->p2pdma);
67 if (p2pdma && p2pdma->pool)
68 avail = gen_pool_avail(p2pdma->pool);
69 rcu_read_unlock();
70
71 return sysfs_emit(buf, "%zd\n", avail);
72 }
73 static DEVICE_ATTR_RO(available);
74
published_show(struct device * dev,struct device_attribute * attr,char * buf)75 static ssize_t published_show(struct device *dev, struct device_attribute *attr,
76 char *buf)
77 {
78 struct pci_dev *pdev = to_pci_dev(dev);
79 struct pci_p2pdma *p2pdma;
80 bool published = false;
81
82 rcu_read_lock();
83 p2pdma = rcu_dereference(pdev->p2pdma);
84 if (p2pdma)
85 published = p2pdma->p2pmem_published;
86 rcu_read_unlock();
87
88 return sysfs_emit(buf, "%d\n", published);
89 }
90 static DEVICE_ATTR_RO(published);
91
p2pmem_alloc_mmap(struct file * filp,struct kobject * kobj,struct bin_attribute * attr,struct vm_area_struct * vma)92 static int p2pmem_alloc_mmap(struct file *filp, struct kobject *kobj,
93 struct bin_attribute *attr, struct vm_area_struct *vma)
94 {
95 struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
96 size_t len = vma->vm_end - vma->vm_start;
97 struct pci_p2pdma *p2pdma;
98 struct percpu_ref *ref;
99 unsigned long vaddr;
100 void *kaddr;
101 int ret;
102
103 /* prevent private mappings from being established */
104 if ((vma->vm_flags & VM_MAYSHARE) != VM_MAYSHARE) {
105 pci_info_ratelimited(pdev,
106 "%s: fail, attempted private mapping\n",
107 current->comm);
108 return -EINVAL;
109 }
110
111 if (vma->vm_pgoff) {
112 pci_info_ratelimited(pdev,
113 "%s: fail, attempted mapping with non-zero offset\n",
114 current->comm);
115 return -EINVAL;
116 }
117
118 rcu_read_lock();
119 p2pdma = rcu_dereference(pdev->p2pdma);
120 if (!p2pdma) {
121 ret = -ENODEV;
122 goto out;
123 }
124
125 kaddr = (void *)gen_pool_alloc_owner(p2pdma->pool, len, (void **)&ref);
126 if (!kaddr) {
127 ret = -ENOMEM;
128 goto out;
129 }
130
131 /*
132 * vm_insert_page() can sleep, so a reference is taken to mapping
133 * such that rcu_read_unlock() can be done before inserting the
134 * pages
135 */
136 if (unlikely(!percpu_ref_tryget_live_rcu(ref))) {
137 ret = -ENODEV;
138 goto out_free_mem;
139 }
140 rcu_read_unlock();
141
142 for (vaddr = vma->vm_start; vaddr < vma->vm_end; vaddr += PAGE_SIZE) {
143 ret = vm_insert_page(vma, vaddr, virt_to_page(kaddr));
144 if (ret) {
145 gen_pool_free(p2pdma->pool, (uintptr_t)kaddr, len);
146 return ret;
147 }
148 percpu_ref_get(ref);
149 put_page(virt_to_page(kaddr));
150 kaddr += PAGE_SIZE;
151 len -= PAGE_SIZE;
152 }
153
154 percpu_ref_put(ref);
155
156 return 0;
157 out_free_mem:
158 gen_pool_free(p2pdma->pool, (uintptr_t)kaddr, len);
159 out:
160 rcu_read_unlock();
161 return ret;
162 }
163
164 static struct bin_attribute p2pmem_alloc_attr = {
165 .attr = { .name = "allocate", .mode = 0660 },
166 .mmap = p2pmem_alloc_mmap,
167 /*
168 * Some places where we want to call mmap (ie. python) will check
169 * that the file size is greater than the mmap size before allowing
170 * the mmap to continue. To work around this, just set the size
171 * to be very large.
