1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/interrupt.h> 22 #include <linux/jiffies.h> 23 #include <linux/compiler.h> 24 #include <linux/kernel.h> 25 #include <linux/kasan.h> 26 #include <linux/kmsan.h> 27 #include <linux/module.h> 28 #include <linux/suspend.h> 29 #include <linux/ratelimit.h> 30 #include <linux/oom.h> 31 #include <linux/topology.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/pagevec.h> 36 #include <linux/memory_hotplug.h> 37 #include <linux/nodemask.h> 38 #include <linux/vmstat.h> 39 #include <linux/fault-inject.h> 40 #include <linux/compaction.h> 41 #include <trace/events/kmem.h> 42 #include <trace/events/oom.h> 43 #include <linux/prefetch.h> 44 #include <linux/mm_inline.h> 45 #include <linux/mmu_notifier.h> 46 #include <linux/migrate.h> 47 #include <linux/sched/mm.h> 48 #include <linux/page_owner.h> 49 #include <linux/page_table_check.h> 50 #include <linux/memcontrol.h> 51 #include <linux/ftrace.h> 52 #include <linux/lockdep.h> 53 #include <linux/psi.h> 54 #include <linux/khugepaged.h> 55 #include <linux/delayacct.h> 56 #include <linux/cacheinfo.h> 57 #include <linux/pgalloc_tag.h> 58 #include <asm/div64.h> 59 #include "internal.h" 60 #include "shuffle.h" 61 #include "page_reporting.h" 62 63 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 64 typedef int __bitwise fpi_t; 65 66 /* No special request */ 67 #define FPI_NONE ((__force fpi_t)0) 68 69 /* 70 * Skip free page reporting notification for the (possibly merged) page. 71 * This does not hinder free page reporting from grabbing the page, 72 * reporting it and marking it "reported" - it only skips notifying 73 * the free page reporting infrastructure about a newly freed page. For 74 * example, used when temporarily pulling a page from a freelist and 75 * putting it back unmodified. 76 */ 77 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 78 79 /* 80 * Place the (possibly merged) page to the tail of the freelist. Will ignore 81 * page shuffling (relevant code - e.g., memory onlining - is expected to 82 * shuffle the whole zone). 83 * 84 * Note: No code should rely on this flag for correctness - it's purely 85 * to allow for optimizations when handing back either fresh pages 86 * (memory onlining) or untouched pages (page isolation, free page 87 * reporting). 88 */ 89 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 90 91 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 92 static DEFINE_MUTEX(pcp_batch_high_lock); 93 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 94 95 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) 96 /* 97 * On SMP, spin_trylock is sufficient protection. 98 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP. 99 */ 100 #define pcp_trylock_prepare(flags) do { } while (0) 101 #define pcp_trylock_finish(flag) do { } while (0) 102 #else 103 104 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */ 105 #define pcp_trylock_prepare(flags) local_irq_save(flags) 106 #define pcp_trylock_finish(flags) local_irq_restore(flags) 107 #endif 108 109 /* 110 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid 111 * a migration causing the wrong PCP to be locked and remote memory being 112 * potentially allocated, pin the task to the CPU for the lookup+lock. 113 * preempt_disable is used on !RT because it is faster than migrate_disable. 114 * migrate_disable is used on RT because otherwise RT spinlock usage is 115 * interfered with and a high priority task cannot preempt the allocator. 116 */ 117 #ifndef CONFIG_PREEMPT_RT 118 #define pcpu_task_pin() preempt_disable() 119 #define pcpu_task_unpin() preempt_enable() 120 #else 121 #define pcpu_task_pin() migrate_disable() 122 #define pcpu_task_unpin() migrate_enable() 123 #endif 124 125 /* 126 * Generic helper to lookup and a per-cpu variable with an embedded spinlock. 127 * Return value should be used with equivalent unlock helper. 128 */ 129 #define pcpu_spin_lock(type, member, ptr) \ 130 ({ \ 131 type *_ret; \ 132 pcpu_task_pin(); \ 133 _ret = this_cpu_ptr(ptr); \ 134 spin_lock(&_ret->member); \ 135 _ret; \ 136 }) 137 138 #define pcpu_spin_trylock(type, member, ptr) \ 139 ({ \ 140 type *_ret; \ 141 pcpu_task_pin(); \ 142 _ret = this_cpu_ptr(ptr); \ 143 if (!spin_trylock(&_ret->member)) { \ 144 pcpu_task_unpin(); \ 145 _ret = NULL; \ 146 } \ 147 _ret; \ 148 }) 149 150 #define pcpu_spin_unlock(member, ptr) \ 151 ({ \ 152 spin_unlock(&ptr->member); \ 153 pcpu_task_unpin(); \ 154 }) 155 156 /* struct per_cpu_pages specific helpers. */ 157 #define pcp_spin_lock(ptr) \ 158 pcpu_spin_lock(struct per_cpu_pages, lock, ptr) 159 160 #define pcp_spin_trylock(ptr) \ 161 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr) 162 163 #define pcp_spin_unlock(ptr) \ 164 pcpu_spin_unlock(lock, ptr) 165 166 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 167 DEFINE_PER_CPU(int, numa_node); 168 EXPORT_PER_CPU_SYMBOL(numa_node); 169 #endif 170 171 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 172 173 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 174 /* 175 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 176 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 177 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 178 * defined in <linux/topology.h>. 179 */ 180 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 181 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 182 #endif 183 184 static DEFINE_MUTEX(pcpu_drain_mutex); 185 186 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 187 volatile unsigned long latent_entropy __latent_entropy; 188 EXPORT_SYMBOL(latent_entropy); 189 #endif 190 191 /* 192 * Array of node states. 193 */ 194 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 195 [N_POSSIBLE] = NODE_MASK_ALL, 196 [N_ONLINE] = { { [0] = 1UL } }, 197 #ifndef CONFIG_NUMA 198 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 199 #ifdef CONFIG_HIGHMEM 200 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 201 #endif 202 [N_MEMORY] = { { [0] = 1UL } }, 203 [N_CPU] = { { [0] = 1UL } }, 204 #endif /* NUMA */ 205 }; 206 EXPORT_SYMBOL(node_states); 207 208 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 209 210 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 211 unsigned int pageblock_order __read_mostly; 212 #endif 213 214 static void __free_pages_ok(struct page *page, unsigned int order, 215 fpi_t fpi_flags); 216 217 /* 218 * results with 256, 32 in the lowmem_reserve sysctl: 219 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 220 * 1G machine -> (16M dma, 784M normal, 224M high) 221 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 222 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 223 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 224 * 225 * TBD: should special case ZONE_DMA32 machines here - in those we normally 226 * don't need any ZONE_NORMAL reservation 227 */ 228 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 229 #ifdef CONFIG_ZONE_DMA 230 [ZONE_DMA] = 256, 231 #endif 232 #ifdef CONFIG_ZONE_DMA32 233 [ZONE_DMA32] = 256, 234 #endif 235 [ZONE_NORMAL] = 32, 236 #ifdef CONFIG_HIGHMEM 237 [ZONE_HIGHMEM] = 0, 238 #endif 239 [ZONE_MOVABLE] = 0, 240 }; 241 242 char * const zone_names[MAX_NR_ZONES] = { 243 #ifdef CONFIG_ZONE_DMA 244 "DMA", 245 #endif 246 #ifdef CONFIG_ZONE_DMA32 247 "DMA32", 248 #endif 249 "Normal", 250 #ifdef CONFIG_HIGHMEM 251 "HighMem", 252 #endif 253 "Movable", 254 #ifdef CONFIG_ZONE_DEVICE 255 "Device", 256 #endif 257 }; 258 259 const char * const migratetype_names[MIGRATE_TYPES] = { 260 "Unmovable", 261 "Movable", 262 "Reclaimable", 263 "HighAtomic", 264 #ifdef CONFIG_CMA 265 "CMA", 266 #endif 267 #ifdef CONFIG_MEMORY_ISOLATION 268 "Isolate", 269 #endif 270 }; 271 272 int min_free_kbytes = 1024; 273 int user_min_free_kbytes = -1; 274 static int watermark_boost_factor __read_mostly = 15000; 275 static int watermark_scale_factor = 10; 276 277 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 278 int movable_zone; 279 EXPORT_SYMBOL(movable_zone); 280 281 #if MAX_NUMNODES > 1 282 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 283 unsigned int nr_online_nodes __read_mostly = 1; 284 EXPORT_SYMBOL(nr_node_ids); 285 EXPORT_SYMBOL(nr_online_nodes); 286 #endif 287 288 static bool page_contains_unaccepted(struct page *page, unsigned int order); 289 static bool cond_accept_memory(struct zone *zone, unsigned int order); 290 static bool __free_unaccepted(struct page *page); 291 292 int page_group_by_mobility_disabled __read_mostly; 293 294 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 295 /* 296 * During boot we initialize deferred pages on-demand, as needed, but once 297 * page_alloc_init_late() has finished, the deferred pages are all initialized, 298 * and we can permanently disable that path. 299 */ 300 DEFINE_STATIC_KEY_TRUE(deferred_pages); 301 deferred_pages_enabled(void)302 static inline bool deferred_pages_enabled(void) 303 { 304 return static_branch_unlikely(&deferred_pages); 305 } 306 307 /* 308 * deferred_grow_zone() is __init, but it is called from 309 * get_page_from_freelist() during early boot until deferred_pages permanently 310 * disables this call. This is why we have refdata wrapper to avoid warning, 311 * and to ensure that the function body gets unloaded. 312 */ 313 static bool __ref _deferred_grow_zone(struct zone * zone,unsigned int order)314 _deferred_grow_zone(struct zone *zone, unsigned int order) 315 { 316 return deferred_grow_zone(zone, order); 317 } 318 #else deferred_pages_enabled(void)319 static inline bool deferred_pages_enabled(void) 320 { 321 return false; 322 } 323 _deferred_grow_zone(struct zone * zone,unsigned int order)324 static inline bool _deferred_grow_zone(struct zone *zone, unsigned int order) 325 { 326 return false; 327 } 328 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 329 330 /* Return a pointer to the bitmap storing bits affecting a block of pages */ get_pageblock_bitmap(const struct page * page,unsigned long pfn)331 static inline unsigned long *get_pageblock_bitmap(const struct page *page, 332 unsigned long pfn) 333 { 334 #ifdef CONFIG_SPARSEMEM 335 return section_to_usemap(__pfn_to_section(pfn)); 336 #else 337 return page_zone(page)->pageblock_flags; 338 #endif /* CONFIG_SPARSEMEM */ 339 } 340 pfn_to_bitidx(const struct page * page,unsigned long pfn)341 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 342 { 343 #ifdef CONFIG_SPARSEMEM 344 pfn &= (PAGES_PER_SECTION-1); 345 #else 346 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn); 347 #endif /* CONFIG_SPARSEMEM */ 348 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 349 } 350 351 /** 352 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 353 * @page: The page within the block of interest 354 * @pfn: The target page frame number 355 * @mask: mask of bits that the caller is interested in 356 * 357 * Return: pageblock_bits flags 358 */ get_pfnblock_flags_mask(const struct page * page,unsigned long pfn,unsigned long mask)359 unsigned long get_pfnblock_flags_mask(const struct page *page, 360 unsigned long pfn, unsigned long mask) 361 { 362 unsigned long *bitmap; 363 unsigned long bitidx, word_bitidx; 364 unsigned long word; 365 366 bitmap = get_pageblock_bitmap(page, pfn); 367 bitidx = pfn_to_bitidx(page, pfn); 368 word_bitidx = bitidx / BITS_PER_LONG; 369 bitidx &= (BITS_PER_LONG-1); 370 /* 371 * This races, without locks, with set_pfnblock_flags_mask(). Ensure 372 * a consistent read of the memory array, so that results, even though 373 * racy, are not corrupted. 374 */ 375 word = READ_ONCE(bitmap[word_bitidx]); 376 return (word >> bitidx) & mask; 377 } 378 get_pfnblock_migratetype(const struct page * page,unsigned long pfn)379 static __always_inline int get_pfnblock_migratetype(const struct page *page, 380 unsigned long pfn) 381 { 382 return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 383 } 384 385 /** 386 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 387 * @page: The page within the block of interest 388 * @flags: The flags to set 389 * @pfn: The target page frame number 390 * @mask: mask of bits that the caller is interested in 391 */ set_pfnblock_flags_mask(struct page * page,unsigned long flags,unsigned long pfn,unsigned long mask)392 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 393 unsigned long pfn, 394 unsigned long mask) 395 { 396 unsigned long *bitmap; 397 unsigned long bitidx, word_bitidx; 398 unsigned long word; 399 400 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 401 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 402 403 bitmap = get_pageblock_bitmap(page, pfn); 404 bitidx = pfn_to_bitidx(page, pfn); 405 word_bitidx = bitidx / BITS_PER_LONG; 406 bitidx &= (BITS_PER_LONG-1); 407 408 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 409 410 mask <<= bitidx; 411 flags <<= bitidx; 412 413 word = READ_ONCE(bitmap[word_bitidx]); 414 do { 415 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags)); 416 } 417 set_pageblock_migratetype(struct page * page,int migratetype)418 void set_pageblock_migratetype(struct page *page, int migratetype) 419 { 420 if (unlikely(page_group_by_mobility_disabled && 421 migratetype < MIGRATE_PCPTYPES)) 422 migratetype = MIGRATE_UNMOVABLE; 423 424 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 425 page_to_pfn(page), MIGRATETYPE_MASK); 426 } 427 428 #ifdef CONFIG_DEBUG_VM page_outside_zone_boundaries(struct zone * zone,struct page * page)429 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 430 { 431 int ret; 432 unsigned seq; 433 unsigned long pfn = page_to_pfn(page); 434 unsigned long sp, start_pfn; 435 436 do { 437 seq = zone_span_seqbegin(zone); 438 start_pfn = zone->zone_start_pfn; 439 sp = zone->spanned_pages; 440 ret = !zone_spans_pfn(zone, pfn); 441 } while (zone_span_seqretry(zone, seq)); 442 443 if (ret) 444 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 445 pfn, zone_to_nid(zone), zone->name, 446 start_pfn, start_pfn + sp); 447 448 return ret; 449 } 450 451 /* 452 * Temporary debugging check for pages not lying within a given zone. 453 */ bad_range(struct zone * zone,struct page * page)454 static bool __maybe_unused bad_range(struct zone *zone, struct page *page) 455 { 456 if (page_outside_zone_boundaries(zone, page)) 457 return true; 458 if (zone != page_zone(page)) 459 return true; 460 461 return false; 462 } 463 #else bad_range(struct zone * zone,struct page * page)464 static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page) 465 { 466 return false; 467 } 468 #endif 469 bad_page(struct page * page,const char * reason)470 static void bad_page(struct page *page, const char *reason) 471 { 472 static unsigned long resume; 473 static unsigned long nr_shown; 474 static unsigned long nr_unshown; 475 476 /* 477 * Allow a burst of 60 reports, then keep quiet for that minute; 478 * or allow a steady drip of one report per second. 479 */ 480 if (nr_shown == 60) { 481 if (time_before(jiffies, resume)) { 482 nr_unshown++; 483 goto out; 484 } 485 if (nr_unshown) { 486 pr_alert( 487 "BUG: Bad page state: %lu messages suppressed\n", 488 nr_unshown); 489 nr_unshown = 0; 490 } 491 nr_shown = 0; 492 } 493 if (nr_shown++ == 0) 494 resume = jiffies + 60 * HZ; 495 496 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 497 current->comm, page_to_pfn(page)); 498 dump_page(page, reason); 499 500 print_modules(); 501 dump_stack(); 502 out: 503 /* Leave bad fields for debug, except PageBuddy could make trouble */ 504 if (PageBuddy(page)) 505 __ClearPageBuddy(page); 506 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 507 } 508 order_to_pindex(int migratetype,int order)509 static inline unsigned int order_to_pindex(int migratetype, int order) 510 { 511 bool __maybe_unused movable; 512 513 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 514 if (order > PAGE_ALLOC_COSTLY_ORDER) { 515 VM_BUG_ON(order != HPAGE_PMD_ORDER); 516 517 movable = migratetype == MIGRATE_MOVABLE; 518 519 return NR_LOWORDER_PCP_LISTS + movable; 520 } 521 #else 522 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 523 #endif 524 525 return (MIGRATE_PCPTYPES * order) + migratetype; 526 } 527 pindex_to_order(unsigned int pindex)528 static inline int pindex_to_order(unsigned int pindex) 529 { 530 int order = pindex / MIGRATE_PCPTYPES; 531 532 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 533 if (pindex >= NR_LOWORDER_PCP_LISTS) 534 order = HPAGE_PMD_ORDER; 535 #else 536 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 537 #endif 538 539 return order; 540 } 541 pcp_allowed_order(unsigned int order)542 static inline bool pcp_allowed_order(unsigned int order) 543 { 544 if (order <= PAGE_ALLOC_COSTLY_ORDER) 545 return true; 546 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 547 if (order == HPAGE_PMD_ORDER) 548 return true; 549 #endif 550 return false; 551 } 552 553 /* 554 * Higher-order pages are called "compound pages". They are structured thusly: 555 * 556 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 557 * 558 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 559 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 560 * 561 * The first tail page's ->compound_order holds the order of allocation. 562 * This usage means that zero-order pages may not be compound. 563 */ 564 prep_compound_page(struct page * page,unsigned int order)565 void prep_compound_page(struct page *page, unsigned int order) 566 { 567 int i; 568 int nr_pages = 1 << order; 569 570 __SetPageHead(page); 571 for (i = 1; i < nr_pages; i++) 572 prep_compound_tail(page, i); 573 574 prep_compound_head(page, order); 575 } 576 set_buddy_order(struct page * page,unsigned int order)577 static inline void set_buddy_order(struct page *page, unsigned int order) 578 { 579 set_page_private(page, order); 580 __SetPageBuddy(page); 581 } 582 583 #ifdef CONFIG_COMPACTION task_capc(struct zone * zone)584 static inline struct capture_control *task_capc(struct zone *zone) 585 { 586 struct capture_control *capc = current->capture_control; 587 588 return unlikely(capc) && 589 !(current->flags & PF_KTHREAD) && 590 !capc->page && 591 capc->cc->zone == zone ? capc : NULL; 592 } 593 594 static inline bool compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)595 compaction_capture(struct capture_control *capc, struct page *page, 596 int order, int migratetype) 597 { 598 if (!capc || order != capc->cc->order) 599 return false; 600 601 /* Do not accidentally pollute CMA or isolated regions*/ 602 if (is_migrate_cma(migratetype) || 603 is_migrate_isolate(migratetype)) 604 return false; 605 606 /* 607 * Do not let lower order allocations pollute a movable pageblock 608 * unless compaction is also requesting movable pages. 609 * This might let an unmovable request use a reclaimable pageblock 610 * and vice-versa but no more than normal fallback logic which can 611 * have trouble finding a high-order free page. 612 */ 613 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE && 614 capc->cc->migratetype != MIGRATE_MOVABLE) 615 return false; 616 617 capc->page = page; 618 return true; 619 } 620 621 #else task_capc(struct zone * zone)622 static inline struct capture_control *task_capc(struct zone *zone) 623 { 624 return NULL; 625 } 626 627 static inline bool compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)628 compaction_capture(struct capture_control *capc, struct page *page, 629 int order, int migratetype) 630 { 631 return false; 632 } 633 #endif /* CONFIG_COMPACTION */ 634 account_freepages(struct zone * zone,int nr_pages,int migratetype)635 static inline void account_freepages(struct zone *zone, int nr_pages, 636 int migratetype) 637 { 638 lockdep_assert_held(&zone->lock); 639 640 if (is_migrate_isolate(migratetype)) 641 return; 642 643 __mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages); 644 645 if (is_migrate_cma(migratetype)) 646 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages); 647 else if (is_migrate_highatomic(migratetype)) 648 WRITE_ONCE(zone->nr_free_highatomic, 649 zone->nr_free_highatomic + nr_pages); 650 } 651 652 /* Used for pages not on another list */ __add_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype,bool tail)653 static inline void __add_to_free_list(struct page *page, struct zone *zone, 654 unsigned int order, int migratetype, 655 bool tail) 656 { 657 struct free_area *area = &zone->free_area[order]; 658 659 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype, 660 "page type is %lu, passed migratetype is %d (nr=%d)\n", 661 get_pageblock_migratetype(page), migratetype, 1 << order); 662 663 if (tail) 664 list_add_tail(&page->buddy_list, &area->free_list[migratetype]); 665 else 666 list_add(&page->buddy_list, &area->free_list[migratetype]); 667 area->nr_free++; 668 } 669 670 /* 671 * Used for pages which are on another list. Move the pages to the tail 672 * of the list - so the moved pages won't immediately be considered for 673 * allocation again (e.g., optimization for memory onlining). 674 */ move_to_free_list(struct page * page,struct zone * zone,unsigned int order,int old_mt,int new_mt)675 static inline void move_to_free_list(struct page *page, struct zone *zone, 676 unsigned int order, int old_mt, int new_mt) 677 { 678 struct free_area *area = &zone->free_area[order]; 679 680 /* Free page moving can fail, so it happens before the type update */ 681 VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt, 682 "page type is %lu, passed migratetype is %d (nr=%d)\n", 683 get_pageblock_migratetype(page), old_mt, 1 << order); 684 685 list_move_tail(&page->buddy_list, &area->free_list[new_mt]); 686 687 account_freepages(zone, -(1 << order), old_mt); 688 account_freepages(zone, 1 << order, new_mt); 689 } 690 __del_page_from_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)691 static inline void __del_page_from_free_list(struct page *page, struct zone *zone, 692 unsigned int order, int migratetype) 693 { 694 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype, 695 "page type is %lu, passed migratetype is %d (nr=%d)\n", 696 get_pageblock_migratetype(page), migratetype, 1 << order); 697 698 /* clear reported state and update reported page count */ 699 if (page_reported(page)) 700 __ClearPageReported(page); 701 702 list_del(&page->buddy_list); 703 __ClearPageBuddy(page); 704 set_page_private(page, 0); 705 zone->free_area[order].nr_free--; 706 } 707 del_page_from_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)708 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 709 unsigned int order, int migratetype) 710 { 711 __del_page_from_free_list(page, zone, order, migratetype); 712 account_freepages(zone, -(1 << order), migratetype); 713 } 714 get_page_from_free_area(struct free_area * area,int migratetype)715 static inline struct page *get_page_from_free_area(struct free_area *area, 716 int migratetype) 717 { 718 return list_first_entry_or_null(&area->free_list[migratetype], 719 struct page, buddy_list); 720 } 721 722 /* 723 * If this is less than the 2nd largest possible page, check if the buddy 724 * of the next-higher order is free. If it is, it's possible 725 * that pages are being freed that will coalesce soon. In case, 726 * that is happening, add the free page to the tail of the list 727 * so it's less likely to be used soon and more likely to be merged 728 * as a 2-level higher order page 729 */ 730 static inline bool buddy_merge_likely(unsigned long pfn,unsigned long buddy_pfn,struct page * page,unsigned int order)731 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 732 struct page *page, unsigned int order) 733 { 734 unsigned long higher_page_pfn; 735 struct page *higher_page; 736 737 if (order >= MAX_PAGE_ORDER - 1) 738 return false; 739 740 higher_page_pfn = buddy_pfn & pfn; 741 higher_page = page + (higher_page_pfn - pfn); 742 743 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1, 744 NULL) != NULL; 745 } 746 747 /* 748 * Freeing function for a buddy system allocator. 749 * 750 * The concept of a buddy system is to maintain direct-mapped table 751 * (containing bit values) for memory blocks of various "orders". 752 * The bottom level table contains the map for the smallest allocatable 753 * units of memory (here, pages), and each level above it describes 754 * pairs of units from the levels below, hence, "buddies". 755 * At a high level, all that happens here is marking the table entry 756 * at the bottom level available, and propagating the changes upward 757 * as necessary, plus some accounting needed to play nicely with other 758 * parts of the VM system. 759 * At each level, we keep a list of pages, which are heads of continuous 760 * free pages of length of (1 << order) and marked with PageBuddy. 761 * Page's order is recorded in page_private(page) field. 762 * So when we are allocating or freeing one, we can derive the state of the 763 * other. That is, if we allocate a small block, and both were 764 * free, the remainder of the region must be split into blocks. 765 * If a block is freed, and its buddy is also free, then this 766 * triggers coalescing into a block of larger size. 767 * 768 * -- nyc 769 */ 770 __free_one_page(struct page * page,unsigned long pfn,struct zone * zone,unsigned int order,int migratetype,fpi_t fpi_flags)771 static inline void __free_one_page(struct page *page, 772 unsigned long pfn, 773 struct zone *zone, unsigned int order, 774 int migratetype, fpi_t fpi_flags) 775 { 776 struct capture_control *capc = task_capc(zone); 777 unsigned long buddy_pfn = 0; 778 unsigned long combined_pfn; 779 struct page *buddy; 780 bool to_tail; 781 782 VM_BUG_ON(!zone_is_initialized(zone)); 783 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 784 785 VM_BUG_ON(migratetype == -1); 786 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 787 VM_BUG_ON_PAGE(bad_range(zone, page), page); 788 789 account_freepages(zone, 1 << order, migratetype); 790 791 while (order < MAX_PAGE_ORDER) { 792 int buddy_mt = migratetype; 793 794 if (compaction_capture(capc, page, order, migratetype)) { 795 account_freepages(zone, -(1 << order), migratetype); 796 return; 797 } 798 799 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn); 800 if (!buddy) 801 goto done_merging; 802 803 if (unlikely(order >= pageblock_order)) { 804 /* 805 * We want to prevent merge between freepages on pageblock 806 * without fallbacks and normal pageblock. Without this, 807 * pageblock isolation could cause incorrect freepage or CMA 808 * accounting or HIGHATOMIC accounting. 809 */ 810 buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn); 811 812 if (migratetype != buddy_mt && 813 (!migratetype_is_mergeable(migratetype) || 814 !migratetype_is_mergeable(buddy_mt))) 815 goto done_merging; 816 } 817 818 /* 819 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 820 * merge with it and move up one order. 821 */ 822 if (page_is_guard(buddy)) 823 clear_page_guard(zone, buddy, order); 824 else 825 __del_page_from_free_list(buddy, zone, order, buddy_mt); 826 827 if (unlikely(buddy_mt != migratetype)) { 828 /* 829 * Match buddy type. This ensures that an 830 * expand() down the line puts the sub-blocks 831 * on the right freelists. 832 */ 833 set_pageblock_migratetype(buddy, migratetype); 834 } 835 836 combined_pfn = buddy_pfn & pfn; 837 page = page + (combined_pfn - pfn); 838 pfn = combined_pfn; 839 order++; 840 } 841 842 done_merging: 843 set_buddy_order(page, order); 844 845 if (fpi_flags & FPI_TO_TAIL) 846 to_tail = true; 847 else if (is_shuffle_order(order)) 848 to_tail = shuffle_pick_tail(); 849 else 850 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 851 852 __add_to_free_list(page, zone, order, migratetype, to_tail); 853 854 /* Notify page reporting subsystem of freed page */ 855 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 856 page_reporting_notify_free(order); 857 } 858 859 /* 860 * A bad page could be due to a number of fields. Instead of multiple branches, 861 * try and check multiple fields with one check. The caller must do a detailed 862 * check if necessary. 