1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 /* Copyright (c) 2022 Meta Platforms, Inc. and affiliates. */
3 #include <ctype.h>
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include <libelf.h>
8 #include <gelf.h>
9 #include <unistd.h>
10 #include <linux/ptrace.h>
11 #include <linux/kernel.h>
12
13 /* s8 will be marked as poison while it's a reg of riscv */
14 #if defined(__riscv)
15 #define rv_s8 s8
16 #endif
17
18 #include "bpf.h"
19 #include "libbpf.h"
20 #include "libbpf_common.h"
21 #include "libbpf_internal.h"
22 #include "hashmap.h"
23 #include "str_error.h"
24
25 /* libbpf's USDT support consists of BPF-side state/code and user-space
26 * state/code working together in concert. BPF-side parts are defined in
27 * usdt.bpf.h header library. User-space state is encapsulated by struct
28 * usdt_manager and all the supporting code centered around usdt_manager.
29 *
30 * usdt.bpf.h defines two BPF maps that usdt_manager expects: USDT spec map
31 * and IP-to-spec-ID map, which is auxiliary map necessary for kernels that
32 * don't support BPF cookie (see below). These two maps are implicitly
33 * embedded into user's end BPF object file when user's code included
34 * usdt.bpf.h. This means that libbpf doesn't do anything special to create
35 * these USDT support maps. They are created by normal libbpf logic of
36 * instantiating BPF maps when opening and loading BPF object.
37 *
38 * As such, libbpf is basically unaware of the need to do anything
39 * USDT-related until the very first call to bpf_program__attach_usdt(), which
40 * can be called by user explicitly or happen automatically during skeleton
41 * attach (or, equivalently, through generic bpf_program__attach() call). At
42 * this point, libbpf will instantiate and initialize struct usdt_manager and
43 * store it in bpf_object. USDT manager is per-BPF object construct, as each
44 * independent BPF object might or might not have USDT programs, and thus all
45 * the expected USDT-related state. There is no coordination between two
46 * bpf_object in parts of USDT attachment, they are oblivious of each other's
47 * existence and libbpf is just oblivious, dealing with bpf_object-specific
48 * USDT state.
49 *
50 * Quick crash course on USDTs.
51 *
52 * From user-space application's point of view, USDT is essentially just
53 * a slightly special function call that normally has zero overhead, unless it
54 * is being traced by some external entity (e.g, BPF-based tool). Here's how
55 * a typical application can trigger USDT probe:
56 *
57 * #include <sys/sdt.h> // provided by systemtap-sdt-devel package
58 * // folly also provide similar functionality in folly/tracing/StaticTracepoint.h
59 *
60 * STAP_PROBE3(my_usdt_provider, my_usdt_probe_name, 123, x, &y);
61 *
62 * USDT is identified by it's <provider-name>:<probe-name> pair of names. Each
63 * individual USDT has a fixed number of arguments (3 in the above example)
64 * and specifies values of each argument as if it was a function call.
65 *
66 * USDT call is actually not a function call, but is instead replaced by
67 * a single NOP instruction (thus zero overhead, effectively). But in addition
68 * to that, those USDT macros generate special SHT_NOTE ELF records in
69 * .note.stapsdt ELF section. Here's an example USDT definition as emitted by
70 * `readelf -n <binary>`:
71 *
72 * stapsdt 0x00000089 NT_STAPSDT (SystemTap probe descriptors)
73 * Provider: test
74 * Name: usdt12
75 * Location: 0x0000000000549df3, Base: 0x00000000008effa4, Semaphore: 0x0000000000a4606e
76 * Arguments: -4@-1204(%rbp) -4@%edi -8@-1216(%rbp) -8@%r8 -4@$5 -8@%r9 8@%rdx 8@%r10 -4@$-9 -2@%cx -2@%ax -1@%sil
77 *
78 * In this case we have USDT test:usdt12 with 12 arguments.
79 *
80 * Location and base are offsets used to calculate absolute IP address of that
81 * NOP instruction that kernel can replace with an interrupt instruction to
82 * trigger instrumentation code (BPF program for all that we care about).
83 *
84 * Semaphore above is and optional feature. It records an address of a 2-byte
85 * refcount variable (normally in '.probes' ELF section) used for signaling if
86 * there is anything that is attached to USDT. This is useful for user
87 * applications if, for example, they need to prepare some arguments that are
88 * passed only to USDTs and preparation is expensive. By checking if USDT is
89 * "activated", an application can avoid paying those costs unnecessarily.
90 * Recent enough kernel has built-in support for automatically managing this
91 * refcount, which libbpf expects and relies on. If USDT is defined without
92 * associated semaphore, this value will be zero. See selftests for semaphore
93 * examples.
94 *
95 * Arguments is the most interesting part. This USDT specification string is
96 * providing information about all the USDT arguments and their locations. The
97 * part before @ sign defined byte size of the argument (1, 2, 4, or 8) and
98 * whether the argument is signed or unsigned (negative size means signed).
99 * The part after @ sign is assembly-like definition of argument location
100 * (see [0] for more details). Technically, assembler can provide some pretty
101 * advanced definitions, but libbpf is currently supporting three most common
102 * cases:
103 * 1) immediate constant, see 5th and 9th args above (-4@$5 and -4@-9);
104 * 2) register value, e.g., 8@%rdx, which means "unsigned 8-byte integer
105 * whose value is in register %rdx";
106 * 3) memory dereference addressed by register, e.g., -4@-1204(%rbp), which
107 * specifies signed 32-bit integer stored at offset -1204 bytes from
108 * memory address stored in %rbp.
109 *
110 * [0] https://sourceware.org/systemtap/wiki/UserSpaceProbeImplementation
111 *
112 * During attachment, libbpf parses all the relevant USDT specifications and
113 * prepares `struct usdt_spec` (USDT spec), which is then provided to BPF-side
114 * code through spec map. This allows BPF applications to quickly fetch the
115 * actual value at runtime using a simple BPF-side code.
116 *
117 * With basics out of the way, let's go over less immediately obvious aspects
118 * of supporting USDTs.
119 *
120 * First, there is no special USDT BPF program type. It is actually just
121 * a uprobe BPF program (which for kernel, at least currently, is just a kprobe
122 * program, so BPF_PROG_TYPE_KPROBE program type). With the only difference
123 * that uprobe is usually attached at the function entry, while USDT will
124 * normally will be somewhere inside the function. But it should always be
125 * pointing to NOP instruction, which makes such uprobes the fastest uprobe
126 * kind.
127 *
128 * Second, it's important to realize that such STAP_PROBEn(provider, name, ...)
129 * macro invocations can end up being inlined many-many times, depending on
130 * specifics of each individual user application. So single conceptual USDT
131 * (identified by provider:name pair of identifiers) is, generally speaking,
132 * multiple uprobe locations (USDT call sites) in different places in user
133 * application. Further, again due to inlining, each USDT call site might end
134 * up having the same argument #N be located in a different place. In one call
135 * site it could be a constant, in another will end up in a register, and in
136 * yet another could be some other register or even somewhere on the stack.
137 *
138 * As such, "attaching to USDT" means (in general case) attaching the same
139 * uprobe BPF program to multiple target locations in user application, each
140 * potentially having a completely different USDT spec associated with it.
141 * To wire all this up together libbpf allocates a unique integer spec ID for
142 * each unique USDT spec. Spec IDs are allocated as sequential small integers
143 * so that they can be used as keys in array BPF map (for performance reasons).
144 * Spec ID allocation and accounting is big part of what usdt_manager is
145 * about. This state has to be maintained per-BPF object and coordinate
146 * between different USDT attachments within the same BPF object.
147 *
148 * Spec ID is the key in spec BPF map, value is the actual USDT spec layed out
149 * as struct usdt_spec. Each invocation of BPF program at runtime needs to
150 * know its associated spec ID. It gets it either through BPF cookie, which
151 * libbpf sets to spec ID during attach time, or, if kernel is too old to
152 * support BPF cookie, through IP-to-spec-ID map that libbpf maintains in such
153 * case. The latter means that some modes of operation can't be supported
154 * without BPF cookie. Such mode is attaching to shared library "generically",
155 * without specifying target process. In such case, it's impossible to
156 * calculate absolute IP addresses for IP-to-spec-ID map, and thus such mode
157 * is not supported without BPF cookie support.
