xref: /linux/mm/page_alloc.c (revision 76b6905c11fd3c6dc4562aefc3e8c4429fefae1e)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   *  linux/mm/page_alloc.c
4   *
5   *  Manages the free list, the system allocates free pages here.
6   *  Note that kmalloc() lives in slab.c
7   *
8   *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9   *  Swap reorganised 29.12.95, Stephen Tweedie
10   *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11   *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12   *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13   *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14   *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15   *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16   */
17  
18  #include <linux/stddef.h>
19  #include <linux/mm.h>
20  #include <linux/highmem.h>
21  #include <linux/interrupt.h>
22  #include <linux/jiffies.h>
23  #include <linux/compiler.h>
24  #include <linux/kernel.h>
25  #include <linux/kasan.h>
26  #include <linux/kmsan.h>
27  #include <linux/module.h>
28  #include <linux/suspend.h>
29  #include <linux/ratelimit.h>
30  #include <linux/oom.h>
31  #include <linux/topology.h>
32  #include <linux/sysctl.h>
33  #include <linux/cpu.h>
34  #include <linux/cpuset.h>
35  #include <linux/pagevec.h>
36  #include <linux/memory_hotplug.h>
37  #include <linux/nodemask.h>
38  #include <linux/vmstat.h>
39  #include <linux/fault-inject.h>
40  #include <linux/compaction.h>
41  #include <trace/events/kmem.h>
42  #include <trace/events/oom.h>
43  #include <linux/prefetch.h>
44  #include <linux/mm_inline.h>
45  #include <linux/mmu_notifier.h>
46  #include <linux/migrate.h>
47  #include <linux/sched/mm.h>
48  #include <linux/page_owner.h>
49  #include <linux/page_table_check.h>
50  #include <linux/memcontrol.h>
51  #include <linux/ftrace.h>
52  #include <linux/lockdep.h>
53  #include <linux/psi.h>
54  #include <linux/khugepaged.h>
55  #include <linux/delayacct.h>
56  #include <linux/cacheinfo.h>
57  #include <linux/pgalloc_tag.h>
58  #include <asm/div64.h>
59  #include "internal.h"
60  #include "shuffle.h"
61  #include "page_reporting.h"
62  
63  /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
64  typedef int __bitwise fpi_t;
65  
66  /* No special request */
67  #define FPI_NONE		((__force fpi_t)0)
68  
69  /*
70   * Skip free page reporting notification for the (possibly merged) page.
71   * This does not hinder free page reporting from grabbing the page,
72   * reporting it and marking it "reported" -  it only skips notifying
73   * the free page reporting infrastructure about a newly freed page. For
74   * example, used when temporarily pulling a page from a freelist and
75   * putting it back unmodified.
76   */
77  #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
78  
79  /*
80   * Place the (possibly merged) page to the tail of the freelist. Will ignore
81   * page shuffling (relevant code - e.g., memory onlining - is expected to
82   * shuffle the whole zone).
83   *
84   * Note: No code should rely on this flag for correctness - it's purely
85   *       to allow for optimizations when handing back either fresh pages
86   *       (memory onlining) or untouched pages (page isolation, free page
87   *       reporting).
88   */
89  #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
90  
91  /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
92  static DEFINE_MUTEX(pcp_batch_high_lock);
93  #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
94  
95  #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
96  /*
97   * On SMP, spin_trylock is sufficient protection.
98   * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
99   */
100  #define pcp_trylock_prepare(flags)	do { } while (0)
101  #define pcp_trylock_finish(flag)	do { } while (0)
102  #else
103  
104  /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
105  #define pcp_trylock_prepare(flags)	local_irq_save(flags)
106  #define pcp_trylock_finish(flags)	local_irq_restore(flags)
107  #endif
108  
109  /*
110   * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
111   * a migration causing the wrong PCP to be locked and remote memory being
112   * potentially allocated, pin the task to the CPU for the lookup+lock.
113   * preempt_disable is used on !RT because it is faster than migrate_disable.
114   * migrate_disable is used on RT because otherwise RT spinlock usage is
115   * interfered with and a high priority task cannot preempt the allocator.
116   */
117  #ifndef CONFIG_PREEMPT_RT
118  #define pcpu_task_pin()		preempt_disable()
119  #define pcpu_task_unpin()	preempt_enable()
120  #else
121  #define pcpu_task_pin()		migrate_disable()
122  #define pcpu_task_unpin()	migrate_enable()
123  #endif
124  
125  /*
126   * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
127   * Return value should be used with equivalent unlock helper.
128   */
129  #define pcpu_spin_lock(type, member, ptr)				\
130  ({									\
131  	type *_ret;							\
132  	pcpu_task_pin();						\
133  	_ret = this_cpu_ptr(ptr);					\
134  	spin_lock(&_ret->member);					\
135  	_ret;								\
136  })
137  
138  #define pcpu_spin_trylock(type, member, ptr)				\
139  ({									\
140  	type *_ret;							\
141  	pcpu_task_pin();						\
142  	_ret = this_cpu_ptr(ptr);					\
143  	if (!spin_trylock(&_ret->member)) {				\
144  		pcpu_task_unpin();					\
145  		_ret = NULL;						\
146  	}								\
147  	_ret;								\
148  })
149  
150  #define pcpu_spin_unlock(member, ptr)					\
151  ({									\
152  	spin_unlock(&ptr->member);					\
153  	pcpu_task_unpin();						\
154  })
155  
156  /* struct per_cpu_pages specific helpers. */
157  #define pcp_spin_lock(ptr)						\
158  	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
159  
160  #define pcp_spin_trylock(ptr)						\
161  	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
162  
163  #define pcp_spin_unlock(ptr)						\
164  	pcpu_spin_unlock(lock, ptr)
165  
166  #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
167  DEFINE_PER_CPU(int, numa_node);
168  EXPORT_PER_CPU_SYMBOL(numa_node);
169  #endif
170  
171  DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
172  
173  #ifdef CONFIG_HAVE_MEMORYLESS_NODES
174  /*
175   * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
176   * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
177   * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
178   * defined in <linux/topology.h>.
179   */
180  DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
181  EXPORT_PER_CPU_SYMBOL(_numa_mem_);
182  #endif
183  
184  static DEFINE_MUTEX(pcpu_drain_mutex);
185  
186  #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
187  volatile unsigned long latent_entropy __latent_entropy;
188  EXPORT_SYMBOL(latent_entropy);
189  #endif
190  
191  /*
192   * Array of node states.
193   */
194  nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
195  	[N_POSSIBLE] = NODE_MASK_ALL,
196  	[N_ONLINE] = { { [0] = 1UL } },
197  #ifndef CONFIG_NUMA
198  	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
199  #ifdef CONFIG_HIGHMEM
200  	[N_HIGH_MEMORY] = { { [0] = 1UL } },
201  #endif
202  	[N_MEMORY] = { { [0] = 1UL } },
203  	[N_CPU] = { { [0] = 1UL } },
204  #endif	/* NUMA */
205  };
206  EXPORT_SYMBOL(node_states);
207  
208  gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
209  
210  #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
211  unsigned int pageblock_order __read_mostly;
212  #endif
213  
214  static void __free_pages_ok(struct page *page, unsigned int order,
215  			    fpi_t fpi_flags);
216  
217  /*
218   * results with 256, 32 in the lowmem_reserve sysctl:
219   *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
220   *	1G machine -> (16M dma, 784M normal, 224M high)
221   *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
222   *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
223   *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
224   *
225   * TBD: should special case ZONE_DMA32 machines here - in those we normally
226   * don't need any ZONE_NORMAL reservation
227   */
228  static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
229  #ifdef CONFIG_ZONE_DMA
230  	[ZONE_DMA] = 256,
231  #endif
232  #ifdef CONFIG_ZONE_DMA32
233  	[ZONE_DMA32] = 256,
234  #endif
235  	[ZONE_NORMAL] = 32,
236  #ifdef CONFIG_HIGHMEM
237  	[ZONE_HIGHMEM] = 0,
238  #endif
239  	[ZONE_MOVABLE] = 0,
240  };
241  
242  char * const zone_names[MAX_NR_ZONES] = {
243  #ifdef CONFIG_ZONE_DMA
244  	 "DMA",
245  #endif
246  #ifdef CONFIG_ZONE_DMA32
247  	 "DMA32",
248  #endif
249  	 "Normal",
250  #ifdef CONFIG_HIGHMEM
251  	 "HighMem",
252  #endif
253  	 "Movable",
254  #ifdef CONFIG_ZONE_DEVICE
255  	 "Device",
256  #endif
257  };
258  
259  const char * const migratetype_names[MIGRATE_TYPES] = {
260  	"Unmovable",
261  	"Movable",
262  	"Reclaimable",
263  	"HighAtomic",
264  #ifdef CONFIG_CMA
265  	"CMA",
266  #endif
267  #ifdef CONFIG_MEMORY_ISOLATION
268  	"Isolate",
269  #endif
270  };
271  
272  int min_free_kbytes = 1024;
273  int user_min_free_kbytes = -1;
274  static int watermark_boost_factor __read_mostly = 15000;
275  static int watermark_scale_factor = 10;
276  
277  /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
278  int movable_zone;
279  EXPORT_SYMBOL(movable_zone);
280  
281  #if MAX_NUMNODES > 1
282  unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
283  unsigned int nr_online_nodes __read_mostly = 1;
284  EXPORT_SYMBOL(nr_node_ids);
285  EXPORT_SYMBOL(nr_online_nodes);
286  #endif
287  
288  static bool page_contains_unaccepted(struct page *page, unsigned int order);
289  static bool cond_accept_memory(struct zone *zone, unsigned int order);
290  static bool __free_unaccepted(struct page *page);
291  
292  int page_group_by_mobility_disabled __read_mostly;
293  
294  #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
295  /*
296   * During boot we initialize deferred pages on-demand, as needed, but once
297   * page_alloc_init_late() has finished, the deferred pages are all initialized,
298   * and we can permanently disable that path.
299   */
300  DEFINE_STATIC_KEY_TRUE(deferred_pages);
301  
deferred_pages_enabled(void)302  static inline bool deferred_pages_enabled(void)
303  {
304  	return static_branch_unlikely(&deferred_pages);
305  }
306  
307  /*
308   * deferred_grow_zone() is __init, but it is called from
309   * get_page_from_freelist() during early boot until deferred_pages permanently
310   * disables this call. This is why we have refdata wrapper to avoid warning,
311   * and to ensure that the function body gets unloaded.
312   */
313  static bool __ref
_deferred_grow_zone(struct zone * zone,unsigned int order)314  _deferred_grow_zone(struct zone *zone, unsigned int order)
315  {
316  	return deferred_grow_zone(zone, order);
317  }
318  #else
deferred_pages_enabled(void)319  static inline bool deferred_pages_enabled(void)
320  {
321  	return false;
322  }
323  
_deferred_grow_zone(struct zone * zone,unsigned int order)324  static inline bool _deferred_grow_zone(struct zone *zone, unsigned int order)
325  {
326  	return false;
327  }
328  #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
329  
330  /* Return a pointer to the bitmap storing bits affecting a block of pages */
get_pageblock_bitmap(const struct page * page,unsigned long pfn)331  static inline unsigned long *get_pageblock_bitmap(const struct page *page,
332  							unsigned long pfn)
333  {
334  #ifdef CONFIG_SPARSEMEM
335  	return section_to_usemap(__pfn_to_section(pfn));
336  #else
337  	return page_zone(page)->pageblock_flags;
338  #endif /* CONFIG_SPARSEMEM */
339  }
340  
pfn_to_bitidx(const struct page * page,unsigned long pfn)341  static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
342  {
343  #ifdef CONFIG_SPARSEMEM
344  	pfn &= (PAGES_PER_SECTION-1);
345  #else
346  	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
347  #endif /* CONFIG_SPARSEMEM */
348  	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
349  }
350  
351  /**
352   * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
353   * @page: The page within the block of interest
354   * @pfn: The target page frame number
355   * @mask: mask of bits that the caller is interested in
356   *
357   * Return: pageblock_bits flags
358   */
get_pfnblock_flags_mask(const struct page * page,unsigned long pfn,unsigned long mask)359  unsigned long get_pfnblock_flags_mask(const struct page *page,
360  					unsigned long pfn, unsigned long mask)
361  {
362  	unsigned long *bitmap;
363  	unsigned long bitidx, word_bitidx;
364  	unsigned long word;
365  
366  	bitmap = get_pageblock_bitmap(page, pfn);
367  	bitidx = pfn_to_bitidx(page, pfn);
368  	word_bitidx = bitidx / BITS_PER_LONG;
369  	bitidx &= (BITS_PER_LONG-1);
370  	/*
371  	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
372  	 * a consistent read of the memory array, so that results, even though
373  	 * racy, are not corrupted.
374  	 */
375  	word = READ_ONCE(bitmap[word_bitidx]);
376  	return (word >> bitidx) & mask;
377  }
378  
get_pfnblock_migratetype(const struct page * page,unsigned long pfn)379  static __always_inline int get_pfnblock_migratetype(const struct page *page,
380  					unsigned long pfn)
381  {
382  	return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
383  }
384  
385  /**
386   * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
387   * @page: The page within the block of interest
388   * @flags: The flags to set
389   * @pfn: The target page frame number
390   * @mask: mask of bits that the caller is interested in
391   */
set_pfnblock_flags_mask(struct page * page,unsigned long flags,unsigned long pfn,unsigned long mask)392  void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
393  					unsigned long pfn,
394  					unsigned long mask)
395  {
396  	unsigned long *bitmap;
397  	unsigned long bitidx, word_bitidx;
398  	unsigned long word;
399  
400  	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
401  	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
402  
403  	bitmap = get_pageblock_bitmap(page, pfn);
404  	bitidx = pfn_to_bitidx(page, pfn);
405  	word_bitidx = bitidx / BITS_PER_LONG;
406  	bitidx &= (BITS_PER_LONG-1);
407  
408  	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
409  
410  	mask <<= bitidx;
411  	flags <<= bitidx;
412  
413  	word = READ_ONCE(bitmap[word_bitidx]);
414  	do {
415  	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
416  }
417  
set_pageblock_migratetype(struct page * page,int migratetype)418  void set_pageblock_migratetype(struct page *page, int migratetype)
419  {
420  	if (unlikely(page_group_by_mobility_disabled &&
421  		     migratetype < MIGRATE_PCPTYPES))
422  		migratetype = MIGRATE_UNMOVABLE;
423  
424  	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
425  				page_to_pfn(page), MIGRATETYPE_MASK);
426  }
427  
428  #ifdef CONFIG_DEBUG_VM
page_outside_zone_boundaries(struct zone * zone,struct page * page)429  static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
430  {
431  	int ret;
432  	unsigned seq;
433  	unsigned long pfn = page_to_pfn(page);
434  	unsigned long sp, start_pfn;
435  
436  	do {
437  		seq = zone_span_seqbegin(zone);
438  		start_pfn = zone->zone_start_pfn;
439  		sp = zone->spanned_pages;
440  		ret = !zone_spans_pfn(zone, pfn);
441  	} while (zone_span_seqretry(zone, seq));
442  
443  	if (ret)
444  		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
445  			pfn, zone_to_nid(zone), zone->name,
446  			start_pfn, start_pfn + sp);
447  
448  	return ret;
449  }
450  
451  /*
452   * Temporary debugging check for pages not lying within a given zone.
453   */
bad_range(struct zone * zone,struct page * page)454  static bool __maybe_unused bad_range(struct zone *zone, struct page *page)
455  {
456  	if (page_outside_zone_boundaries(zone, page))
457  		return true;
458  	if (zone != page_zone(page))
459  		return true;
460  
461  	return false;
462  }
463  #else
bad_range(struct zone * zone,struct page * page)464  static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page)
465  {
466  	return false;
467  }
468  #endif
469  
bad_page(struct page * page,const char * reason)470  static void bad_page(struct page *page, const char *reason)
471  {
472  	static unsigned long resume;
473  	static unsigned long nr_shown;
474  	static unsigned long nr_unshown;
475  
476  	/*
477  	 * Allow a burst of 60 reports, then keep quiet for that minute;
478  	 * or allow a steady drip of one report per second.
479  	 */
480  	if (nr_shown == 60) {
481  		if (time_before(jiffies, resume)) {
482  			nr_unshown++;
483  			goto out;
484  		}
485  		if (nr_unshown) {
486  			pr_alert(
487  			      "BUG: Bad page state: %lu messages suppressed\n",
488  				nr_unshown);
489  			nr_unshown = 0;
490  		}
491  		nr_shown = 0;
492  	}
493  	if (nr_shown++ == 0)
494  		resume = jiffies + 60 * HZ;
495  
496  	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
497  		current->comm, page_to_pfn(page));
498  	dump_page(page, reason);
499  
500  	print_modules();
501  	dump_stack();
502  out:
503  	/* Leave bad fields for debug, except PageBuddy could make trouble */
504  	if (PageBuddy(page))
505  		__ClearPageBuddy(page);
506  	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
507  }
508  
order_to_pindex(int migratetype,int order)509  static inline unsigned int order_to_pindex(int migratetype, int order)
510  {
511  	bool __maybe_unused movable;
512  
513  #ifdef CONFIG_TRANSPARENT_HUGEPAGE
514  	if (order > PAGE_ALLOC_COSTLY_ORDER) {
515  		VM_BUG_ON(order != HPAGE_PMD_ORDER);
516  
517  		movable = migratetype == MIGRATE_MOVABLE;
518  
519  		return NR_LOWORDER_PCP_LISTS + movable;
520  	}
521  #else
522  	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
523  #endif
524  
525  	return (MIGRATE_PCPTYPES * order) + migratetype;
526  }
527  
pindex_to_order(unsigned int pindex)528  static inline int pindex_to_order(unsigned int pindex)
529  {
530  	int order = pindex / MIGRATE_PCPTYPES;
531  
532  #ifdef CONFIG_TRANSPARENT_HUGEPAGE
533  	if (pindex >= NR_LOWORDER_PCP_LISTS)
534  		order = HPAGE_PMD_ORDER;
535  #else
536  	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
537  #endif
538  
539  	return order;
540  }
541  
pcp_allowed_order(unsigned int order)542  static inline bool pcp_allowed_order(unsigned int order)
543  {
544  	if (order <= PAGE_ALLOC_COSTLY_ORDER)
545  		return true;
546  #ifdef CONFIG_TRANSPARENT_HUGEPAGE
547  	if (order == HPAGE_PMD_ORDER)
548  		return true;
549  #endif
550  	return false;
551  }
552  
553  /*
554   * Higher-order pages are called "compound pages".  They are structured thusly:
555   *
556   * The first PAGE_SIZE page is called the "head page" and have PG_head set.
557   *
558   * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
559   * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
560   *
561   * The first tail page's ->compound_order holds the order of allocation.
562   * This usage means that zero-order pages may not be compound.
563   */
564  
prep_compound_page(struct page * page,unsigned int order)565  void prep_compound_page(struct page *page, unsigned int order)
566  {
567  	int i;
568  	int nr_pages = 1 << order;
569  
570  	__SetPageHead(page);
571  	for (i = 1; i < nr_pages; i++)
572  		prep_compound_tail(page, i);
573  
574  	prep_compound_head(page, order);
575  }
576  
set_buddy_order(struct page * page,unsigned int order)577  static inline void set_buddy_order(struct page *page, unsigned int order)
578  {
579  	set_page_private(page, order);
580  	__SetPageBuddy(page);
581  }
582  
583  #ifdef CONFIG_COMPACTION
task_capc(struct zone * zone)584  static inline struct capture_control *task_capc(struct zone *zone)
585  {
586  	struct capture_control *capc = current->capture_control;
587  
588  	return unlikely(capc) &&
589  		!(current->flags & PF_KTHREAD) &&
590  		!capc->page &&
591  		capc->cc->zone == zone ? capc : NULL;
592  }
593  
594  static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)595  compaction_capture(struct capture_control *capc, struct page *page,
596  		   int order, int migratetype)
597  {
598  	if (!capc || order != capc->cc->order)
599  		return false;
600  
601  	/* Do not accidentally pollute CMA or isolated regions*/
602  	if (is_migrate_cma(migratetype) ||
603  	    is_migrate_isolate(migratetype))
604  		return false;
605  
606  	/*
607  	 * Do not let lower order allocations pollute a movable pageblock
608  	 * unless compaction is also requesting movable pages.
609  	 * This might let an unmovable request use a reclaimable pageblock
610  	 * and vice-versa but no more than normal fallback logic which can
611  	 * have trouble finding a high-order free page.
612  	 */
613  	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE &&
614  	    capc->cc->migratetype != MIGRATE_MOVABLE)
615  		return false;
616  
617  	capc->page = page;
618  	return true;
619  }
620  
621  #else
task_capc(struct zone * zone)622  static inline struct capture_control *task_capc(struct zone *zone)
623  {
624  	return NULL;
625  }
626  
627  static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)628  compaction_capture(struct capture_control *capc, struct page *page,
629  		   int order, int migratetype)
630  {
631  	return false;
632  }
633  #endif /* CONFIG_COMPACTION */
634  
account_freepages(struct zone * zone,int nr_pages,int migratetype)635  static inline void account_freepages(struct zone *zone, int nr_pages,
636  				     int migratetype)
637  {
638  	lockdep_assert_held(&zone->lock);
639  
640  	if (is_migrate_isolate(migratetype))
641  		return;
642  
643  	__mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages);
644  
645  	if (is_migrate_cma(migratetype))
646  		__mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages);
647  	else if (is_migrate_highatomic(migratetype))
648  		WRITE_ONCE(zone->nr_free_highatomic,
649  			   zone->nr_free_highatomic + nr_pages);
650  }
651  
652  /* Used for pages not on another list */
__add_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype,bool tail)653  static inline void __add_to_free_list(struct page *page, struct zone *zone,
654  				      unsigned int order, int migratetype,
655  				      bool tail)
656  {
657  	struct free_area *area = &zone->free_area[order];
658  
659  	VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
660  		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
661  		     get_pageblock_migratetype(page), migratetype, 1 << order);
662  
663  	if (tail)
664  		list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
665  	else
666  		list_add(&page->buddy_list, &area->free_list[migratetype]);
667  	area->nr_free++;
668  }
669  
670  /*
671   * Used for pages which are on another list. Move the pages to the tail
672   * of the list - so the moved pages won't immediately be considered for
673   * allocation again (e.g., optimization for memory onlining).
674   */
move_to_free_list(struct page * page,struct zone * zone,unsigned int order,int old_mt,int new_mt)675  static inline void move_to_free_list(struct page *page, struct zone *zone,
676  				     unsigned int order, int old_mt, int new_mt)
677  {
678  	struct free_area *area = &zone->free_area[order];
679  
680  	/* Free page moving can fail, so it happens before the type update */
681  	VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt,
682  		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
683  		     get_pageblock_migratetype(page), old_mt, 1 << order);
684  
685  	list_move_tail(&page->buddy_list, &area->free_list[new_mt]);
686  
687  	account_freepages(zone, -(1 << order), old_mt);
688  	account_freepages(zone, 1 << order, new_mt);
689  }
690  
__del_page_from_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)691  static inline void __del_page_from_free_list(struct page *page, struct zone *zone,
692  					     unsigned int order, int migratetype)
693  {
694          VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
695  		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
696  		     get_pageblock_migratetype(page), migratetype, 1 << order);
697  
698  	/* clear reported state and update reported page count */
699  	if (page_reported(page))
700  		__ClearPageReported(page);
701  
702  	list_del(&page->buddy_list);
703  	__ClearPageBuddy(page);
704  	set_page_private(page, 0);
705  	zone->free_area[order].nr_free--;
706  }
707  
del_page_from_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)708  static inline void del_page_from_free_list(struct page *page, struct zone *zone,
709  					   unsigned int order, int migratetype)
710  {
711  	__del_page_from_free_list(page, zone, order, migratetype);
712  	account_freepages(zone, -(1 << order), migratetype);
713  }
714  
get_page_from_free_area(struct free_area * area,int migratetype)715  static inline struct page *get_page_from_free_area(struct free_area *area,
716  					    int migratetype)
717  {
718  	return list_first_entry_or_null(&area->free_list[migratetype],
719  					struct page, buddy_list);
720  }
721  
722  /*
723   * If this is less than the 2nd largest possible page, check if the buddy
724   * of the next-higher order is free. If it is, it's possible
725   * that pages are being freed that will coalesce soon. In case,
726   * that is happening, add the free page to the tail of the list
727   * so it's less likely to be used soon and more likely to be merged
728   * as a 2-level higher order page
729   */
730  static inline bool
buddy_merge_likely(unsigned long pfn,unsigned long buddy_pfn,struct page * page,unsigned int order)731  buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
732  		   struct page *page, unsigned int order)
733  {
734  	unsigned long higher_page_pfn;
735  	struct page *higher_page;
736  
737  	if (order >= MAX_PAGE_ORDER - 1)
738  		return false;
739  
740  	higher_page_pfn = buddy_pfn & pfn;
741  	higher_page = page + (higher_page_pfn - pfn);
742  
743  	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
744  			NULL) != NULL;
745  }
746  
747  /*
748   * Freeing function for a buddy system allocator.
749   *
750   * The concept of a buddy system is to maintain direct-mapped table
751   * (containing bit values) for memory blocks of various "orders".
752   * The bottom level table contains the map for the smallest allocatable
753   * units of memory (here, pages), and each level above it describes
754   * pairs of units from the levels below, hence, "buddies".
755   * At a high level, all that happens here is marking the table entry
756   * at the bottom level available, and propagating the changes upward
757   * as necessary, plus some accounting needed to play nicely with other
758   * parts of the VM system.
759   * At each level, we keep a list of pages, which are heads of continuous
760   * free pages of length of (1 << order) and marked with PageBuddy.
761   * Page's order is recorded in page_private(page) field.
762   * So when we are allocating or freeing one, we can derive the state of the
763   * other.  That is, if we allocate a small block, and both were
764   * free, the remainder of the region must be split into blocks.
765   * If a block is freed, and its buddy is also free, then this
766   * triggers coalescing into a block of larger size.
767   *
768   * -- nyc
769   */
770  
__free_one_page(struct page * page,unsigned long pfn,struct zone * zone,unsigned int order,int migratetype,fpi_t fpi_flags)771  static inline void __free_one_page(struct page *page,
772  		unsigned long pfn,
773  		struct zone *zone, unsigned int order,
774  		int migratetype, fpi_t fpi_flags)
775  {
776  	struct capture_control *capc = task_capc(zone);
777  	unsigned long buddy_pfn = 0;
778  	unsigned long combined_pfn;
779  	struct page *buddy;
780  	bool to_tail;
781  
782  	VM_BUG_ON(!zone_is_initialized(zone));
783  	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
784  
785  	VM_BUG_ON(migratetype == -1);
786  	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
787  	VM_BUG_ON_PAGE(bad_range(zone, page), page);
788  
789  	account_freepages(zone, 1 << order, migratetype);
790  
791  	while (order < MAX_PAGE_ORDER) {
792  		int buddy_mt = migratetype;
793  
794  		if (compaction_capture(capc, page, order, migratetype)) {
795  			account_freepages(zone, -(1 << order), migratetype);
796  			return;
797  		}
798  
799  		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
800  		if (!buddy)
801  			goto done_merging;
802  
803  		if (unlikely(order >= pageblock_order)) {
804  			/*
805  			 * We want to prevent merge between freepages on pageblock
806  			 * without fallbacks and normal pageblock. Without this,
807  			 * pageblock isolation could cause incorrect freepage or CMA
808  			 * accounting or HIGHATOMIC accounting.
809  			 */
810  			buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
811  
812  			if (migratetype != buddy_mt &&
813  			    (!migratetype_is_mergeable(migratetype) ||
814  			     !migratetype_is_mergeable(buddy_mt)))
815  				goto done_merging;
816  		}
817  
818  		/*
819  		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
820  		 * merge with it and move up one order.
821  		 */
822  		if (page_is_guard(buddy))
823  			clear_page_guard(zone, buddy, order);
824  		else
825  			__del_page_from_free_list(buddy, zone, order, buddy_mt);
826  
827  		if (unlikely(buddy_mt != migratetype)) {
828  			/*
829  			 * Match buddy type. This ensures that an
830  			 * expand() down the line puts the sub-blocks
831  			 * on the right freelists.
832  			 */
833  			set_pageblock_migratetype(buddy, migratetype);
834  		}
835  
836  		combined_pfn = buddy_pfn & pfn;
837  		page = page + (combined_pfn - pfn);
838  		pfn = combined_pfn;
839  		order++;
840  	}
841  
842  done_merging:
843  	set_buddy_order(page, order);
844  
845  	if (fpi_flags & FPI_TO_TAIL)
846  		to_tail = true;
847  	else if (is_shuffle_order(order))
848  		to_tail = shuffle_pick_tail();
849  	else
850  		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
851  
852  	__add_to_free_list(page, zone, order, migratetype, to_tail);
853  
854  	/* Notify page reporting subsystem of freed page */
855  	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
856  		page_reporting_notify_free(order);
857  }
858  
859  /*
860   * A bad page could be due to a number of fields. Instead of multiple branches,
861   * try and check multiple fields with one check. The caller must do a detailed
862   * check if necessary.
863   */
page_expected_state(struct page * page,unsigned long check_flags)864  static inline bool page_expected_state(struct page *page,
865  					unsigned long check_flags)
866  {
867  	if (unlikely(atomic_read(&page->_mapcount) != -1))
868  		return false;
869  
870  	if (unlikely((unsigned long)page->mapping |
871  			page_ref_count(page) |
872  #ifdef CONFIG_MEMCG
873  			page->memcg_data |
874  #endif
875  #ifdef CONFIG_PAGE_POOL
876  			((page->pp_magic & ~0x3UL) == PP_SIGNATURE) |
877  #endif
878  			(page->flags & check_flags)))
879  		return false;
880  
881  	return true;
882  }
883  
page_bad_reason(struct page * page,unsigned long flags)884  static const char *page_bad_reason(struct page *page, unsigned long flags)
885  {
886  	const char *bad_reason = NULL;
887  
888  	if (unlikely(atomic_read(&page->_mapcount) != -1))
889  		bad_reason = "nonzero mapcount";
890  	if (unlikely(page->mapping != NULL))
891  		bad_reason = "non-NULL mapping";
892  	if (unlikely(page_ref_count(page) != 0))
893  		bad_reason = "nonzero _refcount";
894  	if (unlikely(page->flags & flags)) {
895  		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
896  			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
897  		else
898  			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
899  	}
900  #ifdef CONFIG_MEMCG
901  	if (unlikely(page->memcg_data))
902  		bad_reason = "page still charged to cgroup";
903  #endif
904  #ifdef CONFIG_PAGE_POOL
905  	if (unlikely((page->pp_magic & ~0x3UL) == PP_SIGNATURE))
906  		bad_reason = "page_pool leak";
907  #endif
908  	return bad_reason;
909  }
910  
free_page_is_bad_report(struct page * page)911  static void free_page_is_bad_report(struct page *page)
912  {
913  	bad_page(page,
914  		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
915  }
916  
free_page_is_bad(struct page * page)917  static inline bool free_page_is_bad(struct page *page)
918  {
919  	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
920  		return false;
921  
922  	/* Something has gone sideways, find it */
923  	free_page_is_bad_report(page);
924  	return true;
925  }
926  
is_check_pages_enabled(void)927  static inline bool is_check_pages_enabled(void)
928  {
929  	return static_branch_unlikely(&check_pages_enabled);
930  }
931  
free_tail_page_prepare(struct page * head_page,struct page * page)932  static int free_tail_page_prepare(struct page *head_page, struct page *page)
933  {
934  	struct folio *folio = (struct folio *)head_page;
935  	int ret = 1;
936  
937  	/*
938  	 * We rely page->lru.next never has bit 0 set, unless the page
939  	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
940  	 */
941  	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
942  
943  	if (!is_check_pages_enabled()) {
944  		ret = 0;
945  		goto out;
946  	}
947  	switch (page - head_page) {
948  	case 1:
949  		/* the first tail page: these may be in place of ->mapping */
950  		if (unlikely(folio_entire_mapcount(folio))) {
951  			bad_page(page, "nonzero entire_mapcount");
952  			goto out;
953  		}
954  		if (unlikely(folio_large_mapcount(folio))) {
955  			bad_page(page, "nonzero large_mapcount");
956  			goto out;
957  		}
958  		if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
959  			bad_page(page, "nonzero nr_pages_mapped");
960  			goto out;
961  		}
962  		if (unlikely(atomic_read(&folio->_pincount))) {
963  			bad_page(page, "nonzero pincount");
964  			goto out;
965  		}
966  		break;
967  	case 2:
968  		/* the second tail page: deferred_list overlaps ->mapping */
969  		if (unlikely(!list_empty(&folio->_deferred_list))) {
970  			bad_page(page, "on deferred list");
971  			goto out;
972  		}
973  		break;
974  	default:
975  		if (page->mapping != TAIL_MAPPING) {
976  			bad_page(page, "corrupted mapping in tail page");
977  			goto out;
978  		}
979  		break;
980  	}
981  	if (unlikely(!PageTail(page))) {
982  		bad_page(page, "PageTail not set");
983  		goto out;
984  	}
985  	if (unlikely(compound_head(page) != head_page)) {
986  		bad_page(page, "compound_head not consistent");
987  		goto out;
988  	}
989  	ret = 0;
990  out:
991  	page->mapping = NULL;
992  	clear_compound_head(page);
993  	return ret;
994  }
995  
996  /*
997   * Skip KASAN memory poisoning when either:
998   *
999   * 1. For generic KASAN: deferred memory initialization has not yet completed.