863 */ page_expected_state(struct page * page,unsigned long check_flags)864 static inline bool page_expected_state(struct page *page, 865 unsigned long check_flags) 866 { 867 if (unlikely(atomic_read(&page->_mapcount) != -1)) 868 return false; 869 870 if (unlikely((unsigned long)page->mapping | 871 page_ref_count(page) | 872 #ifdef CONFIG_MEMCG 873 page->memcg_data | 874 #endif 875 #ifdef CONFIG_PAGE_POOL 876 ((page->pp_magic & ~0x3UL) == PP_SIGNATURE) | 877 #endif 878 (page->flags & check_flags))) 879 return false; 880 881 return true; 882 } 883 page_bad_reason(struct page * page,unsigned long flags)884 static const char *page_bad_reason(struct page *page, unsigned long flags) 885 { 886 const char *bad_reason = NULL; 887 888 if (unlikely(atomic_read(&page->_mapcount) != -1)) 889 bad_reason = "nonzero mapcount"; 890 if (unlikely(page->mapping != NULL)) 891 bad_reason = "non-NULL mapping"; 892 if (unlikely(page_ref_count(page) != 0)) 893 bad_reason = "nonzero _refcount"; 894 if (unlikely(page->flags & flags)) { 895 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 896 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 897 else 898 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 899 } 900 #ifdef CONFIG_MEMCG 901 if (unlikely(page->memcg_data)) 902 bad_reason = "page still charged to cgroup"; 903 #endif 904 #ifdef CONFIG_PAGE_POOL 905 if (unlikely((page->pp_magic & ~0x3UL) == PP_SIGNATURE)) 906 bad_reason = "page_pool leak"; 907 #endif 908 return bad_reason; 909 } 910 free_page_is_bad_report(struct page * page)911 static void free_page_is_bad_report(struct page *page) 912 { 913 bad_page(page, 914 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 915 } 916 free_page_is_bad(struct page * page)917 static inline bool free_page_is_bad(struct page *page) 918 { 919 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 920 return false; 921 922 /* Something has gone sideways, find it */ 923 free_page_is_bad_report(page); 924 return true; 925 } 926 is_check_pages_enabled(void)927 static inline bool is_check_pages_enabled(void) 928 { 929 return static_branch_unlikely(&check_pages_enabled); 930 } 931 free_tail_page_prepare(struct page * head_page,struct page * page)932 static int free_tail_page_prepare(struct page *head_page, struct page *page) 933 { 934 struct folio *folio = (struct folio *)head_page; 935 int ret = 1; 936 937 /* 938 * We rely page->lru.next never has bit 0 set, unless the page 939 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 940 */ 941 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 942 943 if (!is_check_pages_enabled()) { 944 ret = 0; 945 goto out; 946 } 947 switch (page - head_page) { 948 case 1: 949 /* the first tail page: these may be in place of ->mapping */ 950 if (unlikely(folio_entire_mapcount(folio))) { 951 bad_page(page, "nonzero entire_mapcount"); 952 goto out; 953 } 954 if (unlikely(folio_large_mapcount(folio))) { 955 bad_page(page, "nonzero large_mapcount"); 956 goto out; 957 } 958 if (unlikely(atomic_read(&folio->_nr_pages_mapped))) { 959 bad_page(page, "nonzero nr_pages_mapped"); 960 goto out; 961 } 962 if (unlikely(atomic_read(&folio->_pincount))) { 963 bad_page(page, "nonzero pincount"); 964 goto out; 965 } 966 break; 967 case 2: 968 /* the second tail page: deferred_list overlaps ->mapping */ 969 if (unlikely(!list_empty(&folio->_deferred_list))) { 970 bad_page(page, "on deferred list"); 971 goto out; 972 } 973 break; 974 default: 975 if (page->mapping != TAIL_MAPPING) { 976 bad_page(page, "corrupted mapping in tail page"); 977 goto out; 978 } 979 break; 980 } 981 if (unlikely(!PageTail(page))) { 982 bad_page(page, "PageTail not set"); 983 goto out; 984 } 985 if (unlikely(compound_head(page) != head_page)) { 986 bad_page(page, "compound_head not consistent"); 987 goto out; 988 } 989 ret = 0; 990 out: 991 page->mapping = NULL; 992 clear_compound_head(page); 993 return ret; 994 } 995 996 /* 997 * Skip KASAN memory poisoning when either: 998 * 999 * 1. For generic KASAN: deferred memory initialization has not yet completed. 1000 * Tag-based KASAN modes skip pages freed via deferred memory initialization 1001 * using page tags instead (see below). 1002 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating 1003 * that error detection is disabled for accesses via the page address. 1004 * 1005 * Pages will have match-all tags in the following circumstances: 1006 * 1007 * 1. Pages are being initialized for the first time, including during deferred 1008 * memory init; see the call to page_kasan_tag_reset in __init_single_page. 1009 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the 1010 * exception of pages unpoisoned by kasan_unpoison_vmalloc. 1011 * 3. The allocation was excluded from being checked due to sampling, 1012 * see the call to kasan_unpoison_pages. 1013 * 1014 * Poisoning pages during deferred memory init will greatly lengthen the 1015 * process and cause problem in large memory systems as the deferred pages 1016 * initialization is done with interrupt disabled. 1017 * 1018 * Assuming that there will be no reference to those newly initialized 1019 * pages before they are ever allocated, this should have no effect on 1020 * KASAN memory tracking as the poison will be properly inserted at page 1021 * allocation time. The only corner case is when pages are allocated by 1022 * on-demand allocation and then freed again before the deferred pages 1023 * initialization is done, but this is not likely to happen. 1024 */ should_skip_kasan_poison(struct page * page)1025 static inline bool should_skip_kasan_poison(struct page *page) 1026 { 1027 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 1028 return deferred_pages_enabled(); 1029 1030 return page_kasan_tag(page) == KASAN_TAG_KERNEL; 1031 } 1032 kernel_init_pages(struct page * page,int numpages)1033 static void kernel_init_pages(struct page *page, int numpages) 1034 { 1035 int i; 1036 1037 /* s390's use of memset() could override KASAN redzones. */ 1038 kasan_disable_current(); 1039 for (i = 0; i < numpages; i++) 1040 clear_highpage_kasan_tagged(page + i); 1041 kasan_enable_current(); 1042 } 1043 free_pages_prepare(struct page * page,unsigned int order)1044 __always_inline bool free_pages_prepare(struct page *page, 1045 unsigned int order) 1046 { 1047 int bad = 0; 1048 bool skip_kasan_poison = should_skip_kasan_poison(page); 1049 bool init = want_init_on_free(); 1050 bool compound = PageCompound(page); 1051 struct folio *folio = page_folio(page); 1052 1053 VM_BUG_ON_PAGE(PageTail(page), page); 1054 1055 trace_mm_page_free(page, order); 1056 kmsan_free_page(page, order); 1057 1058 if (memcg_kmem_online() && PageMemcgKmem(page)) 1059 __memcg_kmem_uncharge_page(page, order); 1060 1061 /* 1062 * In rare cases, when truncation or holepunching raced with 1063 * munlock after VM_LOCKED was cleared, Mlocked may still be 1064 * found set here. This does not indicate a problem, unless 1065 * "unevictable_pgs_cleared" appears worryingly large. 1066 */ 1067 if (unlikely(folio_test_mlocked(folio))) { 1068 long nr_pages = folio_nr_pages(folio); 1069 1070 __folio_clear_mlocked(folio); 1071 zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages); 1072 count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages); 1073 } 1074 1075 if (unlikely(PageHWPoison(page)) && !order) { 1076 /* Do not let hwpoison pages hit pcplists/buddy */ 1077 reset_page_owner(page, order); 1078 page_table_check_free(page, order); 1079 pgalloc_tag_sub(page, 1 << order); 1080 1081 /* 1082 * The page is isolated and accounted for. 1083 * Mark the codetag as empty to avoid accounting error 1084 * when the page is freed by unpoison_memory(). 1085 */ 1086 clear_page_tag_ref(page); 1087 return false; 1088 } 1089 1090 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1091 1092 /* 1093 * Check tail pages before head page information is cleared to 1094 * avoid checking PageCompound for order-0 pages. 1095 */ 1096 if (unlikely(order)) { 1097 int i; 1098 1099 if (compound) 1100 page[1].flags &= ~PAGE_FLAGS_SECOND; 1101 for (i = 1; i < (1 << order); i++) { 1102 if (compound) 1103 bad += free_tail_page_prepare(page, page + i); 1104 if (is_check_pages_enabled()) { 1105 if (free_page_is_bad(page + i)) { 1106 bad++; 1107 continue; 1108 } 1109 } 1110 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1111 } 1112 } 1113 if (PageMappingFlags(page)) { 1114 if (PageAnon(page)) 1115 mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1); 1116 page->mapping = NULL; 1117 } 1118 if (is_check_pages_enabled()) { 1119 if (free_page_is_bad(page)) 1120 bad++; 1121 if (bad) 1122 return false; 1123 } 1124 1125 page_cpupid_reset_last(page); 1126 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1127 reset_page_owner(page, order); 1128 page_table_check_free(page, order); 1129 pgalloc_tag_sub(page, 1 << order); 1130 1131 if (!PageHighMem(page)) { 1132 debug_check_no_locks_freed(page_address(page), 1133 PAGE_SIZE << order); 1134 debug_check_no_obj_freed(page_address(page), 1135 PAGE_SIZE << order); 1136 } 1137 1138 kernel_poison_pages(page, 1 << order); 1139 1140 /* 1141 * As memory initialization might be integrated into KASAN, 1142 * KASAN poisoning and memory initialization code must be 1143 * kept together to avoid discrepancies in behavior. 1144 * 1145 * With hardware tag-based KASAN, memory tags must be set before the 1146 * page becomes unavailable via debug_pagealloc or arch_free_page. 1147 */ 1148 if (!skip_kasan_poison) { 1149 kasan_poison_pages(page, order, init); 1150 1151 /* Memory is already initialized if KASAN did it internally. */ 1152 if (kasan_has_integrated_init()) 1153 init = false; 1154 } 1155 if (init) 1156 kernel_init_pages(page, 1 << order); 1157 1158 /* 1159 * arch_free_page() can make the page's contents inaccessible. s390 1160 * does this. So nothing which can access the page's contents should 1161 * happen after this. 1162 */ 1163 arch_free_page(page, order); 1164 1165 debug_pagealloc_unmap_pages(page, 1 << order); 1166 1167 return true; 1168 } 1169 1170 /* 1171 * Frees a number of pages from the PCP lists 1172 * Assumes all pages on list are in same zone. 1173 * count is the number of pages to free. 1174 */ free_pcppages_bulk(struct zone * zone,int count,struct per_cpu_pages * pcp,int pindex)1175 static void free_pcppages_bulk(struct zone *zone, int count, 1176 struct per_cpu_pages *pcp, 1177 int pindex) 1178 { 1179 unsigned long flags; 1180 unsigned int order; 1181 struct page *page; 1182 1183 /* 1184 * Ensure proper count is passed which otherwise would stuck in the 1185 * below while (list_empty(list)) loop. 1186 */ 1187 count = min(pcp->count, count); 1188 1189 /* Ensure requested pindex is drained first. */ 1190 pindex = pindex - 1; 1191 1192 spin_lock_irqsave(&zone->lock, flags); 1193 1194 while (count > 0) { 1195 struct list_head *list; 1196 int nr_pages; 1197 1198 /* Remove pages from lists in a round-robin fashion. */ 1199 do { 1200 if (++pindex > NR_PCP_LISTS - 1) 1201 pindex = 0; 1202 list = &pcp->lists[pindex]; 1203 } while (list_empty(list)); 1204 1205 order = pindex_to_order(pindex); 1206 nr_pages = 1 << order; 1207 do { 1208 unsigned long pfn; 1209 int mt; 1210 1211 page = list_last_entry(list, struct page, pcp_list); 1212 pfn = page_to_pfn(page); 1213 mt = get_pfnblock_migratetype(page, pfn); 1214 1215 /* must delete to avoid corrupting pcp list */ 1216 list_del(&page->pcp_list); 1217 count -= nr_pages; 1218 pcp->count -= nr_pages; 1219 1220 __free_one_page(page, pfn, zone, order, mt, FPI_NONE); 1221 trace_mm_page_pcpu_drain(page, order, mt); 1222 } while (count > 0 && !list_empty(list)); 1223 } 1224 1225 spin_unlock_irqrestore(&zone->lock, flags); 1226 } 1227 1228 /* Split a multi-block free page into its individual pageblocks. */ split_large_buddy(struct zone * zone,struct page * page,unsigned long pfn,int order,fpi_t fpi)1229 static void split_large_buddy(struct zone *zone, struct page *page, 1230 unsigned long pfn, int order, fpi_t fpi) 1231 { 1232 unsigned long end = pfn + (1 << order); 1233 1234 VM_WARN_ON_ONCE(!IS_ALIGNED(pfn, 1 << order)); 1235 /* Caller removed page from freelist, buddy info cleared! */ 1236 VM_WARN_ON_ONCE(PageBuddy(page)); 1237 1238 if (order > pageblock_order) 1239 order = pageblock_order; 1240 1241 do { 1242 int mt = get_pfnblock_migratetype(page, pfn); 1243 1244 __free_one_page(page, pfn, zone, order, mt, fpi); 1245 pfn += 1 << order; 1246 if (pfn == end) 1247 break; 1248 page = pfn_to_page(pfn); 1249 } while (1); 1250 } 1251 free_one_page(struct zone * zone,struct page * page,unsigned long pfn,unsigned int order,fpi_t fpi_flags)1252 static void free_one_page(struct zone *zone, struct page *page, 1253 unsigned long pfn, unsigned int order, 1254 fpi_t fpi_flags) 1255 { 1256 unsigned long flags; 1257 1258 spin_lock_irqsave(&zone->lock, flags); 1259 split_large_buddy(zone, page, pfn, order, fpi_flags); 1260 spin_unlock_irqrestore(&zone->lock, flags); 1261 1262 __count_vm_events(PGFREE, 1 << order); 1263 } 1264 __free_pages_ok(struct page * page,unsigned int order,fpi_t fpi_flags)1265 static void __free_pages_ok(struct page *page, unsigned int order, 1266 fpi_t fpi_flags) 1267 { 1268 unsigned long pfn = page_to_pfn(page); 1269 struct zone *zone = page_zone(page); 1270 1271 if (free_pages_prepare(page, order)) 1272 free_one_page(zone, page, pfn, order, fpi_flags); 1273 } 1274 __free_pages_core(struct page * page,unsigned int order,enum meminit_context context)1275 void __meminit __free_pages_core(struct page *page, unsigned int order, 1276 enum meminit_context context) 1277 { 1278 unsigned int nr_pages = 1 << order; 1279 struct page *p = page; 1280 unsigned int loop; 1281 1282 /* 1283 * When initializing the memmap, __init_single_page() sets the refcount 1284 * of all pages to 1 ("allocated"/"not free"). We have to set the 1285 * refcount of all involved pages to 0. 1286 * 1287 * Note that hotplugged memory pages are initialized to PageOffline(). 1288 * Pages freed from memblock might be marked as reserved. 1289 */ 1290 if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) && 1291 unlikely(context == MEMINIT_HOTPLUG)) { 1292 for (loop = 0; loop < nr_pages; loop++, p++) { 1293 VM_WARN_ON_ONCE(PageReserved(p)); 1294 __ClearPageOffline(p); 1295 set_page_count(p, 0); 1296 } 1297 1298 adjust_managed_page_count(page, nr_pages); 1299 } else { 1300 for (loop = 0; loop < nr_pages; loop++, p++) { 1301 __ClearPageReserved(p); 1302 set_page_count(p, 0); 1303 } 1304 1305 /* memblock adjusts totalram_pages() manually. */ 1306 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1307 } 1308 1309 if (page_contains_unaccepted(page, order)) { 1310 if (order == MAX_PAGE_ORDER && __free_unaccepted(page)) 1311 return; 1312 1313 accept_memory(page_to_phys(page), PAGE_SIZE << order); 1314 } 1315 1316 /* 1317 * Bypass PCP and place fresh pages right to the tail, primarily 1318 * relevant for memory onlining. 1319 */ 1320 __free_pages_ok(page, order, FPI_TO_TAIL); 1321 } 1322 1323 /* 1324 * Check that the whole (or subset of) a pageblock given by the interval of 1325 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1326 * with the migration of free compaction scanner. 1327 * 1328 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1329 * 1330 * It's possible on some configurations to have a setup like node0 node1 node0 1331 * i.e. it's possible that all pages within a zones range of pages do not 1332 * belong to a single zone. We assume that a border between node0 and node1 1333 * can occur within a single pageblock, but not a node0 node1 node0 1334 * interleaving within a single pageblock. It is therefore sufficient to check 1335 * the first and last page of a pageblock and avoid checking each individual 1336 * page in a pageblock. 1337 * 1338 * Note: the function may return non-NULL struct page even for a page block 1339 * which contains a memory hole (i.e. there is no physical memory for a subset 1340 * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which 1341 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole 1342 * even though the start pfn is online and valid. This should be safe most of 1343 * the time because struct pages are still initialized via init_unavailable_range() 1344 * and pfn walkers shouldn't touch any physical memory range for which they do 1345 * not recognize any specific metadata in struct pages. 1346 */ __pageblock_pfn_to_page(unsigned long start_pfn,unsigned long end_pfn,struct zone * zone)1347 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1348 unsigned long end_pfn, struct zone *zone) 1349 { 1350 struct page *start_page; 1351 struct page *end_page; 1352 1353 /* end_pfn is one past the range we are checking */ 1354 end_pfn--; 1355 1356 if (!pfn_valid(end_pfn)) 1357 return NULL; 1358 1359 start_page = pfn_to_online_page(start_pfn); 1360 if (!start_page) 1361 return NULL; 1362 1363 if (page_zone(start_page) != zone) 1364 return NULL; 1365 1366 end_page = pfn_to_page(end_pfn); 1367 1368 /* This gives a shorter code than deriving page_zone(end_page) */ 1369 if (page_zone_id(start_page) != page_zone_id(end_page)) 1370 return NULL; 1371 1372 return start_page; 1373 } 1374 1375 /* 1376 * The order of subdivision here is critical for the IO subsystem. 1377 * Please do not alter this order without good reasons and regression 1378 * testing. Specifically, as large blocks of memory are subdivided, 1379 * the order in which smaller blocks are delivered depends on the order 1380 * they're subdivided in this function. This is the primary factor 1381 * influencing the order in which pages are delivered to the IO 1382 * subsystem according to empirical testing, and this is also justified 1383 * by considering the behavior of a buddy system containing a single 1384 * large block of memory acted on by a series of small allocations. 1385 * This behavior is a critical factor in sglist merging's success. 1386 * 1387 * -- nyc 1388 */ expand(struct zone * zone,struct page * page,int low,int high,int migratetype)1389 static inline unsigned int expand(struct zone *zone, struct page *page, int low, 1390 int high, int migratetype) 1391 { 1392 unsigned int size = 1 << high; 1393 unsigned int nr_added = 0; 1394 1395 while (high > low) { 1396 high--; 1397 size >>= 1; 1398 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1399 1400 /* 1401 * Mark as guard pages (or page), that will allow to 1402 * merge back to allocator when buddy will be freed. 1403 * Corresponding page table entries will not be touched, 1404 * pages will stay not present in virtual address space 1405 */ 1406 if (set_page_guard(zone, &page[size], high)) 1407 continue; 1408 1409 __add_to_free_list(&page[size], zone, high, migratetype, false); 1410 set_buddy_order(&page[size], high); 1411 nr_added += size; 1412 } 1413 1414 return nr_added; 1415 } 1416 page_del_and_expand(struct zone * zone,struct page * page,int low,int high,int migratetype)1417 static __always_inline void page_del_and_expand(struct zone *zone, 1418 struct page *page, int low, 1419 int high, int migratetype) 1420 { 1421 int nr_pages = 1 << high; 1422 1423 __del_page_from_free_list(page, zone, high, migratetype); 1424 nr_pages -= expand(zone, page, low, high, migratetype); 1425 account_freepages(zone, -nr_pages, migratetype); 1426 } 1427 check_new_page_bad(struct page * page)1428 static void check_new_page_bad(struct page *page) 1429 { 1430 if (unlikely(page->flags & __PG_HWPOISON)) { 1431 /* Don't complain about hwpoisoned pages */ 1432 if (PageBuddy(page)) 1433 __ClearPageBuddy(page); 1434 return; 1435 } 1436 1437 bad_page(page, 1438 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 1439 } 1440 1441 /* 1442 * This page is about to be returned from the page allocator 1443 */ check_new_page(struct page * page)1444 static bool check_new_page(struct page *page) 1445 { 1446 if (likely(page_expected_state(page, 1447 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1448 return false; 1449 1450 check_new_page_bad(page); 1451 return true; 1452 } 1453 check_new_pages(struct page * page,unsigned int order)1454 static inline bool check_new_pages(struct page *page, unsigned int order) 1455 { 1456 if (is_check_pages_enabled()) { 1457 for (int i = 0; i < (1 << order); i++) { 1458 struct page *p = page + i; 1459 1460 if (check_new_page(p)) 1461 return true; 1462 } 1463 } 1464 1465 return false; 1466 } 1467 should_skip_kasan_unpoison(gfp_t flags)1468 static inline bool should_skip_kasan_unpoison(gfp_t flags) 1469 { 1470 /* Don't skip if a software KASAN mode is enabled. */ 1471 if (IS_ENABLED(CONFIG_KASAN_GENERIC) || 1472 IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 1473 return false; 1474 1475 /* Skip, if hardware tag-based KASAN is not enabled. */ 1476 if (!kasan_hw_tags_enabled()) 1477 return true; 1478 1479 /* 1480 * With hardware tag-based KASAN enabled, skip if this has been 1481 * requested via __GFP_SKIP_KASAN. 1482 */ 1483 return flags & __GFP_SKIP_KASAN; 1484 } 1485 should_skip_init(gfp_t flags)1486 static inline bool should_skip_init(gfp_t flags) 1487 { 1488 /* Don't skip, if hardware tag-based KASAN is not enabled. */ 1489 if (!kasan_hw_tags_enabled()) 1490 return false; 1491 1492 /* For hardware tag-based KASAN, skip if requested. */ 1493 return (flags & __GFP_SKIP_ZERO); 1494 } 1495 post_alloc_hook(struct page * page,unsigned int order,gfp_t gfp_flags)1496 inline void post_alloc_hook(struct page *page, unsigned int order, 1497 gfp_t gfp_flags) 1498 { 1499 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) && 1500 !should_skip_init(gfp_flags); 1501 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS); 1502 int i; 1503 1504 set_page_private(page, 0); 1505 1506 arch_alloc_page(page, order); 1507 debug_pagealloc_map_pages(page, 1 << order); 1508 1509 /* 1510 * Page unpoisoning must happen before memory initialization. 1511 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 1512 * allocations and the page unpoisoning code will complain. 1513 */ 1514 kernel_unpoison_pages(page, 1 << order); 1515 1516 /* 1517 * As memory initialization might be integrated into KASAN, 1518 * KASAN unpoisoning and memory initializion code must be 1519 * kept together to avoid discrepancies in behavior. 1520 */ 1521 1522 /* 1523 * If memory tags should be zeroed 1524 * (which happens only when memory should be initialized as well). 1525 */ 1526 if (zero_tags) { 1527 /* Initialize both memory and memory tags. */ 1528 for (i = 0; i != 1 << order; ++i) 1529 tag_clear_highpage(page + i); 1530 1531 /* Take note that memory was initialized by the loop above. */ 1532 init = false; 1533 } 1534 if (!should_skip_kasan_unpoison(gfp_flags) && 1535 kasan_unpoison_pages(page, order, init)) { 1536 /* Take note that memory was initialized by KASAN. */ 1537 if (kasan_has_integrated_init()) 1538 init = false; 1539 } else { 1540 /* 1541 * If memory tags have not been set by KASAN, reset the page 1542 * tags to ensure page_address() dereferencing does not fault. 1543 */ 1544 for (i = 0; i != 1 << order; ++i) 1545 page_kasan_tag_reset(page + i); 1546 } 1547 /* If memory is still not initialized, initialize it now. */ 1548 if (init) 1549 kernel_init_pages(page, 1 << order); 1550 1551 set_page_owner(page, order, gfp_flags); 1552 page_table_check_alloc(page, order); 1553 pgalloc_tag_add(page, current, 1 << order); 1554 } 1555 prep_new_page(struct page * page,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags)1556 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1557 unsigned int alloc_flags) 1558 { 1559 post_alloc_hook(page, order, gfp_flags); 1560 1561 if (order && (gfp_flags & __GFP_COMP)) 1562 prep_compound_page(page, order); 1563 1564 /* 1565 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1566 * allocate the page. The expectation is that the caller is taking 1567 * steps that will free more memory. The caller should avoid the page 1568 * being used for !PFMEMALLOC purposes. 1569 */ 1570 if (alloc_flags & ALLOC_NO_WATERMARKS) 1571 set_page_pfmemalloc(page); 1572 else 1573 clear_page_pfmemalloc(page); 1574 } 1575 1576 /* 1577 * Go through the free lists for the given migratetype and remove 1578 * the smallest available page from the freelists 1579 */ 1580 static __always_inline __rmqueue_smallest(struct zone * zone,unsigned int order,int migratetype)1581 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1582 int migratetype) 1583 { 1584 unsigned int current_order; 1585 struct free_area *area; 1586 struct page *page; 1587 1588 /* Find a page of the appropriate size in the preferred list */ 1589 for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) { 1590 area = &(zone->free_area[current_order]); 1591 page = get_page_from_free_area(area, migratetype); 1592 if (!page) 1593 continue; 1594 1595 page_del_and_expand(zone, page, order, current_order, 1596 migratetype); 1597 trace_mm_page_alloc_zone_locked(page, order, migratetype, 1598 pcp_allowed_order(order) && 1599 migratetype < MIGRATE_PCPTYPES); 1600 return page; 1601 } 1602 1603 return NULL; 1604 } 1605 1606 1607 /* 1608 * This array describes the order lists are fallen back to when 1609 * the free lists for the desirable migrate type are depleted 1610 * 1611 * The other migratetypes do not have fallbacks. 1612 */ 1613 static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = { 1614 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE }, 1615 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE }, 1616 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE }, 1617 }; 1618 1619 #ifdef CONFIG_CMA __rmqueue_cma_fallback(struct zone * zone,unsigned int order)1620 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1621 unsigned int order) 1622 { 1623 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1624 } 1625 #else __rmqueue_cma_fallback(struct zone * zone,unsigned int order)1626 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1627 unsigned int order) { return NULL; } 1628 #endif 1629 1630 /* 1631 * Change the type of a block and move all its free pages to that 1632 * type's freelist. 1633 */ __move_freepages_block(struct zone * zone,unsigned long start_pfn,int old_mt,int new_mt)1634 static int __move_freepages_block(struct zone *zone, unsigned long start_pfn, 1635 int old_mt, int new_mt) 1636 { 1637 struct page *page; 1638 unsigned long pfn, end_pfn; 1639 unsigned int order; 1640 int pages_moved = 0; 1641 1642 VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1)); 1643 end_pfn = pageblock_end_pfn(start_pfn); 1644 1645 for (pfn = start_pfn; pfn < end_pfn;) { 1646 page = pfn_to_page(pfn); 1647 if (!PageBuddy(page)) { 1648 pfn++; 1649 continue; 1650 } 1651 1652 /* Make sure we are not inadvertently changing nodes */ 1653 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1654 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 1655 1656 order = buddy_order(page); 1657 1658 move_to_free_list(page, zone, order, old_mt, new_mt); 1659 1660 pfn += 1 << order; 1661 pages_moved += 1 << order; 1662 } 1663 1664 set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt); 1665 1666 return pages_moved; 1667 } 1668 prep_move_freepages_block(struct zone * zone,struct page * page,unsigned long * start_pfn,int * num_free,int * num_movable)1669 static bool prep_move_freepages_block(struct zone *zone, struct page *page, 1670 unsigned long *start_pfn, 1671 int *num_free, int *num_movable) 1672 { 1673 unsigned long pfn, start, end; 1674 1675 pfn = page_to_pfn(page); 1676 start = pageblock_start_pfn(pfn); 1677 end = pageblock_end_pfn(pfn); 1678 1679 /* 1680 * The caller only has the lock for @zone, don't touch ranges 1681 * that straddle into other zones. While we could move part of 1682 * the range that's inside the zone, this call is usually 1683 * accompanied by other operations such as migratetype updates 1684 * which also should be locked. 1685 */ 1686 if (!zone_spans_pfn(zone, start)) 1687 return false; 1688 if (!zone_spans_pfn(zone, end - 1)) 1689 return false; 1690 1691 *start_pfn = start; 1692 1693 if (num_free) { 1694 *num_free = 0; 1695 *num_movable = 0; 1696 for (pfn = start; pfn < end;) { 1697 page = pfn_to_page(pfn); 1698 if (PageBuddy(page)) { 1699 int nr = 1 << buddy_order(page); 1700 1701 *num_free += nr; 1702 pfn += nr; 1703 continue; 1704 } 1705 /* 1706 * We assume that pages that could be isolated for 1707 * migration are movable. But we don't actually try 1708 * isolating, as that would be expensive. 1709 */ 1710 if (PageLRU(page) || __PageMovable(page)) 1711 (*num_movable)++; 1712 pfn++; 1713 } 1714 } 1715 1716 return true; 1717 } 1718 move_freepages_block(struct zone * zone,struct page * page,int old_mt,int new_mt)1719 static int move_freepages_block(struct zone *zone, struct page *page, 1720 int old_mt, int new_mt) 1721 { 1722 unsigned long start_pfn; 1723 1724 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL)) 1725 return -1; 1726 1727 return __move_freepages_block(zone, start_pfn, old_mt, new_mt); 1728 } 1729 1730 #ifdef CONFIG_MEMORY_ISOLATION 1731 /* Look for a buddy that straddles start_pfn */ find_large_buddy(unsigned long start_pfn)1732 static unsigned long find_large_buddy(unsigned long start_pfn) 1733 { 1734 int order = 0; 1735 struct page *page; 1736 unsigned long pfn = start_pfn; 1737 1738 while (!PageBuddy(page = pfn_to_page(pfn))) { 1739 /* Nothing found */ 1740 if (++order > MAX_PAGE_ORDER) 1741 return start_pfn; 1742 pfn &= ~0UL << order; 1743 } 1744 1745 /* 1746 * Found a preceding buddy, but does it straddle? 1747 */ 1748 if (pfn + (1 << buddy_order(page)) > start_pfn) 1749 return pfn; 1750 1751 /* Nothing found */ 1752 return start_pfn; 1753 } 1754 1755 /** 1756 * move_freepages_block_isolate - move free pages in block for page isolation 1757 * @zone: the zone 1758 * @page: the pageblock page 1759 * @migratetype: migratetype to set on the pageblock 1760 * 1761 * This is similar to move_freepages_block(), but handles the special 1762 * case encountered in page isolation, where the block of interest 1763 * might be part of a larger buddy spanning multiple pageblocks. 1764 * 1765 * Unlike the regular page allocator path, which moves pages while 1766 * stealing buddies off the freelist, page isolation is interested in 1767 * arbitrary pfn ranges that may have overlapping buddies on both ends. 1768 * 1769 * This function handles that. Straddling buddies are split into 1770 * individual pageblocks. Only the block of interest is moved. 1771 * 1772 * Returns %true if pages could be moved, %false otherwise. 