xref: /linux/mm/util.c (revision 592329e5e94e26080f4815c6cc6cd0f487a91064)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/mm.h>
3 #include <linux/slab.h>
4 #include <linux/string.h>
5 #include <linux/compiler.h>
6 #include <linux/export.h>
7 #include <linux/err.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/security.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/sysctl.h>
16 #include <linux/mman.h>
17 #include <linux/hugetlb.h>
18 #include <linux/vmalloc.h>
19 #include <linux/userfaultfd_k.h>
20 #include <linux/elf.h>
21 #include <linux/elf-randomize.h>
22 #include <linux/personality.h>
23 #include <linux/random.h>
24 #include <linux/processor.h>
25 #include <linux/sizes.h>
26 #include <linux/compat.h>
27 #include <linux/fsnotify.h>
28 
29 #include <linux/uaccess.h>
30 
31 #include <kunit/visibility.h>
32 
33 #include "internal.h"
34 #include "swap.h"
35 
36 /**
37  * kfree_const - conditionally free memory
38  * @x: pointer to the memory
39  *
40  * Function calls kfree only if @x is not in .rodata section.
41  */
kfree_const(const void * x)42 void kfree_const(const void *x)
43 {
44 	if (!is_kernel_rodata((unsigned long)x))
45 		kfree(x);
46 }
47 EXPORT_SYMBOL(kfree_const);
48 
49 /**
50  * __kmemdup_nul - Create a NUL-terminated string from @s, which might be unterminated.
51  * @s: The data to copy
52  * @len: The size of the data, not including the NUL terminator
53  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
54  *
55  * Return: newly allocated copy of @s with NUL-termination or %NULL in
56  * case of error
57  */
__kmemdup_nul(const char * s,size_t len,gfp_t gfp)58 static __always_inline char *__kmemdup_nul(const char *s, size_t len, gfp_t gfp)
59 {
60 	char *buf;
61 
62 	/* '+1' for the NUL terminator */
63 	buf = kmalloc_track_caller(len + 1, gfp);
64 	if (!buf)
65 		return NULL;
66 
67 	memcpy(buf, s, len);
68 	/* Ensure the buf is always NUL-terminated, regardless of @s. */
69 	buf[len] = '\0';
70 	return buf;
71 }
72 
73 /**
74  * kstrdup - allocate space for and copy an existing string
75  * @s: the string to duplicate
76  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
77  *
78  * Return: newly allocated copy of @s or %NULL in case of error
79  */
80 noinline
kstrdup(const char * s,gfp_t gfp)81 char *kstrdup(const char *s, gfp_t gfp)
82 {
83 	return s ? __kmemdup_nul(s, strlen(s), gfp) : NULL;
84 }
85 EXPORT_SYMBOL(kstrdup);
86 
87 /**
88  * kstrdup_const - conditionally duplicate an existing const string
89  * @s: the string to duplicate
90  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
91  *
92  * Note: Strings allocated by kstrdup_const should be freed by kfree_const and
93  * must not be passed to krealloc().
94  *
95  * Return: source string if it is in .rodata section otherwise
96  * fallback to kstrdup.
97  */
kstrdup_const(const char * s,gfp_t gfp)98 const char *kstrdup_const(const char *s, gfp_t gfp)
99 {
100 	if (is_kernel_rodata((unsigned long)s))
101 		return s;
102 
103 	return kstrdup(s, gfp);
104 }
105 EXPORT_SYMBOL(kstrdup_const);
106 
107 /**
108  * kstrndup - allocate space for and copy an existing string
109  * @s: the string to duplicate
110  * @max: read at most @max chars from @s
111  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
112  *
113  * Note: Use kmemdup_nul() instead if the size is known exactly.
114  *
115  * Return: newly allocated copy of @s or %NULL in case of error
116  */
kstrndup(const char * s,size_t max,gfp_t gfp)117 char *kstrndup(const char *s, size_t max, gfp_t gfp)
118 {
119 	return s ? __kmemdup_nul(s, strnlen(s, max), gfp) : NULL;
120 }
121 EXPORT_SYMBOL(kstrndup);
122 
123 /**
124  * kmemdup - duplicate region of memory
125  *
126  * @src: memory region to duplicate
127  * @len: memory region length
128  * @gfp: GFP mask to use
129  *
130  * Return: newly allocated copy of @src or %NULL in case of error,
131  * result is physically contiguous. Use kfree() to free.
132  */
kmemdup_noprof(const void * src,size_t len,gfp_t gfp)133 void *kmemdup_noprof(const void *src, size_t len, gfp_t gfp)
134 {
135 	void *p;
136 
137 	p = kmalloc_node_track_caller_noprof(len, gfp, NUMA_NO_NODE, _RET_IP_);
138 	if (p)
139 		memcpy(p, src, len);
140 	return p;
141 }
142 EXPORT_SYMBOL(kmemdup_noprof);
143 
144 /**
145  * kmemdup_array - duplicate a given array.
146  *
147  * @src: array to duplicate.
148  * @count: number of elements to duplicate from array.
149  * @element_size: size of each element of array.