172 */
173 .size = SZ_1T,
174 };
175
176 static struct attribute *p2pmem_attrs[] = {
177 &dev_attr_size.attr,
178 &dev_attr_available.attr,
179 &dev_attr_published.attr,
180 NULL,
181 };
182
183 static struct bin_attribute *p2pmem_bin_attrs[] = {
184 &p2pmem_alloc_attr,
185 NULL,
186 };
187
188 static const struct attribute_group p2pmem_group = {
189 .attrs = p2pmem_attrs,
190 .bin_attrs = p2pmem_bin_attrs,
191 .name = "p2pmem",
192 };
193
p2pdma_page_free(struct page * page)194 static void p2pdma_page_free(struct page *page)
195 {
196 struct pci_p2pdma_pagemap *pgmap = to_p2p_pgmap(page->pgmap);
197 /* safe to dereference while a reference is held to the percpu ref */
198 struct pci_p2pdma *p2pdma =
199 rcu_dereference_protected(pgmap->provider->p2pdma, 1);
200 struct percpu_ref *ref;
201
202 gen_pool_free_owner(p2pdma->pool, (uintptr_t)page_to_virt(page),
203 PAGE_SIZE, (void **)&ref);
204 percpu_ref_put(ref);
205 }
206
207 static const struct dev_pagemap_ops p2pdma_pgmap_ops = {
208 .page_free = p2pdma_page_free,
209 };
210
pci_p2pdma_release(void * data)211 static void pci_p2pdma_release(void *data)
212 {
213 struct pci_dev *pdev = data;
214 struct pci_p2pdma *p2pdma;
215
216 p2pdma = rcu_dereference_protected(pdev->p2pdma, 1);
217 if (!p2pdma)
218 return;
219
220 /* Flush and disable pci_alloc_p2p_mem() */
221 pdev->p2pdma = NULL;
222 synchronize_rcu();
223
224 gen_pool_destroy(p2pdma->pool);
225 sysfs_remove_group(&pdev->dev.kobj, &p2pmem_group);
226 xa_destroy(&p2pdma->map_types);
227 }
228
pci_p2pdma_setup(struct pci_dev * pdev)229 static int pci_p2pdma_setup(struct pci_dev *pdev)
230 {
231 int error = -ENOMEM;
232 struct pci_p2pdma *p2p;
233
234 p2p = devm_kzalloc(&pdev->dev, sizeof(*p2p), GFP_KERNEL);
235 if (!p2p)
236 return -ENOMEM;
237
238 xa_init(&p2p->map_types);
239
240 p2p->pool = gen_pool_create(PAGE_SHIFT, dev_to_node(&pdev->dev));
241 if (!p2p->pool)
242 goto out;
243
244 error = devm_add_action_or_reset(&pdev->dev, pci_p2pdma_release, pdev);
245 if (error)
246 goto out_pool_destroy;
247
248 error = sysfs_create_group(&pdev->dev.kobj, &p2pmem_group);
249 if (error)
250 goto out_pool_destroy;
251
252 rcu_assign_pointer(pdev->p2pdma, p2p);
253 return 0;
254
255 out_pool_destroy:
256 gen_pool_destroy(p2p->pool);
257 out:
258 devm_kfree(&pdev->dev, p2p);
259 return error;
260 }
261
pci_p2pdma_unmap_mappings(void * data)262 static void pci_p2pdma_unmap_mappings(void *data)
263 {
264 struct pci_dev *pdev = data;
265
266 /*
267 * Removing the alloc attribute from sysfs will call
268 * unmap_mapping_range() on the inode, teardown any existing userspace
269 * mappings and prevent new ones from being created.
270 */
271 sysfs_remove_file_from_group(&pdev->dev.kobj, &p2pmem_alloc_attr.attr,
272 p2pmem_group.name);
273 }
274
275 /**
276 * pci_p2pdma_add_resource - add memory for use as p2p memory
277 * @pdev: the device to add the memory to
278 * @bar: PCI BAR to add
279 * @size: size of the memory to add, may be zero to use the whole BAR
280 * @offset: offset into the PCI BAR
281 *
282 * The memory will be given ZONE_DEVICE struct pages so that it may
283 * be used with any DMA request.
284 */
pci_p2pdma_add_resource(struct pci_dev * pdev,int bar,size_t size,u64 offset)285 int pci_p2pdma_add_resource(struct pci_dev *pdev, int bar, size_t size,
286 u64 offset)
287 {
288 struct pci_p2pdma_pagemap *p2p_pgmap;
289 struct dev_pagemap *pgmap;
290 struct pci_p2pdma *p2pdma;
291 void *addr;
292 int error;
293
294 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM))
295 return -EINVAL;
296
297 if (offset >= pci_resource_len(pdev, bar))
298 return -EINVAL;
299
300 if (!size)
301 size = pci_resource_len(pdev, bar) - offset;
302
303 if (size + offset > pci_resource_len(pdev, bar))
304 return -EINVAL;
305
306 if (!pdev->p2pdma) {
307 error = pci_p2pdma_setup(pdev);
308 if (error)
309 return error;
310 }
311
312 p2p_pgmap = devm_kzalloc(&pdev->dev, sizeof(*p2p_pgmap), GFP_KERNEL);
313 if (!p2p_pgmap)
314 return -ENOMEM;
315
316 pgmap = &p2p_pgmap->pgmap;
317 pgmap->range.start = pci_resource_start(pdev, bar) + offset;
318 pgmap->range.end = pgmap->range.start + size - 1;
319 pgmap->nr_range = 1;
320 pgmap->type = MEMORY_DEVICE_PCI_P2PDMA;
321 pgmap->ops = &p2pdma_pgmap_ops;
322
323 p2p_pgmap->provider = pdev;
324 p2p_pgmap->bus_offset = pci_bus_address(pdev, bar) -
325 pci_resource_start(pdev, bar);
326
327 addr = devm_memremap_pages(&pdev->dev, pgmap);
328 if (IS_ERR(addr)) {
329 error = PTR_ERR(addr);
330 goto pgmap_free;
331 }
332
333 error = devm_add_action_or_reset(&pdev->dev, pci_p2pdma_unmap_mappings,
334 pdev);
335 if (error)
336 goto pages_free;
337
338 p2pdma = rcu_dereference_protected(pdev->p2pdma, 1);
339 error = gen_pool_add_owner(p2pdma->pool, (unsigned long)addr,
340 pci_bus_address(pdev, bar) + offset,
341 range_len(&pgmap->range), dev_to_node(&pdev->dev),
342 &pgmap->ref);
343 if (error)
344 goto pages_free;
345
346 pci_info(pdev, "added peer-to-peer DMA memory %#llx-%#llx\n",
347 pgmap->range.start, pgmap->range.end);
348
349 return 0;
350
351 pages_free:
352 devm_memunmap_pages(&pdev->dev, pgmap);
353 pgmap_free:
354 devm_kfree(&pdev->dev, pgmap);
355 return error;
356 }
357 EXPORT_SYMBOL_GPL(pci_p2pdma_add_resource);
358
359 /*
360 * Note this function returns the parent PCI device with a
361 * reference taken. It is the caller's responsibility to drop
362 * the reference.