1773 */ move_freepages_block_isolate(struct zone * zone,struct page * page,int migratetype)1774 bool move_freepages_block_isolate(struct zone *zone, struct page *page, 1775 int migratetype) 1776 { 1777 unsigned long start_pfn, pfn; 1778 1779 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL)) 1780 return false; 1781 1782 /* No splits needed if buddies can't span multiple blocks */ 1783 if (pageblock_order == MAX_PAGE_ORDER) 1784 goto move; 1785 1786 /* We're a tail block in a larger buddy */ 1787 pfn = find_large_buddy(start_pfn); 1788 if (pfn != start_pfn) { 1789 struct page *buddy = pfn_to_page(pfn); 1790 int order = buddy_order(buddy); 1791 1792 del_page_from_free_list(buddy, zone, order, 1793 get_pfnblock_migratetype(buddy, pfn)); 1794 set_pageblock_migratetype(page, migratetype); 1795 split_large_buddy(zone, buddy, pfn, order, FPI_NONE); 1796 return true; 1797 } 1798 1799 /* We're the starting block of a larger buddy */ 1800 if (PageBuddy(page) && buddy_order(page) > pageblock_order) { 1801 int order = buddy_order(page); 1802 1803 del_page_from_free_list(page, zone, order, 1804 get_pfnblock_migratetype(page, pfn)); 1805 set_pageblock_migratetype(page, migratetype); 1806 split_large_buddy(zone, page, pfn, order, FPI_NONE); 1807 return true; 1808 } 1809 move: 1810 __move_freepages_block(zone, start_pfn, 1811 get_pfnblock_migratetype(page, start_pfn), 1812 migratetype); 1813 return true; 1814 } 1815 #endif /* CONFIG_MEMORY_ISOLATION */ 1816 change_pageblock_range(struct page * pageblock_page,int start_order,int migratetype)1817 static void change_pageblock_range(struct page *pageblock_page, 1818 int start_order, int migratetype) 1819 { 1820 int nr_pageblocks = 1 << (start_order - pageblock_order); 1821 1822 while (nr_pageblocks--) { 1823 set_pageblock_migratetype(pageblock_page, migratetype); 1824 pageblock_page += pageblock_nr_pages; 1825 } 1826 } 1827 1828 /* 1829 * When we are falling back to another migratetype during allocation, try to 1830 * steal extra free pages from the same pageblocks to satisfy further 1831 * allocations, instead of polluting multiple pageblocks. 1832 * 1833 * If we are stealing a relatively large buddy page, it is likely there will 1834 * be more free pages in the pageblock, so try to steal them all. For 1835 * reclaimable and unmovable allocations, we steal regardless of page size, 1836 * as fragmentation caused by those allocations polluting movable pageblocks 1837 * is worse than movable allocations stealing from unmovable and reclaimable 1838 * pageblocks. 1839 */ can_steal_fallback(unsigned int order,int start_mt)1840 static bool can_steal_fallback(unsigned int order, int start_mt) 1841 { 1842 /* 1843 * Leaving this order check is intended, although there is 1844 * relaxed order check in next check. The reason is that 1845 * we can actually steal whole pageblock if this condition met, 1846 * but, below check doesn't guarantee it and that is just heuristic 1847 * so could be changed anytime. 1848 */ 1849 if (order >= pageblock_order) 1850 return true; 1851 1852 /* 1853 * Movable pages won't cause permanent fragmentation, so when you alloc 1854 * small pages, you just need to temporarily steal unmovable or 1855 * reclaimable pages that are closest to the request size. After a 1856 * while, memory compaction may occur to form large contiguous pages, 1857 * and the next movable allocation may not need to steal. Unmovable and 1858 * reclaimable allocations need to actually steal pages. 1859 */ 1860 if (order >= pageblock_order / 2 || 1861 start_mt == MIGRATE_RECLAIMABLE || 1862 start_mt == MIGRATE_UNMOVABLE || 1863 page_group_by_mobility_disabled) 1864 return true; 1865 1866 return false; 1867 } 1868 boost_watermark(struct zone * zone)1869 static inline bool boost_watermark(struct zone *zone) 1870 { 1871 unsigned long max_boost; 1872 1873 if (!watermark_boost_factor) 1874 return false; 1875 /* 1876 * Don't bother in zones that are unlikely to produce results. 1877 * On small machines, including kdump capture kernels running 1878 * in a small area, boosting the watermark can cause an out of 1879 * memory situation immediately. 1880 */ 1881 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 1882 return false; 1883 1884 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 1885 watermark_boost_factor, 10000); 1886 1887 /* 1888 * high watermark may be uninitialised if fragmentation occurs 1889 * very early in boot so do not boost. We do not fall 1890 * through and boost by pageblock_nr_pages as failing 1891 * allocations that early means that reclaim is not going 1892 * to help and it may even be impossible to reclaim the 1893 * boosted watermark resulting in a hang. 1894 */ 1895 if (!max_boost) 1896 return false; 1897 1898 max_boost = max(pageblock_nr_pages, max_boost); 1899 1900 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 1901 max_boost); 1902 1903 return true; 1904 } 1905 1906 /* 1907 * This function implements actual steal behaviour. If order is large enough, we 1908 * can claim the whole pageblock for the requested migratetype. If not, we check 1909 * the pageblock for constituent pages; if at least half of the pages are free 1910 * or compatible, we can still claim the whole block, so pages freed in the 1911 * future will be put on the correct free list. Otherwise, we isolate exactly 1912 * the order we need from the fallback block and leave its migratetype alone. 1913 */ 1914 static struct page * steal_suitable_fallback(struct zone * zone,struct page * page,int current_order,int order,int start_type,unsigned int alloc_flags,bool whole_block)1915 steal_suitable_fallback(struct zone *zone, struct page *page, 1916 int current_order, int order, int start_type, 1917 unsigned int alloc_flags, bool whole_block) 1918 { 1919 int free_pages, movable_pages, alike_pages; 1920 unsigned long start_pfn; 1921 int block_type; 1922 1923 block_type = get_pageblock_migratetype(page); 1924 1925 /* 1926 * This can happen due to races and we want to prevent broken 1927 * highatomic accounting. 1928 */ 1929 if (is_migrate_highatomic(block_type)) 1930 goto single_page; 1931 1932 /* Take ownership for orders >= pageblock_order */ 1933 if (current_order >= pageblock_order) { 1934 unsigned int nr_added; 1935 1936 del_page_from_free_list(page, zone, current_order, block_type); 1937 change_pageblock_range(page, current_order, start_type); 1938 nr_added = expand(zone, page, order, current_order, start_type); 1939 account_freepages(zone, nr_added, start_type); 1940 return page; 1941 } 1942 1943 /* 1944 * Boost watermarks to increase reclaim pressure to reduce the 1945 * likelihood of future fallbacks. Wake kswapd now as the node 1946 * may be balanced overall and kswapd will not wake naturally. 1947 */ 1948 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 1949 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 1950 1951 /* We are not allowed to try stealing from the whole block */ 1952 if (!whole_block) 1953 goto single_page; 1954 1955 /* moving whole block can fail due to zone boundary conditions */ 1956 if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages, 1957 &movable_pages)) 1958 goto single_page; 1959 1960 /* 1961 * Determine how many pages are compatible with our allocation. 1962 * For movable allocation, it's the number of movable pages which 1963 * we just obtained. For other types it's a bit more tricky. 1964 */ 1965 if (start_type == MIGRATE_MOVABLE) { 1966 alike_pages = movable_pages; 1967 } else { 1968 /* 1969 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 1970 * to MOVABLE pageblock, consider all non-movable pages as 1971 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 1972 * vice versa, be conservative since we can't distinguish the 1973 * exact migratetype of non-movable pages. 1974 */ 1975 if (block_type == MIGRATE_MOVABLE) 1976 alike_pages = pageblock_nr_pages 1977 - (free_pages + movable_pages); 1978 else 1979 alike_pages = 0; 1980 } 1981 /* 1982 * If a sufficient number of pages in the block are either free or of 1983 * compatible migratability as our allocation, claim the whole block. 1984 */ 1985 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 1986 page_group_by_mobility_disabled) { 1987 __move_freepages_block(zone, start_pfn, block_type, start_type); 1988 return __rmqueue_smallest(zone, order, start_type); 1989 } 1990 1991 single_page: 1992 page_del_and_expand(zone, page, order, current_order, block_type); 1993 return page; 1994 } 1995 1996 /* 1997 * Check whether there is a suitable fallback freepage with requested order. 1998 * If only_stealable is true, this function returns fallback_mt only if 1999 * we can steal other freepages all together. This would help to reduce 2000 * fragmentation due to mixed migratetype pages in one pageblock. 2001 */ find_suitable_fallback(struct free_area * area,unsigned int order,int migratetype,bool only_stealable,bool * can_steal)2002 int find_suitable_fallback(struct free_area *area, unsigned int order, 2003 int migratetype, bool only_stealable, bool *can_steal) 2004 { 2005 int i; 2006 int fallback_mt; 2007 2008 if (area->nr_free == 0) 2009 return -1; 2010 2011 *can_steal = false; 2012 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) { 2013 fallback_mt = fallbacks[migratetype][i]; 2014 if (free_area_empty(area, fallback_mt)) 2015 continue; 2016 2017 if (can_steal_fallback(order, migratetype)) 2018 *can_steal = true; 2019 2020 if (!only_stealable) 2021 return fallback_mt; 2022 2023 if (*can_steal) 2024 return fallback_mt; 2025 } 2026 2027 return -1; 2028 } 2029 2030 /* 2031 * Reserve the pageblock(s) surrounding an allocation request for 2032 * exclusive use of high-order atomic allocations if there are no 2033 * empty page blocks that contain a page with a suitable order 2034 */ reserve_highatomic_pageblock(struct page * page,int order,struct zone * zone)2035 static void reserve_highatomic_pageblock(struct page *page, int order, 2036 struct zone *zone) 2037 { 2038 int mt; 2039 unsigned long max_managed, flags; 2040 2041 /* 2042 * The number reserved as: minimum is 1 pageblock, maximum is 2043 * roughly 1% of a zone. But if 1% of a zone falls below a 2044 * pageblock size, then don't reserve any pageblocks. 2045 * Check is race-prone but harmless. 2046 */ 2047 if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages) 2048 return; 2049 max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages); 2050 if (zone->nr_reserved_highatomic >= max_managed) 2051 return; 2052 2053 spin_lock_irqsave(&zone->lock, flags); 2054 2055 /* Recheck the nr_reserved_highatomic limit under the lock */ 2056 if (zone->nr_reserved_highatomic >= max_managed) 2057 goto out_unlock; 2058 2059 /* Yoink! */ 2060 mt = get_pageblock_migratetype(page); 2061 /* Only reserve normal pageblocks (i.e., they can merge with others) */ 2062 if (!migratetype_is_mergeable(mt)) 2063 goto out_unlock; 2064 2065 if (order < pageblock_order) { 2066 if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1) 2067 goto out_unlock; 2068 zone->nr_reserved_highatomic += pageblock_nr_pages; 2069 } else { 2070 change_pageblock_range(page, order, MIGRATE_HIGHATOMIC); 2071 zone->nr_reserved_highatomic += 1 << order; 2072 } 2073 2074 out_unlock: 2075 spin_unlock_irqrestore(&zone->lock, flags); 2076 } 2077 2078 /* 2079 * Used when an allocation is about to fail under memory pressure. This 2080 * potentially hurts the reliability of high-order allocations when under 2081 * intense memory pressure but failed atomic allocations should be easier 2082 * to recover from than an OOM. 2083 * 2084 * If @force is true, try to unreserve pageblocks even though highatomic 2085 * pageblock is exhausted. 2086 */ unreserve_highatomic_pageblock(const struct alloc_context * ac,bool force)2087 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2088 bool force) 2089 { 2090 struct zonelist *zonelist = ac->zonelist; 2091 unsigned long flags; 2092 struct zoneref *z; 2093 struct zone *zone; 2094 struct page *page; 2095 int order; 2096 int ret; 2097 2098 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 2099 ac->nodemask) { 2100 /* 2101 * Preserve at least one pageblock unless memory pressure 2102 * is really high. 2103 */ 2104 if (!force && zone->nr_reserved_highatomic <= 2105 pageblock_nr_pages) 2106 continue; 2107 2108 spin_lock_irqsave(&zone->lock, flags); 2109 for (order = 0; order < NR_PAGE_ORDERS; order++) { 2110 struct free_area *area = &(zone->free_area[order]); 2111 int mt; 2112 2113 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2114 if (!page) 2115 continue; 2116 2117 mt = get_pageblock_migratetype(page); 2118 /* 2119 * In page freeing path, migratetype change is racy so 2120 * we can counter several free pages in a pageblock 2121 * in this loop although we changed the pageblock type 2122 * from highatomic to ac->migratetype. So we should 2123 * adjust the count once. 2124 */ 2125 if (is_migrate_highatomic(mt)) { 2126 unsigned long size; 2127 /* 2128 * It should never happen but changes to 2129 * locking could inadvertently allow a per-cpu 2130 * drain to add pages to MIGRATE_HIGHATOMIC 2131 * while unreserving so be safe and watch for 2132 * underflows. 2133 */ 2134 size = max(pageblock_nr_pages, 1UL << order); 2135 size = min(size, zone->nr_reserved_highatomic); 2136 zone->nr_reserved_highatomic -= size; 2137 } 2138 2139 /* 2140 * Convert to ac->migratetype and avoid the normal 2141 * pageblock stealing heuristics. Minimally, the caller 2142 * is doing the work and needs the pages. More 2143 * importantly, if the block was always converted to 2144 * MIGRATE_UNMOVABLE or another type then the number 2145 * of pageblocks that cannot be completely freed 2146 * may increase. 2147 */ 2148 if (order < pageblock_order) 2149 ret = move_freepages_block(zone, page, mt, 2150 ac->migratetype); 2151 else { 2152 move_to_free_list(page, zone, order, mt, 2153 ac->migratetype); 2154 change_pageblock_range(page, order, 2155 ac->migratetype); 2156 ret = 1; 2157 } 2158 /* 2159 * Reserving the block(s) already succeeded, 2160 * so this should not fail on zone boundaries. 2161 */ 2162 WARN_ON_ONCE(ret == -1); 2163 if (ret > 0) { 2164 spin_unlock_irqrestore(&zone->lock, flags); 2165 return ret; 2166 } 2167 } 2168 spin_unlock_irqrestore(&zone->lock, flags); 2169 } 2170 2171 return false; 2172 } 2173 2174 /* 2175 * Try finding a free buddy page on the fallback list and put it on the free 2176 * list of requested migratetype, possibly along with other pages from the same 2177 * block, depending on fragmentation avoidance heuristics. Returns true if 2178 * fallback was found so that __rmqueue_smallest() can grab it. 2179 * 2180 * The use of signed ints for order and current_order is a deliberate 2181 * deviation from the rest of this file, to make the for loop 2182 * condition simpler. 2183 */ 2184 static __always_inline struct page * __rmqueue_fallback(struct zone * zone,int order,int start_migratetype,unsigned int alloc_flags)2185 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2186 unsigned int alloc_flags) 2187 { 2188 struct free_area *area; 2189 int current_order; 2190 int min_order = order; 2191 struct page *page; 2192 int fallback_mt; 2193 bool can_steal; 2194 2195 /* 2196 * Do not steal pages from freelists belonging to other pageblocks 2197 * i.e. orders < pageblock_order. If there are no local zones free, 2198 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2199 */ 2200 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT) 2201 min_order = pageblock_order; 2202 2203 /* 2204 * Find the largest available free page in the other list. This roughly 2205 * approximates finding the pageblock with the most free pages, which 2206 * would be too costly to do exactly. 2207 */ 2208 for (current_order = MAX_PAGE_ORDER; current_order >= min_order; 2209 --current_order) { 2210 area = &(zone->free_area[current_order]); 2211 fallback_mt = find_suitable_fallback(area, current_order, 2212 start_migratetype, false, &can_steal); 2213 if (fallback_mt == -1) 2214 continue; 2215 2216 /* 2217 * We cannot steal all free pages from the pageblock and the 2218 * requested migratetype is movable. In that case it's better to 2219 * steal and split the smallest available page instead of the 2220 * largest available page, because even if the next movable 2221 * allocation falls back into a different pageblock than this 2222 * one, it won't cause permanent fragmentation. 2223 */ 2224 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2225 && current_order > order) 2226 goto find_smallest; 2227 2228 goto do_steal; 2229 } 2230 2231 return NULL; 2232 2233 find_smallest: 2234 for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) { 2235 area = &(zone->free_area[current_order]); 2236 fallback_mt = find_suitable_fallback(area, current_order, 2237 start_migratetype, false, &can_steal); 2238 if (fallback_mt != -1) 2239 break; 2240 } 2241 2242 /* 2243 * This should not happen - we already found a suitable fallback 2244 * when looking for the largest page. 2245 */ 2246 VM_BUG_ON(current_order > MAX_PAGE_ORDER); 2247 2248 do_steal: 2249 page = get_page_from_free_area(area, fallback_mt); 2250 2251 /* take off list, maybe claim block, expand remainder */ 2252 page = steal_suitable_fallback(zone, page, current_order, order, 2253 start_migratetype, alloc_flags, can_steal); 2254 2255 trace_mm_page_alloc_extfrag(page, order, current_order, 2256 start_migratetype, fallback_mt); 2257 2258 return page; 2259 } 2260 2261 /* 2262 * Do the hard work of removing an element from the buddy allocator. 2263 * Call me with the zone->lock already held. 2264 */ 2265 static __always_inline struct page * __rmqueue(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)2266 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2267 unsigned int alloc_flags) 2268 { 2269 struct page *page; 2270 2271 if (IS_ENABLED(CONFIG_CMA)) { 2272 /* 2273 * Balance movable allocations between regular and CMA areas by 2274 * allocating from CMA when over half of the zone's free memory 2275 * is in the CMA area. 2276 */ 2277 if (alloc_flags & ALLOC_CMA && 2278 zone_page_state(zone, NR_FREE_CMA_PAGES) > 2279 zone_page_state(zone, NR_FREE_PAGES) / 2) { 2280 page = __rmqueue_cma_fallback(zone, order); 2281 if (page) 2282 return page; 2283 } 2284 } 2285 2286 page = __rmqueue_smallest(zone, order, migratetype); 2287 if (unlikely(!page)) { 2288 if (alloc_flags & ALLOC_CMA) 2289 page = __rmqueue_cma_fallback(zone, order); 2290 2291 if (!page) 2292 page = __rmqueue_fallback(zone, order, migratetype, 2293 alloc_flags); 2294 } 2295 return page; 2296 } 2297 2298 /* 2299 * Obtain a specified number of elements from the buddy allocator, all under 2300 * a single hold of the lock, for efficiency. Add them to the supplied list. 2301 * Returns the number of new pages which were placed at *list. 2302 */ rmqueue_bulk(struct zone * zone,unsigned int order,unsigned long count,struct list_head * list,int migratetype,unsigned int alloc_flags)2303 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2304 unsigned long count, struct list_head *list, 2305 int migratetype, unsigned int alloc_flags) 2306 { 2307 unsigned long flags; 2308 int i; 2309 2310 spin_lock_irqsave(&zone->lock, flags); 2311 for (i = 0; i < count; ++i) { 2312 struct page *page = __rmqueue(zone, order, migratetype, 2313 alloc_flags); 2314 if (unlikely(page == NULL)) 2315 break; 2316 2317 /* 2318 * Split buddy pages returned by expand() are received here in 2319 * physical page order. The page is added to the tail of 2320 * caller's list. From the callers perspective, the linked list 2321 * is ordered by page number under some conditions. This is 2322 * useful for IO devices that can forward direction from the 2323 * head, thus also in the physical page order. This is useful 2324 * for IO devices that can merge IO requests if the physical 2325 * pages are ordered properly. 2326 */ 2327 list_add_tail(&page->pcp_list, list); 2328 } 2329 spin_unlock_irqrestore(&zone->lock, flags); 2330 2331 return i; 2332 } 2333 2334 /* 2335 * Called from the vmstat counter updater to decay the PCP high. 2336 * Return whether there are addition works to do. 2337 */ decay_pcp_high(struct zone * zone,struct per_cpu_pages * pcp)2338 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp) 2339 { 2340 int high_min, to_drain, batch; 2341 int todo = 0; 2342 2343 high_min = READ_ONCE(pcp->high_min); 2344 batch = READ_ONCE(pcp->batch); 2345 /* 2346 * Decrease pcp->high periodically to try to free possible 2347 * idle PCP pages. And, avoid to free too many pages to 2348 * control latency. This caps pcp->high decrement too. 2349 */ 2350 if (pcp->high > high_min) { 2351 pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX), 2352 pcp->high - (pcp->high >> 3), high_min); 2353 if (pcp->high > high_min) 2354 todo++; 2355 } 2356 2357 to_drain = pcp->count - pcp->high; 2358 if (to_drain > 0) { 2359 spin_lock(&pcp->lock); 2360 free_pcppages_bulk(zone, to_drain, pcp, 0); 2361 spin_unlock(&pcp->lock); 2362 todo++; 2363 } 2364 2365 return todo; 2366 } 2367 2368 #ifdef CONFIG_NUMA 2369 /* 2370 * Called from the vmstat counter updater to drain pagesets of this 2371 * currently executing processor on remote nodes after they have 2372 * expired. 2373 */ drain_zone_pages(struct zone * zone,struct per_cpu_pages * pcp)2374 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2375 { 2376 int to_drain, batch; 2377 2378 batch = READ_ONCE(pcp->batch); 2379 to_drain = min(pcp->count, batch); 2380 if (to_drain > 0) { 2381 spin_lock(&pcp->lock); 2382 free_pcppages_bulk(zone, to_drain, pcp, 0); 2383 spin_unlock(&pcp->lock); 2384 } 2385 } 2386 #endif 2387 2388 /* 2389 * Drain pcplists of the indicated processor and zone. 2390 */ drain_pages_zone(unsigned int cpu,struct zone * zone)2391 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2392 { 2393 struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2394 int count; 2395 2396 do { 2397 spin_lock(&pcp->lock); 2398 count = pcp->count; 2399 if (count) { 2400 int to_drain = min(count, 2401 pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX); 2402 2403 free_pcppages_bulk(zone, to_drain, pcp, 0); 2404 count -= to_drain; 2405 } 2406 spin_unlock(&pcp->lock); 2407 } while (count); 2408 } 2409 2410 /* 2411 * Drain pcplists of all zones on the indicated processor. 2412 */ drain_pages(unsigned int cpu)2413 static void drain_pages(unsigned int cpu) 2414 { 2415 struct zone *zone; 2416 2417 for_each_populated_zone(zone) { 2418 drain_pages_zone(cpu, zone); 2419 } 2420 } 2421 2422 /* 2423 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2424 */ drain_local_pages(struct zone * zone)2425 void drain_local_pages(struct zone *zone) 2426 { 2427 int cpu = smp_processor_id(); 2428 2429 if (zone) 2430 drain_pages_zone(cpu, zone); 2431 else 2432 drain_pages(cpu); 2433 } 2434 2435 /* 2436 * The implementation of drain_all_pages(), exposing an extra parameter to 2437 * drain on all cpus. 2438 * 2439 * drain_all_pages() is optimized to only execute on cpus where pcplists are 2440 * not empty. The check for non-emptiness can however race with a free to 2441 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 2442 * that need the guarantee that every CPU has drained can disable the 2443 * optimizing racy check. 2444 */ __drain_all_pages(struct zone * zone,bool force_all_cpus)2445 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 2446 { 2447 int cpu; 2448 2449 /* 2450 * Allocate in the BSS so we won't require allocation in 2451 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2452 */ 2453 static cpumask_t cpus_with_pcps; 2454 2455 /* 2456 * Do not drain if one is already in progress unless it's specific to 2457 * a zone. Such callers are primarily CMA and memory hotplug and need 2458 * the drain to be complete when the call returns. 2459 */ 2460 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2461 if (!zone) 2462 return; 2463 mutex_lock(&pcpu_drain_mutex); 2464 } 2465 2466 /* 2467 * We don't care about racing with CPU hotplug event 2468 * as offline notification will cause the notified 2469 * cpu to drain that CPU pcps and on_each_cpu_mask 2470 * disables preemption as part of its processing 2471 */ 2472 for_each_online_cpu(cpu) { 2473 struct per_cpu_pages *pcp; 2474 struct zone *z; 2475 bool has_pcps = false; 2476 2477 if (force_all_cpus) { 2478 /* 2479 * The pcp.count check is racy, some callers need a 2480 * guarantee that no cpu is missed. 2481 */ 2482 has_pcps = true; 2483 } else if (zone) { 2484 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2485 if (pcp->count) 2486 has_pcps = true; 2487 } else { 2488 for_each_populated_zone(z) { 2489 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 2490 if (pcp->count) { 2491 has_pcps = true; 2492 break; 2493 } 2494 } 2495 } 2496 2497 if (has_pcps) 2498 cpumask_set_cpu(cpu, &cpus_with_pcps); 2499 else 2500 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2501 } 2502 2503 for_each_cpu(cpu, &cpus_with_pcps) { 2504 if (zone) 2505 drain_pages_zone(cpu, zone); 2506 else 2507 drain_pages(cpu); 2508 } 2509 2510 mutex_unlock(&pcpu_drain_mutex); 2511 } 2512 2513 /* 2514 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2515 * 2516 * When zone parameter is non-NULL, spill just the single zone's pages. 2517 */ drain_all_pages(struct zone * zone)2518 void drain_all_pages(struct zone *zone) 2519 { 2520 __drain_all_pages(zone, false); 2521 } 2522 nr_pcp_free(struct per_cpu_pages * pcp,int batch,int high,bool free_high)2523 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high) 2524 { 2525 int min_nr_free, max_nr_free; 2526 2527 /* Free as much as possible if batch freeing high-order pages. */ 2528 if (unlikely(free_high)) 2529 return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX); 2530 2531 /* Check for PCP disabled or boot pageset */ 2532 if (unlikely(high < batch)) 2533 return 1; 2534 2535 /* Leave at least pcp->batch pages on the list */ 2536 min_nr_free = batch; 2537 max_nr_free = high - batch; 2538 2539 /* 2540 * Increase the batch number to the number of the consecutive 2541 * freed pages to reduce zone lock contention. 2542 */ 2543 batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free); 2544 2545 return batch; 2546 } 2547 nr_pcp_high(struct per_cpu_pages * pcp,struct zone * zone,int batch,bool free_high)2548 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone, 2549 int batch, bool free_high) 2550 { 2551 int high, high_min, high_max; 2552 2553 high_min = READ_ONCE(pcp->high_min); 2554 high_max = READ_ONCE(pcp->high_max); 2555 high = pcp->high = clamp(pcp->high, high_min, high_max); 2556 2557 if (unlikely(!high)) 2558 return 0; 2559 2560 if (unlikely(free_high)) { 2561 pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX), 2562 high_min); 2563 return 0; 2564 } 2565 2566 /* 2567 * If reclaim is active, limit the number of pages that can be 2568 * stored on pcp lists 2569 */ 2570 if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) { 2571 int free_count = max_t(int, pcp->free_count, batch); 2572 2573 pcp->high = max(high - free_count, high_min); 2574 return min(batch << 2, pcp->high); 2575 } 2576 2577 if (high_min == high_max) 2578 return high; 2579 2580 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) { 2581 int free_count = max_t(int, pcp->free_count, batch); 2582 2583 pcp->high = max(high - free_count, high_min); 2584 high = max(pcp->count, high_min); 2585 } else if (pcp->count >= high) { 2586 int need_high = pcp->free_count + batch; 2587 2588 /* pcp->high should be large enough to hold batch freed pages */ 2589 if (pcp->high < need_high) 2590 pcp->high = clamp(need_high, high_min, high_max); 2591 } 2592 2593 return high; 2594 } 2595 free_frozen_page_commit(struct zone * zone,struct per_cpu_pages * pcp,struct page * page,int migratetype,unsigned int order)2596 static void free_frozen_page_commit(struct zone *zone, 2597 struct per_cpu_pages *pcp, struct page *page, int migratetype, 2598 unsigned int order) 2599 { 2600 int high, batch; 2601 int pindex; 2602 bool free_high = false; 2603 2604 /* 2605 * On freeing, reduce the number of pages that are batch allocated. 2606 * See nr_pcp_alloc() where alloc_factor is increased for subsequent 2607 * allocations. 2608 */ 2609 pcp->alloc_factor >>= 1; 2610 __count_vm_events(PGFREE, 1 << order); 2611 pindex = order_to_pindex(migratetype, order); 2612 list_add(&page->pcp_list, &pcp->lists[pindex]); 2613 pcp->count += 1 << order; 2614 2615 batch = READ_ONCE(pcp->batch); 2616 /* 2617 * As high-order pages other than THP's stored on PCP can contribute 2618 * to fragmentation, limit the number stored when PCP is heavily 2619 * freeing without allocation. The remainder after bulk freeing 2620 * stops will be drained from vmstat refresh context. 2621 */ 2622 if (order && order <= PAGE_ALLOC_COSTLY_ORDER) { 2623 free_high = (pcp->free_count >= batch && 2624 (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) && 2625 (!