150  * @gfp: GFP mask to use.
151  *
152  * Return: duplicated array of @src or %NULL in case of error,
153  * result is physically contiguous. Use kfree() to free.
154  */
kmemdup_array(const void * src,size_t count,size_t element_size,gfp_t gfp)155 void *kmemdup_array(const void *src, size_t count, size_t element_size, gfp_t gfp)
156 {
157 	return kmemdup(src, size_mul(element_size, count), gfp);
158 }
159 EXPORT_SYMBOL(kmemdup_array);
160 
161 /**
162  * kvmemdup - duplicate region of memory
163  *
164  * @src: memory region to duplicate
165  * @len: memory region length
166  * @gfp: GFP mask to use
167  *
168  * Return: newly allocated copy of @src or %NULL in case of error,
169  * result may be not physically contiguous. Use kvfree() to free.
170  */
kvmemdup(const void * src,size_t len,gfp_t gfp)171 void *kvmemdup(const void *src, size_t len, gfp_t gfp)
172 {
173 	void *p;
174 
175 	p = kvmalloc(len, gfp);
176 	if (p)
177 		memcpy(p, src, len);
178 	return p;
179 }
180 EXPORT_SYMBOL(kvmemdup);
181 
182 /**
183  * kmemdup_nul - Create a NUL-terminated string from unterminated data
184  * @s: The data to stringify
185  * @len: The size of the data
186  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
187  *
188  * Return: newly allocated copy of @s with NUL-termination or %NULL in
189  * case of error
190  */
kmemdup_nul(const char * s,size_t len,gfp_t gfp)191 char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
192 {
193 	return s ? __kmemdup_nul(s, len, gfp) : NULL;
194 }
195 EXPORT_SYMBOL(kmemdup_nul);
196 
197 static kmem_buckets *user_buckets __ro_after_init;
198 
init_user_buckets(void)199 static int __init init_user_buckets(void)
200 {
201 	user_buckets = kmem_buckets_create("memdup_user", 0, 0, INT_MAX, NULL);
202 
203 	return 0;
204 }
205 subsys_initcall(init_user_buckets);
206 
207 /**
208  * memdup_user - duplicate memory region from user space
209  *
210  * @src: source address in user space
211  * @len: number of bytes to copy
212  *
213  * Return: an ERR_PTR() on failure.  Result is physically
214  * contiguous, to be freed by kfree().
215  */
memdup_user(const void __user * src,size_t len)216 void *memdup_user(const void __user *src, size_t len)
217 {
218 	void *p;
219 
220 	p = kmem_buckets_alloc_track_caller(user_buckets, len, GFP_USER | __GFP_NOWARN);
221 	if (!p)
222 		return ERR_PTR(-ENOMEM);
223 
224 	if (copy_from_user(p, src, len)) {
225 		kfree(p);
226 		return ERR_PTR(-EFAULT);
227 	}
228 
229 	return p;
230 }
231 EXPORT_SYMBOL(memdup_user);
232 
233 /**
234  * vmemdup_user - duplicate memory region from user space
235  *
236  * @src: source address in user space
237  * @len: number of bytes to copy
238  *
239  * Return: an ERR_PTR() on failure.  Result may be not
240  * physically contiguous.  Use kvfree() to free.
241  */
vmemdup_user(const void __user * src,size_t len)242 void *vmemdup_user(const void __user *src, size_t len)
243 {
244 	void *p;
245 
246 	p = kmem_buckets_valloc(user_buckets, len, GFP_USER);
247 	if (!p)
248 		return ERR_PTR(-ENOMEM);
249 
250 	if (copy_from_user(p, src, len)) {
251 		kvfree(p);
252 		return ERR_PTR(-EFAULT);
253 	}
254 
255 	return p;
256 }
257 EXPORT_SYMBOL(vmemdup_user);
258 
259 /**
260  * strndup_user - duplicate an existing string from user space
261  * @s: The string to duplicate
262  * @n: Maximum number of bytes to copy, including the trailing NUL.
263  *
264  * Return: newly allocated copy of @s or an ERR_PTR() in case of error
265  */
strndup_user(const char __user * s,long n)266 char *strndup_user(const char __user *s, long n)
267 {
268 	char *p;
269 	long length;
270 
271 	length = strnlen_user(s, n);
272 
273 	if (!length)
274 		return ERR_PTR(-EFAULT);
275 
276 	if (length > n)
277 		return ERR_PTR(-EINVAL);
278 
279 	p = memdup_user(s, length);
280 
281 	if (IS_ERR(p))
282 		return p;
283 
284 	p[length - 1] = '\0';
285 
286 	return p;
287 }
288 EXPORT_SYMBOL(strndup_user);
289 
290 /**
291  * memdup_user_nul - duplicate memory region from user space and NUL-terminate
292  *
293  * @src: source address in user space
294  * @len: number of bytes to copy
295  *
296  * Return: an ERR_PTR() on failure.