158 *
159 * Note that libbpf is using BPF cookie functionality for its own internal
160 * needs, so user itself can't rely on BPF cookie feature. To that end, libbpf
161 * provides conceptually equivalent USDT cookie support. It's still u64
162 * user-provided value that can be associated with USDT attachment. Note that
163 * this will be the same value for all USDT call sites within the same single
164 * *logical* USDT attachment. This makes sense because to user attaching to
165 * USDT is a single BPF program triggered for singular USDT probe. The fact
166 * that this is done at multiple actual locations is a mostly hidden
167 * implementation details. This USDT cookie value can be fetched with
168 * bpf_usdt_cookie(ctx) API provided by usdt.bpf.h
169 *
170 * Lastly, while single USDT can have tons of USDT call sites, it doesn't
171 * necessarily have that many different USDT specs. It very well might be
172 * that 1000 USDT call sites only need 5 different USDT specs, because all the
173 * arguments are typically contained in a small set of registers or stack
174 * locations. As such, it's wasteful to allocate as many USDT spec IDs as
175 * there are USDT call sites. So libbpf tries to be frugal and performs
176 * on-the-fly deduplication during a single USDT attachment to only allocate
177 * the minimal required amount of unique USDT specs (and thus spec IDs). This
178 * is trivially achieved by using USDT spec string (Arguments string from USDT
179 * note) as a lookup key in a hashmap. USDT spec string uniquely defines
180 * everything about how to fetch USDT arguments, so two USDT call sites
181 * sharing USDT spec string can safely share the same USDT spec and spec ID.
182 * Note, this spec string deduplication is happening only during the same USDT
183 * attachment, so each USDT spec shares the same USDT cookie value. This is
184 * not generally true for other USDT attachments within the same BPF object,
185 * as even if USDT spec string is the same, USDT cookie value can be
186 * different. It was deemed excessive to try to deduplicate across independent
187 * USDT attachments by taking into account USDT spec string *and* USDT cookie
188 * value, which would complicated spec ID accounting significantly for little
189 * gain.
190 */
191
192 #define USDT_BASE_SEC ".stapsdt.base"
193 #define USDT_SEMA_SEC ".probes"
194 #define USDT_NOTE_SEC ".note.stapsdt"
195 #define USDT_NOTE_TYPE 3
196 #define USDT_NOTE_NAME "stapsdt"
197
198 /* should match exactly enum __bpf_usdt_arg_type from usdt.bpf.h */
199 enum usdt_arg_type {
200 USDT_ARG_CONST,
201 USDT_ARG_REG,
202 USDT_ARG_REG_DEREF,
203 };
204
205 /* should match exactly struct __bpf_usdt_arg_spec from usdt.bpf.h */
206 struct usdt_arg_spec {
207 __u64 val_off;
208 enum usdt_arg_type arg_type;
209 short reg_off;
210 bool arg_signed;
211 char arg_bitshift;
212 };
213
214 /* should match BPF_USDT_MAX_ARG_CNT in usdt.bpf.h */
215 #define USDT_MAX_ARG_CNT 12
216
217 /* should match struct __bpf_usdt_spec from usdt.bpf.h */
218 struct usdt_spec {
219 struct usdt_arg_spec args[USDT_MAX_ARG_CNT];
220 __u64 usdt_cookie;
221 short arg_cnt;
222 };
223
224 struct usdt_note {
225 const char *provider;
226 const char *name;
227 /* USDT args specification string, e.g.:
228 * "-4@%esi -4@-24(%rbp) -4@%ecx 2@%ax 8@%rdx"
229 */
230 const char *args;
231 long loc_addr;
232 long base_addr;
233 long sema_addr;
234 };
235
236 struct usdt_target {
237 long abs_ip;
238 long rel_ip;
239 long sema_off;
240 struct usdt_spec spec;
241 const char *spec_str;
242 };
243
244 struct usdt_manager {
245 struct bpf_map *specs_map;
246 struct bpf_map *ip_to_spec_id_map;
247
248 int *free_spec_ids;
249 size_t free_spec_cnt;
250 size_t next_free_spec_id;
251
252 bool has_bpf_cookie;
253 bool has_sema_refcnt;
254 bool has_uprobe_multi;
255 };
256
usdt_manager_new(struct bpf_object * obj)257 struct usdt_manager *usdt_manager_new(struct bpf_object *obj)
258 {
259 static const char *ref_ctr_sysfs_path = "/sys/bus/event_source/devices/uprobe/format/ref_ctr_offset";
260 struct usdt_manager *man;
261 struct bpf_map *specs_map, *ip_to_spec_id_map;
262
263 specs_map = bpf_object__find_map_by_name(obj, "__bpf_usdt_specs");
264 ip_to_spec_id_map = bpf_object__find_map_by_name(obj, "__bpf_usdt_ip_to_spec_id");
265 if (!specs_map || !ip_to_spec_id_map) {
266 pr_warn("usdt: failed to find USDT support BPF maps, did you forget to include bpf/usdt.bpf.h?\n");
267 return ERR_PTR(-ESRCH);
268 }
269
270 man = calloc(1, sizeof(*man));
271 if (!man)
272 return ERR_PTR(-ENOMEM);
273
274 man->specs_map = specs_map;
275 man->ip_to_spec_id_map = ip_to_spec_id_map;
276
277 /* Detect if BPF cookie is supported for kprobes.
278 * We don't need IP-to-ID mapping if we can use BPF cookies.
279 * Added in: 7adfc6c9b315 ("bpf: Add bpf_get_attach_cookie() BPF helper to access bpf_cookie value")
280 */
281 man->has_bpf_cookie = kernel_supports(obj, FEAT_BPF_COOKIE);
282
283 /* Detect kernel support for automatic refcounting of USDT semaphore.
284 * If this is not supported, USDTs with semaphores will not be supported.
285 * Added in: a6ca88b241d5 ("trace_uprobe: support reference counter in fd-based uprobe")
286 */
287 man->has_sema_refcnt = faccessat(AT_FDCWD, ref_ctr_sysfs_path, F_OK, AT_EACCESS) == 0;
288
289 /*
290 * Detect kernel support for uprobe multi link to be used for attaching
291 * usdt probes.
292 */
293 man->has_uprobe_multi = kernel_supports(obj, FEAT_UPROBE_MULTI_LINK);
294 return man;
295 }
296
usdt_manager_free(struct usdt_manager * man)297 void usdt_manager_free(struct usdt_manager *man)
298 {
299 if (IS_ERR_OR_NULL(man))
300 return;
301
302 free(man->free_spec_ids);
303 free(man);
304 }
305
sanity_check_usdt_elf(Elf * elf,const char * path)306 static int sanity_check_usdt_elf(Elf *elf, const char *path)
307 {
308 GElf_Ehdr ehdr;
309 int endianness;
310
311 if (elf_kind(elf) != ELF_K_ELF) {
312 pr_warn("usdt: unrecognized ELF kind %d for '%s'\n", elf_kind(elf), path);
313 return -EBADF;
314 }
315
316 switch (gelf_getclass(elf)) {
317 case ELFCLASS64:
318 if (sizeof(void *) != 8) {
319 pr_warn("usdt: attaching to 64-bit ELF binary '%s' is not supported\n", path);
320 return -EBADF;
321 }
322 break;
323 case ELFCLASS32:
324 if (sizeof(void *) != 4) {
325 pr_warn("usdt: attaching to 32-bit ELF binary '%s' is not supported\n", path);
326 return -EBADF;
327 }
328 break;
329 default:
330 pr_warn("usdt: unsupported ELF class for '%s'\n", path);
331 return -EBADF;
332 }
333
334 if (!gelf_getehdr(elf, &ehdr))
335 return -EINVAL;
336
337 if (ehdr.e_type != ET_EXEC && ehdr.e_type != ET_DYN) {
338 pr_warn("usdt: unsupported type of ELF binary '%s' (%d), only ET_EXEC and ET_DYN are supported\n",
339 path, ehdr.e_type);
340 return -EBADF;
341 }
342
343 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
344 endianness = ELFDATA2LSB;
345 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
346 endianness = ELFDATA2MSB;
347 #else
348 # error "Unrecognized __BYTE_ORDER__"
349 #endif
350 if (endianness != ehdr.e_ident[EI_DATA]) {
351 pr_warn("usdt: ELF endianness mismatch for '%s'\n", path);
352 return -EBADF;
353 }
354
355 return 0;
356 }
357
find_elf_sec_by_name(Elf * elf,const char * sec_name,GElf_Shdr * shdr,Elf_Scn ** scn)358 static int find_elf_sec_by_name(Elf *elf, const char *sec_name, GElf_Shdr *shdr, Elf_Scn **scn)
359 {
360 Elf_Scn *sec = NULL;
361 size_t shstrndx;
362
363 if (elf_getshdrstrndx(elf, &shstrndx))
364 return -EINVAL;
365
366 /* check if ELF is corrupted and avoid calling elf_strptr if yes */
367 if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL))
368 return -EINVAL;
369
370 while ((sec = elf_nextscn(elf, sec)) != NULL) {
371 char *name;
372
373 if (!gelf_getshdr(sec, shdr))
374 return -EINVAL;
375
376 name = elf_strptr(elf, shstrndx, shdr->sh_name);
377 if (name && strcmp(sec_name, name) == 0) {
378 *scn = sec;
379 return 0;
380 }
381 }
382
383 return -ENOENT;
384 }
385
386 struct elf_seg {
387 long start;
388 long end;
389 long offset;
390 bool is_exec;
391 };
392
cmp_elf_segs(const void * _a,const void * _b)393 static int cmp_elf_segs(const void *_a, const void *_b)
394 {
395 const struct elf_seg *a = _a;