(pcp->flags & PCPF_FREE_HIGH_BATCH) || 2626 pcp->count >= READ_ONCE(batch))); 2627 pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER; 2628 } else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) { 2629 pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER; 2630 } 2631 if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX)) 2632 pcp->free_count += (1 << order); 2633 high = nr_pcp_high(pcp, zone, batch, free_high); 2634 if (pcp->count >= high) { 2635 free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high), 2636 pcp, pindex); 2637 if (test_bit(ZONE_BELOW_HIGH, &zone->flags) && 2638 zone_watermark_ok(zone, 0, high_wmark_pages(zone), 2639 ZONE_MOVABLE, 0)) 2640 clear_bit(ZONE_BELOW_HIGH, &zone->flags); 2641 } 2642 } 2643 2644 /* 2645 * Free a pcp page 2646 */ free_frozen_pages(struct page * page,unsigned int order)2647 void free_frozen_pages(struct page *page, unsigned int order) 2648 { 2649 unsigned long __maybe_unused UP_flags; 2650 struct per_cpu_pages *pcp; 2651 struct zone *zone; 2652 unsigned long pfn = page_to_pfn(page); 2653 int migratetype; 2654 2655 if (!pcp_allowed_order(order)) { 2656 __free_pages_ok(page, order, FPI_NONE); 2657 return; 2658 } 2659 2660 if (!free_pages_prepare(page, order)) 2661 return; 2662 2663 /* 2664 * We only track unmovable, reclaimable and movable on pcp lists. 2665 * Place ISOLATE pages on the isolated list because they are being 2666 * offlined but treat HIGHATOMIC and CMA as movable pages so we can 2667 * get those areas back if necessary. Otherwise, we may have to free 2668 * excessively into the page allocator 2669 */ 2670 zone = page_zone(page); 2671 migratetype = get_pfnblock_migratetype(page, pfn); 2672 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 2673 if (unlikely(is_migrate_isolate(migratetype))) { 2674 free_one_page(zone, page, pfn, order, FPI_NONE); 2675 return; 2676 } 2677 migratetype = MIGRATE_MOVABLE; 2678 } 2679 2680 pcp_trylock_prepare(UP_flags); 2681 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2682 if (pcp) { 2683 free_frozen_page_commit(zone, pcp, page, migratetype, order); 2684 pcp_spin_unlock(pcp); 2685 } else { 2686 free_one_page(zone, page, pfn, order, FPI_NONE); 2687 } 2688 pcp_trylock_finish(UP_flags); 2689 } 2690 2691 /* 2692 * Free a batch of folios 2693 */ free_unref_folios(struct folio_batch * folios)2694 void free_unref_folios(struct folio_batch *folios) 2695 { 2696 unsigned long __maybe_unused UP_flags; 2697 struct per_cpu_pages *pcp = NULL; 2698 struct zone *locked_zone = NULL; 2699 int i, j; 2700 2701 /* Prepare folios for freeing */ 2702 for (i = 0, j = 0; i < folios->nr; i++) { 2703 struct folio *folio = folios->folios[i]; 2704 unsigned long pfn = folio_pfn(folio); 2705 unsigned int order = folio_order(folio); 2706 2707 if (!free_pages_prepare(&folio->page, order)) 2708 continue; 2709 /* 2710 * Free orders not handled on the PCP directly to the 2711 * allocator. 2712 */ 2713 if (!pcp_allowed_order(order)) { 2714 free_one_page(folio_zone(folio), &folio->page, 2715 pfn, order, FPI_NONE); 2716 continue; 2717 } 2718 folio->private = (void *)(unsigned long)order; 2719 if (j != i) 2720 folios->folios[j] = folio; 2721 j++; 2722 } 2723 folios->nr = j; 2724 2725 for (i = 0; i < folios->nr; i++) { 2726 struct folio *folio = folios->folios[i]; 2727 struct zone *zone = folio_zone(folio); 2728 unsigned long pfn = folio_pfn(folio); 2729 unsigned int order = (unsigned long)folio->private; 2730 int migratetype; 2731 2732 folio->private = NULL; 2733 migratetype = get_pfnblock_migratetype(&folio->page, pfn); 2734 2735 /* Different zone requires a different pcp lock */ 2736 if (zone != locked_zone || 2737 is_migrate_isolate(migratetype)) { 2738 if (pcp) { 2739 pcp_spin_unlock(pcp); 2740 pcp_trylock_finish(UP_flags); 2741 locked_zone = NULL; 2742 pcp = NULL; 2743 } 2744 2745 /* 2746 * Free isolated pages directly to the 2747 * allocator, see comment in free_frozen_pages. 2748 */ 2749 if (is_migrate_isolate(migratetype)) { 2750 free_one_page(zone, &folio->page, pfn, 2751 order, FPI_NONE); 2752 continue; 2753 } 2754 2755 /* 2756 * trylock is necessary as folios may be getting freed 2757 * from IRQ or SoftIRQ context after an IO completion. 2758 */ 2759 pcp_trylock_prepare(UP_flags); 2760 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2761 if (unlikely(!pcp)) { 2762 pcp_trylock_finish(UP_flags); 2763 free_one_page(zone, &folio->page, pfn, 2764 order, FPI_NONE); 2765 continue; 2766 } 2767 locked_zone = zone; 2768 } 2769 2770 /* 2771 * Non-isolated types over MIGRATE_PCPTYPES get added 2772 * to the MIGRATE_MOVABLE pcp list. 2773 */ 2774 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) 2775 migratetype = MIGRATE_MOVABLE; 2776 2777 trace_mm_page_free_batched(&folio->page); 2778 free_frozen_page_commit(zone, pcp, &folio->page, migratetype, 2779 order); 2780 } 2781 2782 if (pcp) { 2783 pcp_spin_unlock(pcp); 2784 pcp_trylock_finish(UP_flags); 2785 } 2786 folio_batch_reinit(folios); 2787 } 2788 2789 /* 2790 * split_page takes a non-compound higher-order page, and splits it into 2791 * n (1<<order) sub-pages: page[0..n] 2792 * Each sub-page must be freed individually. 2793 * 2794 * Note: this is probably too low level an operation for use in drivers. 2795 * Please consult with lkml before using this in your driver. 2796 */ split_page(struct page * page,unsigned int order)2797 void split_page(struct page *page, unsigned int order) 2798 { 2799 int i; 2800 2801 VM_BUG_ON_PAGE(PageCompound(page), page); 2802 VM_BUG_ON_PAGE(!page_count(page), page); 2803 2804 for (i = 1; i < (1 << order); i++) 2805 set_page_refcounted(page + i); 2806 split_page_owner(page, order, 0); 2807 pgalloc_tag_split(page_folio(page), order, 0); 2808 split_page_memcg(page, order, 0); 2809 } 2810 EXPORT_SYMBOL_GPL(split_page); 2811 __isolate_free_page(struct page * page,unsigned int order)2812 int __isolate_free_page(struct page *page, unsigned int order) 2813 { 2814 struct zone *zone = page_zone(page); 2815 int mt = get_pageblock_migratetype(page); 2816 2817 if (!is_migrate_isolate(mt)) { 2818 unsigned long watermark; 2819 /* 2820 * Obey watermarks as if the page was being allocated. We can 2821 * emulate a high-order watermark check with a raised order-0 2822 * watermark, because we already know our high-order page 2823 * exists. 2824 */ 2825 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 2826 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 2827 return 0; 2828 } 2829 2830 del_page_from_free_list(page, zone, order, mt); 2831 2832 /* 2833 * Set the pageblock if the isolated page is at least half of a 2834 * pageblock 2835 */ 2836 if (order >= pageblock_order - 1) { 2837 struct page *endpage = page + (1 << order) - 1; 2838 for (; page < endpage; page += pageblock_nr_pages) { 2839 int mt = get_pageblock_migratetype(page); 2840 /* 2841 * Only change normal pageblocks (i.e., they can merge 2842 * with others) 2843 */ 2844 if (migratetype_is_mergeable(mt)) 2845 move_freepages_block(zone, page, mt, 2846 MIGRATE_MOVABLE); 2847 } 2848 } 2849 2850 return 1UL << order; 2851 } 2852 2853 /** 2854 * __putback_isolated_page - Return a now-isolated page back where we got it 2855 * @page: Page that was isolated 2856 * @order: Order of the isolated page 2857 * @mt: The page's pageblock's migratetype 2858 * 2859 * This function is meant to return a page pulled from the free lists via 2860 * __isolate_free_page back to the free lists they were pulled from. 2861 */ __putback_isolated_page(struct page * page,unsigned int order,int mt)2862 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 2863 { 2864 struct zone *zone = page_zone(page); 2865 2866 /* zone lock should be held when this function is called */ 2867 lockdep_assert_held(&zone->lock); 2868 2869 /* Return isolated page to tail of freelist. */ 2870 __free_one_page(page, page_to_pfn(page), zone, order, mt, 2871 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 2872 } 2873 2874 /* 2875 * Update NUMA hit/miss statistics 2876 */ zone_statistics(struct zone * preferred_zone,struct zone * z,long nr_account)2877 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 2878 long nr_account) 2879 { 2880 #ifdef CONFIG_NUMA 2881 enum numa_stat_item local_stat = NUMA_LOCAL; 2882 2883 /* skip numa counters update if numa stats is disabled */ 2884 if (!static_branch_likely(&vm_numa_stat_key)) 2885 return; 2886 2887 if (zone_to_nid(z) != numa_node_id()) 2888 local_stat = NUMA_OTHER; 2889 2890 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 2891 __count_numa_events(z, NUMA_HIT, nr_account); 2892 else { 2893 __count_numa_events(z, NUMA_MISS, nr_account); 2894 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 2895 } 2896 __count_numa_events(z, local_stat, nr_account); 2897 #endif 2898 } 2899 2900 static __always_inline rmqueue_buddy(struct zone * preferred_zone,struct zone * zone,unsigned int order,unsigned int alloc_flags,int migratetype)2901 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone, 2902 unsigned int order, unsigned int alloc_flags, 2903 int migratetype) 2904 { 2905 struct page *page; 2906 unsigned long flags; 2907 2908 do { 2909 page = NULL; 2910 spin_lock_irqsave(&zone->lock, flags); 2911 if (alloc_flags & ALLOC_HIGHATOMIC) 2912 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2913 if (!page) { 2914 page = __rmqueue(zone, order, migratetype, alloc_flags); 2915 2916 /* 2917 * If the allocation fails, allow OOM handling and 2918 * order-0 (atomic) allocs access to HIGHATOMIC 2919 * reserves as failing now is worse than failing a 2920 * high-order atomic allocation in the future. 2921 */ 2922 if (!page && (alloc_flags & (ALLOC_OOM|ALLOC_NON_BLOCK))) 2923 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2924 2925 if (!page) { 2926 spin_unlock_irqrestore(&zone->lock, flags); 2927 return NULL; 2928 } 2929 } 2930 spin_unlock_irqrestore(&zone->lock, flags); 2931 } while (check_new_pages(page, order)); 2932 2933 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2934 zone_statistics(preferred_zone, zone, 1); 2935 2936 return page; 2937 } 2938 nr_pcp_alloc(struct per_cpu_pages * pcp,struct zone * zone,int order)2939 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order) 2940 { 2941 int high, base_batch, batch, max_nr_alloc; 2942 int high_max, high_min; 2943 2944 base_batch = READ_ONCE(pcp->batch); 2945 high_min = READ_ONCE(pcp->high_min); 2946 high_max = READ_ONCE(pcp->high_max); 2947 high = pcp->high = clamp(pcp->high, high_min, high_max); 2948 2949 /* Check for PCP disabled or boot pageset */ 2950 if (unlikely(high < base_batch)) 2951 return 1; 2952 2953 if (order) 2954 batch = base_batch; 2955 else 2956 batch = (base_batch << pcp->alloc_factor); 2957 2958 /* 2959 * If we had larger pcp->high, we could avoid to allocate from 2960 * zone. 2961 */ 2962 if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags)) 2963 high = pcp->high = min(high + batch, high_max); 2964 2965 if (!order) { 2966 max_nr_alloc = max(high - pcp->count - base_batch, base_batch); 2967 /* 2968 * Double the number of pages allocated each time there is 2969 * subsequent allocation of order-0 pages without any freeing. 2970 */ 2971 if (batch <= max_nr_alloc && 2972 pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX) 2973 pcp->alloc_factor++; 2974 batch = min(batch, max_nr_alloc); 2975 } 2976 2977 /* 2978 * Scale batch relative to order if batch implies free pages 2979 * can be stored on the PCP. Batch can be 1 for small zones or 2980 * for boot pagesets which should never store free pages as 2981 * the pages may belong to arbitrary zones. 2982 */ 2983 if (batch > 1) 2984 batch = max(batch >> order, 2); 2985 2986 return batch; 2987 } 2988 2989 /* Remove page from the per-cpu list, caller must protect the list */ 2990 static inline __rmqueue_pcplist(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags,struct per_cpu_pages * pcp,struct list_head * list)2991 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 2992 int migratetype, 2993 unsigned int alloc_flags, 2994 struct per_cpu_pages *pcp, 2995 struct list_head *list) 2996 { 2997 struct page *page; 2998 2999 do { 3000 if (list_empty(list)) { 3001 int batch = nr_pcp_alloc(pcp, zone, order); 3002 int alloced; 3003 3004 alloced = rmqueue_bulk(zone, order, 3005 batch, list, 3006 migratetype, alloc_flags); 3007 3008 pcp->count += alloced << order; 3009 if (unlikely(list_empty(list))) 3010 return NULL; 3011 } 3012 3013 page = list_first_entry(list, struct page, pcp_list); 3014 list_del(&page->pcp_list); 3015 pcp->count -= 1 << order; 3016 } while (check_new_pages(page, order)); 3017 3018 return page; 3019 } 3020 3021 /* Lock and remove page from the per-cpu list */ rmqueue_pcplist(struct zone * preferred_zone,struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)3022 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3023 struct zone *zone, unsigned int order, 3024 int migratetype, unsigned int alloc_flags) 3025 { 3026 struct per_cpu_pages *pcp; 3027 struct list_head *list; 3028 struct page *page; 3029 unsigned long __maybe_unused UP_flags; 3030 3031 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 3032 pcp_trylock_prepare(UP_flags); 3033 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 3034 if (!pcp) { 3035 pcp_trylock_finish(UP_flags); 3036 return NULL; 3037 } 3038 3039 /* 3040 * On allocation, reduce the number of pages that are batch freed. 3041 * See nr_pcp_free() where free_factor is increased for subsequent 3042 * frees. 3043 */ 3044 pcp->free_count >>= 1; 3045 list = &pcp->lists[order_to_pindex(migratetype, order)]; 3046 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 3047 pcp_spin_unlock(pcp); 3048 pcp_trylock_finish(UP_flags); 3049 if (page) { 3050 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3051 zone_statistics(preferred_zone, zone, 1); 3052 } 3053 return page; 3054 } 3055 3056 /* 3057 * Allocate a page from the given zone. 3058 * Use pcplists for THP or "cheap" high-order allocations. 3059 */ 3060 3061 /* 3062 * Do not instrument rmqueue() with KMSAN. This function may call 3063 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask(). 3064 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it 3065 * may call rmqueue() again, which will result in a deadlock. 3066 */ 3067 __no_sanitize_memory 3068 static inline rmqueue(struct zone * preferred_zone,struct zone * zone,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags,int migratetype)3069 struct page *rmqueue(struct zone *preferred_zone, 3070 struct zone *zone, unsigned int order, 3071 gfp_t gfp_flags, unsigned int alloc_flags, 3072 int migratetype) 3073 { 3074 struct page *page; 3075 3076 if (likely(pcp_allowed_order(order))) { 3077 page = rmqueue_pcplist(preferred_zone, zone, order, 3078 migratetype, alloc_flags); 3079 if (likely(page)) 3080 goto out; 3081 } 3082 3083 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags, 3084 migratetype); 3085 3086 out: 3087 /* Separate test+clear to avoid unnecessary atomics */ 3088 if ((alloc_flags & ALLOC_KSWAPD) && 3089 unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) { 3090 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3091 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3092 } 3093 3094 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3095 return page; 3096 } 3097 __zone_watermark_unusable_free(struct zone * z,unsigned int order,unsigned int alloc_flags)3098 static inline long __zone_watermark_unusable_free(struct zone *z, 3099 unsigned int order, unsigned int alloc_flags) 3100 { 3101 long unusable_free = (1 << order) - 1; 3102 3103 /* 3104 * If the caller does not have rights to reserves below the min 3105 * watermark then subtract the free pages reserved for highatomic. 3106 */ 3107 if (likely(!(alloc_flags & ALLOC_RESERVES))) 3108 unusable_free += READ_ONCE(z->nr_free_highatomic); 3109 3110 #ifdef CONFIG_CMA 3111 /* If allocation can't use CMA areas don't use free CMA pages */ 3112 if (!(alloc_flags & ALLOC_CMA)) 3113 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3114 #endif 3115 3116 return unusable_free; 3117 } 3118 3119 /* 3120 * Return true if free base pages are above 'mark'. For high-order checks it 3121 * will return true of the order-0 watermark is reached and there is at least 3122 * one free page of a suitable size. Checking now avoids taking the zone lock 3123 * to check in the allocation paths if no pages are free. 3124 */ __zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,long free_pages)3125 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3126 int highest_zoneidx, unsigned int alloc_flags, 3127 long free_pages) 3128 { 3129 long min = mark; 3130 int o; 3131 3132 /* free_pages may go negative - that's OK */ 3133 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3134 3135 if (unlikely(alloc_flags & ALLOC_RESERVES)) { 3136 /* 3137 * __GFP_HIGH allows access to 50% of the min reserve as well 3138 * as OOM. 3139 */ 3140 if (alloc_flags & ALLOC_MIN_RESERVE) { 3141 min -= min / 2; 3142 3143 /* 3144 * Non-blocking allocations (e.g. GFP_ATOMIC) can 3145 * access more reserves than just __GFP_HIGH. Other 3146 * non-blocking allocations requests such as GFP_NOWAIT 3147 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get 3148 * access to the min reserve. 3149 */ 3150 if (alloc_flags & ALLOC_NON_BLOCK) 3151 min -= min / 4; 3152 } 3153 3154 /* 3155 * OOM victims can try even harder than the normal reserve 3156 * users on the grounds that it's definitely going to be in 3157 * the exit path shortly and free memory. Any allocation it 3158 * makes during the free path will be small and short-lived. 3159 */ 3160 if (alloc_flags & ALLOC_OOM) 3161 min -= min / 2; 3162 } 3163 3164 /* 3165 * Check watermarks for an order-0 allocation request. If these 3166 * are not met, then a high-order request also cannot go ahead 3167 * even if a suitable page happened to be free. 3168 */ 3169 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 3170 return false; 3171 3172 /* If this is an order-0 request then the watermark is fine */ 3173 if (!order) 3174 return true; 3175 3176 /* For a high-order request, check at least one suitable page is free */ 3177 for (o = order; o < NR_PAGE_ORDERS; o++) { 3178 struct free_area *area = &z->free_area[o]; 3179 int mt; 3180 3181 if (!area->nr_free) 3182 continue; 3183 3184 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3185 if (!free_area_empty(area, mt)) 3186 return true; 3187 } 3188 3189 #ifdef CONFIG_CMA 3190 if ((alloc_flags & ALLOC_CMA) && 3191 !free_area_empty(area, MIGRATE_CMA)) { 3192 return true; 3193 } 3194 #endif 3195 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) && 3196 !free_area_empty(area, MIGRATE_HIGHATOMIC)) { 3197 return true; 3198 } 3199 } 3200 return false; 3201 } 3202 zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags)3203 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3204 int highest_zoneidx, unsigned int alloc_flags) 3205 { 3206 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3207 zone_page_state(z, NR_FREE_PAGES)); 3208 } 3209 zone_watermark_fast(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,gfp_t gfp_mask)3210 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3211 unsigned long mark, int highest_zoneidx, 3212 unsigned int alloc_flags, gfp_t gfp_mask) 3213 { 3214 long free_pages; 3215 3216 free_pages = zone_page_state(z, NR_FREE_PAGES); 3217 3218 /* 3219 * Fast check for order-0 only. If this fails then the reserves 3220 * need to be calculated. 3221 */ 3222 if (!order) { 3223 long usable_free; 3224 long reserved; 3225 3226 usable_free = free_pages; 3227 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags); 3228 3229 /* reserved may over estimate high-atomic reserves. */ 3230 usable_free -= min(usable_free, reserved); 3231 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx]) 3232 return true; 3233 } 3234 3235 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3236 free_pages)) 3237 return true; 3238 3239 /* 3240 * Ignore watermark boosting for __GFP_HIGH order-0 allocations 3241 * when checking the min watermark. The min watermark is the 3242 * point where boosting is ignored so that kswapd is woken up 3243 * when below the low watermark. 3244 */ 3245 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost 3246 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 3247 mark = z->_watermark[WMARK_MIN]; 3248 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 3249 alloc_flags, free_pages); 3250 } 3251 3252 return false; 3253 } 3254 zone_watermark_ok_safe(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx)3255 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3256 unsigned long mark, int highest_zoneidx) 3257 { 3258 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3259 3260 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3261 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3262 3263 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 3264 free_pages); 3265 } 3266 3267 #ifdef CONFIG_NUMA 3268 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 3269 zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3270 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3271 { 3272 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3273 node_reclaim_distance; 3274 } 3275 #else /* CONFIG_NUMA */ zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3276 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3277 { 3278 return true; 3279 } 3280 #endif /* CONFIG_NUMA */ 3281 3282 /* 3283 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3284 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3285 * premature use of a lower zone may cause lowmem pressure problems that 3286 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3287 * probably too small. It only makes sense to spread allocations to avoid 3288 * fragmentation between the Normal and DMA32 zones. 3289 */ 3290 static inline unsigned int alloc_flags_nofragment(struct zone * zone,gfp_t gfp_mask)3291 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3292 { 3293 unsigned int alloc_flags; 3294 3295 /* 3296 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3297 * to save a branch. 3298 */ 3299 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 3300 3301 #ifdef CONFIG_ZONE_DMA32 3302 if (!zone) 3303 return alloc_flags; 3304 3305 if (zone_idx(zone) != ZONE_NORMAL) 3306 return alloc_flags; 3307 3308 /* 3309 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3310 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3311 * on UMA that if Normal is populated then so is DMA32. 3312 */ 3313 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3314 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3315 return alloc_flags; 3316 3317 alloc_flags |= ALLOC_NOFRAGMENT; 3318 #endif /* CONFIG_ZONE_DMA32 */ 3319 return alloc_flags; 3320 } 3321 3322 /* Must be called after current_gfp_context() which can change gfp_mask */ gfp_to_alloc_flags_cma(gfp_t gfp_mask,unsigned int alloc_flags)3323 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 3324 unsigned int alloc_flags) 3325 { 3326 #ifdef CONFIG_CMA 3327 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3328 alloc_flags |= ALLOC_CMA; 3329 #endif 3330 return alloc_flags; 3331 } 3332 3333 /* 3334 * get_page_from_freelist goes through the zonelist trying to allocate 3335 * a page. 3336 */ 3337 static struct page * get_page_from_freelist(gfp_t gfp_mask,unsigned int order,int alloc_flags,const struct alloc_context * ac)3338 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3339 const struct alloc_context *ac) 3340 { 3341 struct zoneref *z; 3342 struct zone *zone; 3343 struct pglist_data *last_pgdat = NULL; 3344 bool last_pgdat_dirty_ok = false; 3345 bool no_fallback; 3346 3347 retry: 3348 /* 3349 * Scan zonelist, looking for a zone with enough free. 3350 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c. 3351 */ 3352 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3353 z = ac->preferred_zoneref; 3354 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 3355 ac->nodemask) { 3356 struct page *page; 3357 unsigned long mark; 3358 3359 if (cpusets_enabled() && 3360 (alloc_flags & ALLOC_CPUSET) && 3361 !__cpuset_zone_allowed(zone, gfp_mask)) 3362 continue; 3363 /* 3364 * When allocating a page cache page for writing, we 3365 * want to get it from a node that is within its dirty 3366 * limit, such that no single node holds more than its 3367 * proportional share of globally allowed dirty pages. 3368 * The dirty limits take into account the node's 3369 * lowmem reserves and high watermark so that kswapd 3370 * should be able to balance it without having to 3371 * write pages from its LRU list. 3372 * 3373 * XXX: For now, allow allocations to potentially 3374 * exceed the per-node dirty limit in the slowpath 3375 * (spread_dirty_pages unset) before going into reclaim, 3376 * which is important when on a NUMA setup the allowed 3377 * nodes are together not big enough to reach the 3378 * global limit. The proper fix for these situations 3379 * will require awareness of nodes in the 3380 * dirty-throttling and the flusher threads. 3381 */ 3382 if (ac->spread_dirty_pages) { 3383 if (last_pgdat != zone->zone_pgdat) { 3384 last_pgdat = zone->zone_pgdat; 3385 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat); 3386 } 3387 3388 if (!last_pgdat_dirty_ok) 3389 continue; 3390 } 3391 3392 if (no_fallback && nr_online_nodes > 1 && 3393 zone != zonelist_zone(ac->preferred_zoneref)) { 3394 int local_nid; 3395 3396 /* 3397 * If moving to a remote node, retry but allow 3398 * fragmenting fallbacks. Locality is more important 3399 * than fragmentation avoidance. 3400 */ 3401 local_nid = zonelist_node_idx(ac->preferred_zoneref); 3402 if (zone_to_nid(zone) != local_nid) { 3403 alloc_flags &= ~ALLOC_NOFRAGMENT; 3404 goto retry; 3405 } 3406 } 3407 3408 cond_accept_memory(zone, order); 3409 3410 /* 3411 * Detect whether the number of free pages is below high 3412 * watermark. If so, we will decrease pcp->high and free 3413 * PCP pages in free path to reduce the possibility of 3414 * premature page reclaiming. Detection is done here to 3415 * avoid to do that in hotter free path. 3416 */ 3417 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) 3418 goto check_alloc_wmark; 3419 3420 mark = high_wmark_pages(zone); 3421 if (zone_watermark_fast(zone, order, mark, 3422 ac->highest_zoneidx, alloc_flags, 3423 gfp_mask)) 3424 goto try_this_zone; 3425 else 3426 set_bit(ZONE_BELOW_HIGH, &zone->flags); 3427 3428 check_alloc_wmark: 3429 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3430 if (!zone_watermark_fast(zone, order, mark, 3431 ac->highest_zoneidx, alloc_flags, 3432 gfp_mask)) { 3433 int ret; 3434 3435 if (cond_accept_memory(zone, order)) 3436 goto try_this_zone; 3437 3438 /* 3439 * Watermark failed for this zone, but see if we can 3440 * grow this zone if it contains deferred pages. 3441 */ 3442 if (deferred_pages_enabled()) { 3443 if (_deferred_grow_zone(zone, order)) 3444 goto try_this_zone; 3445 } 3446 /* Checked here to keep the fast path fast */ 3447 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3448 if (alloc_flags & ALLOC_NO_WATERMARKS) 3449 goto try_this_zone; 3450 3451 if (!node_reclaim_enabled() || 3452 !zone_allows_reclaim(zonelist_zone(ac->preferred_zoneref), zone)) 3453 continue; 3454 3455 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3456 switch (ret) { 3457 case NODE_RECLAIM_NOSCAN: 3458 /* did not scan */ 3459 continue; 3460 case NODE_RECLAIM_FULL: 3461 /* scanned but unreclaimable */ 3462 continue; 3463 default: 3464 /* did we reclaim enough */ 3465 if (zone_watermark_ok(zone, order, mark, 3466 ac->highest_zoneidx, alloc_flags)) 3467 goto try_this_zone; 3468 3469 continue; 3470 } 3471 } 3472 3473 try_this_zone: 3474 page = rmqueue(zonelist_zone(ac->preferred_zoneref), zone, order, 3475 gfp_mask, alloc_flags, ac->migratetype); 3476 if (page) { 3477 prep_new_page(page, order, gfp_mask, alloc_flags); 3478 3479 /* 3480 * If this is a high-order atomic allocation then check 3481 * if the pageblock should be reserved for the future 3482 */ 3483 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC)) 3484 reserve_highatomic_pageblock(page, order, zone); 3485 3486 return page; 3487 } else { 3488 if (cond_accept_memory(zone, order)) 3489 goto try_this_zone; 3490 3491 /* Try again if zone has deferred pages */ 3492 if (deferred_pages_enabled()) { 3493 if (_deferred_grow_zone(zone, order)) 3494 goto try_this_zone; 3495 } 3496 } 3497 } 3498 3499 /* 3500 * It's possible on a UMA machine to get through all zones that are 3501 * fragmented. If avoiding fragmentation, reset and try again. 3502 */ 3503 if (no_fallback) { 3504 alloc_flags &= ~ALLOC_NOFRAGMENT; 3505 goto retry; 3506 } 3507 3508 return NULL; 3509 } 3510 warn_alloc_show_mem(gfp_t gfp_mask,nodemask_t * nodemask)3511 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3512 { 3513 unsigned int filter = SHOW_MEM_FILTER_NODES; 3514 3515 /* 3516 * This documents exceptions given to allocations in certain 3517 * contexts that are allowed to allocate outside current's set 3518 * of allowed nodes. 3519 */ 3520 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3521 if (tsk_is_oom_victim(current) || 3522 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3523 filter &= ~SHOW_MEM_FILTER_NODES; 3524 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3525 filter &= ~SHOW_MEM_FILTER_NODES; 3526 3527 __show_mem(filter, nodemask, gfp_zone(gfp_mask)); 3528 } 3529 warn_alloc(gfp_t gfp_mask,nodemask_t * nodemask,const char * fmt,...)3530 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3531 { 3532 struct va_format vaf; 3533 va_list args; 3534 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 3535 3536 if ((gfp_mask & __GFP_NOWARN) || 3537 !