297  */
memdup_user_nul(const void __user * src,size_t len)298 void *memdup_user_nul(const void __user *src, size_t len)
299 {
300 	char *p;
301 
302 	p = kmem_buckets_alloc_track_caller(user_buckets, len + 1, GFP_USER | __GFP_NOWARN);
303 	if (!p)
304 		return ERR_PTR(-ENOMEM);
305 
306 	if (copy_from_user(p, src, len)) {
307 		kfree(p);
308 		return ERR_PTR(-EFAULT);
309 	}
310 	p[len] = '\0';
311 
312 	return p;
313 }
314 EXPORT_SYMBOL(memdup_user_nul);
315 
316 /* Check if the vma is being used as a stack by this task */
vma_is_stack_for_current(struct vm_area_struct * vma)317 int vma_is_stack_for_current(struct vm_area_struct *vma)
318 {
319 	struct task_struct * __maybe_unused t = current;
320 
321 	return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
322 }
323 
324 /*
325  * Change backing file, only valid to use during initial VMA setup.
326  */
vma_set_file(struct vm_area_struct * vma,struct file * file)327 void vma_set_file(struct vm_area_struct *vma, struct file *file)
328 {
329 	/* Changing an anonymous vma with this is illegal */
330 	get_file(file);
331 	swap(vma->vm_file, file);
332 	fput(file);
333 }
334 EXPORT_SYMBOL(vma_set_file);
335 
336 #ifndef STACK_RND_MASK
337 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))     /* 8MB of VA */
338 #endif
339 
randomize_stack_top(unsigned long stack_top)340 unsigned long randomize_stack_top(unsigned long stack_top)
341 {
342 	unsigned long random_variable = 0;
343 
344 	if (current->flags & PF_RANDOMIZE) {
345 		random_variable = get_random_long();
346 		random_variable &= STACK_RND_MASK;
347 		random_variable <<= PAGE_SHIFT;
348 	}
349 #ifdef CONFIG_STACK_GROWSUP
350 	return PAGE_ALIGN(stack_top) + random_variable;
351 #else
352 	return PAGE_ALIGN(stack_top) - random_variable;
353 #endif
354 }
355 
356 /**
357  * randomize_page - Generate a random, page aligned address
358  * @start:	The smallest acceptable address the caller will take.
359  * @range:	The size of the area, starting at @start, within which the
360  *		random address must fall.
361  *
362  * If @start + @range would overflow, @range is capped.
363  *
364  * NOTE: Historical use of randomize_range, which this replaces, presumed that
365  * @start was already page aligned.  We now align it regardless.
366  *
367  * Return: A page aligned address within [start, start + range).  On error,
368  * @start is returned.
369  */
randomize_page(unsigned long start,unsigned long range)370 unsigned long randomize_page(unsigned long start, unsigned long range)
371 {
372 	if (!PAGE_ALIGNED(start)) {
373 		range -= PAGE_ALIGN(start) - start;
374 		start = PAGE_ALIGN(start);
375 	}
376 
377 	if (start > ULONG_MAX - range)
378 		range = ULONG_MAX - start;
379 
380 	range >>= PAGE_SHIFT;
381 
382 	if (range == 0)
383 		return start;
384 
385 	return start + (get_random_long() % range << PAGE_SHIFT);
386 }
387 
388 #ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
arch_randomize_brk(struct mm_struct * mm)389 unsigned long __weak arch_randomize_brk(struct mm_struct *mm)
390 {
391 	/* Is the current task 32bit ? */
392 	if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task())
393 		return randomize_page(mm->brk, SZ_32M);
394 
395 	return randomize_page(mm->brk, SZ_1G);
396 }
397 
arch_mmap_rnd(void)398 unsigned long arch_mmap_rnd(void)
399 {
400 	unsigned long rnd;
401 
402 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
403 	if (is_compat_task())
404 		rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1);
405 	else
406 #endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */
407 		rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1);
408 
409 	return rnd << PAGE_SHIFT;
410 }
411 
mmap_is_legacy(struct rlimit * rlim_stack)412 static int mmap_is_legacy(struct rlimit *rlim_stack)
413 {
414 	if (current->personality & ADDR_COMPAT_LAYOUT)
415 		return 1;
416 
417 	/* On parisc the stack always grows up - so a unlimited stack should
418 	 * not be an indicator to use the legacy memory layout. */
419 	if (rlim_stack->rlim_cur == RLIM_INFINITY &&
420 		!IS_ENABLED(CONFIG_STACK_GROWSUP))
421 		return 1;
422 
423 	return sysctl_legacy_va_layout;
424 }
425 
426 /*
427  * Leave enough space between the mmap area and the stack to honour ulimit in
428  * the face of randomisation.
429  */
430 #define MIN_GAP		(SZ_128M)
431 #define MAX_GAP		(STACK_TOP / 6 * 5)
432 
mmap_base(unsigned long rnd,struct rlimit * rlim_stack)433 static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack)
434 {
435 #ifdef CONFIG_STACK_GROWSUP
436 	/*
437 	 * For an upwards growing stack the calculation is much simpler.
438 	 * Memory for the maximum stack size is reserved at the top of the
439 	 * task. mmap_base starts directly below the stack and grows
440 	 * downwards.