1000   *    Tag-based KASAN modes skip pages freed via deferred memory initialization
1001   *    using page tags instead (see below).
1002   * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1003   *    that error detection is disabled for accesses via the page address.
1004   *
1005   * Pages will have match-all tags in the following circumstances:
1006   *
1007   * 1. Pages are being initialized for the first time, including during deferred
1008   *    memory init; see the call to page_kasan_tag_reset in __init_single_page.
1009   * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1010   *    exception of pages unpoisoned by kasan_unpoison_vmalloc.
1011   * 3. The allocation was excluded from being checked due to sampling,
1012   *    see the call to kasan_unpoison_pages.
1013   *
1014   * Poisoning pages during deferred memory init will greatly lengthen the
1015   * process and cause problem in large memory systems as the deferred pages
1016   * initialization is done with interrupt disabled.
1017   *
1018   * Assuming that there will be no reference to those newly initialized
1019   * pages before they are ever allocated, this should have no effect on
1020   * KASAN memory tracking as the poison will be properly inserted at page
1021   * allocation time. The only corner case is when pages are allocated by
1022   * on-demand allocation and then freed again before the deferred pages
1023   * initialization is done, but this is not likely to happen.
1024   */
should_skip_kasan_poison(struct page * page)1025  static inline bool should_skip_kasan_poison(struct page *page)
1026  {
1027  	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1028  		return deferred_pages_enabled();
1029  
1030  	return page_kasan_tag(page) == KASAN_TAG_KERNEL;
1031  }
1032  
kernel_init_pages(struct page * page,int numpages)1033  static void kernel_init_pages(struct page *page, int numpages)
1034  {
1035  	int i;
1036  
1037  	/* s390's use of memset() could override KASAN redzones. */
1038  	kasan_disable_current();
1039  	for (i = 0; i < numpages; i++)
1040  		clear_highpage_kasan_tagged(page + i);
1041  	kasan_enable_current();
1042  }
1043  
free_pages_prepare(struct page * page,unsigned int order)1044  __always_inline bool free_pages_prepare(struct page *page,
1045  			unsigned int order)
1046  {
1047  	int bad = 0;
1048  	bool skip_kasan_poison = should_skip_kasan_poison(page);
1049  	bool init = want_init_on_free();
1050  	bool compound = PageCompound(page);
1051  	struct folio *folio = page_folio(page);
1052  
1053  	VM_BUG_ON_PAGE(PageTail(page), page);
1054  
1055  	trace_mm_page_free(page, order);
1056  	kmsan_free_page(page, order);
1057  
1058  	if (memcg_kmem_online() && PageMemcgKmem(page))
1059  		__memcg_kmem_uncharge_page(page, order);
1060  
1061  	/*
1062  	 * In rare cases, when truncation or holepunching raced with
1063  	 * munlock after VM_LOCKED was cleared, Mlocked may still be
1064  	 * found set here.  This does not indicate a problem, unless
1065  	 * "unevictable_pgs_cleared" appears worryingly large.
1066  	 */
1067  	if (unlikely(folio_test_mlocked(folio))) {
1068  		long nr_pages = folio_nr_pages(folio);
1069  
1070  		__folio_clear_mlocked(folio);
1071  		zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages);
1072  		count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
1073  	}
1074  
1075  	if (unlikely(PageHWPoison(page)) && !order) {
1076  		/* Do not let hwpoison pages hit pcplists/buddy */
1077  		reset_page_owner(page, order);
1078  		page_table_check_free(page, order);
1079  		pgalloc_tag_sub(page, 1 << order);
1080  
1081  		/*
1082  		 * The page is isolated and accounted for.
1083  		 * Mark the codetag as empty to avoid accounting error
1084  		 * when the page is freed by unpoison_memory().
1085  		 */
1086  		clear_page_tag_ref(page);
1087  		return false;
1088  	}
1089  
1090  	VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1091  
1092  	/*
1093  	 * Check tail pages before head page information is cleared to
1094  	 * avoid checking PageCompound for order-0 pages.
1095  	 */
1096  	if (unlikely(order)) {
1097  		int i;
1098  
1099  		if (compound)
1100  			page[1].flags &= ~PAGE_FLAGS_SECOND;
1101  		for (i = 1; i < (1 << order); i++) {
1102  			if (compound)
1103  				bad += free_tail_page_prepare(page, page + i);
1104  			if (is_check_pages_enabled()) {
1105  				if (free_page_is_bad(page + i)) {
1106  					bad++;
1107  					continue;
1108  				}
1109  			}
1110  			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1111  		}
1112  	}
1113  	if (PageMappingFlags(page)) {
1114  		if (PageAnon(page))
1115  			mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1);
1116  		page->mapping = NULL;
1117  	}
1118  	if (is_check_pages_enabled()) {
1119  		if (free_page_is_bad(page))
1120  			bad++;
1121  		if (bad)
1122  			return false;
1123  	}
1124  
1125  	page_cpupid_reset_last(page);
1126  	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1127  	reset_page_owner(page, order);
1128  	page_table_check_free(page, order);
1129  	pgalloc_tag_sub(page, 1 << order);
1130  
1131  	if (!PageHighMem(page)) {
1132  		debug_check_no_locks_freed(page_address(page),
1133  					   PAGE_SIZE << order);
1134  		debug_check_no_obj_freed(page_address(page),
1135  					   PAGE_SIZE << order);
1136  	}
1137  
1138  	kernel_poison_pages(page, 1 << order);
1139  
1140  	/*
1141  	 * As memory initialization might be integrated into KASAN,
1142  	 * KASAN poisoning and memory initialization code must be
1143  	 * kept together to avoid discrepancies in behavior.
1144  	 *
1145  	 * With hardware tag-based KASAN, memory tags must be set before the
1146  	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1147  	 */
1148  	if (!skip_kasan_poison) {
1149  		kasan_poison_pages(page, order, init);
1150  
1151  		/* Memory is already initialized if KASAN did it internally. */
1152  		if (kasan_has_integrated_init())
1153  			init = false;
1154  	}
1155  	if (init)
1156  		kernel_init_pages(page, 1 << order);
1157  
1158  	/*
1159  	 * arch_free_page() can make the page's contents inaccessible.  s390
1160  	 * does this.  So nothing which can access the page's contents should
1161  	 * happen after this.
1162  	 */
1163  	arch_free_page(page, order);
1164  
1165  	debug_pagealloc_unmap_pages(page, 1 << order);
1166  
1167  	return true;
1168  }
1169  
1170  /*
1171   * Frees a number of pages from the PCP lists
1172   * Assumes all pages on list are in same zone.
1173   * count is the number of pages to free.
1174   */
free_pcppages_bulk(struct zone * zone,int count,struct per_cpu_pages * pcp,int pindex)1175  static void free_pcppages_bulk(struct zone *zone, int count,
1176  					struct per_cpu_pages *pcp,
1177  					int pindex)
1178  {
1179  	unsigned long flags;
1180  	unsigned int order;
1181  	struct page *page;
1182  
1183  	/*
1184  	 * Ensure proper count is passed which otherwise would stuck in the
1185  	 * below while (list_empty(list)) loop.
1186  	 */
1187  	count = min(pcp->count, count);
1188  
1189  	/* Ensure requested pindex is drained first. */
1190  	pindex = pindex - 1;
1191  
1192  	spin_lock_irqsave(&zone->lock, flags);
1193  
1194  	while (count > 0) {
1195  		struct list_head *list;
1196  		int nr_pages;
1197  
1198  		/* Remove pages from lists in a round-robin fashion. */
1199  		do {
1200  			if (++pindex > NR_PCP_LISTS - 1)
1201  				pindex = 0;
1202  			list = &pcp->lists[pindex];
1203  		} while (list_empty(list));
1204  
1205  		order = pindex_to_order(pindex);
1206  		nr_pages = 1 << order;
1207  		do {
1208  			unsigned long pfn;
1209  			int mt;
1210  
1211  			page = list_last_entry(list, struct page, pcp_list);
1212  			pfn = page_to_pfn(page);
1213  			mt = get_pfnblock_migratetype(page, pfn);
1214  
1215  			/* must delete to avoid corrupting pcp list */
1216  			list_del(&page->pcp_list);
1217  			count -= nr_pages;
1218  			pcp->count -= nr_pages;
1219  
1220  			__free_one_page(page, pfn, zone, order, mt, FPI_NONE);
1221  			trace_mm_page_pcpu_drain(page, order, mt);
1222  		} while (count > 0 && !list_empty(list));
1223  	}
1224  
1225  	spin_unlock_irqrestore(&zone->lock, flags);
1226  }
1227  
1228  /* Split a multi-block free page into its individual pageblocks. */
split_large_buddy(struct zone * zone,struct page * page,unsigned long pfn,int order,fpi_t fpi)1229  static void split_large_buddy(struct zone *zone, struct page *page,
1230  			      unsigned long pfn, int order, fpi_t fpi)
1231  {
1232  	unsigned long end = pfn + (1 << order);
1233  
1234  	VM_WARN_ON_ONCE(!IS_ALIGNED(pfn, 1 << order));
1235  	/* Caller removed page from freelist, buddy info cleared! */
1236  	VM_WARN_ON_ONCE(PageBuddy(page));
1237  
1238  	if (order > pageblock_order)
1239  		order = pageblock_order;
1240  
1241  	do {
1242  		int mt = get_pfnblock_migratetype(page, pfn);
1243  
1244  		__free_one_page(page, pfn, zone, order, mt, fpi);
1245  		pfn += 1 << order;
1246  		if (pfn == end)
1247  			break;
1248  		page = pfn_to_page(pfn);
1249  	} while (1);
1250  }
1251  
free_one_page(struct zone * zone,struct page * page,unsigned long pfn,unsigned int order,fpi_t fpi_flags)1252  static void free_one_page(struct zone *zone, struct page *page,
1253  			  unsigned long pfn, unsigned int order,
1254  			  fpi_t fpi_flags)
1255  {
1256  	unsigned long flags;
1257  
1258  	spin_lock_irqsave(&zone->lock, flags);
1259  	split_large_buddy(zone, page, pfn, order, fpi_flags);
1260  	spin_unlock_irqrestore(&zone->lock, flags);
1261  
1262  	__count_vm_events(PGFREE, 1 << order);
1263  }
1264  
__free_pages_ok(struct page * page,unsigned int order,fpi_t fpi_flags)1265  static void __free_pages_ok(struct page *page, unsigned int order,
1266  			    fpi_t fpi_flags)
1267  {
1268  	unsigned long pfn = page_to_pfn(page);
1269  	struct zone *zone = page_zone(page);
1270  
1271  	if (free_pages_prepare(page, order))
1272  		free_one_page(zone, page, pfn, order, fpi_flags);
1273  }
1274  
__free_pages_core(struct page * page,unsigned int order,enum meminit_context context)1275  void __meminit __free_pages_core(struct page *page, unsigned int order,
1276  		enum meminit_context context)
1277  {
1278  	unsigned int nr_pages = 1 << order;
1279  	struct page *p = page;
1280  	unsigned int loop;
1281  
1282  	/*
1283  	 * When initializing the memmap, __init_single_page() sets the refcount
1284  	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1285  	 * refcount of all involved pages to 0.
1286  	 *
1287  	 * Note that hotplugged memory pages are initialized to PageOffline().
1288  	 * Pages freed from memblock might be marked as reserved.
1289  	 */
1290  	if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) &&
1291  	    unlikely(context == MEMINIT_HOTPLUG)) {
1292  		for (loop = 0; loop < nr_pages; loop++, p++) {
1293  			VM_WARN_ON_ONCE(PageReserved(p));
1294  			__ClearPageOffline(p);
1295  			set_page_count(p, 0);
1296  		}
1297  
1298  		adjust_managed_page_count(page, nr_pages);
1299  	} else {
1300  		for (loop = 0; loop < nr_pages; loop++, p++) {
1301  			__ClearPageReserved(p);
1302  			set_page_count(p, 0);
1303  		}
1304  
1305  		/* memblock adjusts totalram_pages() manually. */
1306  		atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1307  	}
1308  
1309  	if (page_contains_unaccepted(page, order)) {
1310  		if (order == MAX_PAGE_ORDER && __free_unaccepted(page))
1311  			return;
1312  
1313  		accept_memory(page_to_phys(page), PAGE_SIZE << order);
1314  	}
1315  
1316  	/*
1317  	 * Bypass PCP and place fresh pages right to the tail, primarily
1318  	 * relevant for memory onlining.
1319  	 */
1320  	__free_pages_ok(page, order, FPI_TO_TAIL);
1321  }
1322  
1323  /*
1324   * Check that the whole (or subset of) a pageblock given by the interval of
1325   * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1326   * with the migration of free compaction scanner.
1327   *
1328   * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1329   *
1330   * It's possible on some configurations to have a setup like node0 node1 node0
1331   * i.e. it's possible that all pages within a zones range of pages do not
1332   * belong to a single zone. We assume that a border between node0 and node1
1333   * can occur within a single pageblock, but not a node0 node1 node0
1334   * interleaving within a single pageblock. It is therefore sufficient to check
1335   * the first and last page of a pageblock and avoid checking each individual
1336   * page in a pageblock.
1337   *
1338   * Note: the function may return non-NULL struct page even for a page block
1339   * which contains a memory hole (i.e. there is no physical memory for a subset
1340   * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which
1341   * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1342   * even though the start pfn is online and valid. This should be safe most of
1343   * the time because struct pages are still initialized via init_unavailable_range()
1344   * and pfn walkers shouldn't touch any physical memory range for which they do
1345   * not recognize any specific metadata in struct pages.
1346   */
__pageblock_pfn_to_page(unsigned long start_pfn,unsigned long end_pfn,struct zone * zone)1347  struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1348  				     unsigned long end_pfn, struct zone *zone)
1349  {
1350  	struct page *start_page;
1351  	struct page *end_page;
1352  
1353  	/* end_pfn is one past the range we are checking */
1354  	end_pfn--;
1355  
1356  	if (!pfn_valid(end_pfn))
1357  		return NULL;
1358  
1359  	start_page = pfn_to_online_page(start_pfn);
1360  	if (!start_page)
1361  		return NULL;
1362  
1363  	if (page_zone(start_page) != zone)
1364  		return NULL;
1365  
1366  	end_page = pfn_to_page(end_pfn);
1367  
1368  	/* This gives a shorter code than deriving page_zone(end_page) */
1369  	if (page_zone_id(start_page) != page_zone_id(end_page))
1370  		return NULL;
1371  
1372  	return start_page;
1373  }
1374  
1375  /*
1376   * The order of subdivision here is critical for the IO subsystem.
1377   * Please do not alter this order without good reasons and regression
1378   * testing. Specifically, as large blocks of memory are subdivided,
1379   * the order in which smaller blocks are delivered depends on the order
1380   * they're subdivided in this function. This is the primary factor
1381   * influencing the order in which pages are delivered to the IO
1382   * subsystem according to empirical testing, and this is also justified
1383   * by considering the behavior of a buddy system containing a single
1384   * large block of memory acted on by a series of small allocations.
1385   * This behavior is a critical factor in sglist merging's success.
1386   *
1387   * -- nyc
1388   */
expand(struct zone * zone,struct page * page,int low,int high,int migratetype)1389  static inline unsigned int expand(struct zone *zone, struct page *page, int low,
1390  				  int high, int migratetype)
1391  {
1392  	unsigned int size = 1 << high;
1393  	unsigned int nr_added = 0;
1394  
1395  	while (high > low) {
1396  		high--;
1397  		size >>= 1;
1398  		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1399  
1400  		/*
1401  		 * Mark as guard pages (or page), that will allow to
1402  		 * merge back to allocator when buddy will be freed.
1403  		 * Corresponding page table entries will not be touched,
1404  		 * pages will stay not present in virtual address space
1405  		 */
1406  		if (set_page_guard(zone, &page[size], high))
1407  			continue;
1408  
1409  		__add_to_free_list(&page[size], zone, high, migratetype, false);
1410  		set_buddy_order(&page[size], high);
1411  		nr_added += size;
1412  	}
1413  
1414  	return nr_added;
1415  }
1416  
page_del_and_expand(struct zone * zone,struct page * page,int low,int high,int migratetype)1417  static __always_inline void page_del_and_expand(struct zone *zone,
1418  						struct page *page, int low,
1419  						int high, int migratetype)
1420  {
1421  	int nr_pages = 1 << high;
1422  
1423  	__del_page_from_free_list(page, zone, high, migratetype);
1424  	nr_pages -= expand(zone, page, low, high, migratetype);
1425  	account_freepages(zone, -nr_pages, migratetype);
1426  }
1427  
check_new_page_bad(struct page * page)1428  static void check_new_page_bad(struct page *page)
1429  {
1430  	if (unlikely(page->flags & __PG_HWPOISON)) {
1431  		/* Don't complain about hwpoisoned pages */
1432  		if (PageBuddy(page))
1433  			__ClearPageBuddy(page);
1434  		return;
1435  	}
1436  
1437  	bad_page(page,
1438  		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1439  }
1440  
1441  /*
1442   * This page is about to be returned from the page allocator
1443   */
check_new_page(struct page * page)1444  static bool check_new_page(struct page *page)
1445  {
1446  	if (likely(page_expected_state(page,
1447  				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1448  		return false;
1449  
1450  	check_new_page_bad(page);
1451  	return true;
1452  }
1453  
check_new_pages(struct page * page,unsigned int order)1454  static inline bool check_new_pages(struct page *page, unsigned int order)
1455  {
1456  	if (is_check_pages_enabled()) {
1457  		for (int i = 0; i < (1 << order); i++) {
1458  			struct page *p = page + i;
1459  
1460  			if (check_new_page(p))
1461  				return true;
1462  		}
1463  	}
1464  
1465  	return false;
1466  }
1467  
should_skip_kasan_unpoison(gfp_t flags)1468  static inline bool should_skip_kasan_unpoison(gfp_t flags)
1469  {
1470  	/* Don't skip if a software KASAN mode is enabled. */
1471  	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1472  	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1473  		return false;
1474  
1475  	/* Skip, if hardware tag-based KASAN is not enabled. */
1476  	if (!kasan_hw_tags_enabled())
1477  		return true;
1478  
1479  	/*
1480  	 * With hardware tag-based KASAN enabled, skip if this has been
1481  	 * requested via __GFP_SKIP_KASAN.
1482  	 */
1483  	return flags & __GFP_SKIP_KASAN;
1484  }
1485  
should_skip_init(gfp_t flags)1486  static inline bool should_skip_init(gfp_t flags)
1487  {
1488  	/* Don't skip, if hardware tag-based KASAN is not enabled. */
1489  	if (!kasan_hw_tags_enabled())
1490  		return false;
1491  
1492  	/* For hardware tag-based KASAN, skip if requested. */
1493  	return (flags & __GFP_SKIP_ZERO);
1494  }
1495  
post_alloc_hook(struct page * page,unsigned int order,gfp_t gfp_flags)1496  inline void post_alloc_hook(struct page *page, unsigned int order,
1497  				gfp_t gfp_flags)
1498  {
1499  	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1500  			!should_skip_init(gfp_flags);
1501  	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1502  	int i;
1503  
1504  	set_page_private(page, 0);
1505  
1506  	arch_alloc_page(page, order);
1507  	debug_pagealloc_map_pages(page, 1 << order);
1508  
1509  	/*
1510  	 * Page unpoisoning must happen before memory initialization.
1511  	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1512  	 * allocations and the page unpoisoning code will complain.
1513  	 */
1514  	kernel_unpoison_pages(page, 1 << order);
1515  
1516  	/*
1517  	 * As memory initialization might be integrated into KASAN,
1518  	 * KASAN unpoisoning and memory initializion code must be
1519  	 * kept together to avoid discrepancies in behavior.
1520  	 */
1521  
1522  	/*
1523  	 * If memory tags should be zeroed
1524  	 * (which happens only when memory should be initialized as well).
1525  	 */
1526  	if (zero_tags) {
1527  		/* Initialize both memory and memory tags. */
1528  		for (i = 0; i != 1 << order; ++i)
1529  			tag_clear_highpage(page + i);
1530  
1531  		/* Take note that memory was initialized by the loop above. */
1532  		init = false;
1533  	}
1534  	if (!should_skip_kasan_unpoison(gfp_flags) &&
1535  	    kasan_unpoison_pages(page, order, init)) {
1536  		/* Take note that memory was initialized by KASAN. */
1537  		if (kasan_has_integrated_init())
1538  			init = false;
1539  	} else {
1540  		/*
1541  		 * If memory tags have not been set by KASAN, reset the page
1542  		 * tags to ensure page_address() dereferencing does not fault.
1543  		 */
1544  		for (i = 0; i != 1 << order; ++i)
1545  			page_kasan_tag_reset(page + i);
1546  	}
1547  	/* If memory is still not initialized, initialize it now. */
1548  	if (init)
1549  		kernel_init_pages(page, 1 << order);
1550  
1551  	set_page_owner(page, order, gfp_flags);
1552  	page_table_check_alloc(page, order);
1553  	pgalloc_tag_add(page, current, 1 << order);
1554  }
1555  
prep_new_page(struct page * page,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags)1556  static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1557  							unsigned int alloc_flags)
1558  {
1559  	post_alloc_hook(page, order, gfp_flags);
1560  
1561  	if (order && (gfp_flags & __GFP_COMP))
1562  		prep_compound_page(page, order);
1563  
1564  	/*
1565  	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1566  	 * allocate the page. The expectation is that the caller is taking
1567  	 * steps that will free more memory. The caller should avoid the page
1568  	 * being used for !PFMEMALLOC purposes.
1569  	 */
1570  	if (alloc_flags & ALLOC_NO_WATERMARKS)
1571  		set_page_pfmemalloc(page);
1572  	else
1573  		clear_page_pfmemalloc(page);
1574  }
1575  
1576  /*
1577   * Go through the free lists for the given migratetype and remove
1578   * the smallest available page from the freelists
1579   */
1580  static __always_inline
__rmqueue_smallest(struct zone * zone,unsigned int order,int migratetype)1581  struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1582  						int migratetype)
1583  {
1584  	unsigned int current_order;
1585  	struct free_area *area;
1586  	struct page *page;
1587  
1588  	/* Find a page of the appropriate size in the preferred list */
1589  	for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
1590  		area = &(zone->free_area[current_order]);
1591  		page = get_page_from_free_area(area, migratetype);
1592  		if (!page)
1593  			continue;
1594  
1595  		page_del_and_expand(zone, page, order, current_order,
1596  				    migratetype);
1597  		trace_mm_page_alloc_zone_locked(page, order, migratetype,
1598  				pcp_allowed_order(order) &&
1599  				migratetype < MIGRATE_PCPTYPES);
1600  		return page;
1601  	}
1602  
1603  	return NULL;
1604  }
1605  
1606  
1607  /*
1608   * This array describes the order lists are fallen back to when
1609   * the free lists for the desirable migrate type are depleted
1610   *
1611   * The other migratetypes do not have fallbacks.
1612   */
1613  static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = {
1614  	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
1615  	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1616  	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
1617  };
1618  
1619  #ifdef CONFIG_CMA
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)1620  static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1621  					unsigned int order)
1622  {
1623  	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1624  }
1625  #else
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)1626  static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1627  					unsigned int order) { return NULL; }
1628  #endif
1629  
1630  /*
1631   * Change the type of a block and move all its free pages to that
1632   * type's freelist.
1633   */
__move_freepages_block(struct zone * zone,unsigned long start_pfn,int old_mt,int new_mt)1634  static int __move_freepages_block(struct zone *zone, unsigned long start_pfn,
1635  				  int old_mt, int new_mt)
1636  {
1637  	struct page *page;
1638  	unsigned long pfn, end_pfn;
1639  	unsigned int order;
1640  	int pages_moved = 0;
1641  
1642  	VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1));
1643  	end_pfn = pageblock_end_pfn(start_pfn);
1644  
1645  	for (pfn = start_pfn; pfn < end_pfn;) {
1646  		page = pfn_to_page(pfn);
1647  		if (!PageBuddy(page)) {
1648  			pfn++;
1649  			continue;
1650  		}
1651  
1652  		/* Make sure we are not inadvertently changing nodes */
1653  		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1654  		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1655  
1656  		order = buddy_order(page);
1657  
1658  		move_to_free_list(page, zone, order, old_mt, new_mt);
1659  
1660  		pfn += 1 << order;
1661  		pages_moved += 1 << order;
1662  	}
1663  
1664  	set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt);
1665  
1666  	return pages_moved;
1667  }
1668  
prep_move_freepages_block(struct zone * zone,struct page * page,unsigned long * start_pfn,int * num_free,int * num_movable)1669  static bool prep_move_freepages_block(struct zone *zone, struct page *page,
1670  				      unsigned long *start_pfn,
1671  				      int *num_free, int *num_movable)
1672  {
1673  	unsigned long pfn, start, end;
1674  
1675  	pfn = page_to_pfn(page);
1676  	start = pageblock_start_pfn(pfn);
1677  	end = pageblock_end_pfn(pfn);
1678  
1679  	/*
1680  	 * The caller only has the lock for @zone, don't touch ranges
1681  	 * that straddle into other zones. While we could move part of
1682  	 * the range that's inside the zone, this call is usually
1683  	 * accompanied by other operations such as migratetype updates
1684  	 * which also should be locked.
1685  	 */
1686  	if (!zone_spans_pfn(zone, start))
1687  		return false;
1688  	if (!zone_spans_pfn(zone, end - 1))
1689  		return false;
1690  
1691  	*start_pfn = start;
1692  
1693  	if (num_free) {
1694  		*num_free = 0;
1695  		*num_movable = 0;
1696  		for (pfn = start; pfn < end;) {
1697  			page = pfn_to_page(pfn);
1698  			if (PageBuddy(page)) {
1699  				int nr = 1 << buddy_order(page);
1700  
1701  				*num_free += nr;
1702  				pfn += nr;
1703  				continue;
1704  			}
1705  			/*
1706  			 * We assume that pages that could be isolated for
1707  			 * migration are movable. But we don't actually try
1708  			 * isolating, as that would be expensive.
1709  			 */
1710  			if (PageLRU(page) || __PageMovable(page))
1711  				(*num_movable)++;
1712  			pfn++;
1713  		}
1714  	}
1715  
1716  	return true;
1717  }
1718  
move_freepages_block(struct zone * zone,struct page * page,int old_mt,int new_mt)1719  static int move_freepages_block(struct zone *zone, struct page *page,
1720  				int old_mt, int new_mt)
1721  {
1722  	unsigned long start_pfn;
1723  
1724  	if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1725  		return -1;
1726  
1727  	return __move_freepages_block(zone, start_pfn, old_mt, new_mt);
1728  }
1729  
1730  #ifdef CONFIG_MEMORY_ISOLATION
1731  /* Look for a buddy that straddles start_pfn */
find_large_buddy(unsigned long start_pfn)1732  static unsigned long find_large_buddy(unsigned long start_pfn)
1733  {
1734  	int order = 0;
1735  	struct page *page;
1736  	unsigned long pfn = start_pfn;
1737  
1738  	while (!PageBuddy(page = pfn_to_page(pfn))) {
1739  		/* Nothing found */
1740  		if (++order > MAX_PAGE_ORDER)
1741  			return start_pfn;
1742  		pfn &= ~0UL << order;
1743  	}
1744  
1745  	/*
1746  	 * Found a preceding buddy, but does it straddle?
1747  	 */
1748  	if (pfn + (1 << buddy_order(page)) > start_pfn)
1749  		return pfn;
1750  
1751  	/* Nothing found */
1752  	return start_pfn;
1753  }
1754  
1755  /**
1756   * move_freepages_block_isolate - move free pages in block for page isolation
1757   * @zone: the zone
1758   * @page: the pageblock page
1759   * @migratetype: migratetype to set on the pageblock
1760   *
1761   * This is similar to move_freepages_block(), but handles the special
1762   * case encountered in page isolation, where the block of interest
1763   * might be part of a larger buddy spanning multiple pageblocks.
1764   *
1765   * Unlike the regular page allocator path, which moves pages while
1766   * stealing buddies off the freelist, page isolation is interested in
1767   * arbitrary pfn ranges that may have overlapping buddies on both ends.
1768   *
1769   * This function handles that. Straddling buddies are split into
1770   * individual pageblocks. Only the block of interest is moved.
1771   *
1772   * Returns %true if pages could be moved, %false otherwise.