396 const struct elf_seg *b = _b;
397
398 return a->start < b->start ? -1 : 1;
399 }
400
parse_elf_segs(Elf * elf,const char * path,struct elf_seg ** segs,size_t * seg_cnt)401 static int parse_elf_segs(Elf *elf, const char *path, struct elf_seg **segs, size_t *seg_cnt)
402 {
403 GElf_Phdr phdr;
404 size_t n;
405 int i, err;
406 struct elf_seg *seg;
407 void *tmp;
408
409 *seg_cnt = 0;
410
411 if (elf_getphdrnum(elf, &n)) {
412 err = -errno;
413 return err;
414 }
415
416 for (i = 0; i < n; i++) {
417 if (!gelf_getphdr(elf, i, &phdr)) {
418 err = -errno;
419 return err;
420 }
421
422 pr_debug("usdt: discovered PHDR #%d in '%s': vaddr 0x%lx memsz 0x%lx offset 0x%lx type 0x%lx flags 0x%lx\n",
423 i, path, (long)phdr.p_vaddr, (long)phdr.p_memsz, (long)phdr.p_offset,
424 (long)phdr.p_type, (long)phdr.p_flags);
425 if (phdr.p_type != PT_LOAD)
426 continue;
427
428 tmp = libbpf_reallocarray(*segs, *seg_cnt + 1, sizeof(**segs));
429 if (!tmp)
430 return -ENOMEM;
431
432 *segs = tmp;
433 seg = *segs + *seg_cnt;
434 (*seg_cnt)++;
435
436 seg->start = phdr.p_vaddr;
437 seg->end = phdr.p_vaddr + phdr.p_memsz;
438 seg->offset = phdr.p_offset;
439 seg->is_exec = phdr.p_flags & PF_X;
440 }
441
442 if (*seg_cnt == 0) {
443 pr_warn("usdt: failed to find PT_LOAD program headers in '%s'\n", path);
444 return -ESRCH;
445 }
446
447 qsort(*segs, *seg_cnt, sizeof(**segs), cmp_elf_segs);
448 return 0;
449 }
450
parse_vma_segs(int pid,const char * lib_path,struct elf_seg ** segs,size_t * seg_cnt)451 static int parse_vma_segs(int pid, const char *lib_path, struct elf_seg **segs, size_t *seg_cnt)
452 {
453 char path[PATH_MAX], line[PATH_MAX], mode[16];
454 size_t seg_start, seg_end, seg_off;
455 struct elf_seg *seg;
456 int tmp_pid, i, err;
457 FILE *f;
458
459 *seg_cnt = 0;
460
461 /* Handle containerized binaries only accessible from
462 * /proc/<pid>/root/<path>. They will be reported as just /<path> in
463 * /proc/<pid>/maps.
464 */
465 if (sscanf(lib_path, "/proc/%d/root%s", &tmp_pid, path) == 2 && pid == tmp_pid)
466 goto proceed;
467
468 if (!realpath(lib_path, path)) {
469 pr_warn("usdt: failed to get absolute path of '%s' (err %s), using path as is...\n",
470 lib_path, errstr(-errno));
471 libbpf_strlcpy(path, lib_path, sizeof(path));
472 }
473
474 proceed:
475 sprintf(line, "/proc/%d/maps", pid);
476 f = fopen(line, "re");
477 if (!f) {
478 err = -errno;
479 pr_warn("usdt: failed to open '%s' to get base addr of '%s': %s\n",
480 line, lib_path, errstr(err));
481 return err;
482 }
483
484 /* We need to handle lines with no path at the end:
485 *
486 * 7f5c6f5d1000-7f5c6f5d3000 rw-p 001c7000 08:04 21238613 /usr/lib64/libc-2.17.so
487 * 7f5c6f5d3000-7f5c6f5d8000 rw-p 00000000 00:00 0
488 * 7f5c6f5d8000-7f5c6f5d9000 r-xp 00000000 103:01 362990598 /data/users/andriin/linux/tools/bpf/usdt/libhello_usdt.so
489 */
490 while (fscanf(f, "%zx-%zx %s %zx %*s %*d%[^\n]\n",
491 &seg_start, &seg_end, mode, &seg_off, line) == 5) {
492 void *tmp;
493
494 /* to handle no path case (see above) we need to capture line
495 * without skipping any whitespaces. So we need to strip
496 * leading whitespaces manually here
497 */
498 i = 0;
499 while (isblank(line[i]))
500 i++;
501 if (strcmp(line + i, path) != 0)
502 continue;
503
504 pr_debug("usdt: discovered segment for lib '%s': addrs %zx-%zx mode %s offset %zx\n",
505 path, seg_start, seg_end, mode, seg_off);
506
507 /* ignore non-executable sections for shared libs */
508 if (mode[2] != 'x')
509 continue;
510
511 tmp = libbpf_reallocarray(*segs, *seg_cnt + 1, sizeof(**segs));
512 if (!tmp) {
513 err = -ENOMEM;
514 goto err_out;
515 }
516
517 *segs = tmp;
518 seg = *segs + *seg_cnt;
519 *seg_cnt += 1;
520
521 seg->start = seg_start;
522 seg->end = seg_end;
523 seg->offset = seg_off;
524 seg->is_exec = true;
525 }
526
527 if (*seg_cnt == 0) {
528 pr_warn("usdt: failed to find '%s' (resolved to '%s') within PID %d memory mappings\n",
529 lib_path, path, pid);
530 err = -ESRCH;
531 goto err_out;
532 }
533
534 qsort(*segs, *seg_cnt, sizeof(**segs), cmp_elf_segs);
535 err = 0;
536 err_out:
537 fclose(f);
538 return err;
539 }
540
find_elf_seg(struct elf_seg * segs,size_t seg_cnt,long virtaddr)541 static struct elf_seg *find_elf_seg(struct elf_seg *segs, size_t seg_cnt, long virtaddr)
542 {
543 struct elf_seg *seg;
544 int i;
545
546 /* for ELF binaries (both executables and shared libraries), we are
547 * given virtual address (absolute for executables, relative for
548 * libraries) which should match address range of [seg_start, seg_end)
549 */
550 for (i = 0, seg = segs; i < seg_cnt; i++, seg++) {
551 if (seg->start <= virtaddr && virtaddr < seg->end)
552 return seg;
553 }
554 return NULL;
555 }
556
find_vma_seg(struct elf_seg * segs,size_t seg_cnt,long offset)557 static struct elf_seg *find_vma_seg(struct elf_seg *segs, size_t seg_cnt, long offset)
558 {
559 struct elf_seg *seg;
560 int i;
561
562 /* for VMA segments from /proc/<pid>/maps file, provided "address" is
563 * actually a file offset, so should be fall within logical
564 * offset-based range of [offset_start, offset_end)
565 */
566 for (i = 0, seg = segs; i < seg_cnt; i++, seg++) {
567 if (seg->offset <= offset && offset < seg->offset + (seg->end - seg->start))
568 return seg;
569 }
570 return NULL;
571 }
572
573 static int parse_usdt_note(Elf *elf, const char *path, GElf_Nhdr *nhdr,
574 const char *data, size_t name_off, size_t desc_off,
575 struct usdt_note *usdt_note);
576
577 static int parse_usdt_spec(struct usdt_spec *spec, const struct usdt_note *note, __u64 usdt_cookie);
578
collect_usdt_targets(struct usdt_manager * man,Elf * elf,const char * path,pid_t pid,const char * usdt_provider,const char * usdt_name,__u64 usdt_cookie,struct usdt_target ** out_targets,size_t * out_target_cnt)579 static int collect_usdt_targets(struct usdt_manager *man, Elf *elf, const char *path, pid_t pid,
580 const char *usdt_provider, const char *usdt_name, __u64 usdt_cookie,
581 struct usdt_target **out_targets, size_t *out_target_cnt)
582 {
583 size_t off, name_off, desc_off, seg_cnt = 0, vma_seg_cnt = 0, target_cnt = 0;
584 struct elf_seg *segs = NULL, *vma_segs = NULL;
585 struct usdt_target *targets = NULL, *target;
586 long base_addr = 0;
587 Elf_Scn *notes_scn, *base_scn;
588 GElf_Shdr base_shdr, notes_shdr;
589 GElf_Ehdr ehdr;
590 GElf_Nhdr nhdr;
591 Elf_Data *data;
592 int err;
593
594 *out_targets = NULL;
595 *out_target_cnt = 0;
596
597 err = find_elf_sec_by_name(elf, USDT_NOTE_SEC, ¬es_shdr, ¬es_scn);
598 if (err) {
599 pr_warn("usdt: no USDT notes section (%s) found in '%s'\n", USDT_NOTE_SEC, path);
600 return err;
601 }
602
603 if (notes_shdr.sh_type != SHT_NOTE || !gelf_getehdr(elf, &ehdr)) {
604 pr_warn("usdt: invalid USDT notes section (%s) in '%s'\n", USDT_NOTE_SEC, path);
605 return -EINVAL;
606 }
607
608 err = parse_elf_segs(elf, path, &segs, &seg_cnt);
609 if (err) {
610 pr_warn("usdt: failed to process ELF program segments for '%s': %s\n",
611 path, errstr(err));
612 goto err_out;
613 }
614
615 /* .stapsdt.base ELF section is optional, but is used for prelink
616 * offset compensation (see a big comment further below)
617 */
618 if (find_elf_sec_by_name(elf, USDT_BASE_SEC, &base_shdr, &base_scn) == 0)
619 base_addr = base_shdr.sh_addr;
620
621 data = elf_getdata(notes_scn, 0);
622 off = 0;
623 while ((off = gelf_getnote(data, off, &nhdr, &name_off, &desc_off)) > 0) {
624 long usdt_abs_ip, usdt_rel_ip, usdt_sema_off = 0;
625 struct usdt_note note;
626 struct elf_seg *seg = NULL;
627 void *tmp;
628
629 err = parse_usdt_note(elf, path, &nhdr, data->d_buf, name_off, desc_off, ¬e);
630 if (err)
631 goto err_out;
632
633 if (strcmp(note.provider, usdt_provider) != 0 || strcmp(note.name, usdt_name) != 0)
634 continue;
635
636 /* We need to compensate "prelink effect". See [0] for details,
637 * relevant parts quoted here:
638 *
639 * Each SDT probe also expands into a non-allocated ELF note. You can
640 * find this by looking at SHT_NOTE sections and decoding the format;
641 * see below for details. Because the note is non-allocated, it means
642 * there is no runtime cost, and also preserved in both stripped files
643 * and .debug files.