441 	 */
442 	return PAGE_ALIGN_DOWN(mmap_upper_limit(rlim_stack) - rnd);
443 #else
444 	unsigned long gap = rlim_stack->rlim_cur;
445 	unsigned long pad = stack_guard_gap;
446 
447 	/* Account for stack randomization if necessary */
448 	if (current->flags & PF_RANDOMIZE)
449 		pad += (STACK_RND_MASK << PAGE_SHIFT);
450 
451 	/* Values close to RLIM_INFINITY can overflow. */
452 	if (gap + pad > gap)
453 		gap += pad;
454 
455 	if (gap < MIN_GAP && MIN_GAP < MAX_GAP)
456 		gap = MIN_GAP;
457 	else if (gap > MAX_GAP)
458 		gap = MAX_GAP;
459 
460 	return PAGE_ALIGN(STACK_TOP - gap - rnd);
461 #endif
462 }
463 
arch_pick_mmap_layout(struct mm_struct * mm,struct rlimit * rlim_stack)464 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
465 {
466 	unsigned long random_factor = 0UL;
467 
468 	if (current->flags & PF_RANDOMIZE)
469 		random_factor = arch_mmap_rnd();
470 
471 	if (mmap_is_legacy(rlim_stack)) {
472 		mm->mmap_base = TASK_UNMAPPED_BASE + random_factor;
473 		clear_bit(MMF_TOPDOWN, &mm->flags);
474 	} else {
475 		mm->mmap_base = mmap_base(random_factor, rlim_stack);
476 		set_bit(MMF_TOPDOWN, &mm->flags);
477 	}
478 }
479 #elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
arch_pick_mmap_layout(struct mm_struct * mm,struct rlimit * rlim_stack)480 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
481 {
482 	mm->mmap_base = TASK_UNMAPPED_BASE;
483 	clear_bit(MMF_TOPDOWN, &mm->flags);
484 }
485 #endif
486 #ifdef CONFIG_MMU
487 EXPORT_SYMBOL_IF_KUNIT(arch_pick_mmap_layout);
488 #endif
489 
490 /**
491  * __account_locked_vm - account locked pages to an mm's locked_vm
492  * @mm:          mm to account against
493  * @pages:       number of pages to account
494  * @inc:         %true if @pages should be considered positive, %false if not
495  * @task:        task used to check RLIMIT_MEMLOCK
496  * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped
497  *
498  * Assumes @task and @mm are valid (i.e. at least one reference on each), and
499  * that mmap_lock is held as writer.
500  *
501  * Return:
502  * * 0       on success
503  * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
504  */
__account_locked_vm(struct mm_struct * mm,unsigned long pages,bool inc,struct task_struct * task,bool bypass_rlim)505 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
506 			struct task_struct *task, bool bypass_rlim)
507 {
508 	unsigned long locked_vm, limit;
509 	int ret = 0;
510 
511 	mmap_assert_write_locked(mm);
512 
513 	locked_vm = mm->locked_vm;
514 	if (inc) {
515 		if (!bypass_rlim) {
516 			limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT;
517 			if (locked_vm + pages > limit)
518 				ret = -ENOMEM;
519 		}
520 		if (!ret)
521 			mm->locked_vm = locked_vm + pages;
522 	} else {
523 		WARN_ON_ONCE(pages > locked_vm);
524 		mm->locked_vm = locked_vm - pages;
525 	}
526 
527 	pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid,
528 		 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT,
529 		 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK),
530 		 ret ? " - exceeded" : "");
531 
532 	return ret;
533 }
534 EXPORT_SYMBOL_GPL(__account_locked_vm);
535 
536 /**
537  * account_locked_vm - account locked pages to an mm's locked_vm
538  * @mm:          mm to account against, may be NULL
539  * @pages:       number of pages to account
540  * @inc:         %true if @pages should be considered positive, %false if not
541  *
542  * Assumes a non-NULL @mm is valid (i.e. at least one reference on it).
543  *
544  * Return:
545  * * 0       on success, or if mm is NULL
546  * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
547  */
account_locked_vm(struct mm_struct * mm,unsigned long pages,bool inc)548 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc)
549 {
550 	int ret;
551 
552 	if (pages == 0 || !mm)
553 		return 0;
554 
555 	mmap_write_lock(mm);
556 	ret = __account_locked_vm(mm, pages, inc, current,
557 				  capable(CAP_IPC_LOCK));
558 	mmap_write_unlock(mm);
559 
560 	return ret;
561 }
562 EXPORT_SYMBOL_GPL(account_locked_vm);
563 
vm_mmap_pgoff(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flag,unsigned long pgoff)564 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
565 	unsigned long len, unsigned long prot,
566 	unsigned long flag, unsigned long pgoff)
567 {
568 	unsigned long ret;
569 	struct mm_struct *mm = current->mm;
570 	unsigned long populate;
571 	LIST_HEAD(uf);
572 
573 	ret = security_mmap_file(file, prot, flag);
574 	if (!ret)
575 		ret = fsnotify_mmap_perm(file, prot, pgoff >> PAGE_SHIFT, len);
576 	if (!ret) {
577 		if (mmap_write_lock_killable(mm))
578 			return -EINTR;
579 		ret = do_mmap(file, addr, len, prot, flag, 0, pgoff, &populate,
580 			      &uf);
581 		mmap_write_unlock(mm);
582 		userfaultfd_unmap_complete(mm, &uf);
583 		if (populate)
584 			mm_populate(ret, populate);
585 	}
586 	return ret;
587 }
588 
589 /*
590  * Perform a userland memory mapping into the current process address space. See
591  * the comment for do_mmap() for more details on this operation in general.