1773   */
move_freepages_block_isolate(struct zone * zone,struct page * page,int migratetype)1774  bool move_freepages_block_isolate(struct zone *zone, struct page *page,
1775  				  int migratetype)
1776  {
1777  	unsigned long start_pfn, pfn;
1778  
1779  	if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1780  		return false;
1781  
1782  	/* No splits needed if buddies can't span multiple blocks */
1783  	if (pageblock_order == MAX_PAGE_ORDER)
1784  		goto move;
1785  
1786  	/* We're a tail block in a larger buddy */
1787  	pfn = find_large_buddy(start_pfn);
1788  	if (pfn != start_pfn) {
1789  		struct page *buddy = pfn_to_page(pfn);
1790  		int order = buddy_order(buddy);
1791  
1792  		del_page_from_free_list(buddy, zone, order,
1793  					get_pfnblock_migratetype(buddy, pfn));
1794  		set_pageblock_migratetype(page, migratetype);
1795  		split_large_buddy(zone, buddy, pfn, order, FPI_NONE);
1796  		return true;
1797  	}
1798  
1799  	/* We're the starting block of a larger buddy */
1800  	if (PageBuddy(page) && buddy_order(page) > pageblock_order) {
1801  		int order = buddy_order(page);
1802  
1803  		del_page_from_free_list(page, zone, order,
1804  					get_pfnblock_migratetype(page, pfn));
1805  		set_pageblock_migratetype(page, migratetype);
1806  		split_large_buddy(zone, page, pfn, order, FPI_NONE);
1807  		return true;
1808  	}
1809  move:
1810  	__move_freepages_block(zone, start_pfn,
1811  			       get_pfnblock_migratetype(page, start_pfn),
1812  			       migratetype);
1813  	return true;
1814  }
1815  #endif /* CONFIG_MEMORY_ISOLATION */
1816  
change_pageblock_range(struct page * pageblock_page,int start_order,int migratetype)1817  static void change_pageblock_range(struct page *pageblock_page,
1818  					int start_order, int migratetype)
1819  {
1820  	int nr_pageblocks = 1 << (start_order - pageblock_order);
1821  
1822  	while (nr_pageblocks--) {
1823  		set_pageblock_migratetype(pageblock_page, migratetype);
1824  		pageblock_page += pageblock_nr_pages;
1825  	}
1826  }
1827  
1828  /*
1829   * When we are falling back to another migratetype during allocation, try to
1830   * steal extra free pages from the same pageblocks to satisfy further
1831   * allocations, instead of polluting multiple pageblocks.
1832   *
1833   * If we are stealing a relatively large buddy page, it is likely there will
1834   * be more free pages in the pageblock, so try to steal them all. For
1835   * reclaimable and unmovable allocations, we steal regardless of page size,
1836   * as fragmentation caused by those allocations polluting movable pageblocks
1837   * is worse than movable allocations stealing from unmovable and reclaimable
1838   * pageblocks.
1839   */
can_steal_fallback(unsigned int order,int start_mt)1840  static bool can_steal_fallback(unsigned int order, int start_mt)
1841  {
1842  	/*
1843  	 * Leaving this order check is intended, although there is
1844  	 * relaxed order check in next check. The reason is that
1845  	 * we can actually steal whole pageblock if this condition met,
1846  	 * but, below check doesn't guarantee it and that is just heuristic
1847  	 * so could be changed anytime.
1848  	 */
1849  	if (order >= pageblock_order)
1850  		return true;
1851  
1852  	/*
1853  	 * Movable pages won't cause permanent fragmentation, so when you alloc
1854  	 * small pages, you just need to temporarily steal unmovable or
1855  	 * reclaimable pages that are closest to the request size.  After a
1856  	 * while, memory compaction may occur to form large contiguous pages,
1857  	 * and the next movable allocation may not need to steal.  Unmovable and
1858  	 * reclaimable allocations need to actually steal pages.
1859  	 */
1860  	if (order >= pageblock_order / 2 ||
1861  		start_mt == MIGRATE_RECLAIMABLE ||
1862  		start_mt == MIGRATE_UNMOVABLE ||
1863  		page_group_by_mobility_disabled)
1864  		return true;
1865  
1866  	return false;
1867  }
1868  
boost_watermark(struct zone * zone)1869  static inline bool boost_watermark(struct zone *zone)
1870  {
1871  	unsigned long max_boost;
1872  
1873  	if (!watermark_boost_factor)
1874  		return false;
1875  	/*
1876  	 * Don't bother in zones that are unlikely to produce results.
1877  	 * On small machines, including kdump capture kernels running
1878  	 * in a small area, boosting the watermark can cause an out of
1879  	 * memory situation immediately.
1880  	 */
1881  	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1882  		return false;
1883  
1884  	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1885  			watermark_boost_factor, 10000);
1886  
1887  	/*
1888  	 * high watermark may be uninitialised if fragmentation occurs
1889  	 * very early in boot so do not boost. We do not fall
1890  	 * through and boost by pageblock_nr_pages as failing
1891  	 * allocations that early means that reclaim is not going
1892  	 * to help and it may even be impossible to reclaim the
1893  	 * boosted watermark resulting in a hang.
1894  	 */
1895  	if (!max_boost)
1896  		return false;
1897  
1898  	max_boost = max(pageblock_nr_pages, max_boost);
1899  
1900  	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1901  		max_boost);
1902  
1903  	return true;
1904  }
1905  
1906  /*
1907   * This function implements actual steal behaviour. If order is large enough, we
1908   * can claim the whole pageblock for the requested migratetype. If not, we check
1909   * the pageblock for constituent pages; if at least half of the pages are free
1910   * or compatible, we can still claim the whole block, so pages freed in the
1911   * future will be put on the correct free list. Otherwise, we isolate exactly
1912   * the order we need from the fallback block and leave its migratetype alone.
1913   */
1914  static struct page *
steal_suitable_fallback(struct zone * zone,struct page * page,int current_order,int order,int start_type,unsigned int alloc_flags,bool whole_block)1915  steal_suitable_fallback(struct zone *zone, struct page *page,
1916  			int current_order, int order, int start_type,
1917  			unsigned int alloc_flags, bool whole_block)
1918  {
1919  	int free_pages, movable_pages, alike_pages;
1920  	unsigned long start_pfn;
1921  	int block_type;
1922  
1923  	block_type = get_pageblock_migratetype(page);
1924  
1925  	/*
1926  	 * This can happen due to races and we want to prevent broken
1927  	 * highatomic accounting.
1928  	 */
1929  	if (is_migrate_highatomic(block_type))
1930  		goto single_page;
1931  
1932  	/* Take ownership for orders >= pageblock_order */
1933  	if (current_order >= pageblock_order) {
1934  		unsigned int nr_added;
1935  
1936  		del_page_from_free_list(page, zone, current_order, block_type);
1937  		change_pageblock_range(page, current_order, start_type);
1938  		nr_added = expand(zone, page, order, current_order, start_type);
1939  		account_freepages(zone, nr_added, start_type);
1940  		return page;
1941  	}
1942  
1943  	/*
1944  	 * Boost watermarks to increase reclaim pressure to reduce the
1945  	 * likelihood of future fallbacks. Wake kswapd now as the node
1946  	 * may be balanced overall and kswapd will not wake naturally.
1947  	 */
1948  	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1949  		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1950  
1951  	/* We are not allowed to try stealing from the whole block */
1952  	if (!whole_block)
1953  		goto single_page;
1954  
1955  	/* moving whole block can fail due to zone boundary conditions */
1956  	if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages,
1957  				       &movable_pages))
1958  		goto single_page;
1959  
1960  	/*
1961  	 * Determine how many pages are compatible with our allocation.
1962  	 * For movable allocation, it's the number of movable pages which
1963  	 * we just obtained. For other types it's a bit more tricky.
1964  	 */
1965  	if (start_type == MIGRATE_MOVABLE) {
1966  		alike_pages = movable_pages;
1967  	} else {
1968  		/*
1969  		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1970  		 * to MOVABLE pageblock, consider all non-movable pages as
1971  		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1972  		 * vice versa, be conservative since we can't distinguish the
1973  		 * exact migratetype of non-movable pages.
1974  		 */
1975  		if (block_type == MIGRATE_MOVABLE)
1976  			alike_pages = pageblock_nr_pages
1977  						- (free_pages + movable_pages);
1978  		else
1979  			alike_pages = 0;
1980  	}
1981  	/*
1982  	 * If a sufficient number of pages in the block are either free or of
1983  	 * compatible migratability as our allocation, claim the whole block.
1984  	 */
1985  	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
1986  			page_group_by_mobility_disabled) {
1987  		__move_freepages_block(zone, start_pfn, block_type, start_type);
1988  		return __rmqueue_smallest(zone, order, start_type);
1989  	}
1990  
1991  single_page:
1992  	page_del_and_expand(zone, page, order, current_order, block_type);
1993  	return page;
1994  }
1995  
1996  /*
1997   * Check whether there is a suitable fallback freepage with requested order.
1998   * If only_stealable is true, this function returns fallback_mt only if
1999   * we can steal other freepages all together. This would help to reduce
2000   * fragmentation due to mixed migratetype pages in one pageblock.
2001   */
find_suitable_fallback(struct free_area * area,unsigned int order,int migratetype,bool only_stealable,bool * can_steal)2002  int find_suitable_fallback(struct free_area *area, unsigned int order,
2003  			int migratetype, bool only_stealable, bool *can_steal)
2004  {
2005  	int i;
2006  	int fallback_mt;
2007  
2008  	if (area->nr_free == 0)
2009  		return -1;
2010  
2011  	*can_steal = false;
2012  	for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
2013  		fallback_mt = fallbacks[migratetype][i];
2014  		if (free_area_empty(area, fallback_mt))
2015  			continue;
2016  
2017  		if (can_steal_fallback(order, migratetype))
2018  			*can_steal = true;
2019  
2020  		if (!only_stealable)
2021  			return fallback_mt;
2022  
2023  		if (*can_steal)
2024  			return fallback_mt;
2025  	}
2026  
2027  	return -1;
2028  }
2029  
2030  /*
2031   * Reserve the pageblock(s) surrounding an allocation request for
2032   * exclusive use of high-order atomic allocations if there are no
2033   * empty page blocks that contain a page with a suitable order
2034   */
reserve_highatomic_pageblock(struct page * page,int order,struct zone * zone)2035  static void reserve_highatomic_pageblock(struct page *page, int order,
2036  					 struct zone *zone)
2037  {
2038  	int mt;
2039  	unsigned long max_managed, flags;
2040  
2041  	/*
2042  	 * The number reserved as: minimum is 1 pageblock, maximum is
2043  	 * roughly 1% of a zone. But if 1% of a zone falls below a
2044  	 * pageblock size, then don't reserve any pageblocks.
2045  	 * Check is race-prone but harmless.
2046  	 */
2047  	if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages)
2048  		return;
2049  	max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages);
2050  	if (zone->nr_reserved_highatomic >= max_managed)
2051  		return;
2052  
2053  	spin_lock_irqsave(&zone->lock, flags);
2054  
2055  	/* Recheck the nr_reserved_highatomic limit under the lock */
2056  	if (zone->nr_reserved_highatomic >= max_managed)
2057  		goto out_unlock;
2058  
2059  	/* Yoink! */
2060  	mt = get_pageblock_migratetype(page);
2061  	/* Only reserve normal pageblocks (i.e., they can merge with others) */
2062  	if (!migratetype_is_mergeable(mt))
2063  		goto out_unlock;
2064  
2065  	if (order < pageblock_order) {
2066  		if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1)
2067  			goto out_unlock;
2068  		zone->nr_reserved_highatomic += pageblock_nr_pages;
2069  	} else {
2070  		change_pageblock_range(page, order, MIGRATE_HIGHATOMIC);
2071  		zone->nr_reserved_highatomic += 1 << order;
2072  	}
2073  
2074  out_unlock:
2075  	spin_unlock_irqrestore(&zone->lock, flags);
2076  }
2077  
2078  /*
2079   * Used when an allocation is about to fail under memory pressure. This
2080   * potentially hurts the reliability of high-order allocations when under
2081   * intense memory pressure but failed atomic allocations should be easier
2082   * to recover from than an OOM.
2083   *
2084   * If @force is true, try to unreserve pageblocks even though highatomic
2085   * pageblock is exhausted.
2086   */
unreserve_highatomic_pageblock(const struct alloc_context * ac,bool force)2087  static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2088  						bool force)
2089  {
2090  	struct zonelist *zonelist = ac->zonelist;
2091  	unsigned long flags;
2092  	struct zoneref *z;
2093  	struct zone *zone;
2094  	struct page *page;
2095  	int order;
2096  	int ret;
2097  
2098  	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2099  								ac->nodemask) {
2100  		/*
2101  		 * Preserve at least one pageblock unless memory pressure
2102  		 * is really high.
2103  		 */
2104  		if (!force && zone->nr_reserved_highatomic <=
2105  					pageblock_nr_pages)
2106  			continue;
2107  
2108  		spin_lock_irqsave(&zone->lock, flags);
2109  		for (order = 0; order < NR_PAGE_ORDERS; order++) {
2110  			struct free_area *area = &(zone->free_area[order]);
2111  			int mt;
2112  
2113  			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2114  			if (!page)
2115  				continue;
2116  
2117  			mt = get_pageblock_migratetype(page);
2118  			/*
2119  			 * In page freeing path, migratetype change is racy so
2120  			 * we can counter several free pages in a pageblock
2121  			 * in this loop although we changed the pageblock type
2122  			 * from highatomic to ac->migratetype. So we should
2123  			 * adjust the count once.
2124  			 */
2125  			if (is_migrate_highatomic(mt)) {
2126  				unsigned long size;
2127  				/*
2128  				 * It should never happen but changes to
2129  				 * locking could inadvertently allow a per-cpu
2130  				 * drain to add pages to MIGRATE_HIGHATOMIC
2131  				 * while unreserving so be safe and watch for
2132  				 * underflows.
2133  				 */
2134  				size = max(pageblock_nr_pages, 1UL << order);
2135  				size = min(size, zone->nr_reserved_highatomic);
2136  				zone->nr_reserved_highatomic -= size;
2137  			}
2138  
2139  			/*
2140  			 * Convert to ac->migratetype and avoid the normal
2141  			 * pageblock stealing heuristics. Minimally, the caller
2142  			 * is doing the work and needs the pages. More
2143  			 * importantly, if the block was always converted to
2144  			 * MIGRATE_UNMOVABLE or another type then the number
2145  			 * of pageblocks that cannot be completely freed
2146  			 * may increase.
2147  			 */
2148  			if (order < pageblock_order)
2149  				ret = move_freepages_block(zone, page, mt,
2150  							   ac->migratetype);
2151  			else {
2152  				move_to_free_list(page, zone, order, mt,
2153  						  ac->migratetype);
2154  				change_pageblock_range(page, order,
2155  						       ac->migratetype);
2156  				ret = 1;
2157  			}
2158  			/*
2159  			 * Reserving the block(s) already succeeded,
2160  			 * so this should not fail on zone boundaries.
2161  			 */
2162  			WARN_ON_ONCE(ret == -1);
2163  			if (ret > 0) {
2164  				spin_unlock_irqrestore(&zone->lock, flags);
2165  				return ret;
2166  			}
2167  		}
2168  		spin_unlock_irqrestore(&zone->lock, flags);
2169  	}
2170  
2171  	return false;
2172  }
2173  
2174  /*
2175   * Try finding a free buddy page on the fallback list and put it on the free
2176   * list of requested migratetype, possibly along with other pages from the same
2177   * block, depending on fragmentation avoidance heuristics. Returns true if
2178   * fallback was found so that __rmqueue_smallest() can grab it.
2179   *
2180   * The use of signed ints for order and current_order is a deliberate
2181   * deviation from the rest of this file, to make the for loop
2182   * condition simpler.
2183   */
2184  static __always_inline struct page *
__rmqueue_fallback(struct zone * zone,int order,int start_migratetype,unsigned int alloc_flags)2185  __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2186  						unsigned int alloc_flags)
2187  {
2188  	struct free_area *area;
2189  	int current_order;
2190  	int min_order = order;
2191  	struct page *page;
2192  	int fallback_mt;
2193  	bool can_steal;
2194  
2195  	/*
2196  	 * Do not steal pages from freelists belonging to other pageblocks
2197  	 * i.e. orders < pageblock_order. If there are no local zones free,
2198  	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2199  	 */
2200  	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2201  		min_order = pageblock_order;
2202  
2203  	/*
2204  	 * Find the largest available free page in the other list. This roughly
2205  	 * approximates finding the pageblock with the most free pages, which
2206  	 * would be too costly to do exactly.
2207  	 */
2208  	for (current_order = MAX_PAGE_ORDER; current_order >= min_order;
2209  				--current_order) {
2210  		area = &(zone->free_area[current_order]);
2211  		fallback_mt = find_suitable_fallback(area, current_order,
2212  				start_migratetype, false, &can_steal);
2213  		if (fallback_mt == -1)
2214  			continue;
2215  
2216  		/*
2217  		 * We cannot steal all free pages from the pageblock and the
2218  		 * requested migratetype is movable. In that case it's better to
2219  		 * steal and split the smallest available page instead of the
2220  		 * largest available page, because even if the next movable
2221  		 * allocation falls back into a different pageblock than this
2222  		 * one, it won't cause permanent fragmentation.
2223  		 */
2224  		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2225  					&& current_order > order)
2226  			goto find_smallest;
2227  
2228  		goto do_steal;
2229  	}
2230  
2231  	return NULL;
2232  
2233  find_smallest:
2234  	for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
2235  		area = &(zone->free_area[current_order]);
2236  		fallback_mt = find_suitable_fallback(area, current_order,
2237  				start_migratetype, false, &can_steal);
2238  		if (fallback_mt != -1)
2239  			break;
2240  	}
2241  
2242  	/*
2243  	 * This should not happen - we already found a suitable fallback
2244  	 * when looking for the largest page.
2245  	 */
2246  	VM_BUG_ON(current_order > MAX_PAGE_ORDER);
2247  
2248  do_steal:
2249  	page = get_page_from_free_area(area, fallback_mt);
2250  
2251  	/* take off list, maybe claim block, expand remainder */
2252  	page = steal_suitable_fallback(zone, page, current_order, order,
2253  				       start_migratetype, alloc_flags, can_steal);
2254  
2255  	trace_mm_page_alloc_extfrag(page, order, current_order,
2256  		start_migratetype, fallback_mt);
2257  
2258  	return page;
2259  }
2260  
2261  /*
2262   * Do the hard work of removing an element from the buddy allocator.
2263   * Call me with the zone->lock already held.
2264   */
2265  static __always_inline struct page *
__rmqueue(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)2266  __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2267  						unsigned int alloc_flags)
2268  {
2269  	struct page *page;
2270  
2271  	if (IS_ENABLED(CONFIG_CMA)) {
2272  		/*
2273  		 * Balance movable allocations between regular and CMA areas by
2274  		 * allocating from CMA when over half of the zone's free memory
2275  		 * is in the CMA area.
2276  		 */
2277  		if (alloc_flags & ALLOC_CMA &&
2278  		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2279  		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2280  			page = __rmqueue_cma_fallback(zone, order);
2281  			if (page)
2282  				return page;
2283  		}
2284  	}
2285  
2286  	page = __rmqueue_smallest(zone, order, migratetype);
2287  	if (unlikely(!page)) {
2288  		if (alloc_flags & ALLOC_CMA)
2289  			page = __rmqueue_cma_fallback(zone, order);
2290  
2291  		if (!page)
2292  			page = __rmqueue_fallback(zone, order, migratetype,
2293  						  alloc_flags);
2294  	}
2295  	return page;
2296  }
2297  
2298  /*
2299   * Obtain a specified number of elements from the buddy allocator, all under
2300   * a single hold of the lock, for efficiency.  Add them to the supplied list.
2301   * Returns the number of new pages which were placed at *list.
2302   */
rmqueue_bulk(struct zone * zone,unsigned int order,unsigned long count,struct list_head * list,int migratetype,unsigned int alloc_flags)2303  static int rmqueue_bulk(struct zone *zone, unsigned int order,
2304  			unsigned long count, struct list_head *list,
2305  			int migratetype, unsigned int alloc_flags)
2306  {
2307  	unsigned long flags;
2308  	int i;
2309  
2310  	spin_lock_irqsave(&zone->lock, flags);
2311  	for (i = 0; i < count; ++i) {
2312  		struct page *page = __rmqueue(zone, order, migratetype,
2313  								alloc_flags);
2314  		if (unlikely(page == NULL))
2315  			break;
2316  
2317  		/*
2318  		 * Split buddy pages returned by expand() are received here in
2319  		 * physical page order. The page is added to the tail of
2320  		 * caller's list. From the callers perspective, the linked list
2321  		 * is ordered by page number under some conditions. This is
2322  		 * useful for IO devices that can forward direction from the
2323  		 * head, thus also in the physical page order. This is useful
2324  		 * for IO devices that can merge IO requests if the physical
2325  		 * pages are ordered properly.
2326  		 */
2327  		list_add_tail(&page->pcp_list, list);
2328  	}
2329  	spin_unlock_irqrestore(&zone->lock, flags);
2330  
2331  	return i;
2332  }
2333  
2334  /*
2335   * Called from the vmstat counter updater to decay the PCP high.
2336   * Return whether there are addition works to do.
2337   */
decay_pcp_high(struct zone * zone,struct per_cpu_pages * pcp)2338  int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp)
2339  {
2340  	int high_min, to_drain, batch;
2341  	int todo = 0;
2342  
2343  	high_min = READ_ONCE(pcp->high_min);
2344  	batch = READ_ONCE(pcp->batch);
2345  	/*
2346  	 * Decrease pcp->high periodically to try to free possible
2347  	 * idle PCP pages.  And, avoid to free too many pages to
2348  	 * control latency.  This caps pcp->high decrement too.
2349  	 */
2350  	if (pcp->high > high_min) {
2351  		pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2352  				 pcp->high - (pcp->high >> 3), high_min);
2353  		if (pcp->high > high_min)
2354  			todo++;
2355  	}
2356  
2357  	to_drain = pcp->count - pcp->high;
2358  	if (to_drain > 0) {
2359  		spin_lock(&pcp->lock);
2360  		free_pcppages_bulk(zone, to_drain, pcp, 0);
2361  		spin_unlock(&pcp->lock);
2362  		todo++;
2363  	}
2364  
2365  	return todo;
2366  }
2367  
2368  #ifdef CONFIG_NUMA
2369  /*
2370   * Called from the vmstat counter updater to drain pagesets of this
2371   * currently executing processor on remote nodes after they have
2372   * expired.
2373   */
drain_zone_pages(struct zone * zone,struct per_cpu_pages * pcp)2374  void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2375  {
2376  	int to_drain, batch;
2377  
2378  	batch = READ_ONCE(pcp->batch);
2379  	to_drain = min(pcp->count, batch);
2380  	if (to_drain > 0) {
2381  		spin_lock(&pcp->lock);
2382  		free_pcppages_bulk(zone, to_drain, pcp, 0);
2383  		spin_unlock(&pcp->lock);
2384  	}
2385  }
2386  #endif
2387  
2388  /*
2389   * Drain pcplists of the indicated processor and zone.
2390   */
drain_pages_zone(unsigned int cpu,struct zone * zone)2391  static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2392  {
2393  	struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2394  	int count;
2395  
2396  	do {
2397  		spin_lock(&pcp->lock);
2398  		count = pcp->count;
2399  		if (count) {
2400  			int to_drain = min(count,
2401  				pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX);
2402  
2403  			free_pcppages_bulk(zone, to_drain, pcp, 0);
2404  			count -= to_drain;
2405  		}
2406  		spin_unlock(&pcp->lock);
2407  	} while (count);
2408  }
2409  
2410  /*
2411   * Drain pcplists of all zones on the indicated processor.
2412   */
drain_pages(unsigned int cpu)2413  static void drain_pages(unsigned int cpu)
2414  {
2415  	struct zone *zone;
2416  
2417  	for_each_populated_zone(zone) {
2418  		drain_pages_zone(cpu, zone);
2419  	}
2420  }
2421  
2422  /*
2423   * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2424   */
drain_local_pages(struct zone * zone)2425  void drain_local_pages(struct zone *zone)
2426  {
2427  	int cpu = smp_processor_id();
2428  
2429  	if (zone)
2430  		drain_pages_zone(cpu, zone);
2431  	else
2432  		drain_pages(cpu);
2433  }
2434  
2435  /*
2436   * The implementation of drain_all_pages(), exposing an extra parameter to
2437   * drain on all cpus.
2438   *
2439   * drain_all_pages() is optimized to only execute on cpus where pcplists are
2440   * not empty. The check for non-emptiness can however race with a free to
2441   * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2442   * that need the guarantee that every CPU has drained can disable the
2443   * optimizing racy check.
2444   */
__drain_all_pages(struct zone * zone,bool force_all_cpus)2445  static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2446  {
2447  	int cpu;
2448  
2449  	/*
2450  	 * Allocate in the BSS so we won't require allocation in
2451  	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2452  	 */
2453  	static cpumask_t cpus_with_pcps;
2454  
2455  	/*
2456  	 * Do not drain if one is already in progress unless it's specific to
2457  	 * a zone. Such callers are primarily CMA and memory hotplug and need
2458  	 * the drain to be complete when the call returns.
2459  	 */
2460  	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2461  		if (!zone)
2462  			return;
2463  		mutex_lock(&pcpu_drain_mutex);
2464  	}
2465  
2466  	/*
2467  	 * We don't care about racing with CPU hotplug event
2468  	 * as offline notification will cause the notified
2469  	 * cpu to drain that CPU pcps and on_each_cpu_mask
2470  	 * disables preemption as part of its processing
2471  	 */
2472  	for_each_online_cpu(cpu) {
2473  		struct per_cpu_pages *pcp;
2474  		struct zone *z;
2475  		bool has_pcps = false;
2476  
2477  		if (force_all_cpus) {
2478  			/*
2479  			 * The pcp.count check is racy, some callers need a
2480  			 * guarantee that no cpu is missed.
2481  			 */
2482  			has_pcps = true;
2483  		} else if (zone) {
2484  			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2485  			if (pcp->count)
2486  				has_pcps = true;
2487  		} else {
2488  			for_each_populated_zone(z) {
2489  				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2490  				if (pcp->count) {
2491  					has_pcps = true;
2492  					break;
2493  				}
2494  			}
2495  		}
2496  
2497  		if (has_pcps)
2498  			cpumask_set_cpu(cpu, &cpus_with_pcps);
2499  		else
2500  			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2501  	}
2502  
2503  	for_each_cpu(cpu, &cpus_with_pcps) {
2504  		if (zone)
2505  			drain_pages_zone(cpu, zone);
2506  		else
2507  			drain_pages(cpu);
2508  	}
2509  
2510  	mutex_unlock(&pcpu_drain_mutex);
2511  }
2512  
2513  /*
2514   * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2515   *
2516   * When zone parameter is non-NULL, spill just the single zone's pages.
2517   */
drain_all_pages(struct zone * zone)2518  void drain_all_pages(struct zone *zone)
2519  {
2520  	__drain_all_pages(zone, false);
2521  }
2522  
nr_pcp_free(struct per_cpu_pages * pcp,int batch,int high,bool free_high)2523  static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high)
2524  {
2525  	int min_nr_free, max_nr_free;
2526  
2527  	/* Free as much as possible if batch freeing high-order pages. */
2528  	if (unlikely(free_high))
2529  		return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX);
2530  
2531  	/* Check for PCP disabled or boot pageset */
2532  	if (unlikely(high < batch))
2533  		return 1;
2534  
2535  	/* Leave at least pcp->batch pages on the list */
2536  	min_nr_free = batch;
2537  	max_nr_free = high - batch;
2538  
2539  	/*
2540  	 * Increase the batch number to the number of the consecutive
2541  	 * freed pages to reduce zone lock contention.
2542  	 */
2543  	batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free);
2544  
2545  	return batch;
2546  }
2547  
nr_pcp_high(struct per_cpu_pages * pcp,struct zone * zone,int batch,bool free_high)2548  static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2549  		       int batch, bool free_high)
2550  {
2551  	int high, high_min, high_max;
2552  
2553  	high_min = READ_ONCE(pcp->high_min);
2554  	high_max = READ_ONCE(pcp->high_max);
2555  	high = pcp->high = clamp(pcp->high, high_min, high_max);
2556  
2557  	if (unlikely(!high))
2558  		return 0;
2559  
2560  	if (unlikely(free_high)) {
2561  		pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2562  				high_min);
2563  		return 0;
2564  	}
2565  
2566  	/*
2567  	 * If reclaim is active, limit the number of pages that can be
2568  	 * stored on pcp lists
2569  	 */
2570  	if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) {
2571  		int free_count = max_t(int, pcp->free_count, batch);
2572  
2573  		pcp->high = max(high - free_count, high_min);
2574  		return min(batch << 2, pcp->high);
2575  	}
2576  
2577  	if (high_min == high_max)
2578  		return high;
2579  
2580  	if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) {
2581  		int free_count = max_t(int, pcp->free_count, batch);
2582  
2583  		pcp->high = max(high - free_count, high_min);
2584  		high = max(pcp->count, high_min);
2585  	} else if (pcp->count >= high) {
2586  		int need_high = pcp->free_count + batch;
2587  
2588  		/* pcp->high should be large enough to hold batch freed pages */
2589  		if (pcp->high < need_high)
2590  			pcp->high = clamp(need_high, high_min, high_max);
2591  	}
2592  
2593  	return high;
2594  }
2595  
free_frozen_page_commit(struct zone * zone,struct per_cpu_pages * pcp,struct page * page,int migratetype,unsigned int order)2596  static void free_frozen_page_commit(struct zone *zone,
2597  		struct per_cpu_pages *pcp, struct page *page, int migratetype,
2598  		unsigned int order)
2599  {
2600  	int high, batch;
2601  	int pindex;
2602  	bool free_high = false;
2603  
2604  	/*
2605  	 * On freeing, reduce the number of pages that are batch allocated.
2606  	 * See nr_pcp_alloc() where alloc_factor is increased for subsequent
2607  	 * allocations.
2608  	 */
2609  	pcp->alloc_factor >>= 1;
2610  	__count_vm_events(PGFREE, 1 << order);
2611  	pindex = order_to_pindex(migratetype, order);
2612  	list_add(&page->pcp_list, &pcp->lists[pindex]);
2613  	pcp->count += 1 << order;
2614  
2615  	batch = READ_ONCE(pcp->batch);
2616  	/*
2617  	 * As high-order pages other than THP's stored on PCP can contribute
2618  	 * to fragmentation, limit the number stored when PCP is heavily
2619  	 * freeing without allocation. The remainder after bulk freeing
2620  	 * stops will be drained from vmstat refresh context.
2621  	 */
2622  	if (order && order <= PAGE_ALLOC_COSTLY_ORDER) {
2623  		free_high = (pcp->free_count >= batch &&
2624  			     (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) &&
2625  			     (!(pcp->flags & PCPF_FREE_HIGH_BATCH) ||
2626  			      pcp->count >= READ_ONCE(batch)));
2627  		pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER;
2628  	} else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) {
2629  		pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER;
2630  	}
2631  	if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX))
2632  		pcp->free_count += (1 << order);
2633  	high = nr_pcp_high(pcp, zone, batch, free_high);
2634  	if (pcp->count >= high) {
2635  		free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high),
2636  				   pcp, pindex);
2637  		if (test_bit(ZONE_BELOW_HIGH, &zone->flags) &&
2638  		    zone_watermark_ok(zone, 0, high_wmark_pages(zone),
2639  				      ZONE_MOVABLE, 0))
2640  			clear_bit(ZONE_BELOW_HIGH, &zone->flags);
2641  	}
2642  }
2643  
2644  /*
2645   * Free a pcp page
2646   */
free_frozen_pages(struct page * page,unsigned int order)2647  void free_frozen_pages(struct page *page, unsigned int order)
2648  {
2649  	unsigned long __maybe_unused UP_flags;
2650  	struct per_cpu_pages *pcp;
2651  	struct zone *zone;
2652  	unsigned long pfn = page_to_pfn(page);
2653  	int migratetype;
2654  
2655  	if (!pcp_allowed_order(order)) {
2656  		__free_pages_ok(page, order, FPI_NONE);
2657  		return;
2658  	}
2659  
2660  	if (!free_pages_prepare(page, order))
2661  		return;
2662  
2663  	/*
2664  	 * We only track unmovable, reclaimable and movable on pcp lists.