644 *
645 * However, this means that prelink won't adjust the note's contents
646 * for address offsets. Instead, this is done via the .stapsdt.base
647 * section. This is a special section that is added to the text. We
648 * will only ever have one of these sections in a final link and it
649 * will only ever be one byte long. Nothing about this section itself
650 * matters, we just use it as a marker to detect prelink address
651 * adjustments.
652 *
653 * Each probe note records the link-time address of the .stapsdt.base
654 * section alongside the probe PC address. The decoder compares the
655 * base address stored in the note with the .stapsdt.base section's
656 * sh_addr. Initially these are the same, but the section header will
657 * be adjusted by prelink. So the decoder applies the difference to
658 * the probe PC address to get the correct prelinked PC address; the
659 * same adjustment is applied to the semaphore address, if any.
660 *
661 * [0] https://sourceware.org/systemtap/wiki/UserSpaceProbeImplementation
662 */
663 usdt_abs_ip = note.loc_addr;
664 if (base_addr && note.base_addr)
665 usdt_abs_ip += base_addr - note.base_addr;
666
667 /* When attaching uprobes (which is what USDTs basically are)
668 * kernel expects file offset to be specified, not a relative
669 * virtual address, so we need to translate virtual address to
670 * file offset, for both ET_EXEC and ET_DYN binaries.
671 */
672 seg = find_elf_seg(segs, seg_cnt, usdt_abs_ip);
673 if (!seg) {
674 err = -ESRCH;
675 pr_warn("usdt: failed to find ELF program segment for '%s:%s' in '%s' at IP 0x%lx\n",
676 usdt_provider, usdt_name, path, usdt_abs_ip);
677 goto err_out;
678 }
679 if (!seg->is_exec) {
680 err = -ESRCH;
681 pr_warn("usdt: matched ELF binary '%s' segment [0x%lx, 0x%lx) for '%s:%s' at IP 0x%lx is not executable\n",
682 path, seg->start, seg->end, usdt_provider, usdt_name,
683 usdt_abs_ip);
684 goto err_out;
685 }
686 /* translate from virtual address to file offset */
687 usdt_rel_ip = usdt_abs_ip - seg->start + seg->offset;
688
689 if (ehdr.e_type == ET_DYN && !man->has_bpf_cookie) {
690 /* If we don't have BPF cookie support but need to
691 * attach to a shared library, we'll need to know and
692 * record absolute addresses of attach points due to
693 * the need to lookup USDT spec by absolute IP of
694 * triggered uprobe. Doing this resolution is only
695 * possible when we have a specific PID of the process
696 * that's using specified shared library. BPF cookie
697 * removes the absolute address limitation as we don't
698 * need to do this lookup (we just use BPF cookie as
699 * an index of USDT spec), so for newer kernels with
700 * BPF cookie support libbpf supports USDT attachment
701 * to shared libraries with no PID filter.
702 */
703 if (pid < 0) {
704 pr_warn("usdt: attaching to shared libraries without specific PID is not supported on current kernel\n");
705 err = -ENOTSUP;
706 goto err_out;
707 }
708
709 /* vma_segs are lazily initialized only if necessary */
710 if (vma_seg_cnt == 0) {
711 err = parse_vma_segs(pid, path, &vma_segs, &vma_seg_cnt);
712 if (err) {
713 pr_warn("usdt: failed to get memory segments in PID %d for shared library '%s': %s\n",
714 pid, path, errstr(err));
715 goto err_out;
716 }
717 }
718
719 seg = find_vma_seg(vma_segs, vma_seg_cnt, usdt_rel_ip);
720 if (!seg) {
721 err = -ESRCH;
722 pr_warn("usdt: failed to find shared lib memory segment for '%s:%s' in '%s' at relative IP 0x%lx\n",
723 usdt_provider, usdt_name, path, usdt_rel_ip);
724 goto err_out;
725 }
726
727 usdt_abs_ip = seg->start - seg->offset + usdt_rel_ip;
728 }
729
730 pr_debug("usdt: probe for '%s:%s' in %s '%s': addr 0x%lx base 0x%lx (resolved abs_ip 0x%lx rel_ip 0x%lx) args '%s' in segment [0x%lx, 0x%lx) at offset 0x%lx\n",
731 usdt_provider, usdt_name, ehdr.e_type == ET_EXEC ? "exec" : "lib ", path,
732 note.loc_addr, note.base_addr, usdt_abs_ip, usdt_rel_ip, note.args,
733 seg ? seg->start : 0, seg ? seg->end : 0, seg ? seg->offset : 0);
734
735 /* Adjust semaphore address to be a file offset */
736 if (note.sema_addr) {
737 if (!man->has_sema_refcnt) {
738 pr_warn("usdt: kernel doesn't support USDT semaphore refcounting for '%s:%s' in '%s'\n",
739 usdt_provider, usdt_name, path);
740 err = -ENOTSUP;
741 goto err_out;
742 }
743
744 seg = find_elf_seg(segs, seg_cnt, note.sema_addr);
745 if (!seg) {
746 err = -ESRCH;
747 pr_warn("usdt: failed to find ELF loadable segment with semaphore of '%s:%s' in '%s' at 0x%lx\n",
748 usdt_provider, usdt_name, path, note.sema_addr);
749 goto err_out;
750 }
751 if (seg->is_exec) {
752 err = -ESRCH;
753 pr_warn("usdt: matched ELF binary '%s' segment [0x%lx, 0x%lx] for semaphore of '%s:%s' at 0x%lx is executable\n",
754 path, seg->start, seg->end, usdt_provider, usdt_name,
755 note.sema_addr);
756 goto err_out;
757 }
758
759 usdt_sema_off = note.sema_addr - seg->start + seg->offset;
760
761 pr_debug("usdt: sema for '%s:%s' in %s '%s': addr 0x%lx base 0x%lx (resolved 0x%lx) in segment [0x%lx, 0x%lx] at offset 0x%lx\n",
762 usdt_provider, usdt_name, ehdr.e_type == ET_EXEC ? "exec" : "lib ",
763 path, note.sema_addr, note.base_addr, usdt_sema_off,
764 seg->start, seg->end, seg->offset);
765 }
766
767 /* Record adjusted addresses and offsets and parse USDT spec */
768 tmp = libbpf_reallocarray(targets, target_cnt + 1, sizeof(*targets));
769 if (!tmp) {
770 err = -ENOMEM;
771 goto err_out;
772 }
773 targets = tmp;
774
775 target = &targets[target_cnt];
776 memset(target, 0, sizeof(*target));
777
778 target->abs_ip = usdt_abs_ip;
779 target->rel_ip = usdt_rel_ip;
780 target->sema_off = usdt_sema_off;
781
782 /* notes.args references strings from ELF itself, so they can
783 * be referenced safely until elf_end() call
784 */
785 target->spec_str = note.args;
786
787 err = parse_usdt_spec(&target->spec, ¬e, usdt_cookie);
788 if (err)
789 goto err_out;
790
791 target_cnt++;
792 }
793
794 *out_targets = targets;
795 *out_target_cnt = target_cnt;
796 err = target_cnt;
797
798 err_out:
799 free(segs);
800 free(vma_segs);
801 if (err < 0)
802 free(targets);
803 return err;
804 }
805
806 struct bpf_link_usdt {
807 struct bpf_link link;
808
809 struct usdt_manager *usdt_man;
810
811 size_t spec_cnt;
812 int *spec_ids;
813
814 size_t uprobe_cnt;
815 struct {
816 long abs_ip;
817 struct bpf_link *link;
818 } *uprobes;
819
820 struct bpf_link *multi_link;
821 };
822
bpf_link_usdt_detach(struct bpf_link * link)823 static int bpf_link_usdt_detach(struct bpf_link *link)
824 {
825 struct bpf_link_usdt *usdt_link = container_of(link, struct bpf_link_usdt, link);
826 struct usdt_manager *man = usdt_link->usdt_man;
827 int i;
828
829 bpf_link__destroy(usdt_link->multi_link);
830
831 /* When having multi_link, uprobe_cnt is 0 */
832 for (i = 0; i < usdt_link->uprobe_cnt; i++) {
833 /* detach underlying uprobe link */
834 bpf_link__destroy(usdt_link->uprobes[i].link);
835 /* there is no need to update specs map because it will be
836 * unconditionally overwritten on subsequent USDT attaches,
837 * but if BPF cookies are not used we need to remove entry
838 * from ip_to_spec_id map, otherwise we'll run into false
839 * conflicting IP errors
840 */
841 if (!man->has_bpf_cookie) {
842 /* not much we can do about errors here */
843 (void)bpf_map_delete_elem(bpf_map__fd(man->ip_to_spec_id_map),
844 &usdt_link->uprobes[i].abs_ip);
845 }
846 }
847
848 /* try to return the list of previously used spec IDs to usdt_manager
849 * for future reuse for subsequent USDT attaches
850 */
851 if (!man->free_spec_ids) {
852 /* if there were no free spec IDs yet, just transfer our IDs */
853 man->free_spec_ids = usdt_link->spec_ids;
854 man->free_spec_cnt = usdt_link->spec_cnt;
855 usdt_link->spec_ids = NULL;
856 } else {
857 /* otherwise concat IDs */
858 size_t new_cnt = man->free_spec_cnt + usdt_link->spec_cnt;
859 int *new_free_ids;
860
861 new_free_ids = libbpf_reallocarray(man->free_spec_ids, new_cnt,
862 sizeof(*new_free_ids));
863 /* If we couldn't resize free_spec_ids, we'll just leak
864 * a bunch of free IDs; this is very unlikely to happen and if
865 * system is so exhausted on memory, it's the least of user's
866 * concerns, probably.