__ratelimit(&nopage_rs) || 3538 ((gfp_mask & __GFP_DMA) && !has_managed_dma())) 3539 return; 3540 3541 va_start(args, fmt); 3542 vaf.fmt = fmt; 3543 vaf.va = &args; 3544 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 3545 current->comm, &vaf, gfp_mask, &gfp_mask, 3546 nodemask_pr_args(nodemask)); 3547 va_end(args); 3548 3549 cpuset_print_current_mems_allowed(); 3550 pr_cont("\n"); 3551 dump_stack(); 3552 warn_alloc_show_mem(gfp_mask, nodemask); 3553 } 3554 3555 static inline struct page * __alloc_pages_cpuset_fallback(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac)3556 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3557 unsigned int alloc_flags, 3558 const struct alloc_context *ac) 3559 { 3560 struct page *page; 3561 3562 page = get_page_from_freelist(gfp_mask, order, 3563 alloc_flags|ALLOC_CPUSET, ac); 3564 /* 3565 * fallback to ignore cpuset restriction if our nodes 3566 * are depleted 3567 */ 3568 if (!page) 3569 page = get_page_from_freelist(gfp_mask, order, 3570 alloc_flags, ac); 3571 return page; 3572 } 3573 3574 static inline struct page * __alloc_pages_may_oom(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac,unsigned long * did_some_progress)3575 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3576 const struct alloc_context *ac, unsigned long *did_some_progress) 3577 { 3578 struct oom_control oc = { 3579 .zonelist = ac->zonelist, 3580 .nodemask = ac->nodemask, 3581 .memcg = NULL, 3582 .gfp_mask = gfp_mask, 3583 .order = order, 3584 }; 3585 struct page *page; 3586 3587 *did_some_progress = 0; 3588 3589 /* 3590 * Acquire the oom lock. If that fails, somebody else is 3591 * making progress for us. 3592 */ 3593 if (!mutex_trylock(&oom_lock)) { 3594 *did_some_progress = 1; 3595 schedule_timeout_uninterruptible(1); 3596 return NULL; 3597 } 3598 3599 /* 3600 * Go through the zonelist yet one more time, keep very high watermark 3601 * here, this is only to catch a parallel oom killing, we must fail if 3602 * we're still under heavy pressure. But make sure that this reclaim 3603 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3604 * allocation which will never fail due to oom_lock already held. 3605 */ 3606 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3607 ~__GFP_DIRECT_RECLAIM, order, 3608 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3609 if (page) 3610 goto out; 3611 3612 /* Coredumps can quickly deplete all memory reserves */ 3613 if (current->flags & PF_DUMPCORE) 3614 goto out; 3615 /* The OOM killer will not help higher order allocs */ 3616 if (order > PAGE_ALLOC_COSTLY_ORDER) 3617 goto out; 3618 /* 3619 * We have already exhausted all our reclaim opportunities without any 3620 * success so it is time to admit defeat. We will skip the OOM killer 3621 * because it is very likely that the caller has a more reasonable 3622 * fallback than shooting a random task. 3623 * 3624 * The OOM killer may not free memory on a specific node. 3625 */ 3626 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 3627 goto out; 3628 /* The OOM killer does not needlessly kill tasks for lowmem */ 3629 if (ac->highest_zoneidx < ZONE_NORMAL) 3630 goto out; 3631 if (pm_suspended_storage()) 3632 goto out; 3633 /* 3634 * XXX: GFP_NOFS allocations should rather fail than rely on 3635 * other request to make a forward progress. 3636 * We are in an unfortunate situation where out_of_memory cannot 3637 * do much for this context but let's try it to at least get 3638 * access to memory reserved if the current task is killed (see 3639 * out_of_memory). Once filesystems are ready to handle allocation 3640 * failures more gracefully we should just bail out here. 3641 */ 3642 3643 /* Exhausted what can be done so it's blame time */ 3644 if (out_of_memory(&oc) || 3645 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) { 3646 *did_some_progress = 1; 3647 3648 /* 3649 * Help non-failing allocations by giving them access to memory 3650 * reserves 3651 */ 3652 if (gfp_mask & __GFP_NOFAIL) 3653 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3654 ALLOC_NO_WATERMARKS, ac); 3655 } 3656 out: 3657 mutex_unlock(&oom_lock); 3658 return page; 3659 } 3660 3661 /* 3662 * Maximum number of compaction retries with a progress before OOM 3663 * killer is consider as the only way to move forward. 3664 */ 3665 #define MAX_COMPACT_RETRIES 16 3666 3667 #ifdef CONFIG_COMPACTION 3668 /* Try memory compaction for high-order allocations before reclaim */ 3669 static struct page * __alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)3670 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3671 unsigned int alloc_flags, const struct alloc_context *ac, 3672 enum compact_priority prio, enum compact_result *compact_result) 3673 { 3674 struct page *page = NULL; 3675 unsigned long pflags; 3676 unsigned int noreclaim_flag; 3677 3678 if (!order) 3679 return NULL; 3680 3681 psi_memstall_enter(&pflags); 3682 delayacct_compact_start(); 3683 noreclaim_flag = memalloc_noreclaim_save(); 3684 3685 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3686 prio, &page); 3687 3688 memalloc_noreclaim_restore(noreclaim_flag); 3689 psi_memstall_leave(&pflags); 3690 delayacct_compact_end(); 3691 3692 if (*compact_result == COMPACT_SKIPPED) 3693 return NULL; 3694 /* 3695 * At least in one zone compaction wasn't deferred or skipped, so let's 3696 * count a compaction stall 3697 */ 3698 count_vm_event(COMPACTSTALL); 3699 3700 /* Prep a captured page if available */ 3701 if (page) 3702 prep_new_page(page, order, gfp_mask, alloc_flags); 3703 3704 /* Try get a page from the freelist if available */ 3705 if (!page) 3706 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3707 3708 if (page) { 3709 struct zone *zone = page_zone(page); 3710 3711 zone->compact_blockskip_flush = false; 3712 compaction_defer_reset(zone, order, true); 3713 count_vm_event(COMPACTSUCCESS); 3714 return page; 3715 } 3716 3717 /* 3718 * It's bad if compaction run occurs and fails. The most likely reason 3719 * is that pages exist, but not enough to satisfy watermarks. 3720 */ 3721 count_vm_event(COMPACTFAIL); 3722 3723 cond_resched(); 3724 3725 return NULL; 3726 } 3727 3728 static inline bool should_compact_retry(struct alloc_context * ac,int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)3729 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3730 enum compact_result compact_result, 3731 enum compact_priority *compact_priority, 3732 int *compaction_retries) 3733 { 3734 int max_retries = MAX_COMPACT_RETRIES; 3735 int min_priority; 3736 bool ret = false; 3737 int retries = *compaction_retries; 3738 enum compact_priority priority = *compact_priority; 3739 3740 if (!order) 3741 return false; 3742 3743 if (fatal_signal_pending(current)) 3744 return false; 3745 3746 /* 3747 * Compaction was skipped due to a lack of free order-0 3748 * migration targets. Continue if reclaim can help. 3749 */ 3750 if (compact_result == COMPACT_SKIPPED) { 3751 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3752 goto out; 3753 } 3754 3755 /* 3756 * Compaction managed to coalesce some page blocks, but the 3757 * allocation failed presumably due to a race. Retry some. 3758 */ 3759 if (compact_result == COMPACT_SUCCESS) { 3760 /* 3761 * !costly requests are much more important than 3762 * __GFP_RETRY_MAYFAIL costly ones because they are de 3763 * facto nofail and invoke OOM killer to move on while 3764 * costly can fail and users are ready to cope with 3765 * that. 1/4 retries is rather arbitrary but we would 3766 * need much more detailed feedback from compaction to 3767 * make a better decision. 3768 */ 3769 if (order > PAGE_ALLOC_COSTLY_ORDER) 3770 max_retries /= 4; 3771 3772 if (++(*compaction_retries) <= max_retries) { 3773 ret = true; 3774 goto out; 3775 } 3776 } 3777 3778 /* 3779 * Compaction failed. Retry with increasing priority. 3780 */ 3781 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 3782 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 3783 3784 if (*compact_priority > min_priority) { 3785 (*compact_priority)--; 3786 *compaction_retries = 0; 3787 ret = true; 3788 } 3789 out: 3790 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 3791 return ret; 3792 } 3793 #else 3794 static inline struct page * __alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)3795 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3796 unsigned int alloc_flags, const struct alloc_context *ac, 3797 enum compact_priority prio, enum compact_result *compact_result) 3798 { 3799 *compact_result = COMPACT_SKIPPED; 3800 return NULL; 3801 } 3802 3803 static inline bool should_compact_retry(struct alloc_context * ac,unsigned int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)3804 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 3805 enum compact_result compact_result, 3806 enum compact_priority *compact_priority, 3807 int *compaction_retries) 3808 { 3809 struct zone *zone; 3810 struct zoneref *z; 3811 3812 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 3813 return false; 3814 3815 /* 3816 * There are setups with compaction disabled which would prefer to loop 3817 * inside the allocator rather than hit the oom killer prematurely. 3818 * Let's give them a good hope and keep retrying while the order-0 3819 * watermarks are OK. 3820 */ 3821 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 3822 ac->highest_zoneidx, ac->nodemask) { 3823 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 3824 ac->highest_zoneidx, alloc_flags)) 3825 return true; 3826 } 3827 return false; 3828 } 3829 #endif /* CONFIG_COMPACTION */ 3830 3831 #ifdef CONFIG_LOCKDEP 3832 static struct lockdep_map __fs_reclaim_map = 3833 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 3834 __need_reclaim(gfp_t gfp_mask)3835 static bool __need_reclaim(gfp_t gfp_mask) 3836 { 3837 /* no reclaim without waiting on it */ 3838 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 3839 return false; 3840 3841 /* this guy won't enter reclaim */ 3842 if (current->flags & PF_MEMALLOC) 3843 return false; 3844 3845 if (gfp_mask & __GFP_NOLOCKDEP) 3846 return false; 3847 3848 return true; 3849 } 3850 __fs_reclaim_acquire(unsigned long ip)3851 void __fs_reclaim_acquire(unsigned long ip) 3852 { 3853 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); 3854 } 3855 __fs_reclaim_release(unsigned long ip)3856 void __fs_reclaim_release(unsigned long ip) 3857 { 3858 lock_release(&__fs_reclaim_map, ip); 3859 } 3860 fs_reclaim_acquire(gfp_t gfp_mask)3861 void fs_reclaim_acquire(gfp_t gfp_mask) 3862 { 3863 gfp_mask = current_gfp_context(gfp_mask); 3864 3865 if (__need_reclaim(gfp_mask)) { 3866 if (gfp_mask & __GFP_FS) 3867 __fs_reclaim_acquire(_RET_IP_); 3868 3869 #ifdef CONFIG_MMU_NOTIFIER 3870 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 3871 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 3872 #endif 3873 3874 } 3875 } 3876 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 3877 fs_reclaim_release(gfp_t gfp_mask)3878 void fs_reclaim_release(gfp_t gfp_mask) 3879 { 3880 gfp_mask = current_gfp_context(gfp_mask); 3881 3882 if (__need_reclaim(gfp_mask)) { 3883 if (gfp_mask & __GFP_FS) 3884 __fs_reclaim_release(_RET_IP_); 3885 } 3886 } 3887 EXPORT_SYMBOL_GPL(fs_reclaim_release); 3888 #endif 3889 3890 /* 3891 * Zonelists may change due to hotplug during allocation. Detect when zonelists 3892 * have been rebuilt so allocation retries. Reader side does not lock and 3893 * retries the allocation if zonelist changes. Writer side is protected by the 3894 * embedded spin_lock. 3895 */ 3896 static DEFINE_SEQLOCK(zonelist_update_seq); 3897 zonelist_iter_begin(void)3898 static unsigned int zonelist_iter_begin(void) 3899 { 3900 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 3901 return read_seqbegin(&zonelist_update_seq); 3902 3903 return 0; 3904 } 3905 check_retry_zonelist(unsigned int seq)3906 static unsigned int check_retry_zonelist(unsigned int seq) 3907 { 3908 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 3909 return read_seqretry(&zonelist_update_seq, seq); 3910 3911 return seq; 3912 } 3913 3914 /* Perform direct synchronous page reclaim */ 3915 static unsigned long __perform_reclaim(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac)3916 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 3917 const struct alloc_context *ac) 3918 { 3919 unsigned int noreclaim_flag; 3920 unsigned long progress; 3921 3922 cond_resched(); 3923 3924 /* We now go into synchronous reclaim */ 3925 cpuset_memory_pressure_bump(); 3926 fs_reclaim_acquire(gfp_mask); 3927 noreclaim_flag = memalloc_noreclaim_save(); 3928 3929 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 3930 ac->nodemask); 3931 3932 memalloc_noreclaim_restore(noreclaim_flag); 3933 fs_reclaim_release(gfp_mask); 3934 3935 cond_resched(); 3936 3937 return progress; 3938 } 3939 3940 /* The really slow allocator path where we enter direct reclaim */ 3941 static inline struct page * __alloc_pages_direct_reclaim(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,unsigned long * did_some_progress)3942 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 3943 unsigned int alloc_flags, const struct alloc_context *ac, 3944 unsigned long *did_some_progress) 3945 { 3946 struct page *page = NULL; 3947 unsigned long pflags; 3948 bool drained = false; 3949 3950 psi_memstall_enter(&pflags); 3951 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 3952 if (unlikely(!(*did_some_progress))) 3953 goto out; 3954 3955 retry: 3956 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3957 3958 /* 3959 * If an allocation failed after direct reclaim, it could be because 3960 * pages are pinned on the per-cpu lists or in high alloc reserves. 3961 * Shrink them and try again 3962 */ 3963 if (!page && !drained) { 3964 unreserve_highatomic_pageblock(ac, false); 3965 drain_all_pages(NULL); 3966 drained = true; 3967 goto retry; 3968 } 3969 out: 3970 psi_memstall_leave(&pflags); 3971 3972 return page; 3973 } 3974 wake_all_kswapds(unsigned int order,gfp_t gfp_mask,const struct alloc_context * ac)3975 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 3976 const struct alloc_context *ac) 3977 { 3978 struct zoneref *z; 3979 struct zone *zone; 3980 pg_data_t *last_pgdat = NULL; 3981 enum zone_type highest_zoneidx = ac->highest_zoneidx; 3982 3983 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 3984 ac->nodemask) { 3985 if (!managed_zone(zone)) 3986 continue; 3987 if (last_pgdat != zone->zone_pgdat) { 3988 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 3989 last_pgdat = zone->zone_pgdat; 3990 } 3991 } 3992 } 3993 3994 static inline unsigned int gfp_to_alloc_flags(gfp_t gfp_mask,unsigned int order)3995 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order) 3996 { 3997 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 3998 3999 /* 4000 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE 4001 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4002 * to save two branches. 4003 */ 4004 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE); 4005 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 4006 4007 /* 4008 * The caller may dip into page reserves a bit more if the caller 4009 * cannot run direct reclaim, or if the caller has realtime scheduling 4010 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4011 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH). 4012 */ 4013 alloc_flags |= (__force int) 4014 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 4015 4016 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) { 4017 /* 4018 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4019 * if it can't schedule. 4020 */ 4021 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 4022 alloc_flags |= ALLOC_NON_BLOCK; 4023 4024 if (order > 0) 4025 alloc_flags |= ALLOC_HIGHATOMIC; 4026 } 4027 4028 /* 4029 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably 4030 * GFP_ATOMIC) rather than fail, see the comment for 4031 * cpuset_node_allowed(). 4032 */ 4033 if (alloc_flags & ALLOC_MIN_RESERVE) 4034 alloc_flags &= ~ALLOC_CPUSET; 4035 } else if (unlikely(rt_or_dl_task(current)) && in_task()) 4036 alloc_flags |= ALLOC_MIN_RESERVE; 4037 4038 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 4039 4040 return alloc_flags; 4041 } 4042 oom_reserves_allowed(struct task_struct * tsk)4043 static bool oom_reserves_allowed(struct task_struct *tsk) 4044 { 4045 if (!tsk_is_oom_victim(tsk)) 4046 return false; 4047 4048 /* 4049 * !MMU doesn't have oom reaper so give access to memory reserves 4050 * only to the thread with TIF_MEMDIE set 4051 */ 4052 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4053 return false; 4054 4055 return true; 4056 } 4057 4058 /* 4059 * Distinguish requests which really need access to full memory 4060 * reserves from oom victims which can live with a portion of it 4061 */ __gfp_pfmemalloc_flags(gfp_t gfp_mask)4062 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4063 { 4064 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4065 return 0; 4066 if (gfp_mask & __GFP_MEMALLOC) 4067 return ALLOC_NO_WATERMARKS; 4068 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4069 return ALLOC_NO_WATERMARKS; 4070 if (!in_interrupt()) { 4071 if (current->flags & PF_MEMALLOC) 4072 return ALLOC_NO_WATERMARKS; 4073 else if (oom_reserves_allowed(current)) 4074 return ALLOC_OOM; 4075 } 4076 4077 return 0; 4078 } 4079 gfp_pfmemalloc_allowed(gfp_t gfp_mask)4080 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4081 { 4082 return !!__gfp_pfmemalloc_flags(gfp_mask); 4083 } 4084 4085 /* 4086 * Checks whether it makes sense to retry the reclaim to make a forward progress 4087 * for the given allocation request. 4088 * 4089 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4090 * without success, or when we couldn't even meet the watermark if we 4091 * reclaimed all remaining pages on the LRU lists. 4092 * 4093 * Returns true if a retry is viable or false to enter the oom path. 4094 */ 4095 static inline bool should_reclaim_retry(gfp_t gfp_mask,unsigned order,struct alloc_context * ac,int alloc_flags,bool did_some_progress,int * no_progress_loops)4096 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4097 struct alloc_context *ac, int alloc_flags, 4098 bool did_some_progress, int *no_progress_loops) 4099 { 4100 struct zone *zone; 4101 struct zoneref *z; 4102 bool ret = false; 4103 4104 /* 4105 * Costly allocations might have made a progress but this doesn't mean 4106 * their order will become available due to high fragmentation so 4107 * always increment the no progress counter for them 4108 */ 4109 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4110 *no_progress_loops = 0; 4111 else 4112 (*no_progress_loops)++; 4113 4114 if (*no_progress_loops > MAX_RECLAIM_RETRIES) 4115 goto out; 4116 4117 4118 /* 4119 * Keep reclaiming pages while there is a chance this will lead 4120 * somewhere. If none of the target zones can satisfy our allocation 4121 * request even if all reclaimable pages are considered then we are 4122 * screwed and have to go OOM. 4123 */ 4124 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4125 ac->highest_zoneidx, ac->nodemask) { 4126 unsigned long available; 4127 unsigned long reclaimable; 4128 unsigned long min_wmark = min_wmark_pages(zone); 4129 bool wmark; 4130 4131 if (cpusets_enabled() && 4132 (alloc_flags & ALLOC_CPUSET) && 4133 !__cpuset_zone_allowed(zone, gfp_mask)) 4134 continue; 4135 4136 available = reclaimable = zone_reclaimable_pages(zone); 4137 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4138 4139 /* 4140 * Would the allocation succeed if we reclaimed all 4141 * reclaimable pages? 4142 */ 4143 wmark = __zone_watermark_ok(zone, order, min_wmark, 4144 ac->highest_zoneidx, alloc_flags, available); 4145 trace_reclaim_retry_zone(z, order, reclaimable, 4146 available, min_wmark, *no_progress_loops, wmark); 4147 if (wmark) { 4148 ret = true; 4149 break; 4150 } 4151 } 4152 4153 /* 4154 * Memory allocation/reclaim might be called from a WQ context and the 4155 * current implementation of the WQ concurrency control doesn't 4156 * recognize that a particular WQ is congested if the worker thread is 4157 * looping without ever sleeping. Therefore we have to do a short sleep 4158 * here rather than calling cond_resched(). 4159 */ 4160 if (current->flags & PF_WQ_WORKER) 4161 schedule_timeout_uninterruptible(1); 4162 else 4163 cond_resched(); 4164 out: 4165 /* Before OOM, exhaust highatomic_reserve */ 4166 if (!ret) 4167 return unreserve_highatomic_pageblock(ac, true); 4168 4169 return ret; 4170 } 4171 4172 static inline bool check_retry_cpuset(int cpuset_mems_cookie,struct alloc_context * ac)4173 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4174 { 4175 /* 4176 * It's possible that cpuset's mems_allowed and the nodemask from 4177 * mempolicy don't intersect. This should be normally dealt with by 4178 * policy_nodemask(), but it's possible to race with cpuset update in 4179 * such a way the check therein was true, and then it became false 4180 * before we got our cpuset_mems_cookie here. 4181 * This assumes that for all allocations, ac->nodemask can come only 4182 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4183 * when it does not intersect with the cpuset restrictions) or the 4184 * caller can deal with a violated nodemask. 4185 */ 4186 if (cpusets_enabled() && ac->nodemask && 4187 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4188 ac->nodemask = NULL; 4189 return true; 4190 } 4191 4192 /* 4193 * When updating a task's mems_allowed or mempolicy nodemask, it is 4194 * possible to race with parallel threads in such a way that our 4195 * allocation can fail while the mask is being updated. If we are about 4196 * to fail, check if the cpuset changed during allocation and if so, 4197 * retry. 4198 */ 4199 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4200 return true; 4201 4202 return false; 4203 } 4204 4205 static inline struct page * __alloc_pages_slowpath(gfp_t gfp_mask,unsigned int order,struct alloc_context * ac)4206 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4207 struct alloc_context *ac) 4208 { 4209 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4210 bool can_compact = gfp_compaction_allowed(gfp_mask); 4211 bool nofail = gfp_mask & __GFP_NOFAIL; 4212 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4213 struct page *page = NULL; 4214 unsigned int alloc_flags; 4215 unsigned long did_some_progress; 4216 enum compact_priority compact_priority; 4217 enum compact_result compact_result; 4218 int compaction_retries; 4219 int no_progress_loops; 4220 unsigned int cpuset_mems_cookie; 4221 unsigned int zonelist_iter_cookie; 4222 int reserve_flags; 4223 4224 if (unlikely(nofail)) { 4225 /* 4226 * We most definitely don't want callers attempting to 4227 * allocate greater than order-1 page units with __GFP_NOFAIL. 4228 */ 4229 WARN_ON_ONCE(order > 1); 4230 /* 4231 * Also we don't support __GFP_NOFAIL without __GFP_DIRECT_RECLAIM, 4232 * otherwise, we may result in lockup. 4233 */ 4234 WARN_ON_ONCE(!can_direct_reclaim); 4235 /* 4236 * PF_MEMALLOC request from this context is rather bizarre 4237 * because we cannot reclaim anything and only can loop waiting 4238 * for somebody to do a work for us. 4239 */ 4240 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4241 } 4242 4243 restart: 4244 compaction_retries = 0; 4245 no_progress_loops = 0; 4246 compact_result = COMPACT_SKIPPED; 4247 compact_priority = DEF_COMPACT_PRIORITY; 4248 cpuset_mems_cookie = read_mems_allowed_begin(); 4249 zonelist_iter_cookie = zonelist_iter_begin(); 4250 4251 /* 4252 * The fast path uses conservative alloc_flags to succeed only until 4253 * kswapd needs to be woken up, and to avoid the cost of setting up 4254 * alloc_flags precisely. So we do that now. 4255 */ 4256 alloc_flags = gfp_to_alloc_flags(gfp_mask, order); 4257 4258 /* 4259 * We need to recalculate the starting point for the zonelist iterator 4260 * because we might have used different nodemask in the fast path, or 4261 * there was a cpuset modification and we are retrying - otherwise we 4262 * could end up iterating over non-eligible zones endlessly. 4263 */ 4264 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4265 ac->highest_zoneidx, ac->nodemask); 4266 if (!zonelist_zone(ac->preferred_zoneref)) 4267 goto nopage; 4268 4269 /* 4270 * Check for insane configurations where the cpuset doesn't contain 4271 * any suitable zone to satisfy the request - e.g. non-movable 4272 * GFP_HIGHUSER allocations from MOVABLE nodes only. 4273 */ 4274 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { 4275 struct zoneref *z = first_zones_zonelist(ac->zonelist, 4276 ac->highest_zoneidx, 4277 &cpuset_current_mems_allowed); 4278 if (!zonelist_zone(z)) 4279 goto nopage; 4280 } 4281 4282 if (alloc_flags & ALLOC_KSWAPD) 4283 wake_all_kswapds(order, gfp_mask, ac); 4284 4285 /* 4286 * The adjusted alloc_flags might result in immediate success, so try 4287 * that first 4288 */ 4289 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4290 if (page) 4291 goto got_pg; 4292 4293 /* 4294 * For costly allocations, try direct compaction first, as it's likely 4295 * that we have enough base pages and don't need to reclaim. For non- 4296 * movable high-order allocations, do that as well, as compaction will 4297 * try prevent permanent fragmentation by migrating from blocks of the 4298 * same migratetype. 4299 * Don't try this for allocations that are allowed to ignore 4300 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4301 */ 4302 if (can_direct_reclaim && can_compact && 4303 (costly_order || 4304 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4305 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4306 page = __alloc_pages_direct_compact(gfp_mask, order, 4307 alloc_flags, ac, 4308 INIT_COMPACT_PRIORITY, 4309 &compact_result); 4310 if (page) 4311 goto got_pg; 4312 4313 /* 4314 * Checks for costly allocations with __GFP_NORETRY, which 4315 * includes some THP page fault allocations 4316 */ 4317 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4318 /* 4319 * If allocating entire pageblock(s) and compaction 4320 * failed because all zones are below low watermarks 4321 * or is prohibited because it recently failed at this 4322 * order, fail immediately unless the allocator has 4323 * requested compaction and reclaim retry. 4324 * 4325 * Reclaim is 4326 * - potentially very expensive because zones are far 4327 * below their low watermarks or this is part of very 4328 * bursty high order allocations, 4329 * - not guaranteed to help because isolate_freepages() 4330 * may not iterate over freed pages as part of its 4331 * linear scan, and 4332 * - unlikely to make entire pageblocks free on its 4333 * own. 4334 */ 4335 if (compact_result == COMPACT_SKIPPED || 4336 compact_result == COMPACT_DEFERRED) 4337 goto nopage; 4338 4339 /* 4340 * Looks like reclaim/compaction is worth trying, but 4341 * sync compaction could be very expensive, so keep 4342 * using async compaction. 4343 */ 4344 compact_priority = INIT_COMPACT_PRIORITY; 4345 } 4346 } 4347 4348 retry: 4349 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4350 if (alloc_flags & ALLOC_KSWAPD) 4351 wake_all_kswapds(order, gfp_mask, ac); 4352 4353 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4354 if (reserve_flags) 4355 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) | 4356 (alloc_flags & ALLOC_KSWAPD); 4357 4358 /* 4359 * Reset the nodemask and zonelist iterators if memory policies can be 4360 * ignored. These allocations are high priority and system rather than 4361 * user oriented. 4362 */ 4363 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4364 ac->nodemask = NULL; 4365 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4366 ac->highest_zoneidx, ac->nodemask); 4367 } 4368 4369 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4370 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4371 if (page) 4372 goto got_pg; 4373 4374 /* Caller is not willing to reclaim, we can't balance anything */ 4375 if (!can_direct_reclaim) 4376 goto nopage; 4377 4378 /* Avoid recursion of direct reclaim */ 4379 if (current->flags & PF_MEMALLOC) 4380 goto nopage; 4381 4382 /* Try direct reclaim and then allocating */ 4383 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4384 &did_some_progress); 4385 if (page) 4386 goto got_pg; 4387 4388 /* Try direct compaction and then allocating */ 4389 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4390 compact_priority, &compact_result); 4391 if (page) 4392 goto got_pg; 4393 4394 /* Do not loop if specifically requested */ 4395 if (gfp_mask & __GFP_NORETRY) 4396 goto nopage; 4397 4398 /* 4399 * Do not retry costly high order allocations unless they are 4400 * __GFP_RETRY_MAYFAIL and we can compact 4401 */ 4402 if (costly_order && (!can_compact || 4403 !