592  *
593  * This differs from do_mmap() in that:
594  *
595  * a. An offset parameter is provided rather than pgoff, which is both checked
596  *    for overflow and page alignment.
597  * b. mmap locking is performed on the caller's behalf.
598  * c. Userfaultfd unmap events and memory population are handled.
599  *
600  * This means that this function performs essentially the same work as if
601  * userland were invoking mmap (2).
602  *
603  * Returns either an error, or the address at which the requested mapping has
604  * been performed.
605  */
vm_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flag,unsigned long offset)606 unsigned long vm_mmap(struct file *file, unsigned long addr,
607 	unsigned long len, unsigned long prot,
608 	unsigned long flag, unsigned long offset)
609 {
610 	if (unlikely(offset + PAGE_ALIGN(len) < offset))
611 		return -EINVAL;
612 	if (unlikely(offset_in_page(offset)))
613 		return -EINVAL;
614 
615 	return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
616 }
617 EXPORT_SYMBOL(vm_mmap);
618 
619 /**
620  * __vmalloc_array - allocate memory for a virtually contiguous array.
621  * @n: number of elements.
622  * @size: element size.
623  * @flags: the type of memory to allocate (see kmalloc).
624  */
__vmalloc_array_noprof(size_t n,size_t size,gfp_t flags)625 void *__vmalloc_array_noprof(size_t n, size_t size, gfp_t flags)
626 {
627 	size_t bytes;
628 
629 	if (unlikely(check_mul_overflow(n, size, &bytes)))
630 		return NULL;
631 	return __vmalloc_noprof(bytes, flags);
632 }
633 EXPORT_SYMBOL(__vmalloc_array_noprof);
634 
635 /**
636  * vmalloc_array - allocate memory for a virtually contiguous array.
637  * @n: number of elements.
638  * @size: element size.
639  */
vmalloc_array_noprof(size_t n,size_t size)640 void *vmalloc_array_noprof(size_t n, size_t size)
641 {
642 	return __vmalloc_array_noprof(n, size, GFP_KERNEL);
643 }
644 EXPORT_SYMBOL(vmalloc_array_noprof);
645 
646 /**
647  * __vcalloc - allocate and zero memory for a virtually contiguous array.
648  * @n: number of elements.
649  * @size: element size.
650  * @flags: the type of memory to allocate (see kmalloc).
651  */
__vcalloc_noprof(size_t n,size_t size,gfp_t flags)652 void *__vcalloc_noprof(size_t n, size_t size, gfp_t flags)
653 {
654 	return __vmalloc_array_noprof(n, size, flags | __GFP_ZERO);
655 }
656 EXPORT_SYMBOL(__vcalloc_noprof);
657 
658 /**
659  * vcalloc - allocate and zero memory for a virtually contiguous array.
660  * @n: number of elements.
661  * @size: element size.
662  */
vcalloc_noprof(size_t n,size_t size)663 void *vcalloc_noprof(size_t n, size_t size)
664 {
665 	return __vmalloc_array_noprof(n, size, GFP_KERNEL | __GFP_ZERO);
666 }
667 EXPORT_SYMBOL(vcalloc_noprof);
668 
folio_anon_vma(const struct folio * folio)669 struct anon_vma *folio_anon_vma(const struct folio *folio)
670 {
671 	unsigned long mapping = (unsigned long)folio->mapping;
672 
673 	if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
674 		return NULL;
675 	return (void *)(mapping - PAGE_MAPPING_ANON);
676 }
677 
678 /**
679  * folio_mapping - Find the mapping where this folio is stored.
680  * @folio: The folio.
681  *
682  * For folios which are in the page cache, return the mapping that this
683  * page belongs to.  Folios in the swap cache return the swap mapping
684  * this page is stored in (which is different from the mapping for the
685  * swap file or swap device where the data is stored).
686  *
687  * You can call this for folios which aren't in the swap cache or page
688  * cache and it will return NULL.
689  */
folio_mapping(struct folio * folio)690 struct address_space *folio_mapping(struct folio *folio)
691 {
692 	struct address_space *mapping;
693 
694 	/* This happens if someone calls flush_dcache_page on slab page */
695 	if (unlikely(folio_test_slab(folio)))
696 		return NULL;
697 
698 	if (unlikely(folio_test_swapcache(folio)))
699 		return swap_address_space(folio->swap);
700 
701 	mapping = folio->mapping;
702 	if ((unsigned long)mapping & PAGE_MAPPING_FLAGS)
703 		return NULL;
704 
705 	return mapping;
706 }
707 EXPORT_SYMBOL(folio_mapping);
708 
709 /**
710  * folio_copy - Copy the contents of one folio to another.