2665  	 * Place ISOLATE pages on the isolated list because they are being
2666  	 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2667  	 * get those areas back if necessary. Otherwise, we may have to free
2668  	 * excessively into the page allocator
2669  	 */
2670  	zone = page_zone(page);
2671  	migratetype = get_pfnblock_migratetype(page, pfn);
2672  	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2673  		if (unlikely(is_migrate_isolate(migratetype))) {
2674  			free_one_page(zone, page, pfn, order, FPI_NONE);
2675  			return;
2676  		}
2677  		migratetype = MIGRATE_MOVABLE;
2678  	}
2679  
2680  	pcp_trylock_prepare(UP_flags);
2681  	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2682  	if (pcp) {
2683  		free_frozen_page_commit(zone, pcp, page, migratetype, order);
2684  		pcp_spin_unlock(pcp);
2685  	} else {
2686  		free_one_page(zone, page, pfn, order, FPI_NONE);
2687  	}
2688  	pcp_trylock_finish(UP_flags);
2689  }
2690  
2691  /*
2692   * Free a batch of folios
2693   */
free_unref_folios(struct folio_batch * folios)2694  void free_unref_folios(struct folio_batch *folios)
2695  {
2696  	unsigned long __maybe_unused UP_flags;
2697  	struct per_cpu_pages *pcp = NULL;
2698  	struct zone *locked_zone = NULL;
2699  	int i, j;
2700  
2701  	/* Prepare folios for freeing */
2702  	for (i = 0, j = 0; i < folios->nr; i++) {
2703  		struct folio *folio = folios->folios[i];
2704  		unsigned long pfn = folio_pfn(folio);
2705  		unsigned int order = folio_order(folio);
2706  
2707  		if (!free_pages_prepare(&folio->page, order))
2708  			continue;
2709  		/*
2710  		 * Free orders not handled on the PCP directly to the
2711  		 * allocator.
2712  		 */
2713  		if (!pcp_allowed_order(order)) {
2714  			free_one_page(folio_zone(folio), &folio->page,
2715  				      pfn, order, FPI_NONE);
2716  			continue;
2717  		}
2718  		folio->private = (void *)(unsigned long)order;
2719  		if (j != i)
2720  			folios->folios[j] = folio;
2721  		j++;
2722  	}
2723  	folios->nr = j;
2724  
2725  	for (i = 0; i < folios->nr; i++) {
2726  		struct folio *folio = folios->folios[i];
2727  		struct zone *zone = folio_zone(folio);
2728  		unsigned long pfn = folio_pfn(folio);
2729  		unsigned int order = (unsigned long)folio->private;
2730  		int migratetype;
2731  
2732  		folio->private = NULL;
2733  		migratetype = get_pfnblock_migratetype(&folio->page, pfn);
2734  
2735  		/* Different zone requires a different pcp lock */
2736  		if (zone != locked_zone ||
2737  		    is_migrate_isolate(migratetype)) {
2738  			if (pcp) {
2739  				pcp_spin_unlock(pcp);
2740  				pcp_trylock_finish(UP_flags);
2741  				locked_zone = NULL;
2742  				pcp = NULL;
2743  			}
2744  
2745  			/*
2746  			 * Free isolated pages directly to the
2747  			 * allocator, see comment in free_frozen_pages.
2748  			 */
2749  			if (is_migrate_isolate(migratetype)) {
2750  				free_one_page(zone, &folio->page, pfn,
2751  					      order, FPI_NONE);
2752  				continue;
2753  			}
2754  
2755  			/*
2756  			 * trylock is necessary as folios may be getting freed
2757  			 * from IRQ or SoftIRQ context after an IO completion.
2758  			 */
2759  			pcp_trylock_prepare(UP_flags);
2760  			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2761  			if (unlikely(!pcp)) {
2762  				pcp_trylock_finish(UP_flags);
2763  				free_one_page(zone, &folio->page, pfn,
2764  					      order, FPI_NONE);
2765  				continue;
2766  			}
2767  			locked_zone = zone;
2768  		}
2769  
2770  		/*
2771  		 * Non-isolated types over MIGRATE_PCPTYPES get added
2772  		 * to the MIGRATE_MOVABLE pcp list.
2773  		 */
2774  		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2775  			migratetype = MIGRATE_MOVABLE;
2776  
2777  		trace_mm_page_free_batched(&folio->page);
2778  		free_frozen_page_commit(zone, pcp, &folio->page, migratetype,
2779  				order);
2780  	}
2781  
2782  	if (pcp) {
2783  		pcp_spin_unlock(pcp);
2784  		pcp_trylock_finish(UP_flags);
2785  	}
2786  	folio_batch_reinit(folios);
2787  }
2788  
2789  /*
2790   * split_page takes a non-compound higher-order page, and splits it into
2791   * n (1<<order) sub-pages: page[0..n]
2792   * Each sub-page must be freed individually.
2793   *
2794   * Note: this is probably too low level an operation for use in drivers.
2795   * Please consult with lkml before using this in your driver.
2796   */
split_page(struct page * page,unsigned int order)2797  void split_page(struct page *page, unsigned int order)
2798  {
2799  	int i;
2800  
2801  	VM_BUG_ON_PAGE(PageCompound(page), page);
2802  	VM_BUG_ON_PAGE(!page_count(page), page);
2803  
2804  	for (i = 1; i < (1 << order); i++)
2805  		set_page_refcounted(page + i);
2806  	split_page_owner(page, order, 0);
2807  	pgalloc_tag_split(page_folio(page), order, 0);
2808  	split_page_memcg(page, order, 0);
2809  }
2810  EXPORT_SYMBOL_GPL(split_page);
2811  
__isolate_free_page(struct page * page,unsigned int order)2812  int __isolate_free_page(struct page *page, unsigned int order)
2813  {
2814  	struct zone *zone = page_zone(page);
2815  	int mt = get_pageblock_migratetype(page);
2816  
2817  	if (!is_migrate_isolate(mt)) {
2818  		unsigned long watermark;
2819  		/*
2820  		 * Obey watermarks as if the page was being allocated. We can
2821  		 * emulate a high-order watermark check with a raised order-0
2822  		 * watermark, because we already know our high-order page
2823  		 * exists.
2824  		 */
2825  		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2826  		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2827  			return 0;
2828  	}
2829  
2830  	del_page_from_free_list(page, zone, order, mt);
2831  
2832  	/*
2833  	 * Set the pageblock if the isolated page is at least half of a
2834  	 * pageblock
2835  	 */
2836  	if (order >= pageblock_order - 1) {
2837  		struct page *endpage = page + (1 << order) - 1;
2838  		for (; page < endpage; page += pageblock_nr_pages) {
2839  			int mt = get_pageblock_migratetype(page);
2840  			/*
2841  			 * Only change normal pageblocks (i.e., they can merge
2842  			 * with others)
2843  			 */
2844  			if (migratetype_is_mergeable(mt))
2845  				move_freepages_block(zone, page, mt,
2846  						     MIGRATE_MOVABLE);
2847  		}
2848  	}
2849  
2850  	return 1UL << order;
2851  }
2852  
2853  /**
2854   * __putback_isolated_page - Return a now-isolated page back where we got it
2855   * @page: Page that was isolated
2856   * @order: Order of the isolated page
2857   * @mt: The page's pageblock's migratetype
2858   *
2859   * This function is meant to return a page pulled from the free lists via
2860   * __isolate_free_page back to the free lists they were pulled from.
2861   */
__putback_isolated_page(struct page * page,unsigned int order,int mt)2862  void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2863  {
2864  	struct zone *zone = page_zone(page);
2865  
2866  	/* zone lock should be held when this function is called */
2867  	lockdep_assert_held(&zone->lock);
2868  
2869  	/* Return isolated page to tail of freelist. */
2870  	__free_one_page(page, page_to_pfn(page), zone, order, mt,
2871  			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2872  }
2873  
2874  /*
2875   * Update NUMA hit/miss statistics
2876   */
zone_statistics(struct zone * preferred_zone,struct zone * z,long nr_account)2877  static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2878  				   long nr_account)
2879  {
2880  #ifdef CONFIG_NUMA
2881  	enum numa_stat_item local_stat = NUMA_LOCAL;
2882  
2883  	/* skip numa counters update if numa stats is disabled */
2884  	if (!static_branch_likely(&vm_numa_stat_key))
2885  		return;
2886  
2887  	if (zone_to_nid(z) != numa_node_id())
2888  		local_stat = NUMA_OTHER;
2889  
2890  	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2891  		__count_numa_events(z, NUMA_HIT, nr_account);
2892  	else {
2893  		__count_numa_events(z, NUMA_MISS, nr_account);
2894  		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2895  	}
2896  	__count_numa_events(z, local_stat, nr_account);
2897  #endif
2898  }
2899  
2900  static __always_inline
rmqueue_buddy(struct zone * preferred_zone,struct zone * zone,unsigned int order,unsigned int alloc_flags,int migratetype)2901  struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2902  			   unsigned int order, unsigned int alloc_flags,
2903  			   int migratetype)
2904  {
2905  	struct page *page;
2906  	unsigned long flags;
2907  
2908  	do {
2909  		page = NULL;
2910  		spin_lock_irqsave(&zone->lock, flags);
2911  		if (alloc_flags & ALLOC_HIGHATOMIC)
2912  			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2913  		if (!page) {
2914  			page = __rmqueue(zone, order, migratetype, alloc_flags);
2915  
2916  			/*
2917  			 * If the allocation fails, allow OOM handling and
2918  			 * order-0 (atomic) allocs access to HIGHATOMIC
2919  			 * reserves as failing now is worse than failing a
2920  			 * high-order atomic allocation in the future.
2921  			 */
2922  			if (!page && (alloc_flags & (ALLOC_OOM|ALLOC_NON_BLOCK)))
2923  				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2924  
2925  			if (!page) {
2926  				spin_unlock_irqrestore(&zone->lock, flags);
2927  				return NULL;
2928  			}
2929  		}
2930  		spin_unlock_irqrestore(&zone->lock, flags);
2931  	} while (check_new_pages(page, order));
2932  
2933  	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2934  	zone_statistics(preferred_zone, zone, 1);
2935  
2936  	return page;
2937  }
2938  
nr_pcp_alloc(struct per_cpu_pages * pcp,struct zone * zone,int order)2939  static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order)
2940  {
2941  	int high, base_batch, batch, max_nr_alloc;
2942  	int high_max, high_min;
2943  
2944  	base_batch = READ_ONCE(pcp->batch);
2945  	high_min = READ_ONCE(pcp->high_min);
2946  	high_max = READ_ONCE(pcp->high_max);
2947  	high = pcp->high = clamp(pcp->high, high_min, high_max);
2948  
2949  	/* Check for PCP disabled or boot pageset */
2950  	if (unlikely(high < base_batch))
2951  		return 1;
2952  
2953  	if (order)
2954  		batch = base_batch;
2955  	else
2956  		batch = (base_batch << pcp->alloc_factor);
2957  
2958  	/*
2959  	 * If we had larger pcp->high, we could avoid to allocate from
2960  	 * zone.
2961  	 */
2962  	if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags))
2963  		high = pcp->high = min(high + batch, high_max);
2964  
2965  	if (!order) {
2966  		max_nr_alloc = max(high - pcp->count - base_batch, base_batch);
2967  		/*
2968  		 * Double the number of pages allocated each time there is
2969  		 * subsequent allocation of order-0 pages without any freeing.
2970  		 */
2971  		if (batch <= max_nr_alloc &&
2972  		    pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX)
2973  			pcp->alloc_factor++;
2974  		batch = min(batch, max_nr_alloc);
2975  	}
2976  
2977  	/*
2978  	 * Scale batch relative to order if batch implies free pages
2979  	 * can be stored on the PCP. Batch can be 1 for small zones or
2980  	 * for boot pagesets which should never store free pages as
2981  	 * the pages may belong to arbitrary zones.
2982  	 */
2983  	if (batch > 1)
2984  		batch = max(batch >> order, 2);
2985  
2986  	return batch;
2987  }
2988  
2989  /* Remove page from the per-cpu list, caller must protect the list */
2990  static inline
__rmqueue_pcplist(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags,struct per_cpu_pages * pcp,struct list_head * list)2991  struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2992  			int migratetype,
2993  			unsigned int alloc_flags,
2994  			struct per_cpu_pages *pcp,
2995  			struct list_head *list)
2996  {
2997  	struct page *page;
2998  
2999  	do {
3000  		if (list_empty(list)) {
3001  			int batch = nr_pcp_alloc(pcp, zone, order);
3002  			int alloced;
3003  
3004  			alloced = rmqueue_bulk(zone, order,
3005  					batch, list,
3006  					migratetype, alloc_flags);
3007  
3008  			pcp->count += alloced << order;
3009  			if (unlikely(list_empty(list)))
3010  				return NULL;
3011  		}
3012  
3013  		page = list_first_entry(list, struct page, pcp_list);
3014  		list_del(&page->pcp_list);
3015  		pcp->count -= 1 << order;
3016  	} while (check_new_pages(page, order));
3017  
3018  	return page;
3019  }
3020  
3021  /* Lock and remove page from the per-cpu list */
rmqueue_pcplist(struct zone * preferred_zone,struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)3022  static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3023  			struct zone *zone, unsigned int order,
3024  			int migratetype, unsigned int alloc_flags)
3025  {
3026  	struct per_cpu_pages *pcp;
3027  	struct list_head *list;
3028  	struct page *page;
3029  	unsigned long __maybe_unused UP_flags;
3030  
3031  	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
3032  	pcp_trylock_prepare(UP_flags);
3033  	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3034  	if (!pcp) {
3035  		pcp_trylock_finish(UP_flags);
3036  		return NULL;
3037  	}
3038  
3039  	/*
3040  	 * On allocation, reduce the number of pages that are batch freed.
3041  	 * See nr_pcp_free() where free_factor is increased for subsequent
3042  	 * frees.
3043  	 */
3044  	pcp->free_count >>= 1;
3045  	list = &pcp->lists[order_to_pindex(migratetype, order)];
3046  	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3047  	pcp_spin_unlock(pcp);
3048  	pcp_trylock_finish(UP_flags);
3049  	if (page) {
3050  		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3051  		zone_statistics(preferred_zone, zone, 1);
3052  	}
3053  	return page;
3054  }
3055  
3056  /*
3057   * Allocate a page from the given zone.
3058   * Use pcplists for THP or "cheap" high-order allocations.
3059   */
3060  
3061  /*
3062   * Do not instrument rmqueue() with KMSAN. This function may call
3063   * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
3064   * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3065   * may call rmqueue() again, which will result in a deadlock.
3066   */
3067  __no_sanitize_memory
3068  static inline
rmqueue(struct zone * preferred_zone,struct zone * zone,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags,int migratetype)3069  struct page *rmqueue(struct zone *preferred_zone,
3070  			struct zone *zone, unsigned int order,
3071  			gfp_t gfp_flags, unsigned int alloc_flags,
3072  			int migratetype)
3073  {
3074  	struct page *page;
3075  
3076  	if (likely(pcp_allowed_order(order))) {
3077  		page = rmqueue_pcplist(preferred_zone, zone, order,
3078  				       migratetype, alloc_flags);
3079  		if (likely(page))
3080  			goto out;
3081  	}
3082  
3083  	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3084  							migratetype);
3085  
3086  out:
3087  	/* Separate test+clear to avoid unnecessary atomics */
3088  	if ((alloc_flags & ALLOC_KSWAPD) &&
3089  	    unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3090  		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3091  		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3092  	}
3093  
3094  	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3095  	return page;
3096  }
3097  
__zone_watermark_unusable_free(struct zone * z,unsigned int order,unsigned int alloc_flags)3098  static inline long __zone_watermark_unusable_free(struct zone *z,
3099  				unsigned int order, unsigned int alloc_flags)
3100  {
3101  	long unusable_free = (1 << order) - 1;
3102  
3103  	/*
3104  	 * If the caller does not have rights to reserves below the min
3105  	 * watermark then subtract the free pages reserved for highatomic.
3106  	 */
3107  	if (likely(!(alloc_flags & ALLOC_RESERVES)))
3108  		unusable_free += READ_ONCE(z->nr_free_highatomic);
3109  
3110  #ifdef CONFIG_CMA
3111  	/* If allocation can't use CMA areas don't use free CMA pages */
3112  	if (!(alloc_flags & ALLOC_CMA))
3113  		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3114  #endif
3115  
3116  	return unusable_free;
3117  }
3118  
3119  /*
3120   * Return true if free base pages are above 'mark'. For high-order checks it
3121   * will return true of the order-0 watermark is reached and there is at least
3122   * one free page of a suitable size. Checking now avoids taking the zone lock
3123   * to check in the allocation paths if no pages are free.
3124   */
__zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,long free_pages)3125  bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3126  			 int highest_zoneidx, unsigned int alloc_flags,
3127  			 long free_pages)
3128  {
3129  	long min = mark;
3130  	int o;
3131  
3132  	/* free_pages may go negative - that's OK */
3133  	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3134  
3135  	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
3136  		/*
3137  		 * __GFP_HIGH allows access to 50% of the min reserve as well
3138  		 * as OOM.
3139  		 */
3140  		if (alloc_flags & ALLOC_MIN_RESERVE) {
3141  			min -= min / 2;
3142  
3143  			/*
3144  			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
3145  			 * access more reserves than just __GFP_HIGH. Other
3146  			 * non-blocking allocations requests such as GFP_NOWAIT
3147  			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
3148  			 * access to the min reserve.
3149  			 */
3150  			if (alloc_flags & ALLOC_NON_BLOCK)
3151  				min -= min / 4;
3152  		}
3153  
3154  		/*
3155  		 * OOM victims can try even harder than the normal reserve
3156  		 * users on the grounds that it's definitely going to be in
3157  		 * the exit path shortly and free memory. Any allocation it
3158  		 * makes during the free path will be small and short-lived.
3159  		 */
3160  		if (alloc_flags & ALLOC_OOM)
3161  			min -= min / 2;
3162  	}
3163  
3164  	/*
3165  	 * Check watermarks for an order-0 allocation request. If these
3166  	 * are not met, then a high-order request also cannot go ahead
3167  	 * even if a suitable page happened to be free.
3168  	 */
3169  	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3170  		return false;
3171  
3172  	/* If this is an order-0 request then the watermark is fine */
3173  	if (!order)
3174  		return true;
3175  
3176  	/* For a high-order request, check at least one suitable page is free */
3177  	for (o = order; o < NR_PAGE_ORDERS; o++) {
3178  		struct free_area *area = &z->free_area[o];
3179  		int mt;
3180  
3181  		if (!area->nr_free)
3182  			continue;
3183  
3184  		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3185  			if (!free_area_empty(area, mt))
3186  				return true;
3187  		}
3188  
3189  #ifdef CONFIG_CMA
3190  		if ((alloc_flags & ALLOC_CMA) &&
3191  		    !free_area_empty(area, MIGRATE_CMA)) {
3192  			return true;
3193  		}
3194  #endif
3195  		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3196  		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3197  			return true;
3198  		}
3199  	}
3200  	return false;
3201  }
3202  
zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags)3203  bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3204  		      int highest_zoneidx, unsigned int alloc_flags)
3205  {
3206  	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3207  					zone_page_state(z, NR_FREE_PAGES));
3208  }
3209  
zone_watermark_fast(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,gfp_t gfp_mask)3210  static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3211  				unsigned long mark, int highest_zoneidx,
3212  				unsigned int alloc_flags, gfp_t gfp_mask)
3213  {
3214  	long free_pages;
3215  
3216  	free_pages = zone_page_state(z, NR_FREE_PAGES);
3217  
3218  	/*
3219  	 * Fast check for order-0 only. If this fails then the reserves
3220  	 * need to be calculated.
3221  	 */
3222  	if (!order) {
3223  		long usable_free;
3224  		long reserved;
3225  
3226  		usable_free = free_pages;
3227  		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3228  
3229  		/* reserved may over estimate high-atomic reserves. */
3230  		usable_free -= min(usable_free, reserved);
3231  		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3232  			return true;
3233  	}
3234  
3235  	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3236  					free_pages))
3237  		return true;
3238  
3239  	/*
3240  	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3241  	 * when checking the min watermark. The min watermark is the
3242  	 * point where boosting is ignored so that kswapd is woken up
3243  	 * when below the low watermark.
3244  	 */
3245  	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3246  		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3247  		mark = z->_watermark[WMARK_MIN];
3248  		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3249  					alloc_flags, free_pages);
3250  	}
3251  
3252  	return false;
3253  }
3254  
zone_watermark_ok_safe(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx)3255  bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3256  			unsigned long mark, int highest_zoneidx)
3257  {
3258  	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3259  
3260  	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3261  		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3262  
3263  	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3264  								free_pages);
3265  }
3266  
3267  #ifdef CONFIG_NUMA
3268  int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3269  
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3270  static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3271  {
3272  	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3273  				node_reclaim_distance;
3274  }
3275  #else	/* CONFIG_NUMA */
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3276  static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3277  {
3278  	return true;
3279  }
3280  #endif	/* CONFIG_NUMA */
3281  
3282  /*
3283   * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3284   * fragmentation is subtle. If the preferred zone was HIGHMEM then
3285   * premature use of a lower zone may cause lowmem pressure problems that
3286   * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3287   * probably too small. It only makes sense to spread allocations to avoid
3288   * fragmentation between the Normal and DMA32 zones.
3289   */
3290  static inline unsigned int
alloc_flags_nofragment(struct zone * zone,gfp_t gfp_mask)3291  alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3292  {
3293  	unsigned int alloc_flags;
3294  
3295  	/*
3296  	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3297  	 * to save a branch.
3298  	 */
3299  	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3300  
3301  #ifdef CONFIG_ZONE_DMA32
3302  	if (!zone)
3303  		return alloc_flags;
3304  
3305  	if (zone_idx(zone) != ZONE_NORMAL)
3306  		return alloc_flags;
3307  
3308  	/*
3309  	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3310  	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3311  	 * on UMA that if Normal is populated then so is DMA32.
3312  	 */
3313  	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3314  	if (nr_online_nodes > 1 && !populated_zone(--zone))
3315  		return alloc_flags;
3316  
3317  	alloc_flags |= ALLOC_NOFRAGMENT;
3318  #endif /* CONFIG_ZONE_DMA32 */
3319  	return alloc_flags;
3320  }
3321  
3322  /* Must be called after current_gfp_context() which can change gfp_mask */
gfp_to_alloc_flags_cma(gfp_t gfp_mask,unsigned int alloc_flags)3323  static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3324  						  unsigned int alloc_flags)
3325  {
3326  #ifdef CONFIG_CMA
3327  	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3328  		alloc_flags |= ALLOC_CMA;
3329  #endif
3330  	return alloc_flags;
3331  }
3332  
3333  /*
3334   * get_page_from_freelist goes through the zonelist trying to allocate
3335   * a page.
3336   */
3337  static struct page *
get_page_from_freelist(gfp_t gfp_mask,unsigned int order,int alloc_flags,const struct alloc_context * ac)3338  get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3339  						const struct alloc_context *ac)
3340  {
3341  	struct zoneref *z;
3342  	struct zone *zone;
3343  	struct pglist_data *last_pgdat = NULL;
3344  	bool last_pgdat_dirty_ok = false;
3345  	bool no_fallback;
3346  
3347  retry:
3348  	/*
3349  	 * Scan zonelist, looking for a zone with enough free.
3350  	 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3351  	 */
3352  	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3353  	z = ac->preferred_zoneref;
3354  	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3355  					ac->nodemask) {
3356  		struct page *page;
3357  		unsigned long mark;
3358  
3359  		if (cpusets_enabled() &&
3360  			(alloc_flags & ALLOC_CPUSET) &&
3361  			!__cpuset_zone_allowed(zone, gfp_mask))
3362  				continue;
3363  		/*
3364  		 * When allocating a page cache page for writing, we
3365  		 * want to get it from a node that is within its dirty
3366  		 * limit, such that no single node holds more than its
3367  		 * proportional share of globally allowed dirty pages.
3368  		 * The dirty limits take into account the node's
3369  		 * lowmem reserves and high watermark so that kswapd
3370  		 * should be able to balance it without having to
3371  		 * write pages from its LRU list.
3372  		 *
3373  		 * XXX: For now, allow allocations to potentially
3374  		 * exceed the per-node dirty limit in the slowpath
3375  		 * (spread_dirty_pages unset) before going into reclaim,
3376  		 * which is important when on a NUMA setup the allowed
3377  		 * nodes are together not big enough to reach the
3378  		 * global limit.  The proper fix for these situations
3379  		 * will require awareness of nodes in the
3380  		 * dirty-throttling and the flusher threads.
3381  		 */
3382  		if (ac->spread_dirty_pages) {
3383  			if (last_pgdat != zone->zone_pgdat) {
3384  				last_pgdat = zone->zone_pgdat;
3385  				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3386  			}
3387  
3388  			if (!last_pgdat_dirty_ok)
3389  				continue;
3390  		}
3391  
3392  		if (no_fallback && nr_online_nodes > 1 &&
3393  		    zone != zonelist_zone(ac->preferred_zoneref)) {
3394  			int local_nid;
3395  
3396  			/*
3397  			 * If moving to a remote node, retry but allow
3398  			 * fragmenting fallbacks. Locality is more important
3399  			 * than fragmentation avoidance.
3400  			 */
3401  			local_nid = zonelist_node_idx(ac->preferred_zoneref);
3402  			if (zone_to_nid(zone) != local_nid) {
3403  				alloc_flags &= ~ALLOC_NOFRAGMENT;
3404  				goto retry;
3405  			}
3406  		}
3407  
3408  		cond_accept_memory(zone, order);
3409  
3410  		/*
3411  		 * Detect whether the number of free pages is below high
3412  		 * watermark.  If so, we will decrease pcp->high and free
3413  		 * PCP pages in free path to reduce the possibility of
3414  		 * premature page reclaiming.  Detection is done here to
3415  		 * avoid to do that in hotter free path.
3416  		 */
3417  		if (test_bit(ZONE_BELOW_HIGH, &zone->flags))
3418  			goto check_alloc_wmark;
3419  
3420  		mark = high_wmark_pages(zone);
3421  		if (zone_watermark_fast(zone, order, mark,
3422  					ac->highest_zoneidx, alloc_flags,
3423  					gfp_mask))
3424  			goto try_this_zone;
3425  		else
3426  			set_bit(ZONE_BELOW_HIGH, &zone->flags);
3427  
3428  check_alloc_wmark:
3429  		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3430  		if (!zone_watermark_fast(zone, order, mark,
3431  				       ac->highest_zoneidx, alloc_flags,
3432  				       gfp_mask)) {
3433  			int ret;
3434  
3435  			if (cond_accept_memory(zone, order))
3436  				goto try_this_zone;
3437  
3438  			/*
3439  			 * Watermark failed for this zone, but see if we can
3440  			 * grow this zone if it contains deferred pages.
3441  			 */
3442  			if (deferred_pages_enabled()) {
3443  				if (_deferred_grow_zone(zone, order))
3444  					goto try_this_zone;
3445  			}
3446  			/* Checked here to keep the fast path fast */
3447  			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3448  			if (alloc_flags & ALLOC_NO_WATERMARKS)
3449  				goto try_this_zone;
3450  
3451  			if (!node_reclaim_enabled() ||
3452  			    !zone_allows_reclaim(zonelist_zone(ac->preferred_zoneref), zone))
3453  				continue;
3454  
3455  			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3456  			switch (ret) {
3457  			case NODE_RECLAIM_NOSCAN:
3458  				/* did not scan */
3459  				continue;
3460  			case NODE_RECLAIM_FULL:
3461  				/* scanned but unreclaimable */
3462  				continue;
3463  			default:
3464  				/* did we reclaim enough */
3465  				if (zone_watermark_ok(zone, order, mark,
3466  					ac->highest_zoneidx, alloc_flags))
3467  					goto try_this_zone;
3468  
3469  				continue;
3470  			}
3471  		}
3472  
3473  try_this_zone:
3474  		page = rmqueue(zonelist_zone(ac->preferred_zoneref), zone, order,
3475  				gfp_mask, alloc_flags, ac->migratetype);
3476  		if (page) {
3477  			prep_new_page(page, order, gfp_mask, alloc_flags);
3478  
3479  			/*
3480  			 * If this is a high-order atomic allocation then check
3481  			 * if the pageblock should be reserved for the future
3482  			 */
3483  			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3484  				reserve_highatomic_pageblock(page, order, zone);
3485  
3486  			return page;
3487  		} else {
3488  			if (cond_accept_memory(zone, order))
3489  				goto try_this_zone;
3490  
3491  			/* Try again if zone has deferred pages */
3492  			if (deferred_pages_enabled()) {
3493  				if (_deferred_grow_zone(zone, order))
3494  					goto try_this_zone;
3495  			}
3496  		}
3497  	}
3498  
3499  	/*
3500  	 * It's possible on a UMA machine to get through all zones that are
3501  	 * fragmented. If avoiding fragmentation, reset and try again.
3502  	 */
3503  	if (no_fallback) {
3504  		alloc_flags &= ~ALLOC_NOFRAGMENT;
3505  		goto retry;
3506  	}
3507  
3508  	return NULL;
3509  }
3510  
warn_alloc_show_mem(gfp_t gfp_mask,nodemask_t * nodemask)3511  static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3512  {
3513  	unsigned int filter = SHOW_MEM_FILTER_NODES;
3514  
3515  	/*
3516  	 * This documents exceptions given to allocations in certain
3517  	 * contexts that are allowed to allocate outside current's set
3518  	 * of allowed nodes.
3519  	 */
3520  	if (!(gfp_mask & __GFP_NOMEMALLOC))
3521  		if (tsk_is_oom_victim(current) ||
3522  		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3523  			filter &= ~SHOW_MEM_FILTER_NODES;
3524  	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3525  		filter &= ~SHOW_MEM_FILTER_NODES;
3526  
3527  	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
3528  }
3529  
warn_alloc(gfp_t gfp_mask,nodemask_t * nodemask,const char * fmt,...)3530  void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3531  {
3532  	struct va_format vaf;
3533  	va_list args;
3534  	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3535  
3536  	if ((gfp_mask & __GFP_NOWARN) ||
3537  	     !__ratelimit(&nopage_rs) ||
3538  	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3539  		return;
3540  
3541  	va_start(args, fmt);
3542  	vaf.fmt = fmt;
3543  	vaf.va = &args;
3544  	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3545  			current->comm, &vaf, gfp_mask, &gfp_mask,
3546  			nodemask_pr_args(nodemask));
3547  	va_end(args);
3548  
3549  	cpuset_print_current_mems_allowed();
3550  	pr_cont("\n");
3551  	dump_stack();
3552  	warn_alloc_show_mem(gfp_mask, nodemask);
3553  }
3554  
3555  static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac)3556  __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3557  			      unsigned int alloc_flags,
3558  			      const struct alloc_context *ac)
3559  {
3560  	struct page *page;
3561  
3562  	page = get_page_from_freelist(gfp_mask, order,
3563  			alloc_flags|ALLOC_CPUSET, ac);
3564  	/*
3565  	 * fallback to ignore cpuset restriction if our nodes
3566  	 * are depleted
3567  	 */
3568  	if (!page)
3569  		page = get_page_from_freelist(gfp_mask, order,
3570  				alloc_flags, ac);
3571  	return page;
3572  }
3573  
3574  static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac,unsigned long * did_some_progress)3575  __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3576  	const struct alloc_context *ac, unsigned long *did_some_progress)
3577  {
3578  	struct oom_control oc = {
3579  		.zonelist = ac->zonelist,
3580  		.nodemask = ac->nodemask,
3581  		.memcg = NULL,
3582  		.gfp_mask = gfp_mask,
3583  		.order = order,
3584  	};
3585  	struct page *page;
3586  
3587  	*did_some_progress = 0;
3588  
3589  	/*
3590  	 * Acquire the oom lock.  If that fails, somebody else is
3591  	 * making progress for us.