(gfp_mask & __GFP_RETRY_MAYFAIL))) 4404 goto nopage; 4405 4406 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4407 did_some_progress > 0, &no_progress_loops)) 4408 goto retry; 4409 4410 /* 4411 * It doesn't make any sense to retry for the compaction if the order-0 4412 * reclaim is not able to make any progress because the current 4413 * implementation of the compaction depends on the sufficient amount 4414 * of free memory (see __compaction_suitable) 4415 */ 4416 if (did_some_progress > 0 && can_compact && 4417 should_compact_retry(ac, order, alloc_flags, 4418 compact_result, &compact_priority, 4419 &compaction_retries)) 4420 goto retry; 4421 4422 4423 /* 4424 * Deal with possible cpuset update races or zonelist updates to avoid 4425 * a unnecessary OOM kill. 4426 */ 4427 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4428 check_retry_zonelist(zonelist_iter_cookie)) 4429 goto restart; 4430 4431 /* Reclaim has failed us, start killing things */ 4432 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4433 if (page) 4434 goto got_pg; 4435 4436 /* Avoid allocations with no watermarks from looping endlessly */ 4437 if (tsk_is_oom_victim(current) && 4438 (alloc_flags & ALLOC_OOM || 4439 (gfp_mask & __GFP_NOMEMALLOC))) 4440 goto nopage; 4441 4442 /* Retry as long as the OOM killer is making progress */ 4443 if (did_some_progress) { 4444 no_progress_loops = 0; 4445 goto retry; 4446 } 4447 4448 nopage: 4449 /* 4450 * Deal with possible cpuset update races or zonelist updates to avoid 4451 * a unnecessary OOM kill. 4452 */ 4453 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4454 check_retry_zonelist(zonelist_iter_cookie)) 4455 goto restart; 4456 4457 /* 4458 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4459 * we always retry 4460 */ 4461 if (unlikely(nofail)) { 4462 /* 4463 * Lacking direct_reclaim we can't do anything to reclaim memory, 4464 * we disregard these unreasonable nofail requests and still 4465 * return NULL 4466 */ 4467 if (!can_direct_reclaim) 4468 goto fail; 4469 4470 /* 4471 * Help non-failing allocations by giving some access to memory 4472 * reserves normally used for high priority non-blocking 4473 * allocations but do not use ALLOC_NO_WATERMARKS because this 4474 * could deplete whole memory reserves which would just make 4475 * the situation worse. 4476 */ 4477 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac); 4478 if (page) 4479 goto got_pg; 4480 4481 cond_resched(); 4482 goto retry; 4483 } 4484 fail: 4485 warn_alloc(gfp_mask, ac->nodemask, 4486 "page allocation failure: order:%u", order); 4487 got_pg: 4488 return page; 4489 } 4490 prepare_alloc_pages(gfp_t gfp_mask,unsigned int order,int preferred_nid,nodemask_t * nodemask,struct alloc_context * ac,gfp_t * alloc_gfp,unsigned int * alloc_flags)4491 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4492 int preferred_nid, nodemask_t *nodemask, 4493 struct alloc_context *ac, gfp_t *alloc_gfp, 4494 unsigned int *alloc_flags) 4495 { 4496 ac->highest_zoneidx = gfp_zone(gfp_mask); 4497 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4498 ac->nodemask = nodemask; 4499 ac->migratetype = gfp_migratetype(gfp_mask); 4500 4501 if (cpusets_enabled()) { 4502 *alloc_gfp |= __GFP_HARDWALL; 4503 /* 4504 * When we are in the interrupt context, it is irrelevant 4505 * to the current task context. It means that any node ok. 4506 */ 4507 if (in_task() && !ac->nodemask) 4508 ac->nodemask = &cpuset_current_mems_allowed; 4509 else 4510 *alloc_flags |= ALLOC_CPUSET; 4511 } 4512 4513 might_alloc(gfp_mask); 4514 4515 if (should_fail_alloc_page(gfp_mask, order)) 4516 return false; 4517 4518 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 4519 4520 /* Dirty zone balancing only done in the fast path */ 4521 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4522 4523 /* 4524 * The preferred zone is used for statistics but crucially it is 4525 * also used as the starting point for the zonelist iterator. It 4526 * may get reset for allocations that ignore memory policies. 4527 */ 4528 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4529 ac->highest_zoneidx, ac->nodemask); 4530 4531 return true; 4532 } 4533 4534 /* 4535 * __alloc_pages_bulk - Allocate a number of order-0 pages to an array 4536 * @gfp: GFP flags for the allocation 4537 * @preferred_nid: The preferred NUMA node ID to allocate from 4538 * @nodemask: Set of nodes to allocate from, may be NULL 4539 * @nr_pages: The number of pages desired in the array 4540 * @page_array: Array to store the pages 4541 * 4542 * This is a batched version of the page allocator that attempts to 4543 * allocate nr_pages quickly. Pages are added to the page_array. 4544 * 4545 * Note that only NULL elements are populated with pages and nr_pages 4546 * is the maximum number of pages that will be stored in the array. 4547 * 4548 * Returns the number of pages in the array. 4549 */ alloc_pages_bulk_noprof(gfp_t gfp,int preferred_nid,nodemask_t * nodemask,int nr_pages,struct page ** page_array)4550 unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid, 4551 nodemask_t *nodemask, int nr_pages, 4552 struct page **page_array) 4553 { 4554 struct page *page; 4555 unsigned long __maybe_unused UP_flags; 4556 struct zone *zone; 4557 struct zoneref *z; 4558 struct per_cpu_pages *pcp; 4559 struct list_head *pcp_list; 4560 struct alloc_context ac; 4561 gfp_t alloc_gfp; 4562 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4563 int nr_populated = 0, nr_account = 0; 4564 4565 /* 4566 * Skip populated array elements to determine if any pages need 4567 * to be allocated before disabling IRQs. 4568 */ 4569 while (nr_populated < nr_pages && page_array[nr_populated]) 4570 nr_populated++; 4571 4572 /* No pages requested? */ 4573 if (unlikely(nr_pages <= 0)) 4574 goto out; 4575 4576 /* Already populated array? */ 4577 if (unlikely(nr_pages - nr_populated == 0)) 4578 goto out; 4579 4580 /* Bulk allocator does not support memcg accounting. */ 4581 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT)) 4582 goto failed; 4583 4584 /* Use the single page allocator for one page. */ 4585 if (nr_pages - nr_populated == 1) 4586 goto failed; 4587 4588 #ifdef CONFIG_PAGE_OWNER 4589 /* 4590 * PAGE_OWNER may recurse into the allocator to allocate space to 4591 * save the stack with pagesets.lock held. Releasing/reacquiring 4592 * removes much of the performance benefit of bulk allocation so 4593 * force the caller to allocate one page at a time as it'll have 4594 * similar performance to added complexity to the bulk allocator. 4595 */ 4596 if (static_branch_unlikely(&page_owner_inited)) 4597 goto failed; 4598 #endif 4599 4600 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 4601 gfp &= gfp_allowed_mask; 4602 alloc_gfp = gfp; 4603 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 4604 goto out; 4605 gfp = alloc_gfp; 4606 4607 /* Find an allowed local zone that meets the low watermark. */ 4608 z = ac.preferred_zoneref; 4609 for_next_zone_zonelist_nodemask(zone, z, ac.highest_zoneidx, ac.nodemask) { 4610 unsigned long mark; 4611 4612 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 4613 !__cpuset_zone_allowed(zone, gfp)) { 4614 continue; 4615 } 4616 4617 if (nr_online_nodes > 1 && zone != zonelist_zone(ac.preferred_zoneref) && 4618 zone_to_nid(zone) != zonelist_node_idx(ac.preferred_zoneref)) { 4619 goto failed; 4620 } 4621 4622 cond_accept_memory(zone, 0); 4623 retry_this_zone: 4624 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 4625 if (zone_watermark_fast(zone, 0, mark, 4626 zonelist_zone_idx(ac.preferred_zoneref), 4627 alloc_flags, gfp)) { 4628 break; 4629 } 4630 4631 if (cond_accept_memory(zone, 0)) 4632 goto retry_this_zone; 4633 4634 /* Try again if zone has deferred pages */ 4635 if (deferred_pages_enabled()) { 4636 if (_deferred_grow_zone(zone, 0)) 4637 goto retry_this_zone; 4638 } 4639 } 4640 4641 /* 4642 * If there are no allowed local zones that meets the watermarks then 4643 * try to allocate a single page and reclaim if necessary. 4644 */ 4645 if (unlikely(!zone)) 4646 goto failed; 4647 4648 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 4649 pcp_trylock_prepare(UP_flags); 4650 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 4651 if (!pcp) 4652 goto failed_irq; 4653 4654 /* Attempt the batch allocation */ 4655 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 4656 while (nr_populated < nr_pages) { 4657 4658 /* Skip existing pages */ 4659 if (page_array[nr_populated]) { 4660 nr_populated++; 4661 continue; 4662 } 4663 4664 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 4665 pcp, pcp_list); 4666 if (unlikely(!page)) { 4667 /* Try and allocate at least one page */ 4668 if (!nr_account) { 4669 pcp_spin_unlock(pcp); 4670 goto failed_irq; 4671 } 4672 break; 4673 } 4674 nr_account++; 4675 4676 prep_new_page(page, 0, gfp, 0); 4677 set_page_refcounted(page); 4678 page_array[nr_populated++] = page; 4679 } 4680 4681 pcp_spin_unlock(pcp); 4682 pcp_trylock_finish(UP_flags); 4683 4684 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 4685 zone_statistics(zonelist_zone(ac.preferred_zoneref), zone, nr_account); 4686 4687 out: 4688 return nr_populated; 4689 4690 failed_irq: 4691 pcp_trylock_finish(UP_flags); 4692 4693 failed: 4694 page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask); 4695 if (page) 4696 page_array[nr_populated++] = page; 4697 goto out; 4698 } 4699 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof); 4700 4701 /* 4702 * This is the 'heart' of the zoned buddy allocator. 4703 */ __alloc_frozen_pages_noprof(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)4704 struct page *__alloc_frozen_pages_noprof(gfp_t gfp, unsigned int order, 4705 int preferred_nid, nodemask_t *nodemask) 4706 { 4707 struct page *page; 4708 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4709 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 4710 struct alloc_context ac = { }; 4711 4712 /* 4713 * There are several places where we assume that the order value is sane 4714 * so bail out early if the request is out of bound. 4715 */ 4716 if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp)) 4717 return NULL; 4718 4719 gfp &= gfp_allowed_mask; 4720 /* 4721 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4722 * resp. GFP_NOIO which has to be inherited for all allocation requests 4723 * from a particular context which has been marked by 4724 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 4725 * movable zones are not used during allocation. 4726 */ 4727 gfp = current_gfp_context(gfp); 4728 alloc_gfp = gfp; 4729 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 4730 &alloc_gfp, &alloc_flags)) 4731 return NULL; 4732 4733 /* 4734 * Forbid the first pass from falling back to types that fragment 4735 * memory until all local zones are considered. 4736 */ 4737 alloc_flags |= alloc_flags_nofragment(zonelist_zone(ac.preferred_zoneref), gfp); 4738 4739 /* First allocation attempt */ 4740 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 4741 if (likely(page)) 4742 goto out; 4743 4744 alloc_gfp = gfp; 4745 ac.spread_dirty_pages = false; 4746 4747 /* 4748 * Restore the original nodemask if it was potentially replaced with 4749 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4750 */ 4751 ac.nodemask = nodemask; 4752 4753 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 4754 4755 out: 4756 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page && 4757 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 4758 free_frozen_pages(page, order); 4759 page = NULL; 4760 } 4761 4762 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 4763 kmsan_alloc_page(page, order, alloc_gfp); 4764 4765 return page; 4766 } 4767 EXPORT_SYMBOL(__alloc_frozen_pages_noprof); 4768 __alloc_pages_noprof(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)4769 struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order, 4770 int preferred_nid, nodemask_t *nodemask) 4771 { 4772 struct page *page; 4773 4774 page = __alloc_frozen_pages_noprof(gfp, order, preferred_nid, nodemask); 4775 if (page) 4776 set_page_refcounted(page); 4777 return page; 4778 } 4779 EXPORT_SYMBOL(__alloc_pages_noprof); 4780 __folio_alloc_noprof(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)4781 struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid, 4782 nodemask_t *nodemask) 4783 { 4784 struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order, 4785 preferred_nid, nodemask); 4786 return page_rmappable_folio(page); 4787 } 4788 EXPORT_SYMBOL(__folio_alloc_noprof); 4789 4790 /* 4791 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 4792 * address cannot represent highmem pages. Use alloc_pages and then kmap if 4793 * you need to access high mem. 4794 */ get_free_pages_noprof(gfp_t gfp_mask,unsigned int order)4795 unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order) 4796 { 4797 struct page *page; 4798 4799 page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order); 4800 if (!page) 4801 return 0; 4802 return (unsigned long) page_address(page); 4803 } 4804 EXPORT_SYMBOL(get_free_pages_noprof); 4805 get_zeroed_page_noprof(gfp_t gfp_mask)4806 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask) 4807 { 4808 return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0); 4809 } 4810 EXPORT_SYMBOL(get_zeroed_page_noprof); 4811 4812 /** 4813 * __free_pages - Free pages allocated with alloc_pages(). 4814 * @page: The page pointer returned from alloc_pages(). 4815 * @order: The order of the allocation. 4816 * 4817 * This function can free multi-page allocations that are not compound 4818 * pages. It does not check that the @order passed in matches that of 4819 * the allocation, so it is easy to leak memory. Freeing more memory 4820 * than was allocated will probably emit a warning. 4821 * 4822 * If the last reference to this page is speculative, it will be released 4823 * by put_page() which only frees the first page of a non-compound 4824 * allocation. To prevent the remaining pages from being leaked, we free 4825 * the subsequent pages here. If you want to use the page's reference 4826 * count to decide when to free the allocation, you should allocate a 4827 * compound page, and use put_page() instead of __free_pages(). 4828 * 4829 * Context: May be called in interrupt context or while holding a normal 4830 * spinlock, but not in NMI context or while holding a raw spinlock. 4831 */ __free_pages(struct page * page,unsigned int order)4832 void __free_pages(struct page *page, unsigned int order) 4833 { 4834 /* get PageHead before we drop reference */ 4835 int head = PageHead(page); 4836 struct alloc_tag *tag = pgalloc_tag_get(page); 4837 4838 if (put_page_testzero(page)) 4839 free_frozen_pages(page, order); 4840 else if (!head) { 4841 pgalloc_tag_sub_pages(tag, (1 << order) - 1); 4842 while (order-- > 0) 4843 free_frozen_pages(page + (1 << order), order); 4844 } 4845 } 4846 EXPORT_SYMBOL(__free_pages); 4847 free_pages(unsigned long addr,unsigned int order)4848 void free_pages(unsigned long addr, unsigned int order) 4849 { 4850 if (addr != 0) { 4851 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4852 __free_pages(virt_to_page((void *)addr), order); 4853 } 4854 } 4855 4856 EXPORT_SYMBOL(free_pages); 4857 make_alloc_exact(unsigned long addr,unsigned int order,size_t size)4858 static void *make_alloc_exact(unsigned long addr, unsigned int order, 4859 size_t size) 4860 { 4861 if (addr) { 4862 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE); 4863 struct page *page = virt_to_page((void *)addr); 4864 struct page *last = page + nr; 4865 4866 split_page_owner(page, order, 0); 4867 pgalloc_tag_split(page_folio(page), order, 0); 4868 split_page_memcg(page, order, 0); 4869 while (page < --last) 4870 set_page_refcounted(last); 4871 4872 last = page + (1UL << order); 4873 for (page += nr; page < last; page++) 4874 __free_pages_ok(page, 0, FPI_TO_TAIL); 4875 } 4876 return (void *)addr; 4877 } 4878 4879 /** 4880 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 4881 * @size: the number of bytes to allocate 4882 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 4883 * 4884 * This function is similar to alloc_pages(), except that it allocates the 4885 * minimum number of pages to satisfy the request. alloc_pages() can only 4886 * allocate memory in power-of-two pages. 4887 * 4888 * This function is also limited by MAX_PAGE_ORDER. 4889 * 4890 * Memory allocated by this function must be released by free_pages_exact(). 4891 * 4892 * Return: pointer to the allocated area or %NULL in case of error. 4893 */ alloc_pages_exact_noprof(size_t size,gfp_t gfp_mask)4894 void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask) 4895 { 4896 unsigned int order = get_order(size); 4897 unsigned long addr; 4898 4899 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 4900 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 4901 4902 addr = get_free_pages_noprof(gfp_mask, order); 4903 return make_alloc_exact(addr, order, size); 4904 } 4905 EXPORT_SYMBOL(alloc_pages_exact_noprof); 4906 4907 /** 4908 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 4909 * pages on a node. 4910 * @nid: the preferred node ID where memory should be allocated 4911 * @size: the number of bytes to allocate 4912 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 4913 * 4914 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 4915 * back. 4916 * 4917 * Return: pointer to the allocated area or %NULL in case of error. 4918 */ alloc_pages_exact_nid_noprof(int nid,size_t size,gfp_t gfp_mask)4919 void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask) 4920 { 4921 unsigned int order = get_order(size); 4922 struct page *p; 4923 4924 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 4925 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 4926 4927 p = alloc_pages_node_noprof(nid, gfp_mask, order); 4928 if (!p) 4929 return NULL; 4930 return make_alloc_exact((unsigned long)page_address(p), order, size); 4931 } 4932 4933 /** 4934 * free_pages_exact - release memory allocated via alloc_pages_exact() 4935 * @virt: the value returned by alloc_pages_exact. 4936 * @size: size of allocation, same value as passed to alloc_pages_exact(). 4937 * 4938 * Release the memory allocated by a previous call to alloc_pages_exact. 4939 */ free_pages_exact(void * virt,size_t size)4940 void free_pages_exact(void *virt, size_t size) 4941 { 4942 unsigned long addr = (unsigned long)virt; 4943 unsigned long end = addr + PAGE_ALIGN(size); 4944 4945 while (addr < end) { 4946 free_page(addr); 4947 addr += PAGE_SIZE; 4948 } 4949 } 4950 EXPORT_SYMBOL(free_pages_exact); 4951 4952 /** 4953 * nr_free_zone_pages - count number of pages beyond high watermark 4954 * @offset: The zone index of the highest zone 4955 * 4956 * nr_free_zone_pages() counts the number of pages which are beyond the 4957 * high watermark within all zones at or below a given zone index. For each 4958 * zone, the number of pages is calculated as: 4959 * 4960 * nr_free_zone_pages = managed_pages - high_pages 4961 * 4962 * Return: number of pages beyond high watermark. 4963 */ nr_free_zone_pages(int offset)4964 static unsigned long nr_free_zone_pages(int offset) 4965 { 4966 struct zoneref *z; 4967 struct zone *zone; 4968 4969 /* Just pick one node, since fallback list is circular */ 4970 unsigned long sum = 0; 4971 4972 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 4973 4974 for_each_zone_zonelist(zone, z, zonelist, offset) { 4975 unsigned long size = zone_managed_pages(zone); 4976 unsigned long high = high_wmark_pages(zone); 4977 if (size > high) 4978 sum += size - high; 4979 } 4980 4981 return sum; 4982 } 4983 4984 /** 4985 * nr_free_buffer_pages - count number of pages beyond high watermark 4986 * 4987 * nr_free_buffer_pages() counts the number of pages which are beyond the high 4988 * watermark within ZONE_DMA and ZONE_NORMAL. 4989 * 4990 * Return: number of pages beyond high watermark within ZONE_DMA and 4991 * ZONE_NORMAL. 4992 */ nr_free_buffer_pages(void)4993 unsigned long nr_free_buffer_pages(void) 4994 { 4995 return nr_free_zone_pages(gfp_zone(GFP_USER)); 4996 } 4997 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 4998 zoneref_set_zone(struct zone * zone,struct zoneref * zoneref)4999 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5000 { 5001 zoneref->zone = zone; 5002 zoneref->zone_idx = zone_idx(zone); 5003 } 5004 5005 /* 5006 * Builds allocation fallback zone lists. 5007 * 5008 * Add all populated zones of a node to the zonelist. 5009 */ build_zonerefs_node(pg_data_t * pgdat,struct zoneref * zonerefs)5010 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5011 { 5012 struct zone *zone; 5013 enum zone_type zone_type = MAX_NR_ZONES; 5014 int nr_zones = 0; 5015 5016 do { 5017 zone_type--; 5018 zone = pgdat->node_zones + zone_type; 5019 if (populated_zone(zone)) { 5020 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5021 check_highest_zone(zone_type); 5022 } 5023 } while (zone_type); 5024 5025 return nr_zones; 5026 } 5027 5028 #ifdef CONFIG_NUMA 5029 __parse_numa_zonelist_order(char * s)5030 static int __parse_numa_zonelist_order(char *s) 5031 { 5032 /* 5033 * We used to support different zonelists modes but they turned 5034 * out to be just not useful. Let's keep the warning in place 5035 * if somebody still use the cmd line parameter so that we do 5036 * not fail it silently 5037 */ 5038 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5039 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5040 return -EINVAL; 5041 } 5042 return 0; 5043 } 5044 5045 static char numa_zonelist_order[] = "Node"; 5046 #define NUMA_ZONELIST_ORDER_LEN 16 5047 /* 5048 * sysctl handler for numa_zonelist_order 5049 */ numa_zonelist_order_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5050 static int numa_zonelist_order_handler(const struct ctl_table *table, int write, 5051 void *buffer, size_t *length, loff_t *ppos) 5052 { 5053 if (write) 5054 return __parse_numa_zonelist_order(buffer); 5055 return proc_dostring(table, write, buffer, length, ppos); 5056 } 5057 5058 static int node_load[MAX_NUMNODES]; 5059 5060 /** 5061 * find_next_best_node - find the next node that should appear in a given node's fallback list 5062 * @node: node whose fallback list we're appending 5063 * @used_node_mask: nodemask_t of already used nodes 5064 * 5065 * We use a number of factors to determine which is the next node that should 5066 * appear on a given node's fallback list. The node should not have appeared 5067 * already in @node's fallback list, and it should be the next closest node 5068 * according to the distance array (which contains arbitrary distance values 5069 * from each node to each node in the system), and should also prefer nodes 5070 * with no CPUs, since presumably they'll have very little allocation pressure 5071 * on them otherwise. 5072 * 5073 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 5074 */ find_next_best_node(int node,nodemask_t * used_node_mask)5075 int find_next_best_node(int node, nodemask_t *used_node_mask) 5076 { 5077 int n, val; 5078 int min_val = INT_MAX; 5079 int best_node = NUMA_NO_NODE; 5080 5081 /* 5082 * Use the local node if we haven't already, but for memoryless local 5083 * node, we should skip it and fall back to other nodes. 5084 */ 5085 if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) { 5086 node_set(node, *used_node_mask); 5087 return node; 5088 } 5089 5090 for_each_node_state(n, N_MEMORY) { 5091 5092 /* Don't want a node to appear more than once */ 5093 if (node_isset(n, *used_node_mask)) 5094 continue; 5095 5096 /* Use the distance array to find the distance */ 5097 val = node_distance(node, n); 5098 5099 /* Penalize nodes under us ("prefer the next node") */ 5100 val += (n < node); 5101 5102 /* Give preference to headless and unused nodes */ 5103 if (!cpumask_empty(cpumask_of_node(n))) 5104 val += PENALTY_FOR_NODE_WITH_CPUS; 5105 5106 /* Slight preference for less loaded node */ 5107 val *= MAX_NUMNODES; 5108 val += node_load[n]; 5109 5110 if (val < min_val) { 5111 min_val = val; 5112 best_node = n; 5113 } 5114 } 5115 5116 if (best_node >= 0) 5117 node_set(best_node, *used_node_mask); 5118 5119 return best_node; 5120 } 5121 5122 5123 /* 5124 * Build zonelists ordered by node and zones within node. 5125 * This results in maximum locality--normal zone overflows into local 5126 * DMA zone, if any--but risks exhausting DMA zone. 5127 */ build_zonelists_in_node_order(pg_data_t * pgdat,int * node_order,unsigned nr_nodes)5128 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5129 unsigned nr_nodes) 5130 { 5131 struct zoneref *zonerefs; 5132 int i; 5133 5134 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5135 5136 for (i = 0; i < nr_nodes; i++) { 5137 int nr_zones; 5138 5139 pg_data_t *node = NODE_DATA(node_order[i]); 5140 5141 nr_zones = build_zonerefs_node(node, zonerefs); 5142 zonerefs += nr_zones; 5143 } 5144 zonerefs->zone = NULL; 5145 zonerefs->zone_idx = 0; 5146 } 5147 5148 /* 5149 * Build __GFP_THISNODE zonelists 5150 */ build_thisnode_zonelists(pg_data_t * pgdat)5151 static void build_thisnode_zonelists(pg_data_t *pgdat) 5152 { 5153 struct zoneref *zonerefs; 5154 int nr_zones; 5155 5156 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5157 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5158 zonerefs += nr_zones; 5159 zonerefs->zone = NULL; 5160 zonerefs->zone_idx = 0; 5161 } 5162 build_zonelists(pg_data_t * pgdat)5163 static void build_zonelists(pg_data_t *pgdat) 5164 { 5165 static int node_order[MAX_NUMNODES]; 5166 int node, nr_nodes = 0; 5167 nodemask_t used_mask = NODE_MASK_NONE; 5168 int local_node, prev_node; 5169 5170 /* NUMA-aware ordering of nodes */ 5171 local_node = pgdat->node_id; 5172 prev_node = local_node; 5173 5174 memset(node_order, 0, sizeof(node_order)); 5175 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5176 /* 5177 * We don't want to pressure a particular node. 5178 * So adding penalty to the first node in same 5179 * distance group to make it round-robin. 5180 */ 5181 if (node_distance(local_node, node) != 5182 node_distance(local_node, prev_node)) 5183 node_load[node] += 1; 5184 5185 node_order[nr_nodes++] = node; 5186 prev_node = node; 5187 } 5188 5189 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5190 build_thisnode_zonelists(pgdat); 5191 pr_info("Fallback order for Node %d: ", local_node); 5192 for (node = 0; node < nr_nodes; node++) 5193 pr_cont("%d ", node_order[node]); 5194 pr_cont("\n"); 5195 } 5196 5197 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5198 /* 5199 * Return node id of node used for "local" allocations. 5200 * I.e., first node id of first zone in arg node's generic zonelist. 5201 * Used for initializing percpu 'numa_mem', which is used primarily 5202 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5203 */ local_memory_node(int node)5204 int local_memory_node(int node) 5205 { 5206 struct zoneref *z; 5207 5208 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5209 gfp_zone(GFP_KERNEL), 5210 NULL); 5211 return zonelist_node_idx(z); 5212 } 5213 #endif 5214 5215 static void setup_min_unmapped_ratio(void); 5216 static void setup_min_slab_ratio(void); 5217 #else /* CONFIG_NUMA */ 5218 build_zonelists(pg_data_t * pgdat)5219 static void build_zonelists(pg_data_t *pgdat) 5220 { 5221 struct zoneref *zonerefs; 5222 int nr_zones; 5223 5224 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5225 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5226 zonerefs += nr_zones; 5227 5228 zonerefs->zone = NULL; 5229 zonerefs->zone_idx = 0; 5230 } 5231 5232 #endif /* CONFIG_NUMA */ 5233 5234 /* 5235 * Boot pageset table. One per cpu which is going to be used for all 5236 * zones and all nodes. The parameters will be set in such a way 5237 * that an item put on a list will immediately be handed over to 5238 * the buddy list. This is safe since pageset manipulation is done 5239 * with interrupts disabled. 5240 * 5241 * The boot_pagesets must be kept even after bootup is complete for 5242 * unused processors and/or zones. They do play a role for bootstrapping 5243 * hotplugged processors. 5244 * 5245 * zoneinfo_show() and maybe other functions do 5246 * not check if the processor is online before following the pageset pointer. 5247 * Other parts of the kernel may not check if the zone is available. 5248 */ 5249 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 5250 /* These effectively disable the pcplists in the boot pageset completely */ 5251 #define BOOT_PAGESET_HIGH 0 5252 #define BOOT_PAGESET_BATCH 1 5253 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 5254 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 5255 __build_all_zonelists(void * data)5256 static void __build_all_zonelists(void *data) 5257 { 5258 int nid; 5259 int __maybe_unused cpu; 5260 pg_data_t *self = data; 5261 unsigned long flags; 5262 5263 /* 5264 * The zonelist_update_seq must be acquired with irqsave because the 5265 * reader can be invoked from IRQ with GFP_ATOMIC. 5266 */ 5267 write_seqlock_irqsave(&zonelist_update_seq, flags); 5268 /* 5269 * Also disable synchronous printk() to prevent any printk() from 5270 * trying to hold port->lock, for 5271 * tty_insert_flip_string_and_push_buffer() on other CPU might be 5272 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held. 5273 */ 5274 printk_deferred_enter(); 5275 5276 #ifdef CONFIG_NUMA 5277 memset(node_load, 0, sizeof(node_load)); 5278 #endif 5279 5280 /* 5281 * This node is hotadded and no memory is yet present. So just 5282 * building zonelists is fine - no need to touch other nodes. 