711  * @dst: Folio to copy to.
712  * @src: Folio to copy from.
713  *
714  * The bytes in the folio represented by @src are copied to @dst.
715  * Assumes the caller has validated that @dst is at least as large as @src.
716  * Can be called in atomic context for order-0 folios, but if the folio is
717  * larger, it may sleep.
718  */
folio_copy(struct folio * dst,struct folio * src)719 void folio_copy(struct folio *dst, struct folio *src)
720 {
721 	long i = 0;
722 	long nr = folio_nr_pages(src);
723 
724 	for (;;) {
725 		copy_highpage(folio_page(dst, i), folio_page(src, i));
726 		if (++i == nr)
727 			break;
728 		cond_resched();
729 	}
730 }
731 EXPORT_SYMBOL(folio_copy);
732 
folio_mc_copy(struct folio * dst,struct folio * src)733 int folio_mc_copy(struct folio *dst, struct folio *src)
734 {
735 	long nr = folio_nr_pages(src);
736 	long i = 0;
737 
738 	for (;;) {
739 		if (copy_mc_highpage(folio_page(dst, i), folio_page(src, i)))
740 			return -EHWPOISON;
741 		if (++i == nr)
742 			break;
743 		cond_resched();
744 	}
745 
746 	return 0;
747 }
748 EXPORT_SYMBOL(folio_mc_copy);
749 
750 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
751 static int sysctl_overcommit_ratio __read_mostly = 50;
752 static unsigned long sysctl_overcommit_kbytes __read_mostly;
753 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
754 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
755 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
756 
757 #ifdef CONFIG_SYSCTL
758 
overcommit_ratio_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)759 static int overcommit_ratio_handler(const struct ctl_table *table, int write,
760 				void *buffer, size_t *lenp, loff_t *ppos)
761 {
762 	int ret;
763 
764 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
765 	if (ret == 0 && write)
766 		sysctl_overcommit_kbytes = 0;
767 	return ret;
768 }
769 
sync_overcommit_as(struct work_struct * dummy)770 static void sync_overcommit_as(struct work_struct *dummy)
771 {
772 	percpu_counter_sync(&vm_committed_as);
773 }
774 
overcommit_policy_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)775 static int overcommit_policy_handler(const struct ctl_table *table, int write,
776 				void *buffer, size_t *lenp, loff_t *ppos)
777 {
778 	struct ctl_table t;
779 	int new_policy = -1;
780 	int ret;
781 
782 	/*
783 	 * The deviation of sync_overcommit_as could be big with loose policy
784 	 * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to
785 	 * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply
786 	 * with the strict "NEVER", and to avoid possible race condition (even
787 	 * though user usually won't too frequently do the switching to policy
788 	 * OVERCOMMIT_NEVER), the switch is done in the following order:
789 	 *	1. changing the batch
790 	 *	2. sync percpu count on each CPU
791 	 *	3. switch the policy
792 	 */
793 	if (write) {
794 		t = *table;
795 		t.data = &new_policy;
796 		ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
797 		if (ret || new_policy == -1)
798 			return ret;
799 
800 		mm_compute_batch(new_policy);
801 		if (new_policy == OVERCOMMIT_NEVER)
802 			schedule_on_each_cpu(sync_overcommit_as);
803 		sysctl_overcommit_memory = new_policy;
804 	} else {
805 		ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
806 	}
807 
808 	return ret;
809 }
810 
overcommit_kbytes_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)811 static int overcommit_kbytes_handler(const struct ctl_table *table, int write,
812 				void *buffer, size_t *lenp, loff_t *ppos)
813 {
814 	int ret;
815 
816 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
817 	if (ret == 0 && write)
818 		sysctl_overcommit_ratio = 0;
819 	return ret;
820 }
821 
822 static const struct ctl_table util_sysctl_table[] = {
823 	{
824 		.procname	= "overcommit_memory",
825 		.data		= &sysctl_overcommit_memory,
826 		.maxlen		= sizeof(sysctl_overcommit_memory),
827 		.mode		= 0644,
828 		.proc_handler	= overcommit_policy_handler,
829 		.extra1		= SYSCTL_ZERO,
830 		.extra2		= SYSCTL_TWO,
831 	},
832 	{
833 		.procname	= "overcommit_ratio",
834 		.data		= &sysctl_overcommit_ratio,
835 		.maxlen		= sizeof(sysctl_overcommit_ratio),
836 		.mode		= 0644,
837 		.proc_handler	= overcommit_ratio_handler,
838 	},
839 	{
840 		.procname	= "overcommit_kbytes",
841 		.data		= &sysctl_overcommit_kbytes,
842 		.maxlen		= sizeof(sysctl_overcommit_kbytes),
843 		.mode		= 0644,
844 		.proc_handler	= overcommit_kbytes_handler,
845 	},
846 	{
847 		.procname	= "user_reserve_kbytes",