867 * So just do our best here to return those IDs to usdt_manager.
868 * Another edge case when we can legitimately get NULL is when
869 * new_cnt is zero, which can happen in some edge cases, so we
870 * need to be careful about that.
871 */
872 if (new_free_ids || new_cnt == 0) {
873 memcpy(new_free_ids + man->free_spec_cnt, usdt_link->spec_ids,
874 usdt_link->spec_cnt * sizeof(*usdt_link->spec_ids));
875 man->free_spec_ids = new_free_ids;
876 man->free_spec_cnt = new_cnt;
877 }
878 }
879
880 return 0;
881 }
882
bpf_link_usdt_dealloc(struct bpf_link * link)883 static void bpf_link_usdt_dealloc(struct bpf_link *link)
884 {
885 struct bpf_link_usdt *usdt_link = container_of(link, struct bpf_link_usdt, link);
886
887 free(usdt_link->spec_ids);
888 free(usdt_link->uprobes);
889 free(usdt_link);
890 }
891
specs_hash_fn(long key,void * ctx)892 static size_t specs_hash_fn(long key, void *ctx)
893 {
894 return str_hash((char *)key);
895 }
896
specs_equal_fn(long key1,long key2,void * ctx)897 static bool specs_equal_fn(long key1, long key2, void *ctx)
898 {
899 return strcmp((char *)key1, (char *)key2) == 0;
900 }
901
allocate_spec_id(struct usdt_manager * man,struct hashmap * specs_hash,struct bpf_link_usdt * link,struct usdt_target * target,int * spec_id,bool * is_new)902 static int allocate_spec_id(struct usdt_manager *man, struct hashmap *specs_hash,
903 struct bpf_link_usdt *link, struct usdt_target *target,
904 int *spec_id, bool *is_new)
905 {
906 long tmp;
907 void *new_ids;
908 int err;
909
910 /* check if we already allocated spec ID for this spec string */
911 if (hashmap__find(specs_hash, target->spec_str, &tmp)) {
912 *spec_id = tmp;
913 *is_new = false;
914 return 0;
915 }
916
917 /* otherwise it's a new ID that needs to be set up in specs map and
918 * returned back to usdt_manager when USDT link is detached
919 */
920 new_ids = libbpf_reallocarray(link->spec_ids, link->spec_cnt + 1, sizeof(*link->spec_ids));
921 if (!new_ids)
922 return -ENOMEM;
923 link->spec_ids = new_ids;
924
925 /* get next free spec ID, giving preference to free list, if not empty */
926 if (man->free_spec_cnt) {
927 *spec_id = man->free_spec_ids[man->free_spec_cnt - 1];
928
929 /* cache spec ID for current spec string for future lookups */
930 err = hashmap__add(specs_hash, target->spec_str, *spec_id);
931 if (err)
932 return err;
933
934 man->free_spec_cnt--;
935 } else {
936 /* don't allocate spec ID bigger than what fits in specs map */
937 if (man->next_free_spec_id >= bpf_map__max_entries(man->specs_map))
938 return -E2BIG;
939
940 *spec_id = man->next_free_spec_id;
941
942 /* cache spec ID for current spec string for future lookups */
943 err = hashmap__add(specs_hash, target->spec_str, *spec_id);
944 if (err)
945 return err;
946
947 man->next_free_spec_id++;
948 }
949
950 /* remember new spec ID in the link for later return back to free list on detach */
951 link->spec_ids[link->spec_cnt] = *spec_id;
952 link->spec_cnt++;
953 *is_new = true;
954 return 0;
955 }
956
usdt_manager_attach_usdt(struct usdt_manager * man,const struct bpf_program * prog,pid_t pid,const char * path,const char * usdt_provider,const char * usdt_name,__u64 usdt_cookie)957 struct bpf_link *usdt_manager_attach_usdt(struct usdt_manager *man, const struct bpf_program *prog,
958 pid_t pid, const char *path,
959 const char *usdt_provider, const char *usdt_name,
960 __u64 usdt_cookie)
961 {
962 unsigned long *offsets = NULL, *ref_ctr_offsets = NULL;
963 int i, err, spec_map_fd, ip_map_fd;
964 LIBBPF_OPTS(bpf_uprobe_opts, opts);
965 struct hashmap *specs_hash = NULL;
966 struct bpf_link_usdt *link = NULL;
967 struct usdt_target *targets = NULL;
968 __u64 *cookies = NULL;
969 struct elf_fd elf_fd;
970 size_t target_cnt;
971
972 spec_map_fd = bpf_map__fd(man->specs_map);
973 ip_map_fd = bpf_map__fd(man->ip_to_spec_id_map);
974
975 err = elf_open(path, &elf_fd);
976 if (err)
977 return libbpf_err_ptr(err);
978
979 err = sanity_check_usdt_elf(elf_fd.elf, path);
980 if (err)
981 goto err_out;
982
983 /* normalize PID filter */
984 if (pid < 0)
985 pid = -1;
986 else if (pid == 0)
987 pid = getpid();
988
989 /* discover USDT in given binary, optionally limiting
990 * activations to a given PID, if pid > 0
991 */
992 err = collect_usdt_targets(man, elf_fd.elf, path, pid, usdt_provider, usdt_name,
993 usdt_cookie, &targets, &target_cnt);
994 if (err <= 0) {
995 err = (err == 0) ? -ENOENT : err;
996 goto err_out;
997 }
998
999 specs_hash = hashmap__new(specs_hash_fn, specs_equal_fn, NULL);
1000 if (IS_ERR(specs_hash)) {
1001 err = PTR_ERR(specs_hash);
1002 goto err_out;
1003 }
1004
1005 link = calloc(1, sizeof(*link));
1006 if (!link) {
1007 err = -ENOMEM;
1008 goto err_out;
1009 }
1010
1011 link->usdt_man = man;
1012 link->link.detach = &bpf_link_usdt_detach;
1013 link->link.dealloc = &bpf_link_usdt_dealloc;
1014
1015 if (man->has_uprobe_multi) {
1016 offsets = calloc(target_cnt, sizeof(*offsets));
1017 cookies = calloc(target_cnt, sizeof(*cookies));
1018 ref_ctr_offsets = calloc(target_cnt, sizeof(*ref_ctr_offsets));
1019
1020 if (!offsets || !ref_ctr_offsets || !cookies) {
1021 err = -ENOMEM;
1022 goto err_out;
1023 }
1024 } else {
1025 link->uprobes = calloc(target_cnt, sizeof(*link->uprobes));
1026 if (!link->uprobes) {
1027 err = -ENOMEM;
1028 goto err_out;
1029 }
1030 }
1031
1032 for (i = 0; i < target_cnt; i++) {
1033 struct usdt_target *target = &targets[i];
1034 struct bpf_link *uprobe_link;
1035 bool is_new;
1036 int spec_id;
1037
1038 /* Spec ID can be either reused or newly allocated. If it is
1039 * newly allocated, we'll need to fill out spec map, otherwise
1040 * entire spec should be valid and can be just used by a new
1041 * uprobe. We reuse spec when USDT arg spec is identical. We
1042 * also never share specs between two different USDT
1043 * attachments ("links"), so all the reused specs already
1044 * share USDT cookie value implicitly.