5283 */ 5284 if (self && !node_online(self->node_id)) { 5285 build_zonelists(self); 5286 } else { 5287 /* 5288 * All possible nodes have pgdat preallocated 5289 * in free_area_init 5290 */ 5291 for_each_node(nid) { 5292 pg_data_t *pgdat = NODE_DATA(nid); 5293 5294 build_zonelists(pgdat); 5295 } 5296 5297 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5298 /* 5299 * We now know the "local memory node" for each node-- 5300 * i.e., the node of the first zone in the generic zonelist. 5301 * Set up numa_mem percpu variable for on-line cpus. During 5302 * boot, only the boot cpu should be on-line; we'll init the 5303 * secondary cpus' numa_mem as they come on-line. During 5304 * node/memory hotplug, we'll fixup all on-line cpus. 5305 */ 5306 for_each_online_cpu(cpu) 5307 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5308 #endif 5309 } 5310 5311 printk_deferred_exit(); 5312 write_sequnlock_irqrestore(&zonelist_update_seq, flags); 5313 } 5314 5315 static noinline void __init build_all_zonelists_init(void)5316 build_all_zonelists_init(void) 5317 { 5318 int cpu; 5319 5320 __build_all_zonelists(NULL); 5321 5322 /* 5323 * Initialize the boot_pagesets that are going to be used 5324 * for bootstrapping processors. The real pagesets for 5325 * each zone will be allocated later when the per cpu 5326 * allocator is available. 5327 * 5328 * boot_pagesets are used also for bootstrapping offline 5329 * cpus if the system is already booted because the pagesets 5330 * are needed to initialize allocators on a specific cpu too. 5331 * F.e. the percpu allocator needs the page allocator which 5332 * needs the percpu allocator in order to allocate its pagesets 5333 * (a chicken-egg dilemma). 5334 */ 5335 for_each_possible_cpu(cpu) 5336 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 5337 5338 mminit_verify_zonelist(); 5339 cpuset_init_current_mems_allowed(); 5340 } 5341 5342 /* 5343 * unless system_state == SYSTEM_BOOTING. 5344 * 5345 * __ref due to call of __init annotated helper build_all_zonelists_init 5346 * [protected by SYSTEM_BOOTING]. 5347 */ build_all_zonelists(pg_data_t * pgdat)5348 void __ref build_all_zonelists(pg_data_t *pgdat) 5349 { 5350 unsigned long vm_total_pages; 5351 5352 if (system_state == SYSTEM_BOOTING) { 5353 build_all_zonelists_init(); 5354 } else { 5355 __build_all_zonelists(pgdat); 5356 /* cpuset refresh routine should be here */ 5357 } 5358 /* Get the number of free pages beyond high watermark in all zones. */ 5359 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 5360 /* 5361 * Disable grouping by mobility if the number of pages in the 5362 * system is too low to allow the mechanism to work. It would be 5363 * more accurate, but expensive to check per-zone. This check is 5364 * made on memory-hotadd so a system can start with mobility 5365 * disabled and enable it later 5366 */ 5367 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5368 page_group_by_mobility_disabled = 1; 5369 else 5370 page_group_by_mobility_disabled = 0; 5371 5372 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 5373 nr_online_nodes, 5374 str_off_on(page_group_by_mobility_disabled), 5375 vm_total_pages); 5376 #ifdef CONFIG_NUMA 5377 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5378 #endif 5379 } 5380 zone_batchsize(struct zone * zone)5381 static int zone_batchsize(struct zone *zone) 5382 { 5383 #ifdef CONFIG_MMU 5384 int batch; 5385 5386 /* 5387 * The number of pages to batch allocate is either ~0.1% 5388 * of the zone or 1MB, whichever is smaller. The batch 5389 * size is striking a balance between allocation latency 5390 * and zone lock contention. 5391 */ 5392 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE); 5393 batch /= 4; /* We effectively *= 4 below */ 5394 if (batch < 1) 5395 batch = 1; 5396 5397 /* 5398 * Clamp the batch to a 2^n - 1 value. Having a power 5399 * of 2 value was found to be more likely to have 5400 * suboptimal cache aliasing properties in some cases. 5401 * 5402 * For example if 2 tasks are alternately allocating 5403 * batches of pages, one task can end up with a lot 5404 * of pages of one half of the possible page colors 5405 * and the other with pages of the other colors. 5406 */ 5407 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5408 5409 return batch; 5410 5411 #else 5412 /* The deferral and batching of frees should be suppressed under NOMMU 5413 * conditions. 5414 * 5415 * The problem is that NOMMU needs to be able to allocate large chunks 5416 * of contiguous memory as there's no hardware page translation to 5417 * assemble apparent contiguous memory from discontiguous pages. 5418 * 5419 * Queueing large contiguous runs of pages for batching, however, 5420 * causes the pages to actually be freed in smaller chunks. As there 5421 * can be a significant delay between the individual batches being 5422 * recycled, this leads to the once large chunks of space being 5423 * fragmented and becoming unavailable for high-order allocations. 5424 */ 5425 return 0; 5426 #endif 5427 } 5428 5429 static int percpu_pagelist_high_fraction; zone_highsize(struct zone * zone,int batch,int cpu_online,int high_fraction)5430 static int zone_highsize(struct zone *zone, int batch, int cpu_online, 5431 int high_fraction) 5432 { 5433 #ifdef CONFIG_MMU 5434 int high; 5435 int nr_split_cpus; 5436 unsigned long total_pages; 5437 5438 if (!high_fraction) { 5439 /* 5440 * By default, the high value of the pcp is based on the zone 5441 * low watermark so that if they are full then background 5442 * reclaim will not be started prematurely. 5443 */ 5444 total_pages = low_wmark_pages(zone); 5445 } else { 5446 /* 5447 * If percpu_pagelist_high_fraction is configured, the high 5448 * value is based on a fraction of the managed pages in the 5449 * zone. 5450 */ 5451 total_pages = zone_managed_pages(zone) / high_fraction; 5452 } 5453 5454 /* 5455 * Split the high value across all online CPUs local to the zone. Note 5456 * that early in boot that CPUs may not be online yet and that during 5457 * CPU hotplug that the cpumask is not yet updated when a CPU is being 5458 * onlined. For memory nodes that have no CPUs, split the high value 5459 * across all online CPUs to mitigate the risk that reclaim is triggered 5460 * prematurely due to pages stored on pcp lists. 5461 */ 5462 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 5463 if (!nr_split_cpus) 5464 nr_split_cpus = num_online_cpus(); 5465 high = total_pages / nr_split_cpus; 5466 5467 /* 5468 * Ensure high is at least batch*4. The multiple is based on the 5469 * historical relationship between high and batch. 5470 */ 5471 high = max(high, batch << 2); 5472 5473 return high; 5474 #else 5475 return 0; 5476 #endif 5477 } 5478 5479 /* 5480 * pcp->high and pcp->batch values are related and generally batch is lower 5481 * than high. They are also related to pcp->count such that count is lower 5482 * than high, and as soon as it reaches high, the pcplist is flushed. 5483 * 5484 * However, guaranteeing these relations at all times would require e.g. write 5485 * barriers here but also careful usage of read barriers at the read side, and 5486 * thus be prone to error and bad for performance. Thus the update only prevents 5487 * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max 5488 * should ensure they can cope with those fields changing asynchronously, and 5489 * fully trust only the pcp->count field on the local CPU with interrupts 5490 * disabled. 5491 * 5492 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 5493 * outside of boot time (or some other assurance that no concurrent updaters 5494 * exist). 5495 */ pageset_update(struct per_cpu_pages * pcp,unsigned long high_min,unsigned long high_max,unsigned long batch)5496 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min, 5497 unsigned long high_max, unsigned long batch) 5498 { 5499 WRITE_ONCE(pcp->batch, batch); 5500 WRITE_ONCE(pcp->high_min, high_min); 5501 WRITE_ONCE(pcp->high_max, high_max); 5502 } 5503 per_cpu_pages_init(struct per_cpu_pages * pcp,struct per_cpu_zonestat * pzstats)5504 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 5505 { 5506 int pindex; 5507 5508 memset(pcp, 0, sizeof(*pcp)); 5509 memset(pzstats, 0, sizeof(*pzstats)); 5510 5511 spin_lock_init(&pcp->lock); 5512 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 5513 INIT_LIST_HEAD(&pcp->lists[pindex]); 5514 5515 /* 5516 * Set batch and high values safe for a boot pageset. A true percpu 5517 * pageset's initialization will update them subsequently. Here we don't 5518 * need to be as careful as pageset_update() as nobody can access the 5519 * pageset yet. 5520 */ 5521 pcp->high_min = BOOT_PAGESET_HIGH; 5522 pcp->high_max = BOOT_PAGESET_HIGH; 5523 pcp->batch = BOOT_PAGESET_BATCH; 5524 pcp->free_count = 0; 5525 } 5526 __zone_set_pageset_high_and_batch(struct zone * zone,unsigned long high_min,unsigned long high_max,unsigned long batch)5527 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min, 5528 unsigned long high_max, unsigned long batch) 5529 { 5530 struct per_cpu_pages *pcp; 5531 int cpu; 5532 5533 for_each_possible_cpu(cpu) { 5534 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5535 pageset_update(pcp, high_min, high_max, batch); 5536 } 5537 } 5538 5539 /* 5540 * Calculate and set new high and batch values for all per-cpu pagesets of a 5541 * zone based on the zone's size. 5542 */ zone_set_pageset_high_and_batch(struct zone * zone,int cpu_online)5543 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 5544 { 5545 int new_high_min, new_high_max, new_batch; 5546 5547 new_batch = max(1, zone_batchsize(zone)); 5548 if (percpu_pagelist_high_fraction) { 5549 new_high_min = zone_highsize(zone, new_batch, cpu_online, 5550 percpu_pagelist_high_fraction); 5551 /* 5552 * PCP high is tuned manually, disable auto-tuning via 5553 * setting high_min and high_max to the manual value. 5554 */ 5555 new_high_max = new_high_min; 5556 } else { 5557 new_high_min = zone_highsize(zone, new_batch, cpu_online, 0); 5558 new_high_max = zone_highsize(zone, new_batch, cpu_online, 5559 MIN_PERCPU_PAGELIST_HIGH_FRACTION); 5560 } 5561 5562 if (zone->pageset_high_min == new_high_min && 5563 zone->pageset_high_max == new_high_max && 5564 zone->pageset_batch == new_batch) 5565 return; 5566 5567 zone->pageset_high_min = new_high_min; 5568 zone->pageset_high_max = new_high_max; 5569 zone->pageset_batch = new_batch; 5570 5571 __zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max, 5572 new_batch); 5573 } 5574 setup_zone_pageset(struct zone * zone)5575 void __meminit setup_zone_pageset(struct zone *zone) 5576 { 5577 int cpu; 5578 5579 /* Size may be 0 on !SMP && !NUMA */ 5580 if (sizeof(struct per_cpu_zonestat) > 0) 5581 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 5582 5583 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 5584 for_each_possible_cpu(cpu) { 5585 struct per_cpu_pages *pcp; 5586 struct per_cpu_zonestat *pzstats; 5587 5588 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5589 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 5590 per_cpu_pages_init(pcp, pzstats); 5591 } 5592 5593 zone_set_pageset_high_and_batch(zone, 0); 5594 } 5595 5596 /* 5597 * The zone indicated has a new number of managed_pages; batch sizes and percpu 5598 * page high values need to be recalculated. 5599 */ zone_pcp_update(struct zone * zone,int cpu_online)5600 static void zone_pcp_update(struct zone *zone, int cpu_online) 5601 { 5602 mutex_lock(&pcp_batch_high_lock); 5603 zone_set_pageset_high_and_batch(zone, cpu_online); 5604 mutex_unlock(&pcp_batch_high_lock); 5605 } 5606 zone_pcp_update_cacheinfo(struct zone * zone,unsigned int cpu)5607 static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu) 5608 { 5609 struct per_cpu_pages *pcp; 5610 struct cpu_cacheinfo *cci; 5611 5612 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5613 cci = get_cpu_cacheinfo(cpu); 5614 /* 5615 * If data cache slice of CPU is large enough, "pcp->batch" 5616 * pages can be preserved in PCP before draining PCP for 5617 * consecutive high-order pages freeing without allocation. 5618 * This can reduce zone lock contention without hurting 5619 * cache-hot pages sharing. 5620 */ 5621 spin_lock(&pcp->lock); 5622 if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch) 5623 pcp->flags |= PCPF_FREE_HIGH_BATCH; 5624 else 5625 pcp->flags &= ~PCPF_FREE_HIGH_BATCH; 5626 spin_unlock(&pcp->lock); 5627 } 5628 setup_pcp_cacheinfo(unsigned int cpu)5629 void setup_pcp_cacheinfo(unsigned int cpu) 5630 { 5631 struct zone *zone; 5632 5633 for_each_populated_zone(zone) 5634 zone_pcp_update_cacheinfo(zone, cpu); 5635 } 5636 5637 /* 5638 * Allocate per cpu pagesets and initialize them. 5639 * Before this call only boot pagesets were available. 5640 */ setup_per_cpu_pageset(void)5641 void __init setup_per_cpu_pageset(void) 5642 { 5643 struct pglist_data *pgdat; 5644 struct zone *zone; 5645 int __maybe_unused cpu; 5646 5647 for_each_populated_zone(zone) 5648 setup_zone_pageset(zone); 5649 5650 #ifdef CONFIG_NUMA 5651 /* 5652 * Unpopulated zones continue using the boot pagesets. 5653 * The numa stats for these pagesets need to be reset. 5654 * Otherwise, they will end up skewing the stats of 5655 * the nodes these zones are associated with. 5656 */ 5657 for_each_possible_cpu(cpu) { 5658 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 5659 memset(pzstats->vm_numa_event, 0, 5660 sizeof(pzstats->vm_numa_event)); 5661 } 5662 #endif 5663 5664 for_each_online_pgdat(pgdat) 5665 pgdat->per_cpu_nodestats = 5666 alloc_percpu(struct per_cpu_nodestat); 5667 } 5668 zone_pcp_init(struct zone * zone)5669 __meminit void zone_pcp_init(struct zone *zone) 5670 { 5671 /* 5672 * per cpu subsystem is not up at this point. The following code 5673 * relies on the ability of the linker to provide the 5674 * offset of a (static) per cpu variable into the per cpu area. 5675 */ 5676 zone->per_cpu_pageset = &boot_pageset; 5677 zone->per_cpu_zonestats = &boot_zonestats; 5678 zone->pageset_high_min = BOOT_PAGESET_HIGH; 5679 zone->pageset_high_max = BOOT_PAGESET_HIGH; 5680 zone->pageset_batch = BOOT_PAGESET_BATCH; 5681 5682 if (populated_zone(zone)) 5683 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 5684 zone->present_pages, zone_batchsize(zone)); 5685 } 5686 5687 static void setup_per_zone_lowmem_reserve(void); 5688 adjust_managed_page_count(struct page * page,long count)5689 void adjust_managed_page_count(struct page *page, long count) 5690 { 5691 atomic_long_add(count, &page_zone(page)->managed_pages); 5692 totalram_pages_add(count); 5693 setup_per_zone_lowmem_reserve(); 5694 } 5695 EXPORT_SYMBOL(adjust_managed_page_count); 5696 free_reserved_area(void * start,void * end,int poison,const char * s)5697 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 5698 { 5699 void *pos; 5700 unsigned long pages = 0; 5701 5702 start = (void *)PAGE_ALIGN((unsigned long)start); 5703 end = (void *)((unsigned long)end & PAGE_MASK); 5704 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 5705 struct page *page = virt_to_page(pos); 5706 void *direct_map_addr; 5707 5708 /* 5709 * 'direct_map_addr' might be different from 'pos' 5710 * because some architectures' virt_to_page() 5711 * work with aliases. Getting the direct map 5712 * address ensures that we get a _writeable_ 5713 * alias for the memset(). 5714 */ 5715 direct_map_addr = page_address(page); 5716 /* 5717 * Perform a kasan-unchecked memset() since this memory 5718 * has not been initialized. 5719 */ 5720 direct_map_addr = kasan_reset_tag(direct_map_addr); 5721 if ((unsigned int)poison <= 0xFF) 5722 memset(direct_map_addr, poison, PAGE_SIZE); 5723 5724 free_reserved_page(page); 5725 } 5726 5727 if (pages && s) 5728 pr_info("Freeing %s memory: %ldK\n", s, K(pages)); 5729 5730 return pages; 5731 } 5732 free_reserved_page(struct page * page)5733 void free_reserved_page(struct page *page) 5734 { 5735 clear_page_tag_ref(page); 5736 ClearPageReserved(page); 5737 init_page_count(page); 5738 __free_page(page); 5739 adjust_managed_page_count(page, 1); 5740 } 5741 EXPORT_SYMBOL(free_reserved_page); 5742 page_alloc_cpu_dead(unsigned int cpu)5743 static int page_alloc_cpu_dead(unsigned int cpu) 5744 { 5745 struct zone *zone; 5746 5747 lru_add_drain_cpu(cpu); 5748 mlock_drain_remote(cpu); 5749 drain_pages(cpu); 5750 5751 /* 5752 * Spill the event counters of the dead processor 5753 * into the current processors event counters. 5754 * This artificially elevates the count of the current 5755 * processor. 5756 */ 5757 vm_events_fold_cpu(cpu); 5758 5759 /* 5760 * Zero the differential counters of the dead processor 5761 * so that the vm statistics are consistent. 5762 * 5763 * This is only okay since the processor is dead and cannot 5764 * race with what we are doing. 5765 */ 5766 cpu_vm_stats_fold(cpu); 5767 5768 for_each_populated_zone(zone) 5769 zone_pcp_update(zone, 0); 5770 5771 return 0; 5772 } 5773 page_alloc_cpu_online(unsigned int cpu)5774 static int page_alloc_cpu_online(unsigned int cpu) 5775 { 5776 struct zone *zone; 5777 5778 for_each_populated_zone(zone) 5779 zone_pcp_update(zone, 1); 5780 return 0; 5781 } 5782 page_alloc_init_cpuhp(void)5783 void __init page_alloc_init_cpuhp(void) 5784 { 5785 int ret; 5786 5787 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 5788 "mm/page_alloc:pcp", 5789 page_alloc_cpu_online, 5790 page_alloc_cpu_dead); 5791 WARN_ON(ret < 0); 5792 } 5793 5794 /* 5795 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 5796 * or min_free_kbytes changes. 5797 */ calculate_totalreserve_pages(void)5798 static void calculate_totalreserve_pages(void) 5799 { 5800 struct pglist_data *pgdat; 5801 unsigned long reserve_pages = 0; 5802 enum zone_type i, j; 5803 5804 for_each_online_pgdat(pgdat) { 5805 5806 pgdat->totalreserve_pages = 0; 5807 5808 for (i = 0; i < MAX_NR_ZONES; i++) { 5809 struct zone *zone = pgdat->node_zones + i; 5810 long max = 0; 5811 unsigned long managed_pages = zone_managed_pages(zone); 5812 5813 /* Find valid and maximum lowmem_reserve in the zone */ 5814 for (j = i; j < MAX_NR_ZONES; j++) { 5815 if (zone->lowmem_reserve[j] > max) 5816 max = zone->lowmem_reserve[j]; 5817 } 5818 5819 /* we treat the high watermark as reserved pages. */ 5820 max += high_wmark_pages(zone); 5821 5822 if (max > managed_pages) 5823 max = managed_pages; 5824 5825 pgdat->totalreserve_pages += max; 5826 5827 reserve_pages += max; 5828 } 5829 } 5830 totalreserve_pages = reserve_pages; 5831 } 5832 5833 /* 5834 * setup_per_zone_lowmem_reserve - called whenever 5835 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 5836 * has a correct pages reserved value, so an adequate number of 5837 * pages are left in the zone after a successful __alloc_pages(). 5838 */ setup_per_zone_lowmem_reserve(void)5839 static void setup_per_zone_lowmem_reserve(void) 5840 { 5841 struct pglist_data *pgdat; 5842 enum zone_type i, j; 5843 5844 for_each_online_pgdat(pgdat) { 5845 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 5846 struct zone *zone = &pgdat->node_zones[i]; 5847 int ratio = sysctl_lowmem_reserve_ratio[i]; 5848 bool clear = !ratio || !zone_managed_pages(zone); 5849 unsigned long managed_pages = 0; 5850 5851 for (j = i + 1; j < MAX_NR_ZONES; j++) { 5852 struct zone *upper_zone = &pgdat->node_zones[j]; 5853 5854 managed_pages += zone_managed_pages(upper_zone); 5855 5856 if (clear) 5857 zone->lowmem_reserve[j] = 0; 5858 else 5859 zone->lowmem_reserve[j] = managed_pages / ratio; 5860 } 5861 } 5862 } 5863 5864 /* update totalreserve_pages */ 5865 calculate_totalreserve_pages(); 5866 } 5867 __setup_per_zone_wmarks(void)5868 static void __setup_per_zone_wmarks(void) 5869 { 5870 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 5871 unsigned long lowmem_pages = 0; 5872 struct zone *zone; 5873 unsigned long flags; 5874 5875 /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */ 5876 for_each_zone(zone) { 5877 if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE) 5878 lowmem_pages += zone_managed_pages(zone); 5879 } 5880 5881 for_each_zone(zone) { 5882 u64 tmp; 5883 5884 spin_lock_irqsave(&zone->lock, flags); 5885 tmp = (u64)pages_min * zone_managed_pages(zone); 5886 tmp = div64_ul(tmp, lowmem_pages); 5887 if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) { 5888 /* 5889 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 5890 * need highmem and movable zones pages, so cap pages_min 5891 * to a small value here. 5892 * 5893 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 5894 * deltas control async page reclaim, and so should 5895 * not be capped for highmem and movable zones. 5896 */ 5897 unsigned long min_pages; 5898 5899 min_pages = zone_managed_pages(zone) / 1024; 5900 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 5901 zone->_watermark[WMARK_MIN] = min_pages; 5902 } else { 5903 /* 5904 * If it's a lowmem zone, reserve a number of pages 5905 * proportionate to the zone's size. 5906 */ 5907 zone->_watermark[WMARK_MIN] = tmp; 5908 } 5909 5910 /* 5911 * Set the kswapd watermarks distance according to the 5912 * scale factor in proportion to available memory, but 5913 * ensure a minimum size on small systems. 5914 */ 5915 tmp = max_t(u64, tmp >> 2, 5916 mult_frac(zone_managed_pages(zone), 5917 watermark_scale_factor, 10000)); 5918 5919 zone->watermark_boost = 0; 5920 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 5921 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp; 5922 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp; 5923 5924 spin_unlock_irqrestore(&zone->lock, flags); 5925 } 5926 5927 /* update totalreserve_pages */ 5928 calculate_totalreserve_pages(); 5929 } 5930 5931 /** 5932 * setup_per_zone_wmarks - called when min_free_kbytes changes 5933 * or when memory is hot-{added|removed} 5934 * 5935 * Ensures that the watermark[min,low,high] values for each zone are set 5936 * correctly with respect to min_free_kbytes. 5937 */ setup_per_zone_wmarks(void)5938 void setup_per_zone_wmarks(void) 5939 { 5940 struct zone *zone; 5941 static DEFINE_SPINLOCK(lock); 5942 5943 spin_lock(&lock); 5944 __setup_per_zone_wmarks(); 5945 spin_unlock(&lock); 5946 5947 /* 5948 * The watermark size have changed so update the pcpu batch 5949 * and high limits or the limits may be inappropriate. 5950 */ 5951 for_each_zone(zone) 5952 zone_pcp_update(zone, 0); 5953 } 5954 5955 /* 5956 * Initialise min_free_kbytes. 5957 * 5958 * For small machines we want it small (128k min). For large machines 5959 * we want it large (256MB max). But it is not linear, because network 5960 * bandwidth does not increase linearly with machine size. We use 5961 * 5962 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 5963 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 5964 * 5965 * which yields 5966 * 5967 * 16MB: 512k 5968 * 32MB: 724k 5969 * 64MB: 1024k 5970 * 128MB: 1448k 5971 * 256MB: 2048k 5972 * 512MB: 2896k 5973 * 1024MB: 4096k 5974 * 2048MB: 5792k 5975 * 4096MB: 8192k 5976 * 8192MB: 11584k 5977 * 16384MB: 16384k 5978 */ calculate_min_free_kbytes(void)5979 void calculate_min_free_kbytes(void) 5980 { 5981 unsigned long lowmem_kbytes; 5982 int new_min_free_kbytes; 5983 5984 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 5985 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 5986 5987 if (new_min_free_kbytes > user_min_free_kbytes) 5988 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); 5989 else 5990 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 5991 new_min_free_kbytes, user_min_free_kbytes); 5992 5993 } 5994 init_per_zone_wmark_min(void)5995 int __meminit init_per_zone_wmark_min(void) 5996 { 5997 calculate_min_free_kbytes(); 5998 setup_per_zone_wmarks(); 5999 refresh_zone_stat_thresholds(); 6000 setup_per_zone_lowmem_reserve(); 6001 6002 #ifdef CONFIG_NUMA 6003 setup_min_unmapped_ratio(); 6004 setup_min_slab_ratio(); 6005 #endif 6006 6007 khugepaged_min_free_kbytes_update(); 6008 6009 return 0; 6010 } postcore_initcall(init_per_zone_wmark_min)6011 postcore_initcall(init_per_zone_wmark_min) 6012 6013 /* 6014 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 6015 * that we can call two helper functions whenever min_free_kbytes 6016 * changes. 6017 */ 6018 static int min_free_kbytes_sysctl_handler(const struct ctl_table *table, int write, 6019 void *buffer, size_t *length, loff_t *ppos) 6020 { 6021 int rc; 6022 6023 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6024 if (rc) 6025 return rc; 6026 6027 if (write) { 6028 user_min_free_kbytes = min_free_kbytes; 6029 setup_per_zone_wmarks(); 6030 } 6031 return 0; 6032 } 6033 watermark_scale_factor_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6034 static int watermark_scale_factor_sysctl_handler(const struct ctl_table *table, int write, 6035 void *buffer, size_t *length, loff_t *ppos) 6036 { 6037 int rc; 6038 6039 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6040 if (rc) 6041 return rc; 6042 6043 if (write) 6044 setup_per_zone_wmarks(); 6045 6046 return 0; 6047 } 6048 6049 #ifdef CONFIG_NUMA setup_min_unmapped_ratio(void)6050 static void setup_min_unmapped_ratio(void) 6051 { 6052 pg_data_t *pgdat; 6053 struct zone *zone; 6054 6055 for_each_online_pgdat(pgdat) 6056 pgdat->min_unmapped_pages = 0; 6057 6058 for_each_zone(zone) 6059 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 6060 sysctl_min_unmapped_ratio) / 100; 6061 } 6062 6063 sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6064 static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table *table, int write, 6065 void *buffer, size_t *length, loff_t *ppos) 6066 { 6067 int rc; 6068 6069 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6070 if (rc) 6071 return rc; 6072 6073 setup_min_unmapped_ratio(); 6074 6075 return 0; 6076 } 6077 setup_min_slab_ratio(void)6078 static void setup_min_slab_ratio(void) 6079 { 6080 pg_data_t *pgdat; 6081 struct zone *zone; 6082 6083 for_each_online_pgdat(pgdat) 6084 pgdat->min_slab_pages = 0; 6085 6086 for_each_zone(zone) 6087 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 6088 sysctl_min_slab_ratio) / 100; 6089 } 6090 sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6091 static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table *table, int write, 6092 void *buffer, size_t *length, loff_t *ppos) 6093 { 6094 int rc; 6095 6096 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6097 if (rc) 6098 return rc; 6099 6100 setup_min_slab_ratio(); 6101 6102 return 0; 6103 } 6104 #endif 6105 6106 /* 6107 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 6108 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 6109 * whenever sysctl_lowmem_reserve_ratio changes. 6110 * 6111 * The reserve ratio obviously has absolutely no relation with the 6112 * minimum watermarks. The lowmem reserve ratio can only make sense 6113 * if in function of the boot time zone sizes. 6114 */ lowmem_reserve_ratio_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6115 static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table *table, 6116 int write, void *buffer, size_t *length, loff_t *ppos) 6117 { 6118 int i; 6119 6120 proc_dointvec_minmax(table, write, buffer, length, ppos); 6121 6122 for (i = 0; i < MAX_NR_ZONES; i++) { 6123 if (sysctl_lowmem_reserve_ratio[i] < 1) 6124 sysctl_lowmem_reserve_ratio[i] = 0; 6125 } 6126 6127 setup_per_zone_lowmem_reserve(); 6128 return 0; 6129 } 6130 6131 /* 6132 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 6133 * cpu. It is the fraction of total pages in each zone that a hot per cpu 6134 * pagelist can have before it gets flushed back to buddy allocator. 6135 */ percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6136 static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table *table, 6137 int write, void *buffer, size_t *length, loff_t *ppos) 6138 { 6139 struct zone *zone; 6140 int old_percpu_pagelist_high_fraction; 6141 int ret; 6142 6143 mutex_lock(&pcp_batch_high_lock); 6144 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 6145 6146 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 6147 if (!write || ret < 0) 6148 goto out; 6149 6150 /* Sanity checking to avoid pcp imbalance */ 6151 if (percpu_pagelist_high_fraction && 6152 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 6153 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 6154 ret = -EINVAL; 6155 goto out; 6156 } 6157 6158 /* No change? */ 6159 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 6160 goto out; 6161 6162 for_each_populated_zone(zone) 6163 zone_set_pageset_high_and_batch(zone, 0); 6164 out: 6165 mutex_unlock(&pcp_batch_high_lock); 6166 return ret; 6167 } 6168 6169 static const struct ctl_table page_alloc_sysctl_table[] = { 6170 { 6171 .procname = "min_free_kbytes", 6172 .data = &min_free_kbytes, 6173 .maxlen = sizeof(min_free_kbytes), 6174 .mode = 0644, 6175 .proc_handler = min_free_kbytes_sysctl_handler, 6176 .extra1 = SYSCTL_ZERO, 6177 }, 6178 { 6179 .procname = "watermark_boost_factor", 6180 .data = &watermark_boost_factor, 6181 .maxlen = sizeof(watermark_boost_factor), 6182 .mode = 0644, 6183 .proc_handler = proc_dointvec_minmax, 6184 .extra1 = SYSCTL_ZERO, 6185 }, 6186 { 6187 .procname = "watermark_scale_factor", 6188 .data = &watermark_scale_factor, 6189 .maxlen = sizeof(watermark_scale_factor), 6190 .mode = 0644, 6191 .proc_handler = watermark_scale_factor_sysctl_handler, 6192 .extra1 = SYSCTL_ONE, 6193 .extra2 = SYSCTL_THREE_THOUSAND, 6194 }, 6195 { 6196 .procname = "percpu_pagelist_high_fraction", 6197 .data = &percpu_pagelist_high_fraction, 6198 .maxlen = sizeof(percpu_pagelist_high_fraction), 6199 .mode = 0644, 6200 .proc_handler = percpu_pagelist_high_fraction_sysctl_handler, 6201 .extra1 = SYSCTL_ZERO, 6202 }, 6203 { 6204 .procname = "lowmem_reserve_ratio", 6205 .data = &sysctl_lowmem_reserve_ratio, 6206 .maxlen = sizeof(sysctl_lowmem_reserve_ratio), 6207 .mode = 0644, 6208 .proc_handler = lowmem_reserve_ratio_sysctl_handler, 6209 }, 6210 #ifdef CONFIG_NUMA 6211 { 6212 .procname = "numa_zonelist_order", 6213 .data = &numa_zonelist_order, 6214 .maxlen = NUMA_ZONELIST_ORDER_LEN, 6215 .mode = 0644, 6216 .proc_handler = numa_zonelist_order_handler, 6217 }, 6218 { 6219 .procname = "min_unmapped_ratio", 6220 .data = &sysctl_min_unmapped_ratio, 6221 .maxlen = sizeof(sysctl_min_unmapped_ratio), 6222 .mode = 0644, 6223 .