848 		.data		= &sysctl_user_reserve_kbytes,
849 		.maxlen		= sizeof(sysctl_user_reserve_kbytes),
850 		.mode		= 0644,
851 		.proc_handler	= proc_doulongvec_minmax,
852 	},
853 	{
854 		.procname	= "admin_reserve_kbytes",
855 		.data		= &sysctl_admin_reserve_kbytes,
856 		.maxlen		= sizeof(sysctl_admin_reserve_kbytes),
857 		.mode		= 0644,
858 		.proc_handler	= proc_doulongvec_minmax,
859 	},
860 };
861 
init_vm_util_sysctls(void)862 static int __init init_vm_util_sysctls(void)
863 {
864 	register_sysctl_init("vm", util_sysctl_table);
865 	return 0;
866 }
867 subsys_initcall(init_vm_util_sysctls);
868 #endif /* CONFIG_SYSCTL */
869 
870 /*
871  * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
872  */
vm_commit_limit(void)873 unsigned long vm_commit_limit(void)
874 {
875 	unsigned long allowed;
876 
877 	if (sysctl_overcommit_kbytes)
878 		allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
879 	else
880 		allowed = ((totalram_pages() - hugetlb_total_pages())
881 			   * sysctl_overcommit_ratio / 100);
882 	allowed += total_swap_pages;
883 
884 	return allowed;
885 }
886 
887 /*
888  * Make sure vm_committed_as in one cacheline and not cacheline shared with
889  * other variables. It can be updated by several CPUs frequently.
890  */
891 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
892 
893 /*
894  * The global memory commitment made in the system can be a metric
895  * that can be used to drive ballooning decisions when Linux is hosted
896  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
897  * balancing memory across competing virtual machines that are hosted.
898  * Several metrics drive this policy engine including the guest reported
899  * memory commitment.
900  *
901  * The time cost of this is very low for small platforms, and for big
902  * platform like a 2S/36C/72T Skylake server, in worst case where
903  * vm_committed_as's spinlock is under severe contention, the time cost
904  * could be about 30~40 microseconds.
905  */
vm_memory_committed(void)906 unsigned long vm_memory_committed(void)
907 {
908 	return percpu_counter_sum_positive(&vm_committed_as);
909 }
910 EXPORT_SYMBOL_GPL(vm_memory_committed);
911 
912 /*
913  * Check that a process has enough memory to allocate a new virtual
914  * mapping. 0 means there is enough memory for the allocation to
915  * succeed and -ENOMEM implies there is not.
916  *
917  * We currently support three overcommit policies, which are set via the
918  * vm.overcommit_memory sysctl.  See Documentation/mm/overcommit-accounting.rst
919  *
920  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
921  * Additional code 2002 Jul 20 by Robert Love.
922  *
923  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
924  *
925  * Note this is a helper function intended to be used by LSMs which
926  * wish to use this logic.
927  */
__vm_enough_memory(struct mm_struct * mm,long pages,int cap_sys_admin)928 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
929 {
930 	long allowed;
931 	unsigned long bytes_failed;
932 
933 	vm_acct_memory(pages);
934 
935 	/*
936 	 * Sometimes we want to use more memory than we have
937 	 */
938 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
939 		return 0;
940 
941 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
942 		if (pages > totalram_pages() + total_swap_pages)
943 			goto error;
944 		return 0;
945 	}
946 
947 	allowed = vm_commit_limit();
948 	/*
949 	 * Reserve some for root
950 	 */
951 	if (!cap_sys_admin)
952 		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
953 
954 	/*
955 	 * Don't let a single process grow so big a user can't recover
956 	 */
957 	if (mm) {
958 		long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
959 
960 		allowed -= min_t(long, mm->total_vm / 32, reserve);
961 	}
962 
963 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
964 		return 0;
965 error:
966 	bytes_failed = pages << PAGE_SHIFT;
967 	pr_warn_ratelimited("%s: pid: %d, comm: %s, bytes: %lu not enough memory for the allocation\n",
968 			    __func__, current->pid, current->comm, bytes_failed);
969 	vm_unacct_memory(pages);
970 
971 	return -ENOMEM;
972 }
973 
974 /**
975  * get_cmdline() - copy the cmdline value to a buffer.
976  * @task:     the task whose cmdline value to copy.
977  * @buffer:   the buffer to copy to.
978  * @buflen:   the length of the buffer. Larger cmdline values are truncated
979  *            to this length.
980  *
981  * Return: the size of the cmdline field copied. Note that the copy does
982  * not guarantee an ending NULL byte.