363 */
find_parent_pci_dev(struct device * dev)364 static struct pci_dev *find_parent_pci_dev(struct device *dev)
365 {
366 struct device *parent;
367
368 dev = get_device(dev);
369
370 while (dev) {
371 if (dev_is_pci(dev))
372 return to_pci_dev(dev);
373
374 parent = get_device(dev->parent);
375 put_device(dev);
376 dev = parent;
377 }
378
379 return NULL;
380 }
381
382 /*
383 * Check if a PCI bridge has its ACS redirection bits set to redirect P2P
384 * TLPs upstream via ACS. Returns 1 if the packets will be redirected
385 * upstream, 0 otherwise.
386 */
pci_bridge_has_acs_redir(struct pci_dev * pdev)387 static int pci_bridge_has_acs_redir(struct pci_dev *pdev)
388 {
389 int pos;
390 u16 ctrl;
391
392 pos = pdev->acs_cap;
393 if (!pos)
394 return 0;
395
396 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
397
398 if (ctrl & (PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC))
399 return 1;
400
401 return 0;
402 }
403
seq_buf_print_bus_devfn(struct seq_buf * buf,struct pci_dev * pdev)404 static void seq_buf_print_bus_devfn(struct seq_buf *buf, struct pci_dev *pdev)
405 {
406 if (!buf)
407 return;
408
409 seq_buf_printf(buf, "%s;", pci_name(pdev));
410 }
411
cpu_supports_p2pdma(void)412 static bool cpu_supports_p2pdma(void)
413 {
414 #ifdef CONFIG_X86
415 struct cpuinfo_x86 *c = &cpu_data(0);
416
417 /* Any AMD CPU whose family ID is Zen or newer supports p2pdma */
418 if (c->x86_vendor == X86_VENDOR_AMD && c->x86 >= 0x17)
419 return true;
420 #endif
421
422 return false;
423 }
424
425 static const struct pci_p2pdma_whitelist_entry {
426 unsigned short vendor;
427 unsigned short device;
428 enum {
429 REQ_SAME_HOST_BRIDGE = 1 << 0,
430 } flags;
431 } pci_p2pdma_whitelist[] = {
432 /* Intel Xeon E5/Core i7 */
433 {PCI_VENDOR_ID_INTEL, 0x3c00, REQ_SAME_HOST_BRIDGE},
434 {PCI_VENDOR_ID_INTEL, 0x3c01, REQ_SAME_HOST_BRIDGE},
435 /* Intel Xeon E7 v3/Xeon E5 v3/Core i7 */
436 {PCI_VENDOR_ID_INTEL, 0x2f00, REQ_SAME_HOST_BRIDGE},
437 {PCI_VENDOR_ID_INTEL, 0x2f01, REQ_SAME_HOST_BRIDGE},
438 /* Intel Skylake-E */
439 {PCI_VENDOR_ID_INTEL, 0x2030, 0},
440 {PCI_VENDOR_ID_INTEL, 0x2031, 0},
441 {PCI_VENDOR_ID_INTEL, 0x2032, 0},
442 {PCI_VENDOR_ID_INTEL, 0x2033, 0},
443 {PCI_VENDOR_ID_INTEL, 0x2020, 0},
444 {PCI_VENDOR_ID_INTEL, 0x09a2, 0},
445 {}
446 };
447
448 /*
449 * If the first device on host's root bus is either devfn 00.0 or a PCIe
450 * Root Port, return it. Otherwise return NULL.
451 *
452 * We often use a devfn 00.0 "host bridge" in the pci_p2pdma_whitelist[]
453 * (though there is no PCI/PCIe requirement for such a device). On some
454 * platforms, e.g., Intel Skylake, there is no such host bridge device, and
455 * pci_p2pdma_whitelist[] may contain a Root Port at any devfn.
456 *
457 * This function is similar to pci_get_slot(host->bus, 0), but it does
458 * not take the pci_bus_sem lock since __host_bridge_whitelist() must not
459 * sleep.
460 *
461 * For this to be safe, the caller should hold a reference to a device on the
462 * bridge, which should ensure the host_bridge device will not be freed
463 * or removed from the head of the devices list.