3592  	 */
3593  	if (!mutex_trylock(&oom_lock)) {
3594  		*did_some_progress = 1;
3595  		schedule_timeout_uninterruptible(1);
3596  		return NULL;
3597  	}
3598  
3599  	/*
3600  	 * Go through the zonelist yet one more time, keep very high watermark
3601  	 * here, this is only to catch a parallel oom killing, we must fail if
3602  	 * we're still under heavy pressure. But make sure that this reclaim
3603  	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3604  	 * allocation which will never fail due to oom_lock already held.
3605  	 */
3606  	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3607  				      ~__GFP_DIRECT_RECLAIM, order,
3608  				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3609  	if (page)
3610  		goto out;
3611  
3612  	/* Coredumps can quickly deplete all memory reserves */
3613  	if (current->flags & PF_DUMPCORE)
3614  		goto out;
3615  	/* The OOM killer will not help higher order allocs */
3616  	if (order > PAGE_ALLOC_COSTLY_ORDER)
3617  		goto out;
3618  	/*
3619  	 * We have already exhausted all our reclaim opportunities without any
3620  	 * success so it is time to admit defeat. We will skip the OOM killer
3621  	 * because it is very likely that the caller has a more reasonable
3622  	 * fallback than shooting a random task.
3623  	 *
3624  	 * The OOM killer may not free memory on a specific node.
3625  	 */
3626  	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3627  		goto out;
3628  	/* The OOM killer does not needlessly kill tasks for lowmem */
3629  	if (ac->highest_zoneidx < ZONE_NORMAL)
3630  		goto out;
3631  	if (pm_suspended_storage())
3632  		goto out;
3633  	/*
3634  	 * XXX: GFP_NOFS allocations should rather fail than rely on
3635  	 * other request to make a forward progress.
3636  	 * We are in an unfortunate situation where out_of_memory cannot
3637  	 * do much for this context but let's try it to at least get
3638  	 * access to memory reserved if the current task is killed (see
3639  	 * out_of_memory). Once filesystems are ready to handle allocation
3640  	 * failures more gracefully we should just bail out here.
3641  	 */
3642  
3643  	/* Exhausted what can be done so it's blame time */
3644  	if (out_of_memory(&oc) ||
3645  	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3646  		*did_some_progress = 1;
3647  
3648  		/*
3649  		 * Help non-failing allocations by giving them access to memory
3650  		 * reserves
3651  		 */
3652  		if (gfp_mask & __GFP_NOFAIL)
3653  			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3654  					ALLOC_NO_WATERMARKS, ac);
3655  	}
3656  out:
3657  	mutex_unlock(&oom_lock);
3658  	return page;
3659  }
3660  
3661  /*
3662   * Maximum number of compaction retries with a progress before OOM
3663   * killer is consider as the only way to move forward.
3664   */
3665  #define MAX_COMPACT_RETRIES 16
3666  
3667  #ifdef CONFIG_COMPACTION
3668  /* Try memory compaction for high-order allocations before reclaim */
3669  static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)3670  __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3671  		unsigned int alloc_flags, const struct alloc_context *ac,
3672  		enum compact_priority prio, enum compact_result *compact_result)
3673  {
3674  	struct page *page = NULL;
3675  	unsigned long pflags;
3676  	unsigned int noreclaim_flag;
3677  
3678  	if (!order)
3679  		return NULL;
3680  
3681  	psi_memstall_enter(&pflags);
3682  	delayacct_compact_start();
3683  	noreclaim_flag = memalloc_noreclaim_save();
3684  
3685  	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3686  								prio, &page);
3687  
3688  	memalloc_noreclaim_restore(noreclaim_flag);
3689  	psi_memstall_leave(&pflags);
3690  	delayacct_compact_end();
3691  
3692  	if (*compact_result == COMPACT_SKIPPED)
3693  		return NULL;
3694  	/*
3695  	 * At least in one zone compaction wasn't deferred or skipped, so let's
3696  	 * count a compaction stall
3697  	 */
3698  	count_vm_event(COMPACTSTALL);
3699  
3700  	/* Prep a captured page if available */
3701  	if (page)
3702  		prep_new_page(page, order, gfp_mask, alloc_flags);
3703  
3704  	/* Try get a page from the freelist if available */
3705  	if (!page)
3706  		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3707  
3708  	if (page) {
3709  		struct zone *zone = page_zone(page);
3710  
3711  		zone->compact_blockskip_flush = false;
3712  		compaction_defer_reset(zone, order, true);
3713  		count_vm_event(COMPACTSUCCESS);
3714  		return page;
3715  	}
3716  
3717  	/*
3718  	 * It's bad if compaction run occurs and fails. The most likely reason
3719  	 * is that pages exist, but not enough to satisfy watermarks.
3720  	 */
3721  	count_vm_event(COMPACTFAIL);
3722  
3723  	cond_resched();
3724  
3725  	return NULL;
3726  }
3727  
3728  static inline bool
should_compact_retry(struct alloc_context * ac,int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)3729  should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3730  		     enum compact_result compact_result,
3731  		     enum compact_priority *compact_priority,
3732  		     int *compaction_retries)
3733  {
3734  	int max_retries = MAX_COMPACT_RETRIES;
3735  	int min_priority;
3736  	bool ret = false;
3737  	int retries = *compaction_retries;
3738  	enum compact_priority priority = *compact_priority;
3739  
3740  	if (!order)
3741  		return false;
3742  
3743  	if (fatal_signal_pending(current))
3744  		return false;
3745  
3746  	/*
3747  	 * Compaction was skipped due to a lack of free order-0
3748  	 * migration targets. Continue if reclaim can help.
3749  	 */
3750  	if (compact_result == COMPACT_SKIPPED) {
3751  		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3752  		goto out;
3753  	}
3754  
3755  	/*
3756  	 * Compaction managed to coalesce some page blocks, but the
3757  	 * allocation failed presumably due to a race. Retry some.
3758  	 */
3759  	if (compact_result == COMPACT_SUCCESS) {
3760  		/*
3761  		 * !costly requests are much more important than
3762  		 * __GFP_RETRY_MAYFAIL costly ones because they are de
3763  		 * facto nofail and invoke OOM killer to move on while
3764  		 * costly can fail and users are ready to cope with
3765  		 * that. 1/4 retries is rather arbitrary but we would
3766  		 * need much more detailed feedback from compaction to
3767  		 * make a better decision.
3768  		 */
3769  		if (order > PAGE_ALLOC_COSTLY_ORDER)
3770  			max_retries /= 4;
3771  
3772  		if (++(*compaction_retries) <= max_retries) {
3773  			ret = true;
3774  			goto out;
3775  		}
3776  	}
3777  
3778  	/*
3779  	 * Compaction failed. Retry with increasing priority.
3780  	 */
3781  	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3782  			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3783  
3784  	if (*compact_priority > min_priority) {
3785  		(*compact_priority)--;
3786  		*compaction_retries = 0;
3787  		ret = true;
3788  	}
3789  out:
3790  	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3791  	return ret;
3792  }
3793  #else
3794  static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)3795  __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3796  		unsigned int alloc_flags, const struct alloc_context *ac,
3797  		enum compact_priority prio, enum compact_result *compact_result)
3798  {
3799  	*compact_result = COMPACT_SKIPPED;
3800  	return NULL;
3801  }
3802  
3803  static inline bool
should_compact_retry(struct alloc_context * ac,unsigned int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)3804  should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3805  		     enum compact_result compact_result,
3806  		     enum compact_priority *compact_priority,
3807  		     int *compaction_retries)
3808  {
3809  	struct zone *zone;
3810  	struct zoneref *z;
3811  
3812  	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3813  		return false;
3814  
3815  	/*
3816  	 * There are setups with compaction disabled which would prefer to loop
3817  	 * inside the allocator rather than hit the oom killer prematurely.
3818  	 * Let's give them a good hope and keep retrying while the order-0
3819  	 * watermarks are OK.
3820  	 */
3821  	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3822  				ac->highest_zoneidx, ac->nodemask) {
3823  		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3824  					ac->highest_zoneidx, alloc_flags))
3825  			return true;
3826  	}
3827  	return false;
3828  }
3829  #endif /* CONFIG_COMPACTION */
3830  
3831  #ifdef CONFIG_LOCKDEP
3832  static struct lockdep_map __fs_reclaim_map =
3833  	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3834  
__need_reclaim(gfp_t gfp_mask)3835  static bool __need_reclaim(gfp_t gfp_mask)
3836  {
3837  	/* no reclaim without waiting on it */
3838  	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3839  		return false;
3840  
3841  	/* this guy won't enter reclaim */
3842  	if (current->flags & PF_MEMALLOC)
3843  		return false;
3844  
3845  	if (gfp_mask & __GFP_NOLOCKDEP)
3846  		return false;
3847  
3848  	return true;
3849  }
3850  
__fs_reclaim_acquire(unsigned long ip)3851  void __fs_reclaim_acquire(unsigned long ip)
3852  {
3853  	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3854  }
3855  
__fs_reclaim_release(unsigned long ip)3856  void __fs_reclaim_release(unsigned long ip)
3857  {
3858  	lock_release(&__fs_reclaim_map, ip);
3859  }
3860  
fs_reclaim_acquire(gfp_t gfp_mask)3861  void fs_reclaim_acquire(gfp_t gfp_mask)
3862  {
3863  	gfp_mask = current_gfp_context(gfp_mask);
3864  
3865  	if (__need_reclaim(gfp_mask)) {
3866  		if (gfp_mask & __GFP_FS)
3867  			__fs_reclaim_acquire(_RET_IP_);
3868  
3869  #ifdef CONFIG_MMU_NOTIFIER
3870  		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3871  		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3872  #endif
3873  
3874  	}
3875  }
3876  EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3877  
fs_reclaim_release(gfp_t gfp_mask)3878  void fs_reclaim_release(gfp_t gfp_mask)
3879  {
3880  	gfp_mask = current_gfp_context(gfp_mask);
3881  
3882  	if (__need_reclaim(gfp_mask)) {
3883  		if (gfp_mask & __GFP_FS)
3884  			__fs_reclaim_release(_RET_IP_);
3885  	}
3886  }
3887  EXPORT_SYMBOL_GPL(fs_reclaim_release);
3888  #endif
3889  
3890  /*
3891   * Zonelists may change due to hotplug during allocation. Detect when zonelists
3892   * have been rebuilt so allocation retries. Reader side does not lock and
3893   * retries the allocation if zonelist changes. Writer side is protected by the
3894   * embedded spin_lock.
3895   */
3896  static DEFINE_SEQLOCK(zonelist_update_seq);
3897  
zonelist_iter_begin(void)3898  static unsigned int zonelist_iter_begin(void)
3899  {
3900  	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3901  		return read_seqbegin(&zonelist_update_seq);
3902  
3903  	return 0;
3904  }
3905  
check_retry_zonelist(unsigned int seq)3906  static unsigned int check_retry_zonelist(unsigned int seq)
3907  {
3908  	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3909  		return read_seqretry(&zonelist_update_seq, seq);
3910  
3911  	return seq;
3912  }
3913  
3914  /* Perform direct synchronous page reclaim */
3915  static unsigned long
__perform_reclaim(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac)3916  __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3917  					const struct alloc_context *ac)
3918  {
3919  	unsigned int noreclaim_flag;
3920  	unsigned long progress;
3921  
3922  	cond_resched();
3923  
3924  	/* We now go into synchronous reclaim */
3925  	cpuset_memory_pressure_bump();
3926  	fs_reclaim_acquire(gfp_mask);
3927  	noreclaim_flag = memalloc_noreclaim_save();
3928  
3929  	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3930  								ac->nodemask);
3931  
3932  	memalloc_noreclaim_restore(noreclaim_flag);
3933  	fs_reclaim_release(gfp_mask);
3934  
3935  	cond_resched();
3936  
3937  	return progress;
3938  }
3939  
3940  /* The really slow allocator path where we enter direct reclaim */
3941  static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,unsigned long * did_some_progress)3942  __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3943  		unsigned int alloc_flags, const struct alloc_context *ac,
3944  		unsigned long *did_some_progress)
3945  {
3946  	struct page *page = NULL;
3947  	unsigned long pflags;
3948  	bool drained = false;
3949  
3950  	psi_memstall_enter(&pflags);
3951  	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3952  	if (unlikely(!(*did_some_progress)))
3953  		goto out;
3954  
3955  retry:
3956  	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3957  
3958  	/*
3959  	 * If an allocation failed after direct reclaim, it could be because
3960  	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3961  	 * Shrink them and try again
3962  	 */
3963  	if (!page && !drained) {
3964  		unreserve_highatomic_pageblock(ac, false);
3965  		drain_all_pages(NULL);
3966  		drained = true;
3967  		goto retry;
3968  	}
3969  out:
3970  	psi_memstall_leave(&pflags);
3971  
3972  	return page;
3973  }
3974  
wake_all_kswapds(unsigned int order,gfp_t gfp_mask,const struct alloc_context * ac)3975  static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3976  			     const struct alloc_context *ac)
3977  {
3978  	struct zoneref *z;
3979  	struct zone *zone;
3980  	pg_data_t *last_pgdat = NULL;
3981  	enum zone_type highest_zoneidx = ac->highest_zoneidx;
3982  
3983  	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
3984  					ac->nodemask) {
3985  		if (!managed_zone(zone))
3986  			continue;
3987  		if (last_pgdat != zone->zone_pgdat) {
3988  			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
3989  			last_pgdat = zone->zone_pgdat;
3990  		}
3991  	}
3992  }
3993  
3994  static inline unsigned int
gfp_to_alloc_flags(gfp_t gfp_mask,unsigned int order)3995  gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
3996  {
3997  	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3998  
3999  	/*
4000  	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
4001  	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4002  	 * to save two branches.
4003  	 */
4004  	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
4005  	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4006  
4007  	/*
4008  	 * The caller may dip into page reserves a bit more if the caller
4009  	 * cannot run direct reclaim, or if the caller has realtime scheduling
4010  	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4011  	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
4012  	 */
4013  	alloc_flags |= (__force int)
4014  		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4015  
4016  	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
4017  		/*
4018  		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4019  		 * if it can't schedule.
4020  		 */
4021  		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
4022  			alloc_flags |= ALLOC_NON_BLOCK;
4023  
4024  			if (order > 0)
4025  				alloc_flags |= ALLOC_HIGHATOMIC;
4026  		}
4027  
4028  		/*
4029  		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
4030  		 * GFP_ATOMIC) rather than fail, see the comment for
4031  		 * cpuset_node_allowed().
4032  		 */
4033  		if (alloc_flags & ALLOC_MIN_RESERVE)
4034  			alloc_flags &= ~ALLOC_CPUSET;
4035  	} else if (unlikely(rt_or_dl_task(current)) && in_task())
4036  		alloc_flags |= ALLOC_MIN_RESERVE;
4037  
4038  	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4039  
4040  	return alloc_flags;
4041  }
4042  
oom_reserves_allowed(struct task_struct * tsk)4043  static bool oom_reserves_allowed(struct task_struct *tsk)
4044  {
4045  	if (!tsk_is_oom_victim(tsk))
4046  		return false;
4047  
4048  	/*
4049  	 * !MMU doesn't have oom reaper so give access to memory reserves
4050  	 * only to the thread with TIF_MEMDIE set
4051  	 */
4052  	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4053  		return false;
4054  
4055  	return true;
4056  }
4057  
4058  /*
4059   * Distinguish requests which really need access to full memory
4060   * reserves from oom victims which can live with a portion of it
4061   */
__gfp_pfmemalloc_flags(gfp_t gfp_mask)4062  static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4063  {
4064  	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4065  		return 0;
4066  	if (gfp_mask & __GFP_MEMALLOC)
4067  		return ALLOC_NO_WATERMARKS;
4068  	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4069  		return ALLOC_NO_WATERMARKS;
4070  	if (!in_interrupt()) {
4071  		if (current->flags & PF_MEMALLOC)
4072  			return ALLOC_NO_WATERMARKS;
4073  		else if (oom_reserves_allowed(current))
4074  			return ALLOC_OOM;
4075  	}
4076  
4077  	return 0;
4078  }
4079  
gfp_pfmemalloc_allowed(gfp_t gfp_mask)4080  bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4081  {
4082  	return !!__gfp_pfmemalloc_flags(gfp_mask);
4083  }
4084  
4085  /*
4086   * Checks whether it makes sense to retry the reclaim to make a forward progress
4087   * for the given allocation request.
4088   *
4089   * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4090   * without success, or when we couldn't even meet the watermark if we
4091   * reclaimed all remaining pages on the LRU lists.
4092   *
4093   * Returns true if a retry is viable or false to enter the oom path.
4094   */
4095  static inline bool
should_reclaim_retry(gfp_t gfp_mask,unsigned order,struct alloc_context * ac,int alloc_flags,bool did_some_progress,int * no_progress_loops)4096  should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4097  		     struct alloc_context *ac, int alloc_flags,
4098  		     bool did_some_progress, int *no_progress_loops)
4099  {
4100  	struct zone *zone;
4101  	struct zoneref *z;
4102  	bool ret = false;
4103  
4104  	/*
4105  	 * Costly allocations might have made a progress but this doesn't mean
4106  	 * their order will become available due to high fragmentation so
4107  	 * always increment the no progress counter for them
4108  	 */
4109  	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4110  		*no_progress_loops = 0;
4111  	else
4112  		(*no_progress_loops)++;
4113  
4114  	if (*no_progress_loops > MAX_RECLAIM_RETRIES)
4115  		goto out;
4116  
4117  
4118  	/*
4119  	 * Keep reclaiming pages while there is a chance this will lead
4120  	 * somewhere.  If none of the target zones can satisfy our allocation
4121  	 * request even if all reclaimable pages are considered then we are
4122  	 * screwed and have to go OOM.
4123  	 */
4124  	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4125  				ac->highest_zoneidx, ac->nodemask) {
4126  		unsigned long available;
4127  		unsigned long reclaimable;
4128  		unsigned long min_wmark = min_wmark_pages(zone);
4129  		bool wmark;
4130  
4131  		if (cpusets_enabled() &&
4132  			(alloc_flags & ALLOC_CPUSET) &&
4133  			!__cpuset_zone_allowed(zone, gfp_mask))
4134  				continue;
4135  
4136  		available = reclaimable = zone_reclaimable_pages(zone);
4137  		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4138  
4139  		/*
4140  		 * Would the allocation succeed if we reclaimed all
4141  		 * reclaimable pages?
4142  		 */
4143  		wmark = __zone_watermark_ok(zone, order, min_wmark,
4144  				ac->highest_zoneidx, alloc_flags, available);
4145  		trace_reclaim_retry_zone(z, order, reclaimable,
4146  				available, min_wmark, *no_progress_loops, wmark);
4147  		if (wmark) {
4148  			ret = true;
4149  			break;
4150  		}
4151  	}
4152  
4153  	/*
4154  	 * Memory allocation/reclaim might be called from a WQ context and the
4155  	 * current implementation of the WQ concurrency control doesn't
4156  	 * recognize that a particular WQ is congested if the worker thread is
4157  	 * looping without ever sleeping. Therefore we have to do a short sleep
4158  	 * here rather than calling cond_resched().
4159  	 */
4160  	if (current->flags & PF_WQ_WORKER)
4161  		schedule_timeout_uninterruptible(1);
4162  	else
4163  		cond_resched();
4164  out:
4165  	/* Before OOM, exhaust highatomic_reserve */
4166  	if (!ret)
4167  		return unreserve_highatomic_pageblock(ac, true);
4168  
4169  	return ret;
4170  }
4171  
4172  static inline bool
check_retry_cpuset(int cpuset_mems_cookie,struct alloc_context * ac)4173  check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4174  {
4175  	/*
4176  	 * It's possible that cpuset's mems_allowed and the nodemask from
4177  	 * mempolicy don't intersect. This should be normally dealt with by
4178  	 * policy_nodemask(), but it's possible to race with cpuset update in
4179  	 * such a way the check therein was true, and then it became false
4180  	 * before we got our cpuset_mems_cookie here.
4181  	 * This assumes that for all allocations, ac->nodemask can come only
4182  	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4183  	 * when it does not intersect with the cpuset restrictions) or the
4184  	 * caller can deal with a violated nodemask.
4185  	 */
4186  	if (cpusets_enabled() && ac->nodemask &&
4187  			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4188  		ac->nodemask = NULL;
4189  		return true;
4190  	}
4191  
4192  	/*
4193  	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4194  	 * possible to race with parallel threads in such a way that our
4195  	 * allocation can fail while the mask is being updated. If we are about
4196  	 * to fail, check if the cpuset changed during allocation and if so,
4197  	 * retry.
4198  	 */
4199  	if (read_mems_allowed_retry(cpuset_mems_cookie))
4200  		return true;
4201  
4202  	return false;
4203  }
4204  
4205  static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask,unsigned int order,struct alloc_context * ac)4206  __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4207  						struct alloc_context *ac)
4208  {
4209  	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4210  	bool can_compact = gfp_compaction_allowed(gfp_mask);
4211  	bool nofail = gfp_mask & __GFP_NOFAIL;
4212  	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4213  	struct page *page = NULL;
4214  	unsigned int alloc_flags;
4215  	unsigned long did_some_progress;
4216  	enum compact_priority compact_priority;
4217  	enum compact_result compact_result;
4218  	int compaction_retries;
4219  	int no_progress_loops;
4220  	unsigned int cpuset_mems_cookie;
4221  	unsigned int zonelist_iter_cookie;
4222  	int reserve_flags;
4223  
4224  	if (unlikely(nofail)) {
4225  		/*
4226  		 * We most definitely don't want callers attempting to
4227  		 * allocate greater than order-1 page units with __GFP_NOFAIL.
4228  		 */
4229  		WARN_ON_ONCE(order > 1);
4230  		/*
4231  		 * Also we don't support __GFP_NOFAIL without __GFP_DIRECT_RECLAIM,
4232  		 * otherwise, we may result in lockup.
4233  		 */
4234  		WARN_ON_ONCE(!can_direct_reclaim);
4235  		/*
4236  		 * PF_MEMALLOC request from this context is rather bizarre
4237  		 * because we cannot reclaim anything and only can loop waiting
4238  		 * for somebody to do a work for us.
4239  		 */
4240  		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4241  	}
4242  
4243  restart:
4244  	compaction_retries = 0;
4245  	no_progress_loops = 0;
4246  	compact_result = COMPACT_SKIPPED;
4247  	compact_priority = DEF_COMPACT_PRIORITY;
4248  	cpuset_mems_cookie = read_mems_allowed_begin();
4249  	zonelist_iter_cookie = zonelist_iter_begin();
4250  
4251  	/*
4252  	 * The fast path uses conservative alloc_flags to succeed only until
4253  	 * kswapd needs to be woken up, and to avoid the cost of setting up
4254  	 * alloc_flags precisely. So we do that now.
4255  	 */
4256  	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
4257  
4258  	/*
4259  	 * We need to recalculate the starting point for the zonelist iterator
4260  	 * because we might have used different nodemask in the fast path, or
4261  	 * there was a cpuset modification and we are retrying - otherwise we
4262  	 * could end up iterating over non-eligible zones endlessly.
4263  	 */
4264  	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4265  					ac->highest_zoneidx, ac->nodemask);
4266  	if (!zonelist_zone(ac->preferred_zoneref))
4267  		goto nopage;
4268  
4269  	/*
4270  	 * Check for insane configurations where the cpuset doesn't contain
4271  	 * any suitable zone to satisfy the request - e.g. non-movable
4272  	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4273  	 */
4274  	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4275  		struct zoneref *z = first_zones_zonelist(ac->zonelist,
4276  					ac->highest_zoneidx,
4277  					&cpuset_current_mems_allowed);
4278  		if (!zonelist_zone(z))
4279  			goto nopage;
4280  	}
4281  
4282  	if (alloc_flags & ALLOC_KSWAPD)
4283  		wake_all_kswapds(order, gfp_mask, ac);
4284  
4285  	/*
4286  	 * The adjusted alloc_flags might result in immediate success, so try
4287  	 * that first
4288  	 */
4289  	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4290  	if (page)
4291  		goto got_pg;
4292  
4293  	/*
4294  	 * For costly allocations, try direct compaction first, as it's likely
4295  	 * that we have enough base pages and don't need to reclaim. For non-
4296  	 * movable high-order allocations, do that as well, as compaction will
4297  	 * try prevent permanent fragmentation by migrating from blocks of the
4298  	 * same migratetype.
4299  	 * Don't try this for allocations that are allowed to ignore
4300  	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4301  	 */
4302  	if (can_direct_reclaim && can_compact &&
4303  			(costly_order ||
4304  			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4305  			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4306  		page = __alloc_pages_direct_compact(gfp_mask, order,
4307  						alloc_flags, ac,
4308  						INIT_COMPACT_PRIORITY,
4309  						&compact_result);
4310  		if (page)
4311  			goto got_pg;
4312  
4313  		/*
4314  		 * Checks for costly allocations with __GFP_NORETRY, which
4315  		 * includes some THP page fault allocations
4316  		 */
4317  		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4318  			/*
4319  			 * If allocating entire pageblock(s) and compaction
4320  			 * failed because all zones are below low watermarks
4321  			 * or is prohibited because it recently failed at this
4322  			 * order, fail immediately unless the allocator has
4323  			 * requested compaction and reclaim retry.
4324  			 *
4325  			 * Reclaim is
4326  			 *  - potentially very expensive because zones are far
4327  			 *    below their low watermarks or this is part of very
4328  			 *    bursty high order allocations,
4329  			 *  - not guaranteed to help because isolate_freepages()
4330  			 *    may not iterate over freed pages as part of its
4331  			 *    linear scan, and
4332  			 *  - unlikely to make entire pageblocks free on its
4333  			 *    own.
4334  			 */
4335  			if (compact_result == COMPACT_SKIPPED ||
4336  			    compact_result == COMPACT_DEFERRED)
4337  				goto nopage;
4338  
4339  			/*
4340  			 * Looks like reclaim/compaction is worth trying, but
4341  			 * sync compaction could be very expensive, so keep
4342  			 * using async compaction.
4343  			 */
4344  			compact_priority = INIT_COMPACT_PRIORITY;
4345  		}
4346  	}
4347  
4348  retry:
4349  	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4350  	if (alloc_flags & ALLOC_KSWAPD)
4351  		wake_all_kswapds(order, gfp_mask, ac);
4352  
4353  	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4354  	if (reserve_flags)
4355  		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4356  					  (alloc_flags & ALLOC_KSWAPD);
4357  
4358  	/*
4359  	 * Reset the nodemask and zonelist iterators if memory policies can be
4360  	 * ignored. These allocations are high priority and system rather than
4361  	 * user oriented.
4362  	 */
4363  	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4364  		ac->nodemask = NULL;
4365  		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4366  					ac->highest_zoneidx, ac->nodemask);
4367  	}
4368  
4369  	/* Attempt with potentially adjusted zonelist and alloc_flags */
4370  	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4371  	if (page)
4372  		goto got_pg;
4373  
4374  	/* Caller is not willing to reclaim, we can't balance anything */
4375  	if (!can_direct_reclaim)
4376  		goto nopage;
4377  
4378  	/* Avoid recursion of direct reclaim */
4379  	if (current->flags & PF_MEMALLOC)
4380  		goto nopage;
4381  
4382  	/* Try direct reclaim and then allocating */
4383  	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4384  							&did_some_progress);
4385  	if (page)
4386  		goto got_pg;
4387  
4388  	/* Try direct compaction and then allocating */
4389  	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4390  					compact_priority, &compact_result);
4391  	if (page)
4392  		goto got_pg;
4393  
4394  	/* Do not loop if specifically requested */
4395  	if (gfp_mask & __GFP_NORETRY)
4396  		goto nopage;
4397  
4398  	/*
4399  	 * Do not retry costly high order allocations unless they are
4400  	 * __GFP_RETRY_MAYFAIL and we can compact
4401  	 */
4402  	if (costly_order && (!can_compact ||
4403  			     !(gfp_mask & __GFP_RETRY_MAYFAIL)))
4404  		goto nopage;
4405  
4406  	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4407  				 did_some_progress > 0, &no_progress_loops))
4408  		goto retry;
4409  
4410  	/*
4411  	 * It doesn't make any sense to retry for the compaction if the order-0
4412  	 * reclaim is not able to make any progress because the current
4413  	 * implementation of the compaction depends on the sufficient amount
4414  	 * of free memory (see __compaction_suitable)
4415  	 */
4416  	if (did_some_progress > 0 && can_compact &&
4417  			should_compact_retry(ac, order, alloc_flags,
4418  				compact_result, &compact_priority,
4419  				&compaction_retries))
4420  		goto retry;
4421  
4422  
4423  	/*
4424  	 * Deal with possible cpuset update races or zonelist updates to avoid
4425  	 * a unnecessary OOM kill.
4426  	 */
4427  	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4428  	    check_retry_zonelist(zonelist_iter_cookie))
4429  		goto restart;
4430  
4431  	/* Reclaim has failed us, start killing things */
4432  	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4433  	if (page)
4434  		goto got_pg;
4435  
4436  	/* Avoid allocations with no watermarks from looping endlessly */
4437  	if (tsk_is_oom_victim(current) &&
4438  	    (alloc_flags & ALLOC_OOM ||
4439  	     (gfp_mask & __GFP_NOMEMALLOC)))
4440  		goto nopage;
4441  
4442  	/* Retry as long as the OOM killer is making progress */
4443  	if (did_some_progress) {
4444  		no_progress_loops = 0;
4445  		goto retry;
4446  	}
4447  
4448  nopage:
4449  	/*
4450  	 * Deal with possible cpuset update races or zonelist updates to avoid
4451  	 * a unnecessary OOM kill.
4452  	 */
4453  	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4454  	    check_retry_zonelist(zonelist_iter_cookie))
4455  		goto restart;
4456  
4457  	/*
4458  	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4459  	 * we always retry
4460  	 */
4461  	if (unlikely(nofail)) {
4462  		/*
4463  		 * Lacking direct_reclaim we can't do anything to reclaim memory,
4464  		 * we disregard these unreasonable nofail requests and still
4465  		 * return NULL
4466  		 */
4467  		if (!can_direct_reclaim)
4468  			goto fail;
4469  
4470  		/*
4471  		 * Help non-failing allocations by giving some access to memory
4472  		 * reserves normally used for high priority non-blocking
4473  		 * allocations but do not use ALLOC_NO_WATERMARKS because this
4474  		 * could deplete whole memory reserves which would just make
4475  		 * the situation worse.