1045 */
1046 err = allocate_spec_id(man, specs_hash, link, target, &spec_id, &is_new);
1047 if (err)
1048 goto err_out;
1049
1050 if (is_new && bpf_map_update_elem(spec_map_fd, &spec_id, &target->spec, BPF_ANY)) {
1051 err = -errno;
1052 pr_warn("usdt: failed to set USDT spec #%d for '%s:%s' in '%s': %s\n",
1053 spec_id, usdt_provider, usdt_name, path, errstr(err));
1054 goto err_out;
1055 }
1056 if (!man->has_bpf_cookie &&
1057 bpf_map_update_elem(ip_map_fd, &target->abs_ip, &spec_id, BPF_NOEXIST)) {
1058 err = -errno;
1059 if (err == -EEXIST) {
1060 pr_warn("usdt: IP collision detected for spec #%d for '%s:%s' in '%s'\n",
1061 spec_id, usdt_provider, usdt_name, path);
1062 } else {
1063 pr_warn("usdt: failed to map IP 0x%lx to spec #%d for '%s:%s' in '%s': %s\n",
1064 target->abs_ip, spec_id, usdt_provider, usdt_name,
1065 path, errstr(err));
1066 }
1067 goto err_out;
1068 }
1069
1070 if (man->has_uprobe_multi) {
1071 offsets[i] = target->rel_ip;
1072 ref_ctr_offsets[i] = target->sema_off;
1073 cookies[i] = spec_id;
1074 } else {
1075 opts.ref_ctr_offset = target->sema_off;
1076 opts.bpf_cookie = man->has_bpf_cookie ? spec_id : 0;
1077 uprobe_link = bpf_program__attach_uprobe_opts(prog, pid, path,
1078 target->rel_ip, &opts);
1079 err = libbpf_get_error(uprobe_link);
1080 if (err) {
1081 pr_warn("usdt: failed to attach uprobe #%d for '%s:%s' in '%s': %s\n",
1082 i, usdt_provider, usdt_name, path, errstr(err));
1083 goto err_out;
1084 }
1085
1086 link->uprobes[i].link = uprobe_link;
1087 link->uprobes[i].abs_ip = target->abs_ip;
1088 link->uprobe_cnt++;
1089 }
1090 }
1091
1092 if (man->has_uprobe_multi) {
1093 LIBBPF_OPTS(bpf_uprobe_multi_opts, opts_multi,
1094 .ref_ctr_offsets = ref_ctr_offsets,
1095 .offsets = offsets,
1096 .cookies = cookies,
1097 .cnt = target_cnt,
1098 );
1099
1100 link->multi_link = bpf_program__attach_uprobe_multi(prog, pid, path,
1101 NULL, &opts_multi);
1102 if (!link->multi_link) {
1103 err = -errno;
1104 pr_warn("usdt: failed to attach uprobe multi for '%s:%s' in '%s': %s\n",
1105 usdt_provider, usdt_name, path, errstr(err));
1106 goto err_out;
1107 }
1108
1109 free(offsets);
1110 free(ref_ctr_offsets);
1111 free(cookies);
1112 }
1113
1114 free(targets);
1115 hashmap__free(specs_hash);
1116 elf_close(&elf_fd);
1117 return &link->link;
1118
1119 err_out:
1120 free(offsets);
1121 free(ref_ctr_offsets);
1122 free(cookies);
1123
1124 if (link)
1125 bpf_link__destroy(&link->link);
1126 free(targets);
1127 hashmap__free(specs_hash);
1128 elf_close(&elf_fd);
1129 return libbpf_err_ptr(err);
1130 }
1131
1132 /* Parse out USDT ELF note from '.note.stapsdt' section.
1133 * Logic inspired by perf's code.
1134 */
parse_usdt_note(Elf * elf,const char * path,GElf_Nhdr * nhdr,const char * data,size_t name_off,size_t desc_off,struct usdt_note * note)1135 static int parse_usdt_note(Elf *elf, const char *path, GElf_Nhdr *nhdr,
1136 const char *data, size_t name_off, size_t desc_off,
1137 struct usdt_note *note)
1138 {
1139 const char *provider, *name, *args;
1140 long addrs[3];
1141 size_t len;
1142
1143 /* sanity check USDT note name and type first */
1144 if (strncmp(data + name_off, USDT_NOTE_NAME, nhdr->n_namesz) != 0)
1145 return -EINVAL;
1146 if (nhdr->n_type != USDT_NOTE_TYPE)
1147 return -EINVAL;
1148
1149 /* sanity check USDT note contents ("description" in ELF terminology) */
1150 len = nhdr->n_descsz;
1151 data = data + desc_off;
1152
1153 /* +3 is the very minimum required to store three empty strings */
1154 if (len < sizeof(addrs) + 3)
1155 return -EINVAL;
1156
1157 /* get location, base, and semaphore addrs */
1158 memcpy(&addrs, data, sizeof(addrs));
1159
1160 /* parse string fields: provider, name, args */
1161 provider = data + sizeof(addrs);
1162
1163 name = (const char *)memchr(provider, '\0', data + len - provider);
1164 if (!name) /* non-zero-terminated provider */
1165 return -EINVAL;
1166 name++;
1167 if (name >= data + len || *name == '\0') /* missing or empty name */
1168 return -EINVAL;
1169
1170 args = memchr(name, '\0', data + len - name);
1171 if (!args) /* non-zero-terminated name */
1172 return -EINVAL;
1173 ++args;
1174 if (args >= data + len) /* missing arguments spec */
1175 return -EINVAL;
1176
1177 note->provider = provider;
1178 note->name = name;
1179 if (*args == '\0' || *args == ':')
1180 note->args = "";
1181 else
1182 note->args = args;
1183 note->loc_addr = addrs[0];
1184 note->base_addr = addrs[1];
1185 note->sema_addr = addrs[2];
1186
1187 return 0;
1188 }
1189
1190 static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz);
1191
parse_usdt_spec(struct usdt_spec * spec,const struct usdt_note * note,__u64 usdt_cookie)1192 static int parse_usdt_spec(struct usdt_spec *spec, const struct usdt_note *note, __u64 usdt_cookie)
1193 {
1194 struct usdt_arg_spec *arg;
1195 const char *s;
1196 int arg_sz, len;
1197
1198 spec->usdt_cookie = usdt_cookie;
1199 spec->arg_cnt = 0;
1200
1201 s = note->args;
1202 while (s[0]) {
1203 if (spec->arg_cnt >= USDT_MAX_ARG_CNT) {
1204 pr_warn("usdt: too many USDT arguments (> %d) for '%s:%s' with args spec '%s'\n",
1205 USDT_MAX_ARG_CNT, note->provider, note->name, note->args);
1206 return -E2BIG;
1207 }
1208
1209 arg = &spec->args[spec->arg_cnt];
1210 len = parse_usdt_arg(s, spec->arg_cnt, arg, &arg_sz);
1211 if (len < 0)
1212 return len;
1213
1214 arg->arg_signed = arg_sz < 0;
1215 if (arg_sz < 0)
1216 arg_sz = -arg_sz;
1217
1218 switch (arg_sz) {
1219 case 1: case 2: case 4: case 8:
1220 arg->arg_bitshift = 64 - arg_sz * 8;
1221 break;
1222 default:
1223 pr_warn("usdt: unsupported arg #%d (spec '%s') size: %d\n",
1224 spec->arg_cnt, s, arg_sz);
1225 return -EINVAL;
1226 }
1227
1228 s += len;
1229 spec->arg_cnt++;
1230 }
1231
1232 return 0;
1233 }
1234
1235 /* Architecture-specific logic for parsing USDT argument location specs */
1236
1237 #if defined(__x86_64__) || defined(__i386__)
1238
calc_pt_regs_off(const char * reg_name)1239 static int calc_pt_regs_off(const char *reg_name)
1240 {
1241 static struct {
1242 const char *names[4];
1243 size_t pt_regs_off;
1244 } reg_map[] = {
1245 #ifdef __x86_64__
1246 #define reg_off(reg64, reg32) offsetof(struct pt_regs, reg64)
1247 #else
1248 #define reg_off(reg64, reg32) offsetof(struct pt_regs, reg32)
1249 #endif
1250 { {"rip", "eip", "", ""}, reg_off(rip, eip) },
1251 { {"rax", "eax", "ax", "al"}, reg_off(rax, eax) },
1252 { {"rbx", "ebx", "bx", "bl"}, reg_off(rbx, ebx) },