464 */
pci_host_bridge_dev(struct pci_host_bridge * host)465 static struct pci_dev *pci_host_bridge_dev(struct pci_host_bridge *host)
466 {
467 struct pci_dev *root;
468
469 root = list_first_entry_or_null(&host->bus->devices,
470 struct pci_dev, bus_list);
471
472 if (!root)
473 return NULL;
474
475 if (root->devfn == PCI_DEVFN(0, 0))
476 return root;
477
478 if (pci_pcie_type(root) == PCI_EXP_TYPE_ROOT_PORT)
479 return root;
480
481 return NULL;
482 }
483
__host_bridge_whitelist(struct pci_host_bridge * host,bool same_host_bridge,bool warn)484 static bool __host_bridge_whitelist(struct pci_host_bridge *host,
485 bool same_host_bridge, bool warn)
486 {
487 struct pci_dev *root = pci_host_bridge_dev(host);
488 const struct pci_p2pdma_whitelist_entry *entry;
489 unsigned short vendor, device;
490
491 if (!root)
492 return false;
493
494 vendor = root->vendor;
495 device = root->device;
496
497 for (entry = pci_p2pdma_whitelist; entry->vendor; entry++) {
498 if (vendor != entry->vendor || device != entry->device)
499 continue;
500 if (entry->flags & REQ_SAME_HOST_BRIDGE && !same_host_bridge)
501 return false;
502
503 return true;
504 }
505
506 if (warn)
507 pci_warn(root, "Host bridge not in P2PDMA whitelist: %04x:%04x\n",
508 vendor, device);
509
510 return false;
511 }
512
513 /*
514 * If we can't find a common upstream bridge take a look at the root
515 * complex and compare it to a whitelist of known good hardware.
516 */
host_bridge_whitelist(struct pci_dev * a,struct pci_dev * b,bool warn)517 static bool host_bridge_whitelist(struct pci_dev *a, struct pci_dev *b,
518 bool warn)
519 {
520 struct pci_host_bridge *host_a = pci_find_host_bridge(a->bus);
521 struct pci_host_bridge *host_b = pci_find_host_bridge(b->bus);
522
523 if (host_a == host_b)
524 return __host_bridge_whitelist(host_a, true, warn);
525
526 if (__host_bridge_whitelist(host_a, false, warn) &&
527 __host_bridge_whitelist(host_b, false, warn))
528 return true;
529
530 return false;
531 }
532
map_types_idx(struct pci_dev * client)533 static unsigned long map_types_idx(struct pci_dev *client)
534 {
535 return (pci_domain_nr(client->bus) << 16) | pci_dev_id(client);
536 }
537
538 /*
539 * Calculate the P2PDMA mapping type and distance between two PCI devices.
540 *
541 * If the two devices are the same PCI function, return
542 * PCI_P2PDMA_MAP_BUS_ADDR and a distance of 0.
543 *
544 * If they are two functions of the same device, return
545 * PCI_P2PDMA_MAP_BUS_ADDR and a distance of 2 (one hop up to the bridge,
546 * then one hop back down to another function of the same device).
547 *
548 * In the case where two devices are connected to the same PCIe switch,
549 * return a distance of 4. This corresponds to the following PCI tree:
550 *
551 * -+ Root Port
552 * \+ Switch Upstream Port
553 * +-+ Switch Downstream Port 0
554 * + \- Device A
555 * \-+ Switch Downstream Port 1
556 * \- Device B
557 *
558 * The distance is 4 because we traverse from Device A to Downstream Port 0
559 * to the common Switch Upstream Port, back down to Downstream Port 1 and
560 * then to Device B. The mapping type returned depends on the ACS
561 * redirection setting of the ports along the path.
562 *
563 * If ACS redirect is set on any port in the path, traffic between the
564 * devices will go through the host bridge, so return
565 * PCI_P2PDMA_MAP_THRU_HOST_BRIDGE; otherwise return
566 * PCI_P2PDMA_MAP_BUS_ADDR.
567 *
568 * Any two devices that have a data path that goes through the host bridge
569 * will consult a whitelist. If the host bridge is in the whitelist, return
570 * PCI_P2PDMA_MAP_THRU_HOST_BRIDGE with the distance set to the number of
571 * ports per above. If the device is not in the whitelist, return
572 * PCI_P2PDMA_MAP_NOT_SUPPORTED.
573 */
574 static enum pci_p2pdma_map_type
calc_map_type_and_dist(struct pci_dev * provider,struct pci_dev * client,int * dist,bool verbose)575 calc_map_type_and_dist(struct pci_dev *provider, struct pci_dev *client,
576 int *dist, bool verbose)
577 {
578 enum pci_p2pdma_map_type map_type = PCI_P2PDMA_MAP_THRU_HOST_BRIDGE;
579 struct pci_dev *a = provider, *b = client, *bb;
580 bool acs_redirects = false;
581 struct pci_p2pdma *p2pdma;
582 struct seq_buf acs_list;
583 int acs_cnt = 0;
584 int dist_a = 0;
585 int dist_b = 0;
586 char buf[128];
587
588 seq_buf_init(&acs_list, buf, sizeof(buf));
589
590 /*
591 * Note, we don't need to take references to devices returned by
592 * pci_upstream_bridge() seeing we hold a reference to a child
593 * device which will already hold a reference to the upstream bridge.