4476  		 */
4477  		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4478  		if (page)
4479  			goto got_pg;
4480  
4481  		cond_resched();
4482  		goto retry;
4483  	}
4484  fail:
4485  	warn_alloc(gfp_mask, ac->nodemask,
4486  			"page allocation failure: order:%u", order);
4487  got_pg:
4488  	return page;
4489  }
4490  
prepare_alloc_pages(gfp_t gfp_mask,unsigned int order,int preferred_nid,nodemask_t * nodemask,struct alloc_context * ac,gfp_t * alloc_gfp,unsigned int * alloc_flags)4491  static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4492  		int preferred_nid, nodemask_t *nodemask,
4493  		struct alloc_context *ac, gfp_t *alloc_gfp,
4494  		unsigned int *alloc_flags)
4495  {
4496  	ac->highest_zoneidx = gfp_zone(gfp_mask);
4497  	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4498  	ac->nodemask = nodemask;
4499  	ac->migratetype = gfp_migratetype(gfp_mask);
4500  
4501  	if (cpusets_enabled()) {
4502  		*alloc_gfp |= __GFP_HARDWALL;
4503  		/*
4504  		 * When we are in the interrupt context, it is irrelevant
4505  		 * to the current task context. It means that any node ok.
4506  		 */
4507  		if (in_task() && !ac->nodemask)
4508  			ac->nodemask = &cpuset_current_mems_allowed;
4509  		else
4510  			*alloc_flags |= ALLOC_CPUSET;
4511  	}
4512  
4513  	might_alloc(gfp_mask);
4514  
4515  	if (should_fail_alloc_page(gfp_mask, order))
4516  		return false;
4517  
4518  	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4519  
4520  	/* Dirty zone balancing only done in the fast path */
4521  	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4522  
4523  	/*
4524  	 * The preferred zone is used for statistics but crucially it is
4525  	 * also used as the starting point for the zonelist iterator. It
4526  	 * may get reset for allocations that ignore memory policies.
4527  	 */
4528  	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4529  					ac->highest_zoneidx, ac->nodemask);
4530  
4531  	return true;
4532  }
4533  
4534  /*
4535   * __alloc_pages_bulk - Allocate a number of order-0 pages to an array
4536   * @gfp: GFP flags for the allocation
4537   * @preferred_nid: The preferred NUMA node ID to allocate from
4538   * @nodemask: Set of nodes to allocate from, may be NULL
4539   * @nr_pages: The number of pages desired in the array
4540   * @page_array: Array to store the pages
4541   *
4542   * This is a batched version of the page allocator that attempts to
4543   * allocate nr_pages quickly. Pages are added to the page_array.
4544   *
4545   * Note that only NULL elements are populated with pages and nr_pages
4546   * is the maximum number of pages that will be stored in the array.
4547   *
4548   * Returns the number of pages in the array.
4549   */
alloc_pages_bulk_noprof(gfp_t gfp,int preferred_nid,nodemask_t * nodemask,int nr_pages,struct page ** page_array)4550  unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid,
4551  			nodemask_t *nodemask, int nr_pages,
4552  			struct page **page_array)
4553  {
4554  	struct page *page;
4555  	unsigned long __maybe_unused UP_flags;
4556  	struct zone *zone;
4557  	struct zoneref *z;
4558  	struct per_cpu_pages *pcp;
4559  	struct list_head *pcp_list;
4560  	struct alloc_context ac;
4561  	gfp_t alloc_gfp;
4562  	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4563  	int nr_populated = 0, nr_account = 0;
4564  
4565  	/*
4566  	 * Skip populated array elements to determine if any pages need
4567  	 * to be allocated before disabling IRQs.
4568  	 */
4569  	while (nr_populated < nr_pages && page_array[nr_populated])
4570  		nr_populated++;
4571  
4572  	/* No pages requested? */
4573  	if (unlikely(nr_pages <= 0))
4574  		goto out;
4575  
4576  	/* Already populated array? */
4577  	if (unlikely(nr_pages - nr_populated == 0))
4578  		goto out;
4579  
4580  	/* Bulk allocator does not support memcg accounting. */
4581  	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4582  		goto failed;
4583  
4584  	/* Use the single page allocator for one page. */
4585  	if (nr_pages - nr_populated == 1)
4586  		goto failed;
4587  
4588  #ifdef CONFIG_PAGE_OWNER
4589  	/*
4590  	 * PAGE_OWNER may recurse into the allocator to allocate space to
4591  	 * save the stack with pagesets.lock held. Releasing/reacquiring
4592  	 * removes much of the performance benefit of bulk allocation so
4593  	 * force the caller to allocate one page at a time as it'll have
4594  	 * similar performance to added complexity to the bulk allocator.
4595  	 */
4596  	if (static_branch_unlikely(&page_owner_inited))
4597  		goto failed;
4598  #endif
4599  
4600  	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4601  	gfp &= gfp_allowed_mask;
4602  	alloc_gfp = gfp;
4603  	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4604  		goto out;
4605  	gfp = alloc_gfp;
4606  
4607  	/* Find an allowed local zone that meets the low watermark. */
4608  	z = ac.preferred_zoneref;
4609  	for_next_zone_zonelist_nodemask(zone, z, ac.highest_zoneidx, ac.nodemask) {
4610  		unsigned long mark;
4611  
4612  		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4613  		    !__cpuset_zone_allowed(zone, gfp)) {
4614  			continue;
4615  		}
4616  
4617  		if (nr_online_nodes > 1 && zone != zonelist_zone(ac.preferred_zoneref) &&
4618  		    zone_to_nid(zone) != zonelist_node_idx(ac.preferred_zoneref)) {
4619  			goto failed;
4620  		}
4621  
4622  		cond_accept_memory(zone, 0);
4623  retry_this_zone:
4624  		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4625  		if (zone_watermark_fast(zone, 0,  mark,
4626  				zonelist_zone_idx(ac.preferred_zoneref),
4627  				alloc_flags, gfp)) {
4628  			break;
4629  		}
4630  
4631  		if (cond_accept_memory(zone, 0))
4632  			goto retry_this_zone;
4633  
4634  		/* Try again if zone has deferred pages */
4635  		if (deferred_pages_enabled()) {
4636  			if (_deferred_grow_zone(zone, 0))
4637  				goto retry_this_zone;
4638  		}
4639  	}
4640  
4641  	/*
4642  	 * If there are no allowed local zones that meets the watermarks then
4643  	 * try to allocate a single page and reclaim if necessary.
4644  	 */
4645  	if (unlikely(!zone))
4646  		goto failed;
4647  
4648  	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4649  	pcp_trylock_prepare(UP_flags);
4650  	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4651  	if (!pcp)
4652  		goto failed_irq;
4653  
4654  	/* Attempt the batch allocation */
4655  	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4656  	while (nr_populated < nr_pages) {
4657  
4658  		/* Skip existing pages */
4659  		if (page_array[nr_populated]) {
4660  			nr_populated++;
4661  			continue;
4662  		}
4663  
4664  		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4665  								pcp, pcp_list);
4666  		if (unlikely(!page)) {
4667  			/* Try and allocate at least one page */
4668  			if (!nr_account) {
4669  				pcp_spin_unlock(pcp);
4670  				goto failed_irq;
4671  			}
4672  			break;
4673  		}
4674  		nr_account++;
4675  
4676  		prep_new_page(page, 0, gfp, 0);
4677  		set_page_refcounted(page);
4678  		page_array[nr_populated++] = page;
4679  	}
4680  
4681  	pcp_spin_unlock(pcp);
4682  	pcp_trylock_finish(UP_flags);
4683  
4684  	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4685  	zone_statistics(zonelist_zone(ac.preferred_zoneref), zone, nr_account);
4686  
4687  out:
4688  	return nr_populated;
4689  
4690  failed_irq:
4691  	pcp_trylock_finish(UP_flags);
4692  
4693  failed:
4694  	page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask);
4695  	if (page)
4696  		page_array[nr_populated++] = page;
4697  	goto out;
4698  }
4699  EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof);
4700  
4701  /*
4702   * This is the 'heart' of the zoned buddy allocator.
4703   */
__alloc_frozen_pages_noprof(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)4704  struct page *__alloc_frozen_pages_noprof(gfp_t gfp, unsigned int order,
4705  		int preferred_nid, nodemask_t *nodemask)
4706  {
4707  	struct page *page;
4708  	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4709  	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4710  	struct alloc_context ac = { };
4711  
4712  	/*
4713  	 * There are several places where we assume that the order value is sane
4714  	 * so bail out early if the request is out of bound.
4715  	 */
4716  	if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp))
4717  		return NULL;
4718  
4719  	gfp &= gfp_allowed_mask;
4720  	/*
4721  	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4722  	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4723  	 * from a particular context which has been marked by
4724  	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4725  	 * movable zones are not used during allocation.
4726  	 */
4727  	gfp = current_gfp_context(gfp);
4728  	alloc_gfp = gfp;
4729  	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4730  			&alloc_gfp, &alloc_flags))
4731  		return NULL;
4732  
4733  	/*
4734  	 * Forbid the first pass from falling back to types that fragment
4735  	 * memory until all local zones are considered.
4736  	 */
4737  	alloc_flags |= alloc_flags_nofragment(zonelist_zone(ac.preferred_zoneref), gfp);
4738  
4739  	/* First allocation attempt */
4740  	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4741  	if (likely(page))
4742  		goto out;
4743  
4744  	alloc_gfp = gfp;
4745  	ac.spread_dirty_pages = false;
4746  
4747  	/*
4748  	 * Restore the original nodemask if it was potentially replaced with
4749  	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4750  	 */
4751  	ac.nodemask = nodemask;
4752  
4753  	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4754  
4755  out:
4756  	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4757  	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4758  		free_frozen_pages(page, order);
4759  		page = NULL;
4760  	}
4761  
4762  	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4763  	kmsan_alloc_page(page, order, alloc_gfp);
4764  
4765  	return page;
4766  }
4767  EXPORT_SYMBOL(__alloc_frozen_pages_noprof);
4768  
__alloc_pages_noprof(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)4769  struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order,
4770  		int preferred_nid, nodemask_t *nodemask)
4771  {
4772  	struct page *page;
4773  
4774  	page = __alloc_frozen_pages_noprof(gfp, order, preferred_nid, nodemask);
4775  	if (page)
4776  		set_page_refcounted(page);
4777  	return page;
4778  }
4779  EXPORT_SYMBOL(__alloc_pages_noprof);
4780  
__folio_alloc_noprof(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)4781  struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid,
4782  		nodemask_t *nodemask)
4783  {
4784  	struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order,
4785  					preferred_nid, nodemask);
4786  	return page_rmappable_folio(page);
4787  }
4788  EXPORT_SYMBOL(__folio_alloc_noprof);
4789  
4790  /*
4791   * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4792   * address cannot represent highmem pages. Use alloc_pages and then kmap if
4793   * you need to access high mem.
4794   */
get_free_pages_noprof(gfp_t gfp_mask,unsigned int order)4795  unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order)
4796  {
4797  	struct page *page;
4798  
4799  	page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order);
4800  	if (!page)
4801  		return 0;
4802  	return (unsigned long) page_address(page);
4803  }
4804  EXPORT_SYMBOL(get_free_pages_noprof);
4805  
get_zeroed_page_noprof(gfp_t gfp_mask)4806  unsigned long get_zeroed_page_noprof(gfp_t gfp_mask)
4807  {
4808  	return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0);
4809  }
4810  EXPORT_SYMBOL(get_zeroed_page_noprof);
4811  
4812  /**
4813   * __free_pages - Free pages allocated with alloc_pages().
4814   * @page: The page pointer returned from alloc_pages().
4815   * @order: The order of the allocation.
4816   *
4817   * This function can free multi-page allocations that are not compound
4818   * pages.  It does not check that the @order passed in matches that of
4819   * the allocation, so it is easy to leak memory.  Freeing more memory
4820   * than was allocated will probably emit a warning.
4821   *
4822   * If the last reference to this page is speculative, it will be released
4823   * by put_page() which only frees the first page of a non-compound
4824   * allocation.  To prevent the remaining pages from being leaked, we free
4825   * the subsequent pages here.  If you want to use the page's reference
4826   * count to decide when to free the allocation, you should allocate a
4827   * compound page, and use put_page() instead of __free_pages().
4828   *
4829   * Context: May be called in interrupt context or while holding a normal
4830   * spinlock, but not in NMI context or while holding a raw spinlock.
4831   */
__free_pages(struct page * page,unsigned int order)4832  void __free_pages(struct page *page, unsigned int order)
4833  {
4834  	/* get PageHead before we drop reference */
4835  	int head = PageHead(page);
4836  	struct alloc_tag *tag = pgalloc_tag_get(page);
4837  
4838  	if (put_page_testzero(page))
4839  		free_frozen_pages(page, order);
4840  	else if (!head) {
4841  		pgalloc_tag_sub_pages(tag, (1 << order) - 1);
4842  		while (order-- > 0)
4843  			free_frozen_pages(page + (1 << order), order);
4844  	}
4845  }
4846  EXPORT_SYMBOL(__free_pages);
4847  
free_pages(unsigned long addr,unsigned int order)4848  void free_pages(unsigned long addr, unsigned int order)
4849  {
4850  	if (addr != 0) {
4851  		VM_BUG_ON(!virt_addr_valid((void *)addr));
4852  		__free_pages(virt_to_page((void *)addr), order);
4853  	}
4854  }
4855  
4856  EXPORT_SYMBOL(free_pages);
4857  
make_alloc_exact(unsigned long addr,unsigned int order,size_t size)4858  static void *make_alloc_exact(unsigned long addr, unsigned int order,
4859  		size_t size)
4860  {
4861  	if (addr) {
4862  		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4863  		struct page *page = virt_to_page((void *)addr);
4864  		struct page *last = page + nr;
4865  
4866  		split_page_owner(page, order, 0);
4867  		pgalloc_tag_split(page_folio(page), order, 0);
4868  		split_page_memcg(page, order, 0);
4869  		while (page < --last)
4870  			set_page_refcounted(last);
4871  
4872  		last = page + (1UL << order);
4873  		for (page += nr; page < last; page++)
4874  			__free_pages_ok(page, 0, FPI_TO_TAIL);
4875  	}
4876  	return (void *)addr;
4877  }
4878  
4879  /**
4880   * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4881   * @size: the number of bytes to allocate
4882   * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4883   *
4884   * This function is similar to alloc_pages(), except that it allocates the
4885   * minimum number of pages to satisfy the request.  alloc_pages() can only
4886   * allocate memory in power-of-two pages.
4887   *
4888   * This function is also limited by MAX_PAGE_ORDER.
4889   *
4890   * Memory allocated by this function must be released by free_pages_exact().
4891   *
4892   * Return: pointer to the allocated area or %NULL in case of error.
4893   */
alloc_pages_exact_noprof(size_t size,gfp_t gfp_mask)4894  void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask)
4895  {
4896  	unsigned int order = get_order(size);
4897  	unsigned long addr;
4898  
4899  	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4900  		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4901  
4902  	addr = get_free_pages_noprof(gfp_mask, order);
4903  	return make_alloc_exact(addr, order, size);
4904  }
4905  EXPORT_SYMBOL(alloc_pages_exact_noprof);
4906  
4907  /**
4908   * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4909   *			   pages on a node.
4910   * @nid: the preferred node ID where memory should be allocated
4911   * @size: the number of bytes to allocate
4912   * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4913   *
4914   * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4915   * back.
4916   *
4917   * Return: pointer to the allocated area or %NULL in case of error.
4918   */
alloc_pages_exact_nid_noprof(int nid,size_t size,gfp_t gfp_mask)4919  void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask)
4920  {
4921  	unsigned int order = get_order(size);
4922  	struct page *p;
4923  
4924  	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4925  		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4926  
4927  	p = alloc_pages_node_noprof(nid, gfp_mask, order);
4928  	if (!p)
4929  		return NULL;
4930  	return make_alloc_exact((unsigned long)page_address(p), order, size);
4931  }
4932  
4933  /**
4934   * free_pages_exact - release memory allocated via alloc_pages_exact()
4935   * @virt: the value returned by alloc_pages_exact.
4936   * @size: size of allocation, same value as passed to alloc_pages_exact().
4937   *
4938   * Release the memory allocated by a previous call to alloc_pages_exact.
4939   */
free_pages_exact(void * virt,size_t size)4940  void free_pages_exact(void *virt, size_t size)
4941  {
4942  	unsigned long addr = (unsigned long)virt;
4943  	unsigned long end = addr + PAGE_ALIGN(size);
4944  
4945  	while (addr < end) {
4946  		free_page(addr);
4947  		addr += PAGE_SIZE;
4948  	}
4949  }
4950  EXPORT_SYMBOL(free_pages_exact);
4951  
4952  /**
4953   * nr_free_zone_pages - count number of pages beyond high watermark
4954   * @offset: The zone index of the highest zone
4955   *
4956   * nr_free_zone_pages() counts the number of pages which are beyond the
4957   * high watermark within all zones at or below a given zone index.  For each
4958   * zone, the number of pages is calculated as:
4959   *
4960   *     nr_free_zone_pages = managed_pages - high_pages
4961   *
4962   * Return: number of pages beyond high watermark.
4963   */
nr_free_zone_pages(int offset)4964  static unsigned long nr_free_zone_pages(int offset)
4965  {
4966  	struct zoneref *z;
4967  	struct zone *zone;
4968  
4969  	/* Just pick one node, since fallback list is circular */
4970  	unsigned long sum = 0;
4971  
4972  	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4973  
4974  	for_each_zone_zonelist(zone, z, zonelist, offset) {
4975  		unsigned long size = zone_managed_pages(zone);
4976  		unsigned long high = high_wmark_pages(zone);
4977  		if (size > high)
4978  			sum += size - high;
4979  	}
4980  
4981  	return sum;
4982  }
4983  
4984  /**
4985   * nr_free_buffer_pages - count number of pages beyond high watermark
4986   *
4987   * nr_free_buffer_pages() counts the number of pages which are beyond the high
4988   * watermark within ZONE_DMA and ZONE_NORMAL.
4989   *
4990   * Return: number of pages beyond high watermark within ZONE_DMA and
4991   * ZONE_NORMAL.
4992   */
nr_free_buffer_pages(void)4993  unsigned long nr_free_buffer_pages(void)
4994  {
4995  	return nr_free_zone_pages(gfp_zone(GFP_USER));
4996  }
4997  EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4998  
zoneref_set_zone(struct zone * zone,struct zoneref * zoneref)4999  static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5000  {
5001  	zoneref->zone = zone;
5002  	zoneref->zone_idx = zone_idx(zone);
5003  }
5004  
5005  /*
5006   * Builds allocation fallback zone lists.
5007   *
5008   * Add all populated zones of a node to the zonelist.
5009   */
build_zonerefs_node(pg_data_t * pgdat,struct zoneref * zonerefs)5010  static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5011  {
5012  	struct zone *zone;
5013  	enum zone_type zone_type = MAX_NR_ZONES;
5014  	int nr_zones = 0;
5015  
5016  	do {
5017  		zone_type--;
5018  		zone = pgdat->node_zones + zone_type;
5019  		if (populated_zone(zone)) {
5020  			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5021  			check_highest_zone(zone_type);
5022  		}
5023  	} while (zone_type);
5024  
5025  	return nr_zones;
5026  }
5027  
5028  #ifdef CONFIG_NUMA
5029  
__parse_numa_zonelist_order(char * s)5030  static int __parse_numa_zonelist_order(char *s)
5031  {
5032  	/*
5033  	 * We used to support different zonelists modes but they turned
5034  	 * out to be just not useful. Let's keep the warning in place
5035  	 * if somebody still use the cmd line parameter so that we do
5036  	 * not fail it silently
5037  	 */
5038  	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5039  		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5040  		return -EINVAL;
5041  	}
5042  	return 0;
5043  }
5044  
5045  static char numa_zonelist_order[] = "Node";
5046  #define NUMA_ZONELIST_ORDER_LEN	16
5047  /*
5048   * sysctl handler for numa_zonelist_order
5049   */
numa_zonelist_order_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5050  static int numa_zonelist_order_handler(const struct ctl_table *table, int write,
5051  		void *buffer, size_t *length, loff_t *ppos)
5052  {
5053  	if (write)
5054  		return __parse_numa_zonelist_order(buffer);
5055  	return proc_dostring(table, write, buffer, length, ppos);
5056  }
5057  
5058  static int node_load[MAX_NUMNODES];
5059  
5060  /**
5061   * find_next_best_node - find the next node that should appear in a given node's fallback list
5062   * @node: node whose fallback list we're appending
5063   * @used_node_mask: nodemask_t of already used nodes
5064   *
5065   * We use a number of factors to determine which is the next node that should
5066   * appear on a given node's fallback list.  The node should not have appeared
5067   * already in @node's fallback list, and it should be the next closest node
5068   * according to the distance array (which contains arbitrary distance values
5069   * from each node to each node in the system), and should also prefer nodes
5070   * with no CPUs, since presumably they'll have very little allocation pressure
5071   * on them otherwise.
5072   *
5073   * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5074   */
find_next_best_node(int node,nodemask_t * used_node_mask)5075  int find_next_best_node(int node, nodemask_t *used_node_mask)
5076  {
5077  	int n, val;
5078  	int min_val = INT_MAX;
5079  	int best_node = NUMA_NO_NODE;
5080  
5081  	/*
5082  	 * Use the local node if we haven't already, but for memoryless local
5083  	 * node, we should skip it and fall back to other nodes.
5084  	 */
5085  	if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) {
5086  		node_set(node, *used_node_mask);
5087  		return node;
5088  	}
5089  
5090  	for_each_node_state(n, N_MEMORY) {
5091  
5092  		/* Don't want a node to appear more than once */
5093  		if (node_isset(n, *used_node_mask))
5094  			continue;
5095  
5096  		/* Use the distance array to find the distance */
5097  		val = node_distance(node, n);
5098  
5099  		/* Penalize nodes under us ("prefer the next node") */
5100  		val += (n < node);
5101  
5102  		/* Give preference to headless and unused nodes */
5103  		if (!cpumask_empty(cpumask_of_node(n)))
5104  			val += PENALTY_FOR_NODE_WITH_CPUS;
5105  
5106  		/* Slight preference for less loaded node */
5107  		val *= MAX_NUMNODES;
5108  		val += node_load[n];
5109  
5110  		if (val < min_val) {
5111  			min_val = val;
5112  			best_node = n;
5113  		}
5114  	}
5115  
5116  	if (best_node >= 0)
5117  		node_set(best_node, *used_node_mask);
5118  
5119  	return best_node;
5120  }
5121  
5122  
5123  /*
5124   * Build zonelists ordered by node and zones within node.
5125   * This results in maximum locality--normal zone overflows into local
5126   * DMA zone, if any--but risks exhausting DMA zone.
5127   */
build_zonelists_in_node_order(pg_data_t * pgdat,int * node_order,unsigned nr_nodes)5128  static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5129  		unsigned nr_nodes)
5130  {
5131  	struct zoneref *zonerefs;
5132  	int i;
5133  
5134  	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5135  
5136  	for (i = 0; i < nr_nodes; i++) {
5137  		int nr_zones;
5138  
5139  		pg_data_t *node = NODE_DATA(node_order[i]);
5140  
5141  		nr_zones = build_zonerefs_node(node, zonerefs);
5142  		zonerefs += nr_zones;
5143  	}
5144  	zonerefs->zone = NULL;
5145  	zonerefs->zone_idx = 0;
5146  }
5147  
5148  /*
5149   * Build __GFP_THISNODE zonelists
5150   */
build_thisnode_zonelists(pg_data_t * pgdat)5151  static void build_thisnode_zonelists(pg_data_t *pgdat)
5152  {
5153  	struct zoneref *zonerefs;
5154  	int nr_zones;
5155  
5156  	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5157  	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5158  	zonerefs += nr_zones;
5159  	zonerefs->zone = NULL;
5160  	zonerefs->zone_idx = 0;
5161  }
5162  
build_zonelists(pg_data_t * pgdat)5163  static void build_zonelists(pg_data_t *pgdat)
5164  {
5165  	static int node_order[MAX_NUMNODES];
5166  	int node, nr_nodes = 0;
5167  	nodemask_t used_mask = NODE_MASK_NONE;
5168  	int local_node, prev_node;
5169  
5170  	/* NUMA-aware ordering of nodes */
5171  	local_node = pgdat->node_id;
5172  	prev_node = local_node;
5173  
5174  	memset(node_order, 0, sizeof(node_order));
5175  	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5176  		/*
5177  		 * We don't want to pressure a particular node.
5178  		 * So adding penalty to the first node in same
5179  		 * distance group to make it round-robin.
5180  		 */
5181  		if (node_distance(local_node, node) !=
5182  		    node_distance(local_node, prev_node))
5183  			node_load[node] += 1;
5184  
5185  		node_order[nr_nodes++] = node;
5186  		prev_node = node;
5187  	}
5188  
5189  	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5190  	build_thisnode_zonelists(pgdat);
5191  	pr_info("Fallback order for Node %d: ", local_node);
5192  	for (node = 0; node < nr_nodes; node++)
5193  		pr_cont("%d ", node_order[node]);
5194  	pr_cont("\n");
5195  }
5196  
5197  #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5198  /*
5199   * Return node id of node used for "local" allocations.
5200   * I.e., first node id of first zone in arg node's generic zonelist.
5201   * Used for initializing percpu 'numa_mem', which is used primarily
5202   * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5203   */
local_memory_node(int node)5204  int local_memory_node(int node)
5205  {
5206  	struct zoneref *z;
5207  
5208  	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5209  				   gfp_zone(GFP_KERNEL),
5210  				   NULL);
5211  	return zonelist_node_idx(z);
5212  }
5213  #endif
5214  
5215  static void setup_min_unmapped_ratio(void);
5216  static void setup_min_slab_ratio(void);
5217  #else	/* CONFIG_NUMA */
5218  
build_zonelists(pg_data_t * pgdat)5219  static void build_zonelists(pg_data_t *pgdat)
5220  {
5221  	struct zoneref *zonerefs;
5222  	int nr_zones;
5223  
5224  	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5225  	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5226  	zonerefs += nr_zones;
5227  
5228  	zonerefs->zone = NULL;
5229  	zonerefs->zone_idx = 0;
5230  }
5231  
5232  #endif	/* CONFIG_NUMA */
5233  
5234  /*
5235   * Boot pageset table. One per cpu which is going to be used for all
5236   * zones and all nodes. The parameters will be set in such a way
5237   * that an item put on a list will immediately be handed over to
5238   * the buddy list. This is safe since pageset manipulation is done
5239   * with interrupts disabled.
5240   *
5241   * The boot_pagesets must be kept even after bootup is complete for
5242   * unused processors and/or zones. They do play a role for bootstrapping
5243   * hotplugged processors.
5244   *
5245   * zoneinfo_show() and maybe other functions do
5246   * not check if the processor is online before following the pageset pointer.
5247   * Other parts of the kernel may not check if the zone is available.
5248   */
5249  static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5250  /* These effectively disable the pcplists in the boot pageset completely */
5251  #define BOOT_PAGESET_HIGH	0
5252  #define BOOT_PAGESET_BATCH	1
5253  static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5254  static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5255  
__build_all_zonelists(void * data)5256  static void __build_all_zonelists(void *data)
5257  {
5258  	int nid;
5259  	int __maybe_unused cpu;
5260  	pg_data_t *self = data;
5261  	unsigned long flags;
5262  
5263  	/*
5264  	 * The zonelist_update_seq must be acquired with irqsave because the
5265  	 * reader can be invoked from IRQ with GFP_ATOMIC.
5266  	 */
5267  	write_seqlock_irqsave(&zonelist_update_seq, flags);
5268  	/*
5269  	 * Also disable synchronous printk() to prevent any printk() from
5270  	 * trying to hold port->lock, for
5271  	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5272  	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5273  	 */
5274  	printk_deferred_enter();
5275  
5276  #ifdef CONFIG_NUMA
5277  	memset(node_load, 0, sizeof(node_load));
5278  #endif
5279  
5280  	/*
5281  	 * This node is hotadded and no memory is yet present.   So just
5282  	 * building zonelists is fine - no need to touch other nodes.
5283  	 */
5284  	if (self && !node_online(self->node_id)) {
5285  		build_zonelists(self);
5286  	} else {
5287  		/*
5288  		 * All possible nodes have pgdat preallocated
5289  		 * in free_area_init
5290  		 */
5291  		for_each_node(nid) {
5292  			pg_data_t *pgdat = NODE_DATA(nid);
5293  
5294  			build_zonelists(pgdat);
5295  		}
5296  
5297  #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5298  		/*
5299  		 * We now know the "local memory node" for each node--
5300  		 * i.e., the node of the first zone in the generic zonelist.
5301  		 * Set up numa_mem percpu variable for on-line cpus.  During
5302  		 * boot, only the boot cpu should be on-line;  we'll init the
5303  		 * secondary cpus' numa_mem as they come on-line.  During
5304  		 * node/memory hotplug, we'll fixup all on-line cpus.
5305  		 */
5306  		for_each_online_cpu(cpu)
5307  			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5308  #endif
5309  	}
5310  
5311  	printk_deferred_exit();
5312  	write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5313  }
5314  
5315  static noinline void __init
build_all_zonelists_init(void)5316  build_all_zonelists_init(void)
5317  {
5318  	int cpu;
5319  
5320  	__build_all_zonelists(NULL);
5321  
5322  	/*
5323  	 * Initialize the boot_pagesets that are going to be used
5324  	 * for bootstrapping processors. The real pagesets for
5325  	 * each zone will be allocated later when the per cpu
5326  	 * allocator is available.
5327  	 *
5328  	 * boot_pagesets are used also for bootstrapping offline
5329  	 * cpus if the system is already booted because the pagesets
5330  	 * are needed to initialize allocators on a specific cpu too.
5331  	 * F.e. the percpu allocator needs the page allocator which
5332  	 * needs the percpu allocator in order to allocate its pagesets
5333  	 * (a chicken-egg dilemma).
5334  	 */
5335  	for_each_possible_cpu(cpu)
5336  		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5337  
5338  	mminit_verify_zonelist();
5339  	cpuset_init_current_mems_allowed();
5340  }
5341  
5342  /*
5343   * unless system_state == SYSTEM_BOOTING.
5344   *
5345   * __ref due to call of __init annotated helper build_all_zonelists_init
5346   * [protected by SYSTEM_BOOTING].
5347   */
build_all_zonelists(pg_data_t * pgdat)5348  void __ref build_all_zonelists(pg_data_t *pgdat)
5349  {
5350  	unsigned long vm_total_pages;
5351  
5352  	if (system_state == SYSTEM_BOOTING) {
5353  		build_all_zonelists_init();
5354  	} else {
5355  		__build_all_zonelists(pgdat);
5356  		/* cpuset refresh routine should be here */
5357  	}
5358  	/* Get the number of free pages beyond high watermark in all zones. */
5359  	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5360  	/*
5361  	 * Disable grouping by mobility if the number of pages in the
5362  	 * system is too low to allow the mechanism to work. It would be
5363  	 * more accurate, but expensive to check per-zone. This check is
5364  	 * made on memory-hotadd so a system can start with mobility
5365  	 * disabled and enable it later
5366  	 */
5367  	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5368  		page_group_by_mobility_disabled = 1;
5369  	else
5370  		page_group_by_mobility_disabled = 0;
5371  
5372  	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5373  		nr_online_nodes,
5374  		str_off_on(page_group_by_mobility_disabled),
5375  		vm_total_pages);
5376  #ifdef CONFIG_NUMA
5377  	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5378  #endif
5379  }
5380  
zone_batchsize(struct zone * zone)5381  static int zone_batchsize(struct zone *zone)
5382  {
5383  #ifdef CONFIG_MMU
5384  	int batch;
5385  
5386  	/*
5387  	 * The number of pages to batch allocate is either ~0.1%
5388  	 * of the zone or 1MB, whichever is smaller. The batch
5389  	 * size is striking a balance between allocation latency
5390  	 * and zone lock contention.