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler, 6224 .extra1 = SYSCTL_ZERO, 6225 .extra2 = SYSCTL_ONE_HUNDRED, 6226 }, 6227 { 6228 .procname = "min_slab_ratio", 6229 .data = &sysctl_min_slab_ratio, 6230 .maxlen = sizeof(sysctl_min_slab_ratio), 6231 .mode = 0644, 6232 .proc_handler = sysctl_min_slab_ratio_sysctl_handler, 6233 .extra1 = SYSCTL_ZERO, 6234 .extra2 = SYSCTL_ONE_HUNDRED, 6235 }, 6236 #endif 6237 }; 6238 page_alloc_sysctl_init(void)6239 void __init page_alloc_sysctl_init(void) 6240 { 6241 register_sysctl_init("vm", page_alloc_sysctl_table); 6242 } 6243 6244 #ifdef CONFIG_CONTIG_ALLOC 6245 /* Usage: See admin-guide/dynamic-debug-howto.rst */ alloc_contig_dump_pages(struct list_head * page_list)6246 static void alloc_contig_dump_pages(struct list_head *page_list) 6247 { 6248 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 6249 6250 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 6251 struct page *page; 6252 6253 dump_stack(); 6254 list_for_each_entry(page, page_list, lru) 6255 dump_page(page, "migration failure"); 6256 } 6257 } 6258 6259 /* 6260 * [start, end) must belong to a single zone. 6261 * @migratetype: using migratetype to filter the type of migration in 6262 * trace_mm_alloc_contig_migrate_range_info. 6263 */ __alloc_contig_migrate_range(struct compact_control * cc,unsigned long start,unsigned long end,int migratetype)6264 static int __alloc_contig_migrate_range(struct compact_control *cc, 6265 unsigned long start, unsigned long end, int migratetype) 6266 { 6267 /* This function is based on compact_zone() from compaction.c. */ 6268 unsigned int nr_reclaimed; 6269 unsigned long pfn = start; 6270 unsigned int tries = 0; 6271 int ret = 0; 6272 struct migration_target_control mtc = { 6273 .nid = zone_to_nid(cc->zone), 6274 .gfp_mask = cc->gfp_mask, 6275 .reason = MR_CONTIG_RANGE, 6276 }; 6277 struct page *page; 6278 unsigned long total_mapped = 0; 6279 unsigned long total_migrated = 0; 6280 unsigned long total_reclaimed = 0; 6281 6282 lru_cache_disable(); 6283 6284 while (pfn < end || !list_empty(&cc->migratepages)) { 6285 if (fatal_signal_pending(current)) { 6286 ret = -EINTR; 6287 break; 6288 } 6289 6290 if (list_empty(&cc->migratepages)) { 6291 cc->nr_migratepages = 0; 6292 ret = isolate_migratepages_range(cc, pfn, end); 6293 if (ret && ret != -EAGAIN) 6294 break; 6295 pfn = cc->migrate_pfn; 6296 tries = 0; 6297 } else if (++tries == 5) { 6298 ret = -EBUSY; 6299 break; 6300 } 6301 6302 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 6303 &cc->migratepages); 6304 cc->nr_migratepages -= nr_reclaimed; 6305 6306 if (trace_mm_alloc_contig_migrate_range_info_enabled()) { 6307 total_reclaimed += nr_reclaimed; 6308 list_for_each_entry(page, &cc->migratepages, lru) { 6309 struct folio *folio = page_folio(page); 6310 6311 total_mapped += folio_mapped(folio) * 6312 folio_nr_pages(folio); 6313 } 6314 } 6315 6316 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 6317 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); 6318 6319 if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret) 6320 total_migrated += cc->nr_migratepages; 6321 6322 /* 6323 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 6324 * to retry again over this error, so do the same here. 6325 */ 6326 if (ret == -ENOMEM) 6327 break; 6328 } 6329 6330 lru_cache_enable(); 6331 if (ret < 0) { 6332 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY) 6333 alloc_contig_dump_pages(&cc->migratepages); 6334 putback_movable_pages(&cc->migratepages); 6335 } 6336 6337 trace_mm_alloc_contig_migrate_range_info(start, end, migratetype, 6338 total_migrated, 6339 total_reclaimed, 6340 total_mapped); 6341 return (ret < 0) ? ret : 0; 6342 } 6343 split_free_pages(struct list_head * list,gfp_t gfp_mask)6344 static void split_free_pages(struct list_head *list, gfp_t gfp_mask) 6345 { 6346 int order; 6347 6348 for (order = 0; order < NR_PAGE_ORDERS; order++) { 6349 struct page *page, *next; 6350 int nr_pages = 1 << order; 6351 6352 list_for_each_entry_safe(page, next, &list[order], lru) { 6353 int i; 6354 6355 post_alloc_hook(page, order, gfp_mask); 6356 set_page_refcounted(page); 6357 if (!order) 6358 continue; 6359 6360 split_page(page, order); 6361 6362 /* Add all subpages to the order-0 head, in sequence. */ 6363 list_del(&page->lru); 6364 for (i = 0; i < nr_pages; i++) 6365 list_add_tail(&page[i].lru, &list[0]); 6366 } 6367 } 6368 } 6369 __alloc_contig_verify_gfp_mask(gfp_t gfp_mask,gfp_t * gfp_cc_mask)6370 static int __alloc_contig_verify_gfp_mask(gfp_t gfp_mask, gfp_t *gfp_cc_mask) 6371 { 6372 const gfp_t reclaim_mask = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 6373 const gfp_t action_mask = __GFP_COMP | __GFP_RETRY_MAYFAIL | __GFP_NOWARN | 6374 __GFP_ZERO | __GFP_ZEROTAGS | __GFP_SKIP_ZERO; 6375 const gfp_t cc_action_mask = __GFP_RETRY_MAYFAIL | __GFP_NOWARN; 6376 6377 /* 6378 * We are given the range to allocate; node, mobility and placement 6379 * hints are irrelevant at this point. We'll simply ignore them. 6380 */ 6381 gfp_mask &= ~(GFP_ZONEMASK | __GFP_RECLAIMABLE | __GFP_WRITE | 6382 __GFP_HARDWALL | __GFP_THISNODE | __GFP_MOVABLE); 6383 6384 /* 6385 * We only support most reclaim flags (but not NOFAIL/NORETRY), and 6386 * selected action flags. 6387 */ 6388 if (gfp_mask & ~(reclaim_mask | action_mask)) 6389 return -EINVAL; 6390 6391 /* 6392 * Flags to control page compaction/migration/reclaim, to free up our 6393 * page range. Migratable pages are movable, __GFP_MOVABLE is implied 6394 * for them. 6395 * 6396 * Traditionally we always had __GFP_RETRY_MAYFAIL set, keep doing that 6397 * to not degrade callers. 6398 */ 6399 *gfp_cc_mask = (gfp_mask & (reclaim_mask | cc_action_mask)) | 6400 __GFP_MOVABLE | __GFP_RETRY_MAYFAIL; 6401 return 0; 6402 } 6403 6404 /** 6405 * alloc_contig_range() -- tries to allocate given range of pages 6406 * @start: start PFN to allocate 6407 * @end: one-past-the-last PFN to allocate 6408 * @migratetype: migratetype of the underlying pageblocks (either 6409 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 6410 * in range must have the same migratetype and it must 6411 * be either of the two. 6412 * @gfp_mask: GFP mask. Node/zone/placement hints are ignored; only some 6413 * action and reclaim modifiers are supported. Reclaim modifiers 6414 * control allocation behavior during compaction/migration/reclaim. 6415 * 6416 * The PFN range does not have to be pageblock aligned. The PFN range must 6417 * belong to a single zone. 6418 * 6419 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 6420 * pageblocks in the range. Once isolated, the pageblocks should not 6421 * be modified by others. 6422 * 6423 * Return: zero on success or negative error code. On success all 6424 * pages which PFN is in [start, end) are allocated for the caller and 6425 * need to be freed with free_contig_range(). 6426 */ alloc_contig_range_noprof(unsigned long start,unsigned long end,unsigned migratetype,gfp_t gfp_mask)6427 int alloc_contig_range_noprof(unsigned long start, unsigned long end, 6428 unsigned migratetype, gfp_t gfp_mask) 6429 { 6430 unsigned long outer_start, outer_end; 6431 int ret = 0; 6432 6433 struct compact_control cc = { 6434 .nr_migratepages = 0, 6435 .order = -1, 6436 .zone = page_zone(pfn_to_page(start)), 6437 .mode = MIGRATE_SYNC, 6438 .ignore_skip_hint = true, 6439 .no_set_skip_hint = true, 6440 .alloc_contig = true, 6441 }; 6442 INIT_LIST_HEAD(&cc.migratepages); 6443 6444 gfp_mask = current_gfp_context(gfp_mask); 6445 if (__alloc_contig_verify_gfp_mask(gfp_mask, (gfp_t *)&cc.gfp_mask)) 6446 return -EINVAL; 6447 6448 /* 6449 * What we do here is we mark all pageblocks in range as 6450 * MIGRATE_ISOLATE. Because pageblock and max order pages may 6451 * have different sizes, and due to the way page allocator 6452 * work, start_isolate_page_range() has special handlings for this. 6453 * 6454 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 6455 * migrate the pages from an unaligned range (ie. pages that 6456 * we are interested in). This will put all the pages in 6457 * range back to page allocator as MIGRATE_ISOLATE. 6458 * 6459 * When this is done, we take the pages in range from page 6460 * allocator removing them from the buddy system. This way 6461 * page allocator will never consider using them. 6462 * 6463 * This lets us mark the pageblocks back as 6464 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 6465 * aligned range but not in the unaligned, original range are 6466 * put back to page allocator so that buddy can use them. 6467 */ 6468 6469 ret = start_isolate_page_range(start, end, migratetype, 0); 6470 if (ret) 6471 goto done; 6472 6473 drain_all_pages(cc.zone); 6474 6475 /* 6476 * In case of -EBUSY, we'd like to know which page causes problem. 6477 * So, just fall through. test_pages_isolated() has a tracepoint 6478 * which will report the busy page. 6479 * 6480 * It is possible that busy pages could become available before 6481 * the call to test_pages_isolated, and the range will actually be 6482 * allocated. So, if we fall through be sure to clear ret so that 6483 * -EBUSY is not accidentally used or returned to caller. 6484 */ 6485 ret = __alloc_contig_migrate_range(&cc, start, end, migratetype); 6486 if (ret && ret != -EBUSY) 6487 goto done; 6488 6489 /* 6490 * When in-use hugetlb pages are migrated, they may simply be released 6491 * back into the free hugepage pool instead of being returned to the 6492 * buddy system. After the migration of in-use huge pages is completed, 6493 * we will invoke replace_free_hugepage_folios() to ensure that these 6494 * hugepages are properly released to the buddy system. 6495 */ 6496 ret = replace_free_hugepage_folios(start, end); 6497 if (ret) 6498 goto done; 6499 6500 /* 6501 * Pages from [start, end) are within a pageblock_nr_pages 6502 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 6503 * more, all pages in [start, end) are free in page allocator. 6504 * What we are going to do is to allocate all pages from 6505 * [start, end) (that is remove them from page allocator). 6506 * 6507 * The only problem is that pages at the beginning and at the 6508 * end of interesting range may be not aligned with pages that 6509 * page allocator holds, ie. they can be part of higher order 6510 * pages. Because of this, we reserve the bigger range and 6511 * once this is done free the pages we are not interested in. 6512 * 6513 * We don't have to hold zone->lock here because the pages are 6514 * isolated thus they won't get removed from buddy. 6515 */ 6516 outer_start = find_large_buddy(start); 6517 6518 /* Make sure the range is really isolated. */ 6519 if (test_pages_isolated(outer_start, end, 0)) { 6520 ret = -EBUSY; 6521 goto done; 6522 } 6523 6524 /* Grab isolated pages from freelists. */ 6525 outer_end = isolate_freepages_range(&cc, outer_start, end); 6526 if (!outer_end) { 6527 ret = -EBUSY; 6528 goto done; 6529 } 6530 6531 if (!(gfp_mask & __GFP_COMP)) { 6532 split_free_pages(cc.freepages, gfp_mask); 6533 6534 /* Free head and tail (if any) */ 6535 if (start != outer_start) 6536 free_contig_range(outer_start, start - outer_start); 6537 if (end != outer_end) 6538 free_contig_range(end, outer_end - end); 6539 } else if (start == outer_start && end == outer_end && is_power_of_2(end - start)) { 6540 struct page *head = pfn_to_page(start); 6541 int order = ilog2(end - start); 6542 6543 check_new_pages(head, order); 6544 prep_new_page(head, order, gfp_mask, 0); 6545 set_page_refcounted(head); 6546 } else { 6547 ret = -EINVAL; 6548 WARN(true, "PFN range: requested [%lu, %lu), allocated [%lu, %lu)\n", 6549 start, end, outer_start, outer_end); 6550 } 6551 done: 6552 undo_isolate_page_range(start, end, migratetype); 6553 return ret; 6554 } 6555 EXPORT_SYMBOL(alloc_contig_range_noprof); 6556 __alloc_contig_pages(unsigned long start_pfn,unsigned long nr_pages,gfp_t gfp_mask)6557 static int __alloc_contig_pages(unsigned long start_pfn, 6558 unsigned long nr_pages, gfp_t gfp_mask) 6559 { 6560 unsigned long end_pfn = start_pfn + nr_pages; 6561 6562 return alloc_contig_range_noprof(start_pfn, end_pfn, MIGRATE_MOVABLE, 6563 gfp_mask); 6564 } 6565 pfn_range_valid_contig(struct zone * z,unsigned long start_pfn,unsigned long nr_pages)6566 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 6567 unsigned long nr_pages) 6568 { 6569 unsigned long i, end_pfn = start_pfn + nr_pages; 6570 struct page *page; 6571 6572 for (i = start_pfn; i < end_pfn; i++) { 6573 page = pfn_to_online_page(i); 6574 if (!page) 6575 return false; 6576 6577 if (page_zone(page) != z) 6578 return false; 6579 6580 if (PageReserved(page)) 6581 return false; 6582 6583 if (PageHuge(page)) 6584 return false; 6585 } 6586 return true; 6587 } 6588 zone_spans_last_pfn(const struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)6589 static bool zone_spans_last_pfn(const struct zone *zone, 6590 unsigned long start_pfn, unsigned long nr_pages) 6591 { 6592 unsigned long last_pfn = start_pfn + nr_pages - 1; 6593 6594 return zone_spans_pfn(zone, last_pfn); 6595 } 6596 6597 /** 6598 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 6599 * @nr_pages: Number of contiguous pages to allocate 6600 * @gfp_mask: GFP mask. Node/zone/placement hints limit the search; only some 6601 * action and reclaim modifiers are supported. Reclaim modifiers 6602 * control allocation behavior during compaction/migration/reclaim. 6603 * @nid: Target node 6604 * @nodemask: Mask for other possible nodes 6605 * 6606 * This routine is a wrapper around alloc_contig_range(). It scans over zones 6607 * on an applicable zonelist to find a contiguous pfn range which can then be 6608 * tried for allocation with alloc_contig_range(). This routine is intended 6609 * for allocation requests which can not be fulfilled with the buddy allocator. 6610 * 6611 * The allocated memory is always aligned to a page boundary. If nr_pages is a 6612 * power of two, then allocated range is also guaranteed to be aligned to same 6613 * nr_pages (e.g. 1GB request would be aligned to 1GB). 6614 * 6615 * Allocated pages can be freed with free_contig_range() or by manually calling 6616 * __free_page() on each allocated page. 6617 * 6618 * Return: pointer to contiguous pages on success, or NULL if not successful. 6619 */ alloc_contig_pages_noprof(unsigned long nr_pages,gfp_t gfp_mask,int nid,nodemask_t * nodemask)6620 struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask, 6621 int nid, nodemask_t *nodemask) 6622 { 6623 unsigned long ret, pfn, flags; 6624 struct zonelist *zonelist; 6625 struct zone *zone; 6626 struct zoneref *z; 6627 6628 zonelist = node_zonelist(nid, gfp_mask); 6629 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6630 gfp_zone(gfp_mask), nodemask) { 6631 spin_lock_irqsave(&zone->lock, flags); 6632 6633 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 6634 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 6635 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 6636 /* 6637 * We release the zone lock here because 6638 * alloc_contig_range() will also lock the zone 6639 * at some point. If there's an allocation 6640 * spinning on this lock, it may win the race 6641 * and cause alloc_contig_range() to fail... 6642 */ 6643 spin_unlock_irqrestore(&zone->lock, flags); 6644 ret = __alloc_contig_pages(pfn, nr_pages, 6645 gfp_mask); 6646 if (!ret) 6647 return pfn_to_page(pfn); 6648 spin_lock_irqsave(&zone->lock, flags); 6649 } 6650 pfn += nr_pages; 6651 } 6652 spin_unlock_irqrestore(&zone->lock, flags); 6653 } 6654 return NULL; 6655 } 6656 #endif /* CONFIG_CONTIG_ALLOC */ 6657 free_contig_range(unsigned long pfn,unsigned long nr_pages)6658 void free_contig_range(unsigned long pfn, unsigned long nr_pages) 6659 { 6660 unsigned long count = 0; 6661 struct folio *folio = pfn_folio(pfn); 6662 6663 if (folio_test_large(folio)) { 6664 int expected = folio_nr_pages(folio); 6665 6666 if (nr_pages == expected) 6667 folio_put(folio); 6668 else 6669 WARN(true, "PFN %lu: nr_pages %lu != expected %d\n", 6670 pfn, nr_pages, expected); 6671 return; 6672 } 6673 6674 for (; nr_pages--; pfn++) { 6675 struct page *page = pfn_to_page(pfn); 6676 6677 count += page_count(page) != 1; 6678 __free_page(page); 6679 } 6680 WARN(count != 0, "%lu pages are still in use!\n", count); 6681 } 6682 EXPORT_SYMBOL(free_contig_range); 6683 6684 /* 6685 * Effectively disable pcplists for the zone by setting the high limit to 0 6686 * and draining all cpus. A concurrent page freeing on another CPU that's about 6687 * to put the page on pcplist will either finish before the drain and the page 6688 * will be drained, or observe the new high limit and skip the pcplist. 6689 * 6690 * Must be paired with a call to zone_pcp_enable(). 6691 */ zone_pcp_disable(struct zone * zone)6692 void zone_pcp_disable(struct zone *zone) 6693 { 6694 mutex_lock(&pcp_batch_high_lock); 6695 __zone_set_pageset_high_and_batch(zone, 0, 0, 1); 6696 __drain_all_pages(zone, true); 6697 } 6698 zone_pcp_enable(struct zone * zone)6699 void zone_pcp_enable(struct zone *zone) 6700 { 6701 __zone_set_pageset_high_and_batch(zone, zone->pageset_high_min, 6702 zone->pageset_high_max, zone->pageset_batch); 6703 mutex_unlock(&pcp_batch_high_lock); 6704 } 6705 zone_pcp_reset(struct zone * zone)6706 void zone_pcp_reset(struct zone *zone) 6707 { 6708 int cpu; 6709 struct per_cpu_zonestat *pzstats; 6710 6711 if (zone->per_cpu_pageset != &boot_pageset) { 6712 for_each_online_cpu(cpu) { 6713 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 6714 drain_zonestat(zone, pzstats); 6715 } 6716 free_percpu(zone->per_cpu_pageset); 6717 zone->per_cpu_pageset = &boot_pageset; 6718 if (zone->per_cpu_zonestats != &boot_zonestats) { 6719 free_percpu(zone->per_cpu_zonestats); 6720 zone->per_cpu_zonestats = &boot_zonestats; 6721 } 6722 } 6723 } 6724 6725 #ifdef CONFIG_MEMORY_HOTREMOVE 6726 /* 6727 * All pages in the range must be in a single zone, must not contain holes, 6728 * must span full sections, and must be isolated before calling this function. 6729 * 6730 * Returns the number of managed (non-PageOffline()) pages in the range: the 6731 * number of pages for which memory offlining code must adjust managed page 6732 * counters using adjust_managed_page_count(). 6733 */ __offline_isolated_pages(unsigned long start_pfn,unsigned long end_pfn)6734 unsigned long __offline_isolated_pages(unsigned long start_pfn, 6735 unsigned long end_pfn) 6736 { 6737 unsigned long already_offline = 0, flags; 6738 unsigned long pfn = start_pfn; 6739 struct page *page; 6740 struct zone *zone; 6741 unsigned int order; 6742 6743 offline_mem_sections(pfn, end_pfn); 6744 zone = page_zone(pfn_to_page(pfn)); 6745 spin_lock_irqsave(&zone->lock, flags); 6746 while (pfn < end_pfn) { 6747 page = pfn_to_page(pfn); 6748 /* 6749 * The HWPoisoned page may be not in buddy system, and 6750 * page_count() is not 0. 6751 */ 6752 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 6753 pfn++; 6754 continue; 6755 } 6756 /* 6757 * At this point all remaining PageOffline() pages have a 6758 * reference count of 0 and can simply be skipped. 6759 */ 6760 if (PageOffline(page)) { 6761 BUG_ON(page_count(page)); 6762 BUG_ON(PageBuddy(page)); 6763 already_offline++; 6764 pfn++; 6765 continue; 6766 } 6767 6768 BUG_ON(page_count(page)); 6769 BUG_ON(!PageBuddy(page)); 6770 VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE); 6771 order = buddy_order(page); 6772 del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE); 6773 pfn += (1 << order); 6774 } 6775 spin_unlock_irqrestore(&zone->lock, flags); 6776 6777 return end_pfn - start_pfn - already_offline; 6778 } 6779 #endif 6780 6781 /* 6782 * This function returns a stable result only if called under zone lock. 6783 */ is_free_buddy_page(const struct page * page)6784 bool is_free_buddy_page(const struct page *page) 6785 { 6786 unsigned long pfn = page_to_pfn(page); 6787 unsigned int order; 6788 6789 for (order = 0; order < NR_PAGE_ORDERS; order++) { 6790 const struct page *head = page - (pfn & ((1 << order) - 1)); 6791 6792 if (PageBuddy(head) && 6793 buddy_order_unsafe(head) >= order) 6794 break; 6795 } 6796 6797 return order <= MAX_PAGE_ORDER; 6798 } 6799 EXPORT_SYMBOL(is_free_buddy_page); 6800 6801 #ifdef CONFIG_MEMORY_FAILURE add_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype,bool tail)6802 static inline void add_to_free_list(struct page *page, struct zone *zone, 6803 unsigned int order, int migratetype, 6804 bool tail) 6805 { 6806 __add_to_free_list(page, zone, order, migratetype, tail); 6807 account_freepages(zone, 1 << order, migratetype); 6808 } 6809 6810 /* 6811 * Break down a higher-order page in sub-pages, and keep our target out of 6812 * buddy allocator. 6813 */ break_down_buddy_pages(struct zone * zone,struct page * page,struct page * target,int low,int high,int migratetype)6814 static void break_down_buddy_pages(struct zone *zone, struct page *page, 6815 struct page *target, int low, int high, 6816 int migratetype) 6817 { 6818 unsigned long size = 1 << high; 6819 struct page *current_buddy; 6820 6821 while (high > low) { 6822 high--; 6823 size >>= 1; 6824 6825 if (target >= &page[size]) { 6826 current_buddy = page; 6827 page = page + size; 6828 } else { 6829 current_buddy = page + size; 6830 } 6831 6832 if (set_page_guard(zone, current_buddy, high)) 6833 continue; 6834 6835 add_to_free_list(current_buddy, zone, high, migratetype, false); 6836 set_buddy_order(current_buddy, high); 6837 } 6838 } 6839 6840 /* 6841 * Take a page that will be marked as poisoned off the buddy allocator. 6842 */ take_page_off_buddy(struct page * page)6843 bool take_page_off_buddy(struct page *page) 6844 { 6845 struct zone *zone = page_zone(page); 6846 unsigned long pfn = page_to_pfn(page); 6847 unsigned long flags; 6848 unsigned int order; 6849 bool ret = false; 6850 6851 spin_lock_irqsave(&zone->lock, flags); 6852 for (order = 0; order < NR_PAGE_ORDERS; order++) { 6853 struct page *page_head = page - (pfn & ((1 << order) - 1)); 6854 int page_order = buddy_order(page_head); 6855 6856 if (PageBuddy(page_head) && page_order >= order) { 6857 unsigned long pfn_head = page_to_pfn(page_head); 6858 int migratetype = get_pfnblock_migratetype(page_head, 6859 pfn_head); 6860 6861 del_page_from_free_list(page_head, zone, page_order, 6862 migratetype); 6863 break_down_buddy_pages(zone, page_head, page, 0, 6864 page_order, migratetype); 6865 SetPageHWPoisonTakenOff(page); 6866 ret = true; 6867 break; 6868 } 6869 if (page_count(page_head) > 0) 6870 break; 6871 } 6872 spin_unlock_irqrestore(&zone->lock, flags); 6873 return ret; 6874 } 6875 6876 /* 6877 * Cancel takeoff done by take_page_off_buddy(). 6878 */ put_page_back_buddy(struct page * page)6879 bool put_page_back_buddy(struct page *page) 6880 { 6881 struct zone *zone = page_zone(page); 6882 unsigned long flags; 6883 bool ret = false; 6884 6885 spin_lock_irqsave(&zone->lock, flags); 6886 if (put_page_testzero(page)) { 6887 unsigned long pfn = page_to_pfn(page); 6888 int migratetype = get_pfnblock_migratetype(page, pfn); 6889 6890 ClearPageHWPoisonTakenOff(page); 6891 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE); 6892 if (TestClearPageHWPoison(page)) { 6893 ret = true; 6894 } 6895 } 6896 spin_unlock_irqrestore(&zone->lock, flags); 6897 6898 return ret; 6899 } 6900 #endif 6901 6902 #ifdef CONFIG_ZONE_DMA has_managed_dma(void)6903 bool has_managed_dma(void) 6904 { 6905 struct pglist_data *pgdat; 6906 6907 for_each_online_pgdat(pgdat) { 6908 struct zone *zone = &pgdat->node_zones[ZONE_DMA]; 6909 6910 if (managed_zone(zone)) 6911 return true; 6912 } 6913 return false; 6914 } 6915 #endif /* CONFIG_ZONE_DMA */ 6916 6917 #ifdef CONFIG_UNACCEPTED_MEMORY 6918 6919 /* Counts number of zones with unaccepted pages. */ 6920 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages); 6921 6922 static bool lazy_accept = true; 6923 accept_memory_parse(char * p)6924 static int __init accept_memory_parse(char *p) 6925 { 6926 if (!strcmp(p, "lazy")) { 6927 lazy_accept = true; 6928 return 0; 6929 } else if (!strcmp(p, "eager")) { 6930 lazy_accept = false; 6931 return 0; 6932 } else { 6933 return -EINVAL; 6934 } 6935 } 6936 early_param("accept_memory", accept_memory_parse); 6937 page_contains_unaccepted(struct page * page,unsigned int order)6938 static bool page_contains_unaccepted(struct page *page, unsigned int order) 6939 { 6940 phys_addr_t start = page_to_phys(page); 6941 6942 return range_contains_unaccepted_memory(start, PAGE_SIZE << order); 6943 } 6944 __accept_page(struct zone * zone,unsigned long * flags,struct page * page)6945 static void __accept_page(struct zone *zone, unsigned long *flags, 6946 struct page *page) 6947 { 6948 bool last; 6949 6950 list_del(&page->lru); 6951 last = list_empty(&zone->unaccepted_pages); 6952 6953 account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 6954 __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES); 6955 __ClearPageUnaccepted(page); 6956 spin_unlock_irqrestore(&zone->lock, *flags); 6957 6958 accept_memory(page_to_phys(page), PAGE_SIZE << MAX_PAGE_ORDER); 6959 6960 __free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL); 6961 6962 if (last) 6963 static_branch_dec(&zones_with_unaccepted_pages); 6964 } 6965 accept_page(struct page * page)6966 void accept_page(struct page *page) 6967 { 6968 struct zone *zone = page_zone(page); 6969 unsigned long flags; 6970 6971 spin_lock_irqsave(&zone->lock, flags); 6972 if (!PageUnaccepted(page)) { 6973 spin_unlock_irqrestore(&zone->lock, flags); 6974 return; 6975 } 6976 6977 /* Unlocks zone->lock */ 6978 __accept_page(zone, &flags, page); 6979 } 6980 try_to_accept_memory_one(struct zone * zone)6981 static bool try_to_accept_memory_one(struct zone *zone) 6982 { 6983 unsigned long flags; 6984 struct page *page; 6985 6986 spin_lock_irqsave(&zone->lock, flags); 6987 page = list_first_entry_or_null(&zone->unaccepted_pages, 6988 struct page, lru); 6989 if (!page) { 6990 spin_unlock_irqrestore(&zone->lock, flags); 6991 return false; 6992 } 6993 6994 /* Unlocks zone->lock */ 6995 __accept_page(zone, &flags, page); 6996 6997 return true; 6998 } 6999 has_unaccepted_memory(void)7000 static inline bool has_unaccepted_memory(void) 7001 { 7002 return static_branch_unlikely(&zones_with_unaccepted_pages); 7003 } 7004 cond_accept_memory(struct zone * zone,unsigned int order)7005 static bool cond_accept_memory(struct zone *zone, unsigned int order) 7006 { 7007 long to_accept, wmark; 7008 bool ret = false; 7009 7010 if (!has_unaccepted_memory()) 7011 return false; 7012 7013 if (list_empty(&zone->unaccepted_pages)) 7014 return false; 7015 7016 wmark = promo_wmark_pages(zone); 7017 7018 /* 7019 * Watermarks have not been initialized yet. 7020 * 7021 * Accepting one MAX_ORDER page to ensure progress. 7022 */ 7023 if (!wmark) 7024 return try_to_accept_memory_one(zone); 7025 7026 /* How much to accept to get to promo watermark? */ 7027 to_accept = wmark - 7028 (zone_page_state(zone, NR_FREE_PAGES) - 7029 __zone_watermark_unusable_free(zone, order, 0) - 7030 zone_page_state(zone, NR_UNACCEPTED)); 7031 7032 while (to_accept > 0) { 7033 if (!try_to_accept_memory_one(zone)) 7034 break; 7035 ret = true; 7036 to_accept -= MAX_ORDER_NR_PAGES; 7037 } 7038 7039 return ret; 7040 } 7041 __free_unaccepted(struct page * page)7042 static bool __free_unaccepted(struct page *page) 7043 { 7044 struct zone *zone = page_zone(page); 7045 unsigned long flags; 7046 bool first = false; 7047 7048 if (!lazy_accept) 7049 return false; 7050 7051 spin_lock_irqsave(&zone->lock, flags); 7052 first = list_empty(&zone->unaccepted_pages); 7053 list_add_tail(&page->lru, &zone->unaccepted_pages); 7054 account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 7055 __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES); 7056 __SetPageUnaccepted(page); 7057 spin_unlock_irqrestore(&zone->lock, flags); 7058 7059 if (first) 7060 static_branch_inc(&zones_with_unaccepted_pages); 7061 7062 return true; 7063 } 7064 7065 #else 7066 page_contains_unaccepted(struct page * page,unsigned int order)7067 static bool page_contains_unaccepted(struct page *page, unsigned int order) 7068 { 7069 return false; 7070 } 7071 cond_accept_memory(struct zone * zone,unsigned int order)7072 static bool cond_accept_memory(struct zone *zone, unsigned int order) 7073 { 7074 return false; 7075 } 7076 __free_unaccepted(struct page * page)7077 static bool __free_unaccepted(struct page *page) 7078 { 7079 BUILD_BUG(); 7080 return false; 7081 } 7082 7083 #endif /* CONFIG_UNACCEPTED_MEMORY */ 7084