594 */
595 while (a) {
596 dist_b = 0;
597
598 if (pci_bridge_has_acs_redir(a)) {
599 seq_buf_print_bus_devfn(&acs_list, a);
600 acs_cnt++;
601 }
602
603 bb = b;
604
605 while (bb) {
606 if (a == bb)
607 goto check_b_path_acs;
608
609 bb = pci_upstream_bridge(bb);
610 dist_b++;
611 }
612
613 a = pci_upstream_bridge(a);
614 dist_a++;
615 }
616
617 *dist = dist_a + dist_b;
618 goto map_through_host_bridge;
619
620 check_b_path_acs:
621 bb = b;
622
623 while (bb) {
624 if (a == bb)
625 break;
626
627 if (pci_bridge_has_acs_redir(bb)) {
628 seq_buf_print_bus_devfn(&acs_list, bb);
629 acs_cnt++;
630 }
631
632 bb = pci_upstream_bridge(bb);
633 }
634
635 *dist = dist_a + dist_b;
636
637 if (!acs_cnt) {
638 map_type = PCI_P2PDMA_MAP_BUS_ADDR;
639 goto done;
640 }
641
642 if (verbose) {
643 acs_list.buffer[acs_list.len-1] = 0; /* drop final semicolon */
644 pci_warn(client, "ACS redirect is set between the client and provider (%s)\n",
645 pci_name(provider));
646 pci_warn(client, "to disable ACS redirect for this path, add the kernel parameter: pci=disable_acs_redir=%s\n",
647 acs_list.buffer);
648 }
649 acs_redirects = true;
650
651 map_through_host_bridge:
652 if (!cpu_supports_p2pdma() &&
653 !host_bridge_whitelist(provider, client, acs_redirects)) {
654 if (verbose)
655 pci_warn(client, "cannot be used for peer-to-peer DMA as the client and provider (%s) do not share an upstream bridge or whitelisted host bridge\n",
656 pci_name(provider));
657 map_type = PCI_P2PDMA_MAP_NOT_SUPPORTED;
658 }
659 done:
660 rcu_read_lock();
661 p2pdma = rcu_dereference(provider->p2pdma);
662 if (p2pdma)
663 xa_store(&p2pdma->map_types, map_types_idx(client),
664 xa_mk_value(map_type), GFP_ATOMIC);
665 rcu_read_unlock();
666 return map_type;
667 }
668
669 /**
670 * pci_p2pdma_distance_many - Determine the cumulative distance between
671 * a p2pdma provider and the clients in use.
672 * @provider: p2pdma provider to check against the client list
673 * @clients: array of devices to check (NULL-terminated)
674 * @num_clients: number of clients in the array
675 * @verbose: if true, print warnings for devices when we return -1
676 *
677 * Returns -1 if any of the clients are not compatible, otherwise returns a
678 * positive number where a lower number is the preferable choice. (If there's
679 * one client that's the same as the provider it will return 0, which is best
680 * choice).
681 *
682 * "compatible" means the provider and the clients are either all behind
683 * the same PCI root port or the host bridges connected to each of the devices
684 * are listed in the 'pci_p2pdma_whitelist'.
685 */
pci_p2pdma_distance_many(struct pci_dev * provider,struct device ** clients,int num_clients,bool verbose)686 int pci_p2pdma_distance_many(struct pci_dev *provider, struct device **clients,
687 int num_clients, bool verbose)
688 {
689 enum pci_p2pdma_map_type map;
690 bool not_supported = false;
691 struct pci_dev *pci_client;
692 int total_dist = 0;
693 int i, distance;
694
695 if (num_clients == 0)
696 return -1;
697
698 for (i = 0; i < num_clients; i++) {
699 pci_client = find_parent_pci_dev(clients[i]);
700 if (!pci_client) {
701 if (verbose)
702 dev_warn(clients[i],
703 "cannot be used for peer-to-peer DMA as it is not a PCI device\n");
704 return -1;
705 }
706
707 map = calc_map_type_and_dist(provider, pci_client, &distance,
708 verbose);
709
710 pci_dev_put(pci_client);
711
712 if (map == PCI_P2PDMA_MAP_NOT_SUPPORTED)
713 not_supported = true;
714
715 if (not_supported && !verbose)
716 break;
717
718 total_dist += distance;
719 }
720
721 if (not_supported)
722 return -1;
723
724 return total_dist;
725 }
726 EXPORT_SYMBOL_GPL(pci_p2pdma_distance_many);
727
728 /**
729 * pci_has_p2pmem - check if a given PCI device has published any p2pmem
730 * @pdev: PCI device to check
731 */
pci_has_p2pmem(struct pci_dev * pdev)732 bool pci_has_p2pmem(struct pci_dev *pdev)
733 {
734 struct pci_p2pdma *p2pdma;
735 bool res;
736
737 rcu_read_lock();
738 p2pdma = rcu_dereference(pdev->p2pdma);
739 res = p2pdma && p2pdma->p2pmem_published;
740 rcu_read_unlock();
741
742 return res;
743 }
744 EXPORT_SYMBOL_GPL(pci_has_p2pmem);
745
746 /**
747 * pci_p2pmem_find_many - find a peer-to-peer DMA memory device compatible with
748 * the specified list of clients and shortest distance
749 * @clients: array of devices to check (NULL-terminated)
750 * @num_clients: number of client devices in the list
751 *
752 * If multiple devices are behind the same switch, the one "closest" to the
753 * client devices in use will be chosen first. (So if one of the providers is
754 * the same as one of the clients, that provider will be used ahead of any
755 * other providers that are unrelated). If multiple providers are an equal
756 * distance away, one will be chosen at random.