5391  	 */
5392  	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5393  	batch /= 4;		/* We effectively *= 4 below */
5394  	if (batch < 1)
5395  		batch = 1;
5396  
5397  	/*
5398  	 * Clamp the batch to a 2^n - 1 value. Having a power
5399  	 * of 2 value was found to be more likely to have
5400  	 * suboptimal cache aliasing properties in some cases.
5401  	 *
5402  	 * For example if 2 tasks are alternately allocating
5403  	 * batches of pages, one task can end up with a lot
5404  	 * of pages of one half of the possible page colors
5405  	 * and the other with pages of the other colors.
5406  	 */
5407  	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5408  
5409  	return batch;
5410  
5411  #else
5412  	/* The deferral and batching of frees should be suppressed under NOMMU
5413  	 * conditions.
5414  	 *
5415  	 * The problem is that NOMMU needs to be able to allocate large chunks
5416  	 * of contiguous memory as there's no hardware page translation to
5417  	 * assemble apparent contiguous memory from discontiguous pages.
5418  	 *
5419  	 * Queueing large contiguous runs of pages for batching, however,
5420  	 * causes the pages to actually be freed in smaller chunks.  As there
5421  	 * can be a significant delay between the individual batches being
5422  	 * recycled, this leads to the once large chunks of space being
5423  	 * fragmented and becoming unavailable for high-order allocations.
5424  	 */
5425  	return 0;
5426  #endif
5427  }
5428  
5429  static int percpu_pagelist_high_fraction;
zone_highsize(struct zone * zone,int batch,int cpu_online,int high_fraction)5430  static int zone_highsize(struct zone *zone, int batch, int cpu_online,
5431  			 int high_fraction)
5432  {
5433  #ifdef CONFIG_MMU
5434  	int high;
5435  	int nr_split_cpus;
5436  	unsigned long total_pages;
5437  
5438  	if (!high_fraction) {
5439  		/*
5440  		 * By default, the high value of the pcp is based on the zone
5441  		 * low watermark so that if they are full then background
5442  		 * reclaim will not be started prematurely.
5443  		 */
5444  		total_pages = low_wmark_pages(zone);
5445  	} else {
5446  		/*
5447  		 * If percpu_pagelist_high_fraction is configured, the high
5448  		 * value is based on a fraction of the managed pages in the
5449  		 * zone.
5450  		 */
5451  		total_pages = zone_managed_pages(zone) / high_fraction;
5452  	}
5453  
5454  	/*
5455  	 * Split the high value across all online CPUs local to the zone. Note
5456  	 * that early in boot that CPUs may not be online yet and that during
5457  	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5458  	 * onlined. For memory nodes that have no CPUs, split the high value
5459  	 * across all online CPUs to mitigate the risk that reclaim is triggered
5460  	 * prematurely due to pages stored on pcp lists.
5461  	 */
5462  	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5463  	if (!nr_split_cpus)
5464  		nr_split_cpus = num_online_cpus();
5465  	high = total_pages / nr_split_cpus;
5466  
5467  	/*
5468  	 * Ensure high is at least batch*4. The multiple is based on the
5469  	 * historical relationship between high and batch.
5470  	 */
5471  	high = max(high, batch << 2);
5472  
5473  	return high;
5474  #else
5475  	return 0;
5476  #endif
5477  }
5478  
5479  /*
5480   * pcp->high and pcp->batch values are related and generally batch is lower
5481   * than high. They are also related to pcp->count such that count is lower
5482   * than high, and as soon as it reaches high, the pcplist is flushed.
5483   *
5484   * However, guaranteeing these relations at all times would require e.g. write
5485   * barriers here but also careful usage of read barriers at the read side, and
5486   * thus be prone to error and bad for performance. Thus the update only prevents
5487   * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max
5488   * should ensure they can cope with those fields changing asynchronously, and
5489   * fully trust only the pcp->count field on the local CPU with interrupts
5490   * disabled.
5491   *
5492   * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5493   * outside of boot time (or some other assurance that no concurrent updaters
5494   * exist).
5495   */
pageset_update(struct per_cpu_pages * pcp,unsigned long high_min,unsigned long high_max,unsigned long batch)5496  static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min,
5497  			   unsigned long high_max, unsigned long batch)
5498  {
5499  	WRITE_ONCE(pcp->batch, batch);
5500  	WRITE_ONCE(pcp->high_min, high_min);
5501  	WRITE_ONCE(pcp->high_max, high_max);
5502  }
5503  
per_cpu_pages_init(struct per_cpu_pages * pcp,struct per_cpu_zonestat * pzstats)5504  static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5505  {
5506  	int pindex;
5507  
5508  	memset(pcp, 0, sizeof(*pcp));
5509  	memset(pzstats, 0, sizeof(*pzstats));
5510  
5511  	spin_lock_init(&pcp->lock);
5512  	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5513  		INIT_LIST_HEAD(&pcp->lists[pindex]);
5514  
5515  	/*
5516  	 * Set batch and high values safe for a boot pageset. A true percpu
5517  	 * pageset's initialization will update them subsequently. Here we don't
5518  	 * need to be as careful as pageset_update() as nobody can access the
5519  	 * pageset yet.
5520  	 */
5521  	pcp->high_min = BOOT_PAGESET_HIGH;
5522  	pcp->high_max = BOOT_PAGESET_HIGH;
5523  	pcp->batch = BOOT_PAGESET_BATCH;
5524  	pcp->free_count = 0;
5525  }
5526  
__zone_set_pageset_high_and_batch(struct zone * zone,unsigned long high_min,unsigned long high_max,unsigned long batch)5527  static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min,
5528  					      unsigned long high_max, unsigned long batch)
5529  {
5530  	struct per_cpu_pages *pcp;
5531  	int cpu;
5532  
5533  	for_each_possible_cpu(cpu) {
5534  		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5535  		pageset_update(pcp, high_min, high_max, batch);
5536  	}
5537  }
5538  
5539  /*
5540   * Calculate and set new high and batch values for all per-cpu pagesets of a
5541   * zone based on the zone's size.
5542   */
zone_set_pageset_high_and_batch(struct zone * zone,int cpu_online)5543  static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5544  {
5545  	int new_high_min, new_high_max, new_batch;
5546  
5547  	new_batch = max(1, zone_batchsize(zone));
5548  	if (percpu_pagelist_high_fraction) {
5549  		new_high_min = zone_highsize(zone, new_batch, cpu_online,
5550  					     percpu_pagelist_high_fraction);
5551  		/*
5552  		 * PCP high is tuned manually, disable auto-tuning via
5553  		 * setting high_min and high_max to the manual value.
5554  		 */
5555  		new_high_max = new_high_min;
5556  	} else {
5557  		new_high_min = zone_highsize(zone, new_batch, cpu_online, 0);
5558  		new_high_max = zone_highsize(zone, new_batch, cpu_online,
5559  					     MIN_PERCPU_PAGELIST_HIGH_FRACTION);
5560  	}
5561  
5562  	if (zone->pageset_high_min == new_high_min &&
5563  	    zone->pageset_high_max == new_high_max &&
5564  	    zone->pageset_batch == new_batch)
5565  		return;
5566  
5567  	zone->pageset_high_min = new_high_min;
5568  	zone->pageset_high_max = new_high_max;
5569  	zone->pageset_batch = new_batch;
5570  
5571  	__zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max,
5572  					  new_batch);
5573  }
5574  
setup_zone_pageset(struct zone * zone)5575  void __meminit setup_zone_pageset(struct zone *zone)
5576  {
5577  	int cpu;
5578  
5579  	/* Size may be 0 on !SMP && !NUMA */
5580  	if (sizeof(struct per_cpu_zonestat) > 0)
5581  		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5582  
5583  	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5584  	for_each_possible_cpu(cpu) {
5585  		struct per_cpu_pages *pcp;
5586  		struct per_cpu_zonestat *pzstats;
5587  
5588  		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5589  		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5590  		per_cpu_pages_init(pcp, pzstats);
5591  	}
5592  
5593  	zone_set_pageset_high_and_batch(zone, 0);
5594  }
5595  
5596  /*
5597   * The zone indicated has a new number of managed_pages; batch sizes and percpu
5598   * page high values need to be recalculated.
5599   */
zone_pcp_update(struct zone * zone,int cpu_online)5600  static void zone_pcp_update(struct zone *zone, int cpu_online)
5601  {
5602  	mutex_lock(&pcp_batch_high_lock);
5603  	zone_set_pageset_high_and_batch(zone, cpu_online);
5604  	mutex_unlock(&pcp_batch_high_lock);
5605  }
5606  
zone_pcp_update_cacheinfo(struct zone * zone,unsigned int cpu)5607  static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu)
5608  {
5609  	struct per_cpu_pages *pcp;
5610  	struct cpu_cacheinfo *cci;
5611  
5612  	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5613  	cci = get_cpu_cacheinfo(cpu);
5614  	/*
5615  	 * If data cache slice of CPU is large enough, "pcp->batch"
5616  	 * pages can be preserved in PCP before draining PCP for
5617  	 * consecutive high-order pages freeing without allocation.
5618  	 * This can reduce zone lock contention without hurting
5619  	 * cache-hot pages sharing.
5620  	 */
5621  	spin_lock(&pcp->lock);
5622  	if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch)
5623  		pcp->flags |= PCPF_FREE_HIGH_BATCH;
5624  	else
5625  		pcp->flags &= ~PCPF_FREE_HIGH_BATCH;
5626  	spin_unlock(&pcp->lock);
5627  }
5628  
setup_pcp_cacheinfo(unsigned int cpu)5629  void setup_pcp_cacheinfo(unsigned int cpu)
5630  {
5631  	struct zone *zone;
5632  
5633  	for_each_populated_zone(zone)
5634  		zone_pcp_update_cacheinfo(zone, cpu);
5635  }
5636  
5637  /*
5638   * Allocate per cpu pagesets and initialize them.
5639   * Before this call only boot pagesets were available.
5640   */
setup_per_cpu_pageset(void)5641  void __init setup_per_cpu_pageset(void)
5642  {
5643  	struct pglist_data *pgdat;
5644  	struct zone *zone;
5645  	int __maybe_unused cpu;
5646  
5647  	for_each_populated_zone(zone)
5648  		setup_zone_pageset(zone);
5649  
5650  #ifdef CONFIG_NUMA
5651  	/*
5652  	 * Unpopulated zones continue using the boot pagesets.
5653  	 * The numa stats for these pagesets need to be reset.
5654  	 * Otherwise, they will end up skewing the stats of
5655  	 * the nodes these zones are associated with.
5656  	 */
5657  	for_each_possible_cpu(cpu) {
5658  		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5659  		memset(pzstats->vm_numa_event, 0,
5660  		       sizeof(pzstats->vm_numa_event));
5661  	}
5662  #endif
5663  
5664  	for_each_online_pgdat(pgdat)
5665  		pgdat->per_cpu_nodestats =
5666  			alloc_percpu(struct per_cpu_nodestat);
5667  }
5668  
zone_pcp_init(struct zone * zone)5669  __meminit void zone_pcp_init(struct zone *zone)
5670  {
5671  	/*
5672  	 * per cpu subsystem is not up at this point. The following code
5673  	 * relies on the ability of the linker to provide the
5674  	 * offset of a (static) per cpu variable into the per cpu area.
5675  	 */
5676  	zone->per_cpu_pageset = &boot_pageset;
5677  	zone->per_cpu_zonestats = &boot_zonestats;
5678  	zone->pageset_high_min = BOOT_PAGESET_HIGH;
5679  	zone->pageset_high_max = BOOT_PAGESET_HIGH;
5680  	zone->pageset_batch = BOOT_PAGESET_BATCH;
5681  
5682  	if (populated_zone(zone))
5683  		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5684  			 zone->present_pages, zone_batchsize(zone));
5685  }
5686  
5687  static void setup_per_zone_lowmem_reserve(void);
5688  
adjust_managed_page_count(struct page * page,long count)5689  void adjust_managed_page_count(struct page *page, long count)
5690  {
5691  	atomic_long_add(count, &page_zone(page)->managed_pages);
5692  	totalram_pages_add(count);
5693  	setup_per_zone_lowmem_reserve();
5694  }
5695  EXPORT_SYMBOL(adjust_managed_page_count);
5696  
free_reserved_area(void * start,void * end,int poison,const char * s)5697  unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5698  {
5699  	void *pos;
5700  	unsigned long pages = 0;
5701  
5702  	start = (void *)PAGE_ALIGN((unsigned long)start);
5703  	end = (void *)((unsigned long)end & PAGE_MASK);
5704  	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5705  		struct page *page = virt_to_page(pos);
5706  		void *direct_map_addr;
5707  
5708  		/*
5709  		 * 'direct_map_addr' might be different from 'pos'
5710  		 * because some architectures' virt_to_page()
5711  		 * work with aliases.  Getting the direct map
5712  		 * address ensures that we get a _writeable_
5713  		 * alias for the memset().
5714  		 */
5715  		direct_map_addr = page_address(page);
5716  		/*
5717  		 * Perform a kasan-unchecked memset() since this memory
5718  		 * has not been initialized.
5719  		 */
5720  		direct_map_addr = kasan_reset_tag(direct_map_addr);
5721  		if ((unsigned int)poison <= 0xFF)
5722  			memset(direct_map_addr, poison, PAGE_SIZE);
5723  
5724  		free_reserved_page(page);
5725  	}
5726  
5727  	if (pages && s)
5728  		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5729  
5730  	return pages;
5731  }
5732  
free_reserved_page(struct page * page)5733  void free_reserved_page(struct page *page)
5734  {
5735  	clear_page_tag_ref(page);
5736  	ClearPageReserved(page);
5737  	init_page_count(page);
5738  	__free_page(page);
5739  	adjust_managed_page_count(page, 1);
5740  }
5741  EXPORT_SYMBOL(free_reserved_page);
5742  
page_alloc_cpu_dead(unsigned int cpu)5743  static int page_alloc_cpu_dead(unsigned int cpu)
5744  {
5745  	struct zone *zone;
5746  
5747  	lru_add_drain_cpu(cpu);
5748  	mlock_drain_remote(cpu);
5749  	drain_pages(cpu);
5750  
5751  	/*
5752  	 * Spill the event counters of the dead processor
5753  	 * into the current processors event counters.
5754  	 * This artificially elevates the count of the current
5755  	 * processor.
5756  	 */
5757  	vm_events_fold_cpu(cpu);
5758  
5759  	/*
5760  	 * Zero the differential counters of the dead processor
5761  	 * so that the vm statistics are consistent.
5762  	 *
5763  	 * This is only okay since the processor is dead and cannot
5764  	 * race with what we are doing.
5765  	 */
5766  	cpu_vm_stats_fold(cpu);
5767  
5768  	for_each_populated_zone(zone)
5769  		zone_pcp_update(zone, 0);
5770  
5771  	return 0;
5772  }
5773  
page_alloc_cpu_online(unsigned int cpu)5774  static int page_alloc_cpu_online(unsigned int cpu)
5775  {
5776  	struct zone *zone;
5777  
5778  	for_each_populated_zone(zone)
5779  		zone_pcp_update(zone, 1);
5780  	return 0;
5781  }
5782  
page_alloc_init_cpuhp(void)5783  void __init page_alloc_init_cpuhp(void)
5784  {
5785  	int ret;
5786  
5787  	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5788  					"mm/page_alloc:pcp",
5789  					page_alloc_cpu_online,
5790  					page_alloc_cpu_dead);
5791  	WARN_ON(ret < 0);
5792  }
5793  
5794  /*
5795   * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5796   *	or min_free_kbytes changes.
5797   */
calculate_totalreserve_pages(void)5798  static void calculate_totalreserve_pages(void)
5799  {
5800  	struct pglist_data *pgdat;
5801  	unsigned long reserve_pages = 0;
5802  	enum zone_type i, j;
5803  
5804  	for_each_online_pgdat(pgdat) {
5805  
5806  		pgdat->totalreserve_pages = 0;
5807  
5808  		for (i = 0; i < MAX_NR_ZONES; i++) {
5809  			struct zone *zone = pgdat->node_zones + i;
5810  			long max = 0;
5811  			unsigned long managed_pages = zone_managed_pages(zone);
5812  
5813  			/* Find valid and maximum lowmem_reserve in the zone */
5814  			for (j = i; j < MAX_NR_ZONES; j++) {
5815  				if (zone->lowmem_reserve[j] > max)
5816  					max = zone->lowmem_reserve[j];
5817  			}
5818  
5819  			/* we treat the high watermark as reserved pages. */
5820  			max += high_wmark_pages(zone);
5821  
5822  			if (max > managed_pages)
5823  				max = managed_pages;
5824  
5825  			pgdat->totalreserve_pages += max;
5826  
5827  			reserve_pages += max;
5828  		}
5829  	}
5830  	totalreserve_pages = reserve_pages;
5831  }
5832  
5833  /*
5834   * setup_per_zone_lowmem_reserve - called whenever
5835   *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
5836   *	has a correct pages reserved value, so an adequate number of
5837   *	pages are left in the zone after a successful __alloc_pages().
5838   */
setup_per_zone_lowmem_reserve(void)5839  static void setup_per_zone_lowmem_reserve(void)
5840  {
5841  	struct pglist_data *pgdat;
5842  	enum zone_type i, j;
5843  
5844  	for_each_online_pgdat(pgdat) {
5845  		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5846  			struct zone *zone = &pgdat->node_zones[i];
5847  			int ratio = sysctl_lowmem_reserve_ratio[i];
5848  			bool clear = !ratio || !zone_managed_pages(zone);
5849  			unsigned long managed_pages = 0;
5850  
5851  			for (j = i + 1; j < MAX_NR_ZONES; j++) {
5852  				struct zone *upper_zone = &pgdat->node_zones[j];
5853  
5854  				managed_pages += zone_managed_pages(upper_zone);
5855  
5856  				if (clear)
5857  					zone->lowmem_reserve[j] = 0;
5858  				else
5859  					zone->lowmem_reserve[j] = managed_pages / ratio;
5860  			}
5861  		}
5862  	}
5863  
5864  	/* update totalreserve_pages */
5865  	calculate_totalreserve_pages();
5866  }
5867  
__setup_per_zone_wmarks(void)5868  static void __setup_per_zone_wmarks(void)
5869  {
5870  	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5871  	unsigned long lowmem_pages = 0;
5872  	struct zone *zone;
5873  	unsigned long flags;
5874  
5875  	/* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
5876  	for_each_zone(zone) {
5877  		if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
5878  			lowmem_pages += zone_managed_pages(zone);
5879  	}
5880  
5881  	for_each_zone(zone) {
5882  		u64 tmp;
5883  
5884  		spin_lock_irqsave(&zone->lock, flags);
5885  		tmp = (u64)pages_min * zone_managed_pages(zone);
5886  		tmp = div64_ul(tmp, lowmem_pages);
5887  		if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
5888  			/*
5889  			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5890  			 * need highmem and movable zones pages, so cap pages_min
5891  			 * to a small  value here.
5892  			 *
5893  			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5894  			 * deltas control async page reclaim, and so should
5895  			 * not be capped for highmem and movable zones.
5896  			 */
5897  			unsigned long min_pages;
5898  
5899  			min_pages = zone_managed_pages(zone) / 1024;
5900  			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5901  			zone->_watermark[WMARK_MIN] = min_pages;
5902  		} else {
5903  			/*
5904  			 * If it's a lowmem zone, reserve a number of pages
5905  			 * proportionate to the zone's size.
5906  			 */
5907  			zone->_watermark[WMARK_MIN] = tmp;
5908  		}
5909  
5910  		/*
5911  		 * Set the kswapd watermarks distance according to the
5912  		 * scale factor in proportion to available memory, but
5913  		 * ensure a minimum size on small systems.
5914  		 */
5915  		tmp = max_t(u64, tmp >> 2,
5916  			    mult_frac(zone_managed_pages(zone),
5917  				      watermark_scale_factor, 10000));
5918  
5919  		zone->watermark_boost = 0;
5920  		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
5921  		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
5922  		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
5923  
5924  		spin_unlock_irqrestore(&zone->lock, flags);
5925  	}
5926  
5927  	/* update totalreserve_pages */
5928  	calculate_totalreserve_pages();
5929  }
5930  
5931  /**
5932   * setup_per_zone_wmarks - called when min_free_kbytes changes
5933   * or when memory is hot-{added|removed}
5934   *
5935   * Ensures that the watermark[min,low,high] values for each zone are set
5936   * correctly with respect to min_free_kbytes.
5937   */
setup_per_zone_wmarks(void)5938  void setup_per_zone_wmarks(void)
5939  {
5940  	struct zone *zone;
5941  	static DEFINE_SPINLOCK(lock);
5942  
5943  	spin_lock(&lock);
5944  	__setup_per_zone_wmarks();
5945  	spin_unlock(&lock);
5946  
5947  	/*
5948  	 * The watermark size have changed so update the pcpu batch
5949  	 * and high limits or the limits may be inappropriate.
5950  	 */
5951  	for_each_zone(zone)
5952  		zone_pcp_update(zone, 0);
5953  }
5954  
5955  /*
5956   * Initialise min_free_kbytes.
5957   *
5958   * For small machines we want it small (128k min).  For large machines
5959   * we want it large (256MB max).  But it is not linear, because network
5960   * bandwidth does not increase linearly with machine size.  We use
5961   *
5962   *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5963   *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5964   *
5965   * which yields
5966   *
5967   * 16MB:	512k
5968   * 32MB:	724k
5969   * 64MB:	1024k
5970   * 128MB:	1448k
5971   * 256MB:	2048k
5972   * 512MB:	2896k
5973   * 1024MB:	4096k
5974   * 2048MB:	5792k
5975   * 4096MB:	8192k
5976   * 8192MB:	11584k
5977   * 16384MB:	16384k
5978   */
calculate_min_free_kbytes(void)5979  void calculate_min_free_kbytes(void)
5980  {
5981  	unsigned long lowmem_kbytes;
5982  	int new_min_free_kbytes;
5983  
5984  	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5985  	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5986  
5987  	if (new_min_free_kbytes > user_min_free_kbytes)
5988  		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
5989  	else
5990  		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5991  				new_min_free_kbytes, user_min_free_kbytes);
5992  
5993  }
5994  
init_per_zone_wmark_min(void)5995  int __meminit init_per_zone_wmark_min(void)
5996  {
5997  	calculate_min_free_kbytes();
5998  	setup_per_zone_wmarks();
5999  	refresh_zone_stat_thresholds();
6000  	setup_per_zone_lowmem_reserve();
6001  
6002  #ifdef CONFIG_NUMA
6003  	setup_min_unmapped_ratio();
6004  	setup_min_slab_ratio();
6005  #endif
6006  
6007  	khugepaged_min_free_kbytes_update();
6008  
6009  	return 0;
6010  }
postcore_initcall(init_per_zone_wmark_min)6011  postcore_initcall(init_per_zone_wmark_min)
6012  
6013  /*
6014   * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6015   *	that we can call two helper functions whenever min_free_kbytes
6016   *	changes.
6017   */
6018  static int min_free_kbytes_sysctl_handler(const struct ctl_table *table, int write,
6019  		void *buffer, size_t *length, loff_t *ppos)
6020  {
6021  	int rc;
6022  
6023  	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6024  	if (rc)
6025  		return rc;
6026  
6027  	if (write) {
6028  		user_min_free_kbytes = min_free_kbytes;
6029  		setup_per_zone_wmarks();
6030  	}
6031  	return 0;
6032  }
6033  
watermark_scale_factor_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6034  static int watermark_scale_factor_sysctl_handler(const struct ctl_table *table, int write,
6035  		void *buffer, size_t *length, loff_t *ppos)
6036  {
6037  	int rc;
6038  
6039  	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6040  	if (rc)
6041  		return rc;
6042  
6043  	if (write)
6044  		setup_per_zone_wmarks();
6045  
6046  	return 0;
6047  }
6048  
6049  #ifdef CONFIG_NUMA
setup_min_unmapped_ratio(void)6050  static void setup_min_unmapped_ratio(void)
6051  {
6052  	pg_data_t *pgdat;
6053  	struct zone *zone;
6054  
6055  	for_each_online_pgdat(pgdat)
6056  		pgdat->min_unmapped_pages = 0;
6057  
6058  	for_each_zone(zone)
6059  		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6060  						         sysctl_min_unmapped_ratio) / 100;
6061  }
6062  
6063  
sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6064  static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table *table, int write,
6065  		void *buffer, size_t *length, loff_t *ppos)
6066  {
6067  	int rc;
6068  
6069  	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6070  	if (rc)
6071  		return rc;
6072  
6073  	setup_min_unmapped_ratio();
6074  
6075  	return 0;
6076  }
6077  
setup_min_slab_ratio(void)6078  static void setup_min_slab_ratio(void)
6079  {
6080  	pg_data_t *pgdat;
6081  	struct zone *zone;
6082  
6083  	for_each_online_pgdat(pgdat)
6084  		pgdat->min_slab_pages = 0;
6085  
6086  	for_each_zone(zone)
6087  		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6088  						     sysctl_min_slab_ratio) / 100;
6089  }
6090  
sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6091  static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table *table, int write,
6092  		void *buffer, size_t *length, loff_t *ppos)
6093  {
6094  	int rc;
6095  
6096  	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6097  	if (rc)
6098  		return rc;
6099  
6100  	setup_min_slab_ratio();
6101  
6102  	return 0;
6103  }
6104  #endif
6105  
6106  /*
6107   * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6108   *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6109   *	whenever sysctl_lowmem_reserve_ratio changes.
6110   *
6111   * The reserve ratio obviously has absolutely no relation with the
6112   * minimum watermarks. The lowmem reserve ratio can only make sense
6113   * if in function of the boot time zone sizes.
6114   */
lowmem_reserve_ratio_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6115  static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table *table,
6116  		int write, void *buffer, size_t *length, loff_t *ppos)
6117  {
6118  	int i;
6119  
6120  	proc_dointvec_minmax(table, write, buffer, length, ppos);
6121  
6122  	for (i = 0; i < MAX_NR_ZONES; i++) {
6123  		if (sysctl_lowmem_reserve_ratio[i] < 1)
6124  			sysctl_lowmem_reserve_ratio[i] = 0;
6125  	}
6126  
6127  	setup_per_zone_lowmem_reserve();
6128  	return 0;
6129  }
6130  
6131  /*
6132   * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6133   * cpu. It is the fraction of total pages in each zone that a hot per cpu
6134   * pagelist can have before it gets flushed back to buddy allocator.
6135   */
percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6136  static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table *table,
6137  		int write, void *buffer, size_t *length, loff_t *ppos)
6138  {
6139  	struct zone *zone;
6140  	int old_percpu_pagelist_high_fraction;
6141  	int ret;
6142  
6143  	mutex_lock(&pcp_batch_high_lock);
6144  	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
6145  
6146  	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6147  	if (!write || ret < 0)
6148  		goto out;
6149  
6150  	/* Sanity checking to avoid pcp imbalance */
6151  	if (percpu_pagelist_high_fraction &&
6152  	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6153  		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
6154  		ret = -EINVAL;
6155  		goto out;
6156  	}
6157  
6158  	/* No change? */
6159  	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
6160  		goto out;
6161  
6162  	for_each_populated_zone(zone)
6163  		zone_set_pageset_high_and_batch(zone, 0);
6164  out:
6165  	mutex_unlock(&pcp_batch_high_lock);
6166  	return ret;
6167  }
6168  
6169  static const struct ctl_table page_alloc_sysctl_table[] = {
6170  	{
6171  		.procname	= "min_free_kbytes",
6172  		.data		= &min_free_kbytes,
6173  		.maxlen		= sizeof(min_free_kbytes),
6174  		.mode		= 0644,
6175  		.proc_handler	= min_free_kbytes_sysctl_handler,
6176  		.extra1		= SYSCTL_ZERO,
6177  	},
6178  	{
6179  		.procname	= "watermark_boost_factor",
6180  		.data		= &watermark_boost_factor,
6181  		.maxlen		= sizeof(watermark_boost_factor),
6182  		.mode		= 0644,
6183  		.proc_handler	= proc_dointvec_minmax,
6184  		.extra1		= SYSCTL_ZERO,
6185  	},
6186  	{
6187  		.procname	= "watermark_scale_factor",
6188  		.data		= &watermark_scale_factor,
6189  		.maxlen		= sizeof(watermark_scale_factor),
6190  		.mode		= 0644,
6191  		.proc_handler	= watermark_scale_factor_sysctl_handler,
6192  		.extra1		= SYSCTL_ONE,
6193  		.extra2		= SYSCTL_THREE_THOUSAND,
6194  	},
6195  	{
6196  		.procname	= "percpu_pagelist_high_fraction",
6197  		.data		= &percpu_pagelist_high_fraction,
6198  		.maxlen		= sizeof(percpu_pagelist_high_fraction),
6199  		.mode		= 0644,
6200  		.proc_handler	= percpu_pagelist_high_fraction_sysctl_handler,
6201  		.extra1		= SYSCTL_ZERO,
6202  	},
6203  	{
6204  		.procname	= "lowmem_reserve_ratio",
6205  		.data		= &sysctl_lowmem_reserve_ratio,
6206  		.maxlen		= sizeof(sysctl_lowmem_reserve_ratio),
6207  		.mode		= 0644,
6208  		.proc_handler	= lowmem_reserve_ratio_sysctl_handler,
6209  	},
6210  #ifdef CONFIG_NUMA
6211  	{
6212  		.procname	= "numa_zonelist_order",
6213  		.data		= &numa_zonelist_order,
6214  		.maxlen		= NUMA_ZONELIST_ORDER_LEN,
6215  		.mode		= 0644,
6216  		.proc_handler	= numa_zonelist_order_handler,
6217  	},
6218  	{
6219  		.procname	= "min_unmapped_ratio",
6220  		.data		= &sysctl_min_unmapped_ratio,
6221  		.maxlen		= sizeof(sysctl_min_unmapped_ratio),
6222  		.mode		= 0644,
6223  		.proc_handler	= sysctl_min_unmapped_ratio_sysctl_handler,
6224  		.extra1		= SYSCTL_ZERO,
6225  		.extra2		= SYSCTL_ONE_HUNDRED,
6226  	},
6227  	{
6228  		.procname	= "min_slab_ratio",
6229  		.data		= &sysctl_min_slab_ratio,
6230  		.maxlen		= sizeof(sysctl_min_slab_ratio),
6231  		.mode		= 0644,
6232  		.proc_handler	= sysctl_min_slab_ratio_sysctl_handler,
6233  		.extra1		= SYSCTL_ZERO,
6234  		.extra2		= SYSCTL_ONE_HUNDRED,
6235  	},
6236  #endif
6237  };
6238  
page_alloc_sysctl_init(void)6239  void __init page_alloc_sysctl_init(void)
6240  {
6241  	register_sysctl_init("vm", page_alloc_sysctl_table);
6242  }
6243  
6244  #ifdef CONFIG_CONTIG_ALLOC
6245  /* Usage: See admin-guide/dynamic-debug-howto.rst */
alloc_contig_dump_pages(struct list_head * page_list)6246  static void alloc_contig_dump_pages(struct list_head *page_list)
6247  {
6248  	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6249  
6250  	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6251  		struct page *page;
6252  
6253  		dump_stack();
6254  		list_for_each_entry(page, page_list, lru)
6255  			dump_page(page, "migration failure");
6256  	}
6257  }
6258  
6259  /*
6260   * [start, end) must belong to a single zone.
6261   * @migratetype: using migratetype to filter the type of migration in
6262   *		trace_mm_alloc_contig_migrate_range_info.