1253 { {"rcx", "ecx", "cx", "cl"}, reg_off(rcx, ecx) },
1254 { {"rdx", "edx", "dx", "dl"}, reg_off(rdx, edx) },
1255 { {"rsi", "esi", "si", "sil"}, reg_off(rsi, esi) },
1256 { {"rdi", "edi", "di", "dil"}, reg_off(rdi, edi) },
1257 { {"rbp", "ebp", "bp", "bpl"}, reg_off(rbp, ebp) },
1258 { {"rsp", "esp", "sp", "spl"}, reg_off(rsp, esp) },
1259 #undef reg_off
1260 #ifdef __x86_64__
1261 { {"r8", "r8d", "r8w", "r8b"}, offsetof(struct pt_regs, r8) },
1262 { {"r9", "r9d", "r9w", "r9b"}, offsetof(struct pt_regs, r9) },
1263 { {"r10", "r10d", "r10w", "r10b"}, offsetof(struct pt_regs, r10) },
1264 { {"r11", "r11d", "r11w", "r11b"}, offsetof(struct pt_regs, r11) },
1265 { {"r12", "r12d", "r12w", "r12b"}, offsetof(struct pt_regs, r12) },
1266 { {"r13", "r13d", "r13w", "r13b"}, offsetof(struct pt_regs, r13) },
1267 { {"r14", "r14d", "r14w", "r14b"}, offsetof(struct pt_regs, r14) },
1268 { {"r15", "r15d", "r15w", "r15b"}, offsetof(struct pt_regs, r15) },
1269 #endif
1270 };
1271 int i, j;
1272
1273 for (i = 0; i < ARRAY_SIZE(reg_map); i++) {
1274 for (j = 0; j < ARRAY_SIZE(reg_map[i].names); j++) {
1275 if (strcmp(reg_name, reg_map[i].names[j]) == 0)
1276 return reg_map[i].pt_regs_off;
1277 }
1278 }
1279
1280 pr_warn("usdt: unrecognized register '%s'\n", reg_name);
1281 return -ENOENT;
1282 }
1283
parse_usdt_arg(const char * arg_str,int arg_num,struct usdt_arg_spec * arg,int * arg_sz)1284 static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz)
1285 {
1286 char reg_name[16];
1287 int len, reg_off;
1288 long off;
1289
1290 if (sscanf(arg_str, " %d @ %ld ( %%%15[^)] ) %n", arg_sz, &off, reg_name, &len) == 3) {
1291 /* Memory dereference case, e.g., -4@-20(%rbp) */
1292 arg->arg_type = USDT_ARG_REG_DEREF;
1293 arg->val_off = off;
1294 reg_off = calc_pt_regs_off(reg_name);
1295 if (reg_off < 0)
1296 return reg_off;
1297 arg->reg_off = reg_off;
1298 } else if (sscanf(arg_str, " %d @ ( %%%15[^)] ) %n", arg_sz, reg_name, &len) == 2) {
1299 /* Memory dereference case without offset, e.g., 8@(%rsp) */
1300 arg->arg_type = USDT_ARG_REG_DEREF;
1301 arg->val_off = 0;
1302 reg_off = calc_pt_regs_off(reg_name);
1303 if (reg_off < 0)
1304 return reg_off;
1305 arg->reg_off = reg_off;
1306 } else if (sscanf(arg_str, " %d @ %%%15s %n", arg_sz, reg_name, &len) == 2) {
1307 /* Register read case, e.g., -4@%eax */
1308 arg->arg_type = USDT_ARG_REG;
1309 arg->val_off = 0;
1310
1311 reg_off = calc_pt_regs_off(reg_name);
1312 if (reg_off < 0)
1313 return reg_off;
1314 arg->reg_off = reg_off;
1315 } else if (sscanf(arg_str, " %d @ $%ld %n", arg_sz, &off, &len) == 2) {
1316 /* Constant value case, e.g., 4@$71 */
1317 arg->arg_type = USDT_ARG_CONST;
1318 arg->val_off = off;
1319 arg->reg_off = 0;
1320 } else {
1321 pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str);
1322 return -EINVAL;
1323 }
1324
1325 return len;
1326 }
1327
1328 #elif defined(__s390x__)
1329
1330 /* Do not support __s390__ for now, since user_pt_regs is broken with -m31. */
1331
parse_usdt_arg(const char * arg_str,int arg_num,struct usdt_arg_spec * arg,int * arg_sz)1332 static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz)
1333 {
1334 unsigned int reg;
1335 int len;
1336 long off;
1337
1338 if (sscanf(arg_str, " %d @ %ld ( %%r%u ) %n", arg_sz, &off, ®, &len) == 3) {
1339 /* Memory dereference case, e.g., -2@-28(%r15) */
1340 arg->arg_type = USDT_ARG_REG_DEREF;
1341 arg->val_off = off;
1342 if (reg > 15) {
1343 pr_warn("usdt: unrecognized register '%%r%u'\n", reg);
1344 return -EINVAL;
1345 }
1346 arg->reg_off = offsetof(user_pt_regs, gprs[reg]);
1347 } else if (sscanf(arg_str, " %d @ %%r%u %n", arg_sz, ®, &len) == 2) {
1348 /* Register read case, e.g., -8@%r0 */
1349 arg->arg_type = USDT_ARG_REG;
1350 arg->val_off = 0;
1351 if (reg > 15) {
1352 pr_warn("usdt: unrecognized register '%%r%u'\n", reg);
1353 return -EINVAL;
1354 }
1355 arg->reg_off = offsetof(user_pt_regs, gprs[reg]);
1356 } else if (sscanf(arg_str, " %d @ %ld %n", arg_sz, &off, &len) == 2) {
1357 /* Constant value case, e.g., 4@71 */
1358 arg->arg_type = USDT_ARG_CONST;
1359 arg->val_off = off;
1360 arg->reg_off = 0;
1361 } else {
1362 pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str);
1363 return -EINVAL;
1364 }
1365
1366 return len;
1367 }
1368
1369 #elif defined(__aarch64__)
1370
calc_pt_regs_off(const char * reg_name)1371 static int calc_pt_regs_off(const char *reg_name)
1372 {
1373 int reg_num;
1374
1375 if (sscanf(reg_name, "x%d", ®_num) == 1) {
1376 if (reg_num >= 0 && reg_num < 31)
1377 return offsetof(struct user_pt_regs, regs[reg_num]);
1378 } else if (strcmp(reg_name, "sp") == 0) {
1379 return offsetof(struct user_pt_regs, sp);
1380 }
1381 pr_warn("usdt: unrecognized register '%s'\n", reg_name);
1382 return -ENOENT;
1383 }
1384
parse_usdt_arg(const char * arg_str,int arg_num,struct usdt_arg_spec * arg,int * arg_sz)1385 static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz)
1386 {
1387 char reg_name[16];
1388 int len, reg_off;
1389 long off;
1390
1391 if (sscanf(arg_str, " %d @ \[ %15[a-z0-9] , %ld ] %n", arg_sz, reg_name, &off, &len) == 3) {
1392 /* Memory dereference case, e.g., -4@[sp, 96] */
1393 arg->arg_type = USDT_ARG_REG_DEREF;
1394 arg->val_off = off;
1395 reg_off = calc_pt_regs_off(reg_name);
1396 if (reg_off < 0)
1397 return reg_off;
1398 arg->reg_off = reg_off;
1399 } else if (sscanf(arg_str, " %d @ \[ %15[a-z0-9] ] %n", arg_sz, reg_name, &len) == 2) {
1400 /* Memory dereference case, e.g., -4@[sp] */
1401 arg->arg_type = USDT_ARG_REG_DEREF;
1402 arg->val_off = 0;
1403 reg_off = calc_pt_regs_off(reg_name);
1404 if (reg_off < 0)
1405 return reg_off;
1406 arg->reg_off = reg_off;
1407 } else if (sscanf(arg_str, " %d @ %ld %n", arg_sz, &off, &len) == 2) {
1408 /* Constant value case, e.g., 4@5 */
1409 arg->arg_type = USDT_ARG_CONST;
1410 arg->val_off = off;
1411 arg->reg_off = 0;
1412 } else if (sscanf(arg_str, " %d @ %15[a-z0-9] %n", arg_sz, reg_name, &len) == 2) {
1413 /* Register read case, e.g., -8@x4 */
1414 arg->arg_type = USDT_ARG_REG;
1415 arg->val_off = 0;
1416 reg_off = calc_pt_regs_off(reg_name);
1417 if (reg_off < 0)
1418 return reg_off;
1419 arg->reg_off = reg_off;
1420 } else {
1421 pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str);
1422 return -EINVAL;
1423 }
1424
1425 return len;
1426 }
1427
1428 #elif defined(__riscv)
1429
calc_pt_regs_off(const char * reg_name)1430 static int calc_pt_regs_off(const char *reg_name)