757 *
758 * Returns a pointer to the PCI device with a reference taken (use pci_dev_put
759 * to return the reference) or NULL if no compatible device is found. The
760 * found provider will also be assigned to the client list.
761 */
pci_p2pmem_find_many(struct device ** clients,int num_clients)762 struct pci_dev *pci_p2pmem_find_many(struct device **clients, int num_clients)
763 {
764 struct pci_dev *pdev = NULL;
765 int distance;
766 int closest_distance = INT_MAX;
767 struct pci_dev **closest_pdevs;
768 int dev_cnt = 0;
769 const int max_devs = PAGE_SIZE / sizeof(*closest_pdevs);
770 int i;
771
772 closest_pdevs = kmalloc(PAGE_SIZE, GFP_KERNEL);
773 if (!closest_pdevs)
774 return NULL;
775
776 for_each_pci_dev(pdev) {
777 if (!pci_has_p2pmem(pdev))
778 continue;
779
780 distance = pci_p2pdma_distance_many(pdev, clients,
781 num_clients, false);
782 if (distance < 0 || distance > closest_distance)
783 continue;
784
785 if (distance == closest_distance && dev_cnt >= max_devs)
786 continue;
787
788 if (distance < closest_distance) {
789 for (i = 0; i < dev_cnt; i++)
790 pci_dev_put(closest_pdevs[i]);
791
792 dev_cnt = 0;
793 closest_distance = distance;
794 }
795
796 closest_pdevs[dev_cnt++] = pci_dev_get(pdev);
797 }
798
799 if (dev_cnt)
800 pdev = pci_dev_get(closest_pdevs[get_random_u32_below(dev_cnt)]);
801
802 for (i = 0; i < dev_cnt; i++)
803 pci_dev_put(closest_pdevs[i]);
804
805 kfree(closest_pdevs);
806 return pdev;
807 }
808 EXPORT_SYMBOL_GPL(pci_p2pmem_find_many);
809
810 /**
811 * pci_alloc_p2pmem - allocate peer-to-peer DMA memory
812 * @pdev: the device to allocate memory from
813 * @size: number of bytes to allocate
814 *
815 * Returns the allocated memory or NULL on error.
816 */
pci_alloc_p2pmem(struct pci_dev * pdev,size_t size)817 void *pci_alloc_p2pmem(struct pci_dev *pdev, size_t size)
818 {
819 void *ret = NULL;
820 struct percpu_ref *ref;
821 struct pci_p2pdma *p2pdma;
822
823 /*
824 * Pairs with synchronize_rcu() in pci_p2pdma_release() to
825 * ensure pdev->p2pdma is non-NULL for the duration of the
826 * read-lock.
827 */
828 rcu_read_lock();
829 p2pdma = rcu_dereference(pdev->p2pdma);
830 if (unlikely(!p2pdma))
831 goto out;
832
833 ret = (void *)gen_pool_alloc_owner(p2pdma->pool, size, (void **) &ref);
834 if (!ret)
835 goto out;
836
837 if (unlikely(!percpu_ref_tryget_live_rcu(ref))) {
838 gen_pool_free(p2pdma->pool, (unsigned long) ret, size);
839 ret = NULL;
840 }
841 out:
842 rcu_read_unlock();
843 return ret;
844 }
845 EXPORT_SYMBOL_GPL(pci_alloc_p2pmem);
846
847 /**
848 * pci_free_p2pmem - free peer-to-peer DMA memory
849 * @pdev: the device the memory was allocated from
850 * @addr: address of the memory that was allocated
851 * @size: number of bytes that were allocated
852 */
pci_free_p2pmem(struct pci_dev * pdev,void * addr,size_t size)853 void pci_free_p2pmem(struct pci_dev *pdev, void *addr, size_t size)
854 {
855 struct percpu_ref *ref;
856 struct pci_p2pdma *p2pdma = rcu_dereference_protected(pdev->p2pdma, 1);
857
858 gen_pool_free_owner(p2pdma->pool, (uintptr_t)addr, size,
859 (void **) &ref);
860 percpu_ref_put(ref);
861 }
862 EXPORT_SYMBOL_GPL(pci_free_p2pmem);
863
864 /**
865 * pci_p2pmem_virt_to_bus - return the PCI bus address for a given virtual
866 * address obtained with pci_alloc_p2pmem()
867 * @pdev: the device the memory was allocated from
868 * @addr: address of the memory that was allocated
869 */
pci_p2pmem_virt_to_bus(struct pci_dev * pdev,void * addr)870 pci_bus_addr_t pci_p2pmem_virt_to_bus(struct pci_dev *pdev, void *addr)
871 {
872 struct pci_p2pdma *p2pdma;
873
874 if (!addr)
875 return 0;
876
877 p2pdma = rcu_dereference_protected(pdev->p2pdma, 1);
878 if (!p2pdma)
879 return 0;
880
881 /*
882 * Note: when we added the memory to the pool we used the PCI
883 * bus address as the physical address. So gen_pool_virt_to_phys()
884 * actually returns the bus address despite the misleading name.