6263   */
__alloc_contig_migrate_range(struct compact_control * cc,unsigned long start,unsigned long end,int migratetype)6264  static int __alloc_contig_migrate_range(struct compact_control *cc,
6265  		unsigned long start, unsigned long end, int migratetype)
6266  {
6267  	/* This function is based on compact_zone() from compaction.c. */
6268  	unsigned int nr_reclaimed;
6269  	unsigned long pfn = start;
6270  	unsigned int tries = 0;
6271  	int ret = 0;
6272  	struct migration_target_control mtc = {
6273  		.nid = zone_to_nid(cc->zone),
6274  		.gfp_mask = cc->gfp_mask,
6275  		.reason = MR_CONTIG_RANGE,
6276  	};
6277  	struct page *page;
6278  	unsigned long total_mapped = 0;
6279  	unsigned long total_migrated = 0;
6280  	unsigned long total_reclaimed = 0;
6281  
6282  	lru_cache_disable();
6283  
6284  	while (pfn < end || !list_empty(&cc->migratepages)) {
6285  		if (fatal_signal_pending(current)) {
6286  			ret = -EINTR;
6287  			break;
6288  		}
6289  
6290  		if (list_empty(&cc->migratepages)) {
6291  			cc->nr_migratepages = 0;
6292  			ret = isolate_migratepages_range(cc, pfn, end);
6293  			if (ret && ret != -EAGAIN)
6294  				break;
6295  			pfn = cc->migrate_pfn;
6296  			tries = 0;
6297  		} else if (++tries == 5) {
6298  			ret = -EBUSY;
6299  			break;
6300  		}
6301  
6302  		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6303  							&cc->migratepages);
6304  		cc->nr_migratepages -= nr_reclaimed;
6305  
6306  		if (trace_mm_alloc_contig_migrate_range_info_enabled()) {
6307  			total_reclaimed += nr_reclaimed;
6308  			list_for_each_entry(page, &cc->migratepages, lru) {
6309  				struct folio *folio = page_folio(page);
6310  
6311  				total_mapped += folio_mapped(folio) *
6312  						folio_nr_pages(folio);
6313  			}
6314  		}
6315  
6316  		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6317  			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6318  
6319  		if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret)
6320  			total_migrated += cc->nr_migratepages;
6321  
6322  		/*
6323  		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6324  		 * to retry again over this error, so do the same here.
6325  		 */
6326  		if (ret == -ENOMEM)
6327  			break;
6328  	}
6329  
6330  	lru_cache_enable();
6331  	if (ret < 0) {
6332  		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6333  			alloc_contig_dump_pages(&cc->migratepages);
6334  		putback_movable_pages(&cc->migratepages);
6335  	}
6336  
6337  	trace_mm_alloc_contig_migrate_range_info(start, end, migratetype,
6338  						 total_migrated,
6339  						 total_reclaimed,
6340  						 total_mapped);
6341  	return (ret < 0) ? ret : 0;
6342  }
6343  
split_free_pages(struct list_head * list,gfp_t gfp_mask)6344  static void split_free_pages(struct list_head *list, gfp_t gfp_mask)
6345  {
6346  	int order;
6347  
6348  	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6349  		struct page *page, *next;
6350  		int nr_pages = 1 << order;
6351  
6352  		list_for_each_entry_safe(page, next, &list[order], lru) {
6353  			int i;
6354  
6355  			post_alloc_hook(page, order, gfp_mask);
6356  			set_page_refcounted(page);
6357  			if (!order)
6358  				continue;
6359  
6360  			split_page(page, order);
6361  
6362  			/* Add all subpages to the order-0 head, in sequence. */
6363  			list_del(&page->lru);
6364  			for (i = 0; i < nr_pages; i++)
6365  				list_add_tail(&page[i].lru, &list[0]);
6366  		}
6367  	}
6368  }
6369  
__alloc_contig_verify_gfp_mask(gfp_t gfp_mask,gfp_t * gfp_cc_mask)6370  static int __alloc_contig_verify_gfp_mask(gfp_t gfp_mask, gfp_t *gfp_cc_mask)
6371  {
6372  	const gfp_t reclaim_mask = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
6373  	const gfp_t action_mask = __GFP_COMP | __GFP_RETRY_MAYFAIL | __GFP_NOWARN |
6374  				  __GFP_ZERO | __GFP_ZEROTAGS | __GFP_SKIP_ZERO;
6375  	const gfp_t cc_action_mask = __GFP_RETRY_MAYFAIL | __GFP_NOWARN;
6376  
6377  	/*
6378  	 * We are given the range to allocate; node, mobility and placement
6379  	 * hints are irrelevant at this point. We'll simply ignore them.
6380  	 */
6381  	gfp_mask &= ~(GFP_ZONEMASK | __GFP_RECLAIMABLE | __GFP_WRITE |
6382  		      __GFP_HARDWALL | __GFP_THISNODE | __GFP_MOVABLE);
6383  
6384  	/*
6385  	 * We only support most reclaim flags (but not NOFAIL/NORETRY), and
6386  	 * selected action flags.
6387  	 */
6388  	if (gfp_mask & ~(reclaim_mask | action_mask))
6389  		return -EINVAL;
6390  
6391  	/*
6392  	 * Flags to control page compaction/migration/reclaim, to free up our
6393  	 * page range. Migratable pages are movable, __GFP_MOVABLE is implied
6394  	 * for them.
6395  	 *
6396  	 * Traditionally we always had __GFP_RETRY_MAYFAIL set, keep doing that
6397  	 * to not degrade callers.
6398  	 */
6399  	*gfp_cc_mask = (gfp_mask & (reclaim_mask | cc_action_mask)) |
6400  			__GFP_MOVABLE | __GFP_RETRY_MAYFAIL;
6401  	return 0;
6402  }
6403  
6404  /**
6405   * alloc_contig_range() -- tries to allocate given range of pages
6406   * @start:	start PFN to allocate
6407   * @end:	one-past-the-last PFN to allocate
6408   * @migratetype:	migratetype of the underlying pageblocks (either
6409   *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6410   *			in range must have the same migratetype and it must
6411   *			be either of the two.
6412   * @gfp_mask:	GFP mask. Node/zone/placement hints are ignored; only some
6413   *		action and reclaim modifiers are supported. Reclaim modifiers
6414   *		control allocation behavior during compaction/migration/reclaim.
6415   *
6416   * The PFN range does not have to be pageblock aligned. The PFN range must
6417   * belong to a single zone.
6418   *
6419   * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6420   * pageblocks in the range.  Once isolated, the pageblocks should not
6421   * be modified by others.
6422   *
6423   * Return: zero on success or negative error code.  On success all
6424   * pages which PFN is in [start, end) are allocated for the caller and
6425   * need to be freed with free_contig_range().
6426   */
alloc_contig_range_noprof(unsigned long start,unsigned long end,unsigned migratetype,gfp_t gfp_mask)6427  int alloc_contig_range_noprof(unsigned long start, unsigned long end,
6428  		       unsigned migratetype, gfp_t gfp_mask)
6429  {
6430  	unsigned long outer_start, outer_end;
6431  	int ret = 0;
6432  
6433  	struct compact_control cc = {
6434  		.nr_migratepages = 0,
6435  		.order = -1,
6436  		.zone = page_zone(pfn_to_page(start)),
6437  		.mode = MIGRATE_SYNC,
6438  		.ignore_skip_hint = true,
6439  		.no_set_skip_hint = true,
6440  		.alloc_contig = true,
6441  	};
6442  	INIT_LIST_HEAD(&cc.migratepages);
6443  
6444  	gfp_mask = current_gfp_context(gfp_mask);
6445  	if (__alloc_contig_verify_gfp_mask(gfp_mask, (gfp_t *)&cc.gfp_mask))
6446  		return -EINVAL;
6447  
6448  	/*
6449  	 * What we do here is we mark all pageblocks in range as
6450  	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6451  	 * have different sizes, and due to the way page allocator
6452  	 * work, start_isolate_page_range() has special handlings for this.
6453  	 *
6454  	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6455  	 * migrate the pages from an unaligned range (ie. pages that
6456  	 * we are interested in). This will put all the pages in
6457  	 * range back to page allocator as MIGRATE_ISOLATE.
6458  	 *
6459  	 * When this is done, we take the pages in range from page
6460  	 * allocator removing them from the buddy system.  This way
6461  	 * page allocator will never consider using them.
6462  	 *
6463  	 * This lets us mark the pageblocks back as
6464  	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6465  	 * aligned range but not in the unaligned, original range are
6466  	 * put back to page allocator so that buddy can use them.
6467  	 */
6468  
6469  	ret = start_isolate_page_range(start, end, migratetype, 0);
6470  	if (ret)
6471  		goto done;
6472  
6473  	drain_all_pages(cc.zone);
6474  
6475  	/*
6476  	 * In case of -EBUSY, we'd like to know which page causes problem.
6477  	 * So, just fall through. test_pages_isolated() has a tracepoint
6478  	 * which will report the busy page.
6479  	 *
6480  	 * It is possible that busy pages could become available before
6481  	 * the call to test_pages_isolated, and the range will actually be
6482  	 * allocated.  So, if we fall through be sure to clear ret so that
6483  	 * -EBUSY is not accidentally used or returned to caller.
6484  	 */
6485  	ret = __alloc_contig_migrate_range(&cc, start, end, migratetype);
6486  	if (ret && ret != -EBUSY)
6487  		goto done;
6488  
6489  	/*
6490  	 * When in-use hugetlb pages are migrated, they may simply be released
6491  	 * back into the free hugepage pool instead of being returned to the
6492  	 * buddy system.  After the migration of in-use huge pages is completed,
6493  	 * we will invoke replace_free_hugepage_folios() to ensure that these
6494  	 * hugepages are properly released to the buddy system.
6495  	 */
6496  	ret = replace_free_hugepage_folios(start, end);
6497  	if (ret)
6498  		goto done;
6499  
6500  	/*
6501  	 * Pages from [start, end) are within a pageblock_nr_pages
6502  	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6503  	 * more, all pages in [start, end) are free in page allocator.
6504  	 * What we are going to do is to allocate all pages from
6505  	 * [start, end) (that is remove them from page allocator).
6506  	 *
6507  	 * The only problem is that pages at the beginning and at the
6508  	 * end of interesting range may be not aligned with pages that
6509  	 * page allocator holds, ie. they can be part of higher order
6510  	 * pages.  Because of this, we reserve the bigger range and
6511  	 * once this is done free the pages we are not interested in.
6512  	 *
6513  	 * We don't have to hold zone->lock here because the pages are
6514  	 * isolated thus they won't get removed from buddy.
6515  	 */
6516  	outer_start = find_large_buddy(start);
6517  
6518  	/* Make sure the range is really isolated. */
6519  	if (test_pages_isolated(outer_start, end, 0)) {
6520  		ret = -EBUSY;
6521  		goto done;
6522  	}
6523  
6524  	/* Grab isolated pages from freelists. */
6525  	outer_end = isolate_freepages_range(&cc, outer_start, end);
6526  	if (!outer_end) {
6527  		ret = -EBUSY;
6528  		goto done;
6529  	}
6530  
6531  	if (!(gfp_mask & __GFP_COMP)) {
6532  		split_free_pages(cc.freepages, gfp_mask);
6533  
6534  		/* Free head and tail (if any) */
6535  		if (start != outer_start)
6536  			free_contig_range(outer_start, start - outer_start);
6537  		if (end != outer_end)
6538  			free_contig_range(end, outer_end - end);
6539  	} else if (start == outer_start && end == outer_end && is_power_of_2(end - start)) {
6540  		struct page *head = pfn_to_page(start);
6541  		int order = ilog2(end - start);
6542  
6543  		check_new_pages(head, order);
6544  		prep_new_page(head, order, gfp_mask, 0);
6545  		set_page_refcounted(head);
6546  	} else {
6547  		ret = -EINVAL;
6548  		WARN(true, "PFN range: requested [%lu, %lu), allocated [%lu, %lu)\n",
6549  		     start, end, outer_start, outer_end);
6550  	}
6551  done:
6552  	undo_isolate_page_range(start, end, migratetype);
6553  	return ret;
6554  }
6555  EXPORT_SYMBOL(alloc_contig_range_noprof);
6556  
__alloc_contig_pages(unsigned long start_pfn,unsigned long nr_pages,gfp_t gfp_mask)6557  static int __alloc_contig_pages(unsigned long start_pfn,
6558  				unsigned long nr_pages, gfp_t gfp_mask)
6559  {
6560  	unsigned long end_pfn = start_pfn + nr_pages;
6561  
6562  	return alloc_contig_range_noprof(start_pfn, end_pfn, MIGRATE_MOVABLE,
6563  				   gfp_mask);
6564  }
6565  
pfn_range_valid_contig(struct zone * z,unsigned long start_pfn,unsigned long nr_pages)6566  static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6567  				   unsigned long nr_pages)
6568  {
6569  	unsigned long i, end_pfn = start_pfn + nr_pages;
6570  	struct page *page;
6571  
6572  	for (i = start_pfn; i < end_pfn; i++) {
6573  		page = pfn_to_online_page(i);
6574  		if (!page)
6575  			return false;
6576  
6577  		if (page_zone(page) != z)
6578  			return false;
6579  
6580  		if (PageReserved(page))
6581  			return false;
6582  
6583  		if (PageHuge(page))
6584  			return false;
6585  	}
6586  	return true;
6587  }
6588  
zone_spans_last_pfn(const struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)6589  static bool zone_spans_last_pfn(const struct zone *zone,
6590  				unsigned long start_pfn, unsigned long nr_pages)
6591  {
6592  	unsigned long last_pfn = start_pfn + nr_pages - 1;
6593  
6594  	return zone_spans_pfn(zone, last_pfn);
6595  }
6596  
6597  /**
6598   * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6599   * @nr_pages:	Number of contiguous pages to allocate
6600   * @gfp_mask:	GFP mask. Node/zone/placement hints limit the search; only some
6601   *		action and reclaim modifiers are supported. Reclaim modifiers
6602   *		control allocation behavior during compaction/migration/reclaim.
6603   * @nid:	Target node
6604   * @nodemask:	Mask for other possible nodes
6605   *
6606   * This routine is a wrapper around alloc_contig_range(). It scans over zones
6607   * on an applicable zonelist to find a contiguous pfn range which can then be
6608   * tried for allocation with alloc_contig_range(). This routine is intended
6609   * for allocation requests which can not be fulfilled with the buddy allocator.
6610   *
6611   * The allocated memory is always aligned to a page boundary. If nr_pages is a
6612   * power of two, then allocated range is also guaranteed to be aligned to same
6613   * nr_pages (e.g. 1GB request would be aligned to 1GB).
6614   *
6615   * Allocated pages can be freed with free_contig_range() or by manually calling
6616   * __free_page() on each allocated page.
6617   *
6618   * Return: pointer to contiguous pages on success, or NULL if not successful.
6619   */
alloc_contig_pages_noprof(unsigned long nr_pages,gfp_t gfp_mask,int nid,nodemask_t * nodemask)6620  struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask,
6621  				 int nid, nodemask_t *nodemask)
6622  {
6623  	unsigned long ret, pfn, flags;
6624  	struct zonelist *zonelist;
6625  	struct zone *zone;
6626  	struct zoneref *z;
6627  
6628  	zonelist = node_zonelist(nid, gfp_mask);
6629  	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6630  					gfp_zone(gfp_mask), nodemask) {
6631  		spin_lock_irqsave(&zone->lock, flags);
6632  
6633  		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6634  		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6635  			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6636  				/*
6637  				 * We release the zone lock here because
6638  				 * alloc_contig_range() will also lock the zone
6639  				 * at some point. If there's an allocation
6640  				 * spinning on this lock, it may win the race
6641  				 * and cause alloc_contig_range() to fail...
6642  				 */
6643  				spin_unlock_irqrestore(&zone->lock, flags);
6644  				ret = __alloc_contig_pages(pfn, nr_pages,
6645  							gfp_mask);
6646  				if (!ret)
6647  					return pfn_to_page(pfn);
6648  				spin_lock_irqsave(&zone->lock, flags);
6649  			}
6650  			pfn += nr_pages;
6651  		}
6652  		spin_unlock_irqrestore(&zone->lock, flags);
6653  	}
6654  	return NULL;
6655  }
6656  #endif /* CONFIG_CONTIG_ALLOC */
6657  
free_contig_range(unsigned long pfn,unsigned long nr_pages)6658  void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6659  {
6660  	unsigned long count = 0;
6661  	struct folio *folio = pfn_folio(pfn);
6662  
6663  	if (folio_test_large(folio)) {
6664  		int expected = folio_nr_pages(folio);
6665  
6666  		if (nr_pages == expected)
6667  			folio_put(folio);
6668  		else
6669  			WARN(true, "PFN %lu: nr_pages %lu != expected %d\n",
6670  			     pfn, nr_pages, expected);
6671  		return;
6672  	}
6673  
6674  	for (; nr_pages--; pfn++) {
6675  		struct page *page = pfn_to_page(pfn);
6676  
6677  		count += page_count(page) != 1;
6678  		__free_page(page);
6679  	}
6680  	WARN(count != 0, "%lu pages are still in use!\n", count);
6681  }
6682  EXPORT_SYMBOL(free_contig_range);
6683  
6684  /*
6685   * Effectively disable pcplists for the zone by setting the high limit to 0
6686   * and draining all cpus. A concurrent page freeing on another CPU that's about
6687   * to put the page on pcplist will either finish before the drain and the page
6688   * will be drained, or observe the new high limit and skip the pcplist.
6689   *
6690   * Must be paired with a call to zone_pcp_enable().
6691   */
zone_pcp_disable(struct zone * zone)6692  void zone_pcp_disable(struct zone *zone)
6693  {
6694  	mutex_lock(&pcp_batch_high_lock);
6695  	__zone_set_pageset_high_and_batch(zone, 0, 0, 1);
6696  	__drain_all_pages(zone, true);
6697  }
6698  
zone_pcp_enable(struct zone * zone)6699  void zone_pcp_enable(struct zone *zone)
6700  {
6701  	__zone_set_pageset_high_and_batch(zone, zone->pageset_high_min,
6702  		zone->pageset_high_max, zone->pageset_batch);
6703  	mutex_unlock(&pcp_batch_high_lock);
6704  }
6705  
zone_pcp_reset(struct zone * zone)6706  void zone_pcp_reset(struct zone *zone)
6707  {
6708  	int cpu;
6709  	struct per_cpu_zonestat *pzstats;
6710  
6711  	if (zone->per_cpu_pageset != &boot_pageset) {
6712  		for_each_online_cpu(cpu) {
6713  			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6714  			drain_zonestat(zone, pzstats);
6715  		}
6716  		free_percpu(zone->per_cpu_pageset);
6717  		zone->per_cpu_pageset = &boot_pageset;
6718  		if (zone->per_cpu_zonestats != &boot_zonestats) {
6719  			free_percpu(zone->per_cpu_zonestats);
6720  			zone->per_cpu_zonestats = &boot_zonestats;
6721  		}
6722  	}
6723  }
6724  
6725  #ifdef CONFIG_MEMORY_HOTREMOVE
6726  /*
6727   * All pages in the range must be in a single zone, must not contain holes,
6728   * must span full sections, and must be isolated before calling this function.
6729   *
6730   * Returns the number of managed (non-PageOffline()) pages in the range: the
6731   * number of pages for which memory offlining code must adjust managed page
6732   * counters using adjust_managed_page_count().
6733   */
__offline_isolated_pages(unsigned long start_pfn,unsigned long end_pfn)6734  unsigned long __offline_isolated_pages(unsigned long start_pfn,
6735  		unsigned long end_pfn)
6736  {
6737  	unsigned long already_offline = 0, flags;
6738  	unsigned long pfn = start_pfn;
6739  	struct page *page;
6740  	struct zone *zone;
6741  	unsigned int order;
6742  
6743  	offline_mem_sections(pfn, end_pfn);
6744  	zone = page_zone(pfn_to_page(pfn));
6745  	spin_lock_irqsave(&zone->lock, flags);
6746  	while (pfn < end_pfn) {
6747  		page = pfn_to_page(pfn);
6748  		/*
6749  		 * The HWPoisoned page may be not in buddy system, and
6750  		 * page_count() is not 0.
6751  		 */
6752  		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6753  			pfn++;
6754  			continue;
6755  		}
6756  		/*
6757  		 * At this point all remaining PageOffline() pages have a
6758  		 * reference count of 0 and can simply be skipped.
6759  		 */
6760  		if (PageOffline(page)) {
6761  			BUG_ON(page_count(page));
6762  			BUG_ON(PageBuddy(page));
6763  			already_offline++;
6764  			pfn++;
6765  			continue;
6766  		}
6767  
6768  		BUG_ON(page_count(page));
6769  		BUG_ON(!PageBuddy(page));
6770  		VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE);
6771  		order = buddy_order(page);
6772  		del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE);
6773  		pfn += (1 << order);
6774  	}
6775  	spin_unlock_irqrestore(&zone->lock, flags);
6776  
6777  	return end_pfn - start_pfn - already_offline;
6778  }
6779  #endif
6780  
6781  /*
6782   * This function returns a stable result only if called under zone lock.
6783   */
is_free_buddy_page(const struct page * page)6784  bool is_free_buddy_page(const struct page *page)
6785  {
6786  	unsigned long pfn = page_to_pfn(page);
6787  	unsigned int order;
6788  
6789  	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6790  		const struct page *head = page - (pfn & ((1 << order) - 1));
6791  
6792  		if (PageBuddy(head) &&
6793  		    buddy_order_unsafe(head) >= order)
6794  			break;
6795  	}
6796  
6797  	return order <= MAX_PAGE_ORDER;
6798  }
6799  EXPORT_SYMBOL(is_free_buddy_page);
6800  
6801  #ifdef CONFIG_MEMORY_FAILURE
add_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype,bool tail)6802  static inline void add_to_free_list(struct page *page, struct zone *zone,
6803  				    unsigned int order, int migratetype,
6804  				    bool tail)
6805  {
6806  	__add_to_free_list(page, zone, order, migratetype, tail);
6807  	account_freepages(zone, 1 << order, migratetype);
6808  }
6809  
6810  /*
6811   * Break down a higher-order page in sub-pages, and keep our target out of
6812   * buddy allocator.
6813   */
break_down_buddy_pages(struct zone * zone,struct page * page,struct page * target,int low,int high,int migratetype)6814  static void break_down_buddy_pages(struct zone *zone, struct page *page,
6815  				   struct page *target, int low, int high,
6816  				   int migratetype)
6817  {
6818  	unsigned long size = 1 << high;
6819  	struct page *current_buddy;
6820  
6821  	while (high > low) {
6822  		high--;
6823  		size >>= 1;
6824  
6825  		if (target >= &page[size]) {
6826  			current_buddy = page;
6827  			page = page + size;
6828  		} else {
6829  			current_buddy = page + size;
6830  		}
6831  
6832  		if (set_page_guard(zone, current_buddy, high))
6833  			continue;
6834  
6835  		add_to_free_list(current_buddy, zone, high, migratetype, false);
6836  		set_buddy_order(current_buddy, high);
6837  	}
6838  }
6839  
6840  /*
6841   * Take a page that will be marked as poisoned off the buddy allocator.
6842   */
take_page_off_buddy(struct page * page)6843  bool take_page_off_buddy(struct page *page)
6844  {
6845  	struct zone *zone = page_zone(page);
6846  	unsigned long pfn = page_to_pfn(page);
6847  	unsigned long flags;
6848  	unsigned int order;
6849  	bool ret = false;
6850  
6851  	spin_lock_irqsave(&zone->lock, flags);
6852  	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6853  		struct page *page_head = page - (pfn & ((1 << order) - 1));
6854  		int page_order = buddy_order(page_head);
6855  
6856  		if (PageBuddy(page_head) && page_order >= order) {
6857  			unsigned long pfn_head = page_to_pfn(page_head);
6858  			int migratetype = get_pfnblock_migratetype(page_head,
6859  								   pfn_head);
6860  
6861  			del_page_from_free_list(page_head, zone, page_order,
6862  						migratetype);
6863  			break_down_buddy_pages(zone, page_head, page, 0,
6864  						page_order, migratetype);
6865  			SetPageHWPoisonTakenOff(page);
6866  			ret = true;
6867  			break;
6868  		}
6869  		if (page_count(page_head) > 0)
6870  			break;
6871  	}
6872  	spin_unlock_irqrestore(&zone->lock, flags);
6873  	return ret;
6874  }
6875  
6876  /*
6877   * Cancel takeoff done by take_page_off_buddy().
6878   */
put_page_back_buddy(struct page * page)6879  bool put_page_back_buddy(struct page *page)
6880  {
6881  	struct zone *zone = page_zone(page);
6882  	unsigned long flags;
6883  	bool ret = false;
6884  
6885  	spin_lock_irqsave(&zone->lock, flags);
6886  	if (put_page_testzero(page)) {
6887  		unsigned long pfn = page_to_pfn(page);
6888  		int migratetype = get_pfnblock_migratetype(page, pfn);
6889  
6890  		ClearPageHWPoisonTakenOff(page);
6891  		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6892  		if (TestClearPageHWPoison(page)) {
6893  			ret = true;
6894  		}
6895  	}
6896  	spin_unlock_irqrestore(&zone->lock, flags);
6897  
6898  	return ret;
6899  }
6900  #endif
6901  
6902  #ifdef CONFIG_ZONE_DMA
has_managed_dma(void)6903  bool has_managed_dma(void)
6904  {
6905  	struct pglist_data *pgdat;
6906  
6907  	for_each_online_pgdat(pgdat) {
6908  		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6909  
6910  		if (managed_zone(zone))
6911  			return true;
6912  	}
6913  	return false;
6914  }
6915  #endif /* CONFIG_ZONE_DMA */
6916  
6917  #ifdef CONFIG_UNACCEPTED_MEMORY
6918  
6919  /* Counts number of zones with unaccepted pages. */
6920  static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6921  
6922  static bool lazy_accept = true;
6923  
accept_memory_parse(char * p)6924  static int __init accept_memory_parse(char *p)
6925  {
6926  	if (!strcmp(p, "lazy")) {
6927  		lazy_accept = true;
6928  		return 0;
6929  	} else if (!strcmp(p, "eager")) {
6930  		lazy_accept = false;
6931  		return 0;
6932  	} else {
6933  		return -EINVAL;
6934  	}
6935  }
6936  early_param("accept_memory", accept_memory_parse);
6937  
page_contains_unaccepted(struct page * page,unsigned int order)6938  static bool page_contains_unaccepted(struct page *page, unsigned int order)
6939  {
6940  	phys_addr_t start = page_to_phys(page);
6941  
6942  	return range_contains_unaccepted_memory(start, PAGE_SIZE << order);
6943  }
6944  
__accept_page(struct zone * zone,unsigned long * flags,struct page * page)6945  static void __accept_page(struct zone *zone, unsigned long *flags,
6946  			  struct page *page)
6947  {
6948  	bool last;
6949  
6950  	list_del(&page->lru);
6951  	last = list_empty(&zone->unaccepted_pages);
6952  
6953  	account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6954  	__mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
6955  	__ClearPageUnaccepted(page);
6956  	spin_unlock_irqrestore(&zone->lock, *flags);
6957  
6958  	accept_memory(page_to_phys(page), PAGE_SIZE << MAX_PAGE_ORDER);
6959  
6960  	__free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL);
6961  
6962  	if (last)
6963  		static_branch_dec(&zones_with_unaccepted_pages);
6964  }
6965  
accept_page(struct page * page)6966  void accept_page(struct page *page)
6967  {
6968  	struct zone *zone = page_zone(page);
6969  	unsigned long flags;
6970  
6971  	spin_lock_irqsave(&zone->lock, flags);
6972  	if (!PageUnaccepted(page)) {
6973  		spin_unlock_irqrestore(&zone->lock, flags);
6974  		return;
6975  	}
6976  
6977  	/* Unlocks zone->lock */
6978  	__accept_page(zone, &flags, page);
6979  }
6980  
try_to_accept_memory_one(struct zone * zone)6981  static bool try_to_accept_memory_one(struct zone *zone)
6982  {
6983  	unsigned long flags;
6984  	struct page *page;
6985  
6986  	spin_lock_irqsave(&zone->lock, flags);
6987  	page = list_first_entry_or_null(&zone->unaccepted_pages,
6988  					struct page, lru);
6989  	if (!page) {
6990  		spin_unlock_irqrestore(&zone->lock, flags);
6991  		return false;
6992  	}
6993  
6994  	/* Unlocks zone->lock */
6995  	__accept_page(zone, &flags, page);
6996  
6997  	return true;
6998  }
6999  
has_unaccepted_memory(void)7000  static inline bool has_unaccepted_memory(void)
7001  {
7002  	return static_branch_unlikely(&zones_with_unaccepted_pages);
7003  }
7004  
cond_accept_memory(struct zone * zone,unsigned int order)7005  static bool cond_accept_memory(struct zone *zone, unsigned int order)
7006  {
7007  	long to_accept, wmark;
7008  	bool ret = false;
7009  
7010  	if (!has_unaccepted_memory())
7011  		return false;
7012  
7013  	if (list_empty(&zone->unaccepted_pages))
7014  		return false;
7015  
7016  	wmark = promo_wmark_pages(zone);
7017  
7018  	/*
7019  	 * Watermarks have not been initialized yet.
7020  	 *
7021  	 * Accepting one MAX_ORDER page to ensure progress.
7022  	 */
7023  	if (!wmark)
7024  		return try_to_accept_memory_one(zone);
7025  
7026  	/* How much to accept to get to promo watermark? */
7027  	to_accept = wmark -
7028  		    (zone_page_state(zone, NR_FREE_PAGES) -
7029  		    __zone_watermark_unusable_free(zone, order, 0) -
7030  		    zone_page_state(zone, NR_UNACCEPTED));
7031  
7032  	while (to_accept > 0) {
7033  		if (!try_to_accept_memory_one(zone))
7034  			break;
7035  		ret = true;
7036  		to_accept -= MAX_ORDER_NR_PAGES;
7037  	}
7038  
7039  	return ret;
7040  }
7041  
__free_unaccepted(struct page * page)7042  static bool __free_unaccepted(struct page *page)
7043  {
7044  	struct zone *zone = page_zone(page);
7045  	unsigned long flags;
7046  	bool first = false;
7047  
7048  	if (!lazy_accept)
7049  		return false;
7050  
7051  	spin_lock_irqsave(&zone->lock, flags);
7052  	first = list_empty(&zone->unaccepted_pages);
7053  	list_add_tail(&page->lru, &zone->unaccepted_pages);
7054  	account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
7055  	__mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
7056  	__SetPageUnaccepted(page);
7057  	spin_unlock_irqrestore(&zone->lock, flags);
7058  
7059  	if (first)
7060  		static_branch_inc(&zones_with_unaccepted_pages);
7061  
7062  	return true;
7063  }
7064  
7065  #else
7066  
page_contains_unaccepted(struct page * page,unsigned int order)7067  static bool page_contains_unaccepted(struct page *page, unsigned int order)
7068  {
7069  	return false;
7070  }
7071  
cond_accept_memory(struct zone * zone,unsigned int order)7072  static bool cond_accept_memory(struct zone *zone, unsigned int order)
7073  {
7074  	return false;
7075  }
7076  
__free_unaccepted(struct page * page)7077  static bool __free_unaccepted(struct page *page)
7078  {
7079  	BUILD_BUG();
7080  	return false;
7081  }
7082  
7083  #endif /* CONFIG_UNACCEPTED_MEMORY */
7084