1431 {
1432 static struct {
1433 const char *name;
1434 size_t pt_regs_off;
1435 } reg_map[] = {
1436 { "ra", offsetof(struct user_regs_struct, ra) },
1437 { "sp", offsetof(struct user_regs_struct, sp) },
1438 { "gp", offsetof(struct user_regs_struct, gp) },
1439 { "tp", offsetof(struct user_regs_struct, tp) },
1440 { "a0", offsetof(struct user_regs_struct, a0) },
1441 { "a1", offsetof(struct user_regs_struct, a1) },
1442 { "a2", offsetof(struct user_regs_struct, a2) },
1443 { "a3", offsetof(struct user_regs_struct, a3) },
1444 { "a4", offsetof(struct user_regs_struct, a4) },
1445 { "a5", offsetof(struct user_regs_struct, a5) },
1446 { "a6", offsetof(struct user_regs_struct, a6) },
1447 { "a7", offsetof(struct user_regs_struct, a7) },
1448 { "s0", offsetof(struct user_regs_struct, s0) },
1449 { "s1", offsetof(struct user_regs_struct, s1) },
1450 { "s2", offsetof(struct user_regs_struct, s2) },
1451 { "s3", offsetof(struct user_regs_struct, s3) },
1452 { "s4", offsetof(struct user_regs_struct, s4) },
1453 { "s5", offsetof(struct user_regs_struct, s5) },
1454 { "s6", offsetof(struct user_regs_struct, s6) },
1455 { "s7", offsetof(struct user_regs_struct, s7) },
1456 { "s8", offsetof(struct user_regs_struct, rv_s8) },
1457 { "s9", offsetof(struct user_regs_struct, s9) },
1458 { "s10", offsetof(struct user_regs_struct, s10) },
1459 { "s11", offsetof(struct user_regs_struct, s11) },
1460 { "t0", offsetof(struct user_regs_struct, t0) },
1461 { "t1", offsetof(struct user_regs_struct, t1) },
1462 { "t2", offsetof(struct user_regs_struct, t2) },
1463 { "t3", offsetof(struct user_regs_struct, t3) },
1464 { "t4", offsetof(struct user_regs_struct, t4) },
1465 { "t5", offsetof(struct user_regs_struct, t5) },
1466 { "t6", offsetof(struct user_regs_struct, t6) },
1467 };
1468 int i;
1469
1470 for (i = 0; i < ARRAY_SIZE(reg_map); i++) {
1471 if (strcmp(reg_name, reg_map[i].name) == 0)
1472 return reg_map[i].pt_regs_off;
1473 }
1474
1475 pr_warn("usdt: unrecognized register '%s'\n", reg_name);
1476 return -ENOENT;
1477 }
1478
parse_usdt_arg(const char * arg_str,int arg_num,struct usdt_arg_spec * arg,int * arg_sz)1479 static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz)
1480 {
1481 char reg_name[16];
1482 int len, reg_off;
1483 long off;
1484
1485 if (sscanf(arg_str, " %d @ %ld ( %15[a-z0-9] ) %n", arg_sz, &off, reg_name, &len) == 3) {
1486 /* Memory dereference case, e.g., -8@-88(s0) */
1487 arg->arg_type = USDT_ARG_REG_DEREF;
1488 arg->val_off = off;
1489 reg_off = calc_pt_regs_off(reg_name);
1490 if (reg_off < 0)
1491 return reg_off;
1492 arg->reg_off = reg_off;
1493 } else if (sscanf(arg_str, " %d @ %ld %n", arg_sz, &off, &len) == 2) {
1494 /* Constant value case, e.g., 4@5 */
1495 arg->arg_type = USDT_ARG_CONST;
1496 arg->val_off = off;
1497 arg->reg_off = 0;
1498 } else if (sscanf(arg_str, " %d @ %15[a-z0-9] %n", arg_sz, reg_name, &len) == 2) {
1499 /* Register read case, e.g., -8@a1 */
1500 arg->arg_type = USDT_ARG_REG;
1501 arg->val_off = 0;
1502 reg_off = calc_pt_regs_off(reg_name);
1503 if (reg_off < 0)
1504 return reg_off;
1505 arg->reg_off = reg_off;
1506 } else {
1507 pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str);
1508 return -EINVAL;
1509 }
1510
1511 return len;
1512 }
1513
1514 #elif defined(__arm__)
1515
calc_pt_regs_off(const char * reg_name)1516 static int calc_pt_regs_off(const char *reg_name)
1517 {
1518 static struct {
1519 const char *name;
1520 size_t pt_regs_off;
1521 } reg_map[] = {
1522 { "r0", offsetof(struct pt_regs, uregs[0]) },
1523 { "r1", offsetof(struct pt_regs, uregs[1]) },
1524 { "r2", offsetof(struct pt_regs, uregs[2]) },
1525 { "r3", offsetof(struct pt_regs, uregs[3]) },
1526 { "r4", offsetof(struct pt_regs, uregs[4]) },
1527 { "r5", offsetof(struct pt_regs, uregs[5]) },
1528 { "r6", offsetof(struct pt_regs, uregs[6]) },
1529 { "r7", offsetof(struct pt_regs, uregs[7]) },
1530 { "r8", offsetof(struct pt_regs, uregs[8]) },
1531 { "r9", offsetof(struct pt_regs, uregs[9]) },
1532 { "r10", offsetof(struct pt_regs, uregs[10]) },
1533 { "fp", offsetof(struct pt_regs, uregs[11]) },
1534 { "ip", offsetof(struct pt_regs, uregs[12]) },
1535 { "sp", offsetof(struct pt_regs, uregs[13]) },
1536 { "lr", offsetof(struct pt_regs, uregs[14]) },
1537 { "pc", offsetof(struct pt_regs, uregs[15]) },
1538 };
1539 int i;
1540
1541 for (i = 0; i < ARRAY_SIZE(reg_map); i++) {
1542 if (strcmp(reg_name, reg_map[i].name) == 0)
1543 return reg_map[i].pt_regs_off;
1544 }
1545
1546 pr_warn("usdt: unrecognized register '%s'\n", reg_name);
1547 return -ENOENT;
1548 }
1549
parse_usdt_arg(const char * arg_str,int arg_num,struct usdt_arg_spec * arg,int * arg_sz)1550 static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz)
1551 {
1552 char reg_name[16];
1553 int len, reg_off;
1554 long off;
1555
1556 if (sscanf(arg_str, " %d @ \[ %15[a-z0-9] , #%ld ] %n",
1557 arg_sz, reg_name, &off, &len) == 3) {
1558 /* Memory dereference case, e.g., -4@[fp, #96] */
1559 arg->arg_type = USDT_ARG_REG_DEREF;
1560 arg->val_off = off;
1561 reg_off = calc_pt_regs_off(reg_name);
1562 if (reg_off < 0)
1563 return reg_off;
1564 arg->reg_off = reg_off;
1565 } else if (sscanf(arg_str, " %d @ \[ %15[a-z0-9] ] %n", arg_sz, reg_name, &len) == 2) {
1566 /* Memory dereference case, e.g., -4@[sp] */
1567 arg->arg_type = USDT_ARG_REG_DEREF;
1568 arg->val_off = 0;
1569 reg_off = calc_pt_regs_off(reg_name);
1570 if (reg_off < 0)
1571 return reg_off;
1572 arg->reg_off = reg_off;
1573 } else if (sscanf(arg_str, " %d @ #%ld %n", arg_sz, &off, &len) == 2) {
1574 /* Constant value case, e.g., 4@#5 */
1575 arg->arg_type = USDT_ARG_CONST;
1576 arg->val_off = off;
1577 arg->reg_off = 0;
1578 } else if (sscanf(arg_str, " %d @ %15[a-z0-9] %n", arg_sz, reg_name, &len) == 2) {
1579 /* Register read case, e.g., -8@r4 */
1580 arg->arg_type = USDT_ARG_REG;
1581 arg->val_off = 0;
1582 reg_off = calc_pt_regs_off(reg_name);
1583 if (reg_off < 0)
1584 return reg_off;
1585 arg->reg_off = reg_off;
1586 } else {
1587 pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str);
1588 return -EINVAL;
1589 }
1590
1591 return len;
1592 }
1593
1594 #else
1595
parse_usdt_arg(const char * arg_str,int arg_num,struct usdt_arg_spec * arg,int * arg_sz)1596 static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz)
1597 {
1598 pr_warn("usdt: libbpf doesn't support USDTs on current architecture\n");
1599 return -ENOTSUP;
1600 }
1601
1602 #endif
1603