885 */
886 return gen_pool_virt_to_phys(p2pdma->pool, (unsigned long)addr);
887 }
888 EXPORT_SYMBOL_GPL(pci_p2pmem_virt_to_bus);
889
890 /**
891 * pci_p2pmem_alloc_sgl - allocate peer-to-peer DMA memory in a scatterlist
892 * @pdev: the device to allocate memory from
893 * @nents: the number of SG entries in the list
894 * @length: number of bytes to allocate
895 *
896 * Return: %NULL on error or &struct scatterlist pointer and @nents on success
897 */
pci_p2pmem_alloc_sgl(struct pci_dev * pdev,unsigned int * nents,u32 length)898 struct scatterlist *pci_p2pmem_alloc_sgl(struct pci_dev *pdev,
899 unsigned int *nents, u32 length)
900 {
901 struct scatterlist *sg;
902 void *addr;
903
904 sg = kmalloc(sizeof(*sg), GFP_KERNEL);
905 if (!sg)
906 return NULL;
907
908 sg_init_table(sg, 1);
909
910 addr = pci_alloc_p2pmem(pdev, length);
911 if (!addr)
912 goto out_free_sg;
913
914 sg_set_buf(sg, addr, length);
915 *nents = 1;
916 return sg;
917
918 out_free_sg:
919 kfree(sg);
920 return NULL;
921 }
922 EXPORT_SYMBOL_GPL(pci_p2pmem_alloc_sgl);
923
924 /**
925 * pci_p2pmem_free_sgl - free a scatterlist allocated by pci_p2pmem_alloc_sgl()
926 * @pdev: the device to allocate memory from
927 * @sgl: the allocated scatterlist
928 */
pci_p2pmem_free_sgl(struct pci_dev * pdev,struct scatterlist * sgl)929 void pci_p2pmem_free_sgl(struct pci_dev *pdev, struct scatterlist *sgl)
930 {
931 struct scatterlist *sg;
932 int count;
933
934 for_each_sg(sgl, sg, INT_MAX, count) {
935 if (!sg)
936 break;
937
938 pci_free_p2pmem(pdev, sg_virt(sg), sg->length);
939 }
940 kfree(sgl);
941 }
942 EXPORT_SYMBOL_GPL(pci_p2pmem_free_sgl);
943
944 /**
945 * pci_p2pmem_publish - publish the peer-to-peer DMA memory for use by
946 * other devices with pci_p2pmem_find()
947 * @pdev: the device with peer-to-peer DMA memory to publish
948 * @publish: set to true to publish the memory, false to unpublish it
949 *
950 * Published memory can be used by other PCI device drivers for
951 * peer-2-peer DMA operations. Non-published memory is reserved for
952 * exclusive use of the device driver that registers the peer-to-peer
953 * memory.
954 */
pci_p2pmem_publish(struct pci_dev * pdev,bool publish)955 void pci_p2pmem_publish(struct pci_dev *pdev, bool publish)
956 {
957 struct pci_p2pdma *p2pdma;
958
959 rcu_read_lock();
960 p2pdma = rcu_dereference(pdev->p2pdma);
961 if (p2pdma)
962 p2pdma->p2pmem_published = publish;
963 rcu_read_unlock();
964 }
965 EXPORT_SYMBOL_GPL(pci_p2pmem_publish);
966
pci_p2pdma_map_type(struct dev_pagemap * pgmap,struct device * dev)967 static enum pci_p2pdma_map_type pci_p2pdma_map_type(struct dev_pagemap *pgmap,
968 struct device *dev)
969 {
970 enum pci_p2pdma_map_type type = PCI_P2PDMA_MAP_NOT_SUPPORTED;
971 struct pci_dev *provider = to_p2p_pgmap(pgmap)->provider;
972 struct pci_dev *client;
973 struct pci_p2pdma *p2pdma;
974 int dist;
975
976 if (!provider->p2pdma)
977 return PCI_P2PDMA_MAP_NOT_SUPPORTED;
978
979 if (!dev_is_pci(dev))
980 return PCI_P2PDMA_MAP_NOT_SUPPORTED;
981
982 client = to_pci_dev(dev);
983
984 rcu_read_lock();
985 p2pdma = rcu_dereference(provider->p2pdma);
986
987 if (p2pdma)
988 type = xa_to_value(xa_load(&p2pdma->map_types,
989 map_types_idx(client)));
990 rcu_read_unlock();
991
992 if (type == PCI_P2PDMA_MAP_UNKNOWN)
993 return calc_map_type_and_dist(provider, client, &dist, true);
994
995 return type;
996 }
997
998 /**
999 * pci_p2pdma_map_segment - map an sg segment determining the mapping type
1000 * @state: State structure that should be declared outside of the for_each_sg()
1001 * loop and initialized to zero.