983  */
get_cmdline(struct task_struct * task,char * buffer,int buflen)984 int get_cmdline(struct task_struct *task, char *buffer, int buflen)
985 {
986 	int res = 0;
987 	unsigned int len;
988 	struct mm_struct *mm = get_task_mm(task);
989 	unsigned long arg_start, arg_end, env_start, env_end;
990 	if (!mm)
991 		goto out;
992 	if (!mm->arg_end)
993 		goto out_mm;	/* Shh! No looking before we're done */
994 
995 	spin_lock(&mm->arg_lock);
996 	arg_start = mm->arg_start;
997 	arg_end = mm->arg_end;
998 	env_start = mm->env_start;
999 	env_end = mm->env_end;
1000 	spin_unlock(&mm->arg_lock);
1001 
1002 	len = arg_end - arg_start;
1003 
1004 	if (len > buflen)
1005 		len = buflen;
1006 
1007 	res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
1008 
1009 	/*
1010 	 * If the nul at the end of args has been overwritten, then
1011 	 * assume application is using setproctitle(3).
1012 	 */
1013 	if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
1014 		len = strnlen(buffer, res);
1015 		if (len < res) {
1016 			res = len;
1017 		} else {
1018 			len = env_end - env_start;
1019 			if (len > buflen - res)
1020 				len = buflen - res;
1021 			res += access_process_vm(task, env_start,
1022 						 buffer+res, len,
1023 						 FOLL_FORCE);
1024 			res = strnlen(buffer, res);
1025 		}
1026 	}
1027 out_mm:
1028 	mmput(mm);
1029 out:
1030 	return res;
1031 }
1032 
memcmp_pages(struct page * page1,struct page * page2)1033 int __weak memcmp_pages(struct page *page1, struct page *page2)
1034 {
1035 	char *addr1, *addr2;
1036 	int ret;
1037 
1038 	addr1 = kmap_local_page(page1);
1039 	addr2 = kmap_local_page(page2);
1040 	ret = memcmp(addr1, addr2, PAGE_SIZE);
1041 	kunmap_local(addr2);
1042 	kunmap_local(addr1);
1043 	return ret;
1044 }
1045 
1046 #ifdef CONFIG_PRINTK
1047 /**
1048  * mem_dump_obj - Print available provenance information
1049  * @object: object for which to find provenance information.
1050  *
1051  * This function uses pr_cont(), so that the caller is expected to have
1052  * printed out whatever preamble is appropriate.  The provenance information
1053  * depends on the type of object and on how much debugging is enabled.
1054  * For example, for a slab-cache object, the slab name is printed, and,
1055  * if available, the return address and stack trace from the allocation
1056  * and last free path of that object.
1057  */
mem_dump_obj(void * object)1058 void mem_dump_obj(void *object)
1059 {
1060 	const char *type;
1061 
1062 	if (kmem_dump_obj(object))
1063 		return;
1064 
1065 	if (vmalloc_dump_obj(object))
1066 		return;
1067 
1068 	if (is_vmalloc_addr(object))
1069 		type = "vmalloc memory";
1070 	else if (virt_addr_valid(object))
1071 		type = "non-slab/vmalloc memory";
1072 	else if (object == NULL)
1073 		type = "NULL pointer";
1074 	else if (object == ZERO_SIZE_PTR)
1075 		type = "zero-size pointer";
1076 	else
1077 		type = "non-paged memory";
1078 
1079 	pr_cont(" %s\n", type);
1080 }
1081 EXPORT_SYMBOL_GPL(mem_dump_obj);
1082 #endif
1083 
1084 /*
1085  * A driver might set a page logically offline -- PageOffline() -- and
1086  * turn the page inaccessible in the hypervisor; after that, access to page
1087  * content can be fatal.
1088  *
1089  * Some special PFN walkers -- i.e., /proc/kcore -- read content of random
1090  * pages after checking PageOffline(); however, these PFN walkers can race
1091  * with drivers that set PageOffline().
1092  *
1093  * page_offline_freeze()/page_offline_thaw() allows for a subsystem to
1094  * synchronize with such drivers, achieving that a page cannot be set
1095  * PageOffline() while frozen.
1096  *
1097  * page_offline_begin()/page_offline_end() is used by drivers that care about
1098  * such races when setting a page PageOffline().
1099  */
1100 static DECLARE_RWSEM(page_offline_rwsem);
1101 
page_offline_freeze(void)1102 void page_offline_freeze(void)
1103 {
1104 	down_read(&page_offline_rwsem);
1105 }
1106 
page_offline_thaw(void)1107 void page_offline_thaw(void)
1108 {
1109 	up_read(&page_offline_rwsem);
1110 }
1111 
page_offline_begin(void)1112 void page_offline_begin(void)
1113 {
1114 	down_write(&page_offline_rwsem);
1115 }
1116 EXPORT_SYMBOL(page_offline_begin);
1117 
page_offline_end(void)1118 void page_offline_end(void)
1119 {
1120 	up_write(&page_offline_rwsem);
1121 }
1122 EXPORT_SYMBOL(page_offline_end);
1123 
1124 #ifndef flush_dcache_folio
flush_dcache_folio(struct folio * folio)1125 void flush_dcache_folio(struct folio *folio)
1126 {
1127 	long i, nr = folio_nr_pages(folio);
1128 
1129 	for (i = 0; i < nr; i++)
1130 		flush_dcache_page(folio_page(folio, i));
1131 }
1132 EXPORT_SYMBOL(flush_dcache_folio);
1133 #endif
1134