1002 * @dev: DMA device that's doing the mapping operation
1003 * @sg: scatterlist segment to map
1004 *
1005 * This is a helper to be used by non-IOMMU dma_map_sg() implementations where
1006 * the sg segment is the same for the page_link and the dma_address.
1007 *
1008 * Attempt to map a single segment in an SGL with the PCI bus address.
1009 * The segment must point to a PCI P2PDMA page and thus must be
1010 * wrapped in a is_pci_p2pdma_page(sg_page(sg)) check.
1011 *
1012 * Returns the type of mapping used and maps the page if the type is
1013 * PCI_P2PDMA_MAP_BUS_ADDR.
1014 */
1015 enum pci_p2pdma_map_type
pci_p2pdma_map_segment(struct pci_p2pdma_map_state * state,struct device * dev,struct scatterlist * sg)1016 pci_p2pdma_map_segment(struct pci_p2pdma_map_state *state, struct device *dev,
1017 struct scatterlist *sg)
1018 {
1019 if (state->pgmap != sg_page(sg)->pgmap) {
1020 state->pgmap = sg_page(sg)->pgmap;
1021 state->map = pci_p2pdma_map_type(state->pgmap, dev);
1022 state->bus_off = to_p2p_pgmap(state->pgmap)->bus_offset;
1023 }
1024
1025 if (state->map == PCI_P2PDMA_MAP_BUS_ADDR) {
1026 sg->dma_address = sg_phys(sg) + state->bus_off;
1027 sg_dma_len(sg) = sg->length;
1028 sg_dma_mark_bus_address(sg);
1029 }
1030
1031 return state->map;
1032 }
1033
1034 /**
1035 * pci_p2pdma_enable_store - parse a configfs/sysfs attribute store
1036 * to enable p2pdma
1037 * @page: contents of the value to be stored
1038 * @p2p_dev: returns the PCI device that was selected to be used
1039 * (if one was specified in the stored value)
1040 * @use_p2pdma: returns whether to enable p2pdma or not
1041 *
1042 * Parses an attribute value to decide whether to enable p2pdma.
1043 * The value can select a PCI device (using its full BDF device
1044 * name) or a boolean (in any format kstrtobool() accepts). A false
1045 * value disables p2pdma, a true value expects the caller
1046 * to automatically find a compatible device and specifying a PCI device
1047 * expects the caller to use the specific provider.
1048 *
1049 * pci_p2pdma_enable_show() should be used as the show operation for
1050 * the attribute.
1051 *
1052 * Returns 0 on success
1053 */
pci_p2pdma_enable_store(const char * page,struct pci_dev ** p2p_dev,bool * use_p2pdma)1054 int pci_p2pdma_enable_store(const char *page, struct pci_dev **p2p_dev,
1055 bool *use_p2pdma)
1056 {
1057 struct device *dev;
1058
1059 dev = bus_find_device_by_name(&pci_bus_type, NULL, page);
1060 if (dev) {
1061 *use_p2pdma = true;
1062 *p2p_dev = to_pci_dev(dev);
1063
1064 if (!pci_has_p2pmem(*p2p_dev)) {
1065 pci_err(*p2p_dev,
1066 "PCI device has no peer-to-peer memory: %s\n",
1067 page);
1068 pci_dev_put(*p2p_dev);
1069 return -ENODEV;
1070 }
1071
1072 return 0;
1073 } else if ((page[0] == '0' || page[0] == '1') && !iscntrl(page[1])) {
1074 /*
1075 * If the user enters a PCI device that doesn't exist
1076 * like "0000:01:00.1", we don't want kstrtobool to think
1077 * it's a '0' when it's clearly not what the user wanted.
1078 * So we require 0's and 1's to be exactly one character.
1079 */
1080 } else if (!kstrtobool(page, use_p2pdma)) {
1081 return 0;
1082 }
1083
1084 pr_err("No such PCI device: %.*s\n", (int)strcspn(page, "\n"), page);
1085 return -ENODEV;
1086 }
1087 EXPORT_SYMBOL_GPL(pci_p2pdma_enable_store);
1088
1089 /**
1090 * pci_p2pdma_enable_show - show a configfs/sysfs attribute indicating
1091 * whether p2pdma is enabled
1092 * @page: contents of the stored value
1093 * @p2p_dev: the selected p2p device (NULL if no device is selected)
1094 * @use_p2pdma: whether p2pdma has been enabled
1095 *
1096 * Attributes that use pci_p2pdma_enable_store() should use this function
1097 * to show the value of the attribute.
1098 *
1099 * Returns 0 on success
1100 */
pci_p2pdma_enable_show(char * page,struct pci_dev * p2p_dev,bool use_p2pdma)1101 ssize_t pci_p2pdma_enable_show(char *page, struct pci_dev *p2p_dev,
1102 bool use_p2pdma)
1103 {
1104 if (!use_p2pdma)
1105 return sprintf(page, "0\n");
1106
1107 if (!p2p_dev)
1108 return sprintf(page, "1\n");
1109
1110 return sprintf(page, "%s\n", pci_name(p2p_dev));
1111 }
1112 EXPORT_SYMBOL_GPL(pci_p2pdma